]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_page.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Resident memory management module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <libkern/OSAtomic.h> | |
67 | #include <libkern/OSDebug.h> | |
68 | ||
69 | #include <mach/clock_types.h> | |
70 | #include <mach/vm_prot.h> | |
71 | #include <mach/vm_statistics.h> | |
72 | #include <mach/sdt.h> | |
73 | #include <kern/counters.h> | |
74 | #include <kern/sched_prim.h> | |
75 | #include <kern/task.h> | |
76 | #include <kern/thread.h> | |
77 | #include <kern/kalloc.h> | |
78 | #include <kern/zalloc.h> | |
79 | #include <kern/xpr.h> | |
80 | #include <kern/ledger.h> | |
81 | #include <vm/pmap.h> | |
82 | #include <vm/vm_init.h> | |
83 | #include <vm/vm_map.h> | |
84 | #include <vm/vm_page.h> | |
85 | #include <vm/vm_pageout.h> | |
86 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
87 | #include <kern/misc_protos.h> | |
88 | #include <zone_debug.h> | |
89 | #include <mach_debug/zone_info.h> | |
90 | #include <vm/cpm.h> | |
91 | #include <pexpert/pexpert.h> | |
92 | ||
93 | #include <vm/vm_protos.h> | |
94 | #include <vm/memory_object.h> | |
95 | #include <vm/vm_purgeable_internal.h> | |
96 | #include <vm/vm_compressor.h> | |
97 | ||
98 | #if CONFIG_PHANTOM_CACHE | |
99 | #include <vm/vm_phantom_cache.h> | |
100 | #endif | |
101 | ||
102 | #include <IOKit/IOHibernatePrivate.h> | |
103 | ||
104 | #include <sys/kdebug.h> | |
105 | ||
106 | boolean_t hibernate_cleaning_in_progress = FALSE; | |
107 | boolean_t vm_page_free_verify = TRUE; | |
108 | ||
109 | uint32_t vm_lopage_free_count = 0; | |
110 | uint32_t vm_lopage_free_limit = 0; | |
111 | uint32_t vm_lopage_lowater = 0; | |
112 | boolean_t vm_lopage_refill = FALSE; | |
113 | boolean_t vm_lopage_needed = FALSE; | |
114 | ||
115 | lck_mtx_ext_t vm_page_queue_lock_ext; | |
116 | lck_mtx_ext_t vm_page_queue_free_lock_ext; | |
117 | lck_mtx_ext_t vm_purgeable_queue_lock_ext; | |
118 | ||
119 | int speculative_age_index = 0; | |
120 | int speculative_steal_index = 0; | |
121 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; | |
122 | ||
123 | ||
124 | __private_extern__ void vm_page_init_lck_grp(void); | |
125 | ||
126 | static void vm_page_free_prepare(vm_page_t page); | |
127 | static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr); | |
128 | ||
129 | static void vm_tag_init(void); | |
130 | ||
131 | uint64_t vm_min_kernel_and_kext_address = VM_MIN_KERNEL_AND_KEXT_ADDRESS; | |
132 | ||
133 | /* | |
134 | * Associated with page of user-allocatable memory is a | |
135 | * page structure. | |
136 | */ | |
137 | ||
138 | /* | |
139 | * These variables record the values returned by vm_page_bootstrap, | |
140 | * for debugging purposes. The implementation of pmap_steal_memory | |
141 | * and pmap_startup here also uses them internally. | |
142 | */ | |
143 | ||
144 | vm_offset_t virtual_space_start; | |
145 | vm_offset_t virtual_space_end; | |
146 | uint32_t vm_page_pages; | |
147 | ||
148 | /* | |
149 | * The vm_page_lookup() routine, which provides for fast | |
150 | * (virtual memory object, offset) to page lookup, employs | |
151 | * the following hash table. The vm_page_{insert,remove} | |
152 | * routines install and remove associations in the table. | |
153 | * [This table is often called the virtual-to-physical, | |
154 | * or VP, table.] | |
155 | */ | |
156 | typedef struct { | |
157 | vm_page_packed_t page_list; | |
158 | #if MACH_PAGE_HASH_STATS | |
159 | int cur_count; /* current count */ | |
160 | int hi_count; /* high water mark */ | |
161 | #endif /* MACH_PAGE_HASH_STATS */ | |
162 | } vm_page_bucket_t; | |
163 | ||
164 | ||
165 | #define BUCKETS_PER_LOCK 16 | |
166 | ||
167 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
168 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
169 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
170 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
171 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ | |
172 | unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */ | |
173 | ||
174 | lck_spin_t *vm_page_bucket_locks; | |
175 | lck_spin_t vm_objects_wired_lock; | |
176 | lck_spin_t vm_allocation_sites_lock; | |
177 | ||
178 | #if VM_PAGE_BUCKETS_CHECK | |
179 | boolean_t vm_page_buckets_check_ready = FALSE; | |
180 | #if VM_PAGE_FAKE_BUCKETS | |
181 | vm_page_bucket_t *vm_page_fake_buckets; /* decoy buckets */ | |
182 | vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; | |
183 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
184 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
185 | ||
186 | extern int not_in_kdp; | |
187 | ||
188 | ||
189 | #if MACH_PAGE_HASH_STATS | |
190 | /* This routine is only for debug. It is intended to be called by | |
191 | * hand by a developer using a kernel debugger. This routine prints | |
192 | * out vm_page_hash table statistics to the kernel debug console. | |
193 | */ | |
194 | void | |
195 | hash_debug(void) | |
196 | { | |
197 | int i; | |
198 | int numbuckets = 0; | |
199 | int highsum = 0; | |
200 | int maxdepth = 0; | |
201 | ||
202 | for (i = 0; i < vm_page_bucket_count; i++) { | |
203 | if (vm_page_buckets[i].hi_count) { | |
204 | numbuckets++; | |
205 | highsum += vm_page_buckets[i].hi_count; | |
206 | if (vm_page_buckets[i].hi_count > maxdepth) | |
207 | maxdepth = vm_page_buckets[i].hi_count; | |
208 | } | |
209 | } | |
210 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
211 | printf("Number used buckets: %d = %d%%\n", | |
212 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
213 | printf("Number unused buckets: %d = %d%%\n", | |
214 | vm_page_bucket_count - numbuckets, | |
215 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
216 | printf("Sum of bucket max depth: %d\n", highsum); | |
217 | printf("Average bucket depth: %d.%2d\n", | |
218 | highsum/vm_page_bucket_count, | |
219 | highsum%vm_page_bucket_count); | |
220 | printf("Maximum bucket depth: %d\n", maxdepth); | |
221 | } | |
222 | #endif /* MACH_PAGE_HASH_STATS */ | |
223 | ||
224 | /* | |
225 | * The virtual page size is currently implemented as a runtime | |
226 | * variable, but is constant once initialized using vm_set_page_size. | |
227 | * This initialization must be done in the machine-dependent | |
228 | * bootstrap sequence, before calling other machine-independent | |
229 | * initializations. | |
230 | * | |
231 | * All references to the virtual page size outside this | |
232 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
233 | * constants. | |
234 | */ | |
235 | vm_size_t page_size = PAGE_SIZE; | |
236 | vm_size_t page_mask = PAGE_MASK; | |
237 | int page_shift = PAGE_SHIFT; | |
238 | ||
239 | /* | |
240 | * Resident page structures are initialized from | |
241 | * a template (see vm_page_alloc). | |
242 | * | |
243 | * When adding a new field to the virtual memory | |
244 | * object structure, be sure to add initialization | |
245 | * (see vm_page_bootstrap). | |
246 | */ | |
247 | struct vm_page vm_page_template; | |
248 | ||
249 | vm_page_t vm_pages = VM_PAGE_NULL; | |
250 | unsigned int vm_pages_count = 0; | |
251 | ppnum_t vm_page_lowest = 0; | |
252 | ||
253 | /* | |
254 | * Resident pages that represent real memory | |
255 | * are allocated from a set of free lists, | |
256 | * one per color. | |
257 | */ | |
258 | unsigned int vm_colors; | |
259 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ | |
260 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ | |
261 | unsigned int vm_free_magazine_refill_limit = 0; | |
262 | queue_head_t vm_page_queue_free[MAX_COLORS]; | |
263 | unsigned int vm_page_free_wanted; | |
264 | unsigned int vm_page_free_wanted_privileged; | |
265 | unsigned int vm_page_free_count; | |
266 | unsigned int vm_page_fictitious_count; | |
267 | ||
268 | /* | |
269 | * Occasionally, the virtual memory system uses | |
270 | * resident page structures that do not refer to | |
271 | * real pages, for example to leave a page with | |
272 | * important state information in the VP table. | |
273 | * | |
274 | * These page structures are allocated the way | |
275 | * most other kernel structures are. | |
276 | */ | |
277 | zone_t vm_page_zone; | |
278 | vm_locks_array_t vm_page_locks; | |
279 | decl_lck_mtx_data(,vm_page_alloc_lock) | |
280 | lck_mtx_ext_t vm_page_alloc_lock_ext; | |
281 | ||
282 | unsigned int io_throttle_zero_fill; | |
283 | ||
284 | unsigned int vm_page_local_q_count = 0; | |
285 | unsigned int vm_page_local_q_soft_limit = 250; | |
286 | unsigned int vm_page_local_q_hard_limit = 500; | |
287 | struct vplq *vm_page_local_q = NULL; | |
288 | ||
289 | /* N.B. Guard and fictitious pages must not | |
290 | * be assigned a zero phys_page value. | |
291 | */ | |
292 | /* | |
293 | * Fictitious pages don't have a physical address, | |
294 | * but we must initialize phys_page to something. | |
295 | * For debugging, this should be a strange value | |
296 | * that the pmap module can recognize in assertions. | |
297 | */ | |
298 | ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; | |
299 | ||
300 | /* | |
301 | * Guard pages are not accessible so they don't | |
302 | * need a physical address, but we need to enter | |
303 | * one in the pmap. | |
304 | * Let's make it recognizable and make sure that | |
305 | * we don't use a real physical page with that | |
306 | * physical address. | |
307 | */ | |
308 | ppnum_t vm_page_guard_addr = (ppnum_t) -2; | |
309 | ||
310 | /* | |
311 | * Resident page structures are also chained on | |
312 | * queues that are used by the page replacement | |
313 | * system (pageout daemon). These queues are | |
314 | * defined here, but are shared by the pageout | |
315 | * module. The inactive queue is broken into | |
316 | * file backed and anonymous for convenience as the | |
317 | * pageout daemon often assignes a higher | |
318 | * importance to anonymous pages (less likely to pick) | |
319 | */ | |
320 | queue_head_t vm_page_queue_active; | |
321 | queue_head_t vm_page_queue_inactive; | |
322 | queue_head_t vm_page_queue_anonymous; /* inactive memory queue for anonymous pages */ | |
323 | queue_head_t vm_page_queue_throttled; | |
324 | ||
325 | queue_head_t vm_objects_wired; | |
326 | ||
327 | unsigned int vm_page_active_count; | |
328 | unsigned int vm_page_inactive_count; | |
329 | unsigned int vm_page_anonymous_count; | |
330 | unsigned int vm_page_throttled_count; | |
331 | unsigned int vm_page_speculative_count; | |
332 | ||
333 | unsigned int vm_page_wire_count; | |
334 | unsigned int vm_page_stolen_count; | |
335 | unsigned int vm_page_wire_count_initial; | |
336 | unsigned int vm_page_pages_initial; | |
337 | unsigned int vm_page_gobble_count = 0; | |
338 | ||
339 | #define VM_PAGE_WIRE_COUNT_WARNING 0 | |
340 | #define VM_PAGE_GOBBLE_COUNT_WARNING 0 | |
341 | ||
342 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ | |
343 | unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ | |
344 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ | |
345 | ||
346 | unsigned int vm_page_xpmapped_external_count = 0; | |
347 | unsigned int vm_page_external_count = 0; | |
348 | unsigned int vm_page_internal_count = 0; | |
349 | unsigned int vm_page_pageable_external_count = 0; | |
350 | unsigned int vm_page_pageable_internal_count = 0; | |
351 | ||
352 | #if DEVELOPMENT || DEBUG | |
353 | unsigned int vm_page_speculative_recreated = 0; | |
354 | unsigned int vm_page_speculative_created = 0; | |
355 | unsigned int vm_page_speculative_used = 0; | |
356 | #endif | |
357 | ||
358 | queue_head_t vm_page_queue_cleaned; | |
359 | ||
360 | unsigned int vm_page_cleaned_count = 0; | |
361 | unsigned int vm_pageout_enqueued_cleaned = 0; | |
362 | ||
363 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; | |
364 | ppnum_t max_valid_low_ppnum = 0xffffffff; | |
365 | ||
366 | ||
367 | /* | |
368 | * Several page replacement parameters are also | |
369 | * shared with this module, so that page allocation | |
370 | * (done here in vm_page_alloc) can trigger the | |
371 | * pageout daemon. | |
372 | */ | |
373 | unsigned int vm_page_free_target = 0; | |
374 | unsigned int vm_page_free_min = 0; | |
375 | unsigned int vm_page_throttle_limit = 0; | |
376 | unsigned int vm_page_inactive_target = 0; | |
377 | unsigned int vm_page_anonymous_min = 0; | |
378 | unsigned int vm_page_inactive_min = 0; | |
379 | unsigned int vm_page_free_reserved = 0; | |
380 | unsigned int vm_page_throttle_count = 0; | |
381 | ||
382 | ||
383 | /* | |
384 | * The VM system has a couple of heuristics for deciding | |
385 | * that pages are "uninteresting" and should be placed | |
386 | * on the inactive queue as likely candidates for replacement. | |
387 | * These variables let the heuristics be controlled at run-time | |
388 | * to make experimentation easier. | |
389 | */ | |
390 | ||
391 | boolean_t vm_page_deactivate_hint = TRUE; | |
392 | ||
393 | struct vm_page_stats_reusable vm_page_stats_reusable; | |
394 | ||
395 | /* | |
396 | * vm_set_page_size: | |
397 | * | |
398 | * Sets the page size, perhaps based upon the memory | |
399 | * size. Must be called before any use of page-size | |
400 | * dependent functions. | |
401 | * | |
402 | * Sets page_shift and page_mask from page_size. | |
403 | */ | |
404 | void | |
405 | vm_set_page_size(void) | |
406 | { | |
407 | page_size = PAGE_SIZE; | |
408 | page_mask = PAGE_MASK; | |
409 | page_shift = PAGE_SHIFT; | |
410 | ||
411 | if ((page_mask & page_size) != 0) | |
412 | panic("vm_set_page_size: page size not a power of two"); | |
413 | ||
414 | for (page_shift = 0; ; page_shift++) | |
415 | if ((1U << page_shift) == page_size) | |
416 | break; | |
417 | } | |
418 | ||
419 | #define COLOR_GROUPS_TO_STEAL 4 | |
420 | ||
421 | ||
422 | /* Called once during statup, once the cache geometry is known. | |
423 | */ | |
424 | static void | |
425 | vm_page_set_colors( void ) | |
426 | { | |
427 | unsigned int n, override; | |
428 | ||
429 | if ( PE_parse_boot_argn("colors", &override, sizeof (override)) ) /* colors specified as a boot-arg? */ | |
430 | n = override; | |
431 | else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ | |
432 | n = vm_cache_geometry_colors; | |
433 | else n = DEFAULT_COLORS; /* use default if all else fails */ | |
434 | ||
435 | if ( n == 0 ) | |
436 | n = 1; | |
437 | if ( n > MAX_COLORS ) | |
438 | n = MAX_COLORS; | |
439 | ||
440 | /* the count must be a power of 2 */ | |
441 | if ( ( n & (n - 1)) != 0 ) | |
442 | panic("vm_page_set_colors"); | |
443 | ||
444 | vm_colors = n; | |
445 | vm_color_mask = n - 1; | |
446 | ||
447 | vm_free_magazine_refill_limit = vm_colors * COLOR_GROUPS_TO_STEAL; | |
448 | } | |
449 | ||
450 | ||
451 | lck_grp_t vm_page_lck_grp_free; | |
452 | lck_grp_t vm_page_lck_grp_queue; | |
453 | lck_grp_t vm_page_lck_grp_local; | |
454 | lck_grp_t vm_page_lck_grp_purge; | |
455 | lck_grp_t vm_page_lck_grp_alloc; | |
456 | lck_grp_t vm_page_lck_grp_bucket; | |
457 | lck_grp_attr_t vm_page_lck_grp_attr; | |
458 | lck_attr_t vm_page_lck_attr; | |
459 | ||
460 | ||
461 | __private_extern__ void | |
462 | vm_page_init_lck_grp(void) | |
463 | { | |
464 | /* | |
465 | * initialze the vm_page lock world | |
466 | */ | |
467 | lck_grp_attr_setdefault(&vm_page_lck_grp_attr); | |
468 | lck_grp_init(&vm_page_lck_grp_free, "vm_page_free", &vm_page_lck_grp_attr); | |
469 | lck_grp_init(&vm_page_lck_grp_queue, "vm_page_queue", &vm_page_lck_grp_attr); | |
470 | lck_grp_init(&vm_page_lck_grp_local, "vm_page_queue_local", &vm_page_lck_grp_attr); | |
471 | lck_grp_init(&vm_page_lck_grp_purge, "vm_page_purge", &vm_page_lck_grp_attr); | |
472 | lck_grp_init(&vm_page_lck_grp_alloc, "vm_page_alloc", &vm_page_lck_grp_attr); | |
473 | lck_grp_init(&vm_page_lck_grp_bucket, "vm_page_bucket", &vm_page_lck_grp_attr); | |
474 | lck_attr_setdefault(&vm_page_lck_attr); | |
475 | lck_mtx_init_ext(&vm_page_alloc_lock, &vm_page_alloc_lock_ext, &vm_page_lck_grp_alloc, &vm_page_lck_attr); | |
476 | ||
477 | vm_compressor_init_locks(); | |
478 | } | |
479 | ||
480 | void | |
481 | vm_page_init_local_q() | |
482 | { | |
483 | unsigned int num_cpus; | |
484 | unsigned int i; | |
485 | struct vplq *t_local_q; | |
486 | ||
487 | num_cpus = ml_get_max_cpus(); | |
488 | ||
489 | /* | |
490 | * no point in this for a uni-processor system | |
491 | */ | |
492 | if (num_cpus >= 2) { | |
493 | t_local_q = (struct vplq *)kalloc(num_cpus * sizeof(struct vplq)); | |
494 | ||
495 | for (i = 0; i < num_cpus; i++) { | |
496 | struct vpl *lq; | |
497 | ||
498 | lq = &t_local_q[i].vpl_un.vpl; | |
499 | VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); | |
500 | queue_init(&lq->vpl_queue); | |
501 | lq->vpl_count = 0; | |
502 | lq->vpl_internal_count = 0; | |
503 | lq->vpl_external_count = 0; | |
504 | } | |
505 | vm_page_local_q_count = num_cpus; | |
506 | ||
507 | vm_page_local_q = (struct vplq *)t_local_q; | |
508 | } | |
509 | } | |
510 | ||
511 | ||
512 | /* | |
513 | * vm_page_bootstrap: | |
514 | * | |
515 | * Initializes the resident memory module. | |
516 | * | |
517 | * Allocates memory for the page cells, and | |
518 | * for the object/offset-to-page hash table headers. | |
519 | * Each page cell is initialized and placed on the free list. | |
520 | * Returns the range of available kernel virtual memory. | |
521 | */ | |
522 | ||
523 | void | |
524 | vm_page_bootstrap( | |
525 | vm_offset_t *startp, | |
526 | vm_offset_t *endp) | |
527 | { | |
528 | register vm_page_t m; | |
529 | unsigned int i; | |
530 | unsigned int log1; | |
531 | unsigned int log2; | |
532 | unsigned int size; | |
533 | ||
534 | /* | |
535 | * Initialize the vm_page template. | |
536 | */ | |
537 | ||
538 | m = &vm_page_template; | |
539 | bzero(m, sizeof (*m)); | |
540 | ||
541 | m->pageq.next = NULL; | |
542 | m->pageq.prev = NULL; | |
543 | m->listq.next = NULL; | |
544 | m->listq.prev = NULL; | |
545 | m->next_m = VM_PAGE_PACK_PTR(VM_PAGE_NULL); | |
546 | ||
547 | m->object = VM_OBJECT_NULL; /* reset later */ | |
548 | m->offset = (vm_object_offset_t) -1; /* reset later */ | |
549 | ||
550 | m->wire_count = 0; | |
551 | m->local = FALSE; | |
552 | m->inactive = FALSE; | |
553 | m->active = FALSE; | |
554 | m->pageout_queue = FALSE; | |
555 | m->speculative = FALSE; | |
556 | m->laundry = FALSE; | |
557 | m->free = FALSE; | |
558 | m->reference = FALSE; | |
559 | m->gobbled = FALSE; | |
560 | m->private = FALSE; | |
561 | m->throttled = FALSE; | |
562 | m->__unused_pageq_bits = 0; | |
563 | ||
564 | m->phys_page = 0; /* reset later */ | |
565 | ||
566 | m->busy = TRUE; | |
567 | m->wanted = FALSE; | |
568 | m->tabled = FALSE; | |
569 | m->hashed = FALSE; | |
570 | m->fictitious = FALSE; | |
571 | m->pmapped = FALSE; | |
572 | m->wpmapped = FALSE; | |
573 | m->pageout = FALSE; | |
574 | m->absent = FALSE; | |
575 | m->error = FALSE; | |
576 | m->dirty = FALSE; | |
577 | m->cleaning = FALSE; | |
578 | m->precious = FALSE; | |
579 | m->clustered = FALSE; | |
580 | m->overwriting = FALSE; | |
581 | m->restart = FALSE; | |
582 | m->unusual = FALSE; | |
583 | m->encrypted = FALSE; | |
584 | m->encrypted_cleaning = FALSE; | |
585 | m->cs_validated = FALSE; | |
586 | m->cs_tainted = FALSE; | |
587 | m->cs_nx = FALSE; | |
588 | m->no_cache = FALSE; | |
589 | m->reusable = FALSE; | |
590 | m->slid = FALSE; | |
591 | m->xpmapped = FALSE; | |
592 | m->compressor = FALSE; | |
593 | m->written_by_kernel = FALSE; | |
594 | m->__unused_object_bits = 0; | |
595 | ||
596 | /* | |
597 | * Initialize the page queues. | |
598 | */ | |
599 | vm_page_init_lck_grp(); | |
600 | ||
601 | lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr); | |
602 | lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr); | |
603 | lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr); | |
604 | ||
605 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
606 | int group; | |
607 | ||
608 | purgeable_queues[i].token_q_head = 0; | |
609 | purgeable_queues[i].token_q_tail = 0; | |
610 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
611 | queue_init(&purgeable_queues[i].objq[group]); | |
612 | ||
613 | purgeable_queues[i].type = i; | |
614 | purgeable_queues[i].new_pages = 0; | |
615 | #if MACH_ASSERT | |
616 | purgeable_queues[i].debug_count_tokens = 0; | |
617 | purgeable_queues[i].debug_count_objects = 0; | |
618 | #endif | |
619 | }; | |
620 | purgeable_nonvolatile_count = 0; | |
621 | queue_init(&purgeable_nonvolatile_queue); | |
622 | ||
623 | for (i = 0; i < MAX_COLORS; i++ ) | |
624 | queue_init(&vm_page_queue_free[i]); | |
625 | ||
626 | queue_init(&vm_lopage_queue_free); | |
627 | queue_init(&vm_page_queue_active); | |
628 | queue_init(&vm_page_queue_inactive); | |
629 | queue_init(&vm_page_queue_cleaned); | |
630 | queue_init(&vm_page_queue_throttled); | |
631 | queue_init(&vm_page_queue_anonymous); | |
632 | queue_init(&vm_objects_wired); | |
633 | ||
634 | for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { | |
635 | queue_init(&vm_page_queue_speculative[i].age_q); | |
636 | ||
637 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; | |
638 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; | |
639 | } | |
640 | vm_page_free_wanted = 0; | |
641 | vm_page_free_wanted_privileged = 0; | |
642 | ||
643 | vm_page_set_colors(); | |
644 | ||
645 | ||
646 | /* | |
647 | * Steal memory for the map and zone subsystems. | |
648 | */ | |
649 | kernel_debug_string_simple("zone_steal_memory"); | |
650 | zone_steal_memory(); | |
651 | kernel_debug_string_simple("vm_map_steal_memory"); | |
652 | vm_map_steal_memory(); | |
653 | ||
654 | /* | |
655 | * Allocate (and initialize) the virtual-to-physical | |
656 | * table hash buckets. | |
657 | * | |
658 | * The number of buckets should be a power of two to | |
659 | * get a good hash function. The following computation | |
660 | * chooses the first power of two that is greater | |
661 | * than the number of physical pages in the system. | |
662 | */ | |
663 | ||
664 | if (vm_page_bucket_count == 0) { | |
665 | unsigned int npages = pmap_free_pages(); | |
666 | ||
667 | vm_page_bucket_count = 1; | |
668 | while (vm_page_bucket_count < npages) | |
669 | vm_page_bucket_count <<= 1; | |
670 | } | |
671 | vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; | |
672 | ||
673 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
674 | ||
675 | /* | |
676 | * Calculate object shift value for hashing algorithm: | |
677 | * O = log2(sizeof(struct vm_object)) | |
678 | * B = log2(vm_page_bucket_count) | |
679 | * hash shifts the object left by | |
680 | * B/2 - O | |
681 | */ | |
682 | size = vm_page_bucket_count; | |
683 | for (log1 = 0; size > 1; log1++) | |
684 | size /= 2; | |
685 | size = sizeof(struct vm_object); | |
686 | for (log2 = 0; size > 1; log2++) | |
687 | size /= 2; | |
688 | vm_page_hash_shift = log1/2 - log2 + 1; | |
689 | ||
690 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
691 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
692 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
693 | ||
694 | if (vm_page_hash_mask & vm_page_bucket_count) | |
695 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
696 | ||
697 | #if VM_PAGE_BUCKETS_CHECK | |
698 | #if VM_PAGE_FAKE_BUCKETS | |
699 | /* | |
700 | * Allocate a decoy set of page buckets, to detect | |
701 | * any stomping there. | |
702 | */ | |
703 | vm_page_fake_buckets = (vm_page_bucket_t *) | |
704 | pmap_steal_memory(vm_page_bucket_count * | |
705 | sizeof(vm_page_bucket_t)); | |
706 | vm_page_fake_buckets_start = (vm_map_offset_t) vm_page_fake_buckets; | |
707 | vm_page_fake_buckets_end = | |
708 | vm_map_round_page((vm_page_fake_buckets_start + | |
709 | (vm_page_bucket_count * | |
710 | sizeof (vm_page_bucket_t))), | |
711 | PAGE_MASK); | |
712 | char *cp; | |
713 | for (cp = (char *)vm_page_fake_buckets_start; | |
714 | cp < (char *)vm_page_fake_buckets_end; | |
715 | cp++) { | |
716 | *cp = 0x5a; | |
717 | } | |
718 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
719 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
720 | ||
721 | kernel_debug_string_simple("vm_page_buckets"); | |
722 | vm_page_buckets = (vm_page_bucket_t *) | |
723 | pmap_steal_memory(vm_page_bucket_count * | |
724 | sizeof(vm_page_bucket_t)); | |
725 | ||
726 | kernel_debug_string_simple("vm_page_bucket_locks"); | |
727 | vm_page_bucket_locks = (lck_spin_t *) | |
728 | pmap_steal_memory(vm_page_bucket_lock_count * | |
729 | sizeof(lck_spin_t)); | |
730 | ||
731 | for (i = 0; i < vm_page_bucket_count; i++) { | |
732 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
733 | ||
734 | bucket->page_list = VM_PAGE_PACK_PTR(VM_PAGE_NULL); | |
735 | #if MACH_PAGE_HASH_STATS | |
736 | bucket->cur_count = 0; | |
737 | bucket->hi_count = 0; | |
738 | #endif /* MACH_PAGE_HASH_STATS */ | |
739 | } | |
740 | ||
741 | for (i = 0; i < vm_page_bucket_lock_count; i++) | |
742 | lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
743 | ||
744 | lck_spin_init(&vm_objects_wired_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
745 | lck_spin_init(&vm_allocation_sites_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
746 | vm_tag_init(); | |
747 | ||
748 | #if VM_PAGE_BUCKETS_CHECK | |
749 | vm_page_buckets_check_ready = TRUE; | |
750 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
751 | ||
752 | /* | |
753 | * Machine-dependent code allocates the resident page table. | |
754 | * It uses vm_page_init to initialize the page frames. | |
755 | * The code also returns to us the virtual space available | |
756 | * to the kernel. We don't trust the pmap module | |
757 | * to get the alignment right. | |
758 | */ | |
759 | ||
760 | kernel_debug_string_simple("pmap_startup"); | |
761 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
762 | virtual_space_start = round_page(virtual_space_start); | |
763 | virtual_space_end = trunc_page(virtual_space_end); | |
764 | ||
765 | *startp = virtual_space_start; | |
766 | *endp = virtual_space_end; | |
767 | ||
768 | /* | |
769 | * Compute the initial "wire" count. | |
770 | * Up until now, the pages which have been set aside are not under | |
771 | * the VM system's control, so although they aren't explicitly | |
772 | * wired, they nonetheless can't be moved. At this moment, | |
773 | * all VM managed pages are "free", courtesy of pmap_startup. | |
774 | */ | |
775 | assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); | |
776 | vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - vm_page_free_count - vm_lopage_free_count; /* initial value */ | |
777 | vm_page_wire_count_initial = vm_page_wire_count; | |
778 | vm_page_pages_initial = vm_page_pages; | |
779 | ||
780 | printf("vm_page_bootstrap: %d free pages and %d wired pages\n", | |
781 | vm_page_free_count, vm_page_wire_count); | |
782 | ||
783 | kernel_debug_string_simple("vm_page_bootstrap complete"); | |
784 | simple_lock_init(&vm_paging_lock, 0); | |
785 | } | |
786 | ||
787 | #ifndef MACHINE_PAGES | |
788 | /* | |
789 | * We implement pmap_steal_memory and pmap_startup with the help | |
790 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
791 | */ | |
792 | ||
793 | void * | |
794 | pmap_steal_memory( | |
795 | vm_size_t size) | |
796 | { | |
797 | vm_offset_t addr, vaddr; | |
798 | ppnum_t phys_page; | |
799 | ||
800 | /* | |
801 | * We round the size to a round multiple. | |
802 | */ | |
803 | ||
804 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
805 | ||
806 | /* | |
807 | * If this is the first call to pmap_steal_memory, | |
808 | * we have to initialize ourself. | |
809 | */ | |
810 | ||
811 | if (virtual_space_start == virtual_space_end) { | |
812 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
813 | ||
814 | /* | |
815 | * The initial values must be aligned properly, and | |
816 | * we don't trust the pmap module to do it right. | |
817 | */ | |
818 | ||
819 | virtual_space_start = round_page(virtual_space_start); | |
820 | virtual_space_end = trunc_page(virtual_space_end); | |
821 | } | |
822 | ||
823 | /* | |
824 | * Allocate virtual memory for this request. | |
825 | */ | |
826 | ||
827 | addr = virtual_space_start; | |
828 | virtual_space_start += size; | |
829 | ||
830 | //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ | |
831 | ||
832 | /* | |
833 | * Allocate and map physical pages to back new virtual pages. | |
834 | */ | |
835 | ||
836 | for (vaddr = round_page(addr); | |
837 | vaddr < addr + size; | |
838 | vaddr += PAGE_SIZE) { | |
839 | ||
840 | if (!pmap_next_page_hi(&phys_page)) | |
841 | panic("pmap_steal_memory"); | |
842 | ||
843 | /* | |
844 | * XXX Logically, these mappings should be wired, | |
845 | * but some pmap modules barf if they are. | |
846 | */ | |
847 | #if defined(__LP64__) | |
848 | pmap_pre_expand(kernel_pmap, vaddr); | |
849 | #endif | |
850 | ||
851 | pmap_enter(kernel_pmap, vaddr, phys_page, | |
852 | VM_PROT_READ|VM_PROT_WRITE, VM_PROT_NONE, | |
853 | VM_WIMG_USE_DEFAULT, FALSE); | |
854 | /* | |
855 | * Account for newly stolen memory | |
856 | */ | |
857 | vm_page_wire_count++; | |
858 | vm_page_stolen_count++; | |
859 | } | |
860 | ||
861 | return (void *) addr; | |
862 | } | |
863 | ||
864 | void vm_page_release_startup(vm_page_t mem); | |
865 | void | |
866 | pmap_startup( | |
867 | vm_offset_t *startp, | |
868 | vm_offset_t *endp) | |
869 | { | |
870 | unsigned int i, npages, pages_initialized, fill, fillval; | |
871 | ppnum_t phys_page; | |
872 | addr64_t tmpaddr; | |
873 | ||
874 | ||
875 | #if defined(__LP64__) | |
876 | /* | |
877 | * struct vm_page must be of size 64 due to VM_PAGE_PACK_PTR use | |
878 | */ | |
879 | assert(sizeof(struct vm_page) == 64); | |
880 | ||
881 | /* | |
882 | * make sure we are aligned on a 64 byte boundary | |
883 | * for VM_PAGE_PACK_PTR (it clips off the low-order | |
884 | * 6 bits of the pointer) | |
885 | */ | |
886 | if (virtual_space_start != virtual_space_end) | |
887 | virtual_space_start = round_page(virtual_space_start); | |
888 | #endif | |
889 | ||
890 | /* | |
891 | * We calculate how many page frames we will have | |
892 | * and then allocate the page structures in one chunk. | |
893 | */ | |
894 | ||
895 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ | |
896 | tmpaddr = tmpaddr + (addr64_t)(round_page(virtual_space_start) - virtual_space_start); /* Account for any slop */ | |
897 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ | |
898 | ||
899 | vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); | |
900 | ||
901 | /* | |
902 | * Initialize the page frames. | |
903 | */ | |
904 | kernel_debug_string_simple("Initialize the page frames"); | |
905 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
906 | if (!pmap_next_page(&phys_page)) | |
907 | break; | |
908 | if (pages_initialized == 0 || phys_page < vm_page_lowest) | |
909 | vm_page_lowest = phys_page; | |
910 | ||
911 | vm_page_init(&vm_pages[i], phys_page, FALSE); | |
912 | vm_page_pages++; | |
913 | pages_initialized++; | |
914 | } | |
915 | vm_pages_count = pages_initialized; | |
916 | ||
917 | #if defined(__LP64__) | |
918 | ||
919 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[0])) != &vm_pages[0]) | |
920 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[0] - %p", (void *)&vm_pages[0]); | |
921 | ||
922 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[vm_pages_count-1])) != &vm_pages[vm_pages_count-1]) | |
923 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[vm_pages_count-1] - %p", (void *)&vm_pages[vm_pages_count-1]); | |
924 | #endif | |
925 | kernel_debug_string_simple("page fill/release"); | |
926 | /* | |
927 | * Check if we want to initialize pages to a known value | |
928 | */ | |
929 | fill = 0; /* Assume no fill */ | |
930 | if (PE_parse_boot_argn("fill", &fillval, sizeof (fillval))) fill = 1; /* Set fill */ | |
931 | #if DEBUG | |
932 | /* This slows down booting the DEBUG kernel, particularly on | |
933 | * large memory systems, but is worthwhile in deterministically | |
934 | * trapping uninitialized memory usage. | |
935 | */ | |
936 | if (fill == 0) { | |
937 | fill = 1; | |
938 | fillval = 0xDEB8F177; | |
939 | } | |
940 | #endif | |
941 | if (fill) | |
942 | kprintf("Filling vm_pages with pattern: 0x%x\n", fillval); | |
943 | // -debug code remove | |
944 | if (2 == vm_himemory_mode) { | |
945 | // free low -> high so high is preferred | |
946 | for (i = 1; i <= pages_initialized; i++) { | |
947 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
948 | vm_page_release_startup(&vm_pages[i - 1]); | |
949 | } | |
950 | } | |
951 | else | |
952 | // debug code remove- | |
953 | ||
954 | /* | |
955 | * Release pages in reverse order so that physical pages | |
956 | * initially get allocated in ascending addresses. This keeps | |
957 | * the devices (which must address physical memory) happy if | |
958 | * they require several consecutive pages. | |
959 | */ | |
960 | for (i = pages_initialized; i > 0; i--) { | |
961 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
962 | vm_page_release_startup(&vm_pages[i - 1]); | |
963 | } | |
964 | ||
965 | VM_CHECK_MEMORYSTATUS; | |
966 | ||
967 | #if 0 | |
968 | { | |
969 | vm_page_t xx, xxo, xxl; | |
970 | int i, j, k, l; | |
971 | ||
972 | j = 0; /* (BRINGUP) */ | |
973 | xxl = 0; | |
974 | ||
975 | for( i = 0; i < vm_colors; i++ ) { | |
976 | queue_iterate(&vm_page_queue_free[i], | |
977 | xx, | |
978 | vm_page_t, | |
979 | pageq) { /* BRINGUP */ | |
980 | j++; /* (BRINGUP) */ | |
981 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
982 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
983 | } | |
984 | ||
985 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
986 | k = 0; /* (BRINGUP) */ | |
987 | ||
988 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
989 | ||
990 | for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i]; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
991 | k++; | |
992 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
993 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
994 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
995 | } | |
996 | } | |
997 | ||
998 | xxl = xx; | |
999 | } | |
1000 | } | |
1001 | ||
1002 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
1003 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
1004 | } | |
1005 | } | |
1006 | #endif | |
1007 | ||
1008 | ||
1009 | /* | |
1010 | * We have to re-align virtual_space_start, | |
1011 | * because pmap_steal_memory has been using it. | |
1012 | */ | |
1013 | ||
1014 | virtual_space_start = round_page(virtual_space_start); | |
1015 | ||
1016 | *startp = virtual_space_start; | |
1017 | *endp = virtual_space_end; | |
1018 | } | |
1019 | #endif /* MACHINE_PAGES */ | |
1020 | ||
1021 | /* | |
1022 | * Routine: vm_page_module_init | |
1023 | * Purpose: | |
1024 | * Second initialization pass, to be done after | |
1025 | * the basic VM system is ready. | |
1026 | */ | |
1027 | void | |
1028 | vm_page_module_init(void) | |
1029 | { | |
1030 | uint64_t vm_page_zone_pages, vm_page_zone_data_size; | |
1031 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
1032 | 0, PAGE_SIZE, "vm pages"); | |
1033 | ||
1034 | #if ZONE_DEBUG | |
1035 | zone_debug_disable(vm_page_zone); | |
1036 | #endif /* ZONE_DEBUG */ | |
1037 | ||
1038 | zone_change(vm_page_zone, Z_CALLERACCT, FALSE); | |
1039 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
1040 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
1041 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
1042 | zone_change(vm_page_zone, Z_GZALLOC_EXEMPT, TRUE); | |
1043 | /* | |
1044 | * Adjust zone statistics to account for the real pages allocated | |
1045 | * in vm_page_create(). [Q: is this really what we want?] | |
1046 | */ | |
1047 | vm_page_zone->count += vm_page_pages; | |
1048 | vm_page_zone->sum_count += vm_page_pages; | |
1049 | vm_page_zone_data_size = vm_page_pages * vm_page_zone->elem_size; | |
1050 | vm_page_zone->cur_size += vm_page_zone_data_size; | |
1051 | vm_page_zone_pages = ((round_page(vm_page_zone_data_size)) / PAGE_SIZE); | |
1052 | OSAddAtomic64(vm_page_zone_pages, &(vm_page_zone->page_count)); | |
1053 | /* since zone accounts for these, take them out of stolen */ | |
1054 | VM_PAGE_MOVE_STOLEN(vm_page_zone_pages); | |
1055 | } | |
1056 | ||
1057 | /* | |
1058 | * Routine: vm_page_create | |
1059 | * Purpose: | |
1060 | * After the VM system is up, machine-dependent code | |
1061 | * may stumble across more physical memory. For example, | |
1062 | * memory that it was reserving for a frame buffer. | |
1063 | * vm_page_create turns this memory into available pages. | |
1064 | */ | |
1065 | ||
1066 | void | |
1067 | vm_page_create( | |
1068 | ppnum_t start, | |
1069 | ppnum_t end) | |
1070 | { | |
1071 | ppnum_t phys_page; | |
1072 | vm_page_t m; | |
1073 | ||
1074 | for (phys_page = start; | |
1075 | phys_page < end; | |
1076 | phys_page++) { | |
1077 | while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page)) | |
1078 | == VM_PAGE_NULL) | |
1079 | vm_page_more_fictitious(); | |
1080 | ||
1081 | m->fictitious = FALSE; | |
1082 | pmap_clear_noencrypt(phys_page); | |
1083 | ||
1084 | vm_page_pages++; | |
1085 | vm_page_release(m); | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * vm_page_hash: | |
1091 | * | |
1092 | * Distributes the object/offset key pair among hash buckets. | |
1093 | * | |
1094 | * NOTE: The bucket count must be a power of 2 | |
1095 | */ | |
1096 | #define vm_page_hash(object, offset) (\ | |
1097 | ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ | |
1098 | & vm_page_hash_mask) | |
1099 | ||
1100 | ||
1101 | /* | |
1102 | * vm_page_insert: [ internal use only ] | |
1103 | * | |
1104 | * Inserts the given mem entry into the object/object-page | |
1105 | * table and object list. | |
1106 | * | |
1107 | * The object must be locked. | |
1108 | */ | |
1109 | void | |
1110 | vm_page_insert( | |
1111 | vm_page_t mem, | |
1112 | vm_object_t object, | |
1113 | vm_object_offset_t offset) | |
1114 | { | |
1115 | vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, FALSE, FALSE, NULL); | |
1116 | } | |
1117 | ||
1118 | void | |
1119 | vm_page_insert_wired( | |
1120 | vm_page_t mem, | |
1121 | vm_object_t object, | |
1122 | vm_object_offset_t offset, | |
1123 | vm_tag_t tag) | |
1124 | { | |
1125 | vm_page_insert_internal(mem, object, offset, tag, FALSE, TRUE, FALSE, FALSE, NULL); | |
1126 | } | |
1127 | ||
1128 | void | |
1129 | vm_page_insert_internal( | |
1130 | vm_page_t mem, | |
1131 | vm_object_t object, | |
1132 | vm_object_offset_t offset, | |
1133 | vm_tag_t tag, | |
1134 | boolean_t queues_lock_held, | |
1135 | boolean_t insert_in_hash, | |
1136 | boolean_t batch_pmap_op, | |
1137 | boolean_t batch_accounting, | |
1138 | uint64_t *delayed_ledger_update) | |
1139 | { | |
1140 | vm_page_bucket_t *bucket; | |
1141 | lck_spin_t *bucket_lock; | |
1142 | int hash_id; | |
1143 | task_t owner; | |
1144 | ||
1145 | XPR(XPR_VM_PAGE, | |
1146 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
1147 | object, offset, mem, 0,0); | |
1148 | #if 0 | |
1149 | /* | |
1150 | * we may not hold the page queue lock | |
1151 | * so this check isn't safe to make | |
1152 | */ | |
1153 | VM_PAGE_CHECK(mem); | |
1154 | #endif | |
1155 | ||
1156 | assert(page_aligned(offset)); | |
1157 | ||
1158 | assert(!VM_PAGE_WIRED(mem) || mem->private || mem->fictitious || (tag != VM_KERN_MEMORY_NONE)); | |
1159 | ||
1160 | /* the vm_submap_object is only a placeholder for submaps */ | |
1161 | assert(object != vm_submap_object); | |
1162 | ||
1163 | vm_object_lock_assert_exclusive(object); | |
1164 | #if DEBUG | |
1165 | lck_mtx_assert(&vm_page_queue_lock, | |
1166 | queues_lock_held ? LCK_MTX_ASSERT_OWNED | |
1167 | : LCK_MTX_ASSERT_NOTOWNED); | |
1168 | #endif /* DEBUG */ | |
1169 | ||
1170 | if (insert_in_hash == TRUE) { | |
1171 | #if DEBUG || VM_PAGE_CHECK_BUCKETS | |
1172 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
1173 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " | |
1174 | "already in (obj=%p,off=0x%llx)", | |
1175 | mem, object, offset, mem->object, mem->offset); | |
1176 | #endif | |
1177 | assert(!object->internal || offset < object->vo_size); | |
1178 | ||
1179 | /* only insert "pageout" pages into "pageout" objects, | |
1180 | * and normal pages into normal objects */ | |
1181 | #if 00 | |
1182 | /* | |
1183 | * For some reason, this assertion gets tripped | |
1184 | * but it's mostly harmless, so let's disable it | |
1185 | * for now. | |
1186 | */ | |
1187 | assert(object->pageout == mem->pageout); | |
1188 | #endif /* 00 */ | |
1189 | ||
1190 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); | |
1191 | ||
1192 | /* | |
1193 | * Record the object/offset pair in this page | |
1194 | */ | |
1195 | ||
1196 | mem->object = object; | |
1197 | mem->offset = offset; | |
1198 | ||
1199 | /* | |
1200 | * Insert it into the object_object/offset hash table | |
1201 | */ | |
1202 | hash_id = vm_page_hash(object, offset); | |
1203 | bucket = &vm_page_buckets[hash_id]; | |
1204 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1205 | ||
1206 | lck_spin_lock(bucket_lock); | |
1207 | ||
1208 | mem->next_m = bucket->page_list; | |
1209 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
1210 | assert(mem == VM_PAGE_UNPACK_PTR(bucket->page_list)); | |
1211 | ||
1212 | #if MACH_PAGE_HASH_STATS | |
1213 | if (++bucket->cur_count > bucket->hi_count) | |
1214 | bucket->hi_count = bucket->cur_count; | |
1215 | #endif /* MACH_PAGE_HASH_STATS */ | |
1216 | mem->hashed = TRUE; | |
1217 | lck_spin_unlock(bucket_lock); | |
1218 | } | |
1219 | ||
1220 | { | |
1221 | unsigned int cache_attr; | |
1222 | ||
1223 | cache_attr = object->wimg_bits & VM_WIMG_MASK; | |
1224 | ||
1225 | if (cache_attr != VM_WIMG_USE_DEFAULT) { | |
1226 | PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op); | |
1227 | } | |
1228 | } | |
1229 | /* | |
1230 | * Now link into the object's list of backed pages. | |
1231 | */ | |
1232 | queue_enter(&object->memq, mem, vm_page_t, listq); | |
1233 | object->memq_hint = mem; | |
1234 | mem->tabled = TRUE; | |
1235 | ||
1236 | /* | |
1237 | * Show that the object has one more resident page. | |
1238 | */ | |
1239 | ||
1240 | object->resident_page_count++; | |
1241 | if (VM_PAGE_WIRED(mem)) { | |
1242 | if (!mem->private && !mem->fictitious) | |
1243 | { | |
1244 | if (!object->wired_page_count) | |
1245 | { | |
1246 | assert(VM_KERN_MEMORY_NONE != tag); | |
1247 | object->wire_tag = tag; | |
1248 | VM_OBJECT_WIRED(object); | |
1249 | } | |
1250 | } | |
1251 | object->wired_page_count++; | |
1252 | } | |
1253 | assert(object->resident_page_count >= object->wired_page_count); | |
1254 | ||
1255 | if (batch_accounting == FALSE) { | |
1256 | if (object->internal) { | |
1257 | OSAddAtomic(1, &vm_page_internal_count); | |
1258 | } else { | |
1259 | OSAddAtomic(1, &vm_page_external_count); | |
1260 | } | |
1261 | } | |
1262 | ||
1263 | /* | |
1264 | * It wouldn't make sense to insert a "reusable" page in | |
1265 | * an object (the page would have been marked "reusable" only | |
1266 | * at the time of a madvise(MADV_FREE_REUSABLE) if it was already | |
1267 | * in the object at that time). | |
1268 | * But a page could be inserted in a "all_reusable" object, if | |
1269 | * something faults it in (a vm_read() from another task or a | |
1270 | * "use-after-free" issue in user space, for example). It can | |
1271 | * also happen if we're relocating a page from that object to | |
1272 | * a different physical page during a physically-contiguous | |
1273 | * allocation. | |
1274 | */ | |
1275 | assert(!mem->reusable); | |
1276 | if (mem->object->all_reusable) { | |
1277 | OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count); | |
1278 | } | |
1279 | ||
1280 | if (object->purgable == VM_PURGABLE_DENY) { | |
1281 | owner = TASK_NULL; | |
1282 | } else { | |
1283 | owner = object->vo_purgeable_owner; | |
1284 | } | |
1285 | if (owner && | |
1286 | (object->purgable == VM_PURGABLE_NONVOLATILE || | |
1287 | VM_PAGE_WIRED(mem))) { | |
1288 | ||
1289 | if (delayed_ledger_update) | |
1290 | *delayed_ledger_update += PAGE_SIZE; | |
1291 | else { | |
1292 | /* more non-volatile bytes */ | |
1293 | ledger_credit(owner->ledger, | |
1294 | task_ledgers.purgeable_nonvolatile, | |
1295 | PAGE_SIZE); | |
1296 | /* more footprint */ | |
1297 | ledger_credit(owner->ledger, | |
1298 | task_ledgers.phys_footprint, | |
1299 | PAGE_SIZE); | |
1300 | } | |
1301 | ||
1302 | } else if (owner && | |
1303 | (object->purgable == VM_PURGABLE_VOLATILE || | |
1304 | object->purgable == VM_PURGABLE_EMPTY)) { | |
1305 | assert(! VM_PAGE_WIRED(mem)); | |
1306 | /* more volatile bytes */ | |
1307 | ledger_credit(owner->ledger, | |
1308 | task_ledgers.purgeable_volatile, | |
1309 | PAGE_SIZE); | |
1310 | } | |
1311 | ||
1312 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
1313 | if (VM_PAGE_WIRED(mem)) { | |
1314 | OSAddAtomic(+1, &vm_page_purgeable_wired_count); | |
1315 | } else { | |
1316 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
1317 | } | |
1318 | } else if (object->purgable == VM_PURGABLE_EMPTY && | |
1319 | mem->throttled) { | |
1320 | /* | |
1321 | * This page belongs to a purged VM object but hasn't | |
1322 | * been purged (because it was "busy"). | |
1323 | * It's in the "throttled" queue and hence not | |
1324 | * visible to vm_pageout_scan(). Move it to a pageable | |
1325 | * queue, so that it can eventually be reclaimed, instead | |
1326 | * of lingering in the "empty" object. | |
1327 | */ | |
1328 | if (queues_lock_held == FALSE) | |
1329 | vm_page_lockspin_queues(); | |
1330 | vm_page_deactivate(mem); | |
1331 | if (queues_lock_held == FALSE) | |
1332 | vm_page_unlock_queues(); | |
1333 | } | |
1334 | ||
1335 | #if VM_OBJECT_TRACKING_OP_MODIFIED | |
1336 | if (vm_object_tracking_inited && | |
1337 | object->internal && | |
1338 | object->resident_page_count == 0 && | |
1339 | object->pager == NULL && | |
1340 | object->shadow != NULL && | |
1341 | object->shadow->copy == object) { | |
1342 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
1343 | int numsaved = 0; | |
1344 | ||
1345 | numsaved =OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH); | |
1346 | btlog_add_entry(vm_object_tracking_btlog, | |
1347 | object, | |
1348 | VM_OBJECT_TRACKING_OP_MODIFIED, | |
1349 | bt, | |
1350 | numsaved); | |
1351 | } | |
1352 | #endif /* VM_OBJECT_TRACKING_OP_MODIFIED */ | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * vm_page_replace: | |
1357 | * | |
1358 | * Exactly like vm_page_insert, except that we first | |
1359 | * remove any existing page at the given offset in object. | |
1360 | * | |
1361 | * The object must be locked. | |
1362 | */ | |
1363 | void | |
1364 | vm_page_replace( | |
1365 | register vm_page_t mem, | |
1366 | register vm_object_t object, | |
1367 | register vm_object_offset_t offset) | |
1368 | { | |
1369 | vm_page_bucket_t *bucket; | |
1370 | vm_page_t found_m = VM_PAGE_NULL; | |
1371 | lck_spin_t *bucket_lock; | |
1372 | int hash_id; | |
1373 | ||
1374 | #if 0 | |
1375 | /* | |
1376 | * we don't hold the page queue lock | |
1377 | * so this check isn't safe to make | |
1378 | */ | |
1379 | VM_PAGE_CHECK(mem); | |
1380 | #endif | |
1381 | vm_object_lock_assert_exclusive(object); | |
1382 | #if DEBUG || VM_PAGE_CHECK_BUCKETS | |
1383 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
1384 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " | |
1385 | "already in (obj=%p,off=0x%llx)", | |
1386 | mem, object, offset, mem->object, mem->offset); | |
1387 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
1388 | #endif | |
1389 | /* | |
1390 | * Record the object/offset pair in this page | |
1391 | */ | |
1392 | ||
1393 | mem->object = object; | |
1394 | mem->offset = offset; | |
1395 | ||
1396 | /* | |
1397 | * Insert it into the object_object/offset hash table, | |
1398 | * replacing any page that might have been there. | |
1399 | */ | |
1400 | ||
1401 | hash_id = vm_page_hash(object, offset); | |
1402 | bucket = &vm_page_buckets[hash_id]; | |
1403 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1404 | ||
1405 | lck_spin_lock(bucket_lock); | |
1406 | ||
1407 | if (bucket->page_list) { | |
1408 | vm_page_packed_t *mp = &bucket->page_list; | |
1409 | vm_page_t m = VM_PAGE_UNPACK_PTR(*mp); | |
1410 | ||
1411 | do { | |
1412 | if (m->object == object && m->offset == offset) { | |
1413 | /* | |
1414 | * Remove old page from hash list | |
1415 | */ | |
1416 | *mp = m->next_m; | |
1417 | m->hashed = FALSE; | |
1418 | ||
1419 | found_m = m; | |
1420 | break; | |
1421 | } | |
1422 | mp = &m->next_m; | |
1423 | } while ((m = VM_PAGE_UNPACK_PTR(*mp))); | |
1424 | ||
1425 | mem->next_m = bucket->page_list; | |
1426 | } else { | |
1427 | mem->next_m = VM_PAGE_PACK_PTR(VM_PAGE_NULL); | |
1428 | } | |
1429 | /* | |
1430 | * insert new page at head of hash list | |
1431 | */ | |
1432 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
1433 | mem->hashed = TRUE; | |
1434 | ||
1435 | lck_spin_unlock(bucket_lock); | |
1436 | ||
1437 | if (found_m) { | |
1438 | /* | |
1439 | * there was already a page at the specified | |
1440 | * offset for this object... remove it from | |
1441 | * the object and free it back to the free list | |
1442 | */ | |
1443 | vm_page_free_unlocked(found_m, FALSE); | |
1444 | } | |
1445 | vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL); | |
1446 | } | |
1447 | ||
1448 | /* | |
1449 | * vm_page_remove: [ internal use only ] | |
1450 | * | |
1451 | * Removes the given mem entry from the object/offset-page | |
1452 | * table and the object page list. | |
1453 | * | |
1454 | * The object must be locked. | |
1455 | */ | |
1456 | ||
1457 | void | |
1458 | vm_page_remove( | |
1459 | vm_page_t mem, | |
1460 | boolean_t remove_from_hash) | |
1461 | { | |
1462 | vm_page_bucket_t *bucket; | |
1463 | vm_page_t this; | |
1464 | lck_spin_t *bucket_lock; | |
1465 | int hash_id; | |
1466 | task_t owner; | |
1467 | ||
1468 | XPR(XPR_VM_PAGE, | |
1469 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
1470 | mem->object, mem->offset, | |
1471 | mem, 0,0); | |
1472 | ||
1473 | vm_object_lock_assert_exclusive(mem->object); | |
1474 | assert(mem->tabled); | |
1475 | assert(!mem->cleaning); | |
1476 | assert(!mem->laundry); | |
1477 | #if 0 | |
1478 | /* | |
1479 | * we don't hold the page queue lock | |
1480 | * so this check isn't safe to make | |
1481 | */ | |
1482 | VM_PAGE_CHECK(mem); | |
1483 | #endif | |
1484 | if (remove_from_hash == TRUE) { | |
1485 | /* | |
1486 | * Remove from the object_object/offset hash table | |
1487 | */ | |
1488 | hash_id = vm_page_hash(mem->object, mem->offset); | |
1489 | bucket = &vm_page_buckets[hash_id]; | |
1490 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1491 | ||
1492 | lck_spin_lock(bucket_lock); | |
1493 | ||
1494 | if ((this = VM_PAGE_UNPACK_PTR(bucket->page_list)) == mem) { | |
1495 | /* optimize for common case */ | |
1496 | ||
1497 | bucket->page_list = mem->next_m; | |
1498 | } else { | |
1499 | vm_page_packed_t *prev; | |
1500 | ||
1501 | for (prev = &this->next_m; | |
1502 | (this = VM_PAGE_UNPACK_PTR(*prev)) != mem; | |
1503 | prev = &this->next_m) | |
1504 | continue; | |
1505 | *prev = this->next_m; | |
1506 | } | |
1507 | #if MACH_PAGE_HASH_STATS | |
1508 | bucket->cur_count--; | |
1509 | #endif /* MACH_PAGE_HASH_STATS */ | |
1510 | mem->hashed = FALSE; | |
1511 | lck_spin_unlock(bucket_lock); | |
1512 | } | |
1513 | /* | |
1514 | * Now remove from the object's list of backed pages. | |
1515 | */ | |
1516 | ||
1517 | vm_page_remove_internal(mem); | |
1518 | ||
1519 | /* | |
1520 | * And show that the object has one fewer resident | |
1521 | * page. | |
1522 | */ | |
1523 | ||
1524 | assert(mem->object->resident_page_count > 0); | |
1525 | mem->object->resident_page_count--; | |
1526 | ||
1527 | if (mem->object->internal) { | |
1528 | #if DEBUG | |
1529 | assert(vm_page_internal_count); | |
1530 | #endif /* DEBUG */ | |
1531 | ||
1532 | OSAddAtomic(-1, &vm_page_internal_count); | |
1533 | } else { | |
1534 | assert(vm_page_external_count); | |
1535 | OSAddAtomic(-1, &vm_page_external_count); | |
1536 | ||
1537 | if (mem->xpmapped) { | |
1538 | assert(vm_page_xpmapped_external_count); | |
1539 | OSAddAtomic(-1, &vm_page_xpmapped_external_count); | |
1540 | } | |
1541 | } | |
1542 | if (!mem->object->internal && (mem->object->objq.next || mem->object->objq.prev)) { | |
1543 | if (mem->object->resident_page_count == 0) | |
1544 | vm_object_cache_remove(mem->object); | |
1545 | } | |
1546 | ||
1547 | if (VM_PAGE_WIRED(mem)) { | |
1548 | assert(mem->object->wired_page_count > 0); | |
1549 | mem->object->wired_page_count--; | |
1550 | if (!mem->object->wired_page_count) { | |
1551 | VM_OBJECT_UNWIRED(mem->object); | |
1552 | } | |
1553 | } | |
1554 | assert(mem->object->resident_page_count >= | |
1555 | mem->object->wired_page_count); | |
1556 | if (mem->reusable) { | |
1557 | assert(mem->object->reusable_page_count > 0); | |
1558 | mem->object->reusable_page_count--; | |
1559 | assert(mem->object->reusable_page_count <= | |
1560 | mem->object->resident_page_count); | |
1561 | mem->reusable = FALSE; | |
1562 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1563 | vm_page_stats_reusable.reused_remove++; | |
1564 | } else if (mem->object->all_reusable) { | |
1565 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1566 | vm_page_stats_reusable.reused_remove++; | |
1567 | } | |
1568 | ||
1569 | if (mem->object->purgable == VM_PURGABLE_DENY) { | |
1570 | owner = TASK_NULL; | |
1571 | } else { | |
1572 | owner = mem->object->vo_purgeable_owner; | |
1573 | } | |
1574 | if (owner && | |
1575 | (mem->object->purgable == VM_PURGABLE_NONVOLATILE || | |
1576 | VM_PAGE_WIRED(mem))) { | |
1577 | /* less non-volatile bytes */ | |
1578 | ledger_debit(owner->ledger, | |
1579 | task_ledgers.purgeable_nonvolatile, | |
1580 | PAGE_SIZE); | |
1581 | /* less footprint */ | |
1582 | ledger_debit(owner->ledger, | |
1583 | task_ledgers.phys_footprint, | |
1584 | PAGE_SIZE); | |
1585 | } else if (owner && | |
1586 | (mem->object->purgable == VM_PURGABLE_VOLATILE || | |
1587 | mem->object->purgable == VM_PURGABLE_EMPTY)) { | |
1588 | assert(! VM_PAGE_WIRED(mem)); | |
1589 | /* less volatile bytes */ | |
1590 | ledger_debit(owner->ledger, | |
1591 | task_ledgers.purgeable_volatile, | |
1592 | PAGE_SIZE); | |
1593 | } | |
1594 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
1595 | if (VM_PAGE_WIRED(mem)) { | |
1596 | assert(vm_page_purgeable_wired_count > 0); | |
1597 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
1598 | } else { | |
1599 | assert(vm_page_purgeable_count > 0); | |
1600 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
1601 | } | |
1602 | } | |
1603 | if (mem->object->set_cache_attr == TRUE) | |
1604 | pmap_set_cache_attributes(mem->phys_page, 0); | |
1605 | ||
1606 | mem->tabled = FALSE; | |
1607 | mem->object = VM_OBJECT_NULL; | |
1608 | mem->offset = (vm_object_offset_t) -1; | |
1609 | } | |
1610 | ||
1611 | ||
1612 | /* | |
1613 | * vm_page_lookup: | |
1614 | * | |
1615 | * Returns the page associated with the object/offset | |
1616 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
1617 | * | |
1618 | * The object must be locked. No side effects. | |
1619 | */ | |
1620 | ||
1621 | #define VM_PAGE_HASH_LOOKUP_THRESHOLD 10 | |
1622 | ||
1623 | #if DEBUG_VM_PAGE_LOOKUP | |
1624 | ||
1625 | struct { | |
1626 | uint64_t vpl_total; | |
1627 | uint64_t vpl_empty_obj; | |
1628 | uint64_t vpl_bucket_NULL; | |
1629 | uint64_t vpl_hit_hint; | |
1630 | uint64_t vpl_hit_hint_next; | |
1631 | uint64_t vpl_hit_hint_prev; | |
1632 | uint64_t vpl_fast; | |
1633 | uint64_t vpl_slow; | |
1634 | uint64_t vpl_hit; | |
1635 | uint64_t vpl_miss; | |
1636 | ||
1637 | uint64_t vpl_fast_elapsed; | |
1638 | uint64_t vpl_slow_elapsed; | |
1639 | } vm_page_lookup_stats __attribute__((aligned(8))); | |
1640 | ||
1641 | #endif | |
1642 | ||
1643 | #define KDP_VM_PAGE_WALK_MAX 1000 | |
1644 | ||
1645 | vm_page_t | |
1646 | kdp_vm_page_lookup( | |
1647 | vm_object_t object, | |
1648 | vm_object_offset_t offset) | |
1649 | { | |
1650 | vm_page_t cur_page; | |
1651 | int num_traversed = 0; | |
1652 | ||
1653 | if (not_in_kdp) { | |
1654 | panic("panic: kdp_vm_page_lookup done outside of kernel debugger"); | |
1655 | } | |
1656 | ||
1657 | queue_iterate(&object->memq, cur_page, vm_page_t, listq) { | |
1658 | if (cur_page->offset == offset) { | |
1659 | return cur_page; | |
1660 | } | |
1661 | num_traversed++; | |
1662 | ||
1663 | if (num_traversed >= KDP_VM_PAGE_WALK_MAX) { | |
1664 | return VM_PAGE_NULL; | |
1665 | } | |
1666 | } | |
1667 | ||
1668 | return VM_PAGE_NULL; | |
1669 | } | |
1670 | ||
1671 | vm_page_t | |
1672 | vm_page_lookup( | |
1673 | vm_object_t object, | |
1674 | vm_object_offset_t offset) | |
1675 | { | |
1676 | vm_page_t mem; | |
1677 | vm_page_bucket_t *bucket; | |
1678 | queue_entry_t qe; | |
1679 | lck_spin_t *bucket_lock = NULL; | |
1680 | int hash_id; | |
1681 | #if DEBUG_VM_PAGE_LOOKUP | |
1682 | uint64_t start, elapsed; | |
1683 | ||
1684 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total); | |
1685 | #endif | |
1686 | vm_object_lock_assert_held(object); | |
1687 | ||
1688 | if (object->resident_page_count == 0) { | |
1689 | #if DEBUG_VM_PAGE_LOOKUP | |
1690 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj); | |
1691 | #endif | |
1692 | return (VM_PAGE_NULL); | |
1693 | } | |
1694 | ||
1695 | mem = object->memq_hint; | |
1696 | ||
1697 | if (mem != VM_PAGE_NULL) { | |
1698 | assert(mem->object == object); | |
1699 | ||
1700 | if (mem->offset == offset) { | |
1701 | #if DEBUG_VM_PAGE_LOOKUP | |
1702 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint); | |
1703 | #endif | |
1704 | return (mem); | |
1705 | } | |
1706 | qe = queue_next(&mem->listq); | |
1707 | ||
1708 | if (! queue_end(&object->memq, qe)) { | |
1709 | vm_page_t next_page; | |
1710 | ||
1711 | next_page = (vm_page_t) qe; | |
1712 | assert(next_page->object == object); | |
1713 | ||
1714 | if (next_page->offset == offset) { | |
1715 | object->memq_hint = next_page; /* new hint */ | |
1716 | #if DEBUG_VM_PAGE_LOOKUP | |
1717 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next); | |
1718 | #endif | |
1719 | return (next_page); | |
1720 | } | |
1721 | } | |
1722 | qe = queue_prev(&mem->listq); | |
1723 | ||
1724 | if (! queue_end(&object->memq, qe)) { | |
1725 | vm_page_t prev_page; | |
1726 | ||
1727 | prev_page = (vm_page_t) qe; | |
1728 | assert(prev_page->object == object); | |
1729 | ||
1730 | if (prev_page->offset == offset) { | |
1731 | object->memq_hint = prev_page; /* new hint */ | |
1732 | #if DEBUG_VM_PAGE_LOOKUP | |
1733 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev); | |
1734 | #endif | |
1735 | return (prev_page); | |
1736 | } | |
1737 | } | |
1738 | } | |
1739 | /* | |
1740 | * Search the hash table for this object/offset pair | |
1741 | */ | |
1742 | hash_id = vm_page_hash(object, offset); | |
1743 | bucket = &vm_page_buckets[hash_id]; | |
1744 | ||
1745 | /* | |
1746 | * since we hold the object lock, we are guaranteed that no | |
1747 | * new pages can be inserted into this object... this in turn | |
1748 | * guarantess that the page we're looking for can't exist | |
1749 | * if the bucket it hashes to is currently NULL even when looked | |
1750 | * at outside the scope of the hash bucket lock... this is a | |
1751 | * really cheap optimiztion to avoid taking the lock | |
1752 | */ | |
1753 | if (!bucket->page_list) { | |
1754 | #if DEBUG_VM_PAGE_LOOKUP | |
1755 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL); | |
1756 | #endif | |
1757 | return (VM_PAGE_NULL); | |
1758 | } | |
1759 | ||
1760 | #if DEBUG_VM_PAGE_LOOKUP | |
1761 | start = mach_absolute_time(); | |
1762 | #endif | |
1763 | if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) { | |
1764 | /* | |
1765 | * on average, it's roughly 3 times faster to run a short memq list | |
1766 | * than to take the spin lock and go through the hash list | |
1767 | */ | |
1768 | mem = (vm_page_t)queue_first(&object->memq); | |
1769 | ||
1770 | while (!queue_end(&object->memq, (queue_entry_t)mem)) { | |
1771 | ||
1772 | if (mem->offset == offset) | |
1773 | break; | |
1774 | ||
1775 | mem = (vm_page_t)queue_next(&mem->listq); | |
1776 | } | |
1777 | if (queue_end(&object->memq, (queue_entry_t)mem)) | |
1778 | mem = NULL; | |
1779 | } else { | |
1780 | ||
1781 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1782 | ||
1783 | lck_spin_lock(bucket_lock); | |
1784 | ||
1785 | for (mem = VM_PAGE_UNPACK_PTR(bucket->page_list); mem != VM_PAGE_NULL; mem = VM_PAGE_UNPACK_PTR(mem->next_m)) { | |
1786 | #if 0 | |
1787 | /* | |
1788 | * we don't hold the page queue lock | |
1789 | * so this check isn't safe to make | |
1790 | */ | |
1791 | VM_PAGE_CHECK(mem); | |
1792 | #endif | |
1793 | if ((mem->object == object) && (mem->offset == offset)) | |
1794 | break; | |
1795 | } | |
1796 | lck_spin_unlock(bucket_lock); | |
1797 | } | |
1798 | ||
1799 | #if DEBUG_VM_PAGE_LOOKUP | |
1800 | elapsed = mach_absolute_time() - start; | |
1801 | ||
1802 | if (bucket_lock) { | |
1803 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow); | |
1804 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed); | |
1805 | } else { | |
1806 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast); | |
1807 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed); | |
1808 | } | |
1809 | if (mem != VM_PAGE_NULL) | |
1810 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit); | |
1811 | else | |
1812 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss); | |
1813 | #endif | |
1814 | if (mem != VM_PAGE_NULL) { | |
1815 | assert(mem->object == object); | |
1816 | ||
1817 | object->memq_hint = mem; | |
1818 | } | |
1819 | return (mem); | |
1820 | } | |
1821 | ||
1822 | ||
1823 | /* | |
1824 | * vm_page_rename: | |
1825 | * | |
1826 | * Move the given memory entry from its | |
1827 | * current object to the specified target object/offset. | |
1828 | * | |
1829 | * The object must be locked. | |
1830 | */ | |
1831 | void | |
1832 | vm_page_rename( | |
1833 | register vm_page_t mem, | |
1834 | register vm_object_t new_object, | |
1835 | vm_object_offset_t new_offset, | |
1836 | boolean_t encrypted_ok) | |
1837 | { | |
1838 | boolean_t internal_to_external, external_to_internal; | |
1839 | vm_tag_t tag; | |
1840 | ||
1841 | assert(mem->object != new_object); | |
1842 | ||
1843 | assert(mem->object); | |
1844 | ||
1845 | /* | |
1846 | * ENCRYPTED SWAP: | |
1847 | * The encryption key is based on the page's memory object | |
1848 | * (aka "pager") and paging offset. Moving the page to | |
1849 | * another VM object changes its "pager" and "paging_offset" | |
1850 | * so it has to be decrypted first, or we would lose the key. | |
1851 | * | |
1852 | * One exception is VM object collapsing, where we transfer pages | |
1853 | * from one backing object to its parent object. This operation also | |
1854 | * transfers the paging information, so the <pager,paging_offset> info | |
1855 | * should remain consistent. The caller (vm_object_do_collapse()) | |
1856 | * sets "encrypted_ok" in this case. | |
1857 | */ | |
1858 | if (!encrypted_ok && mem->encrypted) { | |
1859 | panic("vm_page_rename: page %p is encrypted\n", mem); | |
1860 | } | |
1861 | ||
1862 | XPR(XPR_VM_PAGE, | |
1863 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
1864 | new_object, new_offset, | |
1865 | mem, 0,0); | |
1866 | ||
1867 | /* | |
1868 | * Changes to mem->object require the page lock because | |
1869 | * the pageout daemon uses that lock to get the object. | |
1870 | */ | |
1871 | vm_page_lockspin_queues(); | |
1872 | ||
1873 | internal_to_external = FALSE; | |
1874 | external_to_internal = FALSE; | |
1875 | ||
1876 | if (mem->local) { | |
1877 | /* | |
1878 | * it's much easier to get the vm_page_pageable_xxx accounting correct | |
1879 | * if we first move the page to the active queue... it's going to end | |
1880 | * up there anyway, and we don't do vm_page_rename's frequently enough | |
1881 | * for this to matter. | |
1882 | */ | |
1883 | vm_page_queues_remove(mem); | |
1884 | vm_page_activate(mem); | |
1885 | } | |
1886 | if (mem->active || mem->inactive || mem->speculative) { | |
1887 | if (mem->object->internal && !new_object->internal) { | |
1888 | internal_to_external = TRUE; | |
1889 | } | |
1890 | if (!mem->object->internal && new_object->internal) { | |
1891 | external_to_internal = TRUE; | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | tag = mem->object->wire_tag; | |
1896 | vm_page_remove(mem, TRUE); | |
1897 | vm_page_insert_internal(mem, new_object, new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL); | |
1898 | ||
1899 | if (internal_to_external) { | |
1900 | vm_page_pageable_internal_count--; | |
1901 | vm_page_pageable_external_count++; | |
1902 | } else if (external_to_internal) { | |
1903 | vm_page_pageable_external_count--; | |
1904 | vm_page_pageable_internal_count++; | |
1905 | } | |
1906 | ||
1907 | vm_page_unlock_queues(); | |
1908 | } | |
1909 | ||
1910 | /* | |
1911 | * vm_page_init: | |
1912 | * | |
1913 | * Initialize the fields in a new page. | |
1914 | * This takes a structure with random values and initializes it | |
1915 | * so that it can be given to vm_page_release or vm_page_insert. | |
1916 | */ | |
1917 | void | |
1918 | vm_page_init( | |
1919 | vm_page_t mem, | |
1920 | ppnum_t phys_page, | |
1921 | boolean_t lopage) | |
1922 | { | |
1923 | assert(phys_page); | |
1924 | ||
1925 | #if DEBUG | |
1926 | if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) { | |
1927 | if (!(pmap_valid_page(phys_page))) { | |
1928 | panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page); | |
1929 | } | |
1930 | } | |
1931 | #endif | |
1932 | *mem = vm_page_template; | |
1933 | mem->phys_page = phys_page; | |
1934 | #if 0 | |
1935 | /* | |
1936 | * we're leaving this turned off for now... currently pages | |
1937 | * come off the free list and are either immediately dirtied/referenced | |
1938 | * due to zero-fill or COW faults, or are used to read or write files... | |
1939 | * in the file I/O case, the UPL mechanism takes care of clearing | |
1940 | * the state of the HW ref/mod bits in a somewhat fragile way. | |
1941 | * Since we may change the way this works in the future (to toughen it up), | |
1942 | * I'm leaving this as a reminder of where these bits could get cleared | |
1943 | */ | |
1944 | ||
1945 | /* | |
1946 | * make sure both the h/w referenced and modified bits are | |
1947 | * clear at this point... we are especially dependent on | |
1948 | * not finding a 'stale' h/w modified in a number of spots | |
1949 | * once this page goes back into use | |
1950 | */ | |
1951 | pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
1952 | #endif | |
1953 | mem->lopage = lopage; | |
1954 | } | |
1955 | ||
1956 | /* | |
1957 | * vm_page_grab_fictitious: | |
1958 | * | |
1959 | * Remove a fictitious page from the free list. | |
1960 | * Returns VM_PAGE_NULL if there are no free pages. | |
1961 | */ | |
1962 | int c_vm_page_grab_fictitious = 0; | |
1963 | int c_vm_page_grab_fictitious_failed = 0; | |
1964 | int c_vm_page_release_fictitious = 0; | |
1965 | int c_vm_page_more_fictitious = 0; | |
1966 | ||
1967 | vm_page_t | |
1968 | vm_page_grab_fictitious_common( | |
1969 | ppnum_t phys_addr) | |
1970 | { | |
1971 | vm_page_t m; | |
1972 | ||
1973 | if ((m = (vm_page_t)zget(vm_page_zone))) { | |
1974 | ||
1975 | vm_page_init(m, phys_addr, FALSE); | |
1976 | m->fictitious = TRUE; | |
1977 | ||
1978 | c_vm_page_grab_fictitious++; | |
1979 | } else | |
1980 | c_vm_page_grab_fictitious_failed++; | |
1981 | ||
1982 | return m; | |
1983 | } | |
1984 | ||
1985 | vm_page_t | |
1986 | vm_page_grab_fictitious(void) | |
1987 | { | |
1988 | return vm_page_grab_fictitious_common(vm_page_fictitious_addr); | |
1989 | } | |
1990 | ||
1991 | vm_page_t | |
1992 | vm_page_grab_guard(void) | |
1993 | { | |
1994 | return vm_page_grab_fictitious_common(vm_page_guard_addr); | |
1995 | } | |
1996 | ||
1997 | ||
1998 | /* | |
1999 | * vm_page_release_fictitious: | |
2000 | * | |
2001 | * Release a fictitious page to the zone pool | |
2002 | */ | |
2003 | void | |
2004 | vm_page_release_fictitious( | |
2005 | vm_page_t m) | |
2006 | { | |
2007 | assert(!m->free); | |
2008 | assert(m->fictitious); | |
2009 | assert(m->phys_page == vm_page_fictitious_addr || | |
2010 | m->phys_page == vm_page_guard_addr); | |
2011 | ||
2012 | c_vm_page_release_fictitious++; | |
2013 | ||
2014 | zfree(vm_page_zone, m); | |
2015 | } | |
2016 | ||
2017 | /* | |
2018 | * vm_page_more_fictitious: | |
2019 | * | |
2020 | * Add more fictitious pages to the zone. | |
2021 | * Allowed to block. This routine is way intimate | |
2022 | * with the zones code, for several reasons: | |
2023 | * 1. we need to carve some page structures out of physical | |
2024 | * memory before zones work, so they _cannot_ come from | |
2025 | * the zone_map. | |
2026 | * 2. the zone needs to be collectable in order to prevent | |
2027 | * growth without bound. These structures are used by | |
2028 | * the device pager (by the hundreds and thousands), as | |
2029 | * private pages for pageout, and as blocking pages for | |
2030 | * pagein. Temporary bursts in demand should not result in | |
2031 | * permanent allocation of a resource. | |
2032 | * 3. To smooth allocation humps, we allocate single pages | |
2033 | * with kernel_memory_allocate(), and cram them into the | |
2034 | * zone. | |
2035 | */ | |
2036 | ||
2037 | void vm_page_more_fictitious(void) | |
2038 | { | |
2039 | vm_offset_t addr; | |
2040 | kern_return_t retval; | |
2041 | ||
2042 | c_vm_page_more_fictitious++; | |
2043 | ||
2044 | /* | |
2045 | * Allocate a single page from the zone_map. Do not wait if no physical | |
2046 | * pages are immediately available, and do not zero the space. We need | |
2047 | * our own blocking lock here to prevent having multiple, | |
2048 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
2049 | * one (of our) threads should be potentially waiting on the map lock. | |
2050 | * If winner is not vm-privileged, then the page allocation will fail, | |
2051 | * and it will temporarily block here in the vm_page_wait(). | |
2052 | */ | |
2053 | lck_mtx_lock(&vm_page_alloc_lock); | |
2054 | /* | |
2055 | * If another thread allocated space, just bail out now. | |
2056 | */ | |
2057 | if (zone_free_count(vm_page_zone) > 5) { | |
2058 | /* | |
2059 | * The number "5" is a small number that is larger than the | |
2060 | * number of fictitious pages that any single caller will | |
2061 | * attempt to allocate. Otherwise, a thread will attempt to | |
2062 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
2063 | * release all of the resources and locks already acquired, | |
2064 | * and then call this routine. This routine finds the pages | |
2065 | * that the caller released, so fails to allocate new space. | |
2066 | * The process repeats infinitely. The largest known number | |
2067 | * of fictitious pages required in this manner is 2. 5 is | |
2068 | * simply a somewhat larger number. | |
2069 | */ | |
2070 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2071 | return; | |
2072 | } | |
2073 | ||
2074 | retval = kernel_memory_allocate(zone_map, | |
2075 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
2076 | KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_ZONE); | |
2077 | if (retval != KERN_SUCCESS) { | |
2078 | /* | |
2079 | * No page was available. Drop the | |
2080 | * lock to give another thread a chance at it, and | |
2081 | * wait for the pageout daemon to make progress. | |
2082 | */ | |
2083 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2084 | vm_page_wait(THREAD_UNINT); | |
2085 | return; | |
2086 | } | |
2087 | ||
2088 | zcram(vm_page_zone, addr, PAGE_SIZE); | |
2089 | ||
2090 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2091 | } | |
2092 | ||
2093 | ||
2094 | /* | |
2095 | * vm_pool_low(): | |
2096 | * | |
2097 | * Return true if it is not likely that a non-vm_privileged thread | |
2098 | * can get memory without blocking. Advisory only, since the | |
2099 | * situation may change under us. | |
2100 | */ | |
2101 | int | |
2102 | vm_pool_low(void) | |
2103 | { | |
2104 | /* No locking, at worst we will fib. */ | |
2105 | return( vm_page_free_count <= vm_page_free_reserved ); | |
2106 | } | |
2107 | ||
2108 | ||
2109 | ||
2110 | /* | |
2111 | * this is an interface to support bring-up of drivers | |
2112 | * on platforms with physical memory > 4G... | |
2113 | */ | |
2114 | int vm_himemory_mode = 2; | |
2115 | ||
2116 | ||
2117 | /* | |
2118 | * this interface exists to support hardware controllers | |
2119 | * incapable of generating DMAs with more than 32 bits | |
2120 | * of address on platforms with physical memory > 4G... | |
2121 | */ | |
2122 | unsigned int vm_lopages_allocated_q = 0; | |
2123 | unsigned int vm_lopages_allocated_cpm_success = 0; | |
2124 | unsigned int vm_lopages_allocated_cpm_failed = 0; | |
2125 | queue_head_t vm_lopage_queue_free; | |
2126 | ||
2127 | vm_page_t | |
2128 | vm_page_grablo(void) | |
2129 | { | |
2130 | vm_page_t mem; | |
2131 | ||
2132 | if (vm_lopage_needed == FALSE) | |
2133 | return (vm_page_grab()); | |
2134 | ||
2135 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2136 | ||
2137 | if ( !queue_empty(&vm_lopage_queue_free)) { | |
2138 | queue_remove_first(&vm_lopage_queue_free, | |
2139 | mem, | |
2140 | vm_page_t, | |
2141 | pageq); | |
2142 | assert(vm_lopage_free_count); | |
2143 | ||
2144 | vm_lopage_free_count--; | |
2145 | vm_lopages_allocated_q++; | |
2146 | ||
2147 | if (vm_lopage_free_count < vm_lopage_lowater) | |
2148 | vm_lopage_refill = TRUE; | |
2149 | ||
2150 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2151 | } else { | |
2152 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2153 | ||
2154 | if (cpm_allocate(PAGE_SIZE, &mem, atop(0xffffffff), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) { | |
2155 | ||
2156 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2157 | vm_lopages_allocated_cpm_failed++; | |
2158 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2159 | ||
2160 | return (VM_PAGE_NULL); | |
2161 | } | |
2162 | mem->busy = TRUE; | |
2163 | ||
2164 | vm_page_lockspin_queues(); | |
2165 | ||
2166 | mem->gobbled = FALSE; | |
2167 | vm_page_gobble_count--; | |
2168 | vm_page_wire_count--; | |
2169 | ||
2170 | vm_lopages_allocated_cpm_success++; | |
2171 | vm_page_unlock_queues(); | |
2172 | } | |
2173 | assert(mem->busy); | |
2174 | assert(!mem->free); | |
2175 | assert(!mem->pmapped); | |
2176 | assert(!mem->wpmapped); | |
2177 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
2178 | ||
2179 | mem->pageq.next = NULL; | |
2180 | mem->pageq.prev = NULL; | |
2181 | ||
2182 | return (mem); | |
2183 | } | |
2184 | ||
2185 | ||
2186 | /* | |
2187 | * vm_page_grab: | |
2188 | * | |
2189 | * first try to grab a page from the per-cpu free list... | |
2190 | * this must be done while pre-emption is disabled... if | |
2191 | * a page is available, we're done... | |
2192 | * if no page is available, grab the vm_page_queue_free_lock | |
2193 | * and see if current number of free pages would allow us | |
2194 | * to grab at least 1... if not, return VM_PAGE_NULL as before... | |
2195 | * if there are pages available, disable preemption and | |
2196 | * recheck the state of the per-cpu free list... we could | |
2197 | * have been preempted and moved to a different cpu, or | |
2198 | * some other thread could have re-filled it... if still | |
2199 | * empty, figure out how many pages we can steal from the | |
2200 | * global free queue and move to the per-cpu queue... | |
2201 | * return 1 of these pages when done... only wakeup the | |
2202 | * pageout_scan thread if we moved pages from the global | |
2203 | * list... no need for the wakeup if we've satisfied the | |
2204 | * request from the per-cpu queue. | |
2205 | */ | |
2206 | ||
2207 | ||
2208 | vm_page_t | |
2209 | vm_page_grab( void ) | |
2210 | { | |
2211 | vm_page_t mem; | |
2212 | ||
2213 | ||
2214 | disable_preemption(); | |
2215 | ||
2216 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
2217 | return_page_from_cpu_list: | |
2218 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
2219 | PROCESSOR_DATA(current_processor(), free_pages) = mem->pageq.next; | |
2220 | ||
2221 | enable_preemption(); | |
2222 | mem->pageq.next = NULL; | |
2223 | ||
2224 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
2225 | assert(mem->tabled == FALSE); | |
2226 | assert(mem->object == VM_OBJECT_NULL); | |
2227 | assert(!mem->laundry); | |
2228 | assert(!mem->free); | |
2229 | assert(pmap_verify_free(mem->phys_page)); | |
2230 | assert(mem->busy); | |
2231 | assert(!mem->encrypted); | |
2232 | assert(!mem->pmapped); | |
2233 | assert(!mem->wpmapped); | |
2234 | assert(!mem->active); | |
2235 | assert(!mem->inactive); | |
2236 | assert(!mem->throttled); | |
2237 | assert(!mem->speculative); | |
2238 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
2239 | ||
2240 | return mem; | |
2241 | } | |
2242 | enable_preemption(); | |
2243 | ||
2244 | ||
2245 | /* | |
2246 | * Optionally produce warnings if the wire or gobble | |
2247 | * counts exceed some threshold. | |
2248 | */ | |
2249 | #if VM_PAGE_WIRE_COUNT_WARNING | |
2250 | if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) { | |
2251 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
2252 | vm_page_wire_count); | |
2253 | } | |
2254 | #endif | |
2255 | #if VM_PAGE_GOBBLE_COUNT_WARNING | |
2256 | if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) { | |
2257 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
2258 | vm_page_gobble_count); | |
2259 | } | |
2260 | #endif | |
2261 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2262 | ||
2263 | /* | |
2264 | * Only let privileged threads (involved in pageout) | |
2265 | * dip into the reserved pool. | |
2266 | */ | |
2267 | if ((vm_page_free_count < vm_page_free_reserved) && | |
2268 | !(current_thread()->options & TH_OPT_VMPRIV)) { | |
2269 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2270 | mem = VM_PAGE_NULL; | |
2271 | } | |
2272 | else { | |
2273 | vm_page_t head; | |
2274 | vm_page_t tail; | |
2275 | unsigned int pages_to_steal; | |
2276 | unsigned int color; | |
2277 | ||
2278 | while ( vm_page_free_count == 0 ) { | |
2279 | ||
2280 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2281 | /* | |
2282 | * must be a privileged thread to be | |
2283 | * in this state since a non-privileged | |
2284 | * thread would have bailed if we were | |
2285 | * under the vm_page_free_reserved mark | |
2286 | */ | |
2287 | VM_PAGE_WAIT(); | |
2288 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2289 | } | |
2290 | ||
2291 | disable_preemption(); | |
2292 | ||
2293 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
2294 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2295 | ||
2296 | /* | |
2297 | * we got preempted and moved to another processor | |
2298 | * or we got preempted and someone else ran and filled the cache | |
2299 | */ | |
2300 | goto return_page_from_cpu_list; | |
2301 | } | |
2302 | if (vm_page_free_count <= vm_page_free_reserved) | |
2303 | pages_to_steal = 1; | |
2304 | else { | |
2305 | if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) | |
2306 | pages_to_steal = vm_free_magazine_refill_limit; | |
2307 | else | |
2308 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); | |
2309 | } | |
2310 | color = PROCESSOR_DATA(current_processor(), start_color); | |
2311 | head = tail = NULL; | |
2312 | ||
2313 | vm_page_free_count -= pages_to_steal; | |
2314 | ||
2315 | while (pages_to_steal--) { | |
2316 | ||
2317 | while (queue_empty(&vm_page_queue_free[color])) | |
2318 | color = (color + 1) & vm_color_mask; | |
2319 | ||
2320 | queue_remove_first(&vm_page_queue_free[color], | |
2321 | mem, | |
2322 | vm_page_t, | |
2323 | pageq); | |
2324 | mem->pageq.next = NULL; | |
2325 | mem->pageq.prev = NULL; | |
2326 | ||
2327 | assert(!mem->active); | |
2328 | assert(!mem->inactive); | |
2329 | assert(!mem->throttled); | |
2330 | assert(!mem->speculative); | |
2331 | ||
2332 | color = (color + 1) & vm_color_mask; | |
2333 | ||
2334 | if (head == NULL) | |
2335 | head = mem; | |
2336 | else | |
2337 | tail->pageq.next = (queue_t)mem; | |
2338 | tail = mem; | |
2339 | ||
2340 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
2341 | assert(mem->tabled == FALSE); | |
2342 | assert(mem->object == VM_OBJECT_NULL); | |
2343 | assert(!mem->laundry); | |
2344 | assert(mem->free); | |
2345 | mem->free = FALSE; | |
2346 | ||
2347 | assert(pmap_verify_free(mem->phys_page)); | |
2348 | assert(mem->busy); | |
2349 | assert(!mem->free); | |
2350 | assert(!mem->encrypted); | |
2351 | assert(!mem->pmapped); | |
2352 | assert(!mem->wpmapped); | |
2353 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
2354 | } | |
2355 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2356 | ||
2357 | PROCESSOR_DATA(current_processor(), free_pages) = head->pageq.next; | |
2358 | PROCESSOR_DATA(current_processor(), start_color) = color; | |
2359 | ||
2360 | /* | |
2361 | * satisfy this request | |
2362 | */ | |
2363 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
2364 | mem = head; | |
2365 | mem->pageq.next = NULL; | |
2366 | ||
2367 | enable_preemption(); | |
2368 | } | |
2369 | /* | |
2370 | * Decide if we should poke the pageout daemon. | |
2371 | * We do this if the free count is less than the low | |
2372 | * water mark, or if the free count is less than the high | |
2373 | * water mark (but above the low water mark) and the inactive | |
2374 | * count is less than its target. | |
2375 | * | |
2376 | * We don't have the counts locked ... if they change a little, | |
2377 | * it doesn't really matter. | |
2378 | */ | |
2379 | if ((vm_page_free_count < vm_page_free_min) || | |
2380 | ((vm_page_free_count < vm_page_free_target) && | |
2381 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
2382 | thread_wakeup((event_t) &vm_page_free_wanted); | |
2383 | ||
2384 | VM_CHECK_MEMORYSTATUS; | |
2385 | ||
2386 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ | |
2387 | ||
2388 | return mem; | |
2389 | } | |
2390 | ||
2391 | /* | |
2392 | * vm_page_release: | |
2393 | * | |
2394 | * Return a page to the free list. | |
2395 | */ | |
2396 | ||
2397 | void | |
2398 | vm_page_release( | |
2399 | register vm_page_t mem) | |
2400 | { | |
2401 | unsigned int color; | |
2402 | int need_wakeup = 0; | |
2403 | int need_priv_wakeup = 0; | |
2404 | ||
2405 | ||
2406 | assert(!mem->private && !mem->fictitious); | |
2407 | if (vm_page_free_verify) { | |
2408 | assert(pmap_verify_free(mem->phys_page)); | |
2409 | } | |
2410 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ | |
2411 | ||
2412 | pmap_clear_noencrypt(mem->phys_page); | |
2413 | ||
2414 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2415 | #if DEBUG | |
2416 | if (mem->free) | |
2417 | panic("vm_page_release"); | |
2418 | #endif | |
2419 | ||
2420 | assert(mem->busy); | |
2421 | assert(!mem->laundry); | |
2422 | assert(mem->object == VM_OBJECT_NULL); | |
2423 | assert(mem->pageq.next == NULL && | |
2424 | mem->pageq.prev == NULL); | |
2425 | assert(mem->listq.next == NULL && | |
2426 | mem->listq.prev == NULL); | |
2427 | ||
2428 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
2429 | vm_lopage_free_count < vm_lopage_free_limit && | |
2430 | mem->phys_page < max_valid_low_ppnum) { | |
2431 | /* | |
2432 | * this exists to support hardware controllers | |
2433 | * incapable of generating DMAs with more than 32 bits | |
2434 | * of address on platforms with physical memory > 4G... | |
2435 | */ | |
2436 | queue_enter_first(&vm_lopage_queue_free, | |
2437 | mem, | |
2438 | vm_page_t, | |
2439 | pageq); | |
2440 | vm_lopage_free_count++; | |
2441 | ||
2442 | if (vm_lopage_free_count >= vm_lopage_free_limit) | |
2443 | vm_lopage_refill = FALSE; | |
2444 | ||
2445 | mem->lopage = TRUE; | |
2446 | } else { | |
2447 | mem->lopage = FALSE; | |
2448 | mem->free = TRUE; | |
2449 | ||
2450 | color = mem->phys_page & vm_color_mask; | |
2451 | queue_enter_first(&vm_page_queue_free[color], | |
2452 | mem, | |
2453 | vm_page_t, | |
2454 | pageq); | |
2455 | vm_page_free_count++; | |
2456 | /* | |
2457 | * Check if we should wake up someone waiting for page. | |
2458 | * But don't bother waking them unless they can allocate. | |
2459 | * | |
2460 | * We wakeup only one thread, to prevent starvation. | |
2461 | * Because the scheduling system handles wait queues FIFO, | |
2462 | * if we wakeup all waiting threads, one greedy thread | |
2463 | * can starve multiple niceguy threads. When the threads | |
2464 | * all wakeup, the greedy threads runs first, grabs the page, | |
2465 | * and waits for another page. It will be the first to run | |
2466 | * when the next page is freed. | |
2467 | * | |
2468 | * However, there is a slight danger here. | |
2469 | * The thread we wake might not use the free page. | |
2470 | * Then the other threads could wait indefinitely | |
2471 | * while the page goes unused. To forestall this, | |
2472 | * the pageout daemon will keep making free pages | |
2473 | * as long as vm_page_free_wanted is non-zero. | |
2474 | */ | |
2475 | ||
2476 | assert(vm_page_free_count > 0); | |
2477 | if (vm_page_free_wanted_privileged > 0) { | |
2478 | vm_page_free_wanted_privileged--; | |
2479 | need_priv_wakeup = 1; | |
2480 | } else if (vm_page_free_wanted > 0 && | |
2481 | vm_page_free_count > vm_page_free_reserved) { | |
2482 | vm_page_free_wanted--; | |
2483 | need_wakeup = 1; | |
2484 | } | |
2485 | } | |
2486 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2487 | ||
2488 | if (need_priv_wakeup) | |
2489 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
2490 | else if (need_wakeup) | |
2491 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2492 | ||
2493 | VM_CHECK_MEMORYSTATUS; | |
2494 | } | |
2495 | ||
2496 | /* | |
2497 | * This version of vm_page_release() is used only at startup | |
2498 | * when we are single-threaded and pages are being released | |
2499 | * for the first time. Hence, no locking or unnecessary checks are made. | |
2500 | * Note: VM_CHECK_MEMORYSTATUS invoked by the caller. | |
2501 | */ | |
2502 | void | |
2503 | vm_page_release_startup( | |
2504 | register vm_page_t mem) | |
2505 | { | |
2506 | queue_t queue_free; | |
2507 | ||
2508 | if (vm_lopage_free_count < vm_lopage_free_limit && | |
2509 | mem->phys_page < max_valid_low_ppnum) { | |
2510 | mem->lopage = TRUE; | |
2511 | vm_lopage_free_count++; | |
2512 | queue_free = &vm_lopage_queue_free; | |
2513 | } else { | |
2514 | mem->lopage = FALSE; | |
2515 | mem->free = TRUE; | |
2516 | vm_page_free_count++; | |
2517 | queue_free = &vm_page_queue_free[mem->phys_page & vm_color_mask]; | |
2518 | } | |
2519 | queue_enter_first(queue_free, mem, vm_page_t, pageq); | |
2520 | } | |
2521 | ||
2522 | /* | |
2523 | * vm_page_wait: | |
2524 | * | |
2525 | * Wait for a page to become available. | |
2526 | * If there are plenty of free pages, then we don't sleep. | |
2527 | * | |
2528 | * Returns: | |
2529 | * TRUE: There may be another page, try again | |
2530 | * FALSE: We were interrupted out of our wait, don't try again | |
2531 | */ | |
2532 | ||
2533 | boolean_t | |
2534 | vm_page_wait( | |
2535 | int interruptible ) | |
2536 | { | |
2537 | /* | |
2538 | * We can't use vm_page_free_reserved to make this | |
2539 | * determination. Consider: some thread might | |
2540 | * need to allocate two pages. The first allocation | |
2541 | * succeeds, the second fails. After the first page is freed, | |
2542 | * a call to vm_page_wait must really block. | |
2543 | */ | |
2544 | kern_return_t wait_result; | |
2545 | int need_wakeup = 0; | |
2546 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; | |
2547 | ||
2548 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2549 | ||
2550 | if (is_privileged && vm_page_free_count) { | |
2551 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2552 | return TRUE; | |
2553 | } | |
2554 | if (vm_page_free_count < vm_page_free_target) { | |
2555 | ||
2556 | if (is_privileged) { | |
2557 | if (vm_page_free_wanted_privileged++ == 0) | |
2558 | need_wakeup = 1; | |
2559 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); | |
2560 | } else { | |
2561 | if (vm_page_free_wanted++ == 0) | |
2562 | need_wakeup = 1; | |
2563 | wait_result = assert_wait((event_t)&vm_page_free_count, interruptible); | |
2564 | } | |
2565 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2566 | counter(c_vm_page_wait_block++); | |
2567 | ||
2568 | if (need_wakeup) | |
2569 | thread_wakeup((event_t)&vm_page_free_wanted); | |
2570 | ||
2571 | if (wait_result == THREAD_WAITING) { | |
2572 | VM_DEBUG_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, | |
2573 | vm_page_free_wanted_privileged, vm_page_free_wanted, 0, 0); | |
2574 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
2575 | VM_DEBUG_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0); | |
2576 | } | |
2577 | ||
2578 | return(wait_result == THREAD_AWAKENED); | |
2579 | } else { | |
2580 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2581 | return TRUE; | |
2582 | } | |
2583 | } | |
2584 | ||
2585 | /* | |
2586 | * vm_page_alloc: | |
2587 | * | |
2588 | * Allocate and return a memory cell associated | |
2589 | * with this VM object/offset pair. | |
2590 | * | |
2591 | * Object must be locked. | |
2592 | */ | |
2593 | ||
2594 | vm_page_t | |
2595 | vm_page_alloc( | |
2596 | vm_object_t object, | |
2597 | vm_object_offset_t offset) | |
2598 | { | |
2599 | register vm_page_t mem; | |
2600 | ||
2601 | vm_object_lock_assert_exclusive(object); | |
2602 | mem = vm_page_grab(); | |
2603 | if (mem == VM_PAGE_NULL) | |
2604 | return VM_PAGE_NULL; | |
2605 | ||
2606 | vm_page_insert(mem, object, offset); | |
2607 | ||
2608 | return(mem); | |
2609 | } | |
2610 | ||
2611 | /* | |
2612 | * vm_page_alloc_guard: | |
2613 | * | |
2614 | * Allocate a fictitious page which will be used | |
2615 | * as a guard page. The page will be inserted into | |
2616 | * the object and returned to the caller. | |
2617 | */ | |
2618 | ||
2619 | vm_page_t | |
2620 | vm_page_alloc_guard( | |
2621 | vm_object_t object, | |
2622 | vm_object_offset_t offset) | |
2623 | { | |
2624 | register vm_page_t mem; | |
2625 | ||
2626 | vm_object_lock_assert_exclusive(object); | |
2627 | mem = vm_page_grab_guard(); | |
2628 | if (mem == VM_PAGE_NULL) | |
2629 | return VM_PAGE_NULL; | |
2630 | ||
2631 | vm_page_insert(mem, object, offset); | |
2632 | ||
2633 | return(mem); | |
2634 | } | |
2635 | ||
2636 | ||
2637 | counter(unsigned int c_laundry_pages_freed = 0;) | |
2638 | ||
2639 | /* | |
2640 | * vm_page_free_prepare: | |
2641 | * | |
2642 | * Removes page from any queue it may be on | |
2643 | * and disassociates it from its VM object. | |
2644 | * | |
2645 | * Object and page queues must be locked prior to entry. | |
2646 | */ | |
2647 | static void | |
2648 | vm_page_free_prepare( | |
2649 | vm_page_t mem) | |
2650 | { | |
2651 | vm_page_free_prepare_queues(mem); | |
2652 | vm_page_free_prepare_object(mem, TRUE); | |
2653 | } | |
2654 | ||
2655 | ||
2656 | void | |
2657 | vm_page_free_prepare_queues( | |
2658 | vm_page_t mem) | |
2659 | { | |
2660 | VM_PAGE_CHECK(mem); | |
2661 | assert(!mem->free); | |
2662 | assert(!mem->cleaning); | |
2663 | ||
2664 | #if MACH_ASSERT || DEBUG | |
2665 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2666 | if (mem->free) | |
2667 | panic("vm_page_free: freeing page on free list\n"); | |
2668 | #endif /* MACH_ASSERT || DEBUG */ | |
2669 | if (mem->object) { | |
2670 | vm_object_lock_assert_exclusive(mem->object); | |
2671 | } | |
2672 | if (mem->laundry) { | |
2673 | /* | |
2674 | * We may have to free a page while it's being laundered | |
2675 | * if we lost its pager (due to a forced unmount, for example). | |
2676 | * We need to call vm_pageout_steal_laundry() before removing | |
2677 | * the page from its VM object, so that we can remove it | |
2678 | * from its pageout queue and adjust the laundry accounting | |
2679 | */ | |
2680 | vm_pageout_steal_laundry(mem, TRUE); | |
2681 | counter(++c_laundry_pages_freed); | |
2682 | } | |
2683 | ||
2684 | vm_page_queues_remove(mem); /* clears local/active/inactive/throttled/speculative */ | |
2685 | ||
2686 | if (VM_PAGE_WIRED(mem)) { | |
2687 | if (mem->object) { | |
2688 | assert(mem->object->wired_page_count > 0); | |
2689 | mem->object->wired_page_count--; | |
2690 | if (!mem->object->wired_page_count) { | |
2691 | VM_OBJECT_UNWIRED(mem->object); | |
2692 | } | |
2693 | ||
2694 | assert(mem->object->resident_page_count >= | |
2695 | mem->object->wired_page_count); | |
2696 | ||
2697 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2698 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
2699 | assert(vm_page_purgeable_wired_count > 0); | |
2700 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
2701 | } | |
2702 | if ((mem->object->purgable == VM_PURGABLE_VOLATILE || | |
2703 | mem->object->purgable == VM_PURGABLE_EMPTY) && | |
2704 | mem->object->vo_purgeable_owner != TASK_NULL) { | |
2705 | task_t owner; | |
2706 | ||
2707 | owner = mem->object->vo_purgeable_owner; | |
2708 | /* | |
2709 | * While wired, this page was accounted | |
2710 | * as "non-volatile" but it should now | |
2711 | * be accounted as "volatile". | |
2712 | */ | |
2713 | /* one less "non-volatile"... */ | |
2714 | ledger_debit(owner->ledger, | |
2715 | task_ledgers.purgeable_nonvolatile, | |
2716 | PAGE_SIZE); | |
2717 | /* ... and "phys_footprint" */ | |
2718 | ledger_debit(owner->ledger, | |
2719 | task_ledgers.phys_footprint, | |
2720 | PAGE_SIZE); | |
2721 | /* one more "volatile" */ | |
2722 | ledger_credit(owner->ledger, | |
2723 | task_ledgers.purgeable_volatile, | |
2724 | PAGE_SIZE); | |
2725 | } | |
2726 | } | |
2727 | if (!mem->private && !mem->fictitious) | |
2728 | vm_page_wire_count--; | |
2729 | mem->wire_count = 0; | |
2730 | assert(!mem->gobbled); | |
2731 | } else if (mem->gobbled) { | |
2732 | if (!mem->private && !mem->fictitious) | |
2733 | vm_page_wire_count--; | |
2734 | vm_page_gobble_count--; | |
2735 | } | |
2736 | } | |
2737 | ||
2738 | ||
2739 | void | |
2740 | vm_page_free_prepare_object( | |
2741 | vm_page_t mem, | |
2742 | boolean_t remove_from_hash) | |
2743 | { | |
2744 | if (mem->tabled) | |
2745 | vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ | |
2746 | ||
2747 | PAGE_WAKEUP(mem); /* clears wanted */ | |
2748 | ||
2749 | if (mem->private) { | |
2750 | mem->private = FALSE; | |
2751 | mem->fictitious = TRUE; | |
2752 | mem->phys_page = vm_page_fictitious_addr; | |
2753 | } | |
2754 | if ( !mem->fictitious) { | |
2755 | vm_page_init(mem, mem->phys_page, mem->lopage); | |
2756 | } | |
2757 | } | |
2758 | ||
2759 | ||
2760 | /* | |
2761 | * vm_page_free: | |
2762 | * | |
2763 | * Returns the given page to the free list, | |
2764 | * disassociating it with any VM object. | |
2765 | * | |
2766 | * Object and page queues must be locked prior to entry. | |
2767 | */ | |
2768 | void | |
2769 | vm_page_free( | |
2770 | vm_page_t mem) | |
2771 | { | |
2772 | vm_page_free_prepare(mem); | |
2773 | ||
2774 | if (mem->fictitious) { | |
2775 | vm_page_release_fictitious(mem); | |
2776 | } else { | |
2777 | vm_page_release(mem); | |
2778 | } | |
2779 | } | |
2780 | ||
2781 | ||
2782 | void | |
2783 | vm_page_free_unlocked( | |
2784 | vm_page_t mem, | |
2785 | boolean_t remove_from_hash) | |
2786 | { | |
2787 | vm_page_lockspin_queues(); | |
2788 | vm_page_free_prepare_queues(mem); | |
2789 | vm_page_unlock_queues(); | |
2790 | ||
2791 | vm_page_free_prepare_object(mem, remove_from_hash); | |
2792 | ||
2793 | if (mem->fictitious) { | |
2794 | vm_page_release_fictitious(mem); | |
2795 | } else { | |
2796 | vm_page_release(mem); | |
2797 | } | |
2798 | } | |
2799 | ||
2800 | ||
2801 | /* | |
2802 | * Free a list of pages. The list can be up to several hundred pages, | |
2803 | * as blocked up by vm_pageout_scan(). | |
2804 | * The big win is not having to take the free list lock once | |
2805 | * per page. | |
2806 | */ | |
2807 | void | |
2808 | vm_page_free_list( | |
2809 | vm_page_t freeq, | |
2810 | boolean_t prepare_object) | |
2811 | { | |
2812 | vm_page_t mem; | |
2813 | vm_page_t nxt; | |
2814 | vm_page_t local_freeq; | |
2815 | int pg_count; | |
2816 | ||
2817 | while (freeq) { | |
2818 | ||
2819 | pg_count = 0; | |
2820 | local_freeq = VM_PAGE_NULL; | |
2821 | mem = freeq; | |
2822 | ||
2823 | /* | |
2824 | * break up the processing into smaller chunks so | |
2825 | * that we can 'pipeline' the pages onto the | |
2826 | * free list w/o introducing too much | |
2827 | * contention on the global free queue lock | |
2828 | */ | |
2829 | while (mem && pg_count < 64) { | |
2830 | ||
2831 | assert(!mem->inactive); | |
2832 | assert(!mem->active); | |
2833 | assert(!mem->throttled); | |
2834 | assert(!mem->free); | |
2835 | assert(!mem->speculative); | |
2836 | assert(!VM_PAGE_WIRED(mem)); | |
2837 | assert(mem->pageq.prev == NULL); | |
2838 | ||
2839 | nxt = (vm_page_t)(mem->pageq.next); | |
2840 | ||
2841 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { | |
2842 | assert(pmap_verify_free(mem->phys_page)); | |
2843 | } | |
2844 | if (prepare_object == TRUE) | |
2845 | vm_page_free_prepare_object(mem, TRUE); | |
2846 | ||
2847 | if (!mem->fictitious) { | |
2848 | assert(mem->busy); | |
2849 | ||
2850 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
2851 | vm_lopage_free_count < vm_lopage_free_limit && | |
2852 | mem->phys_page < max_valid_low_ppnum) { | |
2853 | mem->pageq.next = NULL; | |
2854 | vm_page_release(mem); | |
2855 | } else { | |
2856 | /* | |
2857 | * IMPORTANT: we can't set the page "free" here | |
2858 | * because that would make the page eligible for | |
2859 | * a physically-contiguous allocation (see | |
2860 | * vm_page_find_contiguous()) right away (we don't | |
2861 | * hold the vm_page_queue_free lock). That would | |
2862 | * cause trouble because the page is not actually | |
2863 | * in the free queue yet... | |
2864 | */ | |
2865 | mem->pageq.next = (queue_entry_t)local_freeq; | |
2866 | local_freeq = mem; | |
2867 | pg_count++; | |
2868 | ||
2869 | pmap_clear_noencrypt(mem->phys_page); | |
2870 | } | |
2871 | } else { | |
2872 | assert(mem->phys_page == vm_page_fictitious_addr || | |
2873 | mem->phys_page == vm_page_guard_addr); | |
2874 | vm_page_release_fictitious(mem); | |
2875 | } | |
2876 | mem = nxt; | |
2877 | } | |
2878 | freeq = mem; | |
2879 | ||
2880 | if ( (mem = local_freeq) ) { | |
2881 | unsigned int avail_free_count; | |
2882 | unsigned int need_wakeup = 0; | |
2883 | unsigned int need_priv_wakeup = 0; | |
2884 | ||
2885 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2886 | ||
2887 | while (mem) { | |
2888 | int color; | |
2889 | ||
2890 | nxt = (vm_page_t)(mem->pageq.next); | |
2891 | ||
2892 | assert(!mem->free); | |
2893 | assert(mem->busy); | |
2894 | mem->free = TRUE; | |
2895 | ||
2896 | color = mem->phys_page & vm_color_mask; | |
2897 | queue_enter_first(&vm_page_queue_free[color], | |
2898 | mem, | |
2899 | vm_page_t, | |
2900 | pageq); | |
2901 | mem = nxt; | |
2902 | } | |
2903 | vm_page_free_count += pg_count; | |
2904 | avail_free_count = vm_page_free_count; | |
2905 | ||
2906 | if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) { | |
2907 | ||
2908 | if (avail_free_count < vm_page_free_wanted_privileged) { | |
2909 | need_priv_wakeup = avail_free_count; | |
2910 | vm_page_free_wanted_privileged -= avail_free_count; | |
2911 | avail_free_count = 0; | |
2912 | } else { | |
2913 | need_priv_wakeup = vm_page_free_wanted_privileged; | |
2914 | vm_page_free_wanted_privileged = 0; | |
2915 | avail_free_count -= vm_page_free_wanted_privileged; | |
2916 | } | |
2917 | } | |
2918 | if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) { | |
2919 | unsigned int available_pages; | |
2920 | ||
2921 | available_pages = avail_free_count - vm_page_free_reserved; | |
2922 | ||
2923 | if (available_pages >= vm_page_free_wanted) { | |
2924 | need_wakeup = vm_page_free_wanted; | |
2925 | vm_page_free_wanted = 0; | |
2926 | } else { | |
2927 | need_wakeup = available_pages; | |
2928 | vm_page_free_wanted -= available_pages; | |
2929 | } | |
2930 | } | |
2931 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2932 | ||
2933 | if (need_priv_wakeup != 0) { | |
2934 | /* | |
2935 | * There shouldn't be that many VM-privileged threads, | |
2936 | * so let's wake them all up, even if we don't quite | |
2937 | * have enough pages to satisfy them all. | |
2938 | */ | |
2939 | thread_wakeup((event_t)&vm_page_free_wanted_privileged); | |
2940 | } | |
2941 | if (need_wakeup != 0 && vm_page_free_wanted == 0) { | |
2942 | /* | |
2943 | * We don't expect to have any more waiters | |
2944 | * after this, so let's wake them all up at | |
2945 | * once. | |
2946 | */ | |
2947 | thread_wakeup((event_t) &vm_page_free_count); | |
2948 | } else for (; need_wakeup != 0; need_wakeup--) { | |
2949 | /* | |
2950 | * Wake up one waiter per page we just released. | |
2951 | */ | |
2952 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2953 | } | |
2954 | ||
2955 | VM_CHECK_MEMORYSTATUS; | |
2956 | } | |
2957 | } | |
2958 | } | |
2959 | ||
2960 | ||
2961 | /* | |
2962 | * vm_page_wire: | |
2963 | * | |
2964 | * Mark this page as wired down by yet | |
2965 | * another map, removing it from paging queues | |
2966 | * as necessary. | |
2967 | * | |
2968 | * The page's object and the page queues must be locked. | |
2969 | */ | |
2970 | ||
2971 | ||
2972 | void | |
2973 | vm_page_wire( | |
2974 | register vm_page_t mem, | |
2975 | vm_tag_t tag, | |
2976 | boolean_t check_memorystatus) | |
2977 | { | |
2978 | ||
2979 | // dbgLog(current_thread(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ | |
2980 | ||
2981 | VM_PAGE_CHECK(mem); | |
2982 | if (mem->object) { | |
2983 | vm_object_lock_assert_exclusive(mem->object); | |
2984 | } else { | |
2985 | /* | |
2986 | * In theory, the page should be in an object before it | |
2987 | * gets wired, since we need to hold the object lock | |
2988 | * to update some fields in the page structure. | |
2989 | * However, some code (i386 pmap, for example) might want | |
2990 | * to wire a page before it gets inserted into an object. | |
2991 | * That's somewhat OK, as long as nobody else can get to | |
2992 | * that page and update it at the same time. | |
2993 | */ | |
2994 | } | |
2995 | #if DEBUG | |
2996 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2997 | #endif | |
2998 | if ( !VM_PAGE_WIRED(mem)) { | |
2999 | ||
3000 | if (mem->pageout_queue) { | |
3001 | mem->pageout = FALSE; | |
3002 | vm_pageout_throttle_up(mem); | |
3003 | } | |
3004 | vm_page_queues_remove(mem); | |
3005 | ||
3006 | if (mem->object) { | |
3007 | ||
3008 | if (!mem->private && !mem->fictitious) | |
3009 | { | |
3010 | if (!mem->object->wired_page_count) | |
3011 | { | |
3012 | assert(VM_KERN_MEMORY_NONE != tag); | |
3013 | mem->object->wire_tag = tag; | |
3014 | VM_OBJECT_WIRED(mem->object); | |
3015 | } | |
3016 | } | |
3017 | mem->object->wired_page_count++; | |
3018 | ||
3019 | assert(mem->object->resident_page_count >= | |
3020 | mem->object->wired_page_count); | |
3021 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
3022 | assert(vm_page_purgeable_count > 0); | |
3023 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
3024 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
3025 | } | |
3026 | if ((mem->object->purgable == VM_PURGABLE_VOLATILE || | |
3027 | mem->object->purgable == VM_PURGABLE_EMPTY) && | |
3028 | mem->object->vo_purgeable_owner != TASK_NULL) { | |
3029 | task_t owner; | |
3030 | ||
3031 | owner = mem->object->vo_purgeable_owner; | |
3032 | /* less volatile bytes */ | |
3033 | ledger_debit(owner->ledger, | |
3034 | task_ledgers.purgeable_volatile, | |
3035 | PAGE_SIZE); | |
3036 | /* more not-quite-volatile bytes */ | |
3037 | ledger_credit(owner->ledger, | |
3038 | task_ledgers.purgeable_nonvolatile, | |
3039 | PAGE_SIZE); | |
3040 | /* more footprint */ | |
3041 | ledger_credit(owner->ledger, | |
3042 | task_ledgers.phys_footprint, | |
3043 | PAGE_SIZE); | |
3044 | } | |
3045 | if (mem->object->all_reusable) { | |
3046 | /* | |
3047 | * Wired pages are not counted as "re-usable" | |
3048 | * in "all_reusable" VM objects, so nothing | |
3049 | * to do here. | |
3050 | */ | |
3051 | } else if (mem->reusable) { | |
3052 | /* | |
3053 | * This page is not "re-usable" when it's | |
3054 | * wired, so adjust its state and the | |
3055 | * accounting. | |
3056 | */ | |
3057 | vm_object_reuse_pages(mem->object, | |
3058 | mem->offset, | |
3059 | mem->offset+PAGE_SIZE_64, | |
3060 | FALSE); | |
3061 | } | |
3062 | } | |
3063 | assert(!mem->reusable); | |
3064 | ||
3065 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
3066 | vm_page_wire_count++; | |
3067 | if (mem->gobbled) | |
3068 | vm_page_gobble_count--; | |
3069 | mem->gobbled = FALSE; | |
3070 | ||
3071 | if (check_memorystatus == TRUE) { | |
3072 | VM_CHECK_MEMORYSTATUS; | |
3073 | } | |
3074 | /* | |
3075 | * ENCRYPTED SWAP: | |
3076 | * The page could be encrypted, but | |
3077 | * We don't have to decrypt it here | |
3078 | * because we don't guarantee that the | |
3079 | * data is actually valid at this point. | |
3080 | * The page will get decrypted in | |
3081 | * vm_fault_wire() if needed. | |
3082 | */ | |
3083 | } | |
3084 | assert(!mem->gobbled); | |
3085 | mem->wire_count++; | |
3086 | VM_PAGE_CHECK(mem); | |
3087 | } | |
3088 | ||
3089 | /* | |
3090 | * vm_page_unwire: | |
3091 | * | |
3092 | * Release one wiring of this page, potentially | |
3093 | * enabling it to be paged again. | |
3094 | * | |
3095 | * The page's object and the page queues must be locked. | |
3096 | */ | |
3097 | void | |
3098 | vm_page_unwire( | |
3099 | vm_page_t mem, | |
3100 | boolean_t queueit) | |
3101 | { | |
3102 | ||
3103 | // dbgLog(current_thread(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ | |
3104 | ||
3105 | VM_PAGE_CHECK(mem); | |
3106 | assert(VM_PAGE_WIRED(mem)); | |
3107 | assert(!mem->gobbled); | |
3108 | assert(mem->object != VM_OBJECT_NULL); | |
3109 | #if DEBUG | |
3110 | vm_object_lock_assert_exclusive(mem->object); | |
3111 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3112 | #endif | |
3113 | if (--mem->wire_count == 0) { | |
3114 | if (!mem->private && !mem->fictitious) { | |
3115 | vm_page_wire_count--; | |
3116 | } | |
3117 | assert(mem->object->wired_page_count > 0); | |
3118 | mem->object->wired_page_count--; | |
3119 | if (!mem->object->wired_page_count) { | |
3120 | VM_OBJECT_UNWIRED(mem->object); | |
3121 | } | |
3122 | assert(mem->object->resident_page_count >= | |
3123 | mem->object->wired_page_count); | |
3124 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
3125 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
3126 | assert(vm_page_purgeable_wired_count > 0); | |
3127 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
3128 | } | |
3129 | if ((mem->object->purgable == VM_PURGABLE_VOLATILE || | |
3130 | mem->object->purgable == VM_PURGABLE_EMPTY) && | |
3131 | mem->object->vo_purgeable_owner != TASK_NULL) { | |
3132 | task_t owner; | |
3133 | ||
3134 | owner = mem->object->vo_purgeable_owner; | |
3135 | /* more volatile bytes */ | |
3136 | ledger_credit(owner->ledger, | |
3137 | task_ledgers.purgeable_volatile, | |
3138 | PAGE_SIZE); | |
3139 | /* less not-quite-volatile bytes */ | |
3140 | ledger_debit(owner->ledger, | |
3141 | task_ledgers.purgeable_nonvolatile, | |
3142 | PAGE_SIZE); | |
3143 | /* less footprint */ | |
3144 | ledger_debit(owner->ledger, | |
3145 | task_ledgers.phys_footprint, | |
3146 | PAGE_SIZE); | |
3147 | } | |
3148 | assert(mem->object != kernel_object); | |
3149 | assert(mem->pageq.next == NULL && mem->pageq.prev == NULL); | |
3150 | ||
3151 | if (queueit == TRUE) { | |
3152 | if (mem->object->purgable == VM_PURGABLE_EMPTY) { | |
3153 | vm_page_deactivate(mem); | |
3154 | } else { | |
3155 | vm_page_activate(mem); | |
3156 | } | |
3157 | } | |
3158 | ||
3159 | VM_CHECK_MEMORYSTATUS; | |
3160 | ||
3161 | } | |
3162 | VM_PAGE_CHECK(mem); | |
3163 | } | |
3164 | ||
3165 | /* | |
3166 | * vm_page_deactivate: | |
3167 | * | |
3168 | * Returns the given page to the inactive list, | |
3169 | * indicating that no physical maps have access | |
3170 | * to this page. [Used by the physical mapping system.] | |
3171 | * | |
3172 | * The page queues must be locked. | |
3173 | */ | |
3174 | void | |
3175 | vm_page_deactivate( | |
3176 | vm_page_t m) | |
3177 | { | |
3178 | vm_page_deactivate_internal(m, TRUE); | |
3179 | } | |
3180 | ||
3181 | ||
3182 | void | |
3183 | vm_page_deactivate_internal( | |
3184 | vm_page_t m, | |
3185 | boolean_t clear_hw_reference) | |
3186 | { | |
3187 | ||
3188 | VM_PAGE_CHECK(m); | |
3189 | assert(m->object != kernel_object); | |
3190 | assert(m->phys_page != vm_page_guard_addr); | |
3191 | ||
3192 | // dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ | |
3193 | #if DEBUG | |
3194 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3195 | #endif | |
3196 | /* | |
3197 | * This page is no longer very interesting. If it was | |
3198 | * interesting (active or inactive/referenced), then we | |
3199 | * clear the reference bit and (re)enter it in the | |
3200 | * inactive queue. Note wired pages should not have | |
3201 | * their reference bit cleared. | |
3202 | */ | |
3203 | assert ( !(m->absent && !m->unusual)); | |
3204 | ||
3205 | if (m->gobbled) { /* can this happen? */ | |
3206 | assert( !VM_PAGE_WIRED(m)); | |
3207 | ||
3208 | if (!m->private && !m->fictitious) | |
3209 | vm_page_wire_count--; | |
3210 | vm_page_gobble_count--; | |
3211 | m->gobbled = FALSE; | |
3212 | } | |
3213 | /* | |
3214 | * if this page is currently on the pageout queue, we can't do the | |
3215 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3216 | * and we can't remove it manually since we would need the object lock | |
3217 | * (which is not required here) to decrement the activity_in_progress | |
3218 | * reference which is held on the object while the page is in the pageout queue... | |
3219 | * just let the normal laundry processing proceed | |
3220 | */ | |
3221 | if (m->laundry || m->pageout_queue || m->private || m->fictitious || m->compressor || (VM_PAGE_WIRED(m))) | |
3222 | return; | |
3223 | ||
3224 | if (!m->absent && clear_hw_reference == TRUE) | |
3225 | pmap_clear_reference(m->phys_page); | |
3226 | ||
3227 | m->reference = FALSE; | |
3228 | m->no_cache = FALSE; | |
3229 | ||
3230 | if (!m->inactive) { | |
3231 | vm_page_queues_remove(m); | |
3232 | ||
3233 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && | |
3234 | m->dirty && m->object->internal && | |
3235 | (m->object->purgable == VM_PURGABLE_DENY || | |
3236 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
3237 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
3238 | vm_page_check_pageable_safe(m); | |
3239 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
3240 | m->throttled = TRUE; | |
3241 | vm_page_throttled_count++; | |
3242 | } else { | |
3243 | if (m->object->named && m->object->ref_count == 1) { | |
3244 | vm_page_speculate(m, FALSE); | |
3245 | #if DEVELOPMENT || DEBUG | |
3246 | vm_page_speculative_recreated++; | |
3247 | #endif | |
3248 | } else { | |
3249 | vm_page_enqueue_inactive(m, FALSE); | |
3250 | } | |
3251 | } | |
3252 | } | |
3253 | } | |
3254 | ||
3255 | /* | |
3256 | * vm_page_enqueue_cleaned | |
3257 | * | |
3258 | * Put the page on the cleaned queue, mark it cleaned, etc. | |
3259 | * Being on the cleaned queue (and having m->clean_queue set) | |
3260 | * does ** NOT ** guarantee that the page is clean! | |
3261 | * | |
3262 | * Call with the queues lock held. | |
3263 | */ | |
3264 | ||
3265 | void vm_page_enqueue_cleaned(vm_page_t m) | |
3266 | { | |
3267 | assert(m->phys_page != vm_page_guard_addr); | |
3268 | #if DEBUG | |
3269 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3270 | #endif | |
3271 | assert( !(m->absent && !m->unusual)); | |
3272 | ||
3273 | if (m->gobbled) { | |
3274 | assert( !VM_PAGE_WIRED(m)); | |
3275 | if (!m->private && !m->fictitious) | |
3276 | vm_page_wire_count--; | |
3277 | vm_page_gobble_count--; | |
3278 | m->gobbled = FALSE; | |
3279 | } | |
3280 | /* | |
3281 | * if this page is currently on the pageout queue, we can't do the | |
3282 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3283 | * and we can't remove it manually since we would need the object lock | |
3284 | * (which is not required here) to decrement the activity_in_progress | |
3285 | * reference which is held on the object while the page is in the pageout queue... | |
3286 | * just let the normal laundry processing proceed | |
3287 | */ | |
3288 | if (m->laundry || m->clean_queue || m->pageout_queue || m->private || m->fictitious) | |
3289 | return; | |
3290 | ||
3291 | vm_page_queues_remove(m); | |
3292 | ||
3293 | vm_page_check_pageable_safe(m); | |
3294 | queue_enter(&vm_page_queue_cleaned, m, vm_page_t, pageq); | |
3295 | m->clean_queue = TRUE; | |
3296 | vm_page_cleaned_count++; | |
3297 | ||
3298 | m->inactive = TRUE; | |
3299 | vm_page_inactive_count++; | |
3300 | if (m->object->internal) { | |
3301 | vm_page_pageable_internal_count++; | |
3302 | } else { | |
3303 | vm_page_pageable_external_count++; | |
3304 | } | |
3305 | ||
3306 | vm_pageout_enqueued_cleaned++; | |
3307 | } | |
3308 | ||
3309 | /* | |
3310 | * vm_page_activate: | |
3311 | * | |
3312 | * Put the specified page on the active list (if appropriate). | |
3313 | * | |
3314 | * The page queues must be locked. | |
3315 | */ | |
3316 | ||
3317 | void | |
3318 | vm_page_activate( | |
3319 | register vm_page_t m) | |
3320 | { | |
3321 | VM_PAGE_CHECK(m); | |
3322 | #ifdef FIXME_4778297 | |
3323 | assert(m->object != kernel_object); | |
3324 | #endif | |
3325 | assert(m->phys_page != vm_page_guard_addr); | |
3326 | #if DEBUG | |
3327 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3328 | #endif | |
3329 | assert( !(m->absent && !m->unusual)); | |
3330 | ||
3331 | if (m->gobbled) { | |
3332 | assert( !VM_PAGE_WIRED(m)); | |
3333 | if (!m->private && !m->fictitious) | |
3334 | vm_page_wire_count--; | |
3335 | vm_page_gobble_count--; | |
3336 | m->gobbled = FALSE; | |
3337 | } | |
3338 | /* | |
3339 | * if this page is currently on the pageout queue, we can't do the | |
3340 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3341 | * and we can't remove it manually since we would need the object lock | |
3342 | * (which is not required here) to decrement the activity_in_progress | |
3343 | * reference which is held on the object while the page is in the pageout queue... | |
3344 | * just let the normal laundry processing proceed | |
3345 | */ | |
3346 | if (m->laundry || m->pageout_queue || m->private || m->fictitious || m->compressor) | |
3347 | return; | |
3348 | ||
3349 | #if DEBUG | |
3350 | if (m->active) | |
3351 | panic("vm_page_activate: already active"); | |
3352 | #endif | |
3353 | ||
3354 | if (m->speculative) { | |
3355 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
3356 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); | |
3357 | } | |
3358 | ||
3359 | vm_page_queues_remove(m); | |
3360 | ||
3361 | if ( !VM_PAGE_WIRED(m)) { | |
3362 | vm_page_check_pageable_safe(m); | |
3363 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && | |
3364 | m->dirty && m->object->internal && | |
3365 | (m->object->purgable == VM_PURGABLE_DENY || | |
3366 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
3367 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
3368 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
3369 | m->throttled = TRUE; | |
3370 | vm_page_throttled_count++; | |
3371 | } else { | |
3372 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
3373 | m->active = TRUE; | |
3374 | vm_page_active_count++; | |
3375 | if (m->object->internal) { | |
3376 | vm_page_pageable_internal_count++; | |
3377 | } else { | |
3378 | vm_page_pageable_external_count++; | |
3379 | } | |
3380 | } | |
3381 | m->reference = TRUE; | |
3382 | m->no_cache = FALSE; | |
3383 | } | |
3384 | VM_PAGE_CHECK(m); | |
3385 | } | |
3386 | ||
3387 | ||
3388 | /* | |
3389 | * vm_page_speculate: | |
3390 | * | |
3391 | * Put the specified page on the speculative list (if appropriate). | |
3392 | * | |
3393 | * The page queues must be locked. | |
3394 | */ | |
3395 | void | |
3396 | vm_page_speculate( | |
3397 | vm_page_t m, | |
3398 | boolean_t new) | |
3399 | { | |
3400 | struct vm_speculative_age_q *aq; | |
3401 | ||
3402 | VM_PAGE_CHECK(m); | |
3403 | vm_page_check_pageable_safe(m); | |
3404 | ||
3405 | assert(m->phys_page != vm_page_guard_addr); | |
3406 | #if DEBUG | |
3407 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3408 | #endif | |
3409 | assert( !(m->absent && !m->unusual)); | |
3410 | ||
3411 | /* | |
3412 | * if this page is currently on the pageout queue, we can't do the | |
3413 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3414 | * and we can't remove it manually since we would need the object lock | |
3415 | * (which is not required here) to decrement the activity_in_progress | |
3416 | * reference which is held on the object while the page is in the pageout queue... | |
3417 | * just let the normal laundry processing proceed | |
3418 | */ | |
3419 | if (m->laundry || m->pageout_queue || m->private || m->fictitious || m->compressor) | |
3420 | return; | |
3421 | ||
3422 | vm_page_queues_remove(m); | |
3423 | ||
3424 | if ( !VM_PAGE_WIRED(m)) { | |
3425 | mach_timespec_t ts; | |
3426 | clock_sec_t sec; | |
3427 | clock_nsec_t nsec; | |
3428 | ||
3429 | clock_get_system_nanotime(&sec, &nsec); | |
3430 | ts.tv_sec = (unsigned int) sec; | |
3431 | ts.tv_nsec = nsec; | |
3432 | ||
3433 | if (vm_page_speculative_count == 0) { | |
3434 | ||
3435 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
3436 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
3437 | ||
3438 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
3439 | ||
3440 | /* | |
3441 | * set the timer to begin a new group | |
3442 | */ | |
3443 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
3444 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
3445 | ||
3446 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
3447 | } else { | |
3448 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
3449 | ||
3450 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { | |
3451 | ||
3452 | speculative_age_index++; | |
3453 | ||
3454 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
3455 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
3456 | if (speculative_age_index == speculative_steal_index) { | |
3457 | speculative_steal_index = speculative_age_index + 1; | |
3458 | ||
3459 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
3460 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
3461 | } | |
3462 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
3463 | ||
3464 | if (!queue_empty(&aq->age_q)) | |
3465 | vm_page_speculate_ageit(aq); | |
3466 | ||
3467 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
3468 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
3469 | ||
3470 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
3471 | } | |
3472 | } | |
3473 | enqueue_tail(&aq->age_q, &m->pageq); | |
3474 | m->speculative = TRUE; | |
3475 | vm_page_speculative_count++; | |
3476 | if (m->object->internal) { | |
3477 | vm_page_pageable_internal_count++; | |
3478 | } else { | |
3479 | vm_page_pageable_external_count++; | |
3480 | } | |
3481 | ||
3482 | if (new == TRUE) { | |
3483 | vm_object_lock_assert_exclusive(m->object); | |
3484 | ||
3485 | m->object->pages_created++; | |
3486 | #if DEVELOPMENT || DEBUG | |
3487 | vm_page_speculative_created++; | |
3488 | #endif | |
3489 | } | |
3490 | } | |
3491 | VM_PAGE_CHECK(m); | |
3492 | } | |
3493 | ||
3494 | ||
3495 | /* | |
3496 | * move pages from the specified aging bin to | |
3497 | * the speculative bin that pageout_scan claims from | |
3498 | * | |
3499 | * The page queues must be locked. | |
3500 | */ | |
3501 | void | |
3502 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) | |
3503 | { | |
3504 | struct vm_speculative_age_q *sq; | |
3505 | vm_page_t t; | |
3506 | ||
3507 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
3508 | ||
3509 | if (queue_empty(&sq->age_q)) { | |
3510 | sq->age_q.next = aq->age_q.next; | |
3511 | sq->age_q.prev = aq->age_q.prev; | |
3512 | ||
3513 | t = (vm_page_t)sq->age_q.next; | |
3514 | t->pageq.prev = &sq->age_q; | |
3515 | ||
3516 | t = (vm_page_t)sq->age_q.prev; | |
3517 | t->pageq.next = &sq->age_q; | |
3518 | } else { | |
3519 | t = (vm_page_t)sq->age_q.prev; | |
3520 | t->pageq.next = aq->age_q.next; | |
3521 | ||
3522 | t = (vm_page_t)aq->age_q.next; | |
3523 | t->pageq.prev = sq->age_q.prev; | |
3524 | ||
3525 | t = (vm_page_t)aq->age_q.prev; | |
3526 | t->pageq.next = &sq->age_q; | |
3527 | ||
3528 | sq->age_q.prev = aq->age_q.prev; | |
3529 | } | |
3530 | queue_init(&aq->age_q); | |
3531 | } | |
3532 | ||
3533 | ||
3534 | void | |
3535 | vm_page_lru( | |
3536 | vm_page_t m) | |
3537 | { | |
3538 | VM_PAGE_CHECK(m); | |
3539 | assert(m->object != kernel_object); | |
3540 | assert(m->phys_page != vm_page_guard_addr); | |
3541 | ||
3542 | #if DEBUG | |
3543 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3544 | #endif | |
3545 | /* | |
3546 | * if this page is currently on the pageout queue, we can't do the | |
3547 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3548 | * and we can't remove it manually since we would need the object lock | |
3549 | * (which is not required here) to decrement the activity_in_progress | |
3550 | * reference which is held on the object while the page is in the pageout queue... | |
3551 | * just let the normal laundry processing proceed | |
3552 | */ | |
3553 | if (m->laundry || m->pageout_queue || m->private || m->compressor || (VM_PAGE_WIRED(m))) | |
3554 | return; | |
3555 | ||
3556 | m->no_cache = FALSE; | |
3557 | ||
3558 | vm_page_queues_remove(m); | |
3559 | ||
3560 | vm_page_enqueue_inactive(m, FALSE); | |
3561 | } | |
3562 | ||
3563 | ||
3564 | void | |
3565 | vm_page_reactivate_all_throttled(void) | |
3566 | { | |
3567 | vm_page_t first_throttled, last_throttled; | |
3568 | vm_page_t first_active; | |
3569 | vm_page_t m; | |
3570 | int extra_active_count; | |
3571 | int extra_internal_count, extra_external_count; | |
3572 | ||
3573 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) | |
3574 | return; | |
3575 | ||
3576 | extra_active_count = 0; | |
3577 | extra_internal_count = 0; | |
3578 | extra_external_count = 0; | |
3579 | vm_page_lock_queues(); | |
3580 | if (! queue_empty(&vm_page_queue_throttled)) { | |
3581 | /* | |
3582 | * Switch "throttled" pages to "active". | |
3583 | */ | |
3584 | queue_iterate(&vm_page_queue_throttled, m, vm_page_t, pageq) { | |
3585 | VM_PAGE_CHECK(m); | |
3586 | assert(m->throttled); | |
3587 | assert(!m->active); | |
3588 | assert(!m->inactive); | |
3589 | assert(!m->speculative); | |
3590 | assert(!VM_PAGE_WIRED(m)); | |
3591 | ||
3592 | extra_active_count++; | |
3593 | if (m->object->internal) { | |
3594 | extra_internal_count++; | |
3595 | } else { | |
3596 | extra_external_count++; | |
3597 | } | |
3598 | ||
3599 | m->throttled = FALSE; | |
3600 | m->active = TRUE; | |
3601 | VM_PAGE_CHECK(m); | |
3602 | } | |
3603 | ||
3604 | /* | |
3605 | * Transfer the entire throttled queue to a regular LRU page queues. | |
3606 | * We insert it at the head of the active queue, so that these pages | |
3607 | * get re-evaluated by the LRU algorithm first, since they've been | |
3608 | * completely out of it until now. | |
3609 | */ | |
3610 | first_throttled = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
3611 | last_throttled = (vm_page_t) queue_last(&vm_page_queue_throttled); | |
3612 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3613 | if (queue_empty(&vm_page_queue_active)) { | |
3614 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_throttled; | |
3615 | } else { | |
3616 | queue_prev(&first_active->pageq) = (queue_entry_t) last_throttled; | |
3617 | } | |
3618 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_throttled; | |
3619 | queue_prev(&first_throttled->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3620 | queue_next(&last_throttled->pageq) = (queue_entry_t) first_active; | |
3621 | ||
3622 | #if DEBUG | |
3623 | printf("reactivated %d throttled pages\n", vm_page_throttled_count); | |
3624 | #endif | |
3625 | queue_init(&vm_page_queue_throttled); | |
3626 | /* | |
3627 | * Adjust the global page counts. | |
3628 | */ | |
3629 | vm_page_active_count += extra_active_count; | |
3630 | vm_page_pageable_internal_count += extra_internal_count; | |
3631 | vm_page_pageable_external_count += extra_external_count; | |
3632 | vm_page_throttled_count = 0; | |
3633 | } | |
3634 | assert(vm_page_throttled_count == 0); | |
3635 | assert(queue_empty(&vm_page_queue_throttled)); | |
3636 | vm_page_unlock_queues(); | |
3637 | } | |
3638 | ||
3639 | ||
3640 | /* | |
3641 | * move pages from the indicated local queue to the global active queue | |
3642 | * its ok to fail if we're below the hard limit and force == FALSE | |
3643 | * the nolocks == TRUE case is to allow this function to be run on | |
3644 | * the hibernate path | |
3645 | */ | |
3646 | ||
3647 | void | |
3648 | vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) | |
3649 | { | |
3650 | struct vpl *lq; | |
3651 | vm_page_t first_local, last_local; | |
3652 | vm_page_t first_active; | |
3653 | vm_page_t m; | |
3654 | uint32_t count = 0; | |
3655 | ||
3656 | if (vm_page_local_q == NULL) | |
3657 | return; | |
3658 | ||
3659 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
3660 | ||
3661 | if (nolocks == FALSE) { | |
3662 | if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { | |
3663 | if ( !vm_page_trylockspin_queues()) | |
3664 | return; | |
3665 | } else | |
3666 | vm_page_lockspin_queues(); | |
3667 | ||
3668 | VPL_LOCK(&lq->vpl_lock); | |
3669 | } | |
3670 | if (lq->vpl_count) { | |
3671 | /* | |
3672 | * Switch "local" pages to "active". | |
3673 | */ | |
3674 | assert(!queue_empty(&lq->vpl_queue)); | |
3675 | ||
3676 | queue_iterate(&lq->vpl_queue, m, vm_page_t, pageq) { | |
3677 | VM_PAGE_CHECK(m); | |
3678 | vm_page_check_pageable_safe(m); | |
3679 | assert(m->local); | |
3680 | assert(!m->active); | |
3681 | assert(!m->inactive); | |
3682 | assert(!m->speculative); | |
3683 | assert(!VM_PAGE_WIRED(m)); | |
3684 | assert(!m->throttled); | |
3685 | assert(!m->fictitious); | |
3686 | ||
3687 | if (m->local_id != lid) | |
3688 | panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m); | |
3689 | ||
3690 | m->local_id = 0; | |
3691 | m->local = FALSE; | |
3692 | m->active = TRUE; | |
3693 | VM_PAGE_CHECK(m); | |
3694 | ||
3695 | count++; | |
3696 | } | |
3697 | if (count != lq->vpl_count) | |
3698 | panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count); | |
3699 | ||
3700 | /* | |
3701 | * Transfer the entire local queue to a regular LRU page queues. | |
3702 | */ | |
3703 | first_local = (vm_page_t) queue_first(&lq->vpl_queue); | |
3704 | last_local = (vm_page_t) queue_last(&lq->vpl_queue); | |
3705 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3706 | ||
3707 | if (queue_empty(&vm_page_queue_active)) { | |
3708 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_local; | |
3709 | } else { | |
3710 | queue_prev(&first_active->pageq) = (queue_entry_t) last_local; | |
3711 | } | |
3712 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_local; | |
3713 | queue_prev(&first_local->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3714 | queue_next(&last_local->pageq) = (queue_entry_t) first_active; | |
3715 | ||
3716 | queue_init(&lq->vpl_queue); | |
3717 | /* | |
3718 | * Adjust the global page counts. | |
3719 | */ | |
3720 | vm_page_active_count += lq->vpl_count; | |
3721 | vm_page_pageable_internal_count += lq->vpl_internal_count; | |
3722 | vm_page_pageable_external_count += lq->vpl_external_count; | |
3723 | lq->vpl_count = 0; | |
3724 | lq->vpl_internal_count = 0; | |
3725 | lq->vpl_external_count = 0; | |
3726 | } | |
3727 | assert(queue_empty(&lq->vpl_queue)); | |
3728 | ||
3729 | if (nolocks == FALSE) { | |
3730 | VPL_UNLOCK(&lq->vpl_lock); | |
3731 | vm_page_unlock_queues(); | |
3732 | } | |
3733 | } | |
3734 | ||
3735 | /* | |
3736 | * vm_page_part_zero_fill: | |
3737 | * | |
3738 | * Zero-fill a part of the page. | |
3739 | */ | |
3740 | #define PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
3741 | void | |
3742 | vm_page_part_zero_fill( | |
3743 | vm_page_t m, | |
3744 | vm_offset_t m_pa, | |
3745 | vm_size_t len) | |
3746 | { | |
3747 | ||
3748 | #if 0 | |
3749 | /* | |
3750 | * we don't hold the page queue lock | |
3751 | * so this check isn't safe to make | |
3752 | */ | |
3753 | VM_PAGE_CHECK(m); | |
3754 | #endif | |
3755 | ||
3756 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
3757 | pmap_zero_part_page(m->phys_page, m_pa, len); | |
3758 | #else | |
3759 | vm_page_t tmp; | |
3760 | while (1) { | |
3761 | tmp = vm_page_grab(); | |
3762 | if (tmp == VM_PAGE_NULL) { | |
3763 | vm_page_wait(THREAD_UNINT); | |
3764 | continue; | |
3765 | } | |
3766 | break; | |
3767 | } | |
3768 | vm_page_zero_fill(tmp); | |
3769 | if(m_pa != 0) { | |
3770 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
3771 | } | |
3772 | if((m_pa + len) < PAGE_SIZE) { | |
3773 | vm_page_part_copy(m, m_pa + len, tmp, | |
3774 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
3775 | } | |
3776 | vm_page_copy(tmp,m); | |
3777 | VM_PAGE_FREE(tmp); | |
3778 | #endif | |
3779 | ||
3780 | } | |
3781 | ||
3782 | /* | |
3783 | * vm_page_zero_fill: | |
3784 | * | |
3785 | * Zero-fill the specified page. | |
3786 | */ | |
3787 | void | |
3788 | vm_page_zero_fill( | |
3789 | vm_page_t m) | |
3790 | { | |
3791 | XPR(XPR_VM_PAGE, | |
3792 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
3793 | m->object, m->offset, m, 0,0); | |
3794 | #if 0 | |
3795 | /* | |
3796 | * we don't hold the page queue lock | |
3797 | * so this check isn't safe to make | |
3798 | */ | |
3799 | VM_PAGE_CHECK(m); | |
3800 | #endif | |
3801 | ||
3802 | // dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ | |
3803 | pmap_zero_page(m->phys_page); | |
3804 | } | |
3805 | ||
3806 | /* | |
3807 | * vm_page_part_copy: | |
3808 | * | |
3809 | * copy part of one page to another | |
3810 | */ | |
3811 | ||
3812 | void | |
3813 | vm_page_part_copy( | |
3814 | vm_page_t src_m, | |
3815 | vm_offset_t src_pa, | |
3816 | vm_page_t dst_m, | |
3817 | vm_offset_t dst_pa, | |
3818 | vm_size_t len) | |
3819 | { | |
3820 | #if 0 | |
3821 | /* | |
3822 | * we don't hold the page queue lock | |
3823 | * so this check isn't safe to make | |
3824 | */ | |
3825 | VM_PAGE_CHECK(src_m); | |
3826 | VM_PAGE_CHECK(dst_m); | |
3827 | #endif | |
3828 | pmap_copy_part_page(src_m->phys_page, src_pa, | |
3829 | dst_m->phys_page, dst_pa, len); | |
3830 | } | |
3831 | ||
3832 | /* | |
3833 | * vm_page_copy: | |
3834 | * | |
3835 | * Copy one page to another | |
3836 | * | |
3837 | * ENCRYPTED SWAP: | |
3838 | * The source page should not be encrypted. The caller should | |
3839 | * make sure the page is decrypted first, if necessary. | |
3840 | */ | |
3841 | ||
3842 | int vm_page_copy_cs_validations = 0; | |
3843 | int vm_page_copy_cs_tainted = 0; | |
3844 | ||
3845 | void | |
3846 | vm_page_copy( | |
3847 | vm_page_t src_m, | |
3848 | vm_page_t dest_m) | |
3849 | { | |
3850 | XPR(XPR_VM_PAGE, | |
3851 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
3852 | src_m->object, src_m->offset, | |
3853 | dest_m->object, dest_m->offset, | |
3854 | 0); | |
3855 | #if 0 | |
3856 | /* | |
3857 | * we don't hold the page queue lock | |
3858 | * so this check isn't safe to make | |
3859 | */ | |
3860 | VM_PAGE_CHECK(src_m); | |
3861 | VM_PAGE_CHECK(dest_m); | |
3862 | #endif | |
3863 | vm_object_lock_assert_held(src_m->object); | |
3864 | ||
3865 | /* | |
3866 | * ENCRYPTED SWAP: | |
3867 | * The source page should not be encrypted at this point. | |
3868 | * The destination page will therefore not contain encrypted | |
3869 | * data after the copy. | |
3870 | */ | |
3871 | if (src_m->encrypted) { | |
3872 | panic("vm_page_copy: source page %p is encrypted\n", src_m); | |
3873 | } | |
3874 | dest_m->encrypted = FALSE; | |
3875 | ||
3876 | if (src_m->object != VM_OBJECT_NULL && | |
3877 | src_m->object->code_signed) { | |
3878 | /* | |
3879 | * We're copying a page from a code-signed object. | |
3880 | * Whoever ends up mapping the copy page might care about | |
3881 | * the original page's integrity, so let's validate the | |
3882 | * source page now. | |
3883 | */ | |
3884 | vm_page_copy_cs_validations++; | |
3885 | vm_page_validate_cs(src_m); | |
3886 | } | |
3887 | ||
3888 | if (vm_page_is_slideable(src_m)) { | |
3889 | boolean_t was_busy = src_m->busy; | |
3890 | src_m->busy = TRUE; | |
3891 | (void) vm_page_slide(src_m, 0); | |
3892 | assert(src_m->busy); | |
3893 | if (!was_busy) { | |
3894 | PAGE_WAKEUP_DONE(src_m); | |
3895 | } | |
3896 | } | |
3897 | ||
3898 | /* | |
3899 | * Propagate the cs_tainted bit to the copy page. Do not propagate | |
3900 | * the cs_validated bit. | |
3901 | */ | |
3902 | dest_m->cs_tainted = src_m->cs_tainted; | |
3903 | if (dest_m->cs_tainted) { | |
3904 | vm_page_copy_cs_tainted++; | |
3905 | } | |
3906 | dest_m->slid = src_m->slid; | |
3907 | dest_m->error = src_m->error; /* sliding src_m might have failed... */ | |
3908 | pmap_copy_page(src_m->phys_page, dest_m->phys_page); | |
3909 | } | |
3910 | ||
3911 | #if MACH_ASSERT | |
3912 | static void | |
3913 | _vm_page_print( | |
3914 | vm_page_t p) | |
3915 | { | |
3916 | printf("vm_page %p: \n", p); | |
3917 | printf(" pageq: next=%p prev=%p\n", p->pageq.next, p->pageq.prev); | |
3918 | printf(" listq: next=%p prev=%p\n", p->listq.next, p->listq.prev); | |
3919 | printf(" next=%p\n", VM_PAGE_UNPACK_PTR(p->next_m)); | |
3920 | printf(" object=%p offset=0x%llx\n", p->object, p->offset); | |
3921 | printf(" wire_count=%u\n", p->wire_count); | |
3922 | ||
3923 | printf(" %slocal, %sinactive, %sactive, %spageout_queue, %sspeculative, %slaundry\n", | |
3924 | (p->local ? "" : "!"), | |
3925 | (p->inactive ? "" : "!"), | |
3926 | (p->active ? "" : "!"), | |
3927 | (p->pageout_queue ? "" : "!"), | |
3928 | (p->speculative ? "" : "!"), | |
3929 | (p->laundry ? "" : "!")); | |
3930 | printf(" %sfree, %sref, %sgobbled, %sprivate, %sthrottled\n", | |
3931 | (p->free ? "" : "!"), | |
3932 | (p->reference ? "" : "!"), | |
3933 | (p->gobbled ? "" : "!"), | |
3934 | (p->private ? "" : "!"), | |
3935 | (p->throttled ? "" : "!")); | |
3936 | printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n", | |
3937 | (p->busy ? "" : "!"), | |
3938 | (p->wanted ? "" : "!"), | |
3939 | (p->tabled ? "" : "!"), | |
3940 | (p->fictitious ? "" : "!"), | |
3941 | (p->pmapped ? "" : "!"), | |
3942 | (p->wpmapped ? "" : "!")); | |
3943 | printf(" %spageout, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n", | |
3944 | (p->pageout ? "" : "!"), | |
3945 | (p->absent ? "" : "!"), | |
3946 | (p->error ? "" : "!"), | |
3947 | (p->dirty ? "" : "!"), | |
3948 | (p->cleaning ? "" : "!"), | |
3949 | (p->precious ? "" : "!"), | |
3950 | (p->clustered ? "" : "!")); | |
3951 | printf(" %soverwriting, %srestart, %sunusual, %sencrypted, %sencrypted_cleaning\n", | |
3952 | (p->overwriting ? "" : "!"), | |
3953 | (p->restart ? "" : "!"), | |
3954 | (p->unusual ? "" : "!"), | |
3955 | (p->encrypted ? "" : "!"), | |
3956 | (p->encrypted_cleaning ? "" : "!")); | |
3957 | printf(" %scs_validated, %scs_tainted, %scs_nx, %sno_cache\n", | |
3958 | (p->cs_validated ? "" : "!"), | |
3959 | (p->cs_tainted ? "" : "!"), | |
3960 | (p->cs_nx ? "" : "!"), | |
3961 | (p->no_cache ? "" : "!")); | |
3962 | ||
3963 | printf("phys_page=0x%x\n", p->phys_page); | |
3964 | } | |
3965 | ||
3966 | /* | |
3967 | * Check that the list of pages is ordered by | |
3968 | * ascending physical address and has no holes. | |
3969 | */ | |
3970 | static int | |
3971 | vm_page_verify_contiguous( | |
3972 | vm_page_t pages, | |
3973 | unsigned int npages) | |
3974 | { | |
3975 | register vm_page_t m; | |
3976 | unsigned int page_count; | |
3977 | vm_offset_t prev_addr; | |
3978 | ||
3979 | prev_addr = pages->phys_page; | |
3980 | page_count = 1; | |
3981 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
3982 | if (m->phys_page != prev_addr + 1) { | |
3983 | printf("m %p prev_addr 0x%lx, current addr 0x%x\n", | |
3984 | m, (long)prev_addr, m->phys_page); | |
3985 | printf("pages %p page_count %d npages %d\n", pages, page_count, npages); | |
3986 | panic("vm_page_verify_contiguous: not contiguous!"); | |
3987 | } | |
3988 | prev_addr = m->phys_page; | |
3989 | ++page_count; | |
3990 | } | |
3991 | if (page_count != npages) { | |
3992 | printf("pages %p actual count 0x%x but requested 0x%x\n", | |
3993 | pages, page_count, npages); | |
3994 | panic("vm_page_verify_contiguous: count error"); | |
3995 | } | |
3996 | return 1; | |
3997 | } | |
3998 | ||
3999 | ||
4000 | /* | |
4001 | * Check the free lists for proper length etc. | |
4002 | */ | |
4003 | static boolean_t vm_page_verify_this_free_list_enabled = FALSE; | |
4004 | static unsigned int | |
4005 | vm_page_verify_free_list( | |
4006 | queue_head_t *vm_page_queue, | |
4007 | unsigned int color, | |
4008 | vm_page_t look_for_page, | |
4009 | boolean_t expect_page) | |
4010 | { | |
4011 | unsigned int npages; | |
4012 | vm_page_t m; | |
4013 | vm_page_t prev_m; | |
4014 | boolean_t found_page; | |
4015 | ||
4016 | if (! vm_page_verify_this_free_list_enabled) | |
4017 | return 0; | |
4018 | ||
4019 | found_page = FALSE; | |
4020 | npages = 0; | |
4021 | prev_m = (vm_page_t) vm_page_queue; | |
4022 | queue_iterate(vm_page_queue, | |
4023 | m, | |
4024 | vm_page_t, | |
4025 | pageq) { | |
4026 | ||
4027 | if (m == look_for_page) { | |
4028 | found_page = TRUE; | |
4029 | } | |
4030 | if ((vm_page_t) m->pageq.prev != prev_m) | |
4031 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n", | |
4032 | color, npages, m, m->pageq.prev, prev_m); | |
4033 | if ( ! m->busy ) | |
4034 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n", | |
4035 | color, npages, m); | |
4036 | if (color != (unsigned int) -1) { | |
4037 | if ((m->phys_page & vm_color_mask) != color) | |
4038 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n", | |
4039 | color, npages, m, m->phys_page & vm_color_mask, color); | |
4040 | if ( ! m->free ) | |
4041 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not free\n", | |
4042 | color, npages, m); | |
4043 | } | |
4044 | ++npages; | |
4045 | prev_m = m; | |
4046 | } | |
4047 | if (look_for_page != VM_PAGE_NULL) { | |
4048 | unsigned int other_color; | |
4049 | ||
4050 | if (expect_page && !found_page) { | |
4051 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n", | |
4052 | color, npages, look_for_page, look_for_page->phys_page); | |
4053 | _vm_page_print(look_for_page); | |
4054 | for (other_color = 0; | |
4055 | other_color < vm_colors; | |
4056 | other_color++) { | |
4057 | if (other_color == color) | |
4058 | continue; | |
4059 | vm_page_verify_free_list(&vm_page_queue_free[other_color], | |
4060 | other_color, look_for_page, FALSE); | |
4061 | } | |
4062 | if (color == (unsigned int) -1) { | |
4063 | vm_page_verify_free_list(&vm_lopage_queue_free, | |
4064 | (unsigned int) -1, look_for_page, FALSE); | |
4065 | } | |
4066 | panic("vm_page_verify_free_list(color=%u)\n", color); | |
4067 | } | |
4068 | if (!expect_page && found_page) { | |
4069 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n", | |
4070 | color, npages, look_for_page, look_for_page->phys_page); | |
4071 | } | |
4072 | } | |
4073 | return npages; | |
4074 | } | |
4075 | ||
4076 | static boolean_t vm_page_verify_all_free_lists_enabled = FALSE; | |
4077 | static void | |
4078 | vm_page_verify_free_lists( void ) | |
4079 | { | |
4080 | unsigned int color, npages, nlopages; | |
4081 | boolean_t toggle = TRUE; | |
4082 | ||
4083 | if (! vm_page_verify_all_free_lists_enabled) | |
4084 | return; | |
4085 | ||
4086 | npages = 0; | |
4087 | ||
4088 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4089 | ||
4090 | if (vm_page_verify_this_free_list_enabled == TRUE) { | |
4091 | /* | |
4092 | * This variable has been set globally for extra checking of | |
4093 | * each free list Q. Since we didn't set it, we don't own it | |
4094 | * and we shouldn't toggle it. | |
4095 | */ | |
4096 | toggle = FALSE; | |
4097 | } | |
4098 | ||
4099 | if (toggle == TRUE) { | |
4100 | vm_page_verify_this_free_list_enabled = TRUE; | |
4101 | } | |
4102 | ||
4103 | for( color = 0; color < vm_colors; color++ ) { | |
4104 | npages += vm_page_verify_free_list(&vm_page_queue_free[color], | |
4105 | color, VM_PAGE_NULL, FALSE); | |
4106 | } | |
4107 | nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, | |
4108 | (unsigned int) -1, | |
4109 | VM_PAGE_NULL, FALSE); | |
4110 | if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) | |
4111 | panic("vm_page_verify_free_lists: " | |
4112 | "npages %u free_count %d nlopages %u lo_free_count %u", | |
4113 | npages, vm_page_free_count, nlopages, vm_lopage_free_count); | |
4114 | ||
4115 | if (toggle == TRUE) { | |
4116 | vm_page_verify_this_free_list_enabled = FALSE; | |
4117 | } | |
4118 | ||
4119 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
4120 | } | |
4121 | ||
4122 | void | |
4123 | vm_page_queues_assert( | |
4124 | vm_page_t mem, | |
4125 | int val) | |
4126 | { | |
4127 | #if DEBUG | |
4128 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
4129 | #endif | |
4130 | if (mem->free + mem->active + mem->inactive + mem->speculative + | |
4131 | mem->throttled + mem->pageout_queue > (val)) { | |
4132 | _vm_page_print(mem); | |
4133 | panic("vm_page_queues_assert(%p, %d)\n", mem, val); | |
4134 | } | |
4135 | if (VM_PAGE_WIRED(mem)) { | |
4136 | assert(!mem->active); | |
4137 | assert(!mem->inactive); | |
4138 | assert(!mem->speculative); | |
4139 | assert(!mem->throttled); | |
4140 | assert(!mem->pageout_queue); | |
4141 | } | |
4142 | } | |
4143 | #endif /* MACH_ASSERT */ | |
4144 | ||
4145 | ||
4146 | ||
4147 | ||
4148 | ||
4149 | extern boolean_t (* volatile consider_buffer_cache_collect)(int); | |
4150 | ||
4151 | /* | |
4152 | * CONTIGUOUS PAGE ALLOCATION | |
4153 | * | |
4154 | * Find a region large enough to contain at least n pages | |
4155 | * of contiguous physical memory. | |
4156 | * | |
4157 | * This is done by traversing the vm_page_t array in a linear fashion | |
4158 | * we assume that the vm_page_t array has the avaiable physical pages in an | |
4159 | * ordered, ascending list... this is currently true of all our implementations | |
4160 | * and must remain so... there can be 'holes' in the array... we also can | |
4161 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed | |
4162 | * which use to happen via 'vm_page_convert'... that function was no longer | |
4163 | * being called and was removed... | |
4164 | * | |
4165 | * The basic flow consists of stabilizing some of the interesting state of | |
4166 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our | |
4167 | * sweep at the beginning of the array looking for pages that meet our criterea | |
4168 | * for a 'stealable' page... currently we are pretty conservative... if the page | |
4169 | * meets this criterea and is physically contiguous to the previous page in the 'run' | |
4170 | * we keep developing it. If we hit a page that doesn't fit, we reset our state | |
4171 | * and start to develop a new run... if at this point we've already considered | |
4172 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, | |
4173 | * and mutex_pause (which will yield the processor), to keep the latency low w/r | |
4174 | * to other threads trying to acquire free pages (or move pages from q to q), | |
4175 | * and then continue from the spot we left off... we only make 1 pass through the | |
4176 | * array. Once we have a 'run' that is long enough, we'll go into the loop which | |
4177 | * which steals the pages from the queues they're currently on... pages on the free | |
4178 | * queue can be stolen directly... pages that are on any of the other queues | |
4179 | * must be removed from the object they are tabled on... this requires taking the | |
4180 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails | |
4181 | * or if the state of the page behind the vm_object lock is no longer viable, we'll | |
4182 | * dump the pages we've currently stolen back to the free list, and pick up our | |
4183 | * scan from the point where we aborted the 'current' run. | |
4184 | * | |
4185 | * | |
4186 | * Requirements: | |
4187 | * - neither vm_page_queue nor vm_free_list lock can be held on entry | |
4188 | * | |
4189 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. | |
4190 | * | |
4191 | * Algorithm: | |
4192 | */ | |
4193 | ||
4194 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 | |
4195 | ||
4196 | ||
4197 | #define RESET_STATE_OF_RUN() \ | |
4198 | MACRO_BEGIN \ | |
4199 | prevcontaddr = -2; \ | |
4200 | start_pnum = -1; \ | |
4201 | free_considered = 0; \ | |
4202 | substitute_needed = 0; \ | |
4203 | npages = 0; \ | |
4204 | MACRO_END | |
4205 | ||
4206 | /* | |
4207 | * Can we steal in-use (i.e. not free) pages when searching for | |
4208 | * physically-contiguous pages ? | |
4209 | */ | |
4210 | #define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 | |
4211 | ||
4212 | static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; | |
4213 | #if DEBUG | |
4214 | int vm_page_find_contig_debug = 0; | |
4215 | #endif | |
4216 | ||
4217 | static vm_page_t | |
4218 | vm_page_find_contiguous( | |
4219 | unsigned int contig_pages, | |
4220 | ppnum_t max_pnum, | |
4221 | ppnum_t pnum_mask, | |
4222 | boolean_t wire, | |
4223 | int flags) | |
4224 | { | |
4225 | vm_page_t m = NULL; | |
4226 | ppnum_t prevcontaddr; | |
4227 | ppnum_t start_pnum; | |
4228 | unsigned int npages, considered, scanned; | |
4229 | unsigned int page_idx, start_idx, last_idx, orig_last_idx; | |
4230 | unsigned int idx_last_contig_page_found = 0; | |
4231 | int free_considered, free_available; | |
4232 | int substitute_needed; | |
4233 | boolean_t wrapped, zone_gc_called = FALSE; | |
4234 | #if DEBUG | |
4235 | clock_sec_t tv_start_sec, tv_end_sec; | |
4236 | clock_usec_t tv_start_usec, tv_end_usec; | |
4237 | #endif | |
4238 | ||
4239 | int yielded = 0; | |
4240 | int dumped_run = 0; | |
4241 | int stolen_pages = 0; | |
4242 | int compressed_pages = 0; | |
4243 | ||
4244 | ||
4245 | if (contig_pages == 0) | |
4246 | return VM_PAGE_NULL; | |
4247 | ||
4248 | full_scan_again: | |
4249 | ||
4250 | #if MACH_ASSERT | |
4251 | vm_page_verify_free_lists(); | |
4252 | #endif | |
4253 | #if DEBUG | |
4254 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); | |
4255 | #endif | |
4256 | PAGE_REPLACEMENT_ALLOWED(TRUE); | |
4257 | ||
4258 | vm_page_lock_queues(); | |
4259 | ||
4260 | ||
4261 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4262 | ||
4263 | RESET_STATE_OF_RUN(); | |
4264 | ||
4265 | scanned = 0; | |
4266 | considered = 0; | |
4267 | free_available = vm_page_free_count - vm_page_free_reserved; | |
4268 | ||
4269 | wrapped = FALSE; | |
4270 | ||
4271 | if(flags & KMA_LOMEM) | |
4272 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; | |
4273 | else | |
4274 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx; | |
4275 | ||
4276 | orig_last_idx = idx_last_contig_page_found; | |
4277 | last_idx = orig_last_idx; | |
4278 | ||
4279 | for (page_idx = last_idx, start_idx = last_idx; | |
4280 | npages < contig_pages && page_idx < vm_pages_count; | |
4281 | page_idx++) { | |
4282 | retry: | |
4283 | if (wrapped && | |
4284 | npages == 0 && | |
4285 | page_idx >= orig_last_idx) { | |
4286 | /* | |
4287 | * We're back where we started and we haven't | |
4288 | * found any suitable contiguous range. Let's | |
4289 | * give up. | |
4290 | */ | |
4291 | break; | |
4292 | } | |
4293 | scanned++; | |
4294 | m = &vm_pages[page_idx]; | |
4295 | ||
4296 | assert(!m->fictitious); | |
4297 | assert(!m->private); | |
4298 | ||
4299 | if (max_pnum && m->phys_page > max_pnum) { | |
4300 | /* no more low pages... */ | |
4301 | break; | |
4302 | } | |
4303 | if (!npages & ((m->phys_page & pnum_mask) != 0)) { | |
4304 | /* | |
4305 | * not aligned | |
4306 | */ | |
4307 | RESET_STATE_OF_RUN(); | |
4308 | ||
4309 | } else if (VM_PAGE_WIRED(m) || m->gobbled || | |
4310 | m->encrypted_cleaning || | |
4311 | m->pageout_queue || m->laundry || m->wanted || | |
4312 | m->cleaning || m->overwriting || m->pageout) { | |
4313 | /* | |
4314 | * page is in a transient state | |
4315 | * or a state we don't want to deal | |
4316 | * with, so don't consider it which | |
4317 | * means starting a new run | |
4318 | */ | |
4319 | RESET_STATE_OF_RUN(); | |
4320 | ||
4321 | } else if (!m->free && !m->active && !m->inactive && !m->speculative && !m->throttled && !m->compressor) { | |
4322 | /* | |
4323 | * page needs to be on one of our queues | |
4324 | * or it needs to belong to the compressor pool | |
4325 | * in order for it to be stable behind the | |
4326 | * locks we hold at this point... | |
4327 | * if not, don't consider it which | |
4328 | * means starting a new run | |
4329 | */ | |
4330 | RESET_STATE_OF_RUN(); | |
4331 | ||
4332 | } else if (!m->free && (!m->tabled || m->busy)) { | |
4333 | /* | |
4334 | * pages on the free list are always 'busy' | |
4335 | * so we couldn't test for 'busy' in the check | |
4336 | * for the transient states... pages that are | |
4337 | * 'free' are never 'tabled', so we also couldn't | |
4338 | * test for 'tabled'. So we check here to make | |
4339 | * sure that a non-free page is not busy and is | |
4340 | * tabled on an object... | |
4341 | * if not, don't consider it which | |
4342 | * means starting a new run | |
4343 | */ | |
4344 | RESET_STATE_OF_RUN(); | |
4345 | ||
4346 | } else { | |
4347 | if (m->phys_page != prevcontaddr + 1) { | |
4348 | if ((m->phys_page & pnum_mask) != 0) { | |
4349 | RESET_STATE_OF_RUN(); | |
4350 | goto did_consider; | |
4351 | } else { | |
4352 | npages = 1; | |
4353 | start_idx = page_idx; | |
4354 | start_pnum = m->phys_page; | |
4355 | } | |
4356 | } else { | |
4357 | npages++; | |
4358 | } | |
4359 | prevcontaddr = m->phys_page; | |
4360 | ||
4361 | VM_PAGE_CHECK(m); | |
4362 | if (m->free) { | |
4363 | free_considered++; | |
4364 | } else { | |
4365 | /* | |
4366 | * This page is not free. | |
4367 | * If we can't steal used pages, | |
4368 | * we have to give up this run | |
4369 | * and keep looking. | |
4370 | * Otherwise, we might need to | |
4371 | * move the contents of this page | |
4372 | * into a substitute page. | |
4373 | */ | |
4374 | #if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
4375 | if (m->pmapped || m->dirty || m->precious) { | |
4376 | substitute_needed++; | |
4377 | } | |
4378 | #else | |
4379 | RESET_STATE_OF_RUN(); | |
4380 | #endif | |
4381 | } | |
4382 | ||
4383 | if ((free_considered + substitute_needed) > free_available) { | |
4384 | /* | |
4385 | * if we let this run continue | |
4386 | * we will end up dropping the vm_page_free_count | |
4387 | * below the reserve limit... we need to abort | |
4388 | * this run, but we can at least re-consider this | |
4389 | * page... thus the jump back to 'retry' | |
4390 | */ | |
4391 | RESET_STATE_OF_RUN(); | |
4392 | ||
4393 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { | |
4394 | considered++; | |
4395 | goto retry; | |
4396 | } | |
4397 | /* | |
4398 | * free_available == 0 | |
4399 | * so can't consider any free pages... if | |
4400 | * we went to retry in this case, we'd | |
4401 | * get stuck looking at the same page | |
4402 | * w/o making any forward progress | |
4403 | * we also want to take this path if we've already | |
4404 | * reached our limit that controls the lock latency | |
4405 | */ | |
4406 | } | |
4407 | } | |
4408 | did_consider: | |
4409 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { | |
4410 | ||
4411 | PAGE_REPLACEMENT_ALLOWED(FALSE); | |
4412 | ||
4413 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
4414 | vm_page_unlock_queues(); | |
4415 | ||
4416 | mutex_pause(0); | |
4417 | ||
4418 | PAGE_REPLACEMENT_ALLOWED(TRUE); | |
4419 | ||
4420 | vm_page_lock_queues(); | |
4421 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4422 | ||
4423 | RESET_STATE_OF_RUN(); | |
4424 | /* | |
4425 | * reset our free page limit since we | |
4426 | * dropped the lock protecting the vm_page_free_queue | |
4427 | */ | |
4428 | free_available = vm_page_free_count - vm_page_free_reserved; | |
4429 | considered = 0; | |
4430 | ||
4431 | yielded++; | |
4432 | ||
4433 | goto retry; | |
4434 | } | |
4435 | considered++; | |
4436 | } | |
4437 | m = VM_PAGE_NULL; | |
4438 | ||
4439 | if (npages != contig_pages) { | |
4440 | if (!wrapped) { | |
4441 | /* | |
4442 | * We didn't find a contiguous range but we didn't | |
4443 | * start from the very first page. | |
4444 | * Start again from the very first page. | |
4445 | */ | |
4446 | RESET_STATE_OF_RUN(); | |
4447 | if( flags & KMA_LOMEM) | |
4448 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; | |
4449 | else | |
4450 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; | |
4451 | last_idx = 0; | |
4452 | page_idx = last_idx; | |
4453 | wrapped = TRUE; | |
4454 | goto retry; | |
4455 | } | |
4456 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
4457 | } else { | |
4458 | vm_page_t m1; | |
4459 | vm_page_t m2; | |
4460 | unsigned int cur_idx; | |
4461 | unsigned int tmp_start_idx; | |
4462 | vm_object_t locked_object = VM_OBJECT_NULL; | |
4463 | boolean_t abort_run = FALSE; | |
4464 | ||
4465 | assert(page_idx - start_idx == contig_pages); | |
4466 | ||
4467 | tmp_start_idx = start_idx; | |
4468 | ||
4469 | /* | |
4470 | * first pass through to pull the free pages | |
4471 | * off of the free queue so that in case we | |
4472 | * need substitute pages, we won't grab any | |
4473 | * of the free pages in the run... we'll clear | |
4474 | * the 'free' bit in the 2nd pass, and even in | |
4475 | * an abort_run case, we'll collect all of the | |
4476 | * free pages in this run and return them to the free list | |
4477 | */ | |
4478 | while (start_idx < page_idx) { | |
4479 | ||
4480 | m1 = &vm_pages[start_idx++]; | |
4481 | ||
4482 | #if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
4483 | assert(m1->free); | |
4484 | #endif | |
4485 | ||
4486 | if (m1->free) { | |
4487 | unsigned int color; | |
4488 | ||
4489 | color = m1->phys_page & vm_color_mask; | |
4490 | #if MACH_ASSERT | |
4491 | vm_page_verify_free_list(&vm_page_queue_free[color], color, m1, TRUE); | |
4492 | #endif | |
4493 | queue_remove(&vm_page_queue_free[color], | |
4494 | m1, | |
4495 | vm_page_t, | |
4496 | pageq); | |
4497 | m1->pageq.next = NULL; | |
4498 | m1->pageq.prev = NULL; | |
4499 | #if MACH_ASSERT | |
4500 | vm_page_verify_free_list(&vm_page_queue_free[color], color, VM_PAGE_NULL, FALSE); | |
4501 | #endif | |
4502 | /* | |
4503 | * Clear the "free" bit so that this page | |
4504 | * does not get considered for another | |
4505 | * concurrent physically-contiguous allocation. | |
4506 | */ | |
4507 | m1->free = FALSE; | |
4508 | assert(m1->busy); | |
4509 | ||
4510 | vm_page_free_count--; | |
4511 | } | |
4512 | } | |
4513 | if( flags & KMA_LOMEM) | |
4514 | vm_page_lomem_find_contiguous_last_idx = page_idx; | |
4515 | else | |
4516 | vm_page_find_contiguous_last_idx = page_idx; | |
4517 | ||
4518 | /* | |
4519 | * we can drop the free queue lock at this point since | |
4520 | * we've pulled any 'free' candidates off of the list | |
4521 | * we need it dropped so that we can do a vm_page_grab | |
4522 | * when substituing for pmapped/dirty pages | |
4523 | */ | |
4524 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
4525 | ||
4526 | start_idx = tmp_start_idx; | |
4527 | cur_idx = page_idx - 1; | |
4528 | ||
4529 | while (start_idx++ < page_idx) { | |
4530 | /* | |
4531 | * must go through the list from back to front | |
4532 | * so that the page list is created in the | |
4533 | * correct order - low -> high phys addresses | |
4534 | */ | |
4535 | m1 = &vm_pages[cur_idx--]; | |
4536 | ||
4537 | assert(!m1->free); | |
4538 | ||
4539 | if (m1->object == VM_OBJECT_NULL) { | |
4540 | /* | |
4541 | * page has already been removed from | |
4542 | * the free list in the 1st pass | |
4543 | */ | |
4544 | assert(m1->offset == (vm_object_offset_t) -1); | |
4545 | assert(m1->busy); | |
4546 | assert(!m1->wanted); | |
4547 | assert(!m1->laundry); | |
4548 | } else { | |
4549 | vm_object_t object; | |
4550 | int refmod; | |
4551 | boolean_t disconnected, reusable; | |
4552 | ||
4553 | if (abort_run == TRUE) | |
4554 | continue; | |
4555 | ||
4556 | object = m1->object; | |
4557 | ||
4558 | if (object != locked_object) { | |
4559 | if (locked_object) { | |
4560 | vm_object_unlock(locked_object); | |
4561 | locked_object = VM_OBJECT_NULL; | |
4562 | } | |
4563 | if (vm_object_lock_try(object)) | |
4564 | locked_object = object; | |
4565 | } | |
4566 | if (locked_object == VM_OBJECT_NULL || | |
4567 | (VM_PAGE_WIRED(m1) || m1->gobbled || | |
4568 | m1->encrypted_cleaning || | |
4569 | m1->pageout_queue || m1->laundry || m1->wanted || | |
4570 | m1->cleaning || m1->overwriting || m1->pageout || m1->busy)) { | |
4571 | ||
4572 | if (locked_object) { | |
4573 | vm_object_unlock(locked_object); | |
4574 | locked_object = VM_OBJECT_NULL; | |
4575 | } | |
4576 | tmp_start_idx = cur_idx; | |
4577 | abort_run = TRUE; | |
4578 | continue; | |
4579 | } | |
4580 | ||
4581 | disconnected = FALSE; | |
4582 | reusable = FALSE; | |
4583 | ||
4584 | if ((m1->reusable || | |
4585 | m1->object->all_reusable) && | |
4586 | m1->inactive && | |
4587 | !m1->dirty && | |
4588 | !m1->reference) { | |
4589 | /* reusable page... */ | |
4590 | refmod = pmap_disconnect(m1->phys_page); | |
4591 | disconnected = TRUE; | |
4592 | if (refmod == 0) { | |
4593 | /* | |
4594 | * ... not reused: can steal | |
4595 | * without relocating contents. | |
4596 | */ | |
4597 | reusable = TRUE; | |
4598 | } | |
4599 | } | |
4600 | ||
4601 | if ((m1->pmapped && | |
4602 | ! reusable) || | |
4603 | m1->dirty || | |
4604 | m1->precious) { | |
4605 | vm_object_offset_t offset; | |
4606 | ||
4607 | m2 = vm_page_grab(); | |
4608 | ||
4609 | if (m2 == VM_PAGE_NULL) { | |
4610 | if (locked_object) { | |
4611 | vm_object_unlock(locked_object); | |
4612 | locked_object = VM_OBJECT_NULL; | |
4613 | } | |
4614 | tmp_start_idx = cur_idx; | |
4615 | abort_run = TRUE; | |
4616 | continue; | |
4617 | } | |
4618 | if (! disconnected) { | |
4619 | if (m1->pmapped) | |
4620 | refmod = pmap_disconnect(m1->phys_page); | |
4621 | else | |
4622 | refmod = 0; | |
4623 | } | |
4624 | ||
4625 | /* copy the page's contents */ | |
4626 | pmap_copy_page(m1->phys_page, m2->phys_page); | |
4627 | /* copy the page's state */ | |
4628 | assert(!VM_PAGE_WIRED(m1)); | |
4629 | assert(!m1->free); | |
4630 | assert(!m1->pageout_queue); | |
4631 | assert(!m1->laundry); | |
4632 | m2->reference = m1->reference; | |
4633 | assert(!m1->gobbled); | |
4634 | assert(!m1->private); | |
4635 | m2->no_cache = m1->no_cache; | |
4636 | m2->xpmapped = 0; | |
4637 | assert(!m1->busy); | |
4638 | assert(!m1->wanted); | |
4639 | assert(!m1->fictitious); | |
4640 | m2->pmapped = m1->pmapped; /* should flush cache ? */ | |
4641 | m2->wpmapped = m1->wpmapped; | |
4642 | assert(!m1->pageout); | |
4643 | m2->absent = m1->absent; | |
4644 | m2->error = m1->error; | |
4645 | m2->dirty = m1->dirty; | |
4646 | assert(!m1->cleaning); | |
4647 | m2->precious = m1->precious; | |
4648 | m2->clustered = m1->clustered; | |
4649 | assert(!m1->overwriting); | |
4650 | m2->restart = m1->restart; | |
4651 | m2->unusual = m1->unusual; | |
4652 | m2->encrypted = m1->encrypted; | |
4653 | assert(!m1->encrypted_cleaning); | |
4654 | m2->cs_validated = m1->cs_validated; | |
4655 | m2->cs_tainted = m1->cs_tainted; | |
4656 | m2->cs_nx = m1->cs_nx; | |
4657 | ||
4658 | /* | |
4659 | * If m1 had really been reusable, | |
4660 | * we would have just stolen it, so | |
4661 | * let's not propagate it's "reusable" | |
4662 | * bit and assert that m2 is not | |
4663 | * marked as "reusable". | |
4664 | */ | |
4665 | // m2->reusable = m1->reusable; | |
4666 | assert(!m2->reusable); | |
4667 | ||
4668 | assert(!m1->lopage); | |
4669 | m2->slid = m1->slid; | |
4670 | m2->compressor = m1->compressor; | |
4671 | ||
4672 | /* | |
4673 | * page may need to be flushed if | |
4674 | * it is marshalled into a UPL | |
4675 | * that is going to be used by a device | |
4676 | * that doesn't support coherency | |
4677 | */ | |
4678 | m2->written_by_kernel = TRUE; | |
4679 | ||
4680 | /* | |
4681 | * make sure we clear the ref/mod state | |
4682 | * from the pmap layer... else we risk | |
4683 | * inheriting state from the last time | |
4684 | * this page was used... | |
4685 | */ | |
4686 | pmap_clear_refmod(m2->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
4687 | ||
4688 | if (refmod & VM_MEM_REFERENCED) | |
4689 | m2->reference = TRUE; | |
4690 | if (refmod & VM_MEM_MODIFIED) { | |
4691 | SET_PAGE_DIRTY(m2, TRUE); | |
4692 | } | |
4693 | offset = m1->offset; | |
4694 | ||
4695 | /* | |
4696 | * completely cleans up the state | |
4697 | * of the page so that it is ready | |
4698 | * to be put onto the free list, or | |
4699 | * for this purpose it looks like it | |
4700 | * just came off of the free list | |
4701 | */ | |
4702 | vm_page_free_prepare(m1); | |
4703 | ||
4704 | /* | |
4705 | * now put the substitute page | |
4706 | * on the object | |
4707 | */ | |
4708 | vm_page_insert_internal(m2, locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL); | |
4709 | ||
4710 | if (m2->compressor) { | |
4711 | m2->pmapped = TRUE; | |
4712 | m2->wpmapped = TRUE; | |
4713 | ||
4714 | PMAP_ENTER(kernel_pmap, m2->offset, m2, | |
4715 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE); | |
4716 | ||
4717 | compressed_pages++; | |
4718 | ||
4719 | } else { | |
4720 | if (m2->reference) | |
4721 | vm_page_activate(m2); | |
4722 | else | |
4723 | vm_page_deactivate(m2); | |
4724 | } | |
4725 | PAGE_WAKEUP_DONE(m2); | |
4726 | ||
4727 | } else { | |
4728 | assert(!m1->compressor); | |
4729 | ||
4730 | /* | |
4731 | * completely cleans up the state | |
4732 | * of the page so that it is ready | |
4733 | * to be put onto the free list, or | |
4734 | * for this purpose it looks like it | |
4735 | * just came off of the free list | |
4736 | */ | |
4737 | vm_page_free_prepare(m1); | |
4738 | } | |
4739 | ||
4740 | stolen_pages++; | |
4741 | ||
4742 | } | |
4743 | m1->pageq.next = (queue_entry_t) m; | |
4744 | m1->pageq.prev = NULL; | |
4745 | m = m1; | |
4746 | } | |
4747 | if (locked_object) { | |
4748 | vm_object_unlock(locked_object); | |
4749 | locked_object = VM_OBJECT_NULL; | |
4750 | } | |
4751 | ||
4752 | if (abort_run == TRUE) { | |
4753 | if (m != VM_PAGE_NULL) { | |
4754 | vm_page_free_list(m, FALSE); | |
4755 | } | |
4756 | ||
4757 | dumped_run++; | |
4758 | ||
4759 | /* | |
4760 | * want the index of the last | |
4761 | * page in this run that was | |
4762 | * successfully 'stolen', so back | |
4763 | * it up 1 for the auto-decrement on use | |
4764 | * and 1 more to bump back over this page | |
4765 | */ | |
4766 | page_idx = tmp_start_idx + 2; | |
4767 | if (page_idx >= vm_pages_count) { | |
4768 | if (wrapped) | |
4769 | goto done_scanning; | |
4770 | page_idx = last_idx = 0; | |
4771 | wrapped = TRUE; | |
4772 | } | |
4773 | abort_run = FALSE; | |
4774 | ||
4775 | /* | |
4776 | * We didn't find a contiguous range but we didn't | |
4777 | * start from the very first page. | |
4778 | * Start again from the very first page. | |
4779 | */ | |
4780 | RESET_STATE_OF_RUN(); | |
4781 | ||
4782 | if( flags & KMA_LOMEM) | |
4783 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; | |
4784 | else | |
4785 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; | |
4786 | ||
4787 | last_idx = page_idx; | |
4788 | ||
4789 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4790 | /* | |
4791 | * reset our free page limit since we | |
4792 | * dropped the lock protecting the vm_page_free_queue | |
4793 | */ | |
4794 | free_available = vm_page_free_count - vm_page_free_reserved; | |
4795 | goto retry; | |
4796 | } | |
4797 | ||
4798 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { | |
4799 | ||
4800 | if (wire == TRUE) | |
4801 | m1->wire_count++; | |
4802 | else | |
4803 | m1->gobbled = TRUE; | |
4804 | } | |
4805 | if (wire == FALSE) | |
4806 | vm_page_gobble_count += npages; | |
4807 | ||
4808 | /* | |
4809 | * gobbled pages are also counted as wired pages | |
4810 | */ | |
4811 | vm_page_wire_count += npages; | |
4812 | ||
4813 | assert(vm_page_verify_contiguous(m, npages)); | |
4814 | } | |
4815 | done_scanning: | |
4816 | PAGE_REPLACEMENT_ALLOWED(FALSE); | |
4817 | ||
4818 | vm_page_unlock_queues(); | |
4819 | ||
4820 | #if DEBUG | |
4821 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); | |
4822 | ||
4823 | tv_end_sec -= tv_start_sec; | |
4824 | if (tv_end_usec < tv_start_usec) { | |
4825 | tv_end_sec--; | |
4826 | tv_end_usec += 1000000; | |
4827 | } | |
4828 | tv_end_usec -= tv_start_usec; | |
4829 | if (tv_end_usec >= 1000000) { | |
4830 | tv_end_sec++; | |
4831 | tv_end_sec -= 1000000; | |
4832 | } | |
4833 | if (vm_page_find_contig_debug) { | |
4834 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n", | |
4835 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
4836 | (long)tv_end_sec, tv_end_usec, orig_last_idx, | |
4837 | scanned, yielded, dumped_run, stolen_pages, compressed_pages); | |
4838 | } | |
4839 | ||
4840 | #endif | |
4841 | #if MACH_ASSERT | |
4842 | vm_page_verify_free_lists(); | |
4843 | #endif | |
4844 | if (m == NULL && zone_gc_called == FALSE) { | |
4845 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n", | |
4846 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
4847 | scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count); | |
4848 | ||
4849 | if (consider_buffer_cache_collect != NULL) { | |
4850 | (void)(*consider_buffer_cache_collect)(1); | |
4851 | } | |
4852 | ||
4853 | consider_zone_gc(TRUE); | |
4854 | ||
4855 | zone_gc_called = TRUE; | |
4856 | ||
4857 | printf("vm_page_find_contiguous: zone_gc called... wired count is %d\n", vm_page_wire_count); | |
4858 | goto full_scan_again; | |
4859 | } | |
4860 | ||
4861 | return m; | |
4862 | } | |
4863 | ||
4864 | /* | |
4865 | * Allocate a list of contiguous, wired pages. | |
4866 | */ | |
4867 | kern_return_t | |
4868 | cpm_allocate( | |
4869 | vm_size_t size, | |
4870 | vm_page_t *list, | |
4871 | ppnum_t max_pnum, | |
4872 | ppnum_t pnum_mask, | |
4873 | boolean_t wire, | |
4874 | int flags) | |
4875 | { | |
4876 | vm_page_t pages; | |
4877 | unsigned int npages; | |
4878 | ||
4879 | if (size % PAGE_SIZE != 0) | |
4880 | return KERN_INVALID_ARGUMENT; | |
4881 | ||
4882 | npages = (unsigned int) (size / PAGE_SIZE); | |
4883 | if (npages != size / PAGE_SIZE) { | |
4884 | /* 32-bit overflow */ | |
4885 | return KERN_INVALID_ARGUMENT; | |
4886 | } | |
4887 | ||
4888 | /* | |
4889 | * Obtain a pointer to a subset of the free | |
4890 | * list large enough to satisfy the request; | |
4891 | * the region will be physically contiguous. | |
4892 | */ | |
4893 | pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags); | |
4894 | ||
4895 | if (pages == VM_PAGE_NULL) | |
4896 | return KERN_NO_SPACE; | |
4897 | /* | |
4898 | * determine need for wakeups | |
4899 | */ | |
4900 | if ((vm_page_free_count < vm_page_free_min) || | |
4901 | ((vm_page_free_count < vm_page_free_target) && | |
4902 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
4903 | thread_wakeup((event_t) &vm_page_free_wanted); | |
4904 | ||
4905 | VM_CHECK_MEMORYSTATUS; | |
4906 | ||
4907 | /* | |
4908 | * The CPM pages should now be available and | |
4909 | * ordered by ascending physical address. | |
4910 | */ | |
4911 | assert(vm_page_verify_contiguous(pages, npages)); | |
4912 | ||
4913 | *list = pages; | |
4914 | return KERN_SUCCESS; | |
4915 | } | |
4916 | ||
4917 | ||
4918 | unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; | |
4919 | ||
4920 | /* | |
4921 | * when working on a 'run' of pages, it is necessary to hold | |
4922 | * the vm_page_queue_lock (a hot global lock) for certain operations | |
4923 | * on the page... however, the majority of the work can be done | |
4924 | * while merely holding the object lock... in fact there are certain | |
4925 | * collections of pages that don't require any work brokered by the | |
4926 | * vm_page_queue_lock... to mitigate the time spent behind the global | |
4927 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT | |
4928 | * while doing all of the work that doesn't require the vm_page_queue_lock... | |
4929 | * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the | |
4930 | * necessary work for each page... we will grab the busy bit on the page | |
4931 | * if it's not already held so that vm_page_do_delayed_work can drop the object lock | |
4932 | * if it can't immediately take the vm_page_queue_lock in order to compete | |
4933 | * for the locks in the same order that vm_pageout_scan takes them. | |
4934 | * the operation names are modeled after the names of the routines that | |
4935 | * need to be called in order to make the changes very obvious in the | |
4936 | * original loop | |
4937 | */ | |
4938 | ||
4939 | void | |
4940 | vm_page_do_delayed_work( | |
4941 | vm_object_t object, | |
4942 | vm_tag_t tag, | |
4943 | struct vm_page_delayed_work *dwp, | |
4944 | int dw_count) | |
4945 | { | |
4946 | int j; | |
4947 | vm_page_t m; | |
4948 | vm_page_t local_free_q = VM_PAGE_NULL; | |
4949 | ||
4950 | /* | |
4951 | * pageout_scan takes the vm_page_lock_queues first | |
4952 | * then tries for the object lock... to avoid what | |
4953 | * is effectively a lock inversion, we'll go to the | |
4954 | * trouble of taking them in that same order... otherwise | |
4955 | * if this object contains the majority of the pages resident | |
4956 | * in the UBC (or a small set of large objects actively being | |
4957 | * worked on contain the majority of the pages), we could | |
4958 | * cause the pageout_scan thread to 'starve' in its attempt | |
4959 | * to find pages to move to the free queue, since it has to | |
4960 | * successfully acquire the object lock of any candidate page | |
4961 | * before it can steal/clean it. | |
4962 | */ | |
4963 | if (!vm_page_trylockspin_queues()) { | |
4964 | vm_object_unlock(object); | |
4965 | ||
4966 | vm_page_lockspin_queues(); | |
4967 | ||
4968 | for (j = 0; ; j++) { | |
4969 | if (!vm_object_lock_avoid(object) && | |
4970 | _vm_object_lock_try(object)) | |
4971 | break; | |
4972 | vm_page_unlock_queues(); | |
4973 | mutex_pause(j); | |
4974 | vm_page_lockspin_queues(); | |
4975 | } | |
4976 | } | |
4977 | for (j = 0; j < dw_count; j++, dwp++) { | |
4978 | ||
4979 | m = dwp->dw_m; | |
4980 | ||
4981 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) | |
4982 | vm_pageout_throttle_up(m); | |
4983 | #if CONFIG_PHANTOM_CACHE | |
4984 | if (dwp->dw_mask & DW_vm_phantom_cache_update) | |
4985 | vm_phantom_cache_update(m); | |
4986 | #endif | |
4987 | if (dwp->dw_mask & DW_vm_page_wire) | |
4988 | vm_page_wire(m, tag, FALSE); | |
4989 | else if (dwp->dw_mask & DW_vm_page_unwire) { | |
4990 | boolean_t queueit; | |
4991 | ||
4992 | queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE; | |
4993 | ||
4994 | vm_page_unwire(m, queueit); | |
4995 | } | |
4996 | if (dwp->dw_mask & DW_vm_page_free) { | |
4997 | vm_page_free_prepare_queues(m); | |
4998 | ||
4999 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
5000 | /* | |
5001 | * Add this page to our list of reclaimed pages, | |
5002 | * to be freed later. | |
5003 | */ | |
5004 | m->pageq.next = (queue_entry_t) local_free_q; | |
5005 | local_free_q = m; | |
5006 | } else { | |
5007 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) | |
5008 | vm_page_deactivate_internal(m, FALSE); | |
5009 | else if (dwp->dw_mask & DW_vm_page_activate) { | |
5010 | if (m->active == FALSE) { | |
5011 | vm_page_activate(m); | |
5012 | } | |
5013 | } | |
5014 | else if (dwp->dw_mask & DW_vm_page_speculate) | |
5015 | vm_page_speculate(m, TRUE); | |
5016 | else if (dwp->dw_mask & DW_enqueue_cleaned) { | |
5017 | /* | |
5018 | * if we didn't hold the object lock and did this, | |
5019 | * we might disconnect the page, then someone might | |
5020 | * soft fault it back in, then we would put it on the | |
5021 | * cleaned queue, and so we would have a referenced (maybe even dirty) | |
5022 | * page on that queue, which we don't want | |
5023 | */ | |
5024 | int refmod_state = pmap_disconnect(m->phys_page); | |
5025 | ||
5026 | if ((refmod_state & VM_MEM_REFERENCED)) { | |
5027 | /* | |
5028 | * this page has been touched since it got cleaned; let's activate it | |
5029 | * if it hasn't already been | |
5030 | */ | |
5031 | vm_pageout_enqueued_cleaned++; | |
5032 | vm_pageout_cleaned_reactivated++; | |
5033 | vm_pageout_cleaned_commit_reactivated++; | |
5034 | ||
5035 | if (m->active == FALSE) | |
5036 | vm_page_activate(m); | |
5037 | } else { | |
5038 | m->reference = FALSE; | |
5039 | vm_page_enqueue_cleaned(m); | |
5040 | } | |
5041 | } | |
5042 | else if (dwp->dw_mask & DW_vm_page_lru) | |
5043 | vm_page_lru(m); | |
5044 | else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) { | |
5045 | if ( !m->pageout_queue) | |
5046 | vm_page_queues_remove(m); | |
5047 | } | |
5048 | if (dwp->dw_mask & DW_set_reference) | |
5049 | m->reference = TRUE; | |
5050 | else if (dwp->dw_mask & DW_clear_reference) | |
5051 | m->reference = FALSE; | |
5052 | ||
5053 | if (dwp->dw_mask & DW_move_page) { | |
5054 | if ( !m->pageout_queue) { | |
5055 | vm_page_queues_remove(m); | |
5056 | ||
5057 | assert(m->object != kernel_object); | |
5058 | ||
5059 | vm_page_enqueue_inactive(m, FALSE); | |
5060 | } | |
5061 | } | |
5062 | if (dwp->dw_mask & DW_clear_busy) | |
5063 | m->busy = FALSE; | |
5064 | ||
5065 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
5066 | PAGE_WAKEUP(m); | |
5067 | } | |
5068 | } | |
5069 | vm_page_unlock_queues(); | |
5070 | ||
5071 | if (local_free_q) | |
5072 | vm_page_free_list(local_free_q, TRUE); | |
5073 | ||
5074 | VM_CHECK_MEMORYSTATUS; | |
5075 | ||
5076 | } | |
5077 | ||
5078 | kern_return_t | |
5079 | vm_page_alloc_list( | |
5080 | int page_count, | |
5081 | int flags, | |
5082 | vm_page_t *list) | |
5083 | { | |
5084 | vm_page_t lo_page_list = VM_PAGE_NULL; | |
5085 | vm_page_t mem; | |
5086 | int i; | |
5087 | ||
5088 | if ( !(flags & KMA_LOMEM)) | |
5089 | panic("vm_page_alloc_list: called w/o KMA_LOMEM"); | |
5090 | ||
5091 | for (i = 0; i < page_count; i++) { | |
5092 | ||
5093 | mem = vm_page_grablo(); | |
5094 | ||
5095 | if (mem == VM_PAGE_NULL) { | |
5096 | if (lo_page_list) | |
5097 | vm_page_free_list(lo_page_list, FALSE); | |
5098 | ||
5099 | *list = VM_PAGE_NULL; | |
5100 | ||
5101 | return (KERN_RESOURCE_SHORTAGE); | |
5102 | } | |
5103 | mem->pageq.next = (queue_entry_t) lo_page_list; | |
5104 | lo_page_list = mem; | |
5105 | } | |
5106 | *list = lo_page_list; | |
5107 | ||
5108 | return (KERN_SUCCESS); | |
5109 | } | |
5110 | ||
5111 | void | |
5112 | vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) | |
5113 | { | |
5114 | page->offset = offset; | |
5115 | } | |
5116 | ||
5117 | vm_page_t | |
5118 | vm_page_get_next(vm_page_t page) | |
5119 | { | |
5120 | return ((vm_page_t) page->pageq.next); | |
5121 | } | |
5122 | ||
5123 | vm_object_offset_t | |
5124 | vm_page_get_offset(vm_page_t page) | |
5125 | { | |
5126 | return (page->offset); | |
5127 | } | |
5128 | ||
5129 | ppnum_t | |
5130 | vm_page_get_phys_page(vm_page_t page) | |
5131 | { | |
5132 | return (page->phys_page); | |
5133 | } | |
5134 | ||
5135 | ||
5136 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
5137 | ||
5138 | #if HIBERNATION | |
5139 | ||
5140 | static vm_page_t hibernate_gobble_queue; | |
5141 | ||
5142 | static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); | |
5143 | static int hibernate_flush_dirty_pages(int); | |
5144 | static int hibernate_flush_queue(queue_head_t *, int); | |
5145 | ||
5146 | void hibernate_flush_wait(void); | |
5147 | void hibernate_mark_in_progress(void); | |
5148 | void hibernate_clear_in_progress(void); | |
5149 | ||
5150 | void hibernate_free_range(int, int); | |
5151 | void hibernate_hash_insert_page(vm_page_t); | |
5152 | uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *); | |
5153 | void hibernate_rebuild_vm_structs(void); | |
5154 | uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *); | |
5155 | ppnum_t hibernate_lookup_paddr(unsigned int); | |
5156 | ||
5157 | struct hibernate_statistics { | |
5158 | int hibernate_considered; | |
5159 | int hibernate_reentered_on_q; | |
5160 | int hibernate_found_dirty; | |
5161 | int hibernate_skipped_cleaning; | |
5162 | int hibernate_skipped_transient; | |
5163 | int hibernate_skipped_precious; | |
5164 | int hibernate_skipped_external; | |
5165 | int hibernate_queue_nolock; | |
5166 | int hibernate_queue_paused; | |
5167 | int hibernate_throttled; | |
5168 | int hibernate_throttle_timeout; | |
5169 | int hibernate_drained; | |
5170 | int hibernate_drain_timeout; | |
5171 | int cd_lock_failed; | |
5172 | int cd_found_precious; | |
5173 | int cd_found_wired; | |
5174 | int cd_found_busy; | |
5175 | int cd_found_unusual; | |
5176 | int cd_found_cleaning; | |
5177 | int cd_found_laundry; | |
5178 | int cd_found_dirty; | |
5179 | int cd_found_xpmapped; | |
5180 | int cd_skipped_xpmapped; | |
5181 | int cd_local_free; | |
5182 | int cd_total_free; | |
5183 | int cd_vm_page_wire_count; | |
5184 | int cd_vm_struct_pages_unneeded; | |
5185 | int cd_pages; | |
5186 | int cd_discarded; | |
5187 | int cd_count_wire; | |
5188 | } hibernate_stats; | |
5189 | ||
5190 | ||
5191 | /* | |
5192 | * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image | |
5193 | * so that we don't overrun the estimated image size, which would | |
5194 | * result in a hibernation failure. | |
5195 | */ | |
5196 | #define HIBERNATE_XPMAPPED_LIMIT 40000 | |
5197 | ||
5198 | ||
5199 | static int | |
5200 | hibernate_drain_pageout_queue(struct vm_pageout_queue *q) | |
5201 | { | |
5202 | wait_result_t wait_result; | |
5203 | ||
5204 | vm_page_lock_queues(); | |
5205 | ||
5206 | while ( !queue_empty(&q->pgo_pending) ) { | |
5207 | ||
5208 | q->pgo_draining = TRUE; | |
5209 | ||
5210 | assert_wait_timeout((event_t) (&q->pgo_laundry+1), THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC); | |
5211 | ||
5212 | vm_page_unlock_queues(); | |
5213 | ||
5214 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
5215 | ||
5216 | if (wait_result == THREAD_TIMED_OUT && !queue_empty(&q->pgo_pending)) { | |
5217 | hibernate_stats.hibernate_drain_timeout++; | |
5218 | ||
5219 | if (q == &vm_pageout_queue_external) | |
5220 | return (0); | |
5221 | ||
5222 | return (1); | |
5223 | } | |
5224 | vm_page_lock_queues(); | |
5225 | ||
5226 | hibernate_stats.hibernate_drained++; | |
5227 | } | |
5228 | vm_page_unlock_queues(); | |
5229 | ||
5230 | return (0); | |
5231 | } | |
5232 | ||
5233 | ||
5234 | boolean_t hibernate_skip_external = FALSE; | |
5235 | ||
5236 | static int | |
5237 | hibernate_flush_queue(queue_head_t *q, int qcount) | |
5238 | { | |
5239 | vm_page_t m; | |
5240 | vm_object_t l_object = NULL; | |
5241 | vm_object_t m_object = NULL; | |
5242 | int refmod_state = 0; | |
5243 | int try_failed_count = 0; | |
5244 | int retval = 0; | |
5245 | int current_run = 0; | |
5246 | struct vm_pageout_queue *iq; | |
5247 | struct vm_pageout_queue *eq; | |
5248 | struct vm_pageout_queue *tq; | |
5249 | ||
5250 | ||
5251 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, q, qcount, 0, 0, 0); | |
5252 | ||
5253 | iq = &vm_pageout_queue_internal; | |
5254 | eq = &vm_pageout_queue_external; | |
5255 | ||
5256 | vm_page_lock_queues(); | |
5257 | ||
5258 | while (qcount && !queue_empty(q)) { | |
5259 | ||
5260 | if (current_run++ == 1000) { | |
5261 | if (hibernate_should_abort()) { | |
5262 | retval = 1; | |
5263 | break; | |
5264 | } | |
5265 | current_run = 0; | |
5266 | } | |
5267 | ||
5268 | m = (vm_page_t) queue_first(q); | |
5269 | m_object = m->object; | |
5270 | ||
5271 | /* | |
5272 | * check to see if we currently are working | |
5273 | * with the same object... if so, we've | |
5274 | * already got the lock | |
5275 | */ | |
5276 | if (m_object != l_object) { | |
5277 | /* | |
5278 | * the object associated with candidate page is | |
5279 | * different from the one we were just working | |
5280 | * with... dump the lock if we still own it | |
5281 | */ | |
5282 | if (l_object != NULL) { | |
5283 | vm_object_unlock(l_object); | |
5284 | l_object = NULL; | |
5285 | } | |
5286 | /* | |
5287 | * Try to lock object; since we've alread got the | |
5288 | * page queues lock, we can only 'try' for this one. | |
5289 | * if the 'try' fails, we need to do a mutex_pause | |
5290 | * to allow the owner of the object lock a chance to | |
5291 | * run... | |
5292 | */ | |
5293 | if ( !vm_object_lock_try_scan(m_object)) { | |
5294 | ||
5295 | if (try_failed_count > 20) { | |
5296 | hibernate_stats.hibernate_queue_nolock++; | |
5297 | ||
5298 | goto reenter_pg_on_q; | |
5299 | } | |
5300 | ||
5301 | vm_page_unlock_queues(); | |
5302 | mutex_pause(try_failed_count++); | |
5303 | vm_page_lock_queues(); | |
5304 | ||
5305 | hibernate_stats.hibernate_queue_paused++; | |
5306 | continue; | |
5307 | } else { | |
5308 | l_object = m_object; | |
5309 | } | |
5310 | } | |
5311 | if ( !m_object->alive || m->encrypted_cleaning || m->cleaning || m->laundry || m->busy || m->absent || m->error) { | |
5312 | /* | |
5313 | * page is not to be cleaned | |
5314 | * put it back on the head of its queue | |
5315 | */ | |
5316 | if (m->cleaning) | |
5317 | hibernate_stats.hibernate_skipped_cleaning++; | |
5318 | else | |
5319 | hibernate_stats.hibernate_skipped_transient++; | |
5320 | ||
5321 | goto reenter_pg_on_q; | |
5322 | } | |
5323 | if (m_object->copy == VM_OBJECT_NULL) { | |
5324 | if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { | |
5325 | /* | |
5326 | * let the normal hibernate image path | |
5327 | * deal with these | |
5328 | */ | |
5329 | goto reenter_pg_on_q; | |
5330 | } | |
5331 | } | |
5332 | if ( !m->dirty && m->pmapped) { | |
5333 | refmod_state = pmap_get_refmod(m->phys_page); | |
5334 | ||
5335 | if ((refmod_state & VM_MEM_MODIFIED)) { | |
5336 | SET_PAGE_DIRTY(m, FALSE); | |
5337 | } | |
5338 | } else | |
5339 | refmod_state = 0; | |
5340 | ||
5341 | if ( !m->dirty) { | |
5342 | /* | |
5343 | * page is not to be cleaned | |
5344 | * put it back on the head of its queue | |
5345 | */ | |
5346 | if (m->precious) | |
5347 | hibernate_stats.hibernate_skipped_precious++; | |
5348 | ||
5349 | goto reenter_pg_on_q; | |
5350 | } | |
5351 | ||
5352 | if (hibernate_skip_external == TRUE && !m_object->internal) { | |
5353 | ||
5354 | hibernate_stats.hibernate_skipped_external++; | |
5355 | ||
5356 | goto reenter_pg_on_q; | |
5357 | } | |
5358 | tq = NULL; | |
5359 | ||
5360 | if (m_object->internal) { | |
5361 | if (VM_PAGE_Q_THROTTLED(iq)) | |
5362 | tq = iq; | |
5363 | } else if (VM_PAGE_Q_THROTTLED(eq)) | |
5364 | tq = eq; | |
5365 | ||
5366 | if (tq != NULL) { | |
5367 | wait_result_t wait_result; | |
5368 | int wait_count = 5; | |
5369 | ||
5370 | if (l_object != NULL) { | |
5371 | vm_object_unlock(l_object); | |
5372 | l_object = NULL; | |
5373 | } | |
5374 | ||
5375 | while (retval == 0) { | |
5376 | ||
5377 | tq->pgo_throttled = TRUE; | |
5378 | ||
5379 | assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000*NSEC_PER_USEC); | |
5380 | ||
5381 | vm_page_unlock_queues(); | |
5382 | ||
5383 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
5384 | ||
5385 | vm_page_lock_queues(); | |
5386 | ||
5387 | if (wait_result != THREAD_TIMED_OUT) | |
5388 | break; | |
5389 | if (!VM_PAGE_Q_THROTTLED(tq)) | |
5390 | break; | |
5391 | ||
5392 | if (hibernate_should_abort()) | |
5393 | retval = 1; | |
5394 | ||
5395 | if (--wait_count == 0) { | |
5396 | ||
5397 | hibernate_stats.hibernate_throttle_timeout++; | |
5398 | ||
5399 | if (tq == eq) { | |
5400 | hibernate_skip_external = TRUE; | |
5401 | break; | |
5402 | } | |
5403 | retval = 1; | |
5404 | } | |
5405 | } | |
5406 | if (retval) | |
5407 | break; | |
5408 | ||
5409 | hibernate_stats.hibernate_throttled++; | |
5410 | ||
5411 | continue; | |
5412 | } | |
5413 | /* | |
5414 | * we've already factored out pages in the laundry which | |
5415 | * means this page can't be on the pageout queue so it's | |
5416 | * safe to do the vm_page_queues_remove | |
5417 | */ | |
5418 | assert(!m->pageout_queue); | |
5419 | ||
5420 | vm_page_queues_remove(m); | |
5421 | ||
5422 | if (COMPRESSED_PAGER_IS_ACTIVE && m_object->internal == TRUE) | |
5423 | pmap_disconnect_options(m->phys_page, PMAP_OPTIONS_COMPRESSOR, NULL); | |
5424 | ||
5425 | (void)vm_pageout_cluster(m, FALSE, FALSE, FALSE); | |
5426 | ||
5427 | hibernate_stats.hibernate_found_dirty++; | |
5428 | ||
5429 | goto next_pg; | |
5430 | ||
5431 | reenter_pg_on_q: | |
5432 | queue_remove(q, m, vm_page_t, pageq); | |
5433 | queue_enter(q, m, vm_page_t, pageq); | |
5434 | ||
5435 | hibernate_stats.hibernate_reentered_on_q++; | |
5436 | next_pg: | |
5437 | hibernate_stats.hibernate_considered++; | |
5438 | ||
5439 | qcount--; | |
5440 | try_failed_count = 0; | |
5441 | } | |
5442 | if (l_object != NULL) { | |
5443 | vm_object_unlock(l_object); | |
5444 | l_object = NULL; | |
5445 | } | |
5446 | ||
5447 | vm_page_unlock_queues(); | |
5448 | ||
5449 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); | |
5450 | ||
5451 | return (retval); | |
5452 | } | |
5453 | ||
5454 | ||
5455 | static int | |
5456 | hibernate_flush_dirty_pages(int pass) | |
5457 | { | |
5458 | struct vm_speculative_age_q *aq; | |
5459 | uint32_t i; | |
5460 | ||
5461 | if (vm_page_local_q) { | |
5462 | for (i = 0; i < vm_page_local_q_count; i++) | |
5463 | vm_page_reactivate_local(i, TRUE, FALSE); | |
5464 | } | |
5465 | ||
5466 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { | |
5467 | int qcount; | |
5468 | vm_page_t m; | |
5469 | ||
5470 | aq = &vm_page_queue_speculative[i]; | |
5471 | ||
5472 | if (queue_empty(&aq->age_q)) | |
5473 | continue; | |
5474 | qcount = 0; | |
5475 | ||
5476 | vm_page_lockspin_queues(); | |
5477 | ||
5478 | queue_iterate(&aq->age_q, | |
5479 | m, | |
5480 | vm_page_t, | |
5481 | pageq) | |
5482 | { | |
5483 | qcount++; | |
5484 | } | |
5485 | vm_page_unlock_queues(); | |
5486 | ||
5487 | if (qcount) { | |
5488 | if (hibernate_flush_queue(&aq->age_q, qcount)) | |
5489 | return (1); | |
5490 | } | |
5491 | } | |
5492 | if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) | |
5493 | return (1); | |
5494 | if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) | |
5495 | return (1); | |
5496 | if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) | |
5497 | return (1); | |
5498 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) | |
5499 | return (1); | |
5500 | ||
5501 | if (COMPRESSED_PAGER_IS_ACTIVE && pass == 1) | |
5502 | vm_compressor_record_warmup_start(); | |
5503 | ||
5504 | if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) { | |
5505 | if (COMPRESSED_PAGER_IS_ACTIVE && pass == 1) | |
5506 | vm_compressor_record_warmup_end(); | |
5507 | return (1); | |
5508 | } | |
5509 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { | |
5510 | if (COMPRESSED_PAGER_IS_ACTIVE && pass == 1) | |
5511 | vm_compressor_record_warmup_end(); | |
5512 | return (1); | |
5513 | } | |
5514 | if (COMPRESSED_PAGER_IS_ACTIVE && pass == 1) | |
5515 | vm_compressor_record_warmup_end(); | |
5516 | ||
5517 | if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) | |
5518 | return (1); | |
5519 | ||
5520 | return (0); | |
5521 | } | |
5522 | ||
5523 | ||
5524 | void | |
5525 | hibernate_reset_stats() | |
5526 | { | |
5527 | bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); | |
5528 | } | |
5529 | ||
5530 | ||
5531 | int | |
5532 | hibernate_flush_memory() | |
5533 | { | |
5534 | int retval; | |
5535 | ||
5536 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); | |
5537 | ||
5538 | hibernate_cleaning_in_progress = TRUE; | |
5539 | hibernate_skip_external = FALSE; | |
5540 | ||
5541 | if ((retval = hibernate_flush_dirty_pages(1)) == 0) { | |
5542 | ||
5543 | if (COMPRESSED_PAGER_IS_ACTIVE) { | |
5544 | ||
5545 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); | |
5546 | ||
5547 | vm_compressor_flush(); | |
5548 | ||
5549 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); | |
5550 | } | |
5551 | if (consider_buffer_cache_collect != NULL) { | |
5552 | unsigned int orig_wire_count; | |
5553 | ||
5554 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
5555 | orig_wire_count = vm_page_wire_count; | |
5556 | ||
5557 | (void)(*consider_buffer_cache_collect)(1); | |
5558 | consider_zone_gc(TRUE); | |
5559 | ||
5560 | HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n", orig_wire_count - vm_page_wire_count); | |
5561 | ||
5562 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0); | |
5563 | } | |
5564 | } | |
5565 | hibernate_cleaning_in_progress = FALSE; | |
5566 | ||
5567 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); | |
5568 | ||
5569 | if (retval && COMPRESSED_PAGER_IS_ACTIVE) | |
5570 | HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n", VM_PAGE_COMPRESSOR_COUNT); | |
5571 | ||
5572 | ||
5573 | HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n", | |
5574 | hibernate_stats.hibernate_considered, | |
5575 | hibernate_stats.hibernate_reentered_on_q, | |
5576 | hibernate_stats.hibernate_found_dirty); | |
5577 | HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n", | |
5578 | hibernate_stats.hibernate_skipped_cleaning, | |
5579 | hibernate_stats.hibernate_skipped_transient, | |
5580 | hibernate_stats.hibernate_skipped_precious, | |
5581 | hibernate_stats.hibernate_skipped_external, | |
5582 | hibernate_stats.hibernate_queue_nolock); | |
5583 | HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n", | |
5584 | hibernate_stats.hibernate_queue_paused, | |
5585 | hibernate_stats.hibernate_throttled, | |
5586 | hibernate_stats.hibernate_throttle_timeout, | |
5587 | hibernate_stats.hibernate_drained, | |
5588 | hibernate_stats.hibernate_drain_timeout); | |
5589 | ||
5590 | return (retval); | |
5591 | } | |
5592 | ||
5593 | ||
5594 | static void | |
5595 | hibernate_page_list_zero(hibernate_page_list_t *list) | |
5596 | { | |
5597 | uint32_t bank; | |
5598 | hibernate_bitmap_t * bitmap; | |
5599 | ||
5600 | bitmap = &list->bank_bitmap[0]; | |
5601 | for (bank = 0; bank < list->bank_count; bank++) | |
5602 | { | |
5603 | uint32_t last_bit; | |
5604 | ||
5605 | bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); | |
5606 | // set out-of-bound bits at end of bitmap. | |
5607 | last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); | |
5608 | if (last_bit) | |
5609 | bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); | |
5610 | ||
5611 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; | |
5612 | } | |
5613 | } | |
5614 | ||
5615 | void | |
5616 | hibernate_free_gobble_pages(void) | |
5617 | { | |
5618 | vm_page_t m, next; | |
5619 | uint32_t count = 0; | |
5620 | ||
5621 | m = (vm_page_t) hibernate_gobble_queue; | |
5622 | while(m) | |
5623 | { | |
5624 | next = (vm_page_t) m->pageq.next; | |
5625 | vm_page_free(m); | |
5626 | count++; | |
5627 | m = next; | |
5628 | } | |
5629 | hibernate_gobble_queue = VM_PAGE_NULL; | |
5630 | ||
5631 | if (count) | |
5632 | HIBLOG("Freed %d pages\n", count); | |
5633 | } | |
5634 | ||
5635 | static boolean_t | |
5636 | hibernate_consider_discard(vm_page_t m, boolean_t preflight) | |
5637 | { | |
5638 | vm_object_t object = NULL; | |
5639 | int refmod_state; | |
5640 | boolean_t discard = FALSE; | |
5641 | ||
5642 | do | |
5643 | { | |
5644 | if (m->private) | |
5645 | panic("hibernate_consider_discard: private"); | |
5646 | ||
5647 | if (!vm_object_lock_try(m->object)) { | |
5648 | if (!preflight) hibernate_stats.cd_lock_failed++; | |
5649 | break; | |
5650 | } | |
5651 | object = m->object; | |
5652 | ||
5653 | if (VM_PAGE_WIRED(m)) { | |
5654 | if (!preflight) hibernate_stats.cd_found_wired++; | |
5655 | break; | |
5656 | } | |
5657 | if (m->precious) { | |
5658 | if (!preflight) hibernate_stats.cd_found_precious++; | |
5659 | break; | |
5660 | } | |
5661 | if (m->busy || !object->alive) { | |
5662 | /* | |
5663 | * Somebody is playing with this page. | |
5664 | */ | |
5665 | if (!preflight) hibernate_stats.cd_found_busy++; | |
5666 | break; | |
5667 | } | |
5668 | if (m->absent || m->unusual || m->error) { | |
5669 | /* | |
5670 | * If it's unusual in anyway, ignore it | |
5671 | */ | |
5672 | if (!preflight) hibernate_stats.cd_found_unusual++; | |
5673 | break; | |
5674 | } | |
5675 | if (m->cleaning) { | |
5676 | if (!preflight) hibernate_stats.cd_found_cleaning++; | |
5677 | break; | |
5678 | } | |
5679 | if (m->laundry) { | |
5680 | if (!preflight) hibernate_stats.cd_found_laundry++; | |
5681 | break; | |
5682 | } | |
5683 | if (!m->dirty) | |
5684 | { | |
5685 | refmod_state = pmap_get_refmod(m->phys_page); | |
5686 | ||
5687 | if (refmod_state & VM_MEM_REFERENCED) | |
5688 | m->reference = TRUE; | |
5689 | if (refmod_state & VM_MEM_MODIFIED) { | |
5690 | SET_PAGE_DIRTY(m, FALSE); | |
5691 | } | |
5692 | } | |
5693 | ||
5694 | /* | |
5695 | * If it's clean or purgeable we can discard the page on wakeup. | |
5696 | */ | |
5697 | discard = (!m->dirty) | |
5698 | || (VM_PURGABLE_VOLATILE == object->purgable) | |
5699 | || (VM_PURGABLE_EMPTY == object->purgable); | |
5700 | ||
5701 | ||
5702 | if (discard == FALSE) { | |
5703 | if (!preflight) | |
5704 | hibernate_stats.cd_found_dirty++; | |
5705 | } else if (m->xpmapped && m->reference && !object->internal) { | |
5706 | if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) { | |
5707 | if (!preflight) | |
5708 | hibernate_stats.cd_found_xpmapped++; | |
5709 | discard = FALSE; | |
5710 | } else { | |
5711 | if (!preflight) | |
5712 | hibernate_stats.cd_skipped_xpmapped++; | |
5713 | } | |
5714 | } | |
5715 | } | |
5716 | while (FALSE); | |
5717 | ||
5718 | if (object) | |
5719 | vm_object_unlock(object); | |
5720 | ||
5721 | return (discard); | |
5722 | } | |
5723 | ||
5724 | ||
5725 | static void | |
5726 | hibernate_discard_page(vm_page_t m) | |
5727 | { | |
5728 | if (m->absent || m->unusual || m->error) | |
5729 | /* | |
5730 | * If it's unusual in anyway, ignore | |
5731 | */ | |
5732 | return; | |
5733 | ||
5734 | #if MACH_ASSERT || DEBUG | |
5735 | vm_object_t object = m->object; | |
5736 | if (!vm_object_lock_try(m->object)) | |
5737 | panic("hibernate_discard_page(%p) !vm_object_lock_try", m); | |
5738 | #else | |
5739 | /* No need to lock page queue for token delete, hibernate_vm_unlock() | |
5740 | makes sure these locks are uncontended before sleep */ | |
5741 | #endif /* MACH_ASSERT || DEBUG */ | |
5742 | ||
5743 | if (m->pmapped == TRUE) | |
5744 | { | |
5745 | __unused int refmod_state = pmap_disconnect(m->phys_page); | |
5746 | } | |
5747 | ||
5748 | if (m->laundry) | |
5749 | panic("hibernate_discard_page(%p) laundry", m); | |
5750 | if (m->private) | |
5751 | panic("hibernate_discard_page(%p) private", m); | |
5752 | if (m->fictitious) | |
5753 | panic("hibernate_discard_page(%p) fictitious", m); | |
5754 | ||
5755 | if (VM_PURGABLE_VOLATILE == m->object->purgable) | |
5756 | { | |
5757 | /* object should be on a queue */ | |
5758 | assert((m->object->objq.next != NULL) && (m->object->objq.prev != NULL)); | |
5759 | purgeable_q_t old_queue = vm_purgeable_object_remove(m->object); | |
5760 | assert(old_queue); | |
5761 | if (m->object->purgeable_when_ripe) { | |
5762 | vm_purgeable_token_delete_first(old_queue); | |
5763 | } | |
5764 | m->object->purgable = VM_PURGABLE_EMPTY; | |
5765 | ||
5766 | /* | |
5767 | * Purgeable ledgers: pages of VOLATILE and EMPTY objects are | |
5768 | * accounted in the "volatile" ledger, so no change here. | |
5769 | * We have to update vm_page_purgeable_count, though, since we're | |
5770 | * effectively purging this object. | |
5771 | */ | |
5772 | unsigned int delta; | |
5773 | assert(m->object->resident_page_count >= m->object->wired_page_count); | |
5774 | delta = (m->object->resident_page_count - m->object->wired_page_count); | |
5775 | assert(vm_page_purgeable_count >= delta); | |
5776 | assert(delta > 0); | |
5777 | OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count); | |
5778 | } | |
5779 | ||
5780 | vm_page_free(m); | |
5781 | ||
5782 | #if MACH_ASSERT || DEBUG | |
5783 | vm_object_unlock(object); | |
5784 | #endif /* MACH_ASSERT || DEBUG */ | |
5785 | } | |
5786 | ||
5787 | /* | |
5788 | Grab locks for hibernate_page_list_setall() | |
5789 | */ | |
5790 | void | |
5791 | hibernate_vm_lock_queues(void) | |
5792 | { | |
5793 | vm_object_lock(compressor_object); | |
5794 | vm_page_lock_queues(); | |
5795 | lck_mtx_lock(&vm_page_queue_free_lock); | |
5796 | ||
5797 | if (vm_page_local_q) { | |
5798 | uint32_t i; | |
5799 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5800 | struct vpl *lq; | |
5801 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5802 | VPL_LOCK(&lq->vpl_lock); | |
5803 | } | |
5804 | } | |
5805 | } | |
5806 | ||
5807 | void | |
5808 | hibernate_vm_unlock_queues(void) | |
5809 | { | |
5810 | if (vm_page_local_q) { | |
5811 | uint32_t i; | |
5812 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5813 | struct vpl *lq; | |
5814 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5815 | VPL_UNLOCK(&lq->vpl_lock); | |
5816 | } | |
5817 | } | |
5818 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
5819 | vm_page_unlock_queues(); | |
5820 | vm_object_unlock(compressor_object); | |
5821 | } | |
5822 | ||
5823 | /* | |
5824 | Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, | |
5825 | pages known to VM to not need saving are subtracted. | |
5826 | Wired pages to be saved are present in page_list_wired, pageable in page_list. | |
5827 | */ | |
5828 | ||
5829 | void | |
5830 | hibernate_page_list_setall(hibernate_page_list_t * page_list, | |
5831 | hibernate_page_list_t * page_list_wired, | |
5832 | hibernate_page_list_t * page_list_pal, | |
5833 | boolean_t preflight, | |
5834 | boolean_t will_discard, | |
5835 | uint32_t * pagesOut) | |
5836 | { | |
5837 | uint64_t start, end, nsec; | |
5838 | vm_page_t m; | |
5839 | vm_page_t next; | |
5840 | uint32_t pages = page_list->page_count; | |
5841 | uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0; | |
5842 | uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0; | |
5843 | uint32_t count_wire = pages; | |
5844 | uint32_t count_discard_active = 0; | |
5845 | uint32_t count_discard_inactive = 0; | |
5846 | uint32_t count_discard_cleaned = 0; | |
5847 | uint32_t count_discard_purgeable = 0; | |
5848 | uint32_t count_discard_speculative = 0; | |
5849 | uint32_t count_discard_vm_struct_pages = 0; | |
5850 | uint32_t i; | |
5851 | uint32_t bank; | |
5852 | hibernate_bitmap_t * bitmap; | |
5853 | hibernate_bitmap_t * bitmap_wired; | |
5854 | boolean_t discard_all; | |
5855 | boolean_t discard; | |
5856 | ||
5857 | HIBLOG("hibernate_page_list_setall(preflight %d) start\n", preflight); | |
5858 | ||
5859 | if (preflight) { | |
5860 | page_list = NULL; | |
5861 | page_list_wired = NULL; | |
5862 | page_list_pal = NULL; | |
5863 | discard_all = FALSE; | |
5864 | } else { | |
5865 | discard_all = will_discard; | |
5866 | } | |
5867 | ||
5868 | #if MACH_ASSERT || DEBUG | |
5869 | if (!preflight) | |
5870 | { | |
5871 | vm_page_lock_queues(); | |
5872 | if (vm_page_local_q) { | |
5873 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5874 | struct vpl *lq; | |
5875 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5876 | VPL_LOCK(&lq->vpl_lock); | |
5877 | } | |
5878 | } | |
5879 | } | |
5880 | #endif /* MACH_ASSERT || DEBUG */ | |
5881 | ||
5882 | ||
5883 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); | |
5884 | ||
5885 | clock_get_uptime(&start); | |
5886 | ||
5887 | if (!preflight) { | |
5888 | hibernate_page_list_zero(page_list); | |
5889 | hibernate_page_list_zero(page_list_wired); | |
5890 | hibernate_page_list_zero(page_list_pal); | |
5891 | ||
5892 | hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; | |
5893 | hibernate_stats.cd_pages = pages; | |
5894 | } | |
5895 | ||
5896 | if (vm_page_local_q) { | |
5897 | for (i = 0; i < vm_page_local_q_count; i++) | |
5898 | vm_page_reactivate_local(i, TRUE, !preflight); | |
5899 | } | |
5900 | ||
5901 | if (preflight) { | |
5902 | vm_object_lock(compressor_object); | |
5903 | vm_page_lock_queues(); | |
5904 | lck_mtx_lock(&vm_page_queue_free_lock); | |
5905 | } | |
5906 | ||
5907 | m = (vm_page_t) hibernate_gobble_queue; | |
5908 | while (m) | |
5909 | { | |
5910 | pages--; | |
5911 | count_wire--; | |
5912 | if (!preflight) { | |
5913 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5914 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5915 | } | |
5916 | m = (vm_page_t) m->pageq.next; | |
5917 | } | |
5918 | ||
5919 | if (!preflight) for( i = 0; i < real_ncpus; i++ ) | |
5920 | { | |
5921 | if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) | |
5922 | { | |
5923 | for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = (vm_page_t)m->pageq.next) | |
5924 | { | |
5925 | pages--; | |
5926 | count_wire--; | |
5927 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5928 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5929 | ||
5930 | hibernate_stats.cd_local_free++; | |
5931 | hibernate_stats.cd_total_free++; | |
5932 | } | |
5933 | } | |
5934 | } | |
5935 | ||
5936 | for( i = 0; i < vm_colors; i++ ) | |
5937 | { | |
5938 | queue_iterate(&vm_page_queue_free[i], | |
5939 | m, | |
5940 | vm_page_t, | |
5941 | pageq) | |
5942 | { | |
5943 | pages--; | |
5944 | count_wire--; | |
5945 | if (!preflight) { | |
5946 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5947 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5948 | ||
5949 | hibernate_stats.cd_total_free++; | |
5950 | } | |
5951 | } | |
5952 | } | |
5953 | ||
5954 | queue_iterate(&vm_lopage_queue_free, | |
5955 | m, | |
5956 | vm_page_t, | |
5957 | pageq) | |
5958 | { | |
5959 | pages--; | |
5960 | count_wire--; | |
5961 | if (!preflight) { | |
5962 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5963 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5964 | ||
5965 | hibernate_stats.cd_total_free++; | |
5966 | } | |
5967 | } | |
5968 | ||
5969 | m = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
5970 | while (m && !queue_end(&vm_page_queue_throttled, (queue_entry_t)m)) | |
5971 | { | |
5972 | next = (vm_page_t) m->pageq.next; | |
5973 | discard = FALSE; | |
5974 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5975 | && hibernate_consider_discard(m, preflight)) | |
5976 | { | |
5977 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5978 | count_discard_inactive++; | |
5979 | discard = discard_all; | |
5980 | } | |
5981 | else | |
5982 | count_throttled++; | |
5983 | count_wire--; | |
5984 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5985 | ||
5986 | if (discard) hibernate_discard_page(m); | |
5987 | m = next; | |
5988 | } | |
5989 | ||
5990 | m = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
5991 | while (m && !queue_end(&vm_page_queue_anonymous, (queue_entry_t)m)) | |
5992 | { | |
5993 | next = (vm_page_t) m->pageq.next; | |
5994 | discard = FALSE; | |
5995 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5996 | && hibernate_consider_discard(m, preflight)) | |
5997 | { | |
5998 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5999 | if (m->dirty) | |
6000 | count_discard_purgeable++; | |
6001 | else | |
6002 | count_discard_inactive++; | |
6003 | discard = discard_all; | |
6004 | } | |
6005 | else | |
6006 | count_anonymous++; | |
6007 | count_wire--; | |
6008 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6009 | if (discard) hibernate_discard_page(m); | |
6010 | m = next; | |
6011 | } | |
6012 | ||
6013 | m = (vm_page_t) queue_first(&vm_page_queue_cleaned); | |
6014 | while (m && !queue_end(&vm_page_queue_cleaned, (queue_entry_t)m)) | |
6015 | { | |
6016 | next = (vm_page_t) m->pageq.next; | |
6017 | discard = FALSE; | |
6018 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6019 | && hibernate_consider_discard(m, preflight)) | |
6020 | { | |
6021 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
6022 | if (m->dirty) | |
6023 | count_discard_purgeable++; | |
6024 | else | |
6025 | count_discard_cleaned++; | |
6026 | discard = discard_all; | |
6027 | } | |
6028 | else | |
6029 | count_cleaned++; | |
6030 | count_wire--; | |
6031 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6032 | if (discard) hibernate_discard_page(m); | |
6033 | m = next; | |
6034 | } | |
6035 | ||
6036 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
6037 | while (m && !queue_end(&vm_page_queue_active, (queue_entry_t)m)) | |
6038 | { | |
6039 | next = (vm_page_t) m->pageq.next; | |
6040 | discard = FALSE; | |
6041 | if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) | |
6042 | && hibernate_consider_discard(m, preflight)) | |
6043 | { | |
6044 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
6045 | if (m->dirty) | |
6046 | count_discard_purgeable++; | |
6047 | else | |
6048 | count_discard_active++; | |
6049 | discard = discard_all; | |
6050 | } | |
6051 | else | |
6052 | count_active++; | |
6053 | count_wire--; | |
6054 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6055 | if (discard) hibernate_discard_page(m); | |
6056 | m = next; | |
6057 | } | |
6058 | ||
6059 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
6060 | while (m && !queue_end(&vm_page_queue_inactive, (queue_entry_t)m)) | |
6061 | { | |
6062 | next = (vm_page_t) m->pageq.next; | |
6063 | discard = FALSE; | |
6064 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6065 | && hibernate_consider_discard(m, preflight)) | |
6066 | { | |
6067 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
6068 | if (m->dirty) | |
6069 | count_discard_purgeable++; | |
6070 | else | |
6071 | count_discard_inactive++; | |
6072 | discard = discard_all; | |
6073 | } | |
6074 | else | |
6075 | count_inactive++; | |
6076 | count_wire--; | |
6077 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6078 | if (discard) hibernate_discard_page(m); | |
6079 | m = next; | |
6080 | } | |
6081 | ||
6082 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
6083 | { | |
6084 | m = (vm_page_t) queue_first(&vm_page_queue_speculative[i].age_q); | |
6085 | while (m && !queue_end(&vm_page_queue_speculative[i].age_q, (queue_entry_t)m)) | |
6086 | { | |
6087 | next = (vm_page_t) m->pageq.next; | |
6088 | discard = FALSE; | |
6089 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6090 | && hibernate_consider_discard(m, preflight)) | |
6091 | { | |
6092 | if (!preflight) hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
6093 | count_discard_speculative++; | |
6094 | discard = discard_all; | |
6095 | } | |
6096 | else | |
6097 | count_speculative++; | |
6098 | count_wire--; | |
6099 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6100 | if (discard) hibernate_discard_page(m); | |
6101 | m = next; | |
6102 | } | |
6103 | } | |
6104 | ||
6105 | queue_iterate(&compressor_object->memq, m, vm_page_t, listq) | |
6106 | { | |
6107 | count_compressor++; | |
6108 | count_wire--; | |
6109 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
6110 | } | |
6111 | ||
6112 | if (preflight == FALSE && discard_all == TRUE) { | |
6113 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
6114 | ||
6115 | HIBLOG("hibernate_teardown started\n"); | |
6116 | count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired); | |
6117 | HIBLOG("hibernate_teardown completed - discarded %d\n", count_discard_vm_struct_pages); | |
6118 | ||
6119 | pages -= count_discard_vm_struct_pages; | |
6120 | count_wire -= count_discard_vm_struct_pages; | |
6121 | ||
6122 | hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages; | |
6123 | ||
6124 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
6125 | } | |
6126 | ||
6127 | if (!preflight) { | |
6128 | // pull wired from hibernate_bitmap | |
6129 | bitmap = &page_list->bank_bitmap[0]; | |
6130 | bitmap_wired = &page_list_wired->bank_bitmap[0]; | |
6131 | for (bank = 0; bank < page_list->bank_count; bank++) | |
6132 | { | |
6133 | for (i = 0; i < bitmap->bitmapwords; i++) | |
6134 | bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; | |
6135 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap [bitmap->bitmapwords]; | |
6136 | bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; | |
6137 | } | |
6138 | } | |
6139 | ||
6140 | // machine dependent adjustments | |
6141 | hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages); | |
6142 | ||
6143 | if (!preflight) { | |
6144 | hibernate_stats.cd_count_wire = count_wire; | |
6145 | hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + | |
6146 | count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages; | |
6147 | } | |
6148 | ||
6149 | clock_get_uptime(&end); | |
6150 | absolutetime_to_nanoseconds(end - start, &nsec); | |
6151 | HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL); | |
6152 | ||
6153 | HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d\n", | |
6154 | pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped, | |
6155 | discard_all ? "did" : "could", | |
6156 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
6157 | ||
6158 | if (hibernate_stats.cd_skipped_xpmapped) | |
6159 | HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n", hibernate_stats.cd_skipped_xpmapped); | |
6160 | ||
6161 | *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned; | |
6162 | ||
6163 | if (preflight && will_discard) *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active; | |
6164 | ||
6165 | #if MACH_ASSERT || DEBUG | |
6166 | if (!preflight) | |
6167 | { | |
6168 | if (vm_page_local_q) { | |
6169 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6170 | struct vpl *lq; | |
6171 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6172 | VPL_UNLOCK(&lq->vpl_lock); | |
6173 | } | |
6174 | } | |
6175 | vm_page_unlock_queues(); | |
6176 | } | |
6177 | #endif /* MACH_ASSERT || DEBUG */ | |
6178 | ||
6179 | if (preflight) { | |
6180 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
6181 | vm_page_unlock_queues(); | |
6182 | vm_object_unlock(compressor_object); | |
6183 | } | |
6184 | ||
6185 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); | |
6186 | } | |
6187 | ||
6188 | void | |
6189 | hibernate_page_list_discard(hibernate_page_list_t * page_list) | |
6190 | { | |
6191 | uint64_t start, end, nsec; | |
6192 | vm_page_t m; | |
6193 | vm_page_t next; | |
6194 | uint32_t i; | |
6195 | uint32_t count_discard_active = 0; | |
6196 | uint32_t count_discard_inactive = 0; | |
6197 | uint32_t count_discard_purgeable = 0; | |
6198 | uint32_t count_discard_cleaned = 0; | |
6199 | uint32_t count_discard_speculative = 0; | |
6200 | ||
6201 | ||
6202 | #if MACH_ASSERT || DEBUG | |
6203 | vm_page_lock_queues(); | |
6204 | if (vm_page_local_q) { | |
6205 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6206 | struct vpl *lq; | |
6207 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6208 | VPL_LOCK(&lq->vpl_lock); | |
6209 | } | |
6210 | } | |
6211 | #endif /* MACH_ASSERT || DEBUG */ | |
6212 | ||
6213 | clock_get_uptime(&start); | |
6214 | ||
6215 | m = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
6216 | while (m && !queue_end(&vm_page_queue_anonymous, (queue_entry_t)m)) | |
6217 | { | |
6218 | next = (vm_page_t) m->pageq.next; | |
6219 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
6220 | { | |
6221 | if (m->dirty) | |
6222 | count_discard_purgeable++; | |
6223 | else | |
6224 | count_discard_inactive++; | |
6225 | hibernate_discard_page(m); | |
6226 | } | |
6227 | m = next; | |
6228 | } | |
6229 | ||
6230 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
6231 | { | |
6232 | m = (vm_page_t) queue_first(&vm_page_queue_speculative[i].age_q); | |
6233 | while (m && !queue_end(&vm_page_queue_speculative[i].age_q, (queue_entry_t)m)) | |
6234 | { | |
6235 | next = (vm_page_t) m->pageq.next; | |
6236 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
6237 | { | |
6238 | count_discard_speculative++; | |
6239 | hibernate_discard_page(m); | |
6240 | } | |
6241 | m = next; | |
6242 | } | |
6243 | } | |
6244 | ||
6245 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
6246 | while (m && !queue_end(&vm_page_queue_inactive, (queue_entry_t)m)) | |
6247 | { | |
6248 | next = (vm_page_t) m->pageq.next; | |
6249 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
6250 | { | |
6251 | if (m->dirty) | |
6252 | count_discard_purgeable++; | |
6253 | else | |
6254 | count_discard_inactive++; | |
6255 | hibernate_discard_page(m); | |
6256 | } | |
6257 | m = next; | |
6258 | } | |
6259 | ||
6260 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
6261 | while (m && !queue_end(&vm_page_queue_active, (queue_entry_t)m)) | |
6262 | { | |
6263 | next = (vm_page_t) m->pageq.next; | |
6264 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
6265 | { | |
6266 | if (m->dirty) | |
6267 | count_discard_purgeable++; | |
6268 | else | |
6269 | count_discard_active++; | |
6270 | hibernate_discard_page(m); | |
6271 | } | |
6272 | m = next; | |
6273 | } | |
6274 | ||
6275 | m = (vm_page_t) queue_first(&vm_page_queue_cleaned); | |
6276 | while (m && !queue_end(&vm_page_queue_cleaned, (queue_entry_t)m)) | |
6277 | { | |
6278 | next = (vm_page_t) m->pageq.next; | |
6279 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
6280 | { | |
6281 | if (m->dirty) | |
6282 | count_discard_purgeable++; | |
6283 | else | |
6284 | count_discard_cleaned++; | |
6285 | hibernate_discard_page(m); | |
6286 | } | |
6287 | m = next; | |
6288 | } | |
6289 | ||
6290 | #if MACH_ASSERT || DEBUG | |
6291 | if (vm_page_local_q) { | |
6292 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6293 | struct vpl *lq; | |
6294 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6295 | VPL_UNLOCK(&lq->vpl_lock); | |
6296 | } | |
6297 | } | |
6298 | vm_page_unlock_queues(); | |
6299 | #endif /* MACH_ASSERT || DEBUG */ | |
6300 | ||
6301 | clock_get_uptime(&end); | |
6302 | absolutetime_to_nanoseconds(end - start, &nsec); | |
6303 | HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n", | |
6304 | nsec / 1000000ULL, | |
6305 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
6306 | } | |
6307 | ||
6308 | boolean_t hibernate_paddr_map_inited = FALSE; | |
6309 | boolean_t hibernate_rebuild_needed = FALSE; | |
6310 | unsigned int hibernate_teardown_last_valid_compact_indx = -1; | |
6311 | vm_page_t hibernate_rebuild_hash_list = NULL; | |
6312 | ||
6313 | unsigned int hibernate_teardown_found_tabled_pages = 0; | |
6314 | unsigned int hibernate_teardown_found_created_pages = 0; | |
6315 | unsigned int hibernate_teardown_found_free_pages = 0; | |
6316 | unsigned int hibernate_teardown_vm_page_free_count; | |
6317 | ||
6318 | ||
6319 | struct ppnum_mapping { | |
6320 | struct ppnum_mapping *ppnm_next; | |
6321 | ppnum_t ppnm_base_paddr; | |
6322 | unsigned int ppnm_sindx; | |
6323 | unsigned int ppnm_eindx; | |
6324 | }; | |
6325 | ||
6326 | struct ppnum_mapping *ppnm_head; | |
6327 | struct ppnum_mapping *ppnm_last_found = NULL; | |
6328 | ||
6329 | ||
6330 | void | |
6331 | hibernate_create_paddr_map() | |
6332 | { | |
6333 | unsigned int i; | |
6334 | ppnum_t next_ppnum_in_run = 0; | |
6335 | struct ppnum_mapping *ppnm = NULL; | |
6336 | ||
6337 | if (hibernate_paddr_map_inited == FALSE) { | |
6338 | ||
6339 | for (i = 0; i < vm_pages_count; i++) { | |
6340 | ||
6341 | if (ppnm) | |
6342 | ppnm->ppnm_eindx = i; | |
6343 | ||
6344 | if (ppnm == NULL || vm_pages[i].phys_page != next_ppnum_in_run) { | |
6345 | ||
6346 | ppnm = kalloc(sizeof(struct ppnum_mapping)); | |
6347 | ||
6348 | ppnm->ppnm_next = ppnm_head; | |
6349 | ppnm_head = ppnm; | |
6350 | ||
6351 | ppnm->ppnm_sindx = i; | |
6352 | ppnm->ppnm_base_paddr = vm_pages[i].phys_page; | |
6353 | } | |
6354 | next_ppnum_in_run = vm_pages[i].phys_page + 1; | |
6355 | } | |
6356 | ppnm->ppnm_eindx++; | |
6357 | ||
6358 | hibernate_paddr_map_inited = TRUE; | |
6359 | } | |
6360 | } | |
6361 | ||
6362 | ppnum_t | |
6363 | hibernate_lookup_paddr(unsigned int indx) | |
6364 | { | |
6365 | struct ppnum_mapping *ppnm = NULL; | |
6366 | ||
6367 | ppnm = ppnm_last_found; | |
6368 | ||
6369 | if (ppnm) { | |
6370 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) | |
6371 | goto done; | |
6372 | } | |
6373 | for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) { | |
6374 | ||
6375 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { | |
6376 | ppnm_last_found = ppnm; | |
6377 | break; | |
6378 | } | |
6379 | } | |
6380 | if (ppnm == NULL) | |
6381 | panic("hibernate_lookup_paddr of %d failed\n", indx); | |
6382 | done: | |
6383 | return (ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx)); | |
6384 | } | |
6385 | ||
6386 | ||
6387 | uint32_t | |
6388 | hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) | |
6389 | { | |
6390 | addr64_t saddr_aligned; | |
6391 | addr64_t eaddr_aligned; | |
6392 | addr64_t addr; | |
6393 | ppnum_t paddr; | |
6394 | unsigned int mark_as_unneeded_pages = 0; | |
6395 | ||
6396 | saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64; | |
6397 | eaddr_aligned = eaddr & ~PAGE_MASK_64; | |
6398 | ||
6399 | for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) { | |
6400 | ||
6401 | paddr = pmap_find_phys(kernel_pmap, addr); | |
6402 | ||
6403 | assert(paddr); | |
6404 | ||
6405 | hibernate_page_bitset(page_list, TRUE, paddr); | |
6406 | hibernate_page_bitset(page_list_wired, TRUE, paddr); | |
6407 | ||
6408 | mark_as_unneeded_pages++; | |
6409 | } | |
6410 | return (mark_as_unneeded_pages); | |
6411 | } | |
6412 | ||
6413 | ||
6414 | void | |
6415 | hibernate_hash_insert_page(vm_page_t mem) | |
6416 | { | |
6417 | vm_page_bucket_t *bucket; | |
6418 | int hash_id; | |
6419 | ||
6420 | assert(mem->hashed); | |
6421 | assert(mem->object); | |
6422 | assert(mem->offset != (vm_object_offset_t) -1); | |
6423 | ||
6424 | /* | |
6425 | * Insert it into the object_object/offset hash table | |
6426 | */ | |
6427 | hash_id = vm_page_hash(mem->object, mem->offset); | |
6428 | bucket = &vm_page_buckets[hash_id]; | |
6429 | ||
6430 | mem->next_m = bucket->page_list; | |
6431 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
6432 | } | |
6433 | ||
6434 | ||
6435 | void | |
6436 | hibernate_free_range(int sindx, int eindx) | |
6437 | { | |
6438 | vm_page_t mem; | |
6439 | unsigned int color; | |
6440 | ||
6441 | while (sindx < eindx) { | |
6442 | mem = &vm_pages[sindx]; | |
6443 | ||
6444 | vm_page_init(mem, hibernate_lookup_paddr(sindx), FALSE); | |
6445 | ||
6446 | mem->lopage = FALSE; | |
6447 | mem->free = TRUE; | |
6448 | ||
6449 | color = mem->phys_page & vm_color_mask; | |
6450 | queue_enter_first(&vm_page_queue_free[color], | |
6451 | mem, | |
6452 | vm_page_t, | |
6453 | pageq); | |
6454 | vm_page_free_count++; | |
6455 | ||
6456 | sindx++; | |
6457 | } | |
6458 | } | |
6459 | ||
6460 | ||
6461 | extern void hibernate_rebuild_pmap_structs(void); | |
6462 | ||
6463 | void | |
6464 | hibernate_rebuild_vm_structs(void) | |
6465 | { | |
6466 | int cindx, sindx, eindx; | |
6467 | vm_page_t mem, tmem, mem_next; | |
6468 | AbsoluteTime startTime, endTime; | |
6469 | uint64_t nsec; | |
6470 | ||
6471 | if (hibernate_rebuild_needed == FALSE) | |
6472 | return; | |
6473 | ||
6474 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
6475 | HIBLOG("hibernate_rebuild started\n"); | |
6476 | ||
6477 | clock_get_uptime(&startTime); | |
6478 | ||
6479 | hibernate_rebuild_pmap_structs(); | |
6480 | ||
6481 | bzero(&vm_page_buckets[0], vm_page_bucket_count * sizeof(vm_page_bucket_t)); | |
6482 | eindx = vm_pages_count; | |
6483 | ||
6484 | for (cindx = hibernate_teardown_last_valid_compact_indx; cindx >= 0; cindx--) { | |
6485 | ||
6486 | mem = &vm_pages[cindx]; | |
6487 | /* | |
6488 | * hibernate_teardown_vm_structs leaves the location where | |
6489 | * this vm_page_t must be located in "next". | |
6490 | */ | |
6491 | tmem = VM_PAGE_UNPACK_PTR(mem->next_m); | |
6492 | mem->next_m = VM_PAGE_PACK_PTR(NULL); | |
6493 | ||
6494 | sindx = (int)(tmem - &vm_pages[0]); | |
6495 | ||
6496 | if (mem != tmem) { | |
6497 | /* | |
6498 | * this vm_page_t was moved by hibernate_teardown_vm_structs, | |
6499 | * so move it back to its real location | |
6500 | */ | |
6501 | *tmem = *mem; | |
6502 | mem = tmem; | |
6503 | } | |
6504 | if (mem->hashed) | |
6505 | hibernate_hash_insert_page(mem); | |
6506 | /* | |
6507 | * the 'hole' between this vm_page_t and the previous | |
6508 | * vm_page_t we moved needs to be initialized as | |
6509 | * a range of free vm_page_t's | |
6510 | */ | |
6511 | hibernate_free_range(sindx + 1, eindx); | |
6512 | ||
6513 | eindx = sindx; | |
6514 | } | |
6515 | if (sindx) | |
6516 | hibernate_free_range(0, sindx); | |
6517 | ||
6518 | assert(vm_page_free_count == hibernate_teardown_vm_page_free_count); | |
6519 | ||
6520 | /* | |
6521 | * process the list of vm_page_t's that were entered in the hash, | |
6522 | * but were not located in the vm_pages arrary... these are | |
6523 | * vm_page_t's that were created on the fly (i.e. fictitious) | |
6524 | */ | |
6525 | for (mem = hibernate_rebuild_hash_list; mem; mem = mem_next) { | |
6526 | mem_next = VM_PAGE_UNPACK_PTR(mem->next_m); | |
6527 | ||
6528 | mem->next_m = VM_PAGE_PACK_PTR(NULL); | |
6529 | hibernate_hash_insert_page(mem); | |
6530 | } | |
6531 | hibernate_rebuild_hash_list = NULL; | |
6532 | ||
6533 | clock_get_uptime(&endTime); | |
6534 | SUB_ABSOLUTETIME(&endTime, &startTime); | |
6535 | absolutetime_to_nanoseconds(endTime, &nsec); | |
6536 | ||
6537 | HIBLOG("hibernate_rebuild completed - took %qd msecs\n", nsec / 1000000ULL); | |
6538 | ||
6539 | hibernate_rebuild_needed = FALSE; | |
6540 | ||
6541 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
6542 | } | |
6543 | ||
6544 | ||
6545 | extern void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *); | |
6546 | ||
6547 | uint32_t | |
6548 | hibernate_teardown_vm_structs(hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) | |
6549 | { | |
6550 | unsigned int i; | |
6551 | unsigned int compact_target_indx; | |
6552 | vm_page_t mem, mem_next; | |
6553 | vm_page_bucket_t *bucket; | |
6554 | unsigned int mark_as_unneeded_pages = 0; | |
6555 | unsigned int unneeded_vm_page_bucket_pages = 0; | |
6556 | unsigned int unneeded_vm_pages_pages = 0; | |
6557 | unsigned int unneeded_pmap_pages = 0; | |
6558 | addr64_t start_of_unneeded = 0; | |
6559 | addr64_t end_of_unneeded = 0; | |
6560 | ||
6561 | ||
6562 | if (hibernate_should_abort()) | |
6563 | return (0); | |
6564 | ||
6565 | HIBLOG("hibernate_teardown: wired_pages %d, free_pages %d, active_pages %d, inactive_pages %d, speculative_pages %d, cleaned_pages %d, compressor_pages %d\n", | |
6566 | vm_page_wire_count, vm_page_free_count, vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, | |
6567 | vm_page_cleaned_count, compressor_object->resident_page_count); | |
6568 | ||
6569 | for (i = 0; i < vm_page_bucket_count; i++) { | |
6570 | ||
6571 | bucket = &vm_page_buckets[i]; | |
6572 | ||
6573 | for (mem = VM_PAGE_UNPACK_PTR(bucket->page_list); mem != VM_PAGE_NULL; mem = mem_next) { | |
6574 | assert(mem->hashed); | |
6575 | ||
6576 | mem_next = VM_PAGE_UNPACK_PTR(mem->next_m); | |
6577 | ||
6578 | if (mem < &vm_pages[0] || mem >= &vm_pages[vm_pages_count]) { | |
6579 | mem->next_m = VM_PAGE_PACK_PTR(hibernate_rebuild_hash_list); | |
6580 | hibernate_rebuild_hash_list = mem; | |
6581 | } | |
6582 | } | |
6583 | } | |
6584 | unneeded_vm_page_bucket_pages = hibernate_mark_as_unneeded((addr64_t)&vm_page_buckets[0], (addr64_t)&vm_page_buckets[vm_page_bucket_count], page_list, page_list_wired); | |
6585 | mark_as_unneeded_pages += unneeded_vm_page_bucket_pages; | |
6586 | ||
6587 | hibernate_teardown_vm_page_free_count = vm_page_free_count; | |
6588 | ||
6589 | compact_target_indx = 0; | |
6590 | ||
6591 | for (i = 0; i < vm_pages_count; i++) { | |
6592 | ||
6593 | mem = &vm_pages[i]; | |
6594 | ||
6595 | if (mem->free) { | |
6596 | unsigned int color; | |
6597 | ||
6598 | assert(mem->busy); | |
6599 | assert(!mem->lopage); | |
6600 | ||
6601 | color = mem->phys_page & vm_color_mask; | |
6602 | ||
6603 | queue_remove(&vm_page_queue_free[color], | |
6604 | mem, | |
6605 | vm_page_t, | |
6606 | pageq); | |
6607 | mem->pageq.next = NULL; | |
6608 | mem->pageq.prev = NULL; | |
6609 | ||
6610 | vm_page_free_count--; | |
6611 | ||
6612 | hibernate_teardown_found_free_pages++; | |
6613 | ||
6614 | if ( !vm_pages[compact_target_indx].free) | |
6615 | compact_target_indx = i; | |
6616 | } else { | |
6617 | /* | |
6618 | * record this vm_page_t's original location | |
6619 | * we need this even if it doesn't get moved | |
6620 | * as an indicator to the rebuild function that | |
6621 | * we don't have to move it | |
6622 | */ | |
6623 | mem->next_m = VM_PAGE_PACK_PTR(mem); | |
6624 | ||
6625 | if (vm_pages[compact_target_indx].free) { | |
6626 | /* | |
6627 | * we've got a hole to fill, so | |
6628 | * move this vm_page_t to it's new home | |
6629 | */ | |
6630 | vm_pages[compact_target_indx] = *mem; | |
6631 | mem->free = TRUE; | |
6632 | ||
6633 | hibernate_teardown_last_valid_compact_indx = compact_target_indx; | |
6634 | compact_target_indx++; | |
6635 | } else | |
6636 | hibernate_teardown_last_valid_compact_indx = i; | |
6637 | } | |
6638 | } | |
6639 | unneeded_vm_pages_pages = hibernate_mark_as_unneeded((addr64_t)&vm_pages[hibernate_teardown_last_valid_compact_indx+1], | |
6640 | (addr64_t)&vm_pages[vm_pages_count-1], page_list, page_list_wired); | |
6641 | mark_as_unneeded_pages += unneeded_vm_pages_pages; | |
6642 | ||
6643 | hibernate_teardown_pmap_structs(&start_of_unneeded, &end_of_unneeded); | |
6644 | ||
6645 | if (start_of_unneeded) { | |
6646 | unneeded_pmap_pages = hibernate_mark_as_unneeded(start_of_unneeded, end_of_unneeded, page_list, page_list_wired); | |
6647 | mark_as_unneeded_pages += unneeded_pmap_pages; | |
6648 | } | |
6649 | HIBLOG("hibernate_teardown: mark_as_unneeded_pages %d, %d, %d\n", unneeded_vm_page_bucket_pages, unneeded_vm_pages_pages, unneeded_pmap_pages); | |
6650 | ||
6651 | hibernate_rebuild_needed = TRUE; | |
6652 | ||
6653 | return (mark_as_unneeded_pages); | |
6654 | } | |
6655 | ||
6656 | ||
6657 | #endif /* HIBERNATION */ | |
6658 | ||
6659 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
6660 | ||
6661 | #include <mach_vm_debug.h> | |
6662 | #if MACH_VM_DEBUG | |
6663 | ||
6664 | #include <mach_debug/hash_info.h> | |
6665 | #include <vm/vm_debug.h> | |
6666 | ||
6667 | /* | |
6668 | * Routine: vm_page_info | |
6669 | * Purpose: | |
6670 | * Return information about the global VP table. | |
6671 | * Fills the buffer with as much information as possible | |
6672 | * and returns the desired size of the buffer. | |
6673 | * Conditions: | |
6674 | * Nothing locked. The caller should provide | |
6675 | * possibly-pageable memory. | |
6676 | */ | |
6677 | ||
6678 | unsigned int | |
6679 | vm_page_info( | |
6680 | hash_info_bucket_t *info, | |
6681 | unsigned int count) | |
6682 | { | |
6683 | unsigned int i; | |
6684 | lck_spin_t *bucket_lock; | |
6685 | ||
6686 | if (vm_page_bucket_count < count) | |
6687 | count = vm_page_bucket_count; | |
6688 | ||
6689 | for (i = 0; i < count; i++) { | |
6690 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
6691 | unsigned int bucket_count = 0; | |
6692 | vm_page_t m; | |
6693 | ||
6694 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; | |
6695 | lck_spin_lock(bucket_lock); | |
6696 | ||
6697 | for (m = VM_PAGE_UNPACK_PTR(bucket->page_list); m != VM_PAGE_NULL; m = VM_PAGE_UNPACK_PTR(m->next_m)) | |
6698 | bucket_count++; | |
6699 | ||
6700 | lck_spin_unlock(bucket_lock); | |
6701 | ||
6702 | /* don't touch pageable memory while holding locks */ | |
6703 | info[i].hib_count = bucket_count; | |
6704 | } | |
6705 | ||
6706 | return vm_page_bucket_count; | |
6707 | } | |
6708 | #endif /* MACH_VM_DEBUG */ | |
6709 | ||
6710 | #if VM_PAGE_BUCKETS_CHECK | |
6711 | void | |
6712 | vm_page_buckets_check(void) | |
6713 | { | |
6714 | unsigned int i; | |
6715 | vm_page_t p; | |
6716 | unsigned int p_hash; | |
6717 | vm_page_bucket_t *bucket; | |
6718 | lck_spin_t *bucket_lock; | |
6719 | ||
6720 | if (!vm_page_buckets_check_ready) { | |
6721 | return; | |
6722 | } | |
6723 | ||
6724 | #if HIBERNATION | |
6725 | if (hibernate_rebuild_needed || | |
6726 | hibernate_rebuild_hash_list) { | |
6727 | panic("BUCKET_CHECK: hibernation in progress: " | |
6728 | "rebuild_needed=%d rebuild_hash_list=%p\n", | |
6729 | hibernate_rebuild_needed, | |
6730 | hibernate_rebuild_hash_list); | |
6731 | } | |
6732 | #endif /* HIBERNATION */ | |
6733 | ||
6734 | #if VM_PAGE_FAKE_BUCKETS | |
6735 | char *cp; | |
6736 | for (cp = (char *) vm_page_fake_buckets_start; | |
6737 | cp < (char *) vm_page_fake_buckets_end; | |
6738 | cp++) { | |
6739 | if (*cp != 0x5a) { | |
6740 | panic("BUCKET_CHECK: corruption at %p in fake buckets " | |
6741 | "[0x%llx:0x%llx]\n", | |
6742 | cp, | |
6743 | (uint64_t) vm_page_fake_buckets_start, | |
6744 | (uint64_t) vm_page_fake_buckets_end); | |
6745 | } | |
6746 | } | |
6747 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
6748 | ||
6749 | for (i = 0; i < vm_page_bucket_count; i++) { | |
6750 | bucket = &vm_page_buckets[i]; | |
6751 | if (!bucket->page_list) { | |
6752 | continue; | |
6753 | } | |
6754 | ||
6755 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; | |
6756 | lck_spin_lock(bucket_lock); | |
6757 | p = VM_PAGE_UNPACK_PTR(bucket->page_list); | |
6758 | while (p != VM_PAGE_NULL) { | |
6759 | if (!p->hashed) { | |
6760 | panic("BUCKET_CHECK: page %p (%p,0x%llx) " | |
6761 | "hash %d in bucket %d at %p " | |
6762 | "is not hashed\n", | |
6763 | p, p->object, p->offset, | |
6764 | p_hash, i, bucket); | |
6765 | } | |
6766 | p_hash = vm_page_hash(p->object, p->offset); | |
6767 | if (p_hash != i) { | |
6768 | panic("BUCKET_CHECK: corruption in bucket %d " | |
6769 | "at %p: page %p object %p offset 0x%llx " | |
6770 | "hash %d\n", | |
6771 | i, bucket, p, p->object, p->offset, | |
6772 | p_hash); | |
6773 | } | |
6774 | p = VM_PAGE_UNPACK_PTR(p->next_m); | |
6775 | } | |
6776 | lck_spin_unlock(bucket_lock); | |
6777 | } | |
6778 | ||
6779 | // printf("BUCKET_CHECK: checked buckets\n"); | |
6780 | } | |
6781 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
6782 | ||
6783 | /* | |
6784 | * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the | |
6785 | * local queues if they exist... its the only spot in the system where we add pages | |
6786 | * to those queues... once on those queues, those pages can only move to one of the | |
6787 | * global page queues or the free queues... they NEVER move from local q to local q. | |
6788 | * the 'local' state is stable when vm_page_queues_remove is called since we're behind | |
6789 | * the global vm_page_queue_lock at this point... we still need to take the local lock | |
6790 | * in case this operation is being run on a different CPU then the local queue's identity, | |
6791 | * but we don't have to worry about the page moving to a global queue or becoming wired | |
6792 | * while we're grabbing the local lock since those operations would require the global | |
6793 | * vm_page_queue_lock to be held, and we already own it. | |
6794 | * | |
6795 | * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id... | |
6796 | * 'wired' and local are ALWAYS mutually exclusive conditions. | |
6797 | */ | |
6798 | void | |
6799 | vm_page_queues_remove(vm_page_t mem) | |
6800 | { | |
6801 | boolean_t was_pageable; | |
6802 | ||
6803 | VM_PAGE_QUEUES_ASSERT(mem, 1); | |
6804 | assert(!mem->pageout_queue); | |
6805 | /* | |
6806 | * if (mem->pageout_queue) | |
6807 | * NOTE: vm_page_queues_remove does not deal with removing pages from the pageout queue... | |
6808 | * the caller is responsible for determing if the page is on that queue, and if so, must | |
6809 | * either first remove it (it needs both the page queues lock and the object lock to do | |
6810 | * this via vm_pageout_steal_laundry), or avoid the call to vm_page_queues_remove | |
6811 | */ | |
6812 | if (mem->local) { | |
6813 | struct vpl *lq; | |
6814 | assert(mem->object != kernel_object); | |
6815 | assert(mem->object != compressor_object); | |
6816 | assert(!mem->inactive && !mem->speculative); | |
6817 | assert(!mem->active && !mem->throttled); | |
6818 | assert(!mem->clean_queue); | |
6819 | assert(!mem->fictitious); | |
6820 | lq = &vm_page_local_q[mem->local_id].vpl_un.vpl; | |
6821 | VPL_LOCK(&lq->vpl_lock); | |
6822 | queue_remove(&lq->vpl_queue, | |
6823 | mem, vm_page_t, pageq); | |
6824 | mem->local = FALSE; | |
6825 | mem->local_id = 0; | |
6826 | lq->vpl_count--; | |
6827 | if (mem->object->internal) { | |
6828 | lq->vpl_internal_count--; | |
6829 | } else { | |
6830 | lq->vpl_external_count--; | |
6831 | } | |
6832 | VPL_UNLOCK(&lq->vpl_lock); | |
6833 | was_pageable = FALSE; | |
6834 | } | |
6835 | ||
6836 | else if (mem->active) { | |
6837 | assert(mem->object != kernel_object); | |
6838 | assert(mem->object != compressor_object); | |
6839 | assert(!mem->inactive && !mem->speculative); | |
6840 | assert(!mem->clean_queue); | |
6841 | assert(!mem->throttled); | |
6842 | assert(!mem->fictitious); | |
6843 | queue_remove(&vm_page_queue_active, | |
6844 | mem, vm_page_t, pageq); | |
6845 | mem->active = FALSE; | |
6846 | vm_page_active_count--; | |
6847 | was_pageable = TRUE; | |
6848 | } | |
6849 | ||
6850 | else if (mem->inactive) { | |
6851 | assert(mem->object != kernel_object); | |
6852 | assert(mem->object != compressor_object); | |
6853 | assert(!mem->active && !mem->speculative); | |
6854 | assert(!mem->throttled); | |
6855 | assert(!mem->fictitious); | |
6856 | vm_page_inactive_count--; | |
6857 | if (mem->clean_queue) { | |
6858 | queue_remove(&vm_page_queue_cleaned, | |
6859 | mem, vm_page_t, pageq); | |
6860 | mem->clean_queue = FALSE; | |
6861 | vm_page_cleaned_count--; | |
6862 | } else { | |
6863 | if (mem->object->internal) { | |
6864 | queue_remove(&vm_page_queue_anonymous, | |
6865 | mem, vm_page_t, pageq); | |
6866 | vm_page_anonymous_count--; | |
6867 | } else { | |
6868 | queue_remove(&vm_page_queue_inactive, | |
6869 | mem, vm_page_t, pageq); | |
6870 | } | |
6871 | vm_purgeable_q_advance_all(); | |
6872 | } | |
6873 | mem->inactive = FALSE; | |
6874 | was_pageable = TRUE; | |
6875 | } | |
6876 | ||
6877 | else if (mem->throttled) { | |
6878 | assert(mem->object != compressor_object); | |
6879 | assert(!mem->active && !mem->inactive); | |
6880 | assert(!mem->speculative); | |
6881 | assert(!mem->fictitious); | |
6882 | queue_remove(&vm_page_queue_throttled, | |
6883 | mem, vm_page_t, pageq); | |
6884 | mem->throttled = FALSE; | |
6885 | vm_page_throttled_count--; | |
6886 | was_pageable = FALSE; | |
6887 | } | |
6888 | ||
6889 | else if (mem->speculative) { | |
6890 | assert(mem->object != compressor_object); | |
6891 | assert(!mem->active && !mem->inactive); | |
6892 | assert(!mem->throttled); | |
6893 | assert(!mem->fictitious); | |
6894 | remque(&mem->pageq); | |
6895 | mem->speculative = FALSE; | |
6896 | vm_page_speculative_count--; | |
6897 | was_pageable = TRUE; | |
6898 | } | |
6899 | ||
6900 | else if (mem->pageq.next || mem->pageq.prev) { | |
6901 | was_pageable = FALSE; | |
6902 | panic("vm_page_queues_remove: unmarked page on Q"); | |
6903 | } else { | |
6904 | was_pageable = FALSE; | |
6905 | } | |
6906 | ||
6907 | mem->pageq.next = NULL; | |
6908 | mem->pageq.prev = NULL; | |
6909 | VM_PAGE_QUEUES_ASSERT(mem, 0); | |
6910 | if (was_pageable) { | |
6911 | if (mem->object->internal) { | |
6912 | vm_page_pageable_internal_count--; | |
6913 | } else { | |
6914 | vm_page_pageable_external_count--; | |
6915 | } | |
6916 | } | |
6917 | } | |
6918 | ||
6919 | void | |
6920 | vm_page_remove_internal(vm_page_t page) | |
6921 | { | |
6922 | vm_object_t __object = page->object; | |
6923 | if (page == __object->memq_hint) { | |
6924 | vm_page_t __new_hint; | |
6925 | queue_entry_t __qe; | |
6926 | __qe = queue_next(&page->listq); | |
6927 | if (queue_end(&__object->memq, __qe)) { | |
6928 | __qe = queue_prev(&page->listq); | |
6929 | if (queue_end(&__object->memq, __qe)) { | |
6930 | __qe = NULL; | |
6931 | } | |
6932 | } | |
6933 | __new_hint = (vm_page_t) __qe; | |
6934 | __object->memq_hint = __new_hint; | |
6935 | } | |
6936 | queue_remove(&__object->memq, page, vm_page_t, listq); | |
6937 | } | |
6938 | ||
6939 | void | |
6940 | vm_page_enqueue_inactive(vm_page_t mem, boolean_t first) | |
6941 | { | |
6942 | VM_PAGE_QUEUES_ASSERT(mem, 0); | |
6943 | assert(!mem->fictitious); | |
6944 | assert(!mem->laundry); | |
6945 | assert(!mem->pageout_queue); | |
6946 | vm_page_check_pageable_safe(mem); | |
6947 | if (mem->object->internal) { | |
6948 | if (first == TRUE) | |
6949 | queue_enter_first(&vm_page_queue_anonymous, mem, vm_page_t, pageq); | |
6950 | else | |
6951 | queue_enter(&vm_page_queue_anonymous, mem, vm_page_t, pageq); | |
6952 | vm_page_anonymous_count++; | |
6953 | vm_page_pageable_internal_count++; | |
6954 | } else { | |
6955 | if (first == TRUE) | |
6956 | queue_enter_first(&vm_page_queue_inactive, mem, vm_page_t, pageq); | |
6957 | else | |
6958 | queue_enter(&vm_page_queue_inactive, mem, vm_page_t, pageq); | |
6959 | vm_page_pageable_external_count++; | |
6960 | } | |
6961 | mem->inactive = TRUE; | |
6962 | vm_page_inactive_count++; | |
6963 | token_new_pagecount++; | |
6964 | } | |
6965 | ||
6966 | /* | |
6967 | * Pages from special kernel objects shouldn't | |
6968 | * be placed on pageable queues. | |
6969 | */ | |
6970 | void | |
6971 | vm_page_check_pageable_safe(vm_page_t page) | |
6972 | { | |
6973 | if (page->object == kernel_object) { | |
6974 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
6975 | "from kernel object (%p) to pageable queue", kernel_object); | |
6976 | } | |
6977 | ||
6978 | if (page->object == compressor_object) { | |
6979 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
6980 | "from compressor object (%p) to pageable queue", compressor_object); | |
6981 | } | |
6982 | ||
6983 | if (page->object == vm_submap_object) { | |
6984 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
6985 | "from submap object (%p) to pageable queue", vm_submap_object); | |
6986 | } | |
6987 | } | |
6988 | ||
6989 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
6990 | * wired page diagnose | |
6991 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
6992 | ||
6993 | #include <libkern/OSKextLibPrivate.h> | |
6994 | ||
6995 | vm_allocation_site_t * | |
6996 | vm_allocation_sites[VM_KERN_MEMORY_COUNT]; | |
6997 | ||
6998 | vm_tag_t | |
6999 | vm_tag_bt(void) | |
7000 | { | |
7001 | uintptr_t* frameptr; | |
7002 | uintptr_t* frameptr_next; | |
7003 | uintptr_t retaddr; | |
7004 | uintptr_t kstackb, kstackt; | |
7005 | const vm_allocation_site_t * site; | |
7006 | thread_t cthread; | |
7007 | ||
7008 | cthread = current_thread(); | |
7009 | if (__improbable(cthread == NULL)) return VM_KERN_MEMORY_OSFMK; | |
7010 | ||
7011 | kstackb = cthread->kernel_stack; | |
7012 | kstackt = kstackb + kernel_stack_size; | |
7013 | ||
7014 | /* Load stack frame pointer (EBP on x86) into frameptr */ | |
7015 | frameptr = __builtin_frame_address(0); | |
7016 | site = NULL; | |
7017 | while (frameptr != NULL) | |
7018 | { | |
7019 | /* Verify thread stack bounds */ | |
7020 | if (((uintptr_t)(frameptr + 2) > kstackt) || ((uintptr_t)frameptr < kstackb)) break; | |
7021 | ||
7022 | /* Next frame pointer is pointed to by the previous one */ | |
7023 | frameptr_next = (uintptr_t*) *frameptr; | |
7024 | ||
7025 | /* Pull return address from one spot above the frame pointer */ | |
7026 | retaddr = *(frameptr + 1); | |
7027 | ||
7028 | if ((retaddr < vm_kernel_stext) || (retaddr > vm_kernel_top)) | |
7029 | { | |
7030 | site = OSKextGetAllocationSiteForCaller(retaddr); | |
7031 | break; | |
7032 | } | |
7033 | ||
7034 | frameptr = frameptr_next; | |
7035 | } | |
7036 | return (site ? site->tag : VM_KERN_MEMORY_NONE); | |
7037 | } | |
7038 | ||
7039 | static uint64_t free_tag_bits[256/64]; | |
7040 | ||
7041 | void | |
7042 | vm_tag_alloc_locked(vm_allocation_site_t * site) | |
7043 | { | |
7044 | vm_tag_t tag; | |
7045 | uint64_t avail; | |
7046 | uint64_t idx; | |
7047 | ||
7048 | if (site->tag) return; | |
7049 | ||
7050 | idx = 0; | |
7051 | while (TRUE) | |
7052 | { | |
7053 | avail = free_tag_bits[idx]; | |
7054 | if (avail) | |
7055 | { | |
7056 | tag = __builtin_clzll(avail); | |
7057 | avail &= ~(1ULL << (63 - tag)); | |
7058 | free_tag_bits[idx] = avail; | |
7059 | tag += (idx << 6); | |
7060 | break; | |
7061 | } | |
7062 | idx++; | |
7063 | if (idx >= (sizeof(free_tag_bits) / sizeof(free_tag_bits[0]))) | |
7064 | { | |
7065 | tag = VM_KERN_MEMORY_ANY; | |
7066 | break; | |
7067 | } | |
7068 | } | |
7069 | site->tag = tag; | |
7070 | if (VM_KERN_MEMORY_ANY != tag) | |
7071 | { | |
7072 | assert(!vm_allocation_sites[tag]); | |
7073 | vm_allocation_sites[tag] = site; | |
7074 | } | |
7075 | } | |
7076 | ||
7077 | static void | |
7078 | vm_tag_free_locked(vm_tag_t tag) | |
7079 | { | |
7080 | uint64_t avail; | |
7081 | uint32_t idx; | |
7082 | uint64_t bit; | |
7083 | ||
7084 | if (VM_KERN_MEMORY_ANY == tag) return; | |
7085 | ||
7086 | idx = (tag >> 6); | |
7087 | avail = free_tag_bits[idx]; | |
7088 | tag &= 63; | |
7089 | bit = (1ULL << (63 - tag)); | |
7090 | assert(!(avail & bit)); | |
7091 | free_tag_bits[idx] = (avail | bit); | |
7092 | } | |
7093 | ||
7094 | static void | |
7095 | vm_tag_init(void) | |
7096 | { | |
7097 | vm_tag_t tag; | |
7098 | for (tag = VM_KERN_MEMORY_FIRST_DYNAMIC; tag < VM_KERN_MEMORY_ANY; tag++) | |
7099 | { | |
7100 | vm_tag_free_locked(tag); | |
7101 | } | |
7102 | } | |
7103 | ||
7104 | vm_tag_t | |
7105 | vm_tag_alloc(vm_allocation_site_t * site) | |
7106 | { | |
7107 | vm_tag_t tag; | |
7108 | ||
7109 | if (VM_TAG_BT & site->flags) | |
7110 | { | |
7111 | tag = vm_tag_bt(); | |
7112 | if (VM_KERN_MEMORY_NONE != tag) return (tag); | |
7113 | } | |
7114 | ||
7115 | if (!site->tag) | |
7116 | { | |
7117 | lck_spin_lock(&vm_allocation_sites_lock); | |
7118 | vm_tag_alloc_locked(site); | |
7119 | lck_spin_unlock(&vm_allocation_sites_lock); | |
7120 | } | |
7121 | ||
7122 | return (site->tag); | |
7123 | } | |
7124 | ||
7125 | static void | |
7126 | vm_page_count_object(mach_memory_info_t * sites, unsigned int __unused num_sites, vm_object_t object) | |
7127 | { | |
7128 | if (!object->wired_page_count) return; | |
7129 | if (object != kernel_object) | |
7130 | { | |
7131 | assert(object->wire_tag < num_sites); | |
7132 | sites[object->wire_tag].size += ptoa_64(object->wired_page_count); | |
7133 | } | |
7134 | } | |
7135 | ||
7136 | typedef void (*vm_page_iterate_proc)(mach_memory_info_t * sites, | |
7137 | unsigned int num_sites, vm_object_t object); | |
7138 | ||
7139 | static void | |
7140 | vm_page_iterate_purgeable_objects(mach_memory_info_t * sites, unsigned int num_sites, | |
7141 | vm_page_iterate_proc proc, purgeable_q_t queue, | |
7142 | int group) | |
7143 | { | |
7144 | vm_object_t object; | |
7145 | ||
7146 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
7147 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
7148 | object = (vm_object_t) queue_next(&object->objq)) | |
7149 | { | |
7150 | proc(sites, num_sites, object); | |
7151 | } | |
7152 | } | |
7153 | ||
7154 | static void | |
7155 | vm_page_iterate_objects(mach_memory_info_t * sites, unsigned int num_sites, | |
7156 | vm_page_iterate_proc proc) | |
7157 | { | |
7158 | purgeable_q_t volatile_q; | |
7159 | queue_head_t * nonvolatile_q; | |
7160 | vm_object_t object; | |
7161 | int group; | |
7162 | ||
7163 | lck_spin_lock(&vm_objects_wired_lock); | |
7164 | queue_iterate(&vm_objects_wired, | |
7165 | object, | |
7166 | vm_object_t, | |
7167 | objq) | |
7168 | { | |
7169 | proc(sites, num_sites, object); | |
7170 | } | |
7171 | lck_spin_unlock(&vm_objects_wired_lock); | |
7172 | ||
7173 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
7174 | nonvolatile_q = &purgeable_nonvolatile_queue; | |
7175 | for (object = (vm_object_t) queue_first(nonvolatile_q); | |
7176 | !queue_end(nonvolatile_q, (queue_entry_t) object); | |
7177 | object = (vm_object_t) queue_next(&object->objq)) | |
7178 | { | |
7179 | proc(sites, num_sites, object); | |
7180 | } | |
7181 | ||
7182 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
7183 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, 0); | |
7184 | ||
7185 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
7186 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
7187 | { | |
7188 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, group); | |
7189 | } | |
7190 | ||
7191 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
7192 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
7193 | { | |
7194 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, group); | |
7195 | } | |
7196 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
7197 | } | |
7198 | ||
7199 | static uint64_t | |
7200 | process_account(mach_memory_info_t * sites, unsigned int __unused num_sites) | |
7201 | { | |
7202 | uint64_t found; | |
7203 | unsigned int idx; | |
7204 | vm_allocation_site_t * site; | |
7205 | ||
7206 | assert(num_sites >= VM_KERN_MEMORY_COUNT); | |
7207 | found = 0; | |
7208 | for (idx = 0; idx < VM_KERN_MEMORY_COUNT; idx++) | |
7209 | { | |
7210 | found += sites[idx].size; | |
7211 | if (idx < VM_KERN_MEMORY_FIRST_DYNAMIC) | |
7212 | { | |
7213 | sites[idx].site = idx; | |
7214 | sites[idx].flags |= VM_KERN_SITE_TAG; | |
7215 | if (VM_KERN_MEMORY_ZONE == idx) sites[idx].flags |= VM_KERN_SITE_HIDE; | |
7216 | else sites[idx].flags |= VM_KERN_SITE_WIRED; | |
7217 | continue; | |
7218 | } | |
7219 | lck_spin_lock(&vm_allocation_sites_lock); | |
7220 | if ((site = vm_allocation_sites[idx])) | |
7221 | { | |
7222 | if (sites[idx].size) | |
7223 | { | |
7224 | sites[idx].flags |= VM_KERN_SITE_WIRED; | |
7225 | if (VM_TAG_KMOD == (VM_KERN_SITE_TYPE & site->flags)) | |
7226 | { | |
7227 | sites[idx].site = OSKextGetKmodIDForSite(site); | |
7228 | sites[idx].flags |= VM_KERN_SITE_KMOD; | |
7229 | } | |
7230 | else | |
7231 | { | |
7232 | sites[idx].site = VM_KERNEL_UNSLIDE(site); | |
7233 | sites[idx].flags |= VM_KERN_SITE_KERNEL; | |
7234 | } | |
7235 | site = NULL; | |
7236 | } | |
7237 | else | |
7238 | { | |
7239 | vm_tag_free_locked(site->tag); | |
7240 | site->tag = VM_KERN_MEMORY_NONE; | |
7241 | vm_allocation_sites[idx] = NULL; | |
7242 | if (!(VM_TAG_UNLOAD & site->flags)) site = NULL; | |
7243 | } | |
7244 | } | |
7245 | lck_spin_unlock(&vm_allocation_sites_lock); | |
7246 | if (site) OSKextFreeSite(site); | |
7247 | } | |
7248 | return (found); | |
7249 | } | |
7250 | ||
7251 | kern_return_t | |
7252 | vm_page_diagnose(mach_memory_info_t * sites, unsigned int num_sites) | |
7253 | { | |
7254 | enum { kMaxKernelDepth = 1 }; | |
7255 | vm_map_t maps [kMaxKernelDepth]; | |
7256 | vm_map_entry_t entries[kMaxKernelDepth]; | |
7257 | vm_map_t map; | |
7258 | vm_map_entry_t entry; | |
7259 | vm_object_offset_t offset; | |
7260 | vm_page_t page; | |
7261 | int stackIdx, count; | |
7262 | uint64_t wired_size; | |
7263 | uint64_t wired_managed_size; | |
7264 | uint64_t wired_reserved_size; | |
7265 | mach_memory_info_t * counts; | |
7266 | ||
7267 | bzero(sites, num_sites * sizeof(mach_memory_info_t)); | |
7268 | ||
7269 | vm_page_iterate_objects(sites, num_sites, &vm_page_count_object); | |
7270 | ||
7271 | wired_size = ptoa_64(vm_page_wire_count + vm_lopage_free_count + vm_page_throttled_count); | |
7272 | wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count + vm_page_throttled_count); | |
7273 | wired_managed_size = ptoa_64(vm_page_wire_count - vm_page_wire_count_initial); | |
7274 | ||
7275 | assert(num_sites >= (VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT)); | |
7276 | counts = &sites[VM_KERN_MEMORY_COUNT]; | |
7277 | ||
7278 | #define SET_COUNT(xcount, xsize, xflags) \ | |
7279 | counts[xcount].site = (xcount); \ | |
7280 | counts[xcount].size = (xsize); \ | |
7281 | counts[xcount].flags = VM_KERN_SITE_COUNTER | xflags; | |
7282 | ||
7283 | SET_COUNT(VM_KERN_COUNT_MANAGED, ptoa_64(vm_page_pages), 0); | |
7284 | SET_COUNT(VM_KERN_COUNT_WIRED, wired_size, 0); | |
7285 | SET_COUNT(VM_KERN_COUNT_WIRED_MANAGED, wired_managed_size, 0); | |
7286 | SET_COUNT(VM_KERN_COUNT_RESERVED, wired_reserved_size, VM_KERN_SITE_WIRED); | |
7287 | SET_COUNT(VM_KERN_COUNT_STOLEN, ptoa_64(vm_page_stolen_count), VM_KERN_SITE_WIRED); | |
7288 | SET_COUNT(VM_KERN_COUNT_LOPAGE, ptoa_64(vm_lopage_free_count), VM_KERN_SITE_WIRED); | |
7289 | ||
7290 | #define SET_MAP(xcount, xsize, xfree, xlargest) \ | |
7291 | counts[xcount].site = (xcount); \ | |
7292 | counts[xcount].size = (xsize); \ | |
7293 | counts[xcount].free = (xfree); \ | |
7294 | counts[xcount].largest = (xlargest); \ | |
7295 | counts[xcount].flags = VM_KERN_SITE_COUNTER; | |
7296 | ||
7297 | vm_map_size_t map_size, map_free, map_largest; | |
7298 | ||
7299 | vm_map_sizes(kernel_map, &map_size, &map_free, &map_largest); | |
7300 | SET_MAP(VM_KERN_COUNT_MAP_KERNEL, map_size, map_free, map_largest); | |
7301 | ||
7302 | vm_map_sizes(zone_map, &map_size, &map_free, &map_largest); | |
7303 | SET_MAP(VM_KERN_COUNT_MAP_ZONE, map_size, map_free, map_largest); | |
7304 | ||
7305 | vm_map_sizes(kalloc_map, &map_size, &map_free, &map_largest); | |
7306 | SET_MAP(VM_KERN_COUNT_MAP_KALLOC, map_size, map_free, map_largest); | |
7307 | ||
7308 | map = kernel_map; | |
7309 | stackIdx = 0; | |
7310 | while (map) | |
7311 | { | |
7312 | vm_map_lock(map); | |
7313 | for (entry = map->hdr.links.next; map; entry = entry->links.next) | |
7314 | { | |
7315 | if (entry->is_sub_map) | |
7316 | { | |
7317 | assert(stackIdx < kMaxKernelDepth); | |
7318 | maps[stackIdx] = map; | |
7319 | entries[stackIdx] = entry; | |
7320 | stackIdx++; | |
7321 | map = VME_SUBMAP(entry); | |
7322 | entry = NULL; | |
7323 | break; | |
7324 | } | |
7325 | if (VME_OBJECT(entry) == kernel_object) | |
7326 | { | |
7327 | count = 0; | |
7328 | vm_object_lock(VME_OBJECT(entry)); | |
7329 | for (offset = entry->links.start; offset < entry->links.end; offset += page_size) | |
7330 | { | |
7331 | page = vm_page_lookup(VME_OBJECT(entry), offset); | |
7332 | if (page && VM_PAGE_WIRED(page)) count++; | |
7333 | } | |
7334 | vm_object_unlock(VME_OBJECT(entry)); | |
7335 | ||
7336 | if (count) | |
7337 | { | |
7338 | assert(VME_ALIAS(entry) < num_sites); | |
7339 | sites[VME_ALIAS(entry)].size += ptoa_64(count); | |
7340 | } | |
7341 | } | |
7342 | if (entry == vm_map_last_entry(map)) | |
7343 | { | |
7344 | vm_map_unlock(map); | |
7345 | if (!stackIdx) map = NULL; | |
7346 | else | |
7347 | { | |
7348 | --stackIdx; | |
7349 | map = maps[stackIdx]; | |
7350 | entry = entries[stackIdx]; | |
7351 | } | |
7352 | } | |
7353 | } | |
7354 | } | |
7355 | ||
7356 | process_account(sites, num_sites); | |
7357 | ||
7358 | return (KERN_SUCCESS); | |
7359 | } |