]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_FREE_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: sched_prim.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * Date: 1986 | |
62 | * | |
63 | * Scheduling primitives | |
64 | * | |
65 | */ | |
66 | ||
67 | #include <debug.h> | |
68 | ||
69 | #include <mach/mach_types.h> | |
70 | #include <mach/machine.h> | |
71 | #include <mach/policy.h> | |
72 | #include <mach/sync_policy.h> | |
73 | #include <mach/thread_act.h> | |
74 | ||
75 | #include <machine/machine_routines.h> | |
76 | #include <machine/sched_param.h> | |
77 | #include <machine/machine_cpu.h> | |
78 | #include <machine/machlimits.h> | |
79 | ||
80 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
81 | #include <machine/commpage.h> | |
82 | #endif | |
83 | ||
84 | #include <kern/kern_types.h> | |
85 | #include <kern/clock.h> | |
86 | #include <kern/counters.h> | |
87 | #include <kern/cpu_number.h> | |
88 | #include <kern/cpu_data.h> | |
89 | #include <kern/smp.h> | |
90 | #include <kern/debug.h> | |
91 | #include <kern/macro_help.h> | |
92 | #include <kern/machine.h> | |
93 | #include <kern/misc_protos.h> | |
94 | #include <kern/processor.h> | |
95 | #include <kern/queue.h> | |
96 | #include <kern/sched.h> | |
97 | #include <kern/sched_prim.h> | |
98 | #include <kern/sfi.h> | |
99 | #include <kern/syscall_subr.h> | |
100 | #include <kern/task.h> | |
101 | #include <kern/thread.h> | |
102 | #include <kern/ledger.h> | |
103 | #include <kern/timer_queue.h> | |
104 | #include <kern/waitq.h> | |
105 | ||
106 | #include <vm/pmap.h> | |
107 | #include <vm/vm_kern.h> | |
108 | #include <vm/vm_map.h> | |
109 | ||
110 | #include <mach/sdt.h> | |
111 | ||
112 | #include <sys/kdebug.h> | |
113 | ||
114 | #include <kern/pms.h> | |
115 | ||
116 | #if defined(CONFIG_TELEMETRY) && defined(CONFIG_SCHED_TIMESHARE_CORE) | |
117 | #include <kern/telemetry.h> | |
118 | #endif | |
119 | ||
120 | struct rt_queue rt_runq; | |
121 | ||
122 | uintptr_t sched_thread_on_rt_queue = (uintptr_t)0xDEAFBEE0; | |
123 | ||
124 | /* Lock RT runq, must be done with interrupts disabled (under splsched()) */ | |
125 | #if __SMP__ | |
126 | decl_simple_lock_data(static,rt_lock); | |
127 | #define rt_lock_init() simple_lock_init(&rt_lock, 0) | |
128 | #define rt_lock_lock() simple_lock(&rt_lock) | |
129 | #define rt_lock_unlock() simple_unlock(&rt_lock) | |
130 | #else | |
131 | #define rt_lock_init() do { } while(0) | |
132 | #define rt_lock_lock() do { } while(0) | |
133 | #define rt_lock_unlock() do { } while(0) | |
134 | #endif | |
135 | ||
136 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ | |
137 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
138 | ||
139 | #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */ | |
140 | int default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; | |
141 | ||
142 | #define MAX_UNSAFE_QUANTA 800 | |
143 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; | |
144 | ||
145 | #define MAX_POLL_QUANTA 2 | |
146 | int max_poll_quanta = MAX_POLL_QUANTA; | |
147 | ||
148 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ | |
149 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; | |
150 | ||
151 | uint64_t max_poll_computation; | |
152 | ||
153 | uint64_t max_unsafe_computation; | |
154 | uint64_t sched_safe_duration; | |
155 | ||
156 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
157 | ||
158 | uint32_t std_quantum; | |
159 | uint32_t min_std_quantum; | |
160 | uint32_t bg_quantum; | |
161 | ||
162 | uint32_t std_quantum_us; | |
163 | uint32_t bg_quantum_us; | |
164 | ||
165 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
166 | ||
167 | uint32_t thread_depress_time; | |
168 | uint32_t default_timeshare_computation; | |
169 | uint32_t default_timeshare_constraint; | |
170 | ||
171 | uint32_t max_rt_quantum; | |
172 | uint32_t min_rt_quantum; | |
173 | ||
174 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
175 | ||
176 | unsigned sched_tick; | |
177 | uint32_t sched_tick_interval; | |
178 | #if defined(CONFIG_TELEMETRY) | |
179 | uint32_t sched_telemetry_interval; | |
180 | #endif /* CONFIG_TELEMETRY */ | |
181 | ||
182 | uint32_t sched_pri_shift = INT8_MAX; | |
183 | uint32_t sched_background_pri_shift = INT8_MAX; | |
184 | uint32_t sched_combined_fgbg_pri_shift = INT8_MAX; | |
185 | uint32_t sched_fixed_shift; | |
186 | uint32_t sched_use_combined_fgbg_decay = 0; | |
187 | ||
188 | uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */ | |
189 | ||
190 | /* Allow foreground to decay past default to resolve inversions */ | |
191 | #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2) | |
192 | int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; | |
193 | ||
194 | /* Defaults for timer deadline profiling */ | |
195 | #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <= | |
196 | * 2ms */ | |
197 | #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines | |
198 | <= 5ms */ | |
199 | ||
200 | uint64_t timer_deadline_tracking_bin_1; | |
201 | uint64_t timer_deadline_tracking_bin_2; | |
202 | ||
203 | thread_t sched_maintenance_thread; | |
204 | ||
205 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
206 | ||
207 | uint64_t sched_one_second_interval; | |
208 | ||
209 | uint32_t sched_run_count, sched_share_count, sched_background_count; | |
210 | uint32_t sched_load_average, sched_mach_factor; | |
211 | ||
212 | /* Forwards */ | |
213 | ||
214 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
215 | ||
216 | static void load_shift_init(void); | |
217 | static void preempt_pri_init(void); | |
218 | ||
219 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
220 | ||
221 | static thread_t thread_select( | |
222 | thread_t thread, | |
223 | processor_t processor, | |
224 | ast_t reason); | |
225 | ||
226 | #if CONFIG_SCHED_IDLE_IN_PLACE | |
227 | static thread_t thread_select_idle( | |
228 | thread_t thread, | |
229 | processor_t processor); | |
230 | #endif | |
231 | ||
232 | thread_t processor_idle( | |
233 | thread_t thread, | |
234 | processor_t processor); | |
235 | ||
236 | ast_t | |
237 | csw_check_locked( processor_t processor, | |
238 | processor_set_t pset, | |
239 | ast_t check_reason); | |
240 | ||
241 | static void processor_setrun( | |
242 | processor_t processor, | |
243 | thread_t thread, | |
244 | integer_t options); | |
245 | ||
246 | static void | |
247 | sched_realtime_init(void); | |
248 | ||
249 | static void | |
250 | sched_realtime_timebase_init(void); | |
251 | ||
252 | static void | |
253 | sched_timer_deadline_tracking_init(void); | |
254 | ||
255 | #if DEBUG | |
256 | extern int debug_task; | |
257 | #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args) | |
258 | #else | |
259 | #define TLOG(a, fmt, args...) do {} while (0) | |
260 | #endif | |
261 | ||
262 | static processor_t | |
263 | thread_bind_internal( | |
264 | thread_t thread, | |
265 | processor_t processor); | |
266 | ||
267 | static void | |
268 | sched_vm_group_maintenance(void); | |
269 | ||
270 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
271 | int8_t sched_load_shifts[NRQS]; | |
272 | int sched_preempt_pri[NRQBM]; | |
273 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
274 | ||
275 | const struct sched_dispatch_table *sched_current_dispatch = NULL; | |
276 | ||
277 | /* | |
278 | * Statically allocate a buffer to hold the longest possible | |
279 | * scheduler description string, as currently implemented. | |
280 | * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/ | |
281 | * to export to userspace via sysctl(3). If either version | |
282 | * changes, update the other. | |
283 | * | |
284 | * Note that in addition to being an upper bound on the strings | |
285 | * in the kernel, it's also an exact parameter to PE_get_default(), | |
286 | * which interrogates the device tree on some platforms. That | |
287 | * API requires the caller know the exact size of the device tree | |
288 | * property, so we need both a legacy size (32) and the current size | |
289 | * (48) to deal with old and new device trees. The device tree property | |
290 | * is similarly padded to a fixed size so that the same kernel image | |
291 | * can run on multiple devices with different schedulers configured | |
292 | * in the device tree. | |
293 | */ | |
294 | char sched_string[SCHED_STRING_MAX_LENGTH]; | |
295 | ||
296 | uint32_t sched_debug_flags; | |
297 | ||
298 | /* Global flag which indicates whether Background Stepper Context is enabled */ | |
299 | static int cpu_throttle_enabled = 1; | |
300 | ||
301 | void | |
302 | sched_init(void) | |
303 | { | |
304 | char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' }; | |
305 | ||
306 | /* Check for runtime selection of the scheduler algorithm */ | |
307 | if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) { | |
308 | /* If no boot-args override, look in device tree */ | |
309 | if (!PE_get_default("kern.sched", sched_arg, | |
310 | SCHED_STRING_MAX_LENGTH)) { | |
311 | sched_arg[0] = '\0'; | |
312 | } | |
313 | } | |
314 | ||
315 | ||
316 | if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) { | |
317 | /* No boot-args, check in device tree */ | |
318 | if (!PE_get_default("kern.sched_pri_decay_limit", | |
319 | &sched_pri_decay_band_limit, | |
320 | sizeof(sched_pri_decay_band_limit))) { | |
321 | /* Allow decay all the way to normal limits */ | |
322 | sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; | |
323 | } | |
324 | } | |
325 | ||
326 | kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit); | |
327 | ||
328 | if (strlen(sched_arg) > 0) { | |
329 | if (0) { | |
330 | /* Allow pattern below */ | |
331 | #if defined(CONFIG_SCHED_TRADITIONAL) | |
332 | } else if (0 == strcmp(sched_arg, sched_traditional_dispatch.sched_name)) { | |
333 | sched_current_dispatch = &sched_traditional_dispatch; | |
334 | } else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) { | |
335 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; | |
336 | #endif | |
337 | #if defined(CONFIG_SCHED_PROTO) | |
338 | } else if (0 == strcmp(sched_arg, sched_proto_dispatch.sched_name)) { | |
339 | sched_current_dispatch = &sched_proto_dispatch; | |
340 | #endif | |
341 | #if defined(CONFIG_SCHED_GRRR) | |
342 | } else if (0 == strcmp(sched_arg, sched_grrr_dispatch.sched_name)) { | |
343 | sched_current_dispatch = &sched_grrr_dispatch; | |
344 | #endif | |
345 | #if defined(CONFIG_SCHED_MULTIQ) | |
346 | } else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) { | |
347 | sched_current_dispatch = &sched_multiq_dispatch; | |
348 | } else if (0 == strcmp(sched_arg, sched_dualq_dispatch.sched_name)) { | |
349 | sched_current_dispatch = &sched_dualq_dispatch; | |
350 | #endif | |
351 | } else { | |
352 | #if defined(CONFIG_SCHED_TRADITIONAL) | |
353 | printf("Unrecognized scheduler algorithm: %s\n", sched_arg); | |
354 | printf("Scheduler: Using instead: %s\n", sched_traditional_with_pset_runqueue_dispatch.sched_name); | |
355 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; | |
356 | #else | |
357 | panic("Unrecognized scheduler algorithm: %s", sched_arg); | |
358 | #endif | |
359 | } | |
360 | kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name)); | |
361 | } else { | |
362 | #if defined(CONFIG_SCHED_MULTIQ) | |
363 | sched_current_dispatch = &sched_multiq_dispatch; | |
364 | #elif defined(CONFIG_SCHED_TRADITIONAL) | |
365 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; | |
366 | #elif defined(CONFIG_SCHED_PROTO) | |
367 | sched_current_dispatch = &sched_proto_dispatch; | |
368 | #elif defined(CONFIG_SCHED_GRRR) | |
369 | sched_current_dispatch = &sched_grrr_dispatch; | |
370 | #else | |
371 | #error No default scheduler implementation | |
372 | #endif | |
373 | kprintf("Scheduler: Default of %s\n", SCHED(sched_name)); | |
374 | } | |
375 | ||
376 | strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string)); | |
377 | ||
378 | if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) { | |
379 | kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags); | |
380 | } | |
381 | ||
382 | SCHED(init)(); | |
383 | sched_realtime_init(); | |
384 | ast_init(); | |
385 | sched_timer_deadline_tracking_init(); | |
386 | ||
387 | SCHED(pset_init)(&pset0); | |
388 | SCHED(processor_init)(master_processor); | |
389 | } | |
390 | ||
391 | void | |
392 | sched_timebase_init(void) | |
393 | { | |
394 | uint64_t abstime; | |
395 | ||
396 | clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime); | |
397 | sched_one_second_interval = abstime; | |
398 | ||
399 | SCHED(timebase_init)(); | |
400 | sched_realtime_timebase_init(); | |
401 | } | |
402 | ||
403 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
404 | ||
405 | void | |
406 | sched_timeshare_init(void) | |
407 | { | |
408 | /* | |
409 | * Calculate the timeslicing quantum | |
410 | * in us. | |
411 | */ | |
412 | if (default_preemption_rate < 1) | |
413 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
414 | std_quantum_us = (1000 * 1000) / default_preemption_rate; | |
415 | ||
416 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); | |
417 | ||
418 | if (default_bg_preemption_rate < 1) | |
419 | default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; | |
420 | bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate; | |
421 | ||
422 | printf("standard background quantum is %d us\n", bg_quantum_us); | |
423 | ||
424 | load_shift_init(); | |
425 | preempt_pri_init(); | |
426 | sched_tick = 0; | |
427 | } | |
428 | ||
429 | void | |
430 | sched_timeshare_timebase_init(void) | |
431 | { | |
432 | uint64_t abstime; | |
433 | uint32_t shift; | |
434 | ||
435 | /* standard timeslicing quantum */ | |
436 | clock_interval_to_absolutetime_interval( | |
437 | std_quantum_us, NSEC_PER_USEC, &abstime); | |
438 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
439 | std_quantum = (uint32_t)abstime; | |
440 | ||
441 | /* smallest remaining quantum (250 us) */ | |
442 | clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime); | |
443 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
444 | min_std_quantum = (uint32_t)abstime; | |
445 | ||
446 | /* quantum for background tasks */ | |
447 | clock_interval_to_absolutetime_interval( | |
448 | bg_quantum_us, NSEC_PER_USEC, &abstime); | |
449 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
450 | bg_quantum = (uint32_t)abstime; | |
451 | ||
452 | /* scheduler tick interval */ | |
453 | clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT, | |
454 | NSEC_PER_USEC, &abstime); | |
455 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
456 | sched_tick_interval = (uint32_t)abstime; | |
457 | ||
458 | /* | |
459 | * Compute conversion factor from usage to | |
460 | * timesharing priorities with 5/8 ** n aging. | |
461 | */ | |
462 | abstime = (abstime * 5) / 3; | |
463 | for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift) | |
464 | abstime >>= 1; | |
465 | sched_fixed_shift = shift; | |
466 | ||
467 | max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum; | |
468 | sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum; | |
469 | ||
470 | max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum; | |
471 | thread_depress_time = 1 * std_quantum; | |
472 | default_timeshare_computation = std_quantum / 2; | |
473 | default_timeshare_constraint = std_quantum; | |
474 | ||
475 | #if defined(CONFIG_TELEMETRY) | |
476 | /* interval for high frequency telemetry */ | |
477 | clock_interval_to_absolutetime_interval(10, NSEC_PER_MSEC, &abstime); | |
478 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
479 | sched_telemetry_interval = (uint32_t)abstime; | |
480 | #endif | |
481 | } | |
482 | ||
483 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
484 | ||
485 | static void | |
486 | sched_realtime_init(void) | |
487 | { | |
488 | rt_lock_init(); | |
489 | ||
490 | rt_runq.count = 0; | |
491 | queue_init(&rt_runq.queue); | |
492 | } | |
493 | ||
494 | static void | |
495 | sched_realtime_timebase_init(void) | |
496 | { | |
497 | uint64_t abstime; | |
498 | ||
499 | /* smallest rt computaton (50 us) */ | |
500 | clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime); | |
501 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
502 | min_rt_quantum = (uint32_t)abstime; | |
503 | ||
504 | /* maximum rt computation (50 ms) */ | |
505 | clock_interval_to_absolutetime_interval( | |
506 | 50, 1000*NSEC_PER_USEC, &abstime); | |
507 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
508 | max_rt_quantum = (uint32_t)abstime; | |
509 | ||
510 | } | |
511 | ||
512 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
513 | ||
514 | /* | |
515 | * Set up values for timeshare | |
516 | * loading factors. | |
517 | */ | |
518 | static void | |
519 | load_shift_init(void) | |
520 | { | |
521 | int8_t k, *p = sched_load_shifts; | |
522 | uint32_t i, j; | |
523 | ||
524 | uint32_t sched_decay_penalty = 1; | |
525 | ||
526 | if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty, sizeof (sched_decay_penalty))) { | |
527 | kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty); | |
528 | } | |
529 | ||
530 | if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor, sizeof (sched_decay_usage_age_factor))) { | |
531 | kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor); | |
532 | } | |
533 | ||
534 | if (PE_parse_boot_argn("sched_use_combined_fgbg_decay", &sched_use_combined_fgbg_decay, sizeof (sched_use_combined_fgbg_decay))) { | |
535 | kprintf("Overriding schedule fg/bg decay calculation: %u\n", sched_use_combined_fgbg_decay); | |
536 | } | |
537 | ||
538 | if (sched_decay_penalty == 0) { | |
539 | /* | |
540 | * There is no penalty for timeshare threads for using too much | |
541 | * CPU, so set all load shifts to INT8_MIN. Even under high load, | |
542 | * sched_pri_shift will be >INT8_MAX, and there will be no | |
543 | * penalty applied to threads (nor will sched_usage be updated per | |
544 | * thread). | |
545 | */ | |
546 | for (i = 0; i < NRQS; i++) { | |
547 | sched_load_shifts[i] = INT8_MIN; | |
548 | } | |
549 | ||
550 | return; | |
551 | } | |
552 | ||
553 | *p++ = INT8_MIN; *p++ = 0; | |
554 | ||
555 | /* | |
556 | * For a given system load "i", the per-thread priority | |
557 | * penalty per quantum of CPU usage is ~2^k priority | |
558 | * levels. "sched_decay_penalty" can cause more | |
559 | * array entries to be filled with smaller "k" values | |
560 | */ | |
561 | for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) { | |
562 | for (j <<= 1; (i < j) && (i < NRQS); ++i) | |
563 | *p++ = k; | |
564 | } | |
565 | } | |
566 | ||
567 | static void | |
568 | preempt_pri_init(void) | |
569 | { | |
570 | int i, *p = sched_preempt_pri; | |
571 | ||
572 | for (i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i) | |
573 | setbit(i, p); | |
574 | ||
575 | for (i = BASEPRI_PREEMPT; i <= MAXPRI; ++i) | |
576 | setbit(i, p); | |
577 | } | |
578 | ||
579 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
580 | ||
581 | /* | |
582 | * Thread wait timer expiration. | |
583 | */ | |
584 | void | |
585 | thread_timer_expire( | |
586 | void *p0, | |
587 | __unused void *p1) | |
588 | { | |
589 | thread_t thread = p0; | |
590 | spl_t s; | |
591 | ||
592 | s = splsched(); | |
593 | thread_lock(thread); | |
594 | if (--thread->wait_timer_active == 0) { | |
595 | if (thread->wait_timer_is_set) { | |
596 | thread->wait_timer_is_set = FALSE; | |
597 | clear_wait_internal(thread, THREAD_TIMED_OUT); | |
598 | } | |
599 | } | |
600 | thread_unlock(thread); | |
601 | splx(s); | |
602 | } | |
603 | ||
604 | /* | |
605 | * thread_unblock: | |
606 | * | |
607 | * Unblock thread on wake up. | |
608 | * | |
609 | * Returns TRUE if the thread should now be placed on the runqueue. | |
610 | * | |
611 | * Thread must be locked. | |
612 | * | |
613 | * Called at splsched(). | |
614 | */ | |
615 | boolean_t | |
616 | thread_unblock( | |
617 | thread_t thread, | |
618 | wait_result_t wresult) | |
619 | { | |
620 | boolean_t ready_for_runq = FALSE; | |
621 | thread_t cthread = current_thread(); | |
622 | uint32_t new_run_count; | |
623 | ||
624 | /* | |
625 | * Set wait_result. | |
626 | */ | |
627 | thread->wait_result = wresult; | |
628 | ||
629 | /* | |
630 | * Cancel pending wait timer. | |
631 | */ | |
632 | if (thread->wait_timer_is_set) { | |
633 | if (timer_call_cancel(&thread->wait_timer)) | |
634 | thread->wait_timer_active--; | |
635 | thread->wait_timer_is_set = FALSE; | |
636 | } | |
637 | ||
638 | /* | |
639 | * Update scheduling state: not waiting, | |
640 | * set running. | |
641 | */ | |
642 | thread->state &= ~(TH_WAIT|TH_UNINT); | |
643 | ||
644 | if (!(thread->state & TH_RUN)) { | |
645 | thread->state |= TH_RUN; | |
646 | thread->last_made_runnable_time = mach_approximate_time(); | |
647 | ||
648 | ready_for_runq = TRUE; | |
649 | ||
650 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); | |
651 | ||
652 | /* | |
653 | * Update run counts. | |
654 | */ | |
655 | new_run_count = sched_run_incr(thread); | |
656 | if (thread->sched_mode == TH_MODE_TIMESHARE) { | |
657 | sched_share_incr(thread); | |
658 | ||
659 | if (thread->sched_flags & TH_SFLAG_THROTTLED) | |
660 | sched_background_incr(thread); | |
661 | } | |
662 | } else { | |
663 | /* | |
664 | * Signal if idling on another processor. | |
665 | */ | |
666 | #if CONFIG_SCHED_IDLE_IN_PLACE | |
667 | if (thread->state & TH_IDLE) { | |
668 | processor_t processor = thread->last_processor; | |
669 | ||
670 | if (processor != current_processor()) | |
671 | machine_signal_idle(processor); | |
672 | } | |
673 | #else | |
674 | assert((thread->state & TH_IDLE) == 0); | |
675 | #endif | |
676 | ||
677 | new_run_count = sched_run_count; /* updated in thread_select_idle() */ | |
678 | } | |
679 | ||
680 | ||
681 | /* | |
682 | * Calculate deadline for real-time threads. | |
683 | */ | |
684 | if (thread->sched_mode == TH_MODE_REALTIME) { | |
685 | uint64_t ctime; | |
686 | ||
687 | ctime = mach_absolute_time(); | |
688 | thread->realtime.deadline = thread->realtime.constraint + ctime; | |
689 | } | |
690 | ||
691 | /* | |
692 | * Clear old quantum, fail-safe computation, etc. | |
693 | */ | |
694 | thread->quantum_remaining = 0; | |
695 | thread->computation_metered = 0; | |
696 | thread->reason = AST_NONE; | |
697 | ||
698 | /* Obtain power-relevant interrupt and "platform-idle exit" statistics. | |
699 | * We also account for "double hop" thread signaling via | |
700 | * the thread callout infrastructure. | |
701 | * DRK: consider removing the callout wakeup counters in the future | |
702 | * they're present for verification at the moment. | |
703 | */ | |
704 | boolean_t aticontext, pidle; | |
705 | ml_get_power_state(&aticontext, &pidle); | |
706 | ||
707 | if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) { | |
708 | ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1); | |
709 | DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
710 | ||
711 | uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd); | |
712 | ||
713 | if (ttd) { | |
714 | if (ttd <= timer_deadline_tracking_bin_1) | |
715 | thread->thread_timer_wakeups_bin_1++; | |
716 | else | |
717 | if (ttd <= timer_deadline_tracking_bin_2) | |
718 | thread->thread_timer_wakeups_bin_2++; | |
719 | } | |
720 | ||
721 | if (pidle) { | |
722 | ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1); | |
723 | } | |
724 | ||
725 | } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) { | |
726 | if (cthread->callout_woken_from_icontext) { | |
727 | ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1); | |
728 | thread->thread_callout_interrupt_wakeups++; | |
729 | if (cthread->callout_woken_from_platform_idle) { | |
730 | ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1); | |
731 | thread->thread_callout_platform_idle_wakeups++; | |
732 | } | |
733 | ||
734 | cthread->callout_woke_thread = TRUE; | |
735 | } | |
736 | } | |
737 | ||
738 | if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) { | |
739 | thread->callout_woken_from_icontext = aticontext; | |
740 | thread->callout_woken_from_platform_idle = pidle; | |
741 | thread->callout_woke_thread = FALSE; | |
742 | } | |
743 | ||
744 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
745 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, | |
746 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, new_run_count, 0); | |
747 | ||
748 | DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
749 | ||
750 | return (ready_for_runq); | |
751 | } | |
752 | ||
753 | /* | |
754 | * Routine: thread_go | |
755 | * Purpose: | |
756 | * Unblock and dispatch thread. | |
757 | * Conditions: | |
758 | * thread lock held, IPC locks may be held. | |
759 | * thread must have been pulled from wait queue under same lock hold. | |
760 | * thread must have been waiting | |
761 | * Returns: | |
762 | * KERN_SUCCESS - Thread was set running | |
763 | * | |
764 | * TODO: This should return void | |
765 | */ | |
766 | kern_return_t | |
767 | thread_go( | |
768 | thread_t thread, | |
769 | wait_result_t wresult) | |
770 | { | |
771 | assert(thread->at_safe_point == FALSE); | |
772 | assert(thread->wait_event == NO_EVENT64); | |
773 | assert(thread->waitq == NULL); | |
774 | ||
775 | assert(!(thread->state & (TH_TERMINATE|TH_TERMINATE2))); | |
776 | assert(thread->state & TH_WAIT); | |
777 | ||
778 | ||
779 | if (thread_unblock(thread, wresult)) | |
780 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
781 | ||
782 | return (KERN_SUCCESS); | |
783 | } | |
784 | ||
785 | /* | |
786 | * Routine: thread_mark_wait_locked | |
787 | * Purpose: | |
788 | * Mark a thread as waiting. If, given the circumstances, | |
789 | * it doesn't want to wait (i.e. already aborted), then | |
790 | * indicate that in the return value. | |
791 | * Conditions: | |
792 | * at splsched() and thread is locked. | |
793 | */ | |
794 | __private_extern__ | |
795 | wait_result_t | |
796 | thread_mark_wait_locked( | |
797 | thread_t thread, | |
798 | wait_interrupt_t interruptible) | |
799 | { | |
800 | boolean_t at_safe_point; | |
801 | ||
802 | assert(thread == current_thread()); | |
803 | assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2))); | |
804 | ||
805 | /* | |
806 | * The thread may have certain types of interrupts/aborts masked | |
807 | * off. Even if the wait location says these types of interrupts | |
808 | * are OK, we have to honor mask settings (outer-scoped code may | |
809 | * not be able to handle aborts at the moment). | |
810 | */ | |
811 | if (interruptible > (thread->options & TH_OPT_INTMASK)) | |
812 | interruptible = thread->options & TH_OPT_INTMASK; | |
813 | ||
814 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
815 | ||
816 | if ( interruptible == THREAD_UNINT || | |
817 | !(thread->sched_flags & TH_SFLAG_ABORT) || | |
818 | (!at_safe_point && | |
819 | (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) { | |
820 | ||
821 | if ( !(thread->state & TH_TERMINATE)) | |
822 | DTRACE_SCHED(sleep); | |
823 | ||
824 | thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT); | |
825 | thread->at_safe_point = at_safe_point; | |
826 | return (thread->wait_result = THREAD_WAITING); | |
827 | } | |
828 | else | |
829 | if (thread->sched_flags & TH_SFLAG_ABORTSAFELY) | |
830 | thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK; | |
831 | ||
832 | return (thread->wait_result = THREAD_INTERRUPTED); | |
833 | } | |
834 | ||
835 | /* | |
836 | * Routine: thread_interrupt_level | |
837 | * Purpose: | |
838 | * Set the maximum interruptible state for the | |
839 | * current thread. The effective value of any | |
840 | * interruptible flag passed into assert_wait | |
841 | * will never exceed this. | |
842 | * | |
843 | * Useful for code that must not be interrupted, | |
844 | * but which calls code that doesn't know that. | |
845 | * Returns: | |
846 | * The old interrupt level for the thread. | |
847 | */ | |
848 | __private_extern__ | |
849 | wait_interrupt_t | |
850 | thread_interrupt_level( | |
851 | wait_interrupt_t new_level) | |
852 | { | |
853 | thread_t thread = current_thread(); | |
854 | wait_interrupt_t result = thread->options & TH_OPT_INTMASK; | |
855 | ||
856 | thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK); | |
857 | ||
858 | return result; | |
859 | } | |
860 | ||
861 | /* | |
862 | * Check to see if an assert wait is possible, without actually doing one. | |
863 | * This is used by debug code in locks and elsewhere to verify that it is | |
864 | * always OK to block when trying to take a blocking lock (since waiting | |
865 | * for the actual assert_wait to catch the case may make it hard to detect | |
866 | * this case. | |
867 | */ | |
868 | boolean_t | |
869 | assert_wait_possible(void) | |
870 | { | |
871 | ||
872 | thread_t thread; | |
873 | ||
874 | #if DEBUG | |
875 | if(debug_mode) return TRUE; /* Always succeed in debug mode */ | |
876 | #endif | |
877 | ||
878 | thread = current_thread(); | |
879 | ||
880 | return (thread == NULL || waitq_wait_possible(thread)); | |
881 | } | |
882 | ||
883 | /* | |
884 | * assert_wait: | |
885 | * | |
886 | * Assert that the current thread is about to go to | |
887 | * sleep until the specified event occurs. | |
888 | */ | |
889 | wait_result_t | |
890 | assert_wait( | |
891 | event_t event, | |
892 | wait_interrupt_t interruptible) | |
893 | { | |
894 | if (__improbable(event == NO_EVENT)) | |
895 | panic("%s() called with NO_EVENT", __func__); | |
896 | ||
897 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
898 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
899 | VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0); | |
900 | ||
901 | struct waitq *waitq; | |
902 | waitq = global_eventq(event); | |
903 | return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER); | |
904 | } | |
905 | ||
906 | wait_result_t | |
907 | assert_wait_timeout( | |
908 | event_t event, | |
909 | wait_interrupt_t interruptible, | |
910 | uint32_t interval, | |
911 | uint32_t scale_factor) | |
912 | { | |
913 | thread_t thread = current_thread(); | |
914 | wait_result_t wresult; | |
915 | uint64_t deadline; | |
916 | spl_t s; | |
917 | ||
918 | if (__improbable(event == NO_EVENT)) | |
919 | panic("%s() called with NO_EVENT", __func__); | |
920 | ||
921 | struct waitq *waitq; | |
922 | waitq = global_eventq(event); | |
923 | ||
924 | s = splsched(); | |
925 | waitq_lock(waitq); | |
926 | thread_lock(thread); | |
927 | ||
928 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
929 | ||
930 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
931 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
932 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
933 | ||
934 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
935 | interruptible, | |
936 | TIMEOUT_URGENCY_SYS_NORMAL, | |
937 | deadline, TIMEOUT_NO_LEEWAY, | |
938 | thread); | |
939 | ||
940 | thread_unlock(thread); | |
941 | waitq_unlock(waitq); | |
942 | splx(s); | |
943 | return wresult; | |
944 | } | |
945 | ||
946 | wait_result_t | |
947 | assert_wait_timeout_with_leeway( | |
948 | event_t event, | |
949 | wait_interrupt_t interruptible, | |
950 | wait_timeout_urgency_t urgency, | |
951 | uint32_t interval, | |
952 | uint32_t leeway, | |
953 | uint32_t scale_factor) | |
954 | { | |
955 | thread_t thread = current_thread(); | |
956 | wait_result_t wresult; | |
957 | uint64_t deadline; | |
958 | uint64_t abstime; | |
959 | uint64_t slop; | |
960 | uint64_t now; | |
961 | spl_t s; | |
962 | ||
963 | if (__improbable(event == NO_EVENT)) | |
964 | panic("%s() called with NO_EVENT", __func__); | |
965 | ||
966 | now = mach_absolute_time(); | |
967 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
968 | deadline = now + abstime; | |
969 | ||
970 | clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop); | |
971 | ||
972 | struct waitq *waitq; | |
973 | waitq = global_eventq(event); | |
974 | ||
975 | s = splsched(); | |
976 | waitq_lock(waitq); | |
977 | thread_lock(thread); | |
978 | ||
979 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
980 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
981 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
982 | ||
983 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
984 | interruptible, | |
985 | urgency, deadline, slop, | |
986 | thread); | |
987 | ||
988 | thread_unlock(thread); | |
989 | waitq_unlock(waitq); | |
990 | splx(s); | |
991 | return wresult; | |
992 | } | |
993 | ||
994 | wait_result_t | |
995 | assert_wait_deadline( | |
996 | event_t event, | |
997 | wait_interrupt_t interruptible, | |
998 | uint64_t deadline) | |
999 | { | |
1000 | thread_t thread = current_thread(); | |
1001 | wait_result_t wresult; | |
1002 | spl_t s; | |
1003 | ||
1004 | if (__improbable(event == NO_EVENT)) | |
1005 | panic("%s() called with NO_EVENT", __func__); | |
1006 | ||
1007 | struct waitq *waitq; | |
1008 | waitq = global_eventq(event); | |
1009 | ||
1010 | s = splsched(); | |
1011 | waitq_lock(waitq); | |
1012 | thread_lock(thread); | |
1013 | ||
1014 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1015 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
1016 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
1017 | ||
1018 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
1019 | interruptible, | |
1020 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, | |
1021 | TIMEOUT_NO_LEEWAY, thread); | |
1022 | thread_unlock(thread); | |
1023 | waitq_unlock(waitq); | |
1024 | splx(s); | |
1025 | return wresult; | |
1026 | } | |
1027 | ||
1028 | wait_result_t | |
1029 | assert_wait_deadline_with_leeway( | |
1030 | event_t event, | |
1031 | wait_interrupt_t interruptible, | |
1032 | wait_timeout_urgency_t urgency, | |
1033 | uint64_t deadline, | |
1034 | uint64_t leeway) | |
1035 | { | |
1036 | thread_t thread = current_thread(); | |
1037 | wait_result_t wresult; | |
1038 | spl_t s; | |
1039 | ||
1040 | if (__improbable(event == NO_EVENT)) | |
1041 | panic("%s() called with NO_EVENT", __func__); | |
1042 | ||
1043 | struct waitq *waitq; | |
1044 | waitq = global_eventq(event); | |
1045 | ||
1046 | s = splsched(); | |
1047 | waitq_lock(waitq); | |
1048 | thread_lock(thread); | |
1049 | ||
1050 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1051 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
1052 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
1053 | ||
1054 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
1055 | interruptible, | |
1056 | urgency, deadline, leeway, | |
1057 | thread); | |
1058 | ||
1059 | thread_unlock(thread); | |
1060 | waitq_unlock(waitq); | |
1061 | splx(s); | |
1062 | return wresult; | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * thread_isoncpu: | |
1067 | * | |
1068 | * Return TRUE if a thread is running on a processor such that an AST | |
1069 | * is needed to pull it out of userspace execution, or if executing in | |
1070 | * the kernel, bring to a context switch boundary that would cause | |
1071 | * thread state to be serialized in the thread PCB. | |
1072 | * | |
1073 | * Thread locked, returns the same way. While locked, fields | |
1074 | * like "state" cannot change. "runq" can change only from set to unset. | |
1075 | */ | |
1076 | static inline boolean_t | |
1077 | thread_isoncpu(thread_t thread) | |
1078 | { | |
1079 | /* Not running or runnable */ | |
1080 | if (!(thread->state & TH_RUN)) | |
1081 | return (FALSE); | |
1082 | ||
1083 | /* Waiting on a runqueue, not currently running */ | |
1084 | /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */ | |
1085 | if (thread->runq != PROCESSOR_NULL) | |
1086 | return (FALSE); | |
1087 | ||
1088 | /* | |
1089 | * Thread does not have a stack yet | |
1090 | * It could be on the stack alloc queue or preparing to be invoked | |
1091 | */ | |
1092 | if (!thread->kernel_stack) | |
1093 | return (FALSE); | |
1094 | ||
1095 | /* | |
1096 | * Thread must be running on a processor, or | |
1097 | * about to run, or just did run. In all these | |
1098 | * cases, an AST to the processor is needed | |
1099 | * to guarantee that the thread is kicked out | |
1100 | * of userspace and the processor has | |
1101 | * context switched (and saved register state). | |
1102 | */ | |
1103 | return (TRUE); | |
1104 | } | |
1105 | ||
1106 | /* | |
1107 | * thread_stop: | |
1108 | * | |
1109 | * Force a preemption point for a thread and wait | |
1110 | * for it to stop running on a CPU. If a stronger | |
1111 | * guarantee is requested, wait until no longer | |
1112 | * runnable. Arbitrates access among | |
1113 | * multiple stop requests. (released by unstop) | |
1114 | * | |
1115 | * The thread must enter a wait state and stop via a | |
1116 | * separate means. | |
1117 | * | |
1118 | * Returns FALSE if interrupted. | |
1119 | */ | |
1120 | boolean_t | |
1121 | thread_stop( | |
1122 | thread_t thread, | |
1123 | boolean_t until_not_runnable) | |
1124 | { | |
1125 | wait_result_t wresult; | |
1126 | spl_t s = splsched(); | |
1127 | boolean_t oncpu; | |
1128 | ||
1129 | wake_lock(thread); | |
1130 | thread_lock(thread); | |
1131 | ||
1132 | while (thread->state & TH_SUSP) { | |
1133 | thread->wake_active = TRUE; | |
1134 | thread_unlock(thread); | |
1135 | ||
1136 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); | |
1137 | wake_unlock(thread); | |
1138 | splx(s); | |
1139 | ||
1140 | if (wresult == THREAD_WAITING) | |
1141 | wresult = thread_block(THREAD_CONTINUE_NULL); | |
1142 | ||
1143 | if (wresult != THREAD_AWAKENED) | |
1144 | return (FALSE); | |
1145 | ||
1146 | s = splsched(); | |
1147 | wake_lock(thread); | |
1148 | thread_lock(thread); | |
1149 | } | |
1150 | ||
1151 | thread->state |= TH_SUSP; | |
1152 | ||
1153 | while ((oncpu = thread_isoncpu(thread)) || | |
1154 | (until_not_runnable && (thread->state & TH_RUN))) { | |
1155 | processor_t processor; | |
1156 | ||
1157 | if (oncpu) { | |
1158 | assert(thread->state & TH_RUN); | |
1159 | processor = thread->chosen_processor; | |
1160 | cause_ast_check(processor); | |
1161 | } | |
1162 | ||
1163 | thread->wake_active = TRUE; | |
1164 | thread_unlock(thread); | |
1165 | ||
1166 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); | |
1167 | wake_unlock(thread); | |
1168 | splx(s); | |
1169 | ||
1170 | if (wresult == THREAD_WAITING) | |
1171 | wresult = thread_block(THREAD_CONTINUE_NULL); | |
1172 | ||
1173 | if (wresult != THREAD_AWAKENED) { | |
1174 | thread_unstop(thread); | |
1175 | return (FALSE); | |
1176 | } | |
1177 | ||
1178 | s = splsched(); | |
1179 | wake_lock(thread); | |
1180 | thread_lock(thread); | |
1181 | } | |
1182 | ||
1183 | thread_unlock(thread); | |
1184 | wake_unlock(thread); | |
1185 | splx(s); | |
1186 | ||
1187 | /* | |
1188 | * We return with the thread unlocked. To prevent it from | |
1189 | * transitioning to a runnable state (or from TH_RUN to | |
1190 | * being on the CPU), the caller must ensure the thread | |
1191 | * is stopped via an external means (such as an AST) | |
1192 | */ | |
1193 | ||
1194 | return (TRUE); | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * thread_unstop: | |
1199 | * | |
1200 | * Release a previous stop request and set | |
1201 | * the thread running if appropriate. | |
1202 | * | |
1203 | * Use only after a successful stop operation. | |
1204 | */ | |
1205 | void | |
1206 | thread_unstop( | |
1207 | thread_t thread) | |
1208 | { | |
1209 | spl_t s = splsched(); | |
1210 | ||
1211 | wake_lock(thread); | |
1212 | thread_lock(thread); | |
1213 | ||
1214 | assert((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) != TH_SUSP); | |
1215 | ||
1216 | if (thread->state & TH_SUSP) { | |
1217 | thread->state &= ~TH_SUSP; | |
1218 | ||
1219 | if (thread->wake_active) { | |
1220 | thread->wake_active = FALSE; | |
1221 | thread_unlock(thread); | |
1222 | ||
1223 | thread_wakeup(&thread->wake_active); | |
1224 | wake_unlock(thread); | |
1225 | splx(s); | |
1226 | ||
1227 | return; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | thread_unlock(thread); | |
1232 | wake_unlock(thread); | |
1233 | splx(s); | |
1234 | } | |
1235 | ||
1236 | /* | |
1237 | * thread_wait: | |
1238 | * | |
1239 | * Wait for a thread to stop running. (non-interruptible) | |
1240 | * | |
1241 | */ | |
1242 | void | |
1243 | thread_wait( | |
1244 | thread_t thread, | |
1245 | boolean_t until_not_runnable) | |
1246 | { | |
1247 | wait_result_t wresult; | |
1248 | boolean_t oncpu; | |
1249 | processor_t processor; | |
1250 | spl_t s = splsched(); | |
1251 | ||
1252 | wake_lock(thread); | |
1253 | thread_lock(thread); | |
1254 | ||
1255 | /* | |
1256 | * Wait until not running on a CPU. If stronger requirement | |
1257 | * desired, wait until not runnable. Assumption: if thread is | |
1258 | * on CPU, then TH_RUN is set, so we're not waiting in any case | |
1259 | * where the original, pure "TH_RUN" check would have let us | |
1260 | * finish. | |
1261 | */ | |
1262 | while ((oncpu = thread_isoncpu(thread)) || | |
1263 | (until_not_runnable && (thread->state & TH_RUN))) { | |
1264 | ||
1265 | if (oncpu) { | |
1266 | assert(thread->state & TH_RUN); | |
1267 | processor = thread->chosen_processor; | |
1268 | cause_ast_check(processor); | |
1269 | } | |
1270 | ||
1271 | thread->wake_active = TRUE; | |
1272 | thread_unlock(thread); | |
1273 | ||
1274 | wresult = assert_wait(&thread->wake_active, THREAD_UNINT); | |
1275 | wake_unlock(thread); | |
1276 | splx(s); | |
1277 | ||
1278 | if (wresult == THREAD_WAITING) | |
1279 | thread_block(THREAD_CONTINUE_NULL); | |
1280 | ||
1281 | s = splsched(); | |
1282 | wake_lock(thread); | |
1283 | thread_lock(thread); | |
1284 | } | |
1285 | ||
1286 | thread_unlock(thread); | |
1287 | wake_unlock(thread); | |
1288 | splx(s); | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Routine: clear_wait_internal | |
1293 | * | |
1294 | * Clear the wait condition for the specified thread. | |
1295 | * Start the thread executing if that is appropriate. | |
1296 | * Arguments: | |
1297 | * thread thread to awaken | |
1298 | * result Wakeup result the thread should see | |
1299 | * Conditions: | |
1300 | * At splsched | |
1301 | * the thread is locked. | |
1302 | * Returns: | |
1303 | * KERN_SUCCESS thread was rousted out a wait | |
1304 | * KERN_FAILURE thread was waiting but could not be rousted | |
1305 | * KERN_NOT_WAITING thread was not waiting | |
1306 | */ | |
1307 | __private_extern__ kern_return_t | |
1308 | clear_wait_internal( | |
1309 | thread_t thread, | |
1310 | wait_result_t wresult) | |
1311 | { | |
1312 | uint32_t i = LockTimeOut; | |
1313 | struct waitq *waitq = thread->waitq; | |
1314 | ||
1315 | do { | |
1316 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) | |
1317 | return (KERN_FAILURE); | |
1318 | ||
1319 | if (waitq != NULL) { | |
1320 | assert(waitq_irq_safe(waitq)); //irqs are already disabled! | |
1321 | if (waitq_lock_try(waitq)) { | |
1322 | waitq_pull_thread_locked(waitq, thread); | |
1323 | waitq_unlock(waitq); | |
1324 | } else { | |
1325 | thread_unlock(thread); | |
1326 | delay(1); | |
1327 | thread_lock(thread); | |
1328 | if (waitq != thread->waitq) | |
1329 | return KERN_NOT_WAITING; | |
1330 | continue; | |
1331 | } | |
1332 | } | |
1333 | ||
1334 | /* TODO: Can we instead assert TH_TERMINATE is not set? */ | |
1335 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) | |
1336 | return (thread_go(thread, wresult)); | |
1337 | else | |
1338 | return (KERN_NOT_WAITING); | |
1339 | } while ((--i > 0) || machine_timeout_suspended()); | |
1340 | ||
1341 | panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n", | |
1342 | thread, waitq, cpu_number()); | |
1343 | ||
1344 | return (KERN_FAILURE); | |
1345 | } | |
1346 | ||
1347 | ||
1348 | /* | |
1349 | * clear_wait: | |
1350 | * | |
1351 | * Clear the wait condition for the specified thread. Start the thread | |
1352 | * executing if that is appropriate. | |
1353 | * | |
1354 | * parameters: | |
1355 | * thread thread to awaken | |
1356 | * result Wakeup result the thread should see | |
1357 | */ | |
1358 | kern_return_t | |
1359 | clear_wait( | |
1360 | thread_t thread, | |
1361 | wait_result_t result) | |
1362 | { | |
1363 | kern_return_t ret; | |
1364 | spl_t s; | |
1365 | ||
1366 | s = splsched(); | |
1367 | thread_lock(thread); | |
1368 | ret = clear_wait_internal(thread, result); | |
1369 | thread_unlock(thread); | |
1370 | splx(s); | |
1371 | return ret; | |
1372 | } | |
1373 | ||
1374 | ||
1375 | /* | |
1376 | * thread_wakeup_prim: | |
1377 | * | |
1378 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1379 | * and thread_wakeup_one. | |
1380 | * | |
1381 | */ | |
1382 | kern_return_t | |
1383 | thread_wakeup_prim( | |
1384 | event_t event, | |
1385 | boolean_t one_thread, | |
1386 | wait_result_t result) | |
1387 | { | |
1388 | return (thread_wakeup_prim_internal(event, one_thread, result, -1)); | |
1389 | } | |
1390 | ||
1391 | ||
1392 | kern_return_t | |
1393 | thread_wakeup_prim_internal( | |
1394 | event_t event, | |
1395 | boolean_t one_thread, | |
1396 | wait_result_t result, | |
1397 | int priority) | |
1398 | { | |
1399 | if (__improbable(event == NO_EVENT)) | |
1400 | panic("%s() called with NO_EVENT", __func__); | |
1401 | ||
1402 | struct waitq *wq; | |
1403 | ||
1404 | wq = global_eventq(event); | |
1405 | priority = (priority == -1 ? WAITQ_ALL_PRIORITIES : priority); | |
1406 | ||
1407 | if (one_thread) | |
1408 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, priority); | |
1409 | else | |
1410 | return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, priority); | |
1411 | } | |
1412 | ||
1413 | /* | |
1414 | * thread_bind: | |
1415 | * | |
1416 | * Force the current thread to execute on the specified processor. | |
1417 | * Takes effect after the next thread_block(). | |
1418 | * | |
1419 | * Returns the previous binding. PROCESSOR_NULL means | |
1420 | * not bound. | |
1421 | * | |
1422 | * XXX - DO NOT export this to users - XXX | |
1423 | */ | |
1424 | processor_t | |
1425 | thread_bind( | |
1426 | processor_t processor) | |
1427 | { | |
1428 | thread_t self = current_thread(); | |
1429 | processor_t prev; | |
1430 | spl_t s; | |
1431 | ||
1432 | s = splsched(); | |
1433 | thread_lock(self); | |
1434 | ||
1435 | prev = thread_bind_internal(self, processor); | |
1436 | ||
1437 | thread_unlock(self); | |
1438 | splx(s); | |
1439 | ||
1440 | return (prev); | |
1441 | } | |
1442 | ||
1443 | /* | |
1444 | * thread_bind_internal: | |
1445 | * | |
1446 | * If the specified thread is not the current thread, and it is currently | |
1447 | * running on another CPU, a remote AST must be sent to that CPU to cause | |
1448 | * the thread to migrate to its bound processor. Otherwise, the migration | |
1449 | * will occur at the next quantum expiration or blocking point. | |
1450 | * | |
1451 | * When the thread is the current thread, and explicit thread_block() should | |
1452 | * be used to force the current processor to context switch away and | |
1453 | * let the thread migrate to the bound processor. | |
1454 | * | |
1455 | * Thread must be locked, and at splsched. | |
1456 | */ | |
1457 | ||
1458 | static processor_t | |
1459 | thread_bind_internal( | |
1460 | thread_t thread, | |
1461 | processor_t processor) | |
1462 | { | |
1463 | processor_t prev; | |
1464 | ||
1465 | /* <rdar://problem/15102234> */ | |
1466 | assert(thread->sched_pri < BASEPRI_RTQUEUES); | |
1467 | /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */ | |
1468 | assert(thread->runq == PROCESSOR_NULL); | |
1469 | ||
1470 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0); | |
1471 | ||
1472 | prev = thread->bound_processor; | |
1473 | thread->bound_processor = processor; | |
1474 | ||
1475 | return (prev); | |
1476 | } | |
1477 | ||
1478 | /* | |
1479 | * thread_vm_bind_group_add: | |
1480 | * | |
1481 | * The "VM bind group" is a special mechanism to mark a collection | |
1482 | * of threads from the VM subsystem that, in general, should be scheduled | |
1483 | * with only one CPU of parallelism. To accomplish this, we initially | |
1484 | * bind all the threads to the master processor, which has the effect | |
1485 | * that only one of the threads in the group can execute at once, including | |
1486 | * preempting threads in the group that are a lower priority. Future | |
1487 | * mechanisms may use more dynamic mechanisms to prevent the collection | |
1488 | * of VM threads from using more CPU time than desired. | |
1489 | * | |
1490 | * The current implementation can result in priority inversions where | |
1491 | * compute-bound priority 95 or realtime threads that happen to have | |
1492 | * landed on the master processor prevent the VM threads from running. | |
1493 | * When this situation is detected, we unbind the threads for one | |
1494 | * scheduler tick to allow the scheduler to run the threads an | |
1495 | * additional CPUs, before restoring the binding (assuming high latency | |
1496 | * is no longer a problem). | |
1497 | */ | |
1498 | ||
1499 | /* | |
1500 | * The current max is provisioned for: | |
1501 | * vm_compressor_swap_trigger_thread (92) | |
1502 | * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE | |
1503 | * vm_pageout_continue (92) | |
1504 | * memorystatus_thread (95) | |
1505 | */ | |
1506 | #define MAX_VM_BIND_GROUP_COUNT (5) | |
1507 | decl_simple_lock_data(static,sched_vm_group_list_lock); | |
1508 | static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT]; | |
1509 | static int sched_vm_group_thread_count; | |
1510 | static boolean_t sched_vm_group_temporarily_unbound = FALSE; | |
1511 | ||
1512 | void | |
1513 | thread_vm_bind_group_add(void) | |
1514 | { | |
1515 | thread_t self = current_thread(); | |
1516 | ||
1517 | thread_reference_internal(self); | |
1518 | self->options |= TH_OPT_SCHED_VM_GROUP; | |
1519 | ||
1520 | simple_lock(&sched_vm_group_list_lock); | |
1521 | assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT); | |
1522 | sched_vm_group_thread_list[sched_vm_group_thread_count++] = self; | |
1523 | simple_unlock(&sched_vm_group_list_lock); | |
1524 | ||
1525 | thread_bind(master_processor); | |
1526 | ||
1527 | /* Switch to bound processor if not already there */ | |
1528 | thread_block(THREAD_CONTINUE_NULL); | |
1529 | } | |
1530 | ||
1531 | static void | |
1532 | sched_vm_group_maintenance(void) | |
1533 | { | |
1534 | uint64_t ctime = mach_absolute_time(); | |
1535 | uint64_t longtime = ctime - sched_tick_interval; | |
1536 | int i; | |
1537 | spl_t s; | |
1538 | boolean_t high_latency_observed = FALSE; | |
1539 | boolean_t runnable_and_not_on_runq_observed = FALSE; | |
1540 | boolean_t bind_target_changed = FALSE; | |
1541 | processor_t bind_target = PROCESSOR_NULL; | |
1542 | ||
1543 | /* Make sure nobody attempts to add new threads while we are enumerating them */ | |
1544 | simple_lock(&sched_vm_group_list_lock); | |
1545 | ||
1546 | s = splsched(); | |
1547 | ||
1548 | for (i=0; i < sched_vm_group_thread_count; i++) { | |
1549 | thread_t thread = sched_vm_group_thread_list[i]; | |
1550 | assert(thread != THREAD_NULL); | |
1551 | thread_lock(thread); | |
1552 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) { | |
1553 | if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) { | |
1554 | high_latency_observed = TRUE; | |
1555 | } else if (thread->runq == PROCESSOR_NULL) { | |
1556 | /* There are some cases where a thread be transitiong that also fall into this case */ | |
1557 | runnable_and_not_on_runq_observed = TRUE; | |
1558 | } | |
1559 | } | |
1560 | thread_unlock(thread); | |
1561 | ||
1562 | if (high_latency_observed && runnable_and_not_on_runq_observed) { | |
1563 | /* All the things we are looking for are true, stop looking */ | |
1564 | break; | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | splx(s); | |
1569 | ||
1570 | if (sched_vm_group_temporarily_unbound) { | |
1571 | /* If we turned off binding, make sure everything is OK before rebinding */ | |
1572 | if (!high_latency_observed) { | |
1573 | /* rebind */ | |
1574 | bind_target_changed = TRUE; | |
1575 | bind_target = master_processor; | |
1576 | sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */ | |
1577 | } | |
1578 | } else { | |
1579 | /* | |
1580 | * Check if we're in a bad state, which is defined by high | |
1581 | * latency with no core currently executing a thread. If a | |
1582 | * single thread is making progress on a CPU, that means the | |
1583 | * binding concept to reduce parallelism is working as | |
1584 | * designed. | |
1585 | */ | |
1586 | if (high_latency_observed && !runnable_and_not_on_runq_observed) { | |
1587 | /* unbind */ | |
1588 | bind_target_changed = TRUE; | |
1589 | bind_target = PROCESSOR_NULL; | |
1590 | sched_vm_group_temporarily_unbound = TRUE; | |
1591 | } | |
1592 | } | |
1593 | ||
1594 | if (bind_target_changed) { | |
1595 | s = splsched(); | |
1596 | for (i=0; i < sched_vm_group_thread_count; i++) { | |
1597 | thread_t thread = sched_vm_group_thread_list[i]; | |
1598 | boolean_t removed; | |
1599 | assert(thread != THREAD_NULL); | |
1600 | ||
1601 | thread_lock(thread); | |
1602 | removed = thread_run_queue_remove(thread); | |
1603 | if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) { | |
1604 | thread_bind_internal(thread, bind_target); | |
1605 | } else { | |
1606 | /* | |
1607 | * Thread was in the middle of being context-switched-to, | |
1608 | * or was in the process of blocking. To avoid switching the bind | |
1609 | * state out mid-flight, defer the change if possible. | |
1610 | */ | |
1611 | if (bind_target == PROCESSOR_NULL) { | |
1612 | thread_bind_internal(thread, bind_target); | |
1613 | } else { | |
1614 | sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */ | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | if (removed) { | |
1619 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
1620 | } | |
1621 | thread_unlock(thread); | |
1622 | } | |
1623 | splx(s); | |
1624 | } | |
1625 | ||
1626 | simple_unlock(&sched_vm_group_list_lock); | |
1627 | } | |
1628 | ||
1629 | /* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT | |
1630 | * rebalancing opportunity exists when a core is (instantaneously) idle, but | |
1631 | * other SMT-capable cores may be over-committed. TODO: some possible negatives: | |
1632 | * IPI thrash if this core does not remain idle following the load balancing ASTs | |
1633 | * Idle "thrash", when IPI issue is followed by idle entry/core power down | |
1634 | * followed by a wakeup shortly thereafter. | |
1635 | */ | |
1636 | ||
1637 | #if (DEVELOPMENT || DEBUG) | |
1638 | int sched_smt_balance = 1; | |
1639 | #endif | |
1640 | ||
1641 | #if __SMP__ | |
1642 | /* Invoked with pset locked, returns with pset unlocked */ | |
1643 | static void | |
1644 | sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) { | |
1645 | processor_t ast_processor = NULL; | |
1646 | ||
1647 | #if (DEVELOPMENT || DEBUG) | |
1648 | if (__improbable(sched_smt_balance == 0)) | |
1649 | goto smt_balance_exit; | |
1650 | #endif | |
1651 | ||
1652 | assert(cprocessor == current_processor()); | |
1653 | if (cprocessor->is_SMT == FALSE) | |
1654 | goto smt_balance_exit; | |
1655 | ||
1656 | processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary; | |
1657 | ||
1658 | /* Determine if both this processor and its sibling are idle, | |
1659 | * indicating an SMT rebalancing opportunity. | |
1660 | */ | |
1661 | if (sib_processor->state != PROCESSOR_IDLE) | |
1662 | goto smt_balance_exit; | |
1663 | ||
1664 | processor_t sprocessor; | |
1665 | ||
1666 | sprocessor = (processor_t)queue_first(&cpset->active_queue); | |
1667 | ||
1668 | while (!queue_end(&cpset->active_queue, (queue_entry_t)sprocessor)) { | |
1669 | if ((sprocessor->state == PROCESSOR_RUNNING) && | |
1670 | (sprocessor->processor_primary != sprocessor) && | |
1671 | (sprocessor->processor_primary->state == PROCESSOR_RUNNING) && | |
1672 | (sprocessor->current_pri < BASEPRI_RTQUEUES) && | |
1673 | ((cpset->pending_AST_cpu_mask & (1ULL << sprocessor->cpu_id)) == 0)) { | |
1674 | assert(sprocessor != cprocessor); | |
1675 | ast_processor = sprocessor; | |
1676 | break; | |
1677 | } | |
1678 | sprocessor = (processor_t)queue_next((queue_entry_t)sprocessor); | |
1679 | } | |
1680 | ||
1681 | smt_balance_exit: | |
1682 | pset_unlock(cpset); | |
1683 | ||
1684 | if (ast_processor) { | |
1685 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0); | |
1686 | cause_ast_check(ast_processor); | |
1687 | } | |
1688 | } | |
1689 | #endif /* __SMP__ */ | |
1690 | ||
1691 | /* | |
1692 | * thread_select: | |
1693 | * | |
1694 | * Select a new thread for the current processor to execute. | |
1695 | * | |
1696 | * May select the current thread, which must be locked. | |
1697 | */ | |
1698 | static thread_t | |
1699 | thread_select( | |
1700 | thread_t thread, | |
1701 | processor_t processor, | |
1702 | ast_t reason) | |
1703 | { | |
1704 | processor_set_t pset = processor->processor_set; | |
1705 | thread_t new_thread = THREAD_NULL; | |
1706 | ||
1707 | assert(processor == current_processor()); | |
1708 | assert((thread->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); | |
1709 | ||
1710 | do { | |
1711 | /* | |
1712 | * Update the priority. | |
1713 | */ | |
1714 | if (SCHED(can_update_priority)(thread)) | |
1715 | SCHED(update_priority)(thread); | |
1716 | ||
1717 | processor->current_pri = thread->sched_pri; | |
1718 | processor->current_thmode = thread->sched_mode; | |
1719 | processor->current_sfi_class = thread->sfi_class; | |
1720 | ||
1721 | pset_lock(pset); | |
1722 | ||
1723 | assert(processor->state != PROCESSOR_OFF_LINE); | |
1724 | ||
1725 | if (!processor->is_recommended) { | |
1726 | /* | |
1727 | * The performance controller has provided a hint to not dispatch more threads, | |
1728 | * unless they are bound to us (and thus we are the only option | |
1729 | */ | |
1730 | if (!SCHED(processor_bound_count)(processor)) { | |
1731 | goto idle; | |
1732 | } | |
1733 | } else if (processor->processor_primary != processor) { | |
1734 | /* | |
1735 | * Should this secondary SMT processor attempt to find work? For pset runqueue systems, | |
1736 | * we should look for work only under the same conditions that choose_processor() | |
1737 | * would have assigned work, which is when all primary processors have been assigned work. | |
1738 | * | |
1739 | * An exception is that bound threads are dispatched to a processor without going through | |
1740 | * choose_processor(), so in those cases we should continue trying to dequeue work. | |
1741 | */ | |
1742 | if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) { | |
1743 | goto idle; | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | rt_lock_lock(); | |
1748 | ||
1749 | /* | |
1750 | * Test to see if the current thread should continue | |
1751 | * to run on this processor. Must not be attempting to wait, and not | |
1752 | * bound to a different processor, nor be in the wrong | |
1753 | * processor set, nor be forced to context switch by TH_SUSP. | |
1754 | * | |
1755 | * Note that there are never any RT threads in the regular runqueue. | |
1756 | * | |
1757 | * This code is very insanely tricky. | |
1758 | */ | |
1759 | ||
1760 | if (((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN) && | |
1761 | (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) && | |
1762 | (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) && | |
1763 | (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) { | |
1764 | /* | |
1765 | * RT threads with un-expired quantum stay on processor, | |
1766 | * unless there's a valid RT thread with an earlier deadline. | |
1767 | */ | |
1768 | if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) { | |
1769 | if (rt_runq.count > 0) { | |
1770 | thread_t next_rt; | |
1771 | ||
1772 | next_rt = (thread_t)queue_first(&rt_runq.queue); | |
1773 | ||
1774 | assert(next_rt->runq == THREAD_ON_RT_RUNQ); | |
1775 | ||
1776 | if (next_rt->realtime.deadline < processor->deadline && | |
1777 | (next_rt->bound_processor == PROCESSOR_NULL || | |
1778 | next_rt->bound_processor == processor)) { | |
1779 | /* The next RT thread is better, so pick it off the runqueue. */ | |
1780 | goto pick_new_rt_thread; | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | /* This is still the best RT thread to run. */ | |
1785 | processor->deadline = thread->realtime.deadline; | |
1786 | ||
1787 | rt_lock_unlock(); | |
1788 | pset_unlock(pset); | |
1789 | ||
1790 | return (thread); | |
1791 | } | |
1792 | ||
1793 | if ((rt_runq.count == 0) && | |
1794 | SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) { | |
1795 | /* This thread is still the highest priority runnable (non-idle) thread */ | |
1796 | processor->deadline = UINT64_MAX; | |
1797 | ||
1798 | rt_lock_unlock(); | |
1799 | pset_unlock(pset); | |
1800 | ||
1801 | return (thread); | |
1802 | } | |
1803 | } | |
1804 | ||
1805 | /* OK, so we're not going to run the current thread. Look at the RT queue. */ | |
1806 | if (rt_runq.count > 0) { | |
1807 | thread_t next_rt = (thread_t)queue_first(&rt_runq.queue); | |
1808 | ||
1809 | assert(next_rt->runq == THREAD_ON_RT_RUNQ); | |
1810 | ||
1811 | if (__probable((next_rt->bound_processor == PROCESSOR_NULL || | |
1812 | (next_rt->bound_processor == processor)))) { | |
1813 | pick_new_rt_thread: | |
1814 | new_thread = (thread_t)dequeue_head(&rt_runq.queue); | |
1815 | ||
1816 | new_thread->runq = PROCESSOR_NULL; | |
1817 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); | |
1818 | rt_runq.count--; | |
1819 | ||
1820 | processor->deadline = new_thread->realtime.deadline; | |
1821 | ||
1822 | rt_lock_unlock(); | |
1823 | pset_unlock(pset); | |
1824 | ||
1825 | return (new_thread); | |
1826 | } | |
1827 | } | |
1828 | ||
1829 | processor->deadline = UINT64_MAX; | |
1830 | rt_lock_unlock(); | |
1831 | ||
1832 | /* No RT threads, so let's look at the regular threads. */ | |
1833 | if ((new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL) { | |
1834 | pset_unlock(pset); | |
1835 | return (new_thread); | |
1836 | } | |
1837 | ||
1838 | #if __SMP__ | |
1839 | if (SCHED(steal_thread_enabled)) { | |
1840 | /* | |
1841 | * No runnable threads, attempt to steal | |
1842 | * from other processors. Returns with pset lock dropped. | |
1843 | */ | |
1844 | ||
1845 | if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) { | |
1846 | return (new_thread); | |
1847 | } | |
1848 | ||
1849 | /* | |
1850 | * If other threads have appeared, shortcut | |
1851 | * around again. | |
1852 | */ | |
1853 | if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0) | |
1854 | continue; | |
1855 | ||
1856 | pset_lock(pset); | |
1857 | } | |
1858 | #endif | |
1859 | ||
1860 | idle: | |
1861 | /* | |
1862 | * Nothing is runnable, so set this processor idle if it | |
1863 | * was running. | |
1864 | */ | |
1865 | if (processor->state == PROCESSOR_RUNNING) { | |
1866 | remqueue((queue_entry_t)processor); | |
1867 | processor->state = PROCESSOR_IDLE; | |
1868 | ||
1869 | if (processor->processor_primary == processor) { | |
1870 | enqueue_head(&pset->idle_queue, (queue_entry_t)processor); | |
1871 | } | |
1872 | else { | |
1873 | enqueue_head(&pset->idle_secondary_queue, (queue_entry_t)processor); | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | #if __SMP__ | |
1878 | /* Invoked with pset locked, returns with pset unlocked */ | |
1879 | sched_SMT_balance(processor, pset); | |
1880 | #else | |
1881 | pset_unlock(pset); | |
1882 | #endif | |
1883 | ||
1884 | #if CONFIG_SCHED_IDLE_IN_PLACE | |
1885 | /* | |
1886 | * Choose idle thread if fast idle is not possible. | |
1887 | */ | |
1888 | if (processor->processor_primary != processor) | |
1889 | return (processor->idle_thread); | |
1890 | ||
1891 | if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES) | |
1892 | return (processor->idle_thread); | |
1893 | ||
1894 | /* | |
1895 | * Perform idling activities directly without a | |
1896 | * context switch. Return dispatched thread, | |
1897 | * else check again for a runnable thread. | |
1898 | */ | |
1899 | new_thread = thread_select_idle(thread, processor); | |
1900 | ||
1901 | #else /* !CONFIG_SCHED_IDLE_IN_PLACE */ | |
1902 | ||
1903 | /* | |
1904 | * Do a full context switch to idle so that the current | |
1905 | * thread can start running on another processor without | |
1906 | * waiting for the fast-idled processor to wake up. | |
1907 | */ | |
1908 | new_thread = processor->idle_thread; | |
1909 | ||
1910 | #endif /* !CONFIG_SCHED_IDLE_IN_PLACE */ | |
1911 | ||
1912 | } while (new_thread == THREAD_NULL); | |
1913 | ||
1914 | return (new_thread); | |
1915 | } | |
1916 | ||
1917 | #if CONFIG_SCHED_IDLE_IN_PLACE | |
1918 | /* | |
1919 | * thread_select_idle: | |
1920 | * | |
1921 | * Idle the processor using the current thread context. | |
1922 | * | |
1923 | * Called with thread locked, then dropped and relocked. | |
1924 | */ | |
1925 | static thread_t | |
1926 | thread_select_idle( | |
1927 | thread_t thread, | |
1928 | processor_t processor) | |
1929 | { | |
1930 | thread_t new_thread; | |
1931 | uint64_t arg1, arg2; | |
1932 | int urgency; | |
1933 | ||
1934 | if (thread->sched_mode == TH_MODE_TIMESHARE) { | |
1935 | if (thread->sched_flags & TH_SFLAG_THROTTLED) | |
1936 | sched_background_decr(thread); | |
1937 | ||
1938 | sched_share_decr(thread); | |
1939 | } | |
1940 | sched_run_decr(thread); | |
1941 | ||
1942 | thread->state |= TH_IDLE; | |
1943 | processor->current_pri = IDLEPRI; | |
1944 | processor->current_thmode = TH_MODE_NONE; | |
1945 | processor->current_sfi_class = SFI_CLASS_KERNEL; | |
1946 | ||
1947 | /* Reload precise timing global policy to thread-local policy */ | |
1948 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); | |
1949 | ||
1950 | thread_unlock(thread); | |
1951 | ||
1952 | /* | |
1953 | * Switch execution timing to processor idle thread. | |
1954 | */ | |
1955 | processor->last_dispatch = mach_absolute_time(); | |
1956 | ||
1957 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
1958 | commpage_update_mach_approximate_time(processor->last_dispatch); | |
1959 | #endif | |
1960 | ||
1961 | thread->last_run_time = processor->last_dispatch; | |
1962 | thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer); | |
1963 | PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer; | |
1964 | ||
1965 | /* | |
1966 | * Cancel the quantum timer while idling. | |
1967 | */ | |
1968 | timer_call_cancel(&processor->quantum_timer); | |
1969 | processor->first_timeslice = FALSE; | |
1970 | ||
1971 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); | |
1972 | ||
1973 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL); | |
1974 | ||
1975 | /* | |
1976 | * Enable interrupts and perform idling activities. No | |
1977 | * preemption due to TH_IDLE being set. | |
1978 | */ | |
1979 | spllo(); new_thread = processor_idle(thread, processor); | |
1980 | ||
1981 | /* | |
1982 | * Return at splsched. | |
1983 | */ | |
1984 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); | |
1985 | ||
1986 | thread_lock(thread); | |
1987 | ||
1988 | /* | |
1989 | * If awakened, switch to thread timer and start a new quantum. | |
1990 | * Otherwise skip; we will context switch to another thread or return here. | |
1991 | */ | |
1992 | if (!(thread->state & TH_WAIT)) { | |
1993 | processor->last_dispatch = mach_absolute_time(); | |
1994 | thread_timer_event(processor->last_dispatch, &thread->system_timer); | |
1995 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; | |
1996 | ||
1997 | thread_quantum_init(thread); | |
1998 | processor->quantum_end = processor->last_dispatch + thread->quantum_remaining; | |
1999 | timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
2000 | processor->first_timeslice = TRUE; | |
2001 | ||
2002 | thread->computation_epoch = processor->last_dispatch; | |
2003 | } | |
2004 | ||
2005 | thread->state &= ~TH_IDLE; | |
2006 | ||
2007 | urgency = thread_get_urgency(thread, &arg1, &arg2); | |
2008 | ||
2009 | thread_tell_urgency(urgency, arg1, arg2, 0, new_thread); | |
2010 | ||
2011 | sched_run_incr(thread); | |
2012 | if (thread->sched_mode == TH_MODE_TIMESHARE) { | |
2013 | sched_share_incr(thread); | |
2014 | ||
2015 | if (thread->sched_flags & TH_SFLAG_THROTTLED) | |
2016 | sched_background_incr(thread); | |
2017 | } | |
2018 | ||
2019 | return (new_thread); | |
2020 | } | |
2021 | #endif /* CONFIG_SCHED_IDLE_IN_PLACE */ | |
2022 | ||
2023 | /* | |
2024 | * thread_invoke | |
2025 | * | |
2026 | * Called at splsched with neither thread locked. | |
2027 | * | |
2028 | * Perform a context switch and start executing the new thread. | |
2029 | * | |
2030 | * Returns FALSE when the context switch didn't happen. | |
2031 | * The reference to the new thread is still consumed. | |
2032 | * | |
2033 | * "self" is what is currently running on the processor, | |
2034 | * "thread" is the new thread to context switch to | |
2035 | * (which may be the same thread in some cases) | |
2036 | */ | |
2037 | static boolean_t | |
2038 | thread_invoke( | |
2039 | thread_t self, | |
2040 | thread_t thread, | |
2041 | ast_t reason) | |
2042 | { | |
2043 | if (__improbable(get_preemption_level() != 0)) { | |
2044 | int pl = get_preemption_level(); | |
2045 | panic("thread_invoke: preemption_level %d, possible cause: %s", | |
2046 | pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" : | |
2047 | "blocking while holding a spinlock, or within interrupt context")); | |
2048 | } | |
2049 | ||
2050 | thread_continue_t continuation = self->continuation; | |
2051 | void *parameter = self->parameter; | |
2052 | processor_t processor; | |
2053 | ||
2054 | uint64_t ctime = mach_absolute_time(); | |
2055 | ||
2056 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
2057 | commpage_update_mach_approximate_time(ctime); | |
2058 | #endif | |
2059 | ||
2060 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
2061 | sched_timeshare_consider_maintenance(ctime); | |
2062 | #endif | |
2063 | ||
2064 | assert(self == current_thread()); | |
2065 | assert(self->runq == PROCESSOR_NULL); | |
2066 | assert((self->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); | |
2067 | ||
2068 | thread_lock(thread); | |
2069 | ||
2070 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); | |
2071 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor()); | |
2072 | assert(thread->runq == PROCESSOR_NULL); | |
2073 | ||
2074 | /* Reload precise timing global policy to thread-local policy */ | |
2075 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); | |
2076 | ||
2077 | /* Update SFI class based on other factors */ | |
2078 | thread->sfi_class = sfi_thread_classify(thread); | |
2079 | ||
2080 | /* Allow realtime threads to hang onto a stack. */ | |
2081 | if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack) | |
2082 | self->reserved_stack = self->kernel_stack; | |
2083 | ||
2084 | if (continuation != NULL) { | |
2085 | if (!thread->kernel_stack) { | |
2086 | /* | |
2087 | * If we are using a privileged stack, | |
2088 | * check to see whether we can exchange it with | |
2089 | * that of the other thread. | |
2090 | */ | |
2091 | if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack) | |
2092 | goto need_stack; | |
2093 | ||
2094 | /* | |
2095 | * Context switch by performing a stack handoff. | |
2096 | */ | |
2097 | continuation = thread->continuation; | |
2098 | parameter = thread->parameter; | |
2099 | ||
2100 | processor = current_processor(); | |
2101 | processor->active_thread = thread; | |
2102 | processor->current_pri = thread->sched_pri; | |
2103 | processor->current_thmode = thread->sched_mode; | |
2104 | processor->current_sfi_class = thread->sfi_class; | |
2105 | if (thread->last_processor != processor && thread->last_processor != NULL) { | |
2106 | if (thread->last_processor->processor_set != processor->processor_set) | |
2107 | thread->ps_switch++; | |
2108 | thread->p_switch++; | |
2109 | } | |
2110 | thread->last_processor = processor; | |
2111 | thread->c_switch++; | |
2112 | ast_context(thread); | |
2113 | ||
2114 | thread_unlock(thread); | |
2115 | ||
2116 | self->reason = reason; | |
2117 | ||
2118 | processor->last_dispatch = ctime; | |
2119 | self->last_run_time = ctime; | |
2120 | thread_timer_event(ctime, &thread->system_timer); | |
2121 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; | |
2122 | ||
2123 | /* | |
2124 | * Since non-precise user/kernel time doesn't update the state timer | |
2125 | * during privilege transitions, synthesize an event now. | |
2126 | */ | |
2127 | if (!thread->precise_user_kernel_time) { | |
2128 | timer_switch(PROCESSOR_DATA(processor, current_state), | |
2129 | ctime, | |
2130 | PROCESSOR_DATA(processor, current_state)); | |
2131 | } | |
2132 | ||
2133 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2134 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE, | |
2135 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
2136 | ||
2137 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) { | |
2138 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, | |
2139 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); | |
2140 | } | |
2141 | ||
2142 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
2143 | ||
2144 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); | |
2145 | ||
2146 | TLOG(1, "thread_invoke: calling stack_handoff\n"); | |
2147 | stack_handoff(self, thread); | |
2148 | ||
2149 | /* 'self' is now off core */ | |
2150 | assert(thread == current_thread()); | |
2151 | ||
2152 | DTRACE_SCHED(on__cpu); | |
2153 | ||
2154 | thread_dispatch(self, thread); | |
2155 | ||
2156 | thread->continuation = thread->parameter = NULL; | |
2157 | ||
2158 | counter(c_thread_invoke_hits++); | |
2159 | ||
2160 | (void) spllo(); | |
2161 | ||
2162 | assert(continuation); | |
2163 | call_continuation(continuation, parameter, thread->wait_result); | |
2164 | /*NOTREACHED*/ | |
2165 | } | |
2166 | else if (thread == self) { | |
2167 | /* same thread but with continuation */ | |
2168 | ast_context(self); | |
2169 | counter(++c_thread_invoke_same); | |
2170 | ||
2171 | thread_unlock(self); | |
2172 | ||
2173 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2174 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2175 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
2176 | ||
2177 | self->continuation = self->parameter = NULL; | |
2178 | ||
2179 | (void) spllo(); | |
2180 | ||
2181 | call_continuation(continuation, parameter, self->wait_result); | |
2182 | /*NOTREACHED*/ | |
2183 | } | |
2184 | } else { | |
2185 | /* | |
2186 | * Check that the other thread has a stack | |
2187 | */ | |
2188 | if (!thread->kernel_stack) { | |
2189 | need_stack: | |
2190 | if (!stack_alloc_try(thread)) { | |
2191 | counter(c_thread_invoke_misses++); | |
2192 | thread_unlock(thread); | |
2193 | thread_stack_enqueue(thread); | |
2194 | return (FALSE); | |
2195 | } | |
2196 | } else if (thread == self) { | |
2197 | ast_context(self); | |
2198 | counter(++c_thread_invoke_same); | |
2199 | thread_unlock(self); | |
2200 | ||
2201 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2202 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2203 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
2204 | ||
2205 | return (TRUE); | |
2206 | } | |
2207 | } | |
2208 | ||
2209 | /* | |
2210 | * Context switch by full context save. | |
2211 | */ | |
2212 | processor = current_processor(); | |
2213 | processor->active_thread = thread; | |
2214 | processor->current_pri = thread->sched_pri; | |
2215 | processor->current_thmode = thread->sched_mode; | |
2216 | processor->current_sfi_class = thread->sfi_class; | |
2217 | if (thread->last_processor != processor && thread->last_processor != NULL) { | |
2218 | if (thread->last_processor->processor_set != processor->processor_set) | |
2219 | thread->ps_switch++; | |
2220 | thread->p_switch++; | |
2221 | } | |
2222 | thread->last_processor = processor; | |
2223 | thread->c_switch++; | |
2224 | ast_context(thread); | |
2225 | ||
2226 | thread_unlock(thread); | |
2227 | ||
2228 | counter(c_thread_invoke_csw++); | |
2229 | ||
2230 | self->reason = reason; | |
2231 | ||
2232 | processor->last_dispatch = ctime; | |
2233 | self->last_run_time = ctime; | |
2234 | thread_timer_event(ctime, &thread->system_timer); | |
2235 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; | |
2236 | ||
2237 | /* | |
2238 | * Since non-precise user/kernel time doesn't update the state timer | |
2239 | * during privilege transitions, synthesize an event now. | |
2240 | */ | |
2241 | if (!thread->precise_user_kernel_time) { | |
2242 | timer_switch(PROCESSOR_DATA(processor, current_state), | |
2243 | ctime, | |
2244 | PROCESSOR_DATA(processor, current_state)); | |
2245 | } | |
2246 | ||
2247 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2248 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2249 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
2250 | ||
2251 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) { | |
2252 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, | |
2253 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); | |
2254 | } | |
2255 | ||
2256 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
2257 | ||
2258 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); | |
2259 | ||
2260 | /* | |
2261 | * This is where we actually switch register context, | |
2262 | * and address space if required. We will next run | |
2263 | * as a result of a subsequent context switch. | |
2264 | * | |
2265 | * Once registers are switched and the processor is running "thread", | |
2266 | * the stack variables and non-volatile registers will contain whatever | |
2267 | * was there the last time that thread blocked. No local variables should | |
2268 | * be used after this point, except for the special case of "thread", which | |
2269 | * the platform layer returns as the previous thread running on the processor | |
2270 | * via the function call ABI as a return register, and "self", which may have | |
2271 | * been stored on the stack or a non-volatile register, but a stale idea of | |
2272 | * what was on the CPU is newly-accurate because that thread is again | |
2273 | * running on the CPU. | |
2274 | */ | |
2275 | assert(continuation == self->continuation); | |
2276 | thread = machine_switch_context(self, continuation, thread); | |
2277 | assert(self == current_thread()); | |
2278 | TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread); | |
2279 | ||
2280 | DTRACE_SCHED(on__cpu); | |
2281 | ||
2282 | /* | |
2283 | * We have been resumed and are set to run. | |
2284 | */ | |
2285 | thread_dispatch(thread, self); | |
2286 | ||
2287 | if (continuation) { | |
2288 | self->continuation = self->parameter = NULL; | |
2289 | ||
2290 | (void) spllo(); | |
2291 | ||
2292 | call_continuation(continuation, parameter, self->wait_result); | |
2293 | /*NOTREACHED*/ | |
2294 | } | |
2295 | ||
2296 | return (TRUE); | |
2297 | } | |
2298 | ||
2299 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
2300 | /* | |
2301 | * pset_cancel_deferred_dispatch: | |
2302 | * | |
2303 | * Cancels all ASTs that we can cancel for the given processor set | |
2304 | * if the current processor is running the last runnable thread in the | |
2305 | * system. | |
2306 | * | |
2307 | * This function assumes the current thread is runnable. This must | |
2308 | * be called with the pset unlocked. | |
2309 | */ | |
2310 | static void | |
2311 | pset_cancel_deferred_dispatch( | |
2312 | processor_set_t pset, | |
2313 | processor_t processor) | |
2314 | { | |
2315 | processor_t active_processor = NULL; | |
2316 | uint32_t sampled_sched_run_count; | |
2317 | ||
2318 | pset_lock(pset); | |
2319 | sampled_sched_run_count = (volatile uint32_t) sched_run_count; | |
2320 | ||
2321 | /* | |
2322 | * If we have emptied the run queue, and our current thread is runnable, we | |
2323 | * should tell any processors that are still DISPATCHING that they will | |
2324 | * probably not have any work to do. In the event that there are no | |
2325 | * pending signals that we can cancel, this is also uninteresting. | |
2326 | * | |
2327 | * In the unlikely event that another thread becomes runnable while we are | |
2328 | * doing this (sched_run_count is atomically updated, not guarded), the | |
2329 | * codepath making it runnable SHOULD (a dangerous word) need the pset lock | |
2330 | * in order to dispatch it to a processor in our pset. So, the other | |
2331 | * codepath will wait while we squash all cancelable ASTs, get the pset | |
2332 | * lock, and then dispatch the freshly runnable thread. So this should be | |
2333 | * correct (we won't accidentally have a runnable thread that hasn't been | |
2334 | * dispatched to an idle processor), if not ideal (we may be restarting the | |
2335 | * dispatch process, which could have some overhead). | |
2336 | * | |
2337 | */ | |
2338 | if ((sampled_sched_run_count == 1) && | |
2339 | (pset->pending_deferred_AST_cpu_mask)) { | |
2340 | qe_foreach_element_safe(active_processor, &pset->active_queue, processor_queue) { | |
2341 | /* | |
2342 | * If a processor is DISPATCHING, it could be because of | |
2343 | * a cancelable signal. | |
2344 | * | |
2345 | * IF the processor is not our | |
2346 | * current processor (the current processor should not | |
2347 | * be DISPATCHING, so this is a bit paranoid), AND there | |
2348 | * is a cancelable signal pending on the processor, AND | |
2349 | * there is no non-cancelable signal pending (as there is | |
2350 | * no point trying to backtrack on bringing the processor | |
2351 | * up if a signal we cannot cancel is outstanding), THEN | |
2352 | * it should make sense to roll back the processor state | |
2353 | * to the IDLE state. | |
2354 | * | |
2355 | * If the racey nature of this approach (as the signal | |
2356 | * will be arbitrated by hardware, and can fire as we | |
2357 | * roll back state) results in the core responding | |
2358 | * despite being pushed back to the IDLE state, it | |
2359 | * should be no different than if the core took some | |
2360 | * interrupt while IDLE. | |
2361 | */ | |
2362 | if ((active_processor->state == PROCESSOR_DISPATCHING) && | |
2363 | (pset->pending_deferred_AST_cpu_mask & (1ULL << active_processor->cpu_id)) && | |
2364 | (!(pset->pending_AST_cpu_mask & (1ULL << active_processor->cpu_id))) && | |
2365 | (active_processor != processor)) { | |
2366 | /* | |
2367 | * Squash all of the processor state back to some | |
2368 | * reasonable facsimile of PROCESSOR_IDLE. | |
2369 | * | |
2370 | * TODO: What queue policy do we actually want here? | |
2371 | * We want to promote selection of a good processor | |
2372 | * to run on. Do we want to enqueue at the head? | |
2373 | * The tail? At the (relative) old position in the | |
2374 | * queue? Or something else entirely? | |
2375 | */ | |
2376 | re_queue_head(&pset->idle_queue, (queue_entry_t)active_processor); | |
2377 | ||
2378 | assert(active_processor->next_thread == THREAD_NULL); | |
2379 | ||
2380 | active_processor->current_pri = IDLEPRI; | |
2381 | active_processor->current_thmode = TH_MODE_FIXED; | |
2382 | active_processor->current_sfi_class = SFI_CLASS_KERNEL; | |
2383 | active_processor->deadline = UINT64_MAX; | |
2384 | active_processor->state = PROCESSOR_IDLE; | |
2385 | pset->pending_deferred_AST_cpu_mask &= ~(1U << active_processor->cpu_id); | |
2386 | machine_signal_idle_cancel(active_processor); | |
2387 | } | |
2388 | ||
2389 | } | |
2390 | } | |
2391 | ||
2392 | pset_unlock(pset); | |
2393 | } | |
2394 | #else | |
2395 | /* We don't support deferred ASTs; everything is candycanes and sunshine. */ | |
2396 | #endif | |
2397 | ||
2398 | /* | |
2399 | * thread_dispatch: | |
2400 | * | |
2401 | * Handle threads at context switch. Re-dispatch other thread | |
2402 | * if still running, otherwise update run state and perform | |
2403 | * special actions. Update quantum for other thread and begin | |
2404 | * the quantum for ourselves. | |
2405 | * | |
2406 | * "thread" is the old thread that we have switched away from. | |
2407 | * "self" is the new current thread that we have context switched to | |
2408 | * | |
2409 | * Called at splsched. | |
2410 | */ | |
2411 | void | |
2412 | thread_dispatch( | |
2413 | thread_t thread, | |
2414 | thread_t self) | |
2415 | { | |
2416 | processor_t processor = self->last_processor; | |
2417 | ||
2418 | assert(processor == current_processor()); | |
2419 | assert(self == current_thread()); | |
2420 | assert(thread != self); | |
2421 | ||
2422 | if (thread != THREAD_NULL) { | |
2423 | /* | |
2424 | * If blocked at a continuation, discard | |
2425 | * the stack. | |
2426 | */ | |
2427 | if (thread->continuation != NULL && thread->kernel_stack != 0) | |
2428 | stack_free(thread); | |
2429 | ||
2430 | if (thread->state & TH_IDLE) { | |
2431 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2432 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, | |
2433 | (uintptr_t)thread_tid(thread), 0, thread->state, sched_run_count, 0); | |
2434 | } else { | |
2435 | int64_t consumed; | |
2436 | int64_t remainder = 0; | |
2437 | ||
2438 | if (processor->quantum_end > processor->last_dispatch) | |
2439 | remainder = processor->quantum_end - | |
2440 | processor->last_dispatch; | |
2441 | ||
2442 | consumed = thread->quantum_remaining - remainder; | |
2443 | ||
2444 | if ((thread->reason & AST_LEDGER) == 0) { | |
2445 | /* | |
2446 | * Bill CPU time to both the task and | |
2447 | * the individual thread. | |
2448 | */ | |
2449 | ledger_credit(thread->t_ledger, | |
2450 | task_ledgers.cpu_time, consumed); | |
2451 | ledger_credit(thread->t_threadledger, | |
2452 | thread_ledgers.cpu_time, consumed); | |
2453 | #ifdef CONFIG_BANK | |
2454 | if (thread->t_bankledger) { | |
2455 | ledger_credit(thread->t_bankledger, | |
2456 | bank_ledgers.cpu_time, | |
2457 | (consumed - thread->t_deduct_bank_ledger_time)); | |
2458 | ||
2459 | } | |
2460 | thread->t_deduct_bank_ledger_time =0; | |
2461 | #endif | |
2462 | } | |
2463 | ||
2464 | wake_lock(thread); | |
2465 | thread_lock(thread); | |
2466 | ||
2467 | /* | |
2468 | * Compute remainder of current quantum. | |
2469 | */ | |
2470 | if (processor->first_timeslice && | |
2471 | processor->quantum_end > processor->last_dispatch) | |
2472 | thread->quantum_remaining = (uint32_t)remainder; | |
2473 | else | |
2474 | thread->quantum_remaining = 0; | |
2475 | ||
2476 | if (thread->sched_mode == TH_MODE_REALTIME) { | |
2477 | /* | |
2478 | * Cancel the deadline if the thread has | |
2479 | * consumed the entire quantum. | |
2480 | */ | |
2481 | if (thread->quantum_remaining == 0) { | |
2482 | thread->realtime.deadline = UINT64_MAX; | |
2483 | } | |
2484 | } else { | |
2485 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
2486 | /* | |
2487 | * For non-realtime threads treat a tiny | |
2488 | * remaining quantum as an expired quantum | |
2489 | * but include what's left next time. | |
2490 | */ | |
2491 | if (thread->quantum_remaining < min_std_quantum) { | |
2492 | thread->reason |= AST_QUANTUM; | |
2493 | thread->quantum_remaining += SCHED(initial_quantum_size)(thread); | |
2494 | } | |
2495 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
2496 | } | |
2497 | ||
2498 | /* | |
2499 | * If we are doing a direct handoff then | |
2500 | * take the remainder of the quantum. | |
2501 | */ | |
2502 | if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) { | |
2503 | self->quantum_remaining = thread->quantum_remaining; | |
2504 | thread->reason |= AST_QUANTUM; | |
2505 | thread->quantum_remaining = 0; | |
2506 | } else { | |
2507 | #if defined(CONFIG_SCHED_MULTIQ) | |
2508 | if (SCHED(sched_groups_enabled) && | |
2509 | thread->sched_group == self->sched_group) { | |
2510 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2511 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF), | |
2512 | self->reason, (uintptr_t)thread_tid(thread), | |
2513 | self->quantum_remaining, thread->quantum_remaining, 0); | |
2514 | ||
2515 | self->quantum_remaining = thread->quantum_remaining; | |
2516 | thread->quantum_remaining = 0; | |
2517 | /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */ | |
2518 | } | |
2519 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ | |
2520 | } | |
2521 | ||
2522 | thread->computation_metered += (processor->last_dispatch - thread->computation_epoch); | |
2523 | ||
2524 | if ((thread->rwlock_count != 0) && !(LcksOpts & disLkRWPrio)) { | |
2525 | integer_t priority; | |
2526 | ||
2527 | priority = thread->sched_pri; | |
2528 | ||
2529 | if (priority < thread->base_pri) | |
2530 | priority = thread->base_pri; | |
2531 | if (priority < BASEPRI_BACKGROUND) | |
2532 | priority = BASEPRI_BACKGROUND; | |
2533 | ||
2534 | if ((thread->sched_pri < priority) || !(thread->sched_flags & TH_SFLAG_RW_PROMOTED)) { | |
2535 | KERNEL_DEBUG_CONSTANT( | |
2536 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_PROMOTE) | DBG_FUNC_NONE, | |
2537 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->base_pri, priority, 0); | |
2538 | ||
2539 | thread->sched_flags |= TH_SFLAG_RW_PROMOTED; | |
2540 | ||
2541 | if (thread->sched_pri < priority) | |
2542 | set_sched_pri(thread, priority); | |
2543 | } | |
2544 | } | |
2545 | ||
2546 | if (!(thread->state & TH_WAIT)) { | |
2547 | /* | |
2548 | * Still runnable. | |
2549 | */ | |
2550 | thread->last_made_runnable_time = mach_approximate_time(); | |
2551 | ||
2552 | machine_thread_going_off_core(thread, FALSE); | |
2553 | ||
2554 | if (thread->reason & AST_QUANTUM) | |
2555 | thread_setrun(thread, SCHED_TAILQ); | |
2556 | else if (thread->reason & AST_PREEMPT) | |
2557 | thread_setrun(thread, SCHED_HEADQ); | |
2558 | else | |
2559 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
2560 | ||
2561 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2562 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, | |
2563 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, sched_run_count, 0); | |
2564 | ||
2565 | if (thread->wake_active) { | |
2566 | thread->wake_active = FALSE; | |
2567 | thread_unlock(thread); | |
2568 | ||
2569 | thread_wakeup(&thread->wake_active); | |
2570 | } else { | |
2571 | thread_unlock(thread); | |
2572 | } | |
2573 | ||
2574 | wake_unlock(thread); | |
2575 | } else { | |
2576 | /* | |
2577 | * Waiting. | |
2578 | */ | |
2579 | boolean_t should_terminate = FALSE; | |
2580 | uint32_t new_run_count; | |
2581 | ||
2582 | /* Only the first call to thread_dispatch | |
2583 | * after explicit termination should add | |
2584 | * the thread to the termination queue | |
2585 | */ | |
2586 | if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) { | |
2587 | should_terminate = TRUE; | |
2588 | thread->state |= TH_TERMINATE2; | |
2589 | } | |
2590 | ||
2591 | thread->state &= ~TH_RUN; | |
2592 | thread->last_made_runnable_time = ~0ULL; | |
2593 | thread->chosen_processor = PROCESSOR_NULL; | |
2594 | ||
2595 | if (thread->sched_mode == TH_MODE_TIMESHARE) { | |
2596 | if (thread->sched_flags & TH_SFLAG_THROTTLED) | |
2597 | sched_background_decr(thread); | |
2598 | ||
2599 | sched_share_decr(thread); | |
2600 | } | |
2601 | new_run_count = sched_run_decr(thread); | |
2602 | ||
2603 | #if CONFIG_SCHED_SFI | |
2604 | if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) { | |
2605 | if (thread->reason & AST_SFI) { | |
2606 | thread->wait_sfi_begin_time = processor->last_dispatch; | |
2607 | } | |
2608 | } | |
2609 | #endif | |
2610 | ||
2611 | machine_thread_going_off_core(thread, should_terminate); | |
2612 | ||
2613 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2614 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, | |
2615 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, new_run_count, 0); | |
2616 | ||
2617 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); | |
2618 | ||
2619 | if (thread->wake_active) { | |
2620 | thread->wake_active = FALSE; | |
2621 | thread_unlock(thread); | |
2622 | ||
2623 | thread_wakeup(&thread->wake_active); | |
2624 | } else { | |
2625 | thread_unlock(thread); | |
2626 | } | |
2627 | ||
2628 | wake_unlock(thread); | |
2629 | ||
2630 | if (should_terminate) | |
2631 | thread_terminate_enqueue(thread); | |
2632 | } | |
2633 | } | |
2634 | } | |
2635 | ||
2636 | /* Update (new) current thread and reprogram quantum timer */ | |
2637 | thread_lock(self); | |
2638 | if (!(self->state & TH_IDLE)) { | |
2639 | uint64_t arg1, arg2; | |
2640 | int urgency; | |
2641 | uint64_t latency; | |
2642 | ||
2643 | #if CONFIG_SCHED_SFI | |
2644 | ast_t new_ast; | |
2645 | ||
2646 | new_ast = sfi_thread_needs_ast(self, NULL); | |
2647 | ||
2648 | if (new_ast != AST_NONE) { | |
2649 | ast_on(new_ast); | |
2650 | } | |
2651 | #endif | |
2652 | ||
2653 | assert(processor->last_dispatch >= self->last_made_runnable_time); | |
2654 | latency = processor->last_dispatch - self->last_made_runnable_time; | |
2655 | ||
2656 | urgency = thread_get_urgency(self, &arg1, &arg2); | |
2657 | ||
2658 | thread_tell_urgency(urgency, arg1, arg2, latency, self); | |
2659 | ||
2660 | machine_thread_going_on_core(self, urgency, latency); | |
2661 | ||
2662 | /* | |
2663 | * Get a new quantum if none remaining. | |
2664 | */ | |
2665 | if (self->quantum_remaining == 0) { | |
2666 | thread_quantum_init(self); | |
2667 | } | |
2668 | ||
2669 | /* | |
2670 | * Set up quantum timer and timeslice. | |
2671 | */ | |
2672 | processor->quantum_end = processor->last_dispatch + self->quantum_remaining; | |
2673 | timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
2674 | ||
2675 | processor->first_timeslice = TRUE; | |
2676 | } else { | |
2677 | timer_call_cancel(&processor->quantum_timer); | |
2678 | processor->first_timeslice = FALSE; | |
2679 | ||
2680 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self); | |
2681 | machine_thread_going_on_core(self, THREAD_URGENCY_NONE, 0); | |
2682 | } | |
2683 | ||
2684 | self->computation_epoch = processor->last_dispatch; | |
2685 | self->reason = AST_NONE; | |
2686 | ||
2687 | thread_unlock(self); | |
2688 | ||
2689 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
2690 | /* | |
2691 | * TODO: Can we state that redispatching our old thread is also | |
2692 | * uninteresting? | |
2693 | */ | |
2694 | if ((((volatile uint32_t)sched_run_count) == 1) && | |
2695 | !(self->state & TH_IDLE)) { | |
2696 | pset_cancel_deferred_dispatch(processor->processor_set, processor); | |
2697 | } | |
2698 | #endif | |
2699 | ||
2700 | } | |
2701 | ||
2702 | /* | |
2703 | * thread_block_reason: | |
2704 | * | |
2705 | * Forces a reschedule, blocking the caller if a wait | |
2706 | * has been asserted. | |
2707 | * | |
2708 | * If a continuation is specified, then thread_invoke will | |
2709 | * attempt to discard the thread's kernel stack. When the | |
2710 | * thread resumes, it will execute the continuation function | |
2711 | * on a new kernel stack. | |
2712 | */ | |
2713 | counter(mach_counter_t c_thread_block_calls = 0;) | |
2714 | ||
2715 | wait_result_t | |
2716 | thread_block_reason( | |
2717 | thread_continue_t continuation, | |
2718 | void *parameter, | |
2719 | ast_t reason) | |
2720 | { | |
2721 | thread_t self = current_thread(); | |
2722 | processor_t processor; | |
2723 | thread_t new_thread; | |
2724 | spl_t s; | |
2725 | ||
2726 | counter(++c_thread_block_calls); | |
2727 | ||
2728 | s = splsched(); | |
2729 | ||
2730 | processor = current_processor(); | |
2731 | ||
2732 | /* If we're explicitly yielding, force a subsequent quantum */ | |
2733 | if (reason & AST_YIELD) | |
2734 | processor->first_timeslice = FALSE; | |
2735 | ||
2736 | /* We're handling all scheduling AST's */ | |
2737 | ast_off(AST_SCHEDULING); | |
2738 | ||
2739 | self->continuation = continuation; | |
2740 | self->parameter = parameter; | |
2741 | ||
2742 | if (self->state & ~(TH_RUN | TH_IDLE)) { | |
2743 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2744 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK), | |
2745 | reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0); | |
2746 | } | |
2747 | ||
2748 | do { | |
2749 | thread_lock(self); | |
2750 | new_thread = thread_select(self, processor, reason); | |
2751 | thread_unlock(self); | |
2752 | } while (!thread_invoke(self, new_thread, reason)); | |
2753 | ||
2754 | splx(s); | |
2755 | ||
2756 | return (self->wait_result); | |
2757 | } | |
2758 | ||
2759 | /* | |
2760 | * thread_block: | |
2761 | * | |
2762 | * Block the current thread if a wait has been asserted. | |
2763 | */ | |
2764 | wait_result_t | |
2765 | thread_block( | |
2766 | thread_continue_t continuation) | |
2767 | { | |
2768 | return thread_block_reason(continuation, NULL, AST_NONE); | |
2769 | } | |
2770 | ||
2771 | wait_result_t | |
2772 | thread_block_parameter( | |
2773 | thread_continue_t continuation, | |
2774 | void *parameter) | |
2775 | { | |
2776 | return thread_block_reason(continuation, parameter, AST_NONE); | |
2777 | } | |
2778 | ||
2779 | /* | |
2780 | * thread_run: | |
2781 | * | |
2782 | * Switch directly from the current thread to the | |
2783 | * new thread, handing off our quantum if appropriate. | |
2784 | * | |
2785 | * New thread must be runnable, and not on a run queue. | |
2786 | * | |
2787 | * Called at splsched. | |
2788 | */ | |
2789 | int | |
2790 | thread_run( | |
2791 | thread_t self, | |
2792 | thread_continue_t continuation, | |
2793 | void *parameter, | |
2794 | thread_t new_thread) | |
2795 | { | |
2796 | ast_t handoff = AST_HANDOFF; | |
2797 | ||
2798 | self->continuation = continuation; | |
2799 | self->parameter = parameter; | |
2800 | ||
2801 | while (!thread_invoke(self, new_thread, handoff)) { | |
2802 | processor_t processor = current_processor(); | |
2803 | ||
2804 | thread_lock(self); | |
2805 | new_thread = thread_select(self, processor, AST_NONE); | |
2806 | thread_unlock(self); | |
2807 | handoff = AST_NONE; | |
2808 | } | |
2809 | ||
2810 | return (self->wait_result); | |
2811 | } | |
2812 | ||
2813 | /* | |
2814 | * thread_continue: | |
2815 | * | |
2816 | * Called at splsched when a thread first receives | |
2817 | * a new stack after a continuation. | |
2818 | */ | |
2819 | void | |
2820 | thread_continue( | |
2821 | thread_t thread) | |
2822 | { | |
2823 | thread_t self = current_thread(); | |
2824 | thread_continue_t continuation; | |
2825 | void *parameter; | |
2826 | ||
2827 | DTRACE_SCHED(on__cpu); | |
2828 | ||
2829 | continuation = self->continuation; | |
2830 | parameter = self->parameter; | |
2831 | ||
2832 | thread_dispatch(thread, self); | |
2833 | ||
2834 | self->continuation = self->parameter = NULL; | |
2835 | ||
2836 | if (thread != THREAD_NULL) | |
2837 | (void)spllo(); | |
2838 | ||
2839 | TLOG(1, "thread_continue: calling call_continuation \n"); | |
2840 | call_continuation(continuation, parameter, self->wait_result); | |
2841 | /*NOTREACHED*/ | |
2842 | } | |
2843 | ||
2844 | void | |
2845 | thread_quantum_init(thread_t thread) | |
2846 | { | |
2847 | if (thread->sched_mode == TH_MODE_REALTIME) { | |
2848 | thread->quantum_remaining = thread->realtime.computation; | |
2849 | } else { | |
2850 | thread->quantum_remaining = SCHED(initial_quantum_size)(thread); | |
2851 | } | |
2852 | } | |
2853 | ||
2854 | uint32_t | |
2855 | sched_timeshare_initial_quantum_size(thread_t thread) | |
2856 | { | |
2857 | if ((thread == THREAD_NULL) || !(thread->sched_flags & TH_SFLAG_THROTTLED)) | |
2858 | return std_quantum; | |
2859 | else | |
2860 | return bg_quantum; | |
2861 | } | |
2862 | ||
2863 | /* | |
2864 | * run_queue_init: | |
2865 | * | |
2866 | * Initialize a run queue before first use. | |
2867 | */ | |
2868 | void | |
2869 | run_queue_init( | |
2870 | run_queue_t rq) | |
2871 | { | |
2872 | int i; | |
2873 | ||
2874 | rq->highq = IDLEPRI; | |
2875 | for (i = 0; i < NRQBM; i++) | |
2876 | rq->bitmap[i] = 0; | |
2877 | setbit(MAXPRI - IDLEPRI, rq->bitmap); | |
2878 | rq->urgency = rq->count = 0; | |
2879 | for (i = 0; i < NRQS; i++) | |
2880 | queue_init(&rq->queues[i]); | |
2881 | } | |
2882 | ||
2883 | /* | |
2884 | * run_queue_dequeue: | |
2885 | * | |
2886 | * Perform a dequeue operation on a run queue, | |
2887 | * and return the resulting thread. | |
2888 | * | |
2889 | * The run queue must be locked (see thread_run_queue_remove() | |
2890 | * for more info), and not empty. | |
2891 | */ | |
2892 | thread_t | |
2893 | run_queue_dequeue( | |
2894 | run_queue_t rq, | |
2895 | integer_t options) | |
2896 | { | |
2897 | thread_t thread; | |
2898 | queue_t queue = rq->queues + rq->highq; | |
2899 | ||
2900 | if (options & SCHED_HEADQ) { | |
2901 | thread = (thread_t)dequeue_head(queue); | |
2902 | } | |
2903 | else { | |
2904 | thread = (thread_t)dequeue_tail(queue); | |
2905 | } | |
2906 | ||
2907 | thread->runq = PROCESSOR_NULL; | |
2908 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
2909 | rq->count--; | |
2910 | if (SCHED(priority_is_urgent)(rq->highq)) { | |
2911 | rq->urgency--; assert(rq->urgency >= 0); | |
2912 | } | |
2913 | if (queue_empty(queue)) { | |
2914 | if (rq->highq != IDLEPRI) | |
2915 | clrbit(MAXPRI - rq->highq, rq->bitmap); | |
2916 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
2917 | } | |
2918 | ||
2919 | return (thread); | |
2920 | } | |
2921 | ||
2922 | /* | |
2923 | * run_queue_enqueue: | |
2924 | * | |
2925 | * Perform a enqueue operation on a run queue. | |
2926 | * | |
2927 | * The run queue must be locked (see thread_run_queue_remove() | |
2928 | * for more info). | |
2929 | */ | |
2930 | boolean_t | |
2931 | run_queue_enqueue( | |
2932 | run_queue_t rq, | |
2933 | thread_t thread, | |
2934 | integer_t options) | |
2935 | { | |
2936 | queue_t queue = rq->queues + thread->sched_pri; | |
2937 | boolean_t result = FALSE; | |
2938 | ||
2939 | if (queue_empty(queue)) { | |
2940 | enqueue_tail(queue, (queue_entry_t)thread); | |
2941 | ||
2942 | setbit(MAXPRI - thread->sched_pri, rq->bitmap); | |
2943 | if (thread->sched_pri > rq->highq) { | |
2944 | rq->highq = thread->sched_pri; | |
2945 | result = TRUE; | |
2946 | } | |
2947 | } else { | |
2948 | if (options & SCHED_TAILQ) | |
2949 | enqueue_tail(queue, (queue_entry_t)thread); | |
2950 | else | |
2951 | enqueue_head(queue, (queue_entry_t)thread); | |
2952 | } | |
2953 | if (SCHED(priority_is_urgent)(thread->sched_pri)) | |
2954 | rq->urgency++; | |
2955 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
2956 | rq->count++; | |
2957 | ||
2958 | return (result); | |
2959 | ||
2960 | } | |
2961 | ||
2962 | /* | |
2963 | * run_queue_remove: | |
2964 | * | |
2965 | * Remove a specific thread from a runqueue. | |
2966 | * | |
2967 | * The run queue must be locked. | |
2968 | */ | |
2969 | void | |
2970 | run_queue_remove( | |
2971 | run_queue_t rq, | |
2972 | thread_t thread) | |
2973 | { | |
2974 | ||
2975 | remqueue((queue_entry_t)thread); | |
2976 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
2977 | rq->count--; | |
2978 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { | |
2979 | rq->urgency--; assert(rq->urgency >= 0); | |
2980 | } | |
2981 | ||
2982 | if (queue_empty(rq->queues + thread->sched_pri)) { | |
2983 | /* update run queue status */ | |
2984 | if (thread->sched_pri != IDLEPRI) | |
2985 | clrbit(MAXPRI - thread->sched_pri, rq->bitmap); | |
2986 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
2987 | } | |
2988 | ||
2989 | thread->runq = PROCESSOR_NULL; | |
2990 | } | |
2991 | ||
2992 | /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */ | |
2993 | void | |
2994 | rt_runq_scan(sched_update_scan_context_t scan_context) | |
2995 | { | |
2996 | spl_t s; | |
2997 | thread_t thread; | |
2998 | ||
2999 | s = splsched(); | |
3000 | rt_lock_lock(); | |
3001 | ||
3002 | qe_foreach_element_safe(thread, &rt_runq.queue, links) { | |
3003 | if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) { | |
3004 | scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time; | |
3005 | } | |
3006 | } | |
3007 | ||
3008 | rt_lock_unlock(); | |
3009 | splx(s); | |
3010 | } | |
3011 | ||
3012 | ||
3013 | /* | |
3014 | * realtime_queue_insert: | |
3015 | * | |
3016 | * Enqueue a thread for realtime execution. | |
3017 | */ | |
3018 | static boolean_t | |
3019 | realtime_queue_insert( | |
3020 | thread_t thread) | |
3021 | { | |
3022 | queue_t queue = &rt_runq.queue; | |
3023 | uint64_t deadline = thread->realtime.deadline; | |
3024 | boolean_t preempt = FALSE; | |
3025 | ||
3026 | rt_lock_lock(); | |
3027 | ||
3028 | if (queue_empty(queue)) { | |
3029 | enqueue_tail(queue, (queue_entry_t)thread); | |
3030 | preempt = TRUE; | |
3031 | } | |
3032 | else { | |
3033 | register thread_t entry = (thread_t)queue_first(queue); | |
3034 | ||
3035 | while (TRUE) { | |
3036 | if ( queue_end(queue, (queue_entry_t)entry) || | |
3037 | deadline < entry->realtime.deadline ) { | |
3038 | entry = (thread_t)queue_prev((queue_entry_t)entry); | |
3039 | break; | |
3040 | } | |
3041 | ||
3042 | entry = (thread_t)queue_next((queue_entry_t)entry); | |
3043 | } | |
3044 | ||
3045 | if ((queue_entry_t)entry == queue) | |
3046 | preempt = TRUE; | |
3047 | ||
3048 | insque((queue_entry_t)thread, (queue_entry_t)entry); | |
3049 | } | |
3050 | ||
3051 | thread->runq = THREAD_ON_RT_RUNQ; | |
3052 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); | |
3053 | rt_runq.count++; | |
3054 | ||
3055 | rt_lock_unlock(); | |
3056 | ||
3057 | return (preempt); | |
3058 | } | |
3059 | ||
3060 | /* | |
3061 | * realtime_setrun: | |
3062 | * | |
3063 | * Dispatch a thread for realtime execution. | |
3064 | * | |
3065 | * Thread must be locked. Associated pset must | |
3066 | * be locked, and is returned unlocked. | |
3067 | */ | |
3068 | static void | |
3069 | realtime_setrun( | |
3070 | processor_t processor, | |
3071 | thread_t thread) | |
3072 | { | |
3073 | processor_set_t pset = processor->processor_set; | |
3074 | ast_t preempt; | |
3075 | ||
3076 | boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE; | |
3077 | ||
3078 | thread->chosen_processor = processor; | |
3079 | ||
3080 | /* <rdar://problem/15102234> */ | |
3081 | assert(thread->bound_processor == PROCESSOR_NULL); | |
3082 | ||
3083 | /* | |
3084 | * Dispatch directly onto idle processor. | |
3085 | */ | |
3086 | if ( (thread->bound_processor == processor) | |
3087 | && processor->state == PROCESSOR_IDLE) { | |
3088 | remqueue((queue_entry_t)processor); | |
3089 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
3090 | ||
3091 | processor->next_thread = thread; | |
3092 | processor->current_pri = thread->sched_pri; | |
3093 | processor->current_thmode = thread->sched_mode; | |
3094 | processor->current_sfi_class = thread->sfi_class; | |
3095 | processor->deadline = thread->realtime.deadline; | |
3096 | processor->state = PROCESSOR_DISPATCHING; | |
3097 | ||
3098 | if (processor != current_processor()) { | |
3099 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3100 | /* cleared on exit from main processor_idle() loop */ | |
3101 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3102 | do_signal_idle = TRUE; | |
3103 | } | |
3104 | } | |
3105 | pset_unlock(pset); | |
3106 | ||
3107 | if (do_signal_idle) { | |
3108 | machine_signal_idle(processor); | |
3109 | } | |
3110 | return; | |
3111 | } | |
3112 | ||
3113 | if (processor->current_pri < BASEPRI_RTQUEUES) | |
3114 | preempt = (AST_PREEMPT | AST_URGENT); | |
3115 | else if (thread->realtime.deadline < processor->deadline) | |
3116 | preempt = (AST_PREEMPT | AST_URGENT); | |
3117 | else | |
3118 | preempt = AST_NONE; | |
3119 | ||
3120 | realtime_queue_insert(thread); | |
3121 | ||
3122 | if (preempt != AST_NONE) { | |
3123 | if (processor->state == PROCESSOR_IDLE) { | |
3124 | remqueue((queue_entry_t)processor); | |
3125 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
3126 | processor->next_thread = THREAD_NULL; | |
3127 | processor->current_pri = thread->sched_pri; | |
3128 | processor->current_thmode = thread->sched_mode; | |
3129 | processor->current_sfi_class = thread->sfi_class; | |
3130 | processor->deadline = thread->realtime.deadline; | |
3131 | processor->state = PROCESSOR_DISPATCHING; | |
3132 | if (processor == current_processor()) { | |
3133 | ast_on(preempt); | |
3134 | } else { | |
3135 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3136 | /* cleared on exit from main processor_idle() loop */ | |
3137 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3138 | do_signal_idle = TRUE; | |
3139 | } | |
3140 | } | |
3141 | } else if (processor->state == PROCESSOR_DISPATCHING) { | |
3142 | if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) { | |
3143 | processor->current_pri = thread->sched_pri; | |
3144 | processor->current_thmode = thread->sched_mode; | |
3145 | processor->current_sfi_class = thread->sfi_class; | |
3146 | processor->deadline = thread->realtime.deadline; | |
3147 | } | |
3148 | } else { | |
3149 | if (processor == current_processor()) { | |
3150 | ast_on(preempt); | |
3151 | } else { | |
3152 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3153 | /* cleared after IPI causes csw_check() to be called */ | |
3154 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3155 | do_cause_ast = TRUE; | |
3156 | } | |
3157 | } | |
3158 | } | |
3159 | } else { | |
3160 | /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */ | |
3161 | } | |
3162 | ||
3163 | pset_unlock(pset); | |
3164 | ||
3165 | if (do_signal_idle) { | |
3166 | machine_signal_idle(processor); | |
3167 | } else if (do_cause_ast) { | |
3168 | cause_ast_check(processor); | |
3169 | } | |
3170 | } | |
3171 | ||
3172 | ||
3173 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
3174 | ||
3175 | boolean_t | |
3176 | priority_is_urgent(int priority) | |
3177 | { | |
3178 | return testbit(priority, sched_preempt_pri) ? TRUE : FALSE; | |
3179 | } | |
3180 | ||
3181 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
3182 | ||
3183 | /* | |
3184 | * processor_setrun: | |
3185 | * | |
3186 | * Dispatch a thread for execution on a | |
3187 | * processor. | |
3188 | * | |
3189 | * Thread must be locked. Associated pset must | |
3190 | * be locked, and is returned unlocked. | |
3191 | */ | |
3192 | static void | |
3193 | processor_setrun( | |
3194 | processor_t processor, | |
3195 | thread_t thread, | |
3196 | integer_t options) | |
3197 | { | |
3198 | processor_set_t pset = processor->processor_set; | |
3199 | ast_t preempt; | |
3200 | enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing; | |
3201 | enum { eNoSignal, eDoSignal, eDoDeferredSignal } do_signal_idle = eNoSignal; | |
3202 | ||
3203 | boolean_t do_cause_ast = FALSE; | |
3204 | ||
3205 | thread->chosen_processor = processor; | |
3206 | ||
3207 | /* | |
3208 | * Dispatch directly onto idle processor. | |
3209 | */ | |
3210 | if ( (SCHED(direct_dispatch_to_idle_processors) || | |
3211 | thread->bound_processor == processor) | |
3212 | && processor->state == PROCESSOR_IDLE) { | |
3213 | remqueue((queue_entry_t)processor); | |
3214 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
3215 | ||
3216 | processor->next_thread = thread; | |
3217 | processor->current_pri = thread->sched_pri; | |
3218 | processor->current_thmode = thread->sched_mode; | |
3219 | processor->current_sfi_class = thread->sfi_class; | |
3220 | processor->deadline = UINT64_MAX; | |
3221 | processor->state = PROCESSOR_DISPATCHING; | |
3222 | ||
3223 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3224 | /* cleared on exit from main processor_idle() loop */ | |
3225 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3226 | do_signal_idle = eDoSignal; | |
3227 | } | |
3228 | ||
3229 | pset_unlock(pset); | |
3230 | ||
3231 | if (do_signal_idle == eDoSignal) { | |
3232 | machine_signal_idle(processor); | |
3233 | } | |
3234 | ||
3235 | return; | |
3236 | } | |
3237 | ||
3238 | /* | |
3239 | * Set preemption mode. | |
3240 | */ | |
3241 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
3242 | /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */ | |
3243 | #endif | |
3244 | if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri) | |
3245 | preempt = (AST_PREEMPT | AST_URGENT); | |
3246 | else if(processor->active_thread && thread_eager_preemption(processor->active_thread)) | |
3247 | preempt = (AST_PREEMPT | AST_URGENT); | |
3248 | else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) { | |
3249 | if(SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) { | |
3250 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; | |
3251 | } else { | |
3252 | preempt = AST_NONE; | |
3253 | } | |
3254 | } else | |
3255 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; | |
3256 | ||
3257 | SCHED(processor_enqueue)(processor, thread, options); | |
3258 | ||
3259 | if (preempt != AST_NONE) { | |
3260 | if (processor->state == PROCESSOR_IDLE) { | |
3261 | remqueue((queue_entry_t)processor); | |
3262 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
3263 | processor->next_thread = THREAD_NULL; | |
3264 | processor->current_pri = thread->sched_pri; | |
3265 | processor->current_thmode = thread->sched_mode; | |
3266 | processor->current_sfi_class = thread->sfi_class; | |
3267 | processor->deadline = UINT64_MAX; | |
3268 | processor->state = PROCESSOR_DISPATCHING; | |
3269 | ||
3270 | ipi_action = eExitIdle; | |
3271 | } else if ( processor->state == PROCESSOR_DISPATCHING) { | |
3272 | if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) { | |
3273 | processor->current_pri = thread->sched_pri; | |
3274 | processor->current_thmode = thread->sched_mode; | |
3275 | processor->current_sfi_class = thread->sfi_class; | |
3276 | processor->deadline = UINT64_MAX; | |
3277 | } | |
3278 | } else if ( (processor->state == PROCESSOR_RUNNING || | |
3279 | processor->state == PROCESSOR_SHUTDOWN) && | |
3280 | (thread->sched_pri >= processor->current_pri)) { | |
3281 | ipi_action = eInterruptRunning; | |
3282 | } | |
3283 | } else { | |
3284 | /* | |
3285 | * New thread is not important enough to preempt what is running, but | |
3286 | * special processor states may need special handling | |
3287 | */ | |
3288 | if (processor->state == PROCESSOR_SHUTDOWN && | |
3289 | thread->sched_pri >= processor->current_pri ) { | |
3290 | ipi_action = eInterruptRunning; | |
3291 | } else if ( processor->state == PROCESSOR_IDLE && | |
3292 | processor != current_processor() ) { | |
3293 | remqueue((queue_entry_t)processor); | |
3294 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
3295 | processor->next_thread = THREAD_NULL; | |
3296 | processor->current_pri = thread->sched_pri; | |
3297 | processor->current_thmode = thread->sched_mode; | |
3298 | processor->current_sfi_class = thread->sfi_class; | |
3299 | processor->deadline = UINT64_MAX; | |
3300 | processor->state = PROCESSOR_DISPATCHING; | |
3301 | ||
3302 | ipi_action = eExitIdle; | |
3303 | } | |
3304 | } | |
3305 | ||
3306 | switch (ipi_action) { | |
3307 | case eDoNothing: | |
3308 | break; | |
3309 | case eExitIdle: | |
3310 | if (processor == current_processor()) { | |
3311 | if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE) | |
3312 | ast_on(preempt); | |
3313 | } else { | |
3314 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
3315 | if (!(pset->pending_deferred_AST_cpu_mask & (1ULL << processor->cpu_id)) && | |
3316 | !(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3317 | /* cleared on exit from main processor_idle() loop */ | |
3318 | pset->pending_deferred_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3319 | do_signal_idle = eDoDeferredSignal; | |
3320 | } | |
3321 | #else | |
3322 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3323 | /* cleared on exit from main processor_idle() loop */ | |
3324 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3325 | do_signal_idle = eDoSignal; | |
3326 | } | |
3327 | #endif | |
3328 | } | |
3329 | break; | |
3330 | case eInterruptRunning: | |
3331 | if (processor == current_processor()) { | |
3332 | if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE) | |
3333 | ast_on(preempt); | |
3334 | } else { | |
3335 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3336 | /* cleared after IPI causes csw_check() to be called */ | |
3337 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3338 | do_cause_ast = TRUE; | |
3339 | } | |
3340 | } | |
3341 | break; | |
3342 | } | |
3343 | ||
3344 | pset_unlock(pset); | |
3345 | ||
3346 | if (do_signal_idle == eDoSignal) { | |
3347 | machine_signal_idle(processor); | |
3348 | } | |
3349 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
3350 | else if (do_signal_idle == eDoDeferredSignal) { | |
3351 | /* | |
3352 | * TODO: The ability to cancel this signal could make | |
3353 | * sending it outside of the pset lock an issue. Do | |
3354 | * we need to address this? Or would the only fallout | |
3355 | * be that the core takes a signal? As long as we do | |
3356 | * not run the risk of having a core marked as signal | |
3357 | * outstanding, with no real signal outstanding, the | |
3358 | * only result should be that we fail to cancel some | |
3359 | * signals. | |
3360 | */ | |
3361 | machine_signal_idle_deferred(processor); | |
3362 | } | |
3363 | #endif | |
3364 | else if (do_cause_ast) { | |
3365 | cause_ast_check(processor); | |
3366 | } | |
3367 | } | |
3368 | ||
3369 | /* | |
3370 | * choose_next_pset: | |
3371 | * | |
3372 | * Return the next sibling pset containing | |
3373 | * available processors. | |
3374 | * | |
3375 | * Returns the original pset if none other is | |
3376 | * suitable. | |
3377 | */ | |
3378 | static processor_set_t | |
3379 | choose_next_pset( | |
3380 | processor_set_t pset) | |
3381 | { | |
3382 | processor_set_t nset = pset; | |
3383 | ||
3384 | do { | |
3385 | nset = next_pset(nset); | |
3386 | } while (nset->online_processor_count < 1 && nset != pset); | |
3387 | ||
3388 | return (nset); | |
3389 | } | |
3390 | ||
3391 | /* | |
3392 | * choose_processor: | |
3393 | * | |
3394 | * Choose a processor for the thread, beginning at | |
3395 | * the pset. Accepts an optional processor hint in | |
3396 | * the pset. | |
3397 | * | |
3398 | * Returns a processor, possibly from a different pset. | |
3399 | * | |
3400 | * The thread must be locked. The pset must be locked, | |
3401 | * and the resulting pset is locked on return. | |
3402 | */ | |
3403 | processor_t | |
3404 | choose_processor( | |
3405 | processor_set_t pset, | |
3406 | processor_t processor, | |
3407 | thread_t thread) | |
3408 | { | |
3409 | processor_set_t nset, cset = pset; | |
3410 | ||
3411 | /* | |
3412 | * Prefer the hinted processor, when appropriate. | |
3413 | */ | |
3414 | ||
3415 | /* Fold last processor hint from secondary processor to its primary */ | |
3416 | if (processor != PROCESSOR_NULL) { | |
3417 | processor = processor->processor_primary; | |
3418 | } | |
3419 | ||
3420 | /* | |
3421 | * Only consult platform layer if pset is active, which | |
3422 | * it may not be in some cases when a multi-set system | |
3423 | * is going to sleep. | |
3424 | */ | |
3425 | if (pset->online_processor_count) { | |
3426 | if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) { | |
3427 | processor_t mc_processor = machine_choose_processor(pset, processor); | |
3428 | if (mc_processor != PROCESSOR_NULL) | |
3429 | processor = mc_processor->processor_primary; | |
3430 | } | |
3431 | } | |
3432 | ||
3433 | /* | |
3434 | * At this point, we may have a processor hint, and we may have | |
3435 | * an initial starting pset. If the hint is not in the pset, or | |
3436 | * if the hint is for a processor in an invalid state, discard | |
3437 | * the hint. | |
3438 | */ | |
3439 | if (processor != PROCESSOR_NULL) { | |
3440 | if (processor->processor_set != pset) { | |
3441 | processor = PROCESSOR_NULL; | |
3442 | } else if (!processor->is_recommended) { | |
3443 | processor = PROCESSOR_NULL; | |
3444 | } else { | |
3445 | switch (processor->state) { | |
3446 | case PROCESSOR_START: | |
3447 | case PROCESSOR_SHUTDOWN: | |
3448 | case PROCESSOR_OFF_LINE: | |
3449 | /* | |
3450 | * Hint is for a processor that cannot support running new threads. | |
3451 | */ | |
3452 | processor = PROCESSOR_NULL; | |
3453 | break; | |
3454 | case PROCESSOR_IDLE: | |
3455 | /* | |
3456 | * Hint is for an idle processor. Assume it is no worse than any other | |
3457 | * idle processor. The platform layer had an opportunity to provide | |
3458 | * the "least cost idle" processor above. | |
3459 | */ | |
3460 | return (processor); | |
3461 | break; | |
3462 | case PROCESSOR_RUNNING: | |
3463 | case PROCESSOR_DISPATCHING: | |
3464 | /* | |
3465 | * Hint is for an active CPU. This fast-path allows | |
3466 | * realtime threads to preempt non-realtime threads | |
3467 | * to regain their previous executing processor. | |
3468 | */ | |
3469 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && | |
3470 | (processor->current_pri < BASEPRI_RTQUEUES)) | |
3471 | return (processor); | |
3472 | ||
3473 | /* Otherwise, use hint as part of search below */ | |
3474 | break; | |
3475 | default: | |
3476 | processor = PROCESSOR_NULL; | |
3477 | break; | |
3478 | } | |
3479 | } | |
3480 | } | |
3481 | ||
3482 | /* | |
3483 | * Iterate through the processor sets to locate | |
3484 | * an appropriate processor. Seed results with | |
3485 | * a last-processor hint, if available, so that | |
3486 | * a search must find something strictly better | |
3487 | * to replace it. | |
3488 | * | |
3489 | * A primary/secondary pair of SMT processors are | |
3490 | * "unpaired" if the primary is busy but its | |
3491 | * corresponding secondary is idle (so the physical | |
3492 | * core has full use of its resources). | |
3493 | */ | |
3494 | ||
3495 | integer_t lowest_priority = MAXPRI + 1; | |
3496 | integer_t lowest_unpaired_primary_priority = MAXPRI + 1; | |
3497 | integer_t lowest_count = INT_MAX; | |
3498 | uint64_t furthest_deadline = 1; | |
3499 | processor_t lp_processor = PROCESSOR_NULL; | |
3500 | processor_t lp_unpaired_primary_processor = PROCESSOR_NULL; | |
3501 | processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL; | |
3502 | processor_t lc_processor = PROCESSOR_NULL; | |
3503 | processor_t fd_processor = PROCESSOR_NULL; | |
3504 | ||
3505 | if (processor != PROCESSOR_NULL) { | |
3506 | /* All other states should be enumerated above. */ | |
3507 | assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING); | |
3508 | ||
3509 | lowest_priority = processor->current_pri; | |
3510 | lp_processor = processor; | |
3511 | ||
3512 | if (processor->current_pri >= BASEPRI_RTQUEUES) { | |
3513 | furthest_deadline = processor->deadline; | |
3514 | fd_processor = processor; | |
3515 | } | |
3516 | ||
3517 | lowest_count = SCHED(processor_runq_count)(processor); | |
3518 | lc_processor = processor; | |
3519 | } | |
3520 | ||
3521 | do { | |
3522 | ||
3523 | /* | |
3524 | * Choose an idle processor, in pset traversal order | |
3525 | */ | |
3526 | qe_foreach_element(processor, &cset->idle_queue, processor_queue) { | |
3527 | if (processor->is_recommended) | |
3528 | return processor; | |
3529 | } | |
3530 | ||
3531 | /* | |
3532 | * Otherwise, enumerate active and idle processors to find candidates | |
3533 | * with lower priority/etc. | |
3534 | */ | |
3535 | ||
3536 | qe_foreach_element(processor, &cset->active_queue, processor_queue) { | |
3537 | ||
3538 | if (!processor->is_recommended) { | |
3539 | continue; | |
3540 | } | |
3541 | ||
3542 | integer_t cpri = processor->current_pri; | |
3543 | if (cpri < lowest_priority) { | |
3544 | lowest_priority = cpri; | |
3545 | lp_processor = processor; | |
3546 | } | |
3547 | ||
3548 | if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) { | |
3549 | furthest_deadline = processor->deadline; | |
3550 | fd_processor = processor; | |
3551 | } | |
3552 | ||
3553 | integer_t ccount = SCHED(processor_runq_count)(processor); | |
3554 | if (ccount < lowest_count) { | |
3555 | lowest_count = ccount; | |
3556 | lc_processor = processor; | |
3557 | } | |
3558 | } | |
3559 | ||
3560 | /* | |
3561 | * For SMT configs, these idle secondary processors must have active primary. Otherwise | |
3562 | * the idle primary would have short-circuited the loop above | |
3563 | */ | |
3564 | qe_foreach_element(processor, &cset->idle_secondary_queue, processor_queue) { | |
3565 | ||
3566 | if (!processor->is_recommended) { | |
3567 | continue; | |
3568 | } | |
3569 | ||
3570 | processor_t cprimary = processor->processor_primary; | |
3571 | ||
3572 | /* If the primary processor is offline or starting up, it's not a candidate for this path */ | |
3573 | if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) { | |
3574 | integer_t primary_pri = cprimary->current_pri; | |
3575 | ||
3576 | if (primary_pri < lowest_unpaired_primary_priority) { | |
3577 | lowest_unpaired_primary_priority = primary_pri; | |
3578 | lp_unpaired_primary_processor = cprimary; | |
3579 | lp_unpaired_secondary_processor = processor; | |
3580 | } | |
3581 | } | |
3582 | } | |
3583 | ||
3584 | ||
3585 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { | |
3586 | ||
3587 | /* | |
3588 | * For realtime threads, the most important aspect is | |
3589 | * scheduling latency, so we attempt to assign threads | |
3590 | * to good preemption candidates (assuming an idle primary | |
3591 | * processor was not available above). | |
3592 | */ | |
3593 | ||
3594 | if (thread->sched_pri > lowest_unpaired_primary_priority) { | |
3595 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
3596 | re_queue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor); | |
3597 | return lp_unpaired_primary_processor; | |
3598 | } | |
3599 | if (thread->sched_pri > lowest_priority) { | |
3600 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
3601 | re_queue_tail(&cset->active_queue, (queue_entry_t)lp_processor); | |
3602 | return lp_processor; | |
3603 | } | |
3604 | if (thread->realtime.deadline < furthest_deadline) | |
3605 | return fd_processor; | |
3606 | ||
3607 | /* | |
3608 | * If all primary and secondary CPUs are busy with realtime | |
3609 | * threads with deadlines earlier than us, move on to next | |
3610 | * pset. | |
3611 | */ | |
3612 | } | |
3613 | else { | |
3614 | ||
3615 | if (thread->sched_pri > lowest_unpaired_primary_priority) { | |
3616 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
3617 | re_queue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor); | |
3618 | return lp_unpaired_primary_processor; | |
3619 | } | |
3620 | if (thread->sched_pri > lowest_priority) { | |
3621 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
3622 | re_queue_tail(&cset->active_queue, (queue_entry_t)lp_processor); | |
3623 | return lp_processor; | |
3624 | } | |
3625 | ||
3626 | /* | |
3627 | * If all primary processor in this pset are running a higher | |
3628 | * priority thread, move on to next pset. Only when we have | |
3629 | * exhausted this search do we fall back to other heuristics. | |
3630 | */ | |
3631 | } | |
3632 | ||
3633 | /* | |
3634 | * Move onto the next processor set. | |
3635 | */ | |
3636 | nset = next_pset(cset); | |
3637 | ||
3638 | if (nset != pset) { | |
3639 | pset_unlock(cset); | |
3640 | ||
3641 | cset = nset; | |
3642 | pset_lock(cset); | |
3643 | } | |
3644 | } while (nset != pset); | |
3645 | ||
3646 | /* | |
3647 | * Make sure that we pick a running processor, | |
3648 | * and that the correct processor set is locked. | |
3649 | * Since we may have unlock the candidate processor's | |
3650 | * pset, it may have changed state. | |
3651 | * | |
3652 | * All primary processors are running a higher priority | |
3653 | * thread, so the only options left are enqueuing on | |
3654 | * the secondary processor that would perturb the least priority | |
3655 | * primary, or the least busy primary. | |
3656 | */ | |
3657 | do { | |
3658 | ||
3659 | /* lowest_priority is evaluated in the main loops above */ | |
3660 | if (lp_unpaired_secondary_processor != PROCESSOR_NULL) { | |
3661 | processor = lp_unpaired_secondary_processor; | |
3662 | lp_unpaired_secondary_processor = PROCESSOR_NULL; | |
3663 | } else if (lc_processor != PROCESSOR_NULL) { | |
3664 | processor = lc_processor; | |
3665 | lc_processor = PROCESSOR_NULL; | |
3666 | } else { | |
3667 | /* | |
3668 | * All processors are executing higher | |
3669 | * priority threads, and the lowest_count | |
3670 | * candidate was not usable | |
3671 | */ | |
3672 | processor = master_processor; | |
3673 | } | |
3674 | ||
3675 | /* | |
3676 | * Check that the correct processor set is | |
3677 | * returned locked. | |
3678 | */ | |
3679 | if (cset != processor->processor_set) { | |
3680 | pset_unlock(cset); | |
3681 | cset = processor->processor_set; | |
3682 | pset_lock(cset); | |
3683 | } | |
3684 | ||
3685 | /* | |
3686 | * We must verify that the chosen processor is still available. | |
3687 | * master_processor is an exception, since we may need to preempt | |
3688 | * a running thread on it during processor shutdown (for sleep), | |
3689 | * and that thread needs to be enqueued on its runqueue to run | |
3690 | * when the processor is restarted. | |
3691 | */ | |
3692 | if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)) | |
3693 | processor = PROCESSOR_NULL; | |
3694 | ||
3695 | } while (processor == PROCESSOR_NULL); | |
3696 | ||
3697 | return (processor); | |
3698 | } | |
3699 | ||
3700 | /* | |
3701 | * thread_setrun: | |
3702 | * | |
3703 | * Dispatch thread for execution, onto an idle | |
3704 | * processor or run queue, and signal a preemption | |
3705 | * as appropriate. | |
3706 | * | |
3707 | * Thread must be locked. | |
3708 | */ | |
3709 | void | |
3710 | thread_setrun( | |
3711 | thread_t thread, | |
3712 | integer_t options) | |
3713 | { | |
3714 | processor_t processor; | |
3715 | processor_set_t pset; | |
3716 | ||
3717 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); | |
3718 | assert(thread->runq == PROCESSOR_NULL); | |
3719 | ||
3720 | /* | |
3721 | * Update priority if needed. | |
3722 | */ | |
3723 | if (SCHED(can_update_priority)(thread)) | |
3724 | SCHED(update_priority)(thread); | |
3725 | ||
3726 | thread->sfi_class = sfi_thread_classify(thread); | |
3727 | ||
3728 | assert(thread->runq == PROCESSOR_NULL); | |
3729 | ||
3730 | #if __SMP__ | |
3731 | if (thread->bound_processor == PROCESSOR_NULL) { | |
3732 | /* | |
3733 | * Unbound case. | |
3734 | */ | |
3735 | if (thread->affinity_set != AFFINITY_SET_NULL) { | |
3736 | /* | |
3737 | * Use affinity set policy hint. | |
3738 | */ | |
3739 | pset = thread->affinity_set->aset_pset; | |
3740 | pset_lock(pset); | |
3741 | ||
3742 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); | |
3743 | ||
3744 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, | |
3745 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); | |
3746 | } else if (thread->last_processor != PROCESSOR_NULL) { | |
3747 | /* | |
3748 | * Simple (last processor) affinity case. | |
3749 | */ | |
3750 | processor = thread->last_processor; | |
3751 | pset = processor->processor_set; | |
3752 | pset_lock(pset); | |
3753 | processor = SCHED(choose_processor)(pset, processor, thread); | |
3754 | ||
3755 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, | |
3756 | (uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0); | |
3757 | } else { | |
3758 | /* | |
3759 | * No Affinity case: | |
3760 | * | |
3761 | * Utilitize a per task hint to spread threads | |
3762 | * among the available processor sets. | |
3763 | */ | |
3764 | task_t task = thread->task; | |
3765 | ||
3766 | pset = task->pset_hint; | |
3767 | if (pset == PROCESSOR_SET_NULL) | |
3768 | pset = current_processor()->processor_set; | |
3769 | ||
3770 | pset = choose_next_pset(pset); | |
3771 | pset_lock(pset); | |
3772 | ||
3773 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); | |
3774 | task->pset_hint = processor->processor_set; | |
3775 | ||
3776 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, | |
3777 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); | |
3778 | } | |
3779 | } else { | |
3780 | /* | |
3781 | * Bound case: | |
3782 | * | |
3783 | * Unconditionally dispatch on the processor. | |
3784 | */ | |
3785 | processor = thread->bound_processor; | |
3786 | pset = processor->processor_set; | |
3787 | pset_lock(pset); | |
3788 | ||
3789 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, | |
3790 | (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0); | |
3791 | } | |
3792 | #else /* !__SMP__ */ | |
3793 | /* Only one processor to choose */ | |
3794 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == master_processor); | |
3795 | processor = master_processor; | |
3796 | pset = processor->processor_set; | |
3797 | pset_lock(pset); | |
3798 | #endif /* !__SMP__ */ | |
3799 | ||
3800 | /* | |
3801 | * Dispatch the thread on the chosen processor. | |
3802 | * TODO: This should be based on sched_mode, not sched_pri | |
3803 | */ | |
3804 | if (thread->sched_pri >= BASEPRI_RTQUEUES) | |
3805 | realtime_setrun(processor, thread); | |
3806 | else | |
3807 | processor_setrun(processor, thread, options); | |
3808 | } | |
3809 | ||
3810 | processor_set_t | |
3811 | task_choose_pset( | |
3812 | task_t task) | |
3813 | { | |
3814 | processor_set_t pset = task->pset_hint; | |
3815 | ||
3816 | if (pset != PROCESSOR_SET_NULL) | |
3817 | pset = choose_next_pset(pset); | |
3818 | ||
3819 | return (pset); | |
3820 | } | |
3821 | ||
3822 | /* | |
3823 | * Check for a preemption point in | |
3824 | * the current context. | |
3825 | * | |
3826 | * Called at splsched with thread locked. | |
3827 | */ | |
3828 | ast_t | |
3829 | csw_check( | |
3830 | processor_t processor, | |
3831 | ast_t check_reason) | |
3832 | { | |
3833 | processor_set_t pset = processor->processor_set; | |
3834 | ast_t result; | |
3835 | ||
3836 | pset_lock(pset); | |
3837 | ||
3838 | /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */ | |
3839 | pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id); | |
3840 | ||
3841 | result = csw_check_locked(processor, pset, check_reason); | |
3842 | ||
3843 | pset_unlock(pset); | |
3844 | ||
3845 | return result; | |
3846 | } | |
3847 | ||
3848 | /* | |
3849 | * Check for preemption at splsched with | |
3850 | * pset and thread locked | |
3851 | */ | |
3852 | ast_t | |
3853 | csw_check_locked( | |
3854 | processor_t processor, | |
3855 | processor_set_t pset __unused, | |
3856 | ast_t check_reason) | |
3857 | { | |
3858 | ast_t result; | |
3859 | thread_t thread = processor->active_thread; | |
3860 | ||
3861 | if (processor->first_timeslice) { | |
3862 | if (rt_runq.count > 0) | |
3863 | return (check_reason | AST_PREEMPT | AST_URGENT); | |
3864 | } | |
3865 | else { | |
3866 | if (rt_runq.count > 0) { | |
3867 | if (BASEPRI_RTQUEUES > processor->current_pri) | |
3868 | return (check_reason | AST_PREEMPT | AST_URGENT); | |
3869 | else | |
3870 | return (check_reason | AST_PREEMPT); | |
3871 | } | |
3872 | } | |
3873 | ||
3874 | result = SCHED(processor_csw_check)(processor); | |
3875 | if (result != AST_NONE) | |
3876 | return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE)); | |
3877 | ||
3878 | #if __SMP__ | |
3879 | ||
3880 | /* | |
3881 | * If the current thread is running on a processor that is no longer recommended, gently | |
3882 | * (non-urgently) get to a point and then block, and which point thread_select() should | |
3883 | * try to idle the processor and re-dispatch the thread to a recommended processor. | |
3884 | */ | |
3885 | if (!processor->is_recommended) | |
3886 | return (check_reason | AST_PREEMPT); | |
3887 | ||
3888 | /* | |
3889 | * Even though we could continue executing on this processor, a | |
3890 | * secondary SMT core should try to shed load to another primary core. | |
3891 | * | |
3892 | * TODO: Should this do the same check that thread_select does? i.e. | |
3893 | * if no bound threads target this processor, and idle primaries exist, preempt | |
3894 | * The case of RT threads existing is already taken care of above | |
3895 | * Consider Capri in this scenario. | |
3896 | * | |
3897 | * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue)) | |
3898 | * | |
3899 | * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine. | |
3900 | */ | |
3901 | ||
3902 | if (processor->current_pri < BASEPRI_RTQUEUES && | |
3903 | processor->processor_primary != processor) | |
3904 | return (check_reason | AST_PREEMPT); | |
3905 | #endif | |
3906 | ||
3907 | if (thread->state & TH_SUSP) | |
3908 | return (check_reason | AST_PREEMPT); | |
3909 | ||
3910 | #if CONFIG_SCHED_SFI | |
3911 | /* | |
3912 | * Current thread may not need to be preempted, but maybe needs | |
3913 | * an SFI wait? | |
3914 | */ | |
3915 | result = sfi_thread_needs_ast(thread, NULL); | |
3916 | if (result != AST_NONE) | |
3917 | return (check_reason | result); | |
3918 | #endif | |
3919 | ||
3920 | return (AST_NONE); | |
3921 | } | |
3922 | ||
3923 | /* | |
3924 | * set_sched_pri: | |
3925 | * | |
3926 | * Set the scheduled priority of the specified thread. | |
3927 | * | |
3928 | * This may cause the thread to change queues. | |
3929 | * | |
3930 | * Thread must be locked. | |
3931 | */ | |
3932 | void | |
3933 | set_sched_pri( | |
3934 | thread_t thread, | |
3935 | int priority) | |
3936 | { | |
3937 | thread_t cthread = current_thread(); | |
3938 | boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE; | |
3939 | int curgency, nurgency; | |
3940 | uint64_t urgency_param1, urgency_param2; | |
3941 | boolean_t removed_from_runq = FALSE; | |
3942 | ||
3943 | /* If we're already at this priority, no need to mess with the runqueue */ | |
3944 | if (priority == thread->sched_pri) | |
3945 | return; | |
3946 | ||
3947 | if (is_current_thread) { | |
3948 | assert(thread->runq == PROCESSOR_NULL); | |
3949 | curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); | |
3950 | } else { | |
3951 | removed_from_runq = thread_run_queue_remove(thread); | |
3952 | } | |
3953 | ||
3954 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY), | |
3955 | (uintptr_t)thread_tid(thread), | |
3956 | thread->base_pri, | |
3957 | thread->sched_pri, | |
3958 | 0, /* eventually, 'reason' */ | |
3959 | 0); | |
3960 | ||
3961 | thread->sched_pri = priority; | |
3962 | ||
3963 | if (is_current_thread) { | |
3964 | nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); | |
3965 | /* | |
3966 | * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS | |
3967 | * class alterations from user space to occur relatively infrequently, hence | |
3968 | * those are lazily handled. QoS classes have distinct priority bands, and QoS | |
3969 | * inheritance is expected to involve priority changes. | |
3970 | */ | |
3971 | if (nurgency != curgency) { | |
3972 | thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread); | |
3973 | machine_thread_going_on_core(thread, nurgency, 0); | |
3974 | } | |
3975 | } | |
3976 | ||
3977 | /* TODO: Should this be TAILQ if it went down, HEADQ if it went up? */ | |
3978 | if (removed_from_runq) | |
3979 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
3980 | else if (thread->state & TH_RUN) { | |
3981 | processor_t processor = thread->last_processor; | |
3982 | ||
3983 | if (is_current_thread) { | |
3984 | ast_t preempt; | |
3985 | ||
3986 | processor->current_pri = priority; | |
3987 | processor->current_thmode = thread->sched_mode; | |
3988 | processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread); | |
3989 | if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE) | |
3990 | ast_on(preempt); | |
3991 | } else if (processor != PROCESSOR_NULL && processor->active_thread == thread) | |
3992 | cause_ast_check(processor); | |
3993 | } | |
3994 | } | |
3995 | ||
3996 | /* | |
3997 | * thread_run_queue_remove_for_handoff | |
3998 | * | |
3999 | * Pull a thread or its (recursive) push target out of the runqueue | |
4000 | * so that it is ready for thread_run() | |
4001 | * | |
4002 | * Called at splsched | |
4003 | * | |
4004 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. | |
4005 | * This may be different than the thread that was passed in. | |
4006 | */ | |
4007 | thread_t | |
4008 | thread_run_queue_remove_for_handoff(thread_t thread) { | |
4009 | ||
4010 | thread_t pulled_thread = THREAD_NULL; | |
4011 | ||
4012 | thread_lock(thread); | |
4013 | ||
4014 | /* | |
4015 | * Check that the thread is not bound | |
4016 | * to a different processor, and that realtime | |
4017 | * is not involved. | |
4018 | * | |
4019 | * Next, pull it off its run queue. If it | |
4020 | * doesn't come, it's not eligible. | |
4021 | */ | |
4022 | ||
4023 | processor_t processor = current_processor(); | |
4024 | if (processor->current_pri < BASEPRI_RTQUEUES && thread->sched_pri < BASEPRI_RTQUEUES && | |
4025 | (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor)) { | |
4026 | ||
4027 | if (thread_run_queue_remove(thread)) | |
4028 | pulled_thread = thread; | |
4029 | } | |
4030 | ||
4031 | thread_unlock(thread); | |
4032 | ||
4033 | return pulled_thread; | |
4034 | } | |
4035 | ||
4036 | /* | |
4037 | * thread_run_queue_remove: | |
4038 | * | |
4039 | * Remove a thread from its current run queue and | |
4040 | * return TRUE if successful. | |
4041 | * | |
4042 | * Thread must be locked. | |
4043 | * | |
4044 | * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the | |
4045 | * run queues because the caller locked the thread. Otherwise | |
4046 | * the thread is on a run queue, but could be chosen for dispatch | |
4047 | * and removed by another processor under a different lock, which | |
4048 | * will set thread->runq to PROCESSOR_NULL. | |
4049 | * | |
4050 | * Hence the thread select path must not rely on anything that could | |
4051 | * be changed under the thread lock after calling this function, | |
4052 | * most importantly thread->sched_pri. | |
4053 | */ | |
4054 | boolean_t | |
4055 | thread_run_queue_remove( | |
4056 | thread_t thread) | |
4057 | { | |
4058 | boolean_t removed = FALSE; | |
4059 | processor_t processor = thread->runq; | |
4060 | ||
4061 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) { | |
4062 | /* Thread isn't runnable */ | |
4063 | assert(thread->runq == PROCESSOR_NULL); | |
4064 | return FALSE; | |
4065 | } | |
4066 | ||
4067 | if (processor == PROCESSOR_NULL) { | |
4068 | /* | |
4069 | * The thread is either not on the runq, | |
4070 | * or is in the midst of being removed from the runq. | |
4071 | * | |
4072 | * runq is set to NULL under the pset lock, not the thread | |
4073 | * lock, so the thread may still be in the process of being dequeued | |
4074 | * from the runq. It will wait in invoke for the thread lock to be | |
4075 | * dropped. | |
4076 | */ | |
4077 | ||
4078 | return FALSE; | |
4079 | } | |
4080 | ||
4081 | if (thread->sched_pri < BASEPRI_RTQUEUES) { | |
4082 | return SCHED(processor_queue_remove)(processor, thread); | |
4083 | } | |
4084 | ||
4085 | rt_lock_lock(); | |
4086 | ||
4087 | if (thread->runq != PROCESSOR_NULL) { | |
4088 | /* | |
4089 | * Thread is on the RT run queue and we have a lock on | |
4090 | * that run queue. | |
4091 | */ | |
4092 | ||
4093 | assert(thread->runq == THREAD_ON_RT_RUNQ); | |
4094 | ||
4095 | remqueue((queue_entry_t)thread); | |
4096 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); | |
4097 | rt_runq.count--; | |
4098 | ||
4099 | thread->runq = PROCESSOR_NULL; | |
4100 | ||
4101 | removed = TRUE; | |
4102 | } | |
4103 | ||
4104 | rt_lock_unlock(); | |
4105 | ||
4106 | return (removed); | |
4107 | } | |
4108 | ||
4109 | /* | |
4110 | * Put the thread back where it goes after a thread_run_queue_remove | |
4111 | * | |
4112 | * Thread must have been removed under the same thread lock hold | |
4113 | * | |
4114 | * thread locked, at splsched | |
4115 | */ | |
4116 | void | |
4117 | thread_run_queue_reinsert(thread_t thread, integer_t options) | |
4118 | { | |
4119 | assert(thread->runq == PROCESSOR_NULL); | |
4120 | ||
4121 | assert(thread->state & (TH_RUN)); | |
4122 | thread_setrun(thread, options); | |
4123 | ||
4124 | } | |
4125 | ||
4126 | void | |
4127 | sys_override_cpu_throttle(int flag) | |
4128 | { | |
4129 | if (flag == CPU_THROTTLE_ENABLE) | |
4130 | cpu_throttle_enabled = 1; | |
4131 | if (flag == CPU_THROTTLE_DISABLE) | |
4132 | cpu_throttle_enabled = 0; | |
4133 | } | |
4134 | ||
4135 | int | |
4136 | thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2) | |
4137 | { | |
4138 | if (thread == NULL || (thread->state & TH_IDLE)) { | |
4139 | *arg1 = 0; | |
4140 | *arg2 = 0; | |
4141 | ||
4142 | return (THREAD_URGENCY_NONE); | |
4143 | } else if (thread->sched_mode == TH_MODE_REALTIME) { | |
4144 | *arg1 = thread->realtime.period; | |
4145 | *arg2 = thread->realtime.deadline; | |
4146 | ||
4147 | return (THREAD_URGENCY_REAL_TIME); | |
4148 | } else if (cpu_throttle_enabled && | |
4149 | ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { | |
4150 | /* | |
4151 | * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted | |
4152 | * TODO: Use TH_SFLAG_THROTTLED instead? | |
4153 | */ | |
4154 | *arg1 = thread->sched_pri; | |
4155 | *arg2 = thread->base_pri; | |
4156 | ||
4157 | return (THREAD_URGENCY_BACKGROUND); | |
4158 | } else { | |
4159 | /* For otherwise unclassified threads, report throughput QoS | |
4160 | * parameters | |
4161 | */ | |
4162 | *arg1 = thread->effective_policy.t_through_qos; | |
4163 | *arg2 = thread->task->effective_policy.t_through_qos; | |
4164 | ||
4165 | return (THREAD_URGENCY_NORMAL); | |
4166 | } | |
4167 | } | |
4168 | ||
4169 | ||
4170 | /* | |
4171 | * This is the processor idle loop, which just looks for other threads | |
4172 | * to execute. Processor idle threads invoke this without supplying a | |
4173 | * current thread to idle without an asserted wait state. | |
4174 | * | |
4175 | * Returns a the next thread to execute if dispatched directly. | |
4176 | */ | |
4177 | ||
4178 | #if 0 | |
4179 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__) | |
4180 | #else | |
4181 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0) | |
4182 | #endif | |
4183 | ||
4184 | thread_t | |
4185 | processor_idle( | |
4186 | thread_t thread, | |
4187 | processor_t processor) | |
4188 | { | |
4189 | processor_set_t pset = processor->processor_set; | |
4190 | thread_t new_thread; | |
4191 | int state; | |
4192 | (void)splsched(); | |
4193 | ||
4194 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
4195 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, | |
4196 | (uintptr_t)thread_tid(thread), 0, 0, 0, 0); | |
4197 | ||
4198 | SCHED_STATS_CPU_IDLE_START(processor); | |
4199 | ||
4200 | timer_switch(&PROCESSOR_DATA(processor, system_state), | |
4201 | mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state)); | |
4202 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state); | |
4203 | ||
4204 | while (1) { | |
4205 | if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */ | |
4206 | break; | |
4207 | if (pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id)) | |
4208 | break; | |
4209 | if (processor->is_recommended) { | |
4210 | if (rt_runq.count) | |
4211 | break; | |
4212 | } else { | |
4213 | if (SCHED(processor_bound_count)(processor)) | |
4214 | break; | |
4215 | } | |
4216 | ||
4217 | #if CONFIG_SCHED_IDLE_IN_PLACE | |
4218 | if (thread != THREAD_NULL) { | |
4219 | /* Did idle-in-place thread wake up */ | |
4220 | if ((thread->state & (TH_WAIT|TH_SUSP)) != TH_WAIT || thread->wake_active) | |
4221 | break; | |
4222 | } | |
4223 | #endif | |
4224 | ||
4225 | IDLE_KERNEL_DEBUG_CONSTANT( | |
4226 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0); | |
4227 | ||
4228 | machine_track_platform_idle(TRUE); | |
4229 | ||
4230 | machine_idle(); | |
4231 | ||
4232 | machine_track_platform_idle(FALSE); | |
4233 | ||
4234 | (void)splsched(); | |
4235 | ||
4236 | IDLE_KERNEL_DEBUG_CONSTANT( | |
4237 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0); | |
4238 | ||
4239 | if (!SCHED(processor_queue_empty)(processor)) { | |
4240 | /* Secondary SMT processors respond to directed wakeups | |
4241 | * exclusively. Some platforms induce 'spurious' SMT wakeups. | |
4242 | */ | |
4243 | if (processor->processor_primary == processor) | |
4244 | break; | |
4245 | } | |
4246 | } | |
4247 | ||
4248 | timer_switch(&PROCESSOR_DATA(processor, idle_state), | |
4249 | mach_absolute_time(), &PROCESSOR_DATA(processor, system_state)); | |
4250 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state); | |
4251 | ||
4252 | pset_lock(pset); | |
4253 | ||
4254 | /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */ | |
4255 | pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id); | |
4256 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
4257 | pset->pending_deferred_AST_cpu_mask &= ~(1ULL << processor->cpu_id); | |
4258 | #endif | |
4259 | ||
4260 | state = processor->state; | |
4261 | if (state == PROCESSOR_DISPATCHING) { | |
4262 | /* | |
4263 | * Commmon case -- cpu dispatched. | |
4264 | */ | |
4265 | new_thread = processor->next_thread; | |
4266 | processor->next_thread = THREAD_NULL; | |
4267 | processor->state = PROCESSOR_RUNNING; | |
4268 | ||
4269 | if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) || | |
4270 | (rt_runq.count > 0)) ) { | |
4271 | /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */ | |
4272 | processor->current_pri = IDLEPRI; | |
4273 | processor->current_thmode = TH_MODE_FIXED; | |
4274 | processor->current_sfi_class = SFI_CLASS_KERNEL; | |
4275 | processor->deadline = UINT64_MAX; | |
4276 | ||
4277 | pset_unlock(pset); | |
4278 | ||
4279 | thread_lock(new_thread); | |
4280 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0); | |
4281 | thread_setrun(new_thread, SCHED_HEADQ); | |
4282 | thread_unlock(new_thread); | |
4283 | ||
4284 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
4285 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4286 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
4287 | ||
4288 | return (THREAD_NULL); | |
4289 | } | |
4290 | ||
4291 | pset_unlock(pset); | |
4292 | ||
4293 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
4294 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4295 | (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0); | |
4296 | ||
4297 | return (new_thread); | |
4298 | } | |
4299 | else | |
4300 | if (state == PROCESSOR_IDLE) { | |
4301 | remqueue((queue_entry_t)processor); | |
4302 | ||
4303 | processor->state = PROCESSOR_RUNNING; | |
4304 | processor->current_pri = IDLEPRI; | |
4305 | processor->current_thmode = TH_MODE_FIXED; | |
4306 | processor->current_sfi_class = SFI_CLASS_KERNEL; | |
4307 | processor->deadline = UINT64_MAX; | |
4308 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
4309 | } | |
4310 | else | |
4311 | if (state == PROCESSOR_SHUTDOWN) { | |
4312 | /* | |
4313 | * Going off-line. Force a | |
4314 | * reschedule. | |
4315 | */ | |
4316 | if ((new_thread = processor->next_thread) != THREAD_NULL) { | |
4317 | processor->next_thread = THREAD_NULL; | |
4318 | processor->current_pri = IDLEPRI; | |
4319 | processor->current_thmode = TH_MODE_FIXED; | |
4320 | processor->current_sfi_class = SFI_CLASS_KERNEL; | |
4321 | processor->deadline = UINT64_MAX; | |
4322 | ||
4323 | pset_unlock(pset); | |
4324 | ||
4325 | thread_lock(new_thread); | |
4326 | thread_setrun(new_thread, SCHED_HEADQ); | |
4327 | thread_unlock(new_thread); | |
4328 | ||
4329 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
4330 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4331 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
4332 | ||
4333 | return (THREAD_NULL); | |
4334 | } | |
4335 | } | |
4336 | ||
4337 | pset_unlock(pset); | |
4338 | ||
4339 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
4340 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4341 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
4342 | ||
4343 | return (THREAD_NULL); | |
4344 | } | |
4345 | ||
4346 | /* | |
4347 | * Each processor has a dedicated thread which | |
4348 | * executes the idle loop when there is no suitable | |
4349 | * previous context. | |
4350 | */ | |
4351 | void | |
4352 | idle_thread(void) | |
4353 | { | |
4354 | processor_t processor = current_processor(); | |
4355 | thread_t new_thread; | |
4356 | ||
4357 | new_thread = processor_idle(THREAD_NULL, processor); | |
4358 | if (new_thread != THREAD_NULL) { | |
4359 | thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread); | |
4360 | /*NOTREACHED*/ | |
4361 | } | |
4362 | ||
4363 | thread_block((thread_continue_t)idle_thread); | |
4364 | /*NOTREACHED*/ | |
4365 | } | |
4366 | ||
4367 | kern_return_t | |
4368 | idle_thread_create( | |
4369 | processor_t processor) | |
4370 | { | |
4371 | kern_return_t result; | |
4372 | thread_t thread; | |
4373 | spl_t s; | |
4374 | ||
4375 | result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread); | |
4376 | if (result != KERN_SUCCESS) | |
4377 | return (result); | |
4378 | ||
4379 | s = splsched(); | |
4380 | thread_lock(thread); | |
4381 | thread->bound_processor = processor; | |
4382 | processor->idle_thread = thread; | |
4383 | thread->sched_pri = thread->base_pri = IDLEPRI; | |
4384 | thread->state = (TH_RUN | TH_IDLE); | |
4385 | thread->options |= TH_OPT_IDLE_THREAD; | |
4386 | thread_unlock(thread); | |
4387 | splx(s); | |
4388 | ||
4389 | thread_deallocate(thread); | |
4390 | ||
4391 | return (KERN_SUCCESS); | |
4392 | } | |
4393 | ||
4394 | /* | |
4395 | * sched_startup: | |
4396 | * | |
4397 | * Kicks off scheduler services. | |
4398 | * | |
4399 | * Called at splsched. | |
4400 | */ | |
4401 | void | |
4402 | sched_startup(void) | |
4403 | { | |
4404 | kern_return_t result; | |
4405 | thread_t thread; | |
4406 | ||
4407 | simple_lock_init(&sched_vm_group_list_lock, 0); | |
4408 | ||
4409 | result = kernel_thread_start_priority((thread_continue_t)sched_init_thread, | |
4410 | (void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread); | |
4411 | if (result != KERN_SUCCESS) | |
4412 | panic("sched_startup"); | |
4413 | ||
4414 | thread_deallocate(thread); | |
4415 | ||
4416 | /* | |
4417 | * Yield to the sched_init_thread once, to | |
4418 | * initialize our own thread after being switched | |
4419 | * back to. | |
4420 | * | |
4421 | * The current thread is the only other thread | |
4422 | * active at this point. | |
4423 | */ | |
4424 | thread_block(THREAD_CONTINUE_NULL); | |
4425 | } | |
4426 | ||
4427 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
4428 | ||
4429 | static volatile uint64_t sched_maintenance_deadline; | |
4430 | #if defined(CONFIG_TELEMETRY) | |
4431 | static volatile uint64_t sched_telemetry_deadline = 0; | |
4432 | #endif | |
4433 | static uint64_t sched_tick_last_abstime; | |
4434 | static uint64_t sched_tick_delta; | |
4435 | uint64_t sched_tick_max_delta; | |
4436 | /* | |
4437 | * sched_init_thread: | |
4438 | * | |
4439 | * Perform periodic bookkeeping functions about ten | |
4440 | * times per second. | |
4441 | */ | |
4442 | void | |
4443 | sched_timeshare_maintenance_continue(void) | |
4444 | { | |
4445 | uint64_t sched_tick_ctime, late_time; | |
4446 | ||
4447 | struct sched_update_scan_context scan_context = { | |
4448 | .earliest_bg_make_runnable_time = UINT64_MAX, | |
4449 | .earliest_normal_make_runnable_time = UINT64_MAX, | |
4450 | .earliest_rt_make_runnable_time = UINT64_MAX | |
4451 | }; | |
4452 | ||
4453 | sched_tick_ctime = mach_absolute_time(); | |
4454 | ||
4455 | if (__improbable(sched_tick_last_abstime == 0)) { | |
4456 | sched_tick_last_abstime = sched_tick_ctime; | |
4457 | late_time = 0; | |
4458 | sched_tick_delta = 1; | |
4459 | } else { | |
4460 | late_time = sched_tick_ctime - sched_tick_last_abstime; | |
4461 | sched_tick_delta = late_time / sched_tick_interval; | |
4462 | /* Ensure a delta of 1, since the interval could be slightly | |
4463 | * smaller than the sched_tick_interval due to dispatch | |
4464 | * latencies. | |
4465 | */ | |
4466 | sched_tick_delta = MAX(sched_tick_delta, 1); | |
4467 | ||
4468 | /* In the event interrupt latencies or platform | |
4469 | * idle events that advanced the timebase resulted | |
4470 | * in periods where no threads were dispatched, | |
4471 | * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA | |
4472 | * iterations. | |
4473 | */ | |
4474 | sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA); | |
4475 | ||
4476 | sched_tick_last_abstime = sched_tick_ctime; | |
4477 | sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta); | |
4478 | } | |
4479 | ||
4480 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START, | |
4481 | sched_tick_delta, | |
4482 | late_time, | |
4483 | 0, | |
4484 | 0, | |
4485 | 0); | |
4486 | ||
4487 | /* Add a number of pseudo-ticks corresponding to the elapsed interval | |
4488 | * This could be greater than 1 if substantial intervals where | |
4489 | * all processors are idle occur, which rarely occurs in practice. | |
4490 | */ | |
4491 | ||
4492 | sched_tick += sched_tick_delta; | |
4493 | ||
4494 | /* | |
4495 | * Compute various averages. | |
4496 | */ | |
4497 | compute_averages(sched_tick_delta); | |
4498 | ||
4499 | /* | |
4500 | * Scan the run queues for threads which | |
4501 | * may need to be updated. | |
4502 | */ | |
4503 | SCHED(thread_update_scan)(&scan_context); | |
4504 | ||
4505 | rt_runq_scan(&scan_context); | |
4506 | ||
4507 | uint64_t ctime = mach_absolute_time(); | |
4508 | ||
4509 | machine_max_runnable_latency(ctime > scan_context.earliest_bg_make_runnable_time ? ctime - scan_context.earliest_bg_make_runnable_time : 0, | |
4510 | ctime > scan_context.earliest_normal_make_runnable_time ? ctime - scan_context.earliest_normal_make_runnable_time : 0, | |
4511 | ctime > scan_context.earliest_rt_make_runnable_time ? ctime - scan_context.earliest_rt_make_runnable_time : 0); | |
4512 | ||
4513 | /* | |
4514 | * Check to see if the special sched VM group needs attention. | |
4515 | */ | |
4516 | sched_vm_group_maintenance(); | |
4517 | ||
4518 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_END, | |
4519 | sched_pri_shift, | |
4520 | sched_background_pri_shift, | |
4521 | 0, | |
4522 | 0, | |
4523 | 0); | |
4524 | ||
4525 | assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT); | |
4526 | thread_block((thread_continue_t)sched_timeshare_maintenance_continue); | |
4527 | /*NOTREACHED*/ | |
4528 | } | |
4529 | ||
4530 | static uint64_t sched_maintenance_wakeups; | |
4531 | ||
4532 | /* | |
4533 | * Determine if the set of routines formerly driven by a maintenance timer | |
4534 | * must be invoked, based on a deadline comparison. Signals the scheduler | |
4535 | * maintenance thread on deadline expiration. Must be invoked at an interval | |
4536 | * lower than the "sched_tick_interval", currently accomplished by | |
4537 | * invocation via the quantum expiration timer and at context switch time. | |
4538 | * Performance matters: this routine reuses a timestamp approximating the | |
4539 | * current absolute time received from the caller, and should perform | |
4540 | * no more than a comparison against the deadline in the common case. | |
4541 | */ | |
4542 | void | |
4543 | sched_timeshare_consider_maintenance(uint64_t ctime) { | |
4544 | uint64_t ndeadline, deadline = sched_maintenance_deadline; | |
4545 | ||
4546 | if (__improbable(ctime >= deadline)) { | |
4547 | if (__improbable(current_thread() == sched_maintenance_thread)) | |
4548 | return; | |
4549 | OSMemoryBarrier(); | |
4550 | ||
4551 | ndeadline = ctime + sched_tick_interval; | |
4552 | ||
4553 | if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) { | |
4554 | thread_wakeup((event_t)sched_timeshare_maintenance_continue); | |
4555 | sched_maintenance_wakeups++; | |
4556 | } | |
4557 | } | |
4558 | ||
4559 | #if defined(CONFIG_TELEMETRY) | |
4560 | /* | |
4561 | * Windowed telemetry is driven by the scheduler. It should be safe | |
4562 | * to call compute_telemetry_windowed() even when windowed telemetry | |
4563 | * is disabled, but we should try to avoid doing extra work for no | |
4564 | * reason. | |
4565 | */ | |
4566 | if (telemetry_window_enabled) { | |
4567 | deadline = sched_telemetry_deadline; | |
4568 | ||
4569 | if (__improbable(ctime >= deadline)) { | |
4570 | ndeadline = ctime + sched_telemetry_interval; | |
4571 | ||
4572 | if (__probable(__sync_bool_compare_and_swap(&sched_telemetry_deadline, deadline, ndeadline))) { | |
4573 | compute_telemetry_windowed(); | |
4574 | } | |
4575 | } | |
4576 | } | |
4577 | #endif /* CONFIG_TELEMETRY */ | |
4578 | } | |
4579 | ||
4580 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
4581 | ||
4582 | void | |
4583 | sched_init_thread(void (*continuation)(void)) | |
4584 | { | |
4585 | thread_block(THREAD_CONTINUE_NULL); | |
4586 | ||
4587 | sched_maintenance_thread = current_thread(); | |
4588 | continuation(); | |
4589 | ||
4590 | /*NOTREACHED*/ | |
4591 | } | |
4592 | ||
4593 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
4594 | ||
4595 | /* | |
4596 | * thread_update_scan / runq_scan: | |
4597 | * | |
4598 | * Scan the run queues to account for timesharing threads | |
4599 | * which need to be updated. | |
4600 | * | |
4601 | * Scanner runs in two passes. Pass one squirrels likely | |
4602 | * threads away in an array, pass two does the update. | |
4603 | * | |
4604 | * This is necessary because the run queue is locked for | |
4605 | * the candidate scan, but the thread is locked for the update. | |
4606 | * | |
4607 | * Array should be sized to make forward progress, without | |
4608 | * disabling preemption for long periods. | |
4609 | */ | |
4610 | ||
4611 | #define THREAD_UPDATE_SIZE 128 | |
4612 | ||
4613 | static thread_t thread_update_array[THREAD_UPDATE_SIZE]; | |
4614 | static int thread_update_count = 0; | |
4615 | ||
4616 | /* Returns TRUE if thread was added, FALSE if thread_update_array is full */ | |
4617 | boolean_t | |
4618 | thread_update_add_thread(thread_t thread) | |
4619 | { | |
4620 | if (thread_update_count == THREAD_UPDATE_SIZE) | |
4621 | return (FALSE); | |
4622 | ||
4623 | thread_update_array[thread_update_count++] = thread; | |
4624 | thread_reference_internal(thread); | |
4625 | return (TRUE); | |
4626 | } | |
4627 | ||
4628 | void | |
4629 | thread_update_process_threads(void) | |
4630 | { | |
4631 | while (thread_update_count > 0) { | |
4632 | spl_t s; | |
4633 | thread_t thread = thread_update_array[--thread_update_count]; | |
4634 | thread_update_array[thread_update_count] = THREAD_NULL; | |
4635 | ||
4636 | s = splsched(); | |
4637 | thread_lock(thread); | |
4638 | if (!(thread->state & (TH_WAIT)) && (SCHED(can_update_priority)(thread))) { | |
4639 | SCHED(update_priority)(thread); | |
4640 | } | |
4641 | thread_unlock(thread); | |
4642 | splx(s); | |
4643 | ||
4644 | thread_deallocate(thread); | |
4645 | } | |
4646 | } | |
4647 | ||
4648 | /* | |
4649 | * Scan a runq for candidate threads. | |
4650 | * | |
4651 | * Returns TRUE if retry is needed. | |
4652 | */ | |
4653 | boolean_t | |
4654 | runq_scan( | |
4655 | run_queue_t runq, | |
4656 | sched_update_scan_context_t scan_context) | |
4657 | { | |
4658 | register int count; | |
4659 | register queue_t q; | |
4660 | register thread_t thread; | |
4661 | ||
4662 | if ((count = runq->count) > 0) { | |
4663 | q = runq->queues + runq->highq; | |
4664 | while (count > 0) { | |
4665 | queue_iterate(q, thread, thread_t, links) { | |
4666 | if ( thread->sched_stamp != sched_tick && | |
4667 | (thread->sched_mode == TH_MODE_TIMESHARE) ) { | |
4668 | if (thread_update_add_thread(thread) == FALSE) | |
4669 | return (TRUE); | |
4670 | } | |
4671 | ||
4672 | if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { | |
4673 | if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) { | |
4674 | scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time; | |
4675 | } | |
4676 | } else { | |
4677 | if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) { | |
4678 | scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time; | |
4679 | } | |
4680 | } | |
4681 | ||
4682 | count--; | |
4683 | } | |
4684 | ||
4685 | q--; | |
4686 | } | |
4687 | } | |
4688 | ||
4689 | return (FALSE); | |
4690 | } | |
4691 | ||
4692 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ | |
4693 | ||
4694 | boolean_t | |
4695 | thread_eager_preemption(thread_t thread) | |
4696 | { | |
4697 | return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0); | |
4698 | } | |
4699 | ||
4700 | void | |
4701 | thread_set_eager_preempt(thread_t thread) | |
4702 | { | |
4703 | spl_t x; | |
4704 | processor_t p; | |
4705 | ast_t ast = AST_NONE; | |
4706 | ||
4707 | x = splsched(); | |
4708 | p = current_processor(); | |
4709 | ||
4710 | thread_lock(thread); | |
4711 | thread->sched_flags |= TH_SFLAG_EAGERPREEMPT; | |
4712 | ||
4713 | if (thread == current_thread()) { | |
4714 | ||
4715 | ast = csw_check(p, AST_NONE); | |
4716 | thread_unlock(thread); | |
4717 | if (ast != AST_NONE) { | |
4718 | (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast); | |
4719 | } | |
4720 | } else { | |
4721 | p = thread->last_processor; | |
4722 | ||
4723 | if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING && | |
4724 | p->active_thread == thread) { | |
4725 | cause_ast_check(p); | |
4726 | } | |
4727 | ||
4728 | thread_unlock(thread); | |
4729 | } | |
4730 | ||
4731 | splx(x); | |
4732 | } | |
4733 | ||
4734 | void | |
4735 | thread_clear_eager_preempt(thread_t thread) | |
4736 | { | |
4737 | spl_t x; | |
4738 | ||
4739 | x = splsched(); | |
4740 | thread_lock(thread); | |
4741 | ||
4742 | thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT; | |
4743 | ||
4744 | thread_unlock(thread); | |
4745 | splx(x); | |
4746 | } | |
4747 | ||
4748 | /* | |
4749 | * Scheduling statistics | |
4750 | */ | |
4751 | void | |
4752 | sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri) | |
4753 | { | |
4754 | struct processor_sched_statistics *stats; | |
4755 | boolean_t to_realtime = FALSE; | |
4756 | ||
4757 | stats = &processor->processor_data.sched_stats; | |
4758 | stats->csw_count++; | |
4759 | ||
4760 | if (otherpri >= BASEPRI_REALTIME) { | |
4761 | stats->rt_sched_count++; | |
4762 | to_realtime = TRUE; | |
4763 | } | |
4764 | ||
4765 | if ((reasons & AST_PREEMPT) != 0) { | |
4766 | stats->preempt_count++; | |
4767 | ||
4768 | if (selfpri >= BASEPRI_REALTIME) { | |
4769 | stats->preempted_rt_count++; | |
4770 | } | |
4771 | ||
4772 | if (to_realtime) { | |
4773 | stats->preempted_by_rt_count++; | |
4774 | } | |
4775 | ||
4776 | } | |
4777 | } | |
4778 | ||
4779 | void | |
4780 | sched_stats_handle_runq_change(struct runq_stats *stats, int old_count) | |
4781 | { | |
4782 | uint64_t timestamp = mach_absolute_time(); | |
4783 | ||
4784 | stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count; | |
4785 | stats->last_change_timestamp = timestamp; | |
4786 | } | |
4787 | ||
4788 | /* | |
4789 | * For calls from assembly code | |
4790 | */ | |
4791 | #undef thread_wakeup | |
4792 | void | |
4793 | thread_wakeup( | |
4794 | event_t x); | |
4795 | ||
4796 | void | |
4797 | thread_wakeup( | |
4798 | event_t x) | |
4799 | { | |
4800 | thread_wakeup_with_result(x, THREAD_AWAKENED); | |
4801 | } | |
4802 | ||
4803 | boolean_t | |
4804 | preemption_enabled(void) | |
4805 | { | |
4806 | return (get_preemption_level() == 0 && ml_get_interrupts_enabled()); | |
4807 | } | |
4808 | ||
4809 | static void | |
4810 | sched_timer_deadline_tracking_init(void) { | |
4811 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1); | |
4812 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2); | |
4813 | } | |
4814 | ||
4815 | ||
4816 | kern_return_t | |
4817 | sched_work_interval_notify(thread_t thread, uint64_t work_interval_id, uint64_t start, uint64_t finish, uint64_t deadline, uint64_t next_start, uint32_t flags) | |
4818 | { | |
4819 | int urgency; | |
4820 | uint64_t urgency_param1, urgency_param2; | |
4821 | spl_t s; | |
4822 | ||
4823 | if (work_interval_id == 0) { | |
4824 | return (KERN_INVALID_ARGUMENT); | |
4825 | } | |
4826 | ||
4827 | assert(thread == current_thread()); | |
4828 | ||
4829 | thread_mtx_lock(thread); | |
4830 | if (thread->work_interval_id != work_interval_id) { | |
4831 | thread_mtx_unlock(thread); | |
4832 | return (KERN_INVALID_ARGUMENT); | |
4833 | } | |
4834 | thread_mtx_unlock(thread); | |
4835 | ||
4836 | s = splsched(); | |
4837 | thread_lock(thread); | |
4838 | urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); | |
4839 | thread_unlock(thread); | |
4840 | splx(s); | |
4841 | ||
4842 | machine_work_interval_notify(thread, work_interval_id, start, finish, deadline, next_start, urgency, flags); | |
4843 | return (KERN_SUCCESS); | |
4844 | } | |
4845 | ||
4846 | void thread_set_options(uint32_t thopt) { | |
4847 | spl_t x; | |
4848 | thread_t t = current_thread(); | |
4849 | ||
4850 | x = splsched(); | |
4851 | thread_lock(t); | |
4852 | ||
4853 | t->options |= thopt; | |
4854 | ||
4855 | thread_unlock(t); | |
4856 | splx(x); | |
4857 | } |