]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/i386/commpage/longcopy_sse3x_64.s
xnu-1228.12.14.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / longcopy_sse3x_64.s
... / ...
CommitLineData
1/*
2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29#include <machine/cpu_capabilities.h>
30#include <machine/commpage.h>
31
32
33/*
34 * The bcopy/memcpy loops for very long operands, tuned for 64-bit
35 * Pentium-M class processors with Supplemental SSE3 and 64-byte cache lines.
36 * This is the 64-bit version.
37 *
38 * The following #defines are tightly coupled to the u-architecture:
39 */
40
41#define kBigChunk (256*1024) // outer loop chunk size for kVeryLong sized operands
42
43
44// Very long forward moves. These are at least several pages, so we loop over big
45// chunks of memory (kBigChunk in size.) We first prefetch the chunk, and then copy
46// it using non-temporal stores. Hopefully all the reads occur in the prefetch loop,
47// so the copy loop reads from L2 and writes directly to memory (with write combining.)
48// This minimizes bus turnaround and maintains good DRAM page locality.
49// Note that for this scheme to work, kVeryLong must be a large fraction of L2 cache
50// size. Otherwise, it is counter-productive to bypass L2 on the stores.
51//
52// We are called from the commpage bcopy loops when they encounter very long
53// operands, with the standard ABI:
54// rdi = dest ptr
55// rsi = source ptr
56// rdx = length (>= 8kb, probably much bigger)
57
58 .text
59 .code64
60 .align 5, 0x90
61Llongcopy_sse3x_64: // void longcopy(const void *dest, void *sou, size_t len)
62 pushq %rbp // set up a frame for backtraces
63 movq %rsp,%rbp
64 movl %edi,%eax // copy dest ptr
65 negl %eax
66 andl $63,%eax // get #bytes to cache line align destination
67 jz LBigChunkLoop // already aligned
68
69// Cache line align destination, so temporal stores in copy loops work right.
70// The recursive call returns with the source and dest ptrs properly updated.
71
72 subq %rax,%rdx // get length remaining after dest is aligned
73 pushq %rdx // save length remaining
74 movl %eax,%edx // #bytes to copy to align destination
75 movq $_COMM_PAGE_32_TO_64(_COMM_PAGE_MEMCPY),%rax
76 call *%rax
77 popq %rdx // recover adjusted length
78
79// Loop over big chunks.
80// rdx = length remaining (>= 4096)
81// rdi = dest (64-byte aligned)
82// rsi = source (may be unaligned)
83
84LBigChunkLoop:
85 movl $(kBigChunk),%r8d // assume we can do a full chunk
86 cmpq %r8,%rdx // do we have a full chunk left to do?
87 cmovbl %edx,%r8d // if not, only move what we have left
88 andl $-4096,%r8d // we work in page multiples
89 xorl %eax,%eax // initialize chunk offset
90 jmp LTouchLoop
91
92// Touch in the next chunk. We try to keep the prefetch unit in "kick-start" mode,
93// by touching two adjacent cache lines every 8 lines of each page, in four slices.
94// Because the source may be unaligned, we use byte loads to touch.
95// rdx = length remaining (including this chunk)
96// rdi = ptr to start of dest chunk
97// rsi = ptr to start of source chunk
98// r8d = chunk length (multiples of pages, less than 2**32)
99// ecx = scratch reg used to read a byte of each cache line
100// eax = chunk offset
101
102 .align 4,0x90 // 16-byte align inner loops
103LTouchLoop:
104 movzb (%rsi,%rax),%ecx // touch line 0, 2, 4, or 6 of page
105 movzb 1*64(%rsi,%rax),%ecx // touch line 1, 3, 5, or 7
106 movzb 8*64(%rsi,%rax),%ecx // touch line 8, 10, 12, or 14
107 movzb 9*64(%rsi,%rax),%ecx // etc
108
109 movzb 16*64(%rsi,%rax),%ecx
110 movzb 17*64(%rsi,%rax),%ecx
111 movzb 24*64(%rsi,%rax),%ecx
112 movzb 25*64(%rsi,%rax),%ecx
113
114 movzb 32*64(%rsi,%rax),%ecx
115 movzb 33*64(%rsi,%rax),%ecx
116 movzb 40*64(%rsi,%rax),%ecx
117 movzb 41*64(%rsi,%rax),%ecx
118
119 movzb 48*64(%rsi,%rax),%ecx
120 movzb 49*64(%rsi,%rax),%ecx
121 movzb 56*64(%rsi,%rax),%ecx
122 movzb 57*64(%rsi,%rax),%ecx
123
124 subl $-128,%eax // next slice of page (adding 128 w 8-bit immediate)
125 testl $512,%eax // done with this page?
126 jz LTouchLoop // no, next of four slices
127 addl $(4096-512),%eax // move on to next page
128 cmpl %eax,%r8d // done with this chunk?
129 jnz LTouchLoop // no, do next page
130
131// The chunk has been pre-fetched, now copy it using non-temporal stores.
132// There are two copy loops, depending on whether the source is 16-byte aligned
133// or not.
134
135 movl %r8d,%ecx // copy chunk size to a reg that doesn't use REX prefix
136 addq %rcx,%rsi // increment ptrs by chunk length
137 addq %rcx,%rdi
138 subq %rcx,%rdx // adjust remaining length
139 negq %rcx // prepare loop index (counts up to 0)
140 testl $15,%esi // is source 16-byte aligned?
141 jnz LVeryLongUnaligned // no
142 jmp LVeryLongAligned
143
144 .align 4,0x90 // 16-byte align inner loops
145LVeryLongAligned: // aligned loop over 128-bytes
146 movdqa (%rsi,%rcx),%xmm0
147 movdqa 16(%rsi,%rcx),%xmm1
148 movdqa 32(%rsi,%rcx),%xmm2
149 movdqa 48(%rsi,%rcx),%xmm3
150 movdqa 64(%rsi,%rcx),%xmm4
151 movdqa 80(%rsi,%rcx),%xmm5
152 movdqa 96(%rsi,%rcx),%xmm6
153 movdqa 112(%rsi,%rcx),%xmm7
154
155 movntdq %xmm0,(%rdi,%rcx)
156 movntdq %xmm1,16(%rdi,%rcx)
157 movntdq %xmm2,32(%rdi,%rcx)
158 movntdq %xmm3,48(%rdi,%rcx)
159 movntdq %xmm4,64(%rdi,%rcx)
160 movntdq %xmm5,80(%rdi,%rcx)
161 movntdq %xmm6,96(%rdi,%rcx)
162 movntdq %xmm7,112(%rdi,%rcx)
163
164 subq $-128,%rcx // add 128 with an 8-bit immediate
165 jnz LVeryLongAligned
166 jmp LVeryLongChunkEnd
167
168 .align 4,0x90 // 16-byte align inner loops
169LVeryLongUnaligned: // unaligned loop over 128-bytes
170 movdqu (%rsi,%rcx),%xmm0
171 movdqu 16(%rsi,%rcx),%xmm1
172 movdqu 32(%rsi,%rcx),%xmm2
173 movdqu 48(%rsi,%rcx),%xmm3
174 movdqu 64(%rsi,%rcx),%xmm4
175 movdqu 80(%rsi,%rcx),%xmm5
176 movdqu 96(%rsi,%rcx),%xmm6
177 movdqu 112(%rsi,%rcx),%xmm7
178
179 movntdq %xmm0,(%rdi,%rcx)
180 movntdq %xmm1,16(%rdi,%rcx)
181 movntdq %xmm2,32(%rdi,%rcx)
182 movntdq %xmm3,48(%rdi,%rcx)
183 movntdq %xmm4,64(%rdi,%rcx)
184 movntdq %xmm5,80(%rdi,%rcx)
185 movntdq %xmm6,96(%rdi,%rcx)
186 movntdq %xmm7,112(%rdi,%rcx)
187
188 subq $-128,%rcx // add 128 with an 8-bit immediate
189 jnz LVeryLongUnaligned
190
191LVeryLongChunkEnd:
192 cmpq $4096,%rdx // at least another page to go?
193 jae LBigChunkLoop // yes
194
195// Done. Call memcpy() again to handle the 0-4095 bytes at the end.
196// We still have the args in the right registers:
197// rdi = destination ptr
198// rsi = source ptr
199// rdx = length remaining (0..4095)
200
201 sfence // required by non-temporal stores
202 testl %edx,%edx // anything left to copy?
203 jz 1f
204 movq $_COMM_PAGE_32_TO_64(_COMM_PAGE_MEMCPY),%rax
205 call *%rax
2061:
207 popq %rbp // restore frame ptr
208 ret
209
210 /* always match for now, as commpage_stuff_routine() will panic if no match */
211 COMMPAGE_DESCRIPTOR(longcopy_sse3x_64, _COMM_PAGE_LONGCOPY, 0 ,0)