]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/kern/sched_prim.c
xnu-3248.30.4.tar.gz
[apple/xnu.git] / osfmk / kern / sched_prim.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_FREE_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: sched_prim.c
60 * Author: Avadis Tevanian, Jr.
61 * Date: 1986
62 *
63 * Scheduling primitives
64 *
65 */
66
67#include <debug.h>
68
69#include <mach/mach_types.h>
70#include <mach/machine.h>
71#include <mach/policy.h>
72#include <mach/sync_policy.h>
73#include <mach/thread_act.h>
74
75#include <machine/machine_routines.h>
76#include <machine/sched_param.h>
77#include <machine/machine_cpu.h>
78#include <machine/machlimits.h>
79
80#ifdef CONFIG_MACH_APPROXIMATE_TIME
81#include <machine/commpage.h>
82#endif
83
84#include <kern/kern_types.h>
85#include <kern/clock.h>
86#include <kern/counters.h>
87#include <kern/cpu_number.h>
88#include <kern/cpu_data.h>
89#include <kern/smp.h>
90#include <kern/debug.h>
91#include <kern/macro_help.h>
92#include <kern/machine.h>
93#include <kern/misc_protos.h>
94#include <kern/processor.h>
95#include <kern/queue.h>
96#include <kern/sched.h>
97#include <kern/sched_prim.h>
98#include <kern/sfi.h>
99#include <kern/syscall_subr.h>
100#include <kern/task.h>
101#include <kern/thread.h>
102#include <kern/ledger.h>
103#include <kern/timer_queue.h>
104#include <kern/waitq.h>
105
106#include <vm/pmap.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_map.h>
109
110#include <mach/sdt.h>
111
112#include <sys/kdebug.h>
113
114#include <kern/pms.h>
115
116#if defined(CONFIG_TELEMETRY) && defined(CONFIG_SCHED_TIMESHARE_CORE)
117#include <kern/telemetry.h>
118#endif
119
120struct rt_queue rt_runq;
121
122uintptr_t sched_thread_on_rt_queue = (uintptr_t)0xDEAFBEE0;
123
124/* Lock RT runq, must be done with interrupts disabled (under splsched()) */
125#if __SMP__
126decl_simple_lock_data(static,rt_lock);
127#define rt_lock_init() simple_lock_init(&rt_lock, 0)
128#define rt_lock_lock() simple_lock(&rt_lock)
129#define rt_lock_unlock() simple_unlock(&rt_lock)
130#else
131#define rt_lock_init() do { } while(0)
132#define rt_lock_lock() do { } while(0)
133#define rt_lock_unlock() do { } while(0)
134#endif
135
136#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
137int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
138
139#define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */
140int default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE;
141
142#define MAX_UNSAFE_QUANTA 800
143int max_unsafe_quanta = MAX_UNSAFE_QUANTA;
144
145#define MAX_POLL_QUANTA 2
146int max_poll_quanta = MAX_POLL_QUANTA;
147
148#define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */
149int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT;
150
151uint64_t max_poll_computation;
152
153uint64_t max_unsafe_computation;
154uint64_t sched_safe_duration;
155
156#if defined(CONFIG_SCHED_TIMESHARE_CORE)
157
158uint32_t std_quantum;
159uint32_t min_std_quantum;
160uint32_t bg_quantum;
161
162uint32_t std_quantum_us;
163uint32_t bg_quantum_us;
164
165#endif /* CONFIG_SCHED_TIMESHARE_CORE */
166
167uint32_t thread_depress_time;
168uint32_t default_timeshare_computation;
169uint32_t default_timeshare_constraint;
170
171uint32_t max_rt_quantum;
172uint32_t min_rt_quantum;
173
174#if defined(CONFIG_SCHED_TIMESHARE_CORE)
175
176unsigned sched_tick;
177uint32_t sched_tick_interval;
178#if defined(CONFIG_TELEMETRY)
179uint32_t sched_telemetry_interval;
180#endif /* CONFIG_TELEMETRY */
181
182uint32_t sched_pri_shift = INT8_MAX;
183uint32_t sched_background_pri_shift = INT8_MAX;
184uint32_t sched_combined_fgbg_pri_shift = INT8_MAX;
185uint32_t sched_fixed_shift;
186uint32_t sched_use_combined_fgbg_decay = 0;
187
188uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */
189
190/* Allow foreground to decay past default to resolve inversions */
191#define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2)
192int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
193
194/* Defaults for timer deadline profiling */
195#define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <=
196 * 2ms */
197#define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines
198 <= 5ms */
199
200uint64_t timer_deadline_tracking_bin_1;
201uint64_t timer_deadline_tracking_bin_2;
202
203thread_t sched_maintenance_thread;
204
205#endif /* CONFIG_SCHED_TIMESHARE_CORE */
206
207uint64_t sched_one_second_interval;
208
209uint32_t sched_run_count, sched_share_count, sched_background_count;
210uint32_t sched_load_average, sched_mach_factor;
211
212/* Forwards */
213
214#if defined(CONFIG_SCHED_TIMESHARE_CORE)
215
216static void load_shift_init(void);
217static void preempt_pri_init(void);
218
219#endif /* CONFIG_SCHED_TIMESHARE_CORE */
220
221static thread_t thread_select(
222 thread_t thread,
223 processor_t processor,
224 ast_t reason);
225
226#if CONFIG_SCHED_IDLE_IN_PLACE
227static thread_t thread_select_idle(
228 thread_t thread,
229 processor_t processor);
230#endif
231
232thread_t processor_idle(
233 thread_t thread,
234 processor_t processor);
235
236ast_t
237csw_check_locked( processor_t processor,
238 processor_set_t pset,
239 ast_t check_reason);
240
241static void processor_setrun(
242 processor_t processor,
243 thread_t thread,
244 integer_t options);
245
246static void
247sched_realtime_init(void);
248
249static void
250sched_realtime_timebase_init(void);
251
252static void
253sched_timer_deadline_tracking_init(void);
254
255#if DEBUG
256extern int debug_task;
257#define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args)
258#else
259#define TLOG(a, fmt, args...) do {} while (0)
260#endif
261
262static processor_t
263thread_bind_internal(
264 thread_t thread,
265 processor_t processor);
266
267static void
268sched_vm_group_maintenance(void);
269
270#if defined(CONFIG_SCHED_TIMESHARE_CORE)
271int8_t sched_load_shifts[NRQS];
272int sched_preempt_pri[NRQBM];
273#endif /* CONFIG_SCHED_TIMESHARE_CORE */
274
275const struct sched_dispatch_table *sched_current_dispatch = NULL;
276
277/*
278 * Statically allocate a buffer to hold the longest possible
279 * scheduler description string, as currently implemented.
280 * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/
281 * to export to userspace via sysctl(3). If either version
282 * changes, update the other.
283 *
284 * Note that in addition to being an upper bound on the strings
285 * in the kernel, it's also an exact parameter to PE_get_default(),
286 * which interrogates the device tree on some platforms. That
287 * API requires the caller know the exact size of the device tree
288 * property, so we need both a legacy size (32) and the current size
289 * (48) to deal with old and new device trees. The device tree property
290 * is similarly padded to a fixed size so that the same kernel image
291 * can run on multiple devices with different schedulers configured
292 * in the device tree.
293 */
294char sched_string[SCHED_STRING_MAX_LENGTH];
295
296uint32_t sched_debug_flags;
297
298/* Global flag which indicates whether Background Stepper Context is enabled */
299static int cpu_throttle_enabled = 1;
300
301void
302sched_init(void)
303{
304 char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' };
305
306 /* Check for runtime selection of the scheduler algorithm */
307 if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) {
308 /* If no boot-args override, look in device tree */
309 if (!PE_get_default("kern.sched", sched_arg,
310 SCHED_STRING_MAX_LENGTH)) {
311 sched_arg[0] = '\0';
312 }
313 }
314
315
316 if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) {
317 /* No boot-args, check in device tree */
318 if (!PE_get_default("kern.sched_pri_decay_limit",
319 &sched_pri_decay_band_limit,
320 sizeof(sched_pri_decay_band_limit))) {
321 /* Allow decay all the way to normal limits */
322 sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
323 }
324 }
325
326 kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit);
327
328 if (strlen(sched_arg) > 0) {
329 if (0) {
330 /* Allow pattern below */
331#if defined(CONFIG_SCHED_TRADITIONAL)
332 } else if (0 == strcmp(sched_arg, sched_traditional_dispatch.sched_name)) {
333 sched_current_dispatch = &sched_traditional_dispatch;
334 } else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) {
335 sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
336#endif
337#if defined(CONFIG_SCHED_PROTO)
338 } else if (0 == strcmp(sched_arg, sched_proto_dispatch.sched_name)) {
339 sched_current_dispatch = &sched_proto_dispatch;
340#endif
341#if defined(CONFIG_SCHED_GRRR)
342 } else if (0 == strcmp(sched_arg, sched_grrr_dispatch.sched_name)) {
343 sched_current_dispatch = &sched_grrr_dispatch;
344#endif
345#if defined(CONFIG_SCHED_MULTIQ)
346 } else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) {
347 sched_current_dispatch = &sched_multiq_dispatch;
348 } else if (0 == strcmp(sched_arg, sched_dualq_dispatch.sched_name)) {
349 sched_current_dispatch = &sched_dualq_dispatch;
350#endif
351 } else {
352#if defined(CONFIG_SCHED_TRADITIONAL)
353 printf("Unrecognized scheduler algorithm: %s\n", sched_arg);
354 printf("Scheduler: Using instead: %s\n", sched_traditional_with_pset_runqueue_dispatch.sched_name);
355 sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
356#else
357 panic("Unrecognized scheduler algorithm: %s", sched_arg);
358#endif
359 }
360 kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name));
361 } else {
362#if defined(CONFIG_SCHED_MULTIQ)
363 sched_current_dispatch = &sched_multiq_dispatch;
364#elif defined(CONFIG_SCHED_TRADITIONAL)
365 sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
366#elif defined(CONFIG_SCHED_PROTO)
367 sched_current_dispatch = &sched_proto_dispatch;
368#elif defined(CONFIG_SCHED_GRRR)
369 sched_current_dispatch = &sched_grrr_dispatch;
370#else
371#error No default scheduler implementation
372#endif
373 kprintf("Scheduler: Default of %s\n", SCHED(sched_name));
374 }
375
376 strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string));
377
378 if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) {
379 kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags);
380 }
381
382 SCHED(init)();
383 sched_realtime_init();
384 ast_init();
385 sched_timer_deadline_tracking_init();
386
387 SCHED(pset_init)(&pset0);
388 SCHED(processor_init)(master_processor);
389}
390
391void
392sched_timebase_init(void)
393{
394 uint64_t abstime;
395
396 clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime);
397 sched_one_second_interval = abstime;
398
399 SCHED(timebase_init)();
400 sched_realtime_timebase_init();
401}
402
403#if defined(CONFIG_SCHED_TIMESHARE_CORE)
404
405void
406sched_timeshare_init(void)
407{
408 /*
409 * Calculate the timeslicing quantum
410 * in us.
411 */
412 if (default_preemption_rate < 1)
413 default_preemption_rate = DEFAULT_PREEMPTION_RATE;
414 std_quantum_us = (1000 * 1000) / default_preemption_rate;
415
416 printf("standard timeslicing quantum is %d us\n", std_quantum_us);
417
418 if (default_bg_preemption_rate < 1)
419 default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE;
420 bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate;
421
422 printf("standard background quantum is %d us\n", bg_quantum_us);
423
424 load_shift_init();
425 preempt_pri_init();
426 sched_tick = 0;
427}
428
429void
430sched_timeshare_timebase_init(void)
431{
432 uint64_t abstime;
433 uint32_t shift;
434
435 /* standard timeslicing quantum */
436 clock_interval_to_absolutetime_interval(
437 std_quantum_us, NSEC_PER_USEC, &abstime);
438 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
439 std_quantum = (uint32_t)abstime;
440
441 /* smallest remaining quantum (250 us) */
442 clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime);
443 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
444 min_std_quantum = (uint32_t)abstime;
445
446 /* quantum for background tasks */
447 clock_interval_to_absolutetime_interval(
448 bg_quantum_us, NSEC_PER_USEC, &abstime);
449 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
450 bg_quantum = (uint32_t)abstime;
451
452 /* scheduler tick interval */
453 clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT,
454 NSEC_PER_USEC, &abstime);
455 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
456 sched_tick_interval = (uint32_t)abstime;
457
458 /*
459 * Compute conversion factor from usage to
460 * timesharing priorities with 5/8 ** n aging.
461 */
462 abstime = (abstime * 5) / 3;
463 for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift)
464 abstime >>= 1;
465 sched_fixed_shift = shift;
466
467 max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum;
468 sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum;
469
470 max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum;
471 thread_depress_time = 1 * std_quantum;
472 default_timeshare_computation = std_quantum / 2;
473 default_timeshare_constraint = std_quantum;
474
475#if defined(CONFIG_TELEMETRY)
476 /* interval for high frequency telemetry */
477 clock_interval_to_absolutetime_interval(10, NSEC_PER_MSEC, &abstime);
478 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
479 sched_telemetry_interval = (uint32_t)abstime;
480#endif
481}
482
483#endif /* CONFIG_SCHED_TIMESHARE_CORE */
484
485static void
486sched_realtime_init(void)
487{
488 rt_lock_init();
489
490 rt_runq.count = 0;
491 queue_init(&rt_runq.queue);
492}
493
494static void
495sched_realtime_timebase_init(void)
496{
497 uint64_t abstime;
498
499 /* smallest rt computaton (50 us) */
500 clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
501 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
502 min_rt_quantum = (uint32_t)abstime;
503
504 /* maximum rt computation (50 ms) */
505 clock_interval_to_absolutetime_interval(
506 50, 1000*NSEC_PER_USEC, &abstime);
507 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
508 max_rt_quantum = (uint32_t)abstime;
509
510}
511
512#if defined(CONFIG_SCHED_TIMESHARE_CORE)
513
514/*
515 * Set up values for timeshare
516 * loading factors.
517 */
518static void
519load_shift_init(void)
520{
521 int8_t k, *p = sched_load_shifts;
522 uint32_t i, j;
523
524 uint32_t sched_decay_penalty = 1;
525
526 if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty, sizeof (sched_decay_penalty))) {
527 kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty);
528 }
529
530 if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor, sizeof (sched_decay_usage_age_factor))) {
531 kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor);
532 }
533
534 if (PE_parse_boot_argn("sched_use_combined_fgbg_decay", &sched_use_combined_fgbg_decay, sizeof (sched_use_combined_fgbg_decay))) {
535 kprintf("Overriding schedule fg/bg decay calculation: %u\n", sched_use_combined_fgbg_decay);
536 }
537
538 if (sched_decay_penalty == 0) {
539 /*
540 * There is no penalty for timeshare threads for using too much
541 * CPU, so set all load shifts to INT8_MIN. Even under high load,
542 * sched_pri_shift will be >INT8_MAX, and there will be no
543 * penalty applied to threads (nor will sched_usage be updated per
544 * thread).
545 */
546 for (i = 0; i < NRQS; i++) {
547 sched_load_shifts[i] = INT8_MIN;
548 }
549
550 return;
551 }
552
553 *p++ = INT8_MIN; *p++ = 0;
554
555 /*
556 * For a given system load "i", the per-thread priority
557 * penalty per quantum of CPU usage is ~2^k priority
558 * levels. "sched_decay_penalty" can cause more
559 * array entries to be filled with smaller "k" values
560 */
561 for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) {
562 for (j <<= 1; (i < j) && (i < NRQS); ++i)
563 *p++ = k;
564 }
565}
566
567static void
568preempt_pri_init(void)
569{
570 int i, *p = sched_preempt_pri;
571
572 for (i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i)
573 setbit(i, p);
574
575 for (i = BASEPRI_PREEMPT; i <= MAXPRI; ++i)
576 setbit(i, p);
577}
578
579#endif /* CONFIG_SCHED_TIMESHARE_CORE */
580
581/*
582 * Thread wait timer expiration.
583 */
584void
585thread_timer_expire(
586 void *p0,
587 __unused void *p1)
588{
589 thread_t thread = p0;
590 spl_t s;
591
592 s = splsched();
593 thread_lock(thread);
594 if (--thread->wait_timer_active == 0) {
595 if (thread->wait_timer_is_set) {
596 thread->wait_timer_is_set = FALSE;
597 clear_wait_internal(thread, THREAD_TIMED_OUT);
598 }
599 }
600 thread_unlock(thread);
601 splx(s);
602}
603
604/*
605 * thread_unblock:
606 *
607 * Unblock thread on wake up.
608 *
609 * Returns TRUE if the thread should now be placed on the runqueue.
610 *
611 * Thread must be locked.
612 *
613 * Called at splsched().
614 */
615boolean_t
616thread_unblock(
617 thread_t thread,
618 wait_result_t wresult)
619{
620 boolean_t ready_for_runq = FALSE;
621 thread_t cthread = current_thread();
622 uint32_t new_run_count;
623
624 /*
625 * Set wait_result.
626 */
627 thread->wait_result = wresult;
628
629 /*
630 * Cancel pending wait timer.
631 */
632 if (thread->wait_timer_is_set) {
633 if (timer_call_cancel(&thread->wait_timer))
634 thread->wait_timer_active--;
635 thread->wait_timer_is_set = FALSE;
636 }
637
638 /*
639 * Update scheduling state: not waiting,
640 * set running.
641 */
642 thread->state &= ~(TH_WAIT|TH_UNINT);
643
644 if (!(thread->state & TH_RUN)) {
645 thread->state |= TH_RUN;
646 thread->last_made_runnable_time = mach_approximate_time();
647
648 ready_for_runq = TRUE;
649
650 (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
651
652 /*
653 * Update run counts.
654 */
655 new_run_count = sched_run_incr(thread);
656 if (thread->sched_mode == TH_MODE_TIMESHARE) {
657 sched_share_incr(thread);
658
659 if (thread->sched_flags & TH_SFLAG_THROTTLED)
660 sched_background_incr(thread);
661 }
662 } else {
663 /*
664 * Signal if idling on another processor.
665 */
666#if CONFIG_SCHED_IDLE_IN_PLACE
667 if (thread->state & TH_IDLE) {
668 processor_t processor = thread->last_processor;
669
670 if (processor != current_processor())
671 machine_signal_idle(processor);
672 }
673#else
674 assert((thread->state & TH_IDLE) == 0);
675#endif
676
677 new_run_count = sched_run_count; /* updated in thread_select_idle() */
678 }
679
680
681 /*
682 * Calculate deadline for real-time threads.
683 */
684 if (thread->sched_mode == TH_MODE_REALTIME) {
685 uint64_t ctime;
686
687 ctime = mach_absolute_time();
688 thread->realtime.deadline = thread->realtime.constraint + ctime;
689 }
690
691 /*
692 * Clear old quantum, fail-safe computation, etc.
693 */
694 thread->quantum_remaining = 0;
695 thread->computation_metered = 0;
696 thread->reason = AST_NONE;
697
698 /* Obtain power-relevant interrupt and "platform-idle exit" statistics.
699 * We also account for "double hop" thread signaling via
700 * the thread callout infrastructure.
701 * DRK: consider removing the callout wakeup counters in the future
702 * they're present for verification at the moment.
703 */
704 boolean_t aticontext, pidle;
705 ml_get_power_state(&aticontext, &pidle);
706
707 if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) {
708 ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
709 DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
710
711 uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd);
712
713 if (ttd) {
714 if (ttd <= timer_deadline_tracking_bin_1)
715 thread->thread_timer_wakeups_bin_1++;
716 else
717 if (ttd <= timer_deadline_tracking_bin_2)
718 thread->thread_timer_wakeups_bin_2++;
719 }
720
721 if (pidle) {
722 ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
723 }
724
725 } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) {
726 if (cthread->callout_woken_from_icontext) {
727 ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
728 thread->thread_callout_interrupt_wakeups++;
729 if (cthread->callout_woken_from_platform_idle) {
730 ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
731 thread->thread_callout_platform_idle_wakeups++;
732 }
733
734 cthread->callout_woke_thread = TRUE;
735 }
736 }
737
738 if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) {
739 thread->callout_woken_from_icontext = aticontext;
740 thread->callout_woken_from_platform_idle = pidle;
741 thread->callout_woke_thread = FALSE;
742 }
743
744 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
745 MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
746 (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, new_run_count, 0);
747
748 DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
749
750 return (ready_for_runq);
751}
752
753/*
754 * Routine: thread_go
755 * Purpose:
756 * Unblock and dispatch thread.
757 * Conditions:
758 * thread lock held, IPC locks may be held.
759 * thread must have been pulled from wait queue under same lock hold.
760 * thread must have been waiting
761 * Returns:
762 * KERN_SUCCESS - Thread was set running
763 *
764 * TODO: This should return void
765 */
766kern_return_t
767thread_go(
768 thread_t thread,
769 wait_result_t wresult)
770{
771 assert(thread->at_safe_point == FALSE);
772 assert(thread->wait_event == NO_EVENT64);
773 assert(thread->waitq == NULL);
774
775 assert(!(thread->state & (TH_TERMINATE|TH_TERMINATE2)));
776 assert(thread->state & TH_WAIT);
777
778
779 if (thread_unblock(thread, wresult))
780 thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
781
782 return (KERN_SUCCESS);
783}
784
785/*
786 * Routine: thread_mark_wait_locked
787 * Purpose:
788 * Mark a thread as waiting. If, given the circumstances,
789 * it doesn't want to wait (i.e. already aborted), then
790 * indicate that in the return value.
791 * Conditions:
792 * at splsched() and thread is locked.
793 */
794__private_extern__
795wait_result_t
796thread_mark_wait_locked(
797 thread_t thread,
798 wait_interrupt_t interruptible)
799{
800 boolean_t at_safe_point;
801
802 assert(thread == current_thread());
803 assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2)));
804
805 /*
806 * The thread may have certain types of interrupts/aborts masked
807 * off. Even if the wait location says these types of interrupts
808 * are OK, we have to honor mask settings (outer-scoped code may
809 * not be able to handle aborts at the moment).
810 */
811 if (interruptible > (thread->options & TH_OPT_INTMASK))
812 interruptible = thread->options & TH_OPT_INTMASK;
813
814 at_safe_point = (interruptible == THREAD_ABORTSAFE);
815
816 if ( interruptible == THREAD_UNINT ||
817 !(thread->sched_flags & TH_SFLAG_ABORT) ||
818 (!at_safe_point &&
819 (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) {
820
821 if ( !(thread->state & TH_TERMINATE))
822 DTRACE_SCHED(sleep);
823
824 thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
825 thread->at_safe_point = at_safe_point;
826 return (thread->wait_result = THREAD_WAITING);
827 }
828 else
829 if (thread->sched_flags & TH_SFLAG_ABORTSAFELY)
830 thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
831
832 return (thread->wait_result = THREAD_INTERRUPTED);
833}
834
835/*
836 * Routine: thread_interrupt_level
837 * Purpose:
838 * Set the maximum interruptible state for the
839 * current thread. The effective value of any
840 * interruptible flag passed into assert_wait
841 * will never exceed this.
842 *
843 * Useful for code that must not be interrupted,
844 * but which calls code that doesn't know that.
845 * Returns:
846 * The old interrupt level for the thread.
847 */
848__private_extern__
849wait_interrupt_t
850thread_interrupt_level(
851 wait_interrupt_t new_level)
852{
853 thread_t thread = current_thread();
854 wait_interrupt_t result = thread->options & TH_OPT_INTMASK;
855
856 thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK);
857
858 return result;
859}
860
861/*
862 * Check to see if an assert wait is possible, without actually doing one.
863 * This is used by debug code in locks and elsewhere to verify that it is
864 * always OK to block when trying to take a blocking lock (since waiting
865 * for the actual assert_wait to catch the case may make it hard to detect
866 * this case.
867 */
868boolean_t
869assert_wait_possible(void)
870{
871
872 thread_t thread;
873
874#if DEBUG
875 if(debug_mode) return TRUE; /* Always succeed in debug mode */
876#endif
877
878 thread = current_thread();
879
880 return (thread == NULL || waitq_wait_possible(thread));
881}
882
883/*
884 * assert_wait:
885 *
886 * Assert that the current thread is about to go to
887 * sleep until the specified event occurs.
888 */
889wait_result_t
890assert_wait(
891 event_t event,
892 wait_interrupt_t interruptible)
893{
894 if (__improbable(event == NO_EVENT))
895 panic("%s() called with NO_EVENT", __func__);
896
897 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
898 MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
899 VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0);
900
901 struct waitq *waitq;
902 waitq = global_eventq(event);
903 return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER);
904}
905
906wait_result_t
907assert_wait_timeout(
908 event_t event,
909 wait_interrupt_t interruptible,
910 uint32_t interval,
911 uint32_t scale_factor)
912{
913 thread_t thread = current_thread();
914 wait_result_t wresult;
915 uint64_t deadline;
916 spl_t s;
917
918 if (__improbable(event == NO_EVENT))
919 panic("%s() called with NO_EVENT", __func__);
920
921 struct waitq *waitq;
922 waitq = global_eventq(event);
923
924 s = splsched();
925 waitq_lock(waitq);
926 thread_lock(thread);
927
928 clock_interval_to_deadline(interval, scale_factor, &deadline);
929
930 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
931 MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
932 VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
933
934 wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
935 interruptible,
936 TIMEOUT_URGENCY_SYS_NORMAL,
937 deadline, TIMEOUT_NO_LEEWAY,
938 thread);
939
940 thread_unlock(thread);
941 waitq_unlock(waitq);
942 splx(s);
943 return wresult;
944}
945
946wait_result_t
947assert_wait_timeout_with_leeway(
948 event_t event,
949 wait_interrupt_t interruptible,
950 wait_timeout_urgency_t urgency,
951 uint32_t interval,
952 uint32_t leeway,
953 uint32_t scale_factor)
954{
955 thread_t thread = current_thread();
956 wait_result_t wresult;
957 uint64_t deadline;
958 uint64_t abstime;
959 uint64_t slop;
960 uint64_t now;
961 spl_t s;
962
963 if (__improbable(event == NO_EVENT))
964 panic("%s() called with NO_EVENT", __func__);
965
966 now = mach_absolute_time();
967 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
968 deadline = now + abstime;
969
970 clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop);
971
972 struct waitq *waitq;
973 waitq = global_eventq(event);
974
975 s = splsched();
976 waitq_lock(waitq);
977 thread_lock(thread);
978
979 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
980 MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
981 VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
982
983 wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
984 interruptible,
985 urgency, deadline, slop,
986 thread);
987
988 thread_unlock(thread);
989 waitq_unlock(waitq);
990 splx(s);
991 return wresult;
992}
993
994wait_result_t
995assert_wait_deadline(
996 event_t event,
997 wait_interrupt_t interruptible,
998 uint64_t deadline)
999{
1000 thread_t thread = current_thread();
1001 wait_result_t wresult;
1002 spl_t s;
1003
1004 if (__improbable(event == NO_EVENT))
1005 panic("%s() called with NO_EVENT", __func__);
1006
1007 struct waitq *waitq;
1008 waitq = global_eventq(event);
1009
1010 s = splsched();
1011 waitq_lock(waitq);
1012 thread_lock(thread);
1013
1014 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1015 MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
1016 VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
1017
1018 wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
1019 interruptible,
1020 TIMEOUT_URGENCY_SYS_NORMAL, deadline,
1021 TIMEOUT_NO_LEEWAY, thread);
1022 thread_unlock(thread);
1023 waitq_unlock(waitq);
1024 splx(s);
1025 return wresult;
1026}
1027
1028wait_result_t
1029assert_wait_deadline_with_leeway(
1030 event_t event,
1031 wait_interrupt_t interruptible,
1032 wait_timeout_urgency_t urgency,
1033 uint64_t deadline,
1034 uint64_t leeway)
1035{
1036 thread_t thread = current_thread();
1037 wait_result_t wresult;
1038 spl_t s;
1039
1040 if (__improbable(event == NO_EVENT))
1041 panic("%s() called with NO_EVENT", __func__);
1042
1043 struct waitq *waitq;
1044 waitq = global_eventq(event);
1045
1046 s = splsched();
1047 waitq_lock(waitq);
1048 thread_lock(thread);
1049
1050 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1051 MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
1052 VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
1053
1054 wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
1055 interruptible,
1056 urgency, deadline, leeway,
1057 thread);
1058
1059 thread_unlock(thread);
1060 waitq_unlock(waitq);
1061 splx(s);
1062 return wresult;
1063}
1064
1065/*
1066 * thread_isoncpu:
1067 *
1068 * Return TRUE if a thread is running on a processor such that an AST
1069 * is needed to pull it out of userspace execution, or if executing in
1070 * the kernel, bring to a context switch boundary that would cause
1071 * thread state to be serialized in the thread PCB.
1072 *
1073 * Thread locked, returns the same way. While locked, fields
1074 * like "state" cannot change. "runq" can change only from set to unset.
1075 */
1076static inline boolean_t
1077thread_isoncpu(thread_t thread)
1078{
1079 /* Not running or runnable */
1080 if (!(thread->state & TH_RUN))
1081 return (FALSE);
1082
1083 /* Waiting on a runqueue, not currently running */
1084 /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */
1085 if (thread->runq != PROCESSOR_NULL)
1086 return (FALSE);
1087
1088 /*
1089 * Thread does not have a stack yet
1090 * It could be on the stack alloc queue or preparing to be invoked
1091 */
1092 if (!thread->kernel_stack)
1093 return (FALSE);
1094
1095 /*
1096 * Thread must be running on a processor, or
1097 * about to run, or just did run. In all these
1098 * cases, an AST to the processor is needed
1099 * to guarantee that the thread is kicked out
1100 * of userspace and the processor has
1101 * context switched (and saved register state).
1102 */
1103 return (TRUE);
1104}
1105
1106/*
1107 * thread_stop:
1108 *
1109 * Force a preemption point for a thread and wait
1110 * for it to stop running on a CPU. If a stronger
1111 * guarantee is requested, wait until no longer
1112 * runnable. Arbitrates access among
1113 * multiple stop requests. (released by unstop)
1114 *
1115 * The thread must enter a wait state and stop via a
1116 * separate means.
1117 *
1118 * Returns FALSE if interrupted.
1119 */
1120boolean_t
1121thread_stop(
1122 thread_t thread,
1123 boolean_t until_not_runnable)
1124{
1125 wait_result_t wresult;
1126 spl_t s = splsched();
1127 boolean_t oncpu;
1128
1129 wake_lock(thread);
1130 thread_lock(thread);
1131
1132 while (thread->state & TH_SUSP) {
1133 thread->wake_active = TRUE;
1134 thread_unlock(thread);
1135
1136 wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
1137 wake_unlock(thread);
1138 splx(s);
1139
1140 if (wresult == THREAD_WAITING)
1141 wresult = thread_block(THREAD_CONTINUE_NULL);
1142
1143 if (wresult != THREAD_AWAKENED)
1144 return (FALSE);
1145
1146 s = splsched();
1147 wake_lock(thread);
1148 thread_lock(thread);
1149 }
1150
1151 thread->state |= TH_SUSP;
1152
1153 while ((oncpu = thread_isoncpu(thread)) ||
1154 (until_not_runnable && (thread->state & TH_RUN))) {
1155 processor_t processor;
1156
1157 if (oncpu) {
1158 assert(thread->state & TH_RUN);
1159 processor = thread->chosen_processor;
1160 cause_ast_check(processor);
1161 }
1162
1163 thread->wake_active = TRUE;
1164 thread_unlock(thread);
1165
1166 wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
1167 wake_unlock(thread);
1168 splx(s);
1169
1170 if (wresult == THREAD_WAITING)
1171 wresult = thread_block(THREAD_CONTINUE_NULL);
1172
1173 if (wresult != THREAD_AWAKENED) {
1174 thread_unstop(thread);
1175 return (FALSE);
1176 }
1177
1178 s = splsched();
1179 wake_lock(thread);
1180 thread_lock(thread);
1181 }
1182
1183 thread_unlock(thread);
1184 wake_unlock(thread);
1185 splx(s);
1186
1187 /*
1188 * We return with the thread unlocked. To prevent it from
1189 * transitioning to a runnable state (or from TH_RUN to
1190 * being on the CPU), the caller must ensure the thread
1191 * is stopped via an external means (such as an AST)
1192 */
1193
1194 return (TRUE);
1195}
1196
1197/*
1198 * thread_unstop:
1199 *
1200 * Release a previous stop request and set
1201 * the thread running if appropriate.
1202 *
1203 * Use only after a successful stop operation.
1204 */
1205void
1206thread_unstop(
1207 thread_t thread)
1208{
1209 spl_t s = splsched();
1210
1211 wake_lock(thread);
1212 thread_lock(thread);
1213
1214 assert((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) != TH_SUSP);
1215
1216 if (thread->state & TH_SUSP) {
1217 thread->state &= ~TH_SUSP;
1218
1219 if (thread->wake_active) {
1220 thread->wake_active = FALSE;
1221 thread_unlock(thread);
1222
1223 thread_wakeup(&thread->wake_active);
1224 wake_unlock(thread);
1225 splx(s);
1226
1227 return;
1228 }
1229 }
1230
1231 thread_unlock(thread);
1232 wake_unlock(thread);
1233 splx(s);
1234}
1235
1236/*
1237 * thread_wait:
1238 *
1239 * Wait for a thread to stop running. (non-interruptible)
1240 *
1241 */
1242void
1243thread_wait(
1244 thread_t thread,
1245 boolean_t until_not_runnable)
1246{
1247 wait_result_t wresult;
1248 boolean_t oncpu;
1249 processor_t processor;
1250 spl_t s = splsched();
1251
1252 wake_lock(thread);
1253 thread_lock(thread);
1254
1255 /*
1256 * Wait until not running on a CPU. If stronger requirement
1257 * desired, wait until not runnable. Assumption: if thread is
1258 * on CPU, then TH_RUN is set, so we're not waiting in any case
1259 * where the original, pure "TH_RUN" check would have let us
1260 * finish.
1261 */
1262 while ((oncpu = thread_isoncpu(thread)) ||
1263 (until_not_runnable && (thread->state & TH_RUN))) {
1264
1265 if (oncpu) {
1266 assert(thread->state & TH_RUN);
1267 processor = thread->chosen_processor;
1268 cause_ast_check(processor);
1269 }
1270
1271 thread->wake_active = TRUE;
1272 thread_unlock(thread);
1273
1274 wresult = assert_wait(&thread->wake_active, THREAD_UNINT);
1275 wake_unlock(thread);
1276 splx(s);
1277
1278 if (wresult == THREAD_WAITING)
1279 thread_block(THREAD_CONTINUE_NULL);
1280
1281 s = splsched();
1282 wake_lock(thread);
1283 thread_lock(thread);
1284 }
1285
1286 thread_unlock(thread);
1287 wake_unlock(thread);
1288 splx(s);
1289}
1290
1291/*
1292 * Routine: clear_wait_internal
1293 *
1294 * Clear the wait condition for the specified thread.
1295 * Start the thread executing if that is appropriate.
1296 * Arguments:
1297 * thread thread to awaken
1298 * result Wakeup result the thread should see
1299 * Conditions:
1300 * At splsched
1301 * the thread is locked.
1302 * Returns:
1303 * KERN_SUCCESS thread was rousted out a wait
1304 * KERN_FAILURE thread was waiting but could not be rousted
1305 * KERN_NOT_WAITING thread was not waiting
1306 */
1307__private_extern__ kern_return_t
1308clear_wait_internal(
1309 thread_t thread,
1310 wait_result_t wresult)
1311{
1312 uint32_t i = LockTimeOut;
1313 struct waitq *waitq = thread->waitq;
1314
1315 do {
1316 if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT))
1317 return (KERN_FAILURE);
1318
1319 if (waitq != NULL) {
1320 assert(waitq_irq_safe(waitq)); //irqs are already disabled!
1321 if (waitq_lock_try(waitq)) {
1322 waitq_pull_thread_locked(waitq, thread);
1323 waitq_unlock(waitq);
1324 } else {
1325 thread_unlock(thread);
1326 delay(1);
1327 thread_lock(thread);
1328 if (waitq != thread->waitq)
1329 return KERN_NOT_WAITING;
1330 continue;
1331 }
1332 }
1333
1334 /* TODO: Can we instead assert TH_TERMINATE is not set? */
1335 if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT)
1336 return (thread_go(thread, wresult));
1337 else
1338 return (KERN_NOT_WAITING);
1339 } while ((--i > 0) || machine_timeout_suspended());
1340
1341 panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n",
1342 thread, waitq, cpu_number());
1343
1344 return (KERN_FAILURE);
1345}
1346
1347
1348/*
1349 * clear_wait:
1350 *
1351 * Clear the wait condition for the specified thread. Start the thread
1352 * executing if that is appropriate.
1353 *
1354 * parameters:
1355 * thread thread to awaken
1356 * result Wakeup result the thread should see
1357 */
1358kern_return_t
1359clear_wait(
1360 thread_t thread,
1361 wait_result_t result)
1362{
1363 kern_return_t ret;
1364 spl_t s;
1365
1366 s = splsched();
1367 thread_lock(thread);
1368 ret = clear_wait_internal(thread, result);
1369 thread_unlock(thread);
1370 splx(s);
1371 return ret;
1372}
1373
1374
1375/*
1376 * thread_wakeup_prim:
1377 *
1378 * Common routine for thread_wakeup, thread_wakeup_with_result,
1379 * and thread_wakeup_one.
1380 *
1381 */
1382kern_return_t
1383thread_wakeup_prim(
1384 event_t event,
1385 boolean_t one_thread,
1386 wait_result_t result)
1387{
1388 return (thread_wakeup_prim_internal(event, one_thread, result, -1));
1389}
1390
1391
1392kern_return_t
1393thread_wakeup_prim_internal(
1394 event_t event,
1395 boolean_t one_thread,
1396 wait_result_t result,
1397 int priority)
1398{
1399 if (__improbable(event == NO_EVENT))
1400 panic("%s() called with NO_EVENT", __func__);
1401
1402 struct waitq *wq;
1403
1404 wq = global_eventq(event);
1405 priority = (priority == -1 ? WAITQ_ALL_PRIORITIES : priority);
1406
1407 if (one_thread)
1408 return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, priority);
1409 else
1410 return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, priority);
1411}
1412
1413/*
1414 * thread_bind:
1415 *
1416 * Force the current thread to execute on the specified processor.
1417 * Takes effect after the next thread_block().
1418 *
1419 * Returns the previous binding. PROCESSOR_NULL means
1420 * not bound.
1421 *
1422 * XXX - DO NOT export this to users - XXX
1423 */
1424processor_t
1425thread_bind(
1426 processor_t processor)
1427{
1428 thread_t self = current_thread();
1429 processor_t prev;
1430 spl_t s;
1431
1432 s = splsched();
1433 thread_lock(self);
1434
1435 prev = thread_bind_internal(self, processor);
1436
1437 thread_unlock(self);
1438 splx(s);
1439
1440 return (prev);
1441}
1442
1443/*
1444 * thread_bind_internal:
1445 *
1446 * If the specified thread is not the current thread, and it is currently
1447 * running on another CPU, a remote AST must be sent to that CPU to cause
1448 * the thread to migrate to its bound processor. Otherwise, the migration
1449 * will occur at the next quantum expiration or blocking point.
1450 *
1451 * When the thread is the current thread, and explicit thread_block() should
1452 * be used to force the current processor to context switch away and
1453 * let the thread migrate to the bound processor.
1454 *
1455 * Thread must be locked, and at splsched.
1456 */
1457
1458static processor_t
1459thread_bind_internal(
1460 thread_t thread,
1461 processor_t processor)
1462{
1463 processor_t prev;
1464
1465 /* <rdar://problem/15102234> */
1466 assert(thread->sched_pri < BASEPRI_RTQUEUES);
1467 /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */
1468 assert(thread->runq == PROCESSOR_NULL);
1469
1470 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0);
1471
1472 prev = thread->bound_processor;
1473 thread->bound_processor = processor;
1474
1475 return (prev);
1476}
1477
1478/*
1479 * thread_vm_bind_group_add:
1480 *
1481 * The "VM bind group" is a special mechanism to mark a collection
1482 * of threads from the VM subsystem that, in general, should be scheduled
1483 * with only one CPU of parallelism. To accomplish this, we initially
1484 * bind all the threads to the master processor, which has the effect
1485 * that only one of the threads in the group can execute at once, including
1486 * preempting threads in the group that are a lower priority. Future
1487 * mechanisms may use more dynamic mechanisms to prevent the collection
1488 * of VM threads from using more CPU time than desired.
1489 *
1490 * The current implementation can result in priority inversions where
1491 * compute-bound priority 95 or realtime threads that happen to have
1492 * landed on the master processor prevent the VM threads from running.
1493 * When this situation is detected, we unbind the threads for one
1494 * scheduler tick to allow the scheduler to run the threads an
1495 * additional CPUs, before restoring the binding (assuming high latency
1496 * is no longer a problem).
1497 */
1498
1499/*
1500 * The current max is provisioned for:
1501 * vm_compressor_swap_trigger_thread (92)
1502 * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE
1503 * vm_pageout_continue (92)
1504 * memorystatus_thread (95)
1505 */
1506#define MAX_VM_BIND_GROUP_COUNT (5)
1507decl_simple_lock_data(static,sched_vm_group_list_lock);
1508static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT];
1509static int sched_vm_group_thread_count;
1510static boolean_t sched_vm_group_temporarily_unbound = FALSE;
1511
1512void
1513thread_vm_bind_group_add(void)
1514{
1515 thread_t self = current_thread();
1516
1517 thread_reference_internal(self);
1518 self->options |= TH_OPT_SCHED_VM_GROUP;
1519
1520 simple_lock(&sched_vm_group_list_lock);
1521 assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT);
1522 sched_vm_group_thread_list[sched_vm_group_thread_count++] = self;
1523 simple_unlock(&sched_vm_group_list_lock);
1524
1525 thread_bind(master_processor);
1526
1527 /* Switch to bound processor if not already there */
1528 thread_block(THREAD_CONTINUE_NULL);
1529}
1530
1531static void
1532sched_vm_group_maintenance(void)
1533{
1534 uint64_t ctime = mach_absolute_time();
1535 uint64_t longtime = ctime - sched_tick_interval;
1536 int i;
1537 spl_t s;
1538 boolean_t high_latency_observed = FALSE;
1539 boolean_t runnable_and_not_on_runq_observed = FALSE;
1540 boolean_t bind_target_changed = FALSE;
1541 processor_t bind_target = PROCESSOR_NULL;
1542
1543 /* Make sure nobody attempts to add new threads while we are enumerating them */
1544 simple_lock(&sched_vm_group_list_lock);
1545
1546 s = splsched();
1547
1548 for (i=0; i < sched_vm_group_thread_count; i++) {
1549 thread_t thread = sched_vm_group_thread_list[i];
1550 assert(thread != THREAD_NULL);
1551 thread_lock(thread);
1552 if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) {
1553 if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) {
1554 high_latency_observed = TRUE;
1555 } else if (thread->runq == PROCESSOR_NULL) {
1556 /* There are some cases where a thread be transitiong that also fall into this case */
1557 runnable_and_not_on_runq_observed = TRUE;
1558 }
1559 }
1560 thread_unlock(thread);
1561
1562 if (high_latency_observed && runnable_and_not_on_runq_observed) {
1563 /* All the things we are looking for are true, stop looking */
1564 break;
1565 }
1566 }
1567
1568 splx(s);
1569
1570 if (sched_vm_group_temporarily_unbound) {
1571 /* If we turned off binding, make sure everything is OK before rebinding */
1572 if (!high_latency_observed) {
1573 /* rebind */
1574 bind_target_changed = TRUE;
1575 bind_target = master_processor;
1576 sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */
1577 }
1578 } else {
1579 /*
1580 * Check if we're in a bad state, which is defined by high
1581 * latency with no core currently executing a thread. If a
1582 * single thread is making progress on a CPU, that means the
1583 * binding concept to reduce parallelism is working as
1584 * designed.
1585 */
1586 if (high_latency_observed && !runnable_and_not_on_runq_observed) {
1587 /* unbind */
1588 bind_target_changed = TRUE;
1589 bind_target = PROCESSOR_NULL;
1590 sched_vm_group_temporarily_unbound = TRUE;
1591 }
1592 }
1593
1594 if (bind_target_changed) {
1595 s = splsched();
1596 for (i=0; i < sched_vm_group_thread_count; i++) {
1597 thread_t thread = sched_vm_group_thread_list[i];
1598 boolean_t removed;
1599 assert(thread != THREAD_NULL);
1600
1601 thread_lock(thread);
1602 removed = thread_run_queue_remove(thread);
1603 if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) {
1604 thread_bind_internal(thread, bind_target);
1605 } else {
1606 /*
1607 * Thread was in the middle of being context-switched-to,
1608 * or was in the process of blocking. To avoid switching the bind
1609 * state out mid-flight, defer the change if possible.
1610 */
1611 if (bind_target == PROCESSOR_NULL) {
1612 thread_bind_internal(thread, bind_target);
1613 } else {
1614 sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */
1615 }
1616 }
1617
1618 if (removed) {
1619 thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ);
1620 }
1621 thread_unlock(thread);
1622 }
1623 splx(s);
1624 }
1625
1626 simple_unlock(&sched_vm_group_list_lock);
1627}
1628
1629/* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT
1630 * rebalancing opportunity exists when a core is (instantaneously) idle, but
1631 * other SMT-capable cores may be over-committed. TODO: some possible negatives:
1632 * IPI thrash if this core does not remain idle following the load balancing ASTs
1633 * Idle "thrash", when IPI issue is followed by idle entry/core power down
1634 * followed by a wakeup shortly thereafter.
1635 */
1636
1637#if (DEVELOPMENT || DEBUG)
1638int sched_smt_balance = 1;
1639#endif
1640
1641#if __SMP__
1642/* Invoked with pset locked, returns with pset unlocked */
1643static void
1644sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) {
1645 processor_t ast_processor = NULL;
1646
1647#if (DEVELOPMENT || DEBUG)
1648 if (__improbable(sched_smt_balance == 0))
1649 goto smt_balance_exit;
1650#endif
1651
1652 assert(cprocessor == current_processor());
1653 if (cprocessor->is_SMT == FALSE)
1654 goto smt_balance_exit;
1655
1656 processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary;
1657
1658 /* Determine if both this processor and its sibling are idle,
1659 * indicating an SMT rebalancing opportunity.
1660 */
1661 if (sib_processor->state != PROCESSOR_IDLE)
1662 goto smt_balance_exit;
1663
1664 processor_t sprocessor;
1665
1666 sprocessor = (processor_t)queue_first(&cpset->active_queue);
1667
1668 while (!queue_end(&cpset->active_queue, (queue_entry_t)sprocessor)) {
1669 if ((sprocessor->state == PROCESSOR_RUNNING) &&
1670 (sprocessor->processor_primary != sprocessor) &&
1671 (sprocessor->processor_primary->state == PROCESSOR_RUNNING) &&
1672 (sprocessor->current_pri < BASEPRI_RTQUEUES) &&
1673 ((cpset->pending_AST_cpu_mask & (1ULL << sprocessor->cpu_id)) == 0)) {
1674 assert(sprocessor != cprocessor);
1675 ast_processor = sprocessor;
1676 break;
1677 }
1678 sprocessor = (processor_t)queue_next((queue_entry_t)sprocessor);
1679 }
1680
1681smt_balance_exit:
1682 pset_unlock(cpset);
1683
1684 if (ast_processor) {
1685 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0);
1686 cause_ast_check(ast_processor);
1687 }
1688}
1689#endif /* __SMP__ */
1690
1691/*
1692 * thread_select:
1693 *
1694 * Select a new thread for the current processor to execute.
1695 *
1696 * May select the current thread, which must be locked.
1697 */
1698static thread_t
1699thread_select(
1700 thread_t thread,
1701 processor_t processor,
1702 ast_t reason)
1703{
1704 processor_set_t pset = processor->processor_set;
1705 thread_t new_thread = THREAD_NULL;
1706
1707 assert(processor == current_processor());
1708 assert((thread->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN);
1709
1710 do {
1711 /*
1712 * Update the priority.
1713 */
1714 if (SCHED(can_update_priority)(thread))
1715 SCHED(update_priority)(thread);
1716
1717 processor->current_pri = thread->sched_pri;
1718 processor->current_thmode = thread->sched_mode;
1719 processor->current_sfi_class = thread->sfi_class;
1720
1721 pset_lock(pset);
1722
1723 assert(processor->state != PROCESSOR_OFF_LINE);
1724
1725 if (!processor->is_recommended) {
1726 /*
1727 * The performance controller has provided a hint to not dispatch more threads,
1728 * unless they are bound to us (and thus we are the only option
1729 */
1730 if (!SCHED(processor_bound_count)(processor)) {
1731 goto idle;
1732 }
1733 } else if (processor->processor_primary != processor) {
1734 /*
1735 * Should this secondary SMT processor attempt to find work? For pset runqueue systems,
1736 * we should look for work only under the same conditions that choose_processor()
1737 * would have assigned work, which is when all primary processors have been assigned work.
1738 *
1739 * An exception is that bound threads are dispatched to a processor without going through
1740 * choose_processor(), so in those cases we should continue trying to dequeue work.
1741 */
1742 if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) {
1743 goto idle;
1744 }
1745 }
1746
1747 rt_lock_lock();
1748
1749 /*
1750 * Test to see if the current thread should continue
1751 * to run on this processor. Must not be attempting to wait, and not
1752 * bound to a different processor, nor be in the wrong
1753 * processor set, nor be forced to context switch by TH_SUSP.
1754 *
1755 * Note that there are never any RT threads in the regular runqueue.
1756 *
1757 * This code is very insanely tricky.
1758 */
1759
1760 if (((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN) &&
1761 (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) &&
1762 (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) &&
1763 (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) {
1764 /*
1765 * RT threads with un-expired quantum stay on processor,
1766 * unless there's a valid RT thread with an earlier deadline.
1767 */
1768 if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) {
1769 if (rt_runq.count > 0) {
1770 thread_t next_rt;
1771
1772 next_rt = (thread_t)queue_first(&rt_runq.queue);
1773
1774 assert(next_rt->runq == THREAD_ON_RT_RUNQ);
1775
1776 if (next_rt->realtime.deadline < processor->deadline &&
1777 (next_rt->bound_processor == PROCESSOR_NULL ||
1778 next_rt->bound_processor == processor)) {
1779 /* The next RT thread is better, so pick it off the runqueue. */
1780 goto pick_new_rt_thread;
1781 }
1782 }
1783
1784 /* This is still the best RT thread to run. */
1785 processor->deadline = thread->realtime.deadline;
1786
1787 rt_lock_unlock();
1788 pset_unlock(pset);
1789
1790 return (thread);
1791 }
1792
1793 if ((rt_runq.count == 0) &&
1794 SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) {
1795 /* This thread is still the highest priority runnable (non-idle) thread */
1796 processor->deadline = UINT64_MAX;
1797
1798 rt_lock_unlock();
1799 pset_unlock(pset);
1800
1801 return (thread);
1802 }
1803 }
1804
1805 /* OK, so we're not going to run the current thread. Look at the RT queue. */
1806 if (rt_runq.count > 0) {
1807 thread_t next_rt = (thread_t)queue_first(&rt_runq.queue);
1808
1809 assert(next_rt->runq == THREAD_ON_RT_RUNQ);
1810
1811 if (__probable((next_rt->bound_processor == PROCESSOR_NULL ||
1812 (next_rt->bound_processor == processor)))) {
1813pick_new_rt_thread:
1814 new_thread = (thread_t)dequeue_head(&rt_runq.queue);
1815
1816 new_thread->runq = PROCESSOR_NULL;
1817 SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
1818 rt_runq.count--;
1819
1820 processor->deadline = new_thread->realtime.deadline;
1821
1822 rt_lock_unlock();
1823 pset_unlock(pset);
1824
1825 return (new_thread);
1826 }
1827 }
1828
1829 processor->deadline = UINT64_MAX;
1830 rt_lock_unlock();
1831
1832 /* No RT threads, so let's look at the regular threads. */
1833 if ((new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL) {
1834 pset_unlock(pset);
1835 return (new_thread);
1836 }
1837
1838#if __SMP__
1839 if (SCHED(steal_thread_enabled)) {
1840 /*
1841 * No runnable threads, attempt to steal
1842 * from other processors. Returns with pset lock dropped.
1843 */
1844
1845 if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) {
1846 return (new_thread);
1847 }
1848
1849 /*
1850 * If other threads have appeared, shortcut
1851 * around again.
1852 */
1853 if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0)
1854 continue;
1855
1856 pset_lock(pset);
1857 }
1858#endif
1859
1860 idle:
1861 /*
1862 * Nothing is runnable, so set this processor idle if it
1863 * was running.
1864 */
1865 if (processor->state == PROCESSOR_RUNNING) {
1866 remqueue((queue_entry_t)processor);
1867 processor->state = PROCESSOR_IDLE;
1868
1869 if (processor->processor_primary == processor) {
1870 enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
1871 }
1872 else {
1873 enqueue_head(&pset->idle_secondary_queue, (queue_entry_t)processor);
1874 }
1875 }
1876
1877#if __SMP__
1878 /* Invoked with pset locked, returns with pset unlocked */
1879 sched_SMT_balance(processor, pset);
1880#else
1881 pset_unlock(pset);
1882#endif
1883
1884#if CONFIG_SCHED_IDLE_IN_PLACE
1885 /*
1886 * Choose idle thread if fast idle is not possible.
1887 */
1888 if (processor->processor_primary != processor)
1889 return (processor->idle_thread);
1890
1891 if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES)
1892 return (processor->idle_thread);
1893
1894 /*
1895 * Perform idling activities directly without a
1896 * context switch. Return dispatched thread,
1897 * else check again for a runnable thread.
1898 */
1899 new_thread = thread_select_idle(thread, processor);
1900
1901#else /* !CONFIG_SCHED_IDLE_IN_PLACE */
1902
1903 /*
1904 * Do a full context switch to idle so that the current
1905 * thread can start running on another processor without
1906 * waiting for the fast-idled processor to wake up.
1907 */
1908 new_thread = processor->idle_thread;
1909
1910#endif /* !CONFIG_SCHED_IDLE_IN_PLACE */
1911
1912 } while (new_thread == THREAD_NULL);
1913
1914 return (new_thread);
1915}
1916
1917#if CONFIG_SCHED_IDLE_IN_PLACE
1918/*
1919 * thread_select_idle:
1920 *
1921 * Idle the processor using the current thread context.
1922 *
1923 * Called with thread locked, then dropped and relocked.
1924 */
1925static thread_t
1926thread_select_idle(
1927 thread_t thread,
1928 processor_t processor)
1929{
1930 thread_t new_thread;
1931 uint64_t arg1, arg2;
1932 int urgency;
1933
1934 if (thread->sched_mode == TH_MODE_TIMESHARE) {
1935 if (thread->sched_flags & TH_SFLAG_THROTTLED)
1936 sched_background_decr(thread);
1937
1938 sched_share_decr(thread);
1939 }
1940 sched_run_decr(thread);
1941
1942 thread->state |= TH_IDLE;
1943 processor->current_pri = IDLEPRI;
1944 processor->current_thmode = TH_MODE_NONE;
1945 processor->current_sfi_class = SFI_CLASS_KERNEL;
1946
1947 /* Reload precise timing global policy to thread-local policy */
1948 thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
1949
1950 thread_unlock(thread);
1951
1952 /*
1953 * Switch execution timing to processor idle thread.
1954 */
1955 processor->last_dispatch = mach_absolute_time();
1956
1957#ifdef CONFIG_MACH_APPROXIMATE_TIME
1958 commpage_update_mach_approximate_time(processor->last_dispatch);
1959#endif
1960
1961 thread->last_run_time = processor->last_dispatch;
1962 thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
1963 PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
1964
1965 /*
1966 * Cancel the quantum timer while idling.
1967 */
1968 timer_call_cancel(&processor->quantum_timer);
1969 processor->first_timeslice = FALSE;
1970
1971 (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
1972
1973 thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL);
1974
1975 /*
1976 * Enable interrupts and perform idling activities. No
1977 * preemption due to TH_IDLE being set.
1978 */
1979 spllo(); new_thread = processor_idle(thread, processor);
1980
1981 /*
1982 * Return at splsched.
1983 */
1984 (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
1985
1986 thread_lock(thread);
1987
1988 /*
1989 * If awakened, switch to thread timer and start a new quantum.
1990 * Otherwise skip; we will context switch to another thread or return here.
1991 */
1992 if (!(thread->state & TH_WAIT)) {
1993 processor->last_dispatch = mach_absolute_time();
1994 thread_timer_event(processor->last_dispatch, &thread->system_timer);
1995 PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
1996
1997 thread_quantum_init(thread);
1998 processor->quantum_end = processor->last_dispatch + thread->quantum_remaining;
1999 timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
2000 processor->first_timeslice = TRUE;
2001
2002 thread->computation_epoch = processor->last_dispatch;
2003 }
2004
2005 thread->state &= ~TH_IDLE;
2006
2007 urgency = thread_get_urgency(thread, &arg1, &arg2);
2008
2009 thread_tell_urgency(urgency, arg1, arg2, 0, new_thread);
2010
2011 sched_run_incr(thread);
2012 if (thread->sched_mode == TH_MODE_TIMESHARE) {
2013 sched_share_incr(thread);
2014
2015 if (thread->sched_flags & TH_SFLAG_THROTTLED)
2016 sched_background_incr(thread);
2017 }
2018
2019 return (new_thread);
2020}
2021#endif /* CONFIG_SCHED_IDLE_IN_PLACE */
2022
2023/*
2024 * thread_invoke
2025 *
2026 * Called at splsched with neither thread locked.
2027 *
2028 * Perform a context switch and start executing the new thread.
2029 *
2030 * Returns FALSE when the context switch didn't happen.
2031 * The reference to the new thread is still consumed.
2032 *
2033 * "self" is what is currently running on the processor,
2034 * "thread" is the new thread to context switch to
2035 * (which may be the same thread in some cases)
2036 */
2037static boolean_t
2038thread_invoke(
2039 thread_t self,
2040 thread_t thread,
2041 ast_t reason)
2042{
2043 if (__improbable(get_preemption_level() != 0)) {
2044 int pl = get_preemption_level();
2045 panic("thread_invoke: preemption_level %d, possible cause: %s",
2046 pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" :
2047 "blocking while holding a spinlock, or within interrupt context"));
2048 }
2049
2050 thread_continue_t continuation = self->continuation;
2051 void *parameter = self->parameter;
2052 processor_t processor;
2053
2054 uint64_t ctime = mach_absolute_time();
2055
2056#ifdef CONFIG_MACH_APPROXIMATE_TIME
2057 commpage_update_mach_approximate_time(ctime);
2058#endif
2059
2060#if defined(CONFIG_SCHED_TIMESHARE_CORE)
2061 sched_timeshare_consider_maintenance(ctime);
2062#endif
2063
2064 assert(self == current_thread());
2065 assert(self->runq == PROCESSOR_NULL);
2066 assert((self->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN);
2067
2068 thread_lock(thread);
2069
2070 assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN);
2071 assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor());
2072 assert(thread->runq == PROCESSOR_NULL);
2073
2074 /* Reload precise timing global policy to thread-local policy */
2075 thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
2076
2077 /* Update SFI class based on other factors */
2078 thread->sfi_class = sfi_thread_classify(thread);
2079
2080 /* Allow realtime threads to hang onto a stack. */
2081 if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack)
2082 self->reserved_stack = self->kernel_stack;
2083
2084 if (continuation != NULL) {
2085 if (!thread->kernel_stack) {
2086 /*
2087 * If we are using a privileged stack,
2088 * check to see whether we can exchange it with
2089 * that of the other thread.
2090 */
2091 if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack)
2092 goto need_stack;
2093
2094 /*
2095 * Context switch by performing a stack handoff.
2096 */
2097 continuation = thread->continuation;
2098 parameter = thread->parameter;
2099
2100 processor = current_processor();
2101 processor->active_thread = thread;
2102 processor->current_pri = thread->sched_pri;
2103 processor->current_thmode = thread->sched_mode;
2104 processor->current_sfi_class = thread->sfi_class;
2105 if (thread->last_processor != processor && thread->last_processor != NULL) {
2106 if (thread->last_processor->processor_set != processor->processor_set)
2107 thread->ps_switch++;
2108 thread->p_switch++;
2109 }
2110 thread->last_processor = processor;
2111 thread->c_switch++;
2112 ast_context(thread);
2113
2114 thread_unlock(thread);
2115
2116 self->reason = reason;
2117
2118 processor->last_dispatch = ctime;
2119 self->last_run_time = ctime;
2120 thread_timer_event(ctime, &thread->system_timer);
2121 PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
2122
2123 /*
2124 * Since non-precise user/kernel time doesn't update the state timer
2125 * during privilege transitions, synthesize an event now.
2126 */
2127 if (!thread->precise_user_kernel_time) {
2128 timer_switch(PROCESSOR_DATA(processor, current_state),
2129 ctime,
2130 PROCESSOR_DATA(processor, current_state));
2131 }
2132
2133 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2134 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
2135 self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
2136
2137 if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) {
2138 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
2139 (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
2140 }
2141
2142 DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
2143
2144 SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
2145
2146 TLOG(1, "thread_invoke: calling stack_handoff\n");
2147 stack_handoff(self, thread);
2148
2149 /* 'self' is now off core */
2150 assert(thread == current_thread());
2151
2152 DTRACE_SCHED(on__cpu);
2153
2154 thread_dispatch(self, thread);
2155
2156 thread->continuation = thread->parameter = NULL;
2157
2158 counter(c_thread_invoke_hits++);
2159
2160 (void) spllo();
2161
2162 assert(continuation);
2163 call_continuation(continuation, parameter, thread->wait_result);
2164 /*NOTREACHED*/
2165 }
2166 else if (thread == self) {
2167 /* same thread but with continuation */
2168 ast_context(self);
2169 counter(++c_thread_invoke_same);
2170
2171 thread_unlock(self);
2172
2173 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2174 MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
2175 self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
2176
2177 self->continuation = self->parameter = NULL;
2178
2179 (void) spllo();
2180
2181 call_continuation(continuation, parameter, self->wait_result);
2182 /*NOTREACHED*/
2183 }
2184 } else {
2185 /*
2186 * Check that the other thread has a stack
2187 */
2188 if (!thread->kernel_stack) {
2189need_stack:
2190 if (!stack_alloc_try(thread)) {
2191 counter(c_thread_invoke_misses++);
2192 thread_unlock(thread);
2193 thread_stack_enqueue(thread);
2194 return (FALSE);
2195 }
2196 } else if (thread == self) {
2197 ast_context(self);
2198 counter(++c_thread_invoke_same);
2199 thread_unlock(self);
2200
2201 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2202 MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
2203 self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
2204
2205 return (TRUE);
2206 }
2207 }
2208
2209 /*
2210 * Context switch by full context save.
2211 */
2212 processor = current_processor();
2213 processor->active_thread = thread;
2214 processor->current_pri = thread->sched_pri;
2215 processor->current_thmode = thread->sched_mode;
2216 processor->current_sfi_class = thread->sfi_class;
2217 if (thread->last_processor != processor && thread->last_processor != NULL) {
2218 if (thread->last_processor->processor_set != processor->processor_set)
2219 thread->ps_switch++;
2220 thread->p_switch++;
2221 }
2222 thread->last_processor = processor;
2223 thread->c_switch++;
2224 ast_context(thread);
2225
2226 thread_unlock(thread);
2227
2228 counter(c_thread_invoke_csw++);
2229
2230 self->reason = reason;
2231
2232 processor->last_dispatch = ctime;
2233 self->last_run_time = ctime;
2234 thread_timer_event(ctime, &thread->system_timer);
2235 PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
2236
2237 /*
2238 * Since non-precise user/kernel time doesn't update the state timer
2239 * during privilege transitions, synthesize an event now.
2240 */
2241 if (!thread->precise_user_kernel_time) {
2242 timer_switch(PROCESSOR_DATA(processor, current_state),
2243 ctime,
2244 PROCESSOR_DATA(processor, current_state));
2245 }
2246
2247 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2248 MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
2249 self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
2250
2251 if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) {
2252 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
2253 (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
2254 }
2255
2256 DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
2257
2258 SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
2259
2260 /*
2261 * This is where we actually switch register context,
2262 * and address space if required. We will next run
2263 * as a result of a subsequent context switch.
2264 *
2265 * Once registers are switched and the processor is running "thread",
2266 * the stack variables and non-volatile registers will contain whatever
2267 * was there the last time that thread blocked. No local variables should
2268 * be used after this point, except for the special case of "thread", which
2269 * the platform layer returns as the previous thread running on the processor
2270 * via the function call ABI as a return register, and "self", which may have
2271 * been stored on the stack or a non-volatile register, but a stale idea of
2272 * what was on the CPU is newly-accurate because that thread is again
2273 * running on the CPU.
2274 */
2275 assert(continuation == self->continuation);
2276 thread = machine_switch_context(self, continuation, thread);
2277 assert(self == current_thread());
2278 TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
2279
2280 DTRACE_SCHED(on__cpu);
2281
2282 /*
2283 * We have been resumed and are set to run.
2284 */
2285 thread_dispatch(thread, self);
2286
2287 if (continuation) {
2288 self->continuation = self->parameter = NULL;
2289
2290 (void) spllo();
2291
2292 call_continuation(continuation, parameter, self->wait_result);
2293 /*NOTREACHED*/
2294 }
2295
2296 return (TRUE);
2297}
2298
2299#if defined(CONFIG_SCHED_DEFERRED_AST)
2300/*
2301 * pset_cancel_deferred_dispatch:
2302 *
2303 * Cancels all ASTs that we can cancel for the given processor set
2304 * if the current processor is running the last runnable thread in the
2305 * system.
2306 *
2307 * This function assumes the current thread is runnable. This must
2308 * be called with the pset unlocked.
2309 */
2310static void
2311pset_cancel_deferred_dispatch(
2312 processor_set_t pset,
2313 processor_t processor)
2314{
2315 processor_t active_processor = NULL;
2316 uint32_t sampled_sched_run_count;
2317
2318 pset_lock(pset);
2319 sampled_sched_run_count = (volatile uint32_t) sched_run_count;
2320
2321 /*
2322 * If we have emptied the run queue, and our current thread is runnable, we
2323 * should tell any processors that are still DISPATCHING that they will
2324 * probably not have any work to do. In the event that there are no
2325 * pending signals that we can cancel, this is also uninteresting.
2326 *
2327 * In the unlikely event that another thread becomes runnable while we are
2328 * doing this (sched_run_count is atomically updated, not guarded), the
2329 * codepath making it runnable SHOULD (a dangerous word) need the pset lock
2330 * in order to dispatch it to a processor in our pset. So, the other
2331 * codepath will wait while we squash all cancelable ASTs, get the pset
2332 * lock, and then dispatch the freshly runnable thread. So this should be
2333 * correct (we won't accidentally have a runnable thread that hasn't been
2334 * dispatched to an idle processor), if not ideal (we may be restarting the
2335 * dispatch process, which could have some overhead).
2336 *
2337 */
2338 if ((sampled_sched_run_count == 1) &&
2339 (pset->pending_deferred_AST_cpu_mask)) {
2340 qe_foreach_element_safe(active_processor, &pset->active_queue, processor_queue) {
2341 /*
2342 * If a processor is DISPATCHING, it could be because of
2343 * a cancelable signal.
2344 *
2345 * IF the processor is not our
2346 * current processor (the current processor should not
2347 * be DISPATCHING, so this is a bit paranoid), AND there
2348 * is a cancelable signal pending on the processor, AND
2349 * there is no non-cancelable signal pending (as there is
2350 * no point trying to backtrack on bringing the processor
2351 * up if a signal we cannot cancel is outstanding), THEN
2352 * it should make sense to roll back the processor state
2353 * to the IDLE state.
2354 *
2355 * If the racey nature of this approach (as the signal
2356 * will be arbitrated by hardware, and can fire as we
2357 * roll back state) results in the core responding
2358 * despite being pushed back to the IDLE state, it
2359 * should be no different than if the core took some
2360 * interrupt while IDLE.
2361 */
2362 if ((active_processor->state == PROCESSOR_DISPATCHING) &&
2363 (pset->pending_deferred_AST_cpu_mask & (1ULL << active_processor->cpu_id)) &&
2364 (!(pset->pending_AST_cpu_mask & (1ULL << active_processor->cpu_id))) &&
2365 (active_processor != processor)) {
2366 /*
2367 * Squash all of the processor state back to some
2368 * reasonable facsimile of PROCESSOR_IDLE.
2369 *
2370 * TODO: What queue policy do we actually want here?
2371 * We want to promote selection of a good processor
2372 * to run on. Do we want to enqueue at the head?
2373 * The tail? At the (relative) old position in the
2374 * queue? Or something else entirely?
2375 */
2376 re_queue_head(&pset->idle_queue, (queue_entry_t)active_processor);
2377
2378 assert(active_processor->next_thread == THREAD_NULL);
2379
2380 active_processor->current_pri = IDLEPRI;
2381 active_processor->current_thmode = TH_MODE_FIXED;
2382 active_processor->current_sfi_class = SFI_CLASS_KERNEL;
2383 active_processor->deadline = UINT64_MAX;
2384 active_processor->state = PROCESSOR_IDLE;
2385 pset->pending_deferred_AST_cpu_mask &= ~(1U << active_processor->cpu_id);
2386 machine_signal_idle_cancel(active_processor);
2387 }
2388
2389 }
2390 }
2391
2392 pset_unlock(pset);
2393}
2394#else
2395/* We don't support deferred ASTs; everything is candycanes and sunshine. */
2396#endif
2397
2398/*
2399 * thread_dispatch:
2400 *
2401 * Handle threads at context switch. Re-dispatch other thread
2402 * if still running, otherwise update run state and perform
2403 * special actions. Update quantum for other thread and begin
2404 * the quantum for ourselves.
2405 *
2406 * "thread" is the old thread that we have switched away from.
2407 * "self" is the new current thread that we have context switched to
2408 *
2409 * Called at splsched.
2410 */
2411void
2412thread_dispatch(
2413 thread_t thread,
2414 thread_t self)
2415{
2416 processor_t processor = self->last_processor;
2417
2418 assert(processor == current_processor());
2419 assert(self == current_thread());
2420 assert(thread != self);
2421
2422 if (thread != THREAD_NULL) {
2423 /*
2424 * If blocked at a continuation, discard
2425 * the stack.
2426 */
2427 if (thread->continuation != NULL && thread->kernel_stack != 0)
2428 stack_free(thread);
2429
2430 if (thread->state & TH_IDLE) {
2431 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2432 MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
2433 (uintptr_t)thread_tid(thread), 0, thread->state, sched_run_count, 0);
2434 } else {
2435 int64_t consumed;
2436 int64_t remainder = 0;
2437
2438 if (processor->quantum_end > processor->last_dispatch)
2439 remainder = processor->quantum_end -
2440 processor->last_dispatch;
2441
2442 consumed = thread->quantum_remaining - remainder;
2443
2444 if ((thread->reason & AST_LEDGER) == 0) {
2445 /*
2446 * Bill CPU time to both the task and
2447 * the individual thread.
2448 */
2449 ledger_credit(thread->t_ledger,
2450 task_ledgers.cpu_time, consumed);
2451 ledger_credit(thread->t_threadledger,
2452 thread_ledgers.cpu_time, consumed);
2453#ifdef CONFIG_BANK
2454 if (thread->t_bankledger) {
2455 ledger_credit(thread->t_bankledger,
2456 bank_ledgers.cpu_time,
2457 (consumed - thread->t_deduct_bank_ledger_time));
2458
2459 }
2460 thread->t_deduct_bank_ledger_time =0;
2461#endif
2462 }
2463
2464 wake_lock(thread);
2465 thread_lock(thread);
2466
2467 /*
2468 * Compute remainder of current quantum.
2469 */
2470 if (processor->first_timeslice &&
2471 processor->quantum_end > processor->last_dispatch)
2472 thread->quantum_remaining = (uint32_t)remainder;
2473 else
2474 thread->quantum_remaining = 0;
2475
2476 if (thread->sched_mode == TH_MODE_REALTIME) {
2477 /*
2478 * Cancel the deadline if the thread has
2479 * consumed the entire quantum.
2480 */
2481 if (thread->quantum_remaining == 0) {
2482 thread->realtime.deadline = UINT64_MAX;
2483 }
2484 } else {
2485#if defined(CONFIG_SCHED_TIMESHARE_CORE)
2486 /*
2487 * For non-realtime threads treat a tiny
2488 * remaining quantum as an expired quantum
2489 * but include what's left next time.
2490 */
2491 if (thread->quantum_remaining < min_std_quantum) {
2492 thread->reason |= AST_QUANTUM;
2493 thread->quantum_remaining += SCHED(initial_quantum_size)(thread);
2494 }
2495#endif /* CONFIG_SCHED_TIMESHARE_CORE */
2496 }
2497
2498 /*
2499 * If we are doing a direct handoff then
2500 * take the remainder of the quantum.
2501 */
2502 if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
2503 self->quantum_remaining = thread->quantum_remaining;
2504 thread->reason |= AST_QUANTUM;
2505 thread->quantum_remaining = 0;
2506 } else {
2507#if defined(CONFIG_SCHED_MULTIQ)
2508 if (SCHED(sched_groups_enabled) &&
2509 thread->sched_group == self->sched_group) {
2510 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2511 MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF),
2512 self->reason, (uintptr_t)thread_tid(thread),
2513 self->quantum_remaining, thread->quantum_remaining, 0);
2514
2515 self->quantum_remaining = thread->quantum_remaining;
2516 thread->quantum_remaining = 0;
2517 /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */
2518 }
2519#endif /* defined(CONFIG_SCHED_MULTIQ) */
2520 }
2521
2522 thread->computation_metered += (processor->last_dispatch - thread->computation_epoch);
2523
2524 if ((thread->rwlock_count != 0) && !(LcksOpts & disLkRWPrio)) {
2525 integer_t priority;
2526
2527 priority = thread->sched_pri;
2528
2529 if (priority < thread->base_pri)
2530 priority = thread->base_pri;
2531 if (priority < BASEPRI_BACKGROUND)
2532 priority = BASEPRI_BACKGROUND;
2533
2534 if ((thread->sched_pri < priority) || !(thread->sched_flags & TH_SFLAG_RW_PROMOTED)) {
2535 KERNEL_DEBUG_CONSTANT(
2536 MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_PROMOTE) | DBG_FUNC_NONE,
2537 (uintptr_t)thread_tid(thread), thread->sched_pri, thread->base_pri, priority, 0);
2538
2539 thread->sched_flags |= TH_SFLAG_RW_PROMOTED;
2540
2541 if (thread->sched_pri < priority)
2542 set_sched_pri(thread, priority);
2543 }
2544 }
2545
2546 if (!(thread->state & TH_WAIT)) {
2547 /*
2548 * Still runnable.
2549 */
2550 thread->last_made_runnable_time = mach_approximate_time();
2551
2552 machine_thread_going_off_core(thread, FALSE);
2553
2554 if (thread->reason & AST_QUANTUM)
2555 thread_setrun(thread, SCHED_TAILQ);
2556 else if (thread->reason & AST_PREEMPT)
2557 thread_setrun(thread, SCHED_HEADQ);
2558 else
2559 thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
2560
2561 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2562 MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
2563 (uintptr_t)thread_tid(thread), thread->reason, thread->state, sched_run_count, 0);
2564
2565 if (thread->wake_active) {
2566 thread->wake_active = FALSE;
2567 thread_unlock(thread);
2568
2569 thread_wakeup(&thread->wake_active);
2570 } else {
2571 thread_unlock(thread);
2572 }
2573
2574 wake_unlock(thread);
2575 } else {
2576 /*
2577 * Waiting.
2578 */
2579 boolean_t should_terminate = FALSE;
2580 uint32_t new_run_count;
2581
2582 /* Only the first call to thread_dispatch
2583 * after explicit termination should add
2584 * the thread to the termination queue
2585 */
2586 if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) {
2587 should_terminate = TRUE;
2588 thread->state |= TH_TERMINATE2;
2589 }
2590
2591 thread->state &= ~TH_RUN;
2592 thread->last_made_runnable_time = ~0ULL;
2593 thread->chosen_processor = PROCESSOR_NULL;
2594
2595 if (thread->sched_mode == TH_MODE_TIMESHARE) {
2596 if (thread->sched_flags & TH_SFLAG_THROTTLED)
2597 sched_background_decr(thread);
2598
2599 sched_share_decr(thread);
2600 }
2601 new_run_count = sched_run_decr(thread);
2602
2603#if CONFIG_SCHED_SFI
2604 if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) {
2605 if (thread->reason & AST_SFI) {
2606 thread->wait_sfi_begin_time = processor->last_dispatch;
2607 }
2608 }
2609#endif
2610
2611 machine_thread_going_off_core(thread, should_terminate);
2612
2613 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2614 MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
2615 (uintptr_t)thread_tid(thread), thread->reason, thread->state, new_run_count, 0);
2616
2617 (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
2618
2619 if (thread->wake_active) {
2620 thread->wake_active = FALSE;
2621 thread_unlock(thread);
2622
2623 thread_wakeup(&thread->wake_active);
2624 } else {
2625 thread_unlock(thread);
2626 }
2627
2628 wake_unlock(thread);
2629
2630 if (should_terminate)
2631 thread_terminate_enqueue(thread);
2632 }
2633 }
2634 }
2635
2636 /* Update (new) current thread and reprogram quantum timer */
2637 thread_lock(self);
2638 if (!(self->state & TH_IDLE)) {
2639 uint64_t arg1, arg2;
2640 int urgency;
2641 uint64_t latency;
2642
2643#if CONFIG_SCHED_SFI
2644 ast_t new_ast;
2645
2646 new_ast = sfi_thread_needs_ast(self, NULL);
2647
2648 if (new_ast != AST_NONE) {
2649 ast_on(new_ast);
2650 }
2651#endif
2652
2653 assert(processor->last_dispatch >= self->last_made_runnable_time);
2654 latency = processor->last_dispatch - self->last_made_runnable_time;
2655
2656 urgency = thread_get_urgency(self, &arg1, &arg2);
2657
2658 thread_tell_urgency(urgency, arg1, arg2, latency, self);
2659
2660 machine_thread_going_on_core(self, urgency, latency);
2661
2662 /*
2663 * Get a new quantum if none remaining.
2664 */
2665 if (self->quantum_remaining == 0) {
2666 thread_quantum_init(self);
2667 }
2668
2669 /*
2670 * Set up quantum timer and timeslice.
2671 */
2672 processor->quantum_end = processor->last_dispatch + self->quantum_remaining;
2673 timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
2674
2675 processor->first_timeslice = TRUE;
2676 } else {
2677 timer_call_cancel(&processor->quantum_timer);
2678 processor->first_timeslice = FALSE;
2679
2680 thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self);
2681 machine_thread_going_on_core(self, THREAD_URGENCY_NONE, 0);
2682 }
2683
2684 self->computation_epoch = processor->last_dispatch;
2685 self->reason = AST_NONE;
2686
2687 thread_unlock(self);
2688
2689#if defined(CONFIG_SCHED_DEFERRED_AST)
2690 /*
2691 * TODO: Can we state that redispatching our old thread is also
2692 * uninteresting?
2693 */
2694 if ((((volatile uint32_t)sched_run_count) == 1) &&
2695 !(self->state & TH_IDLE)) {
2696 pset_cancel_deferred_dispatch(processor->processor_set, processor);
2697 }
2698#endif
2699
2700}
2701
2702/*
2703 * thread_block_reason:
2704 *
2705 * Forces a reschedule, blocking the caller if a wait
2706 * has been asserted.
2707 *
2708 * If a continuation is specified, then thread_invoke will
2709 * attempt to discard the thread's kernel stack. When the
2710 * thread resumes, it will execute the continuation function
2711 * on a new kernel stack.
2712 */
2713counter(mach_counter_t c_thread_block_calls = 0;)
2714
2715wait_result_t
2716thread_block_reason(
2717 thread_continue_t continuation,
2718 void *parameter,
2719 ast_t reason)
2720{
2721 thread_t self = current_thread();
2722 processor_t processor;
2723 thread_t new_thread;
2724 spl_t s;
2725
2726 counter(++c_thread_block_calls);
2727
2728 s = splsched();
2729
2730 processor = current_processor();
2731
2732 /* If we're explicitly yielding, force a subsequent quantum */
2733 if (reason & AST_YIELD)
2734 processor->first_timeslice = FALSE;
2735
2736 /* We're handling all scheduling AST's */
2737 ast_off(AST_SCHEDULING);
2738
2739 self->continuation = continuation;
2740 self->parameter = parameter;
2741
2742 if (self->state & ~(TH_RUN | TH_IDLE)) {
2743 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2744 MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK),
2745 reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0);
2746 }
2747
2748 do {
2749 thread_lock(self);
2750 new_thread = thread_select(self, processor, reason);
2751 thread_unlock(self);
2752 } while (!thread_invoke(self, new_thread, reason));
2753
2754 splx(s);
2755
2756 return (self->wait_result);
2757}
2758
2759/*
2760 * thread_block:
2761 *
2762 * Block the current thread if a wait has been asserted.
2763 */
2764wait_result_t
2765thread_block(
2766 thread_continue_t continuation)
2767{
2768 return thread_block_reason(continuation, NULL, AST_NONE);
2769}
2770
2771wait_result_t
2772thread_block_parameter(
2773 thread_continue_t continuation,
2774 void *parameter)
2775{
2776 return thread_block_reason(continuation, parameter, AST_NONE);
2777}
2778
2779/*
2780 * thread_run:
2781 *
2782 * Switch directly from the current thread to the
2783 * new thread, handing off our quantum if appropriate.
2784 *
2785 * New thread must be runnable, and not on a run queue.
2786 *
2787 * Called at splsched.
2788 */
2789int
2790thread_run(
2791 thread_t self,
2792 thread_continue_t continuation,
2793 void *parameter,
2794 thread_t new_thread)
2795{
2796 ast_t handoff = AST_HANDOFF;
2797
2798 self->continuation = continuation;
2799 self->parameter = parameter;
2800
2801 while (!thread_invoke(self, new_thread, handoff)) {
2802 processor_t processor = current_processor();
2803
2804 thread_lock(self);
2805 new_thread = thread_select(self, processor, AST_NONE);
2806 thread_unlock(self);
2807 handoff = AST_NONE;
2808 }
2809
2810 return (self->wait_result);
2811}
2812
2813/*
2814 * thread_continue:
2815 *
2816 * Called at splsched when a thread first receives
2817 * a new stack after a continuation.
2818 */
2819void
2820thread_continue(
2821 thread_t thread)
2822{
2823 thread_t self = current_thread();
2824 thread_continue_t continuation;
2825 void *parameter;
2826
2827 DTRACE_SCHED(on__cpu);
2828
2829 continuation = self->continuation;
2830 parameter = self->parameter;
2831
2832 thread_dispatch(thread, self);
2833
2834 self->continuation = self->parameter = NULL;
2835
2836 if (thread != THREAD_NULL)
2837 (void)spllo();
2838
2839 TLOG(1, "thread_continue: calling call_continuation \n");
2840 call_continuation(continuation, parameter, self->wait_result);
2841 /*NOTREACHED*/
2842}
2843
2844void
2845thread_quantum_init(thread_t thread)
2846{
2847 if (thread->sched_mode == TH_MODE_REALTIME) {
2848 thread->quantum_remaining = thread->realtime.computation;
2849 } else {
2850 thread->quantum_remaining = SCHED(initial_quantum_size)(thread);
2851 }
2852}
2853
2854uint32_t
2855sched_timeshare_initial_quantum_size(thread_t thread)
2856{
2857 if ((thread == THREAD_NULL) || !(thread->sched_flags & TH_SFLAG_THROTTLED))
2858 return std_quantum;
2859 else
2860 return bg_quantum;
2861}
2862
2863/*
2864 * run_queue_init:
2865 *
2866 * Initialize a run queue before first use.
2867 */
2868void
2869run_queue_init(
2870 run_queue_t rq)
2871{
2872 int i;
2873
2874 rq->highq = IDLEPRI;
2875 for (i = 0; i < NRQBM; i++)
2876 rq->bitmap[i] = 0;
2877 setbit(MAXPRI - IDLEPRI, rq->bitmap);
2878 rq->urgency = rq->count = 0;
2879 for (i = 0; i < NRQS; i++)
2880 queue_init(&rq->queues[i]);
2881}
2882
2883/*
2884 * run_queue_dequeue:
2885 *
2886 * Perform a dequeue operation on a run queue,
2887 * and return the resulting thread.
2888 *
2889 * The run queue must be locked (see thread_run_queue_remove()
2890 * for more info), and not empty.
2891 */
2892thread_t
2893run_queue_dequeue(
2894 run_queue_t rq,
2895 integer_t options)
2896{
2897 thread_t thread;
2898 queue_t queue = rq->queues + rq->highq;
2899
2900 if (options & SCHED_HEADQ) {
2901 thread = (thread_t)dequeue_head(queue);
2902 }
2903 else {
2904 thread = (thread_t)dequeue_tail(queue);
2905 }
2906
2907 thread->runq = PROCESSOR_NULL;
2908 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
2909 rq->count--;
2910 if (SCHED(priority_is_urgent)(rq->highq)) {
2911 rq->urgency--; assert(rq->urgency >= 0);
2912 }
2913 if (queue_empty(queue)) {
2914 if (rq->highq != IDLEPRI)
2915 clrbit(MAXPRI - rq->highq, rq->bitmap);
2916 rq->highq = MAXPRI - ffsbit(rq->bitmap);
2917 }
2918
2919 return (thread);
2920}
2921
2922/*
2923 * run_queue_enqueue:
2924 *
2925 * Perform a enqueue operation on a run queue.
2926 *
2927 * The run queue must be locked (see thread_run_queue_remove()
2928 * for more info).
2929 */
2930boolean_t
2931run_queue_enqueue(
2932 run_queue_t rq,
2933 thread_t thread,
2934 integer_t options)
2935{
2936 queue_t queue = rq->queues + thread->sched_pri;
2937 boolean_t result = FALSE;
2938
2939 if (queue_empty(queue)) {
2940 enqueue_tail(queue, (queue_entry_t)thread);
2941
2942 setbit(MAXPRI - thread->sched_pri, rq->bitmap);
2943 if (thread->sched_pri > rq->highq) {
2944 rq->highq = thread->sched_pri;
2945 result = TRUE;
2946 }
2947 } else {
2948 if (options & SCHED_TAILQ)
2949 enqueue_tail(queue, (queue_entry_t)thread);
2950 else
2951 enqueue_head(queue, (queue_entry_t)thread);
2952 }
2953 if (SCHED(priority_is_urgent)(thread->sched_pri))
2954 rq->urgency++;
2955 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
2956 rq->count++;
2957
2958 return (result);
2959
2960}
2961
2962/*
2963 * run_queue_remove:
2964 *
2965 * Remove a specific thread from a runqueue.
2966 *
2967 * The run queue must be locked.
2968 */
2969void
2970run_queue_remove(
2971 run_queue_t rq,
2972 thread_t thread)
2973{
2974
2975 remqueue((queue_entry_t)thread);
2976 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
2977 rq->count--;
2978 if (SCHED(priority_is_urgent)(thread->sched_pri)) {
2979 rq->urgency--; assert(rq->urgency >= 0);
2980 }
2981
2982 if (queue_empty(rq->queues + thread->sched_pri)) {
2983 /* update run queue status */
2984 if (thread->sched_pri != IDLEPRI)
2985 clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
2986 rq->highq = MAXPRI - ffsbit(rq->bitmap);
2987 }
2988
2989 thread->runq = PROCESSOR_NULL;
2990}
2991
2992/* Assumes RT lock is not held, and acquires splsched/rt_lock itself */
2993void
2994rt_runq_scan(sched_update_scan_context_t scan_context)
2995{
2996 spl_t s;
2997 thread_t thread;
2998
2999 s = splsched();
3000 rt_lock_lock();
3001
3002 qe_foreach_element_safe(thread, &rt_runq.queue, links) {
3003 if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) {
3004 scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time;
3005 }
3006 }
3007
3008 rt_lock_unlock();
3009 splx(s);
3010}
3011
3012
3013/*
3014 * realtime_queue_insert:
3015 *
3016 * Enqueue a thread for realtime execution.
3017 */
3018static boolean_t
3019realtime_queue_insert(
3020 thread_t thread)
3021{
3022 queue_t queue = &rt_runq.queue;
3023 uint64_t deadline = thread->realtime.deadline;
3024 boolean_t preempt = FALSE;
3025
3026 rt_lock_lock();
3027
3028 if (queue_empty(queue)) {
3029 enqueue_tail(queue, (queue_entry_t)thread);
3030 preempt = TRUE;
3031 }
3032 else {
3033 register thread_t entry = (thread_t)queue_first(queue);
3034
3035 while (TRUE) {
3036 if ( queue_end(queue, (queue_entry_t)entry) ||
3037 deadline < entry->realtime.deadline ) {
3038 entry = (thread_t)queue_prev((queue_entry_t)entry);
3039 break;
3040 }
3041
3042 entry = (thread_t)queue_next((queue_entry_t)entry);
3043 }
3044
3045 if ((queue_entry_t)entry == queue)
3046 preempt = TRUE;
3047
3048 insque((queue_entry_t)thread, (queue_entry_t)entry);
3049 }
3050
3051 thread->runq = THREAD_ON_RT_RUNQ;
3052 SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
3053 rt_runq.count++;
3054
3055 rt_lock_unlock();
3056
3057 return (preempt);
3058}
3059
3060/*
3061 * realtime_setrun:
3062 *
3063 * Dispatch a thread for realtime execution.
3064 *
3065 * Thread must be locked. Associated pset must
3066 * be locked, and is returned unlocked.
3067 */
3068static void
3069realtime_setrun(
3070 processor_t processor,
3071 thread_t thread)
3072{
3073 processor_set_t pset = processor->processor_set;
3074 ast_t preempt;
3075
3076 boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE;
3077
3078 thread->chosen_processor = processor;
3079
3080 /* <rdar://problem/15102234> */
3081 assert(thread->bound_processor == PROCESSOR_NULL);
3082
3083 /*
3084 * Dispatch directly onto idle processor.
3085 */
3086 if ( (thread->bound_processor == processor)
3087 && processor->state == PROCESSOR_IDLE) {
3088 remqueue((queue_entry_t)processor);
3089 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
3090
3091 processor->next_thread = thread;
3092 processor->current_pri = thread->sched_pri;
3093 processor->current_thmode = thread->sched_mode;
3094 processor->current_sfi_class = thread->sfi_class;
3095 processor->deadline = thread->realtime.deadline;
3096 processor->state = PROCESSOR_DISPATCHING;
3097
3098 if (processor != current_processor()) {
3099 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3100 /* cleared on exit from main processor_idle() loop */
3101 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3102 do_signal_idle = TRUE;
3103 }
3104 }
3105 pset_unlock(pset);
3106
3107 if (do_signal_idle) {
3108 machine_signal_idle(processor);
3109 }
3110 return;
3111 }
3112
3113 if (processor->current_pri < BASEPRI_RTQUEUES)
3114 preempt = (AST_PREEMPT | AST_URGENT);
3115 else if (thread->realtime.deadline < processor->deadline)
3116 preempt = (AST_PREEMPT | AST_URGENT);
3117 else
3118 preempt = AST_NONE;
3119
3120 realtime_queue_insert(thread);
3121
3122 if (preempt != AST_NONE) {
3123 if (processor->state == PROCESSOR_IDLE) {
3124 remqueue((queue_entry_t)processor);
3125 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
3126 processor->next_thread = THREAD_NULL;
3127 processor->current_pri = thread->sched_pri;
3128 processor->current_thmode = thread->sched_mode;
3129 processor->current_sfi_class = thread->sfi_class;
3130 processor->deadline = thread->realtime.deadline;
3131 processor->state = PROCESSOR_DISPATCHING;
3132 if (processor == current_processor()) {
3133 ast_on(preempt);
3134 } else {
3135 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3136 /* cleared on exit from main processor_idle() loop */
3137 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3138 do_signal_idle = TRUE;
3139 }
3140 }
3141 } else if (processor->state == PROCESSOR_DISPATCHING) {
3142 if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) {
3143 processor->current_pri = thread->sched_pri;
3144 processor->current_thmode = thread->sched_mode;
3145 processor->current_sfi_class = thread->sfi_class;
3146 processor->deadline = thread->realtime.deadline;
3147 }
3148 } else {
3149 if (processor == current_processor()) {
3150 ast_on(preempt);
3151 } else {
3152 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3153 /* cleared after IPI causes csw_check() to be called */
3154 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3155 do_cause_ast = TRUE;
3156 }
3157 }
3158 }
3159 } else {
3160 /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */
3161 }
3162
3163 pset_unlock(pset);
3164
3165 if (do_signal_idle) {
3166 machine_signal_idle(processor);
3167 } else if (do_cause_ast) {
3168 cause_ast_check(processor);
3169 }
3170}
3171
3172
3173#if defined(CONFIG_SCHED_TIMESHARE_CORE)
3174
3175boolean_t
3176priority_is_urgent(int priority)
3177{
3178 return testbit(priority, sched_preempt_pri) ? TRUE : FALSE;
3179}
3180
3181#endif /* CONFIG_SCHED_TIMESHARE_CORE */
3182
3183/*
3184 * processor_setrun:
3185 *
3186 * Dispatch a thread for execution on a
3187 * processor.
3188 *
3189 * Thread must be locked. Associated pset must
3190 * be locked, and is returned unlocked.
3191 */
3192static void
3193processor_setrun(
3194 processor_t processor,
3195 thread_t thread,
3196 integer_t options)
3197{
3198 processor_set_t pset = processor->processor_set;
3199 ast_t preempt;
3200 enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing;
3201 enum { eNoSignal, eDoSignal, eDoDeferredSignal } do_signal_idle = eNoSignal;
3202
3203 boolean_t do_cause_ast = FALSE;
3204
3205 thread->chosen_processor = processor;
3206
3207 /*
3208 * Dispatch directly onto idle processor.
3209 */
3210 if ( (SCHED(direct_dispatch_to_idle_processors) ||
3211 thread->bound_processor == processor)
3212 && processor->state == PROCESSOR_IDLE) {
3213 remqueue((queue_entry_t)processor);
3214 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
3215
3216 processor->next_thread = thread;
3217 processor->current_pri = thread->sched_pri;
3218 processor->current_thmode = thread->sched_mode;
3219 processor->current_sfi_class = thread->sfi_class;
3220 processor->deadline = UINT64_MAX;
3221 processor->state = PROCESSOR_DISPATCHING;
3222
3223 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3224 /* cleared on exit from main processor_idle() loop */
3225 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3226 do_signal_idle = eDoSignal;
3227 }
3228
3229 pset_unlock(pset);
3230
3231 if (do_signal_idle == eDoSignal) {
3232 machine_signal_idle(processor);
3233 }
3234
3235 return;
3236 }
3237
3238 /*
3239 * Set preemption mode.
3240 */
3241#if defined(CONFIG_SCHED_DEFERRED_AST)
3242 /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */
3243#endif
3244 if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri)
3245 preempt = (AST_PREEMPT | AST_URGENT);
3246 else if(processor->active_thread && thread_eager_preemption(processor->active_thread))
3247 preempt = (AST_PREEMPT | AST_URGENT);
3248 else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) {
3249 if(SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) {
3250 preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
3251 } else {
3252 preempt = AST_NONE;
3253 }
3254 } else
3255 preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
3256
3257 SCHED(processor_enqueue)(processor, thread, options);
3258
3259 if (preempt != AST_NONE) {
3260 if (processor->state == PROCESSOR_IDLE) {
3261 remqueue((queue_entry_t)processor);
3262 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
3263 processor->next_thread = THREAD_NULL;
3264 processor->current_pri = thread->sched_pri;
3265 processor->current_thmode = thread->sched_mode;
3266 processor->current_sfi_class = thread->sfi_class;
3267 processor->deadline = UINT64_MAX;
3268 processor->state = PROCESSOR_DISPATCHING;
3269
3270 ipi_action = eExitIdle;
3271 } else if ( processor->state == PROCESSOR_DISPATCHING) {
3272 if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) {
3273 processor->current_pri = thread->sched_pri;
3274 processor->current_thmode = thread->sched_mode;
3275 processor->current_sfi_class = thread->sfi_class;
3276 processor->deadline = UINT64_MAX;
3277 }
3278 } else if ( (processor->state == PROCESSOR_RUNNING ||
3279 processor->state == PROCESSOR_SHUTDOWN) &&
3280 (thread->sched_pri >= processor->current_pri)) {
3281 ipi_action = eInterruptRunning;
3282 }
3283 } else {
3284 /*
3285 * New thread is not important enough to preempt what is running, but
3286 * special processor states may need special handling
3287 */
3288 if (processor->state == PROCESSOR_SHUTDOWN &&
3289 thread->sched_pri >= processor->current_pri ) {
3290 ipi_action = eInterruptRunning;
3291 } else if ( processor->state == PROCESSOR_IDLE &&
3292 processor != current_processor() ) {
3293 remqueue((queue_entry_t)processor);
3294 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
3295 processor->next_thread = THREAD_NULL;
3296 processor->current_pri = thread->sched_pri;
3297 processor->current_thmode = thread->sched_mode;
3298 processor->current_sfi_class = thread->sfi_class;
3299 processor->deadline = UINT64_MAX;
3300 processor->state = PROCESSOR_DISPATCHING;
3301
3302 ipi_action = eExitIdle;
3303 }
3304 }
3305
3306 switch (ipi_action) {
3307 case eDoNothing:
3308 break;
3309 case eExitIdle:
3310 if (processor == current_processor()) {
3311 if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
3312 ast_on(preempt);
3313 } else {
3314#if defined(CONFIG_SCHED_DEFERRED_AST)
3315 if (!(pset->pending_deferred_AST_cpu_mask & (1ULL << processor->cpu_id)) &&
3316 !(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3317 /* cleared on exit from main processor_idle() loop */
3318 pset->pending_deferred_AST_cpu_mask |= (1ULL << processor->cpu_id);
3319 do_signal_idle = eDoDeferredSignal;
3320 }
3321#else
3322 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3323 /* cleared on exit from main processor_idle() loop */
3324 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3325 do_signal_idle = eDoSignal;
3326 }
3327#endif
3328 }
3329 break;
3330 case eInterruptRunning:
3331 if (processor == current_processor()) {
3332 if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
3333 ast_on(preempt);
3334 } else {
3335 if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
3336 /* cleared after IPI causes csw_check() to be called */
3337 pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
3338 do_cause_ast = TRUE;
3339 }
3340 }
3341 break;
3342 }
3343
3344 pset_unlock(pset);
3345
3346 if (do_signal_idle == eDoSignal) {
3347 machine_signal_idle(processor);
3348 }
3349#if defined(CONFIG_SCHED_DEFERRED_AST)
3350 else if (do_signal_idle == eDoDeferredSignal) {
3351 /*
3352 * TODO: The ability to cancel this signal could make
3353 * sending it outside of the pset lock an issue. Do
3354 * we need to address this? Or would the only fallout
3355 * be that the core takes a signal? As long as we do
3356 * not run the risk of having a core marked as signal
3357 * outstanding, with no real signal outstanding, the
3358 * only result should be that we fail to cancel some
3359 * signals.
3360 */
3361 machine_signal_idle_deferred(processor);
3362 }
3363#endif
3364 else if (do_cause_ast) {
3365 cause_ast_check(processor);
3366 }
3367}
3368
3369/*
3370 * choose_next_pset:
3371 *
3372 * Return the next sibling pset containing
3373 * available processors.
3374 *
3375 * Returns the original pset if none other is
3376 * suitable.
3377 */
3378static processor_set_t
3379choose_next_pset(
3380 processor_set_t pset)
3381{
3382 processor_set_t nset = pset;
3383
3384 do {
3385 nset = next_pset(nset);
3386 } while (nset->online_processor_count < 1 && nset != pset);
3387
3388 return (nset);
3389}
3390
3391/*
3392 * choose_processor:
3393 *
3394 * Choose a processor for the thread, beginning at
3395 * the pset. Accepts an optional processor hint in
3396 * the pset.
3397 *
3398 * Returns a processor, possibly from a different pset.
3399 *
3400 * The thread must be locked. The pset must be locked,
3401 * and the resulting pset is locked on return.
3402 */
3403processor_t
3404choose_processor(
3405 processor_set_t pset,
3406 processor_t processor,
3407 thread_t thread)
3408{
3409 processor_set_t nset, cset = pset;
3410
3411 /*
3412 * Prefer the hinted processor, when appropriate.
3413 */
3414
3415 /* Fold last processor hint from secondary processor to its primary */
3416 if (processor != PROCESSOR_NULL) {
3417 processor = processor->processor_primary;
3418 }
3419
3420 /*
3421 * Only consult platform layer if pset is active, which
3422 * it may not be in some cases when a multi-set system
3423 * is going to sleep.
3424 */
3425 if (pset->online_processor_count) {
3426 if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) {
3427 processor_t mc_processor = machine_choose_processor(pset, processor);
3428 if (mc_processor != PROCESSOR_NULL)
3429 processor = mc_processor->processor_primary;
3430 }
3431 }
3432
3433 /*
3434 * At this point, we may have a processor hint, and we may have
3435 * an initial starting pset. If the hint is not in the pset, or
3436 * if the hint is for a processor in an invalid state, discard
3437 * the hint.
3438 */
3439 if (processor != PROCESSOR_NULL) {
3440 if (processor->processor_set != pset) {
3441 processor = PROCESSOR_NULL;
3442 } else if (!processor->is_recommended) {
3443 processor = PROCESSOR_NULL;
3444 } else {
3445 switch (processor->state) {
3446 case PROCESSOR_START:
3447 case PROCESSOR_SHUTDOWN:
3448 case PROCESSOR_OFF_LINE:
3449 /*
3450 * Hint is for a processor that cannot support running new threads.
3451 */
3452 processor = PROCESSOR_NULL;
3453 break;
3454 case PROCESSOR_IDLE:
3455 /*
3456 * Hint is for an idle processor. Assume it is no worse than any other
3457 * idle processor. The platform layer had an opportunity to provide
3458 * the "least cost idle" processor above.
3459 */
3460 return (processor);
3461 break;
3462 case PROCESSOR_RUNNING:
3463 case PROCESSOR_DISPATCHING:
3464 /*
3465 * Hint is for an active CPU. This fast-path allows
3466 * realtime threads to preempt non-realtime threads
3467 * to regain their previous executing processor.
3468 */
3469 if ((thread->sched_pri >= BASEPRI_RTQUEUES) &&
3470 (processor->current_pri < BASEPRI_RTQUEUES))
3471 return (processor);
3472
3473 /* Otherwise, use hint as part of search below */
3474 break;
3475 default:
3476 processor = PROCESSOR_NULL;
3477 break;
3478 }
3479 }
3480 }
3481
3482 /*
3483 * Iterate through the processor sets to locate
3484 * an appropriate processor. Seed results with
3485 * a last-processor hint, if available, so that
3486 * a search must find something strictly better
3487 * to replace it.
3488 *
3489 * A primary/secondary pair of SMT processors are
3490 * "unpaired" if the primary is busy but its
3491 * corresponding secondary is idle (so the physical
3492 * core has full use of its resources).
3493 */
3494
3495 integer_t lowest_priority = MAXPRI + 1;
3496 integer_t lowest_unpaired_primary_priority = MAXPRI + 1;
3497 integer_t lowest_count = INT_MAX;
3498 uint64_t furthest_deadline = 1;
3499 processor_t lp_processor = PROCESSOR_NULL;
3500 processor_t lp_unpaired_primary_processor = PROCESSOR_NULL;
3501 processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL;
3502 processor_t lc_processor = PROCESSOR_NULL;
3503 processor_t fd_processor = PROCESSOR_NULL;
3504
3505 if (processor != PROCESSOR_NULL) {
3506 /* All other states should be enumerated above. */
3507 assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING);
3508
3509 lowest_priority = processor->current_pri;
3510 lp_processor = processor;
3511
3512 if (processor->current_pri >= BASEPRI_RTQUEUES) {
3513 furthest_deadline = processor->deadline;
3514 fd_processor = processor;
3515 }
3516
3517 lowest_count = SCHED(processor_runq_count)(processor);
3518 lc_processor = processor;
3519 }
3520
3521 do {
3522
3523 /*
3524 * Choose an idle processor, in pset traversal order
3525 */
3526 qe_foreach_element(processor, &cset->idle_queue, processor_queue) {
3527 if (processor->is_recommended)
3528 return processor;
3529 }
3530
3531 /*
3532 * Otherwise, enumerate active and idle processors to find candidates
3533 * with lower priority/etc.
3534 */
3535
3536 qe_foreach_element(processor, &cset->active_queue, processor_queue) {
3537
3538 if (!processor->is_recommended) {
3539 continue;
3540 }
3541
3542 integer_t cpri = processor->current_pri;
3543 if (cpri < lowest_priority) {
3544 lowest_priority = cpri;
3545 lp_processor = processor;
3546 }
3547
3548 if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
3549 furthest_deadline = processor->deadline;
3550 fd_processor = processor;
3551 }
3552
3553 integer_t ccount = SCHED(processor_runq_count)(processor);
3554 if (ccount < lowest_count) {
3555 lowest_count = ccount;
3556 lc_processor = processor;
3557 }
3558 }
3559
3560 /*
3561 * For SMT configs, these idle secondary processors must have active primary. Otherwise
3562 * the idle primary would have short-circuited the loop above
3563 */
3564 qe_foreach_element(processor, &cset->idle_secondary_queue, processor_queue) {
3565
3566 if (!processor->is_recommended) {
3567 continue;
3568 }
3569
3570 processor_t cprimary = processor->processor_primary;
3571
3572 /* If the primary processor is offline or starting up, it's not a candidate for this path */
3573 if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) {
3574 integer_t primary_pri = cprimary->current_pri;
3575
3576 if (primary_pri < lowest_unpaired_primary_priority) {
3577 lowest_unpaired_primary_priority = primary_pri;
3578 lp_unpaired_primary_processor = cprimary;
3579 lp_unpaired_secondary_processor = processor;
3580 }
3581 }
3582 }
3583
3584
3585 if (thread->sched_pri >= BASEPRI_RTQUEUES) {
3586
3587 /*
3588 * For realtime threads, the most important aspect is
3589 * scheduling latency, so we attempt to assign threads
3590 * to good preemption candidates (assuming an idle primary
3591 * processor was not available above).
3592 */
3593
3594 if (thread->sched_pri > lowest_unpaired_primary_priority) {
3595 /* Move to end of active queue so that the next thread doesn't also pick it */
3596 re_queue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor);
3597 return lp_unpaired_primary_processor;
3598 }
3599 if (thread->sched_pri > lowest_priority) {
3600 /* Move to end of active queue so that the next thread doesn't also pick it */
3601 re_queue_tail(&cset->active_queue, (queue_entry_t)lp_processor);
3602 return lp_processor;
3603 }
3604 if (thread->realtime.deadline < furthest_deadline)
3605 return fd_processor;
3606
3607 /*
3608 * If all primary and secondary CPUs are busy with realtime
3609 * threads with deadlines earlier than us, move on to next
3610 * pset.
3611 */
3612 }
3613 else {
3614
3615 if (thread->sched_pri > lowest_unpaired_primary_priority) {
3616 /* Move to end of active queue so that the next thread doesn't also pick it */
3617 re_queue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor);
3618 return lp_unpaired_primary_processor;
3619 }
3620 if (thread->sched_pri > lowest_priority) {
3621 /* Move to end of active queue so that the next thread doesn't also pick it */
3622 re_queue_tail(&cset->active_queue, (queue_entry_t)lp_processor);
3623 return lp_processor;
3624 }
3625
3626 /*
3627 * If all primary processor in this pset are running a higher
3628 * priority thread, move on to next pset. Only when we have
3629 * exhausted this search do we fall back to other heuristics.
3630 */
3631 }
3632
3633 /*
3634 * Move onto the next processor set.
3635 */
3636 nset = next_pset(cset);
3637
3638 if (nset != pset) {
3639 pset_unlock(cset);
3640
3641 cset = nset;
3642 pset_lock(cset);
3643 }
3644 } while (nset != pset);
3645
3646 /*
3647 * Make sure that we pick a running processor,
3648 * and that the correct processor set is locked.
3649 * Since we may have unlock the candidate processor's
3650 * pset, it may have changed state.
3651 *
3652 * All primary processors are running a higher priority
3653 * thread, so the only options left are enqueuing on
3654 * the secondary processor that would perturb the least priority
3655 * primary, or the least busy primary.
3656 */
3657 do {
3658
3659 /* lowest_priority is evaluated in the main loops above */
3660 if (lp_unpaired_secondary_processor != PROCESSOR_NULL) {
3661 processor = lp_unpaired_secondary_processor;
3662 lp_unpaired_secondary_processor = PROCESSOR_NULL;
3663 } else if (lc_processor != PROCESSOR_NULL) {
3664 processor = lc_processor;
3665 lc_processor = PROCESSOR_NULL;
3666 } else {
3667 /*
3668 * All processors are executing higher
3669 * priority threads, and the lowest_count
3670 * candidate was not usable
3671 */
3672 processor = master_processor;
3673 }
3674
3675 /*
3676 * Check that the correct processor set is
3677 * returned locked.
3678 */
3679 if (cset != processor->processor_set) {
3680 pset_unlock(cset);
3681 cset = processor->processor_set;
3682 pset_lock(cset);
3683 }
3684
3685 /*
3686 * We must verify that the chosen processor is still available.
3687 * master_processor is an exception, since we may need to preempt
3688 * a running thread on it during processor shutdown (for sleep),
3689 * and that thread needs to be enqueued on its runqueue to run
3690 * when the processor is restarted.
3691 */
3692 if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE))
3693 processor = PROCESSOR_NULL;
3694
3695 } while (processor == PROCESSOR_NULL);
3696
3697 return (processor);
3698}
3699
3700/*
3701 * thread_setrun:
3702 *
3703 * Dispatch thread for execution, onto an idle
3704 * processor or run queue, and signal a preemption
3705 * as appropriate.
3706 *
3707 * Thread must be locked.
3708 */
3709void
3710thread_setrun(
3711 thread_t thread,
3712 integer_t options)
3713{
3714 processor_t processor;
3715 processor_set_t pset;
3716
3717 assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN);
3718 assert(thread->runq == PROCESSOR_NULL);
3719
3720 /*
3721 * Update priority if needed.
3722 */
3723 if (SCHED(can_update_priority)(thread))
3724 SCHED(update_priority)(thread);
3725
3726 thread->sfi_class = sfi_thread_classify(thread);
3727
3728 assert(thread->runq == PROCESSOR_NULL);
3729
3730#if __SMP__
3731 if (thread->bound_processor == PROCESSOR_NULL) {
3732 /*
3733 * Unbound case.
3734 */
3735 if (thread->affinity_set != AFFINITY_SET_NULL) {
3736 /*
3737 * Use affinity set policy hint.
3738 */
3739 pset = thread->affinity_set->aset_pset;
3740 pset_lock(pset);
3741
3742 processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
3743
3744 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
3745 (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
3746 } else if (thread->last_processor != PROCESSOR_NULL) {
3747 /*
3748 * Simple (last processor) affinity case.
3749 */
3750 processor = thread->last_processor;
3751 pset = processor->processor_set;
3752 pset_lock(pset);
3753 processor = SCHED(choose_processor)(pset, processor, thread);
3754
3755 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
3756 (uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0);
3757 } else {
3758 /*
3759 * No Affinity case:
3760 *
3761 * Utilitize a per task hint to spread threads
3762 * among the available processor sets.
3763 */
3764 task_t task = thread->task;
3765
3766 pset = task->pset_hint;
3767 if (pset == PROCESSOR_SET_NULL)
3768 pset = current_processor()->processor_set;
3769
3770 pset = choose_next_pset(pset);
3771 pset_lock(pset);
3772
3773 processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
3774 task->pset_hint = processor->processor_set;
3775
3776 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
3777 (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
3778 }
3779 } else {
3780 /*
3781 * Bound case:
3782 *
3783 * Unconditionally dispatch on the processor.
3784 */
3785 processor = thread->bound_processor;
3786 pset = processor->processor_set;
3787 pset_lock(pset);
3788
3789 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
3790 (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0);
3791 }
3792#else /* !__SMP__ */
3793 /* Only one processor to choose */
3794 assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == master_processor);
3795 processor = master_processor;
3796 pset = processor->processor_set;
3797 pset_lock(pset);
3798#endif /* !__SMP__ */
3799
3800 /*
3801 * Dispatch the thread on the chosen processor.
3802 * TODO: This should be based on sched_mode, not sched_pri
3803 */
3804 if (thread->sched_pri >= BASEPRI_RTQUEUES)
3805 realtime_setrun(processor, thread);
3806 else
3807 processor_setrun(processor, thread, options);
3808}
3809
3810processor_set_t
3811task_choose_pset(
3812 task_t task)
3813{
3814 processor_set_t pset = task->pset_hint;
3815
3816 if (pset != PROCESSOR_SET_NULL)
3817 pset = choose_next_pset(pset);
3818
3819 return (pset);
3820}
3821
3822/*
3823 * Check for a preemption point in
3824 * the current context.
3825 *
3826 * Called at splsched with thread locked.
3827 */
3828ast_t
3829csw_check(
3830 processor_t processor,
3831 ast_t check_reason)
3832{
3833 processor_set_t pset = processor->processor_set;
3834 ast_t result;
3835
3836 pset_lock(pset);
3837
3838 /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */
3839 pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
3840
3841 result = csw_check_locked(processor, pset, check_reason);
3842
3843 pset_unlock(pset);
3844
3845 return result;
3846}
3847
3848/*
3849 * Check for preemption at splsched with
3850 * pset and thread locked
3851 */
3852ast_t
3853csw_check_locked(
3854 processor_t processor,
3855 processor_set_t pset __unused,
3856 ast_t check_reason)
3857{
3858 ast_t result;
3859 thread_t thread = processor->active_thread;
3860
3861 if (processor->first_timeslice) {
3862 if (rt_runq.count > 0)
3863 return (check_reason | AST_PREEMPT | AST_URGENT);
3864 }
3865 else {
3866 if (rt_runq.count > 0) {
3867 if (BASEPRI_RTQUEUES > processor->current_pri)
3868 return (check_reason | AST_PREEMPT | AST_URGENT);
3869 else
3870 return (check_reason | AST_PREEMPT);
3871 }
3872 }
3873
3874 result = SCHED(processor_csw_check)(processor);
3875 if (result != AST_NONE)
3876 return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE));
3877
3878#if __SMP__
3879
3880 /*
3881 * If the current thread is running on a processor that is no longer recommended, gently
3882 * (non-urgently) get to a point and then block, and which point thread_select() should
3883 * try to idle the processor and re-dispatch the thread to a recommended processor.
3884 */
3885 if (!processor->is_recommended)
3886 return (check_reason | AST_PREEMPT);
3887
3888 /*
3889 * Even though we could continue executing on this processor, a
3890 * secondary SMT core should try to shed load to another primary core.
3891 *
3892 * TODO: Should this do the same check that thread_select does? i.e.
3893 * if no bound threads target this processor, and idle primaries exist, preempt
3894 * The case of RT threads existing is already taken care of above
3895 * Consider Capri in this scenario.
3896 *
3897 * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue))
3898 *
3899 * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine.
3900 */
3901
3902 if (processor->current_pri < BASEPRI_RTQUEUES &&
3903 processor->processor_primary != processor)
3904 return (check_reason | AST_PREEMPT);
3905#endif
3906
3907 if (thread->state & TH_SUSP)
3908 return (check_reason | AST_PREEMPT);
3909
3910#if CONFIG_SCHED_SFI
3911 /*
3912 * Current thread may not need to be preempted, but maybe needs
3913 * an SFI wait?
3914 */
3915 result = sfi_thread_needs_ast(thread, NULL);
3916 if (result != AST_NONE)
3917 return (check_reason | result);
3918#endif
3919
3920 return (AST_NONE);
3921}
3922
3923/*
3924 * set_sched_pri:
3925 *
3926 * Set the scheduled priority of the specified thread.
3927 *
3928 * This may cause the thread to change queues.
3929 *
3930 * Thread must be locked.
3931 */
3932void
3933set_sched_pri(
3934 thread_t thread,
3935 int priority)
3936{
3937 thread_t cthread = current_thread();
3938 boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE;
3939 int curgency, nurgency;
3940 uint64_t urgency_param1, urgency_param2;
3941 boolean_t removed_from_runq = FALSE;
3942
3943 /* If we're already at this priority, no need to mess with the runqueue */
3944 if (priority == thread->sched_pri)
3945 return;
3946
3947 if (is_current_thread) {
3948 assert(thread->runq == PROCESSOR_NULL);
3949 curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
3950 } else {
3951 removed_from_runq = thread_run_queue_remove(thread);
3952 }
3953
3954 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY),
3955 (uintptr_t)thread_tid(thread),
3956 thread->base_pri,
3957 thread->sched_pri,
3958 0, /* eventually, 'reason' */
3959 0);
3960
3961 thread->sched_pri = priority;
3962
3963 if (is_current_thread) {
3964 nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
3965 /*
3966 * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS
3967 * class alterations from user space to occur relatively infrequently, hence
3968 * those are lazily handled. QoS classes have distinct priority bands, and QoS
3969 * inheritance is expected to involve priority changes.
3970 */
3971 if (nurgency != curgency) {
3972 thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread);
3973 machine_thread_going_on_core(thread, nurgency, 0);
3974 }
3975 }
3976
3977 /* TODO: Should this be TAILQ if it went down, HEADQ if it went up? */
3978 if (removed_from_runq)
3979 thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ);
3980 else if (thread->state & TH_RUN) {
3981 processor_t processor = thread->last_processor;
3982
3983 if (is_current_thread) {
3984 ast_t preempt;
3985
3986 processor->current_pri = priority;
3987 processor->current_thmode = thread->sched_mode;
3988 processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread);
3989 if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE)
3990 ast_on(preempt);
3991 } else if (processor != PROCESSOR_NULL && processor->active_thread == thread)
3992 cause_ast_check(processor);
3993 }
3994}
3995
3996/*
3997 * thread_run_queue_remove_for_handoff
3998 *
3999 * Pull a thread or its (recursive) push target out of the runqueue
4000 * so that it is ready for thread_run()
4001 *
4002 * Called at splsched
4003 *
4004 * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled.
4005 * This may be different than the thread that was passed in.
4006 */
4007thread_t
4008thread_run_queue_remove_for_handoff(thread_t thread) {
4009
4010 thread_t pulled_thread = THREAD_NULL;
4011
4012 thread_lock(thread);
4013
4014 /*
4015 * Check that the thread is not bound
4016 * to a different processor, and that realtime
4017 * is not involved.
4018 *
4019 * Next, pull it off its run queue. If it
4020 * doesn't come, it's not eligible.
4021 */
4022
4023 processor_t processor = current_processor();
4024 if (processor->current_pri < BASEPRI_RTQUEUES && thread->sched_pri < BASEPRI_RTQUEUES &&
4025 (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor)) {
4026
4027 if (thread_run_queue_remove(thread))
4028 pulled_thread = thread;
4029 }
4030
4031 thread_unlock(thread);
4032
4033 return pulled_thread;
4034}
4035
4036/*
4037 * thread_run_queue_remove:
4038 *
4039 * Remove a thread from its current run queue and
4040 * return TRUE if successful.
4041 *
4042 * Thread must be locked.
4043 *
4044 * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the
4045 * run queues because the caller locked the thread. Otherwise
4046 * the thread is on a run queue, but could be chosen for dispatch
4047 * and removed by another processor under a different lock, which
4048 * will set thread->runq to PROCESSOR_NULL.
4049 *
4050 * Hence the thread select path must not rely on anything that could
4051 * be changed under the thread lock after calling this function,
4052 * most importantly thread->sched_pri.
4053 */
4054boolean_t
4055thread_run_queue_remove(
4056 thread_t thread)
4057{
4058 boolean_t removed = FALSE;
4059 processor_t processor = thread->runq;
4060
4061 if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) {
4062 /* Thread isn't runnable */
4063 assert(thread->runq == PROCESSOR_NULL);
4064 return FALSE;
4065 }
4066
4067 if (processor == PROCESSOR_NULL) {
4068 /*
4069 * The thread is either not on the runq,
4070 * or is in the midst of being removed from the runq.
4071 *
4072 * runq is set to NULL under the pset lock, not the thread
4073 * lock, so the thread may still be in the process of being dequeued
4074 * from the runq. It will wait in invoke for the thread lock to be
4075 * dropped.
4076 */
4077
4078 return FALSE;
4079 }
4080
4081 if (thread->sched_pri < BASEPRI_RTQUEUES) {
4082 return SCHED(processor_queue_remove)(processor, thread);
4083 }
4084
4085 rt_lock_lock();
4086
4087 if (thread->runq != PROCESSOR_NULL) {
4088 /*
4089 * Thread is on the RT run queue and we have a lock on
4090 * that run queue.
4091 */
4092
4093 assert(thread->runq == THREAD_ON_RT_RUNQ);
4094
4095 remqueue((queue_entry_t)thread);
4096 SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
4097 rt_runq.count--;
4098
4099 thread->runq = PROCESSOR_NULL;
4100
4101 removed = TRUE;
4102 }
4103
4104 rt_lock_unlock();
4105
4106 return (removed);
4107}
4108
4109/*
4110 * Put the thread back where it goes after a thread_run_queue_remove
4111 *
4112 * Thread must have been removed under the same thread lock hold
4113 *
4114 * thread locked, at splsched
4115 */
4116void
4117thread_run_queue_reinsert(thread_t thread, integer_t options)
4118{
4119 assert(thread->runq == PROCESSOR_NULL);
4120
4121 assert(thread->state & (TH_RUN));
4122 thread_setrun(thread, options);
4123
4124}
4125
4126void
4127sys_override_cpu_throttle(int flag)
4128{
4129 if (flag == CPU_THROTTLE_ENABLE)
4130 cpu_throttle_enabled = 1;
4131 if (flag == CPU_THROTTLE_DISABLE)
4132 cpu_throttle_enabled = 0;
4133}
4134
4135int
4136thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2)
4137{
4138 if (thread == NULL || (thread->state & TH_IDLE)) {
4139 *arg1 = 0;
4140 *arg2 = 0;
4141
4142 return (THREAD_URGENCY_NONE);
4143 } else if (thread->sched_mode == TH_MODE_REALTIME) {
4144 *arg1 = thread->realtime.period;
4145 *arg2 = thread->realtime.deadline;
4146
4147 return (THREAD_URGENCY_REAL_TIME);
4148 } else if (cpu_throttle_enabled &&
4149 ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) {
4150 /*
4151 * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted
4152 * TODO: Use TH_SFLAG_THROTTLED instead?
4153 */
4154 *arg1 = thread->sched_pri;
4155 *arg2 = thread->base_pri;
4156
4157 return (THREAD_URGENCY_BACKGROUND);
4158 } else {
4159 /* For otherwise unclassified threads, report throughput QoS
4160 * parameters
4161 */
4162 *arg1 = thread->effective_policy.t_through_qos;
4163 *arg2 = thread->task->effective_policy.t_through_qos;
4164
4165 return (THREAD_URGENCY_NORMAL);
4166 }
4167}
4168
4169
4170/*
4171 * This is the processor idle loop, which just looks for other threads
4172 * to execute. Processor idle threads invoke this without supplying a
4173 * current thread to idle without an asserted wait state.
4174 *
4175 * Returns a the next thread to execute if dispatched directly.
4176 */
4177
4178#if 0
4179#define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__)
4180#else
4181#define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0)
4182#endif
4183
4184thread_t
4185processor_idle(
4186 thread_t thread,
4187 processor_t processor)
4188{
4189 processor_set_t pset = processor->processor_set;
4190 thread_t new_thread;
4191 int state;
4192 (void)splsched();
4193
4194 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4195 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START,
4196 (uintptr_t)thread_tid(thread), 0, 0, 0, 0);
4197
4198 SCHED_STATS_CPU_IDLE_START(processor);
4199
4200 timer_switch(&PROCESSOR_DATA(processor, system_state),
4201 mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state));
4202 PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
4203
4204 while (1) {
4205 if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */
4206 break;
4207 if (pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))
4208 break;
4209 if (processor->is_recommended) {
4210 if (rt_runq.count)
4211 break;
4212 } else {
4213 if (SCHED(processor_bound_count)(processor))
4214 break;
4215 }
4216
4217#if CONFIG_SCHED_IDLE_IN_PLACE
4218 if (thread != THREAD_NULL) {
4219 /* Did idle-in-place thread wake up */
4220 if ((thread->state & (TH_WAIT|TH_SUSP)) != TH_WAIT || thread->wake_active)
4221 break;
4222 }
4223#endif
4224
4225 IDLE_KERNEL_DEBUG_CONSTANT(
4226 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0);
4227
4228 machine_track_platform_idle(TRUE);
4229
4230 machine_idle();
4231
4232 machine_track_platform_idle(FALSE);
4233
4234 (void)splsched();
4235
4236 IDLE_KERNEL_DEBUG_CONSTANT(
4237 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0);
4238
4239 if (!SCHED(processor_queue_empty)(processor)) {
4240 /* Secondary SMT processors respond to directed wakeups
4241 * exclusively. Some platforms induce 'spurious' SMT wakeups.
4242 */
4243 if (processor->processor_primary == processor)
4244 break;
4245 }
4246 }
4247
4248 timer_switch(&PROCESSOR_DATA(processor, idle_state),
4249 mach_absolute_time(), &PROCESSOR_DATA(processor, system_state));
4250 PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state);
4251
4252 pset_lock(pset);
4253
4254 /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */
4255 pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
4256#if defined(CONFIG_SCHED_DEFERRED_AST)
4257 pset->pending_deferred_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
4258#endif
4259
4260 state = processor->state;
4261 if (state == PROCESSOR_DISPATCHING) {
4262 /*
4263 * Commmon case -- cpu dispatched.
4264 */
4265 new_thread = processor->next_thread;
4266 processor->next_thread = THREAD_NULL;
4267 processor->state = PROCESSOR_RUNNING;
4268
4269 if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) ||
4270 (rt_runq.count > 0)) ) {
4271 /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
4272 processor->current_pri = IDLEPRI;
4273 processor->current_thmode = TH_MODE_FIXED;
4274 processor->current_sfi_class = SFI_CLASS_KERNEL;
4275 processor->deadline = UINT64_MAX;
4276
4277 pset_unlock(pset);
4278
4279 thread_lock(new_thread);
4280 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0);
4281 thread_setrun(new_thread, SCHED_HEADQ);
4282 thread_unlock(new_thread);
4283
4284 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4285 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
4286 (uintptr_t)thread_tid(thread), state, 0, 0, 0);
4287
4288 return (THREAD_NULL);
4289 }
4290
4291 pset_unlock(pset);
4292
4293 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4294 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
4295 (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0);
4296
4297 return (new_thread);
4298 }
4299 else
4300 if (state == PROCESSOR_IDLE) {
4301 remqueue((queue_entry_t)processor);
4302
4303 processor->state = PROCESSOR_RUNNING;
4304 processor->current_pri = IDLEPRI;
4305 processor->current_thmode = TH_MODE_FIXED;
4306 processor->current_sfi_class = SFI_CLASS_KERNEL;
4307 processor->deadline = UINT64_MAX;
4308 enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
4309 }
4310 else
4311 if (state == PROCESSOR_SHUTDOWN) {
4312 /*
4313 * Going off-line. Force a
4314 * reschedule.
4315 */
4316 if ((new_thread = processor->next_thread) != THREAD_NULL) {
4317 processor->next_thread = THREAD_NULL;
4318 processor->current_pri = IDLEPRI;
4319 processor->current_thmode = TH_MODE_FIXED;
4320 processor->current_sfi_class = SFI_CLASS_KERNEL;
4321 processor->deadline = UINT64_MAX;
4322
4323 pset_unlock(pset);
4324
4325 thread_lock(new_thread);
4326 thread_setrun(new_thread, SCHED_HEADQ);
4327 thread_unlock(new_thread);
4328
4329 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4330 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
4331 (uintptr_t)thread_tid(thread), state, 0, 0, 0);
4332
4333 return (THREAD_NULL);
4334 }
4335 }
4336
4337 pset_unlock(pset);
4338
4339 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4340 MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
4341 (uintptr_t)thread_tid(thread), state, 0, 0, 0);
4342
4343 return (THREAD_NULL);
4344}
4345
4346/*
4347 * Each processor has a dedicated thread which
4348 * executes the idle loop when there is no suitable
4349 * previous context.
4350 */
4351void
4352idle_thread(void)
4353{
4354 processor_t processor = current_processor();
4355 thread_t new_thread;
4356
4357 new_thread = processor_idle(THREAD_NULL, processor);
4358 if (new_thread != THREAD_NULL) {
4359 thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
4360 /*NOTREACHED*/
4361 }
4362
4363 thread_block((thread_continue_t)idle_thread);
4364 /*NOTREACHED*/
4365}
4366
4367kern_return_t
4368idle_thread_create(
4369 processor_t processor)
4370{
4371 kern_return_t result;
4372 thread_t thread;
4373 spl_t s;
4374
4375 result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread);
4376 if (result != KERN_SUCCESS)
4377 return (result);
4378
4379 s = splsched();
4380 thread_lock(thread);
4381 thread->bound_processor = processor;
4382 processor->idle_thread = thread;
4383 thread->sched_pri = thread->base_pri = IDLEPRI;
4384 thread->state = (TH_RUN | TH_IDLE);
4385 thread->options |= TH_OPT_IDLE_THREAD;
4386 thread_unlock(thread);
4387 splx(s);
4388
4389 thread_deallocate(thread);
4390
4391 return (KERN_SUCCESS);
4392}
4393
4394/*
4395 * sched_startup:
4396 *
4397 * Kicks off scheduler services.
4398 *
4399 * Called at splsched.
4400 */
4401void
4402sched_startup(void)
4403{
4404 kern_return_t result;
4405 thread_t thread;
4406
4407 simple_lock_init(&sched_vm_group_list_lock, 0);
4408
4409 result = kernel_thread_start_priority((thread_continue_t)sched_init_thread,
4410 (void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread);
4411 if (result != KERN_SUCCESS)
4412 panic("sched_startup");
4413
4414 thread_deallocate(thread);
4415
4416 /*
4417 * Yield to the sched_init_thread once, to
4418 * initialize our own thread after being switched
4419 * back to.
4420 *
4421 * The current thread is the only other thread
4422 * active at this point.
4423 */
4424 thread_block(THREAD_CONTINUE_NULL);
4425}
4426
4427#if defined(CONFIG_SCHED_TIMESHARE_CORE)
4428
4429static volatile uint64_t sched_maintenance_deadline;
4430#if defined(CONFIG_TELEMETRY)
4431static volatile uint64_t sched_telemetry_deadline = 0;
4432#endif
4433static uint64_t sched_tick_last_abstime;
4434static uint64_t sched_tick_delta;
4435uint64_t sched_tick_max_delta;
4436/*
4437 * sched_init_thread:
4438 *
4439 * Perform periodic bookkeeping functions about ten
4440 * times per second.
4441 */
4442void
4443sched_timeshare_maintenance_continue(void)
4444{
4445 uint64_t sched_tick_ctime, late_time;
4446
4447 struct sched_update_scan_context scan_context = {
4448 .earliest_bg_make_runnable_time = UINT64_MAX,
4449 .earliest_normal_make_runnable_time = UINT64_MAX,
4450 .earliest_rt_make_runnable_time = UINT64_MAX
4451 };
4452
4453 sched_tick_ctime = mach_absolute_time();
4454
4455 if (__improbable(sched_tick_last_abstime == 0)) {
4456 sched_tick_last_abstime = sched_tick_ctime;
4457 late_time = 0;
4458 sched_tick_delta = 1;
4459 } else {
4460 late_time = sched_tick_ctime - sched_tick_last_abstime;
4461 sched_tick_delta = late_time / sched_tick_interval;
4462 /* Ensure a delta of 1, since the interval could be slightly
4463 * smaller than the sched_tick_interval due to dispatch
4464 * latencies.
4465 */
4466 sched_tick_delta = MAX(sched_tick_delta, 1);
4467
4468 /* In the event interrupt latencies or platform
4469 * idle events that advanced the timebase resulted
4470 * in periods where no threads were dispatched,
4471 * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA
4472 * iterations.
4473 */
4474 sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA);
4475
4476 sched_tick_last_abstime = sched_tick_ctime;
4477 sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta);
4478 }
4479
4480 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START,
4481 sched_tick_delta,
4482 late_time,
4483 0,
4484 0,
4485 0);
4486
4487 /* Add a number of pseudo-ticks corresponding to the elapsed interval
4488 * This could be greater than 1 if substantial intervals where
4489 * all processors are idle occur, which rarely occurs in practice.
4490 */
4491
4492 sched_tick += sched_tick_delta;
4493
4494 /*
4495 * Compute various averages.
4496 */
4497 compute_averages(sched_tick_delta);
4498
4499 /*
4500 * Scan the run queues for threads which
4501 * may need to be updated.
4502 */
4503 SCHED(thread_update_scan)(&scan_context);
4504
4505 rt_runq_scan(&scan_context);
4506
4507 uint64_t ctime = mach_absolute_time();
4508
4509 machine_max_runnable_latency(ctime > scan_context.earliest_bg_make_runnable_time ? ctime - scan_context.earliest_bg_make_runnable_time : 0,
4510 ctime > scan_context.earliest_normal_make_runnable_time ? ctime - scan_context.earliest_normal_make_runnable_time : 0,
4511 ctime > scan_context.earliest_rt_make_runnable_time ? ctime - scan_context.earliest_rt_make_runnable_time : 0);
4512
4513 /*
4514 * Check to see if the special sched VM group needs attention.
4515 */
4516 sched_vm_group_maintenance();
4517
4518 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_END,
4519 sched_pri_shift,
4520 sched_background_pri_shift,
4521 0,
4522 0,
4523 0);
4524
4525 assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT);
4526 thread_block((thread_continue_t)sched_timeshare_maintenance_continue);
4527 /*NOTREACHED*/
4528}
4529
4530static uint64_t sched_maintenance_wakeups;
4531
4532/*
4533 * Determine if the set of routines formerly driven by a maintenance timer
4534 * must be invoked, based on a deadline comparison. Signals the scheduler
4535 * maintenance thread on deadline expiration. Must be invoked at an interval
4536 * lower than the "sched_tick_interval", currently accomplished by
4537 * invocation via the quantum expiration timer and at context switch time.
4538 * Performance matters: this routine reuses a timestamp approximating the
4539 * current absolute time received from the caller, and should perform
4540 * no more than a comparison against the deadline in the common case.
4541 */
4542void
4543sched_timeshare_consider_maintenance(uint64_t ctime) {
4544 uint64_t ndeadline, deadline = sched_maintenance_deadline;
4545
4546 if (__improbable(ctime >= deadline)) {
4547 if (__improbable(current_thread() == sched_maintenance_thread))
4548 return;
4549 OSMemoryBarrier();
4550
4551 ndeadline = ctime + sched_tick_interval;
4552
4553 if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) {
4554 thread_wakeup((event_t)sched_timeshare_maintenance_continue);
4555 sched_maintenance_wakeups++;
4556 }
4557 }
4558
4559#if defined(CONFIG_TELEMETRY)
4560 /*
4561 * Windowed telemetry is driven by the scheduler. It should be safe
4562 * to call compute_telemetry_windowed() even when windowed telemetry
4563 * is disabled, but we should try to avoid doing extra work for no
4564 * reason.
4565 */
4566 if (telemetry_window_enabled) {
4567 deadline = sched_telemetry_deadline;
4568
4569 if (__improbable(ctime >= deadline)) {
4570 ndeadline = ctime + sched_telemetry_interval;
4571
4572 if (__probable(__sync_bool_compare_and_swap(&sched_telemetry_deadline, deadline, ndeadline))) {
4573 compute_telemetry_windowed();
4574 }
4575 }
4576 }
4577#endif /* CONFIG_TELEMETRY */
4578}
4579
4580#endif /* CONFIG_SCHED_TIMESHARE_CORE */
4581
4582void
4583sched_init_thread(void (*continuation)(void))
4584{
4585 thread_block(THREAD_CONTINUE_NULL);
4586
4587 sched_maintenance_thread = current_thread();
4588 continuation();
4589
4590 /*NOTREACHED*/
4591}
4592
4593#if defined(CONFIG_SCHED_TIMESHARE_CORE)
4594
4595/*
4596 * thread_update_scan / runq_scan:
4597 *
4598 * Scan the run queues to account for timesharing threads
4599 * which need to be updated.
4600 *
4601 * Scanner runs in two passes. Pass one squirrels likely
4602 * threads away in an array, pass two does the update.
4603 *
4604 * This is necessary because the run queue is locked for
4605 * the candidate scan, but the thread is locked for the update.
4606 *
4607 * Array should be sized to make forward progress, without
4608 * disabling preemption for long periods.
4609 */
4610
4611#define THREAD_UPDATE_SIZE 128
4612
4613static thread_t thread_update_array[THREAD_UPDATE_SIZE];
4614static int thread_update_count = 0;
4615
4616/* Returns TRUE if thread was added, FALSE if thread_update_array is full */
4617boolean_t
4618thread_update_add_thread(thread_t thread)
4619{
4620 if (thread_update_count == THREAD_UPDATE_SIZE)
4621 return (FALSE);
4622
4623 thread_update_array[thread_update_count++] = thread;
4624 thread_reference_internal(thread);
4625 return (TRUE);
4626}
4627
4628void
4629thread_update_process_threads(void)
4630{
4631 while (thread_update_count > 0) {
4632 spl_t s;
4633 thread_t thread = thread_update_array[--thread_update_count];
4634 thread_update_array[thread_update_count] = THREAD_NULL;
4635
4636 s = splsched();
4637 thread_lock(thread);
4638 if (!(thread->state & (TH_WAIT)) && (SCHED(can_update_priority)(thread))) {
4639 SCHED(update_priority)(thread);
4640 }
4641 thread_unlock(thread);
4642 splx(s);
4643
4644 thread_deallocate(thread);
4645 }
4646}
4647
4648/*
4649 * Scan a runq for candidate threads.
4650 *
4651 * Returns TRUE if retry is needed.
4652 */
4653boolean_t
4654runq_scan(
4655 run_queue_t runq,
4656 sched_update_scan_context_t scan_context)
4657{
4658 register int count;
4659 register queue_t q;
4660 register thread_t thread;
4661
4662 if ((count = runq->count) > 0) {
4663 q = runq->queues + runq->highq;
4664 while (count > 0) {
4665 queue_iterate(q, thread, thread_t, links) {
4666 if ( thread->sched_stamp != sched_tick &&
4667 (thread->sched_mode == TH_MODE_TIMESHARE) ) {
4668 if (thread_update_add_thread(thread) == FALSE)
4669 return (TRUE);
4670 }
4671
4672 if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) {
4673 if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) {
4674 scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time;
4675 }
4676 } else {
4677 if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) {
4678 scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time;
4679 }
4680 }
4681
4682 count--;
4683 }
4684
4685 q--;
4686 }
4687 }
4688
4689 return (FALSE);
4690}
4691
4692#endif /* CONFIG_SCHED_TIMESHARE_CORE */
4693
4694boolean_t
4695thread_eager_preemption(thread_t thread)
4696{
4697 return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0);
4698}
4699
4700void
4701thread_set_eager_preempt(thread_t thread)
4702{
4703 spl_t x;
4704 processor_t p;
4705 ast_t ast = AST_NONE;
4706
4707 x = splsched();
4708 p = current_processor();
4709
4710 thread_lock(thread);
4711 thread->sched_flags |= TH_SFLAG_EAGERPREEMPT;
4712
4713 if (thread == current_thread()) {
4714
4715 ast = csw_check(p, AST_NONE);
4716 thread_unlock(thread);
4717 if (ast != AST_NONE) {
4718 (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast);
4719 }
4720 } else {
4721 p = thread->last_processor;
4722
4723 if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING &&
4724 p->active_thread == thread) {
4725 cause_ast_check(p);
4726 }
4727
4728 thread_unlock(thread);
4729 }
4730
4731 splx(x);
4732}
4733
4734void
4735thread_clear_eager_preempt(thread_t thread)
4736{
4737 spl_t x;
4738
4739 x = splsched();
4740 thread_lock(thread);
4741
4742 thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT;
4743
4744 thread_unlock(thread);
4745 splx(x);
4746}
4747
4748/*
4749 * Scheduling statistics
4750 */
4751void
4752sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri)
4753{
4754 struct processor_sched_statistics *stats;
4755 boolean_t to_realtime = FALSE;
4756
4757 stats = &processor->processor_data.sched_stats;
4758 stats->csw_count++;
4759
4760 if (otherpri >= BASEPRI_REALTIME) {
4761 stats->rt_sched_count++;
4762 to_realtime = TRUE;
4763 }
4764
4765 if ((reasons & AST_PREEMPT) != 0) {
4766 stats->preempt_count++;
4767
4768 if (selfpri >= BASEPRI_REALTIME) {
4769 stats->preempted_rt_count++;
4770 }
4771
4772 if (to_realtime) {
4773 stats->preempted_by_rt_count++;
4774 }
4775
4776 }
4777}
4778
4779void
4780sched_stats_handle_runq_change(struct runq_stats *stats, int old_count)
4781{
4782 uint64_t timestamp = mach_absolute_time();
4783
4784 stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count;
4785 stats->last_change_timestamp = timestamp;
4786}
4787
4788/*
4789 * For calls from assembly code
4790 */
4791#undef thread_wakeup
4792void
4793thread_wakeup(
4794 event_t x);
4795
4796void
4797thread_wakeup(
4798 event_t x)
4799{
4800 thread_wakeup_with_result(x, THREAD_AWAKENED);
4801}
4802
4803boolean_t
4804preemption_enabled(void)
4805{
4806 return (get_preemption_level() == 0 && ml_get_interrupts_enabled());
4807}
4808
4809static void
4810sched_timer_deadline_tracking_init(void) {
4811 nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1);
4812 nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2);
4813}
4814
4815
4816kern_return_t
4817sched_work_interval_notify(thread_t thread, uint64_t work_interval_id, uint64_t start, uint64_t finish, uint64_t deadline, uint64_t next_start, uint32_t flags)
4818{
4819 int urgency;
4820 uint64_t urgency_param1, urgency_param2;
4821 spl_t s;
4822
4823 if (work_interval_id == 0) {
4824 return (KERN_INVALID_ARGUMENT);
4825 }
4826
4827 assert(thread == current_thread());
4828
4829 thread_mtx_lock(thread);
4830 if (thread->work_interval_id != work_interval_id) {
4831 thread_mtx_unlock(thread);
4832 return (KERN_INVALID_ARGUMENT);
4833 }
4834 thread_mtx_unlock(thread);
4835
4836 s = splsched();
4837 thread_lock(thread);
4838 urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
4839 thread_unlock(thread);
4840 splx(s);
4841
4842 machine_work_interval_notify(thread, work_interval_id, start, finish, deadline, next_start, urgency, flags);
4843 return (KERN_SUCCESS);
4844}
4845
4846void thread_set_options(uint32_t thopt) {
4847 spl_t x;
4848 thread_t t = current_thread();
4849
4850 x = splsched();
4851 thread_lock(t);
4852
4853 t->options |= thopt;
4854
4855 thread_unlock(t);
4856 splx(x);
4857}