]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | * | |
28 | */ | |
29 | /*- | |
30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | */ | |
54 | /* | |
55 | * @(#)kern_event.c 1.0 (3/31/2000) | |
56 | */ | |
57 | #include <stdint.h> | |
58 | #include <machine/atomic.h> | |
59 | ||
60 | #include <sys/param.h> | |
61 | #include <sys/systm.h> | |
62 | #include <sys/filedesc.h> | |
63 | #include <sys/kernel.h> | |
64 | #include <sys/proc_internal.h> | |
65 | #include <sys/kauth.h> | |
66 | #include <sys/malloc.h> | |
67 | #include <sys/unistd.h> | |
68 | #include <sys/file_internal.h> | |
69 | #include <sys/fcntl.h> | |
70 | #include <sys/select.h> | |
71 | #include <sys/queue.h> | |
72 | #include <sys/event.h> | |
73 | #include <sys/eventvar.h> | |
74 | #include <sys/protosw.h> | |
75 | #include <sys/socket.h> | |
76 | #include <sys/socketvar.h> | |
77 | #include <sys/stat.h> | |
78 | #include <sys/syscall.h> // SYS_* constants | |
79 | #include <sys/sysctl.h> | |
80 | #include <sys/uio.h> | |
81 | #include <sys/sysproto.h> | |
82 | #include <sys/user.h> | |
83 | #include <sys/vnode_internal.h> | |
84 | #include <string.h> | |
85 | #include <sys/proc_info.h> | |
86 | #include <sys/codesign.h> | |
87 | #include <sys/pthread_shims.h> | |
88 | #include <sys/kdebug.h> | |
89 | #include <os/base.h> | |
90 | #include <pexpert/pexpert.h> | |
91 | ||
92 | #include <kern/locks.h> | |
93 | #include <kern/clock.h> | |
94 | #include <kern/cpu_data.h> | |
95 | #include <kern/policy_internal.h> | |
96 | #include <kern/thread_call.h> | |
97 | #include <kern/sched_prim.h> | |
98 | #include <kern/waitq.h> | |
99 | #include <kern/zalloc.h> | |
100 | #include <kern/kalloc.h> | |
101 | #include <kern/assert.h> | |
102 | #include <kern/ast.h> | |
103 | #include <kern/thread.h> | |
104 | #include <kern/kcdata.h> | |
105 | ||
106 | #include <pthread/priority_private.h> | |
107 | #include <pthread/workqueue_syscalls.h> | |
108 | #include <pthread/workqueue_internal.h> | |
109 | #include <libkern/libkern.h> | |
110 | ||
111 | #include "net/net_str_id.h" | |
112 | ||
113 | #include <mach/task.h> | |
114 | #include <libkern/section_keywords.h> | |
115 | ||
116 | #if CONFIG_MEMORYSTATUS | |
117 | #include <sys/kern_memorystatus.h> | |
118 | #endif | |
119 | ||
120 | extern mach_port_name_t ipc_entry_name_mask(mach_port_name_t name); /* osfmk/ipc/ipc_entry.h */ | |
121 | ||
122 | #define KEV_EVTID(code) BSDDBG_CODE(DBG_BSD_KEVENT, (code)) | |
123 | ||
124 | MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); | |
125 | ||
126 | #define KQ_EVENT NO_EVENT64 | |
127 | ||
128 | static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id, | |
129 | vfs_context_t ctx); | |
130 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); | |
131 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, | |
132 | struct kevent_qos_s *kev); | |
133 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); | |
134 | ||
135 | static const struct fileops kqueueops = { | |
136 | .fo_type = DTYPE_KQUEUE, | |
137 | .fo_read = fo_no_read, | |
138 | .fo_write = fo_no_write, | |
139 | .fo_ioctl = fo_no_ioctl, | |
140 | .fo_select = kqueue_select, | |
141 | .fo_close = kqueue_close, | |
142 | .fo_drain = kqueue_drain, | |
143 | .fo_kqfilter = kqueue_kqfilter, | |
144 | }; | |
145 | ||
146 | static inline int kevent_modern_copyout(struct kevent_qos_s *, user_addr_t *); | |
147 | static int kevent_register_wait_prepare(struct knote *kn, struct kevent_qos_s *kev, int result); | |
148 | static void kevent_register_wait_block(struct turnstile *ts, thread_t handoff_thread, | |
149 | thread_continue_t cont, struct _kevent_register *cont_args) __dead2; | |
150 | static void kevent_register_wait_return(struct _kevent_register *cont_args) __dead2; | |
151 | static void kevent_register_wait_cleanup(struct knote *kn); | |
152 | ||
153 | static struct kqtailq *kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn); | |
154 | static void kqueue_threadreq_initiate(struct kqueue *kq, workq_threadreq_t, kq_index_t qos, int flags); | |
155 | ||
156 | static void kqworkq_unbind(proc_t p, workq_threadreq_t); | |
157 | static thread_qos_t kqworkq_unbind_locked(struct kqworkq *kqwq, workq_threadreq_t, thread_t thread); | |
158 | static workq_threadreq_t kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index); | |
159 | ||
160 | static void kqworkloop_unbind(struct kqworkloop *kwql); | |
161 | ||
162 | enum kqwl_unbind_locked_mode { | |
163 | KQWL_OVERRIDE_DROP_IMMEDIATELY, | |
164 | KQWL_OVERRIDE_DROP_DELAYED, | |
165 | }; | |
166 | static void kqworkloop_unbind_locked(struct kqworkloop *kwql, thread_t thread, | |
167 | enum kqwl_unbind_locked_mode how); | |
168 | static void kqworkloop_unbind_delayed_override_drop(thread_t thread); | |
169 | static kq_index_t kqworkloop_override(struct kqworkloop *kqwl); | |
170 | static void kqworkloop_set_overcommit(struct kqworkloop *kqwl); | |
171 | enum { | |
172 | KQWL_UTQ_NONE, | |
173 | /* | |
174 | * The wakeup qos is the qos of QUEUED knotes. | |
175 | * | |
176 | * This QoS is accounted for with the events override in the | |
177 | * kqr_override_index field. It is raised each time a new knote is queued at | |
178 | * a given QoS. The kqwl_wakeup_indexes field is a superset of the non empty | |
179 | * knote buckets and is recomputed after each event delivery. | |
180 | */ | |
181 | KQWL_UTQ_UPDATE_WAKEUP_QOS, | |
182 | KQWL_UTQ_UPDATE_STAYACTIVE_QOS, | |
183 | KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, | |
184 | KQWL_UTQ_UNBINDING, /* attempt to rebind */ | |
185 | KQWL_UTQ_PARKING, | |
186 | /* | |
187 | * The wakeup override is for suppressed knotes that have fired again at | |
188 | * a higher QoS than the one for which they are suppressed already. | |
189 | * This override is cleared when the knote suppressed list becomes empty. | |
190 | */ | |
191 | KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, | |
192 | KQWL_UTQ_RESET_WAKEUP_OVERRIDE, | |
193 | /* | |
194 | * The QoS is the maximum QoS of an event enqueued on this workloop in | |
195 | * userland. It is copied from the only EVFILT_WORKLOOP knote with | |
196 | * a NOTE_WL_THREAD_REQUEST bit set allowed on this workloop. If there is no | |
197 | * such knote, this QoS is 0. | |
198 | */ | |
199 | KQWL_UTQ_SET_QOS_INDEX, | |
200 | KQWL_UTQ_REDRIVE_EVENTS, | |
201 | }; | |
202 | static void kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos); | |
203 | static int kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags); | |
204 | ||
205 | static struct knote *knote_alloc(void); | |
206 | static void knote_free(struct knote *kn); | |
207 | static int kq_add_knote(struct kqueue *kq, struct knote *kn, | |
208 | struct knote_lock_ctx *knlc, struct proc *p); | |
209 | static struct knote *kq_find_knote_and_kq_lock(struct kqueue *kq, | |
210 | struct kevent_qos_s *kev, bool is_fd, struct proc *p); | |
211 | ||
212 | static void knote_activate(kqueue_t kqu, struct knote *kn, int result); | |
213 | static void knote_dequeue(kqueue_t kqu, struct knote *kn); | |
214 | ||
215 | static void knote_apply_touch(kqueue_t kqu, struct knote *kn, | |
216 | struct kevent_qos_s *kev, int result); | |
217 | static void knote_suppress(kqueue_t kqu, struct knote *kn); | |
218 | static void knote_unsuppress(kqueue_t kqu, struct knote *kn); | |
219 | static void knote_drop(kqueue_t kqu, struct knote *kn, struct knote_lock_ctx *knlc); | |
220 | ||
221 | // both these functions may dequeue the knote and it is up to the caller | |
222 | // to enqueue the knote back | |
223 | static void knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result); | |
224 | static void knote_reset_priority(kqueue_t kqu, struct knote *kn, pthread_priority_t pp); | |
225 | ||
226 | static zone_t knote_zone; | |
227 | static zone_t kqfile_zone; | |
228 | static zone_t kqworkq_zone; | |
229 | static zone_t kqworkloop_zone; | |
230 | #if DEVELOPMENT || DEBUG | |
231 | #define KEVENT_PANIC_ON_WORKLOOP_OWNERSHIP_LEAK (1U << 0) | |
232 | #define KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS (1U << 1) | |
233 | #define KEVENT_PANIC_BOOT_ARG_INITIALIZED (1U << 31) | |
234 | ||
235 | #define KEVENT_PANIC_DEFAULT_VALUE (0) | |
236 | static uint32_t | |
237 | kevent_debug_flags(void) | |
238 | { | |
239 | static uint32_t flags = KEVENT_PANIC_DEFAULT_VALUE; | |
240 | ||
241 | if ((flags & KEVENT_PANIC_BOOT_ARG_INITIALIZED) == 0) { | |
242 | uint32_t value = 0; | |
243 | if (!PE_parse_boot_argn("kevent_debug", &value, sizeof(value))) { | |
244 | value = KEVENT_PANIC_DEFAULT_VALUE; | |
245 | } | |
246 | value |= KEVENT_PANIC_BOOT_ARG_INITIALIZED; | |
247 | os_atomic_store(&flags, value, relaxed); | |
248 | } | |
249 | return flags; | |
250 | } | |
251 | #endif | |
252 | ||
253 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) | |
254 | ||
255 | static int filt_no_attach(struct knote *kn, struct kevent_qos_s *kev); | |
256 | static void filt_no_detach(struct knote *kn); | |
257 | static int filt_bad_event(struct knote *kn, long hint); | |
258 | static int filt_bad_touch(struct knote *kn, struct kevent_qos_s *kev); | |
259 | static int filt_bad_process(struct knote *kn, struct kevent_qos_s *kev); | |
260 | ||
261 | SECURITY_READ_ONLY_EARLY(static struct filterops) bad_filtops = { | |
262 | .f_attach = filt_no_attach, | |
263 | .f_detach = filt_no_detach, | |
264 | .f_event = filt_bad_event, | |
265 | .f_touch = filt_bad_touch, | |
266 | .f_process = filt_bad_process, | |
267 | }; | |
268 | ||
269 | #if CONFIG_MEMORYSTATUS | |
270 | extern const struct filterops memorystatus_filtops; | |
271 | #endif /* CONFIG_MEMORYSTATUS */ | |
272 | extern const struct filterops fs_filtops; | |
273 | extern const struct filterops sig_filtops; | |
274 | extern const struct filterops machport_filtops; | |
275 | extern const struct filterops pipe_nfiltops; | |
276 | extern const struct filterops pipe_rfiltops; | |
277 | extern const struct filterops pipe_wfiltops; | |
278 | extern const struct filterops ptsd_kqops; | |
279 | extern const struct filterops ptmx_kqops; | |
280 | extern const struct filterops soread_filtops; | |
281 | extern const struct filterops sowrite_filtops; | |
282 | extern const struct filterops sock_filtops; | |
283 | extern const struct filterops soexcept_filtops; | |
284 | extern const struct filterops spec_filtops; | |
285 | extern const struct filterops bpfread_filtops; | |
286 | extern const struct filterops necp_fd_rfiltops; | |
287 | extern const struct filterops fsevent_filtops; | |
288 | extern const struct filterops vnode_filtops; | |
289 | extern const struct filterops tty_filtops; | |
290 | ||
291 | const static struct filterops file_filtops; | |
292 | const static struct filterops kqread_filtops; | |
293 | const static struct filterops proc_filtops; | |
294 | const static struct filterops timer_filtops; | |
295 | const static struct filterops user_filtops; | |
296 | const static struct filterops workloop_filtops; | |
297 | ||
298 | /* | |
299 | * | |
300 | * Rules for adding new filters to the system: | |
301 | * Public filters: | |
302 | * - Add a new "EVFILT_" option value to bsd/sys/event.h (typically a negative value) | |
303 | * in the exported section of the header | |
304 | * - Update the EVFILT_SYSCOUNT value to reflect the new addition | |
305 | * - Add a filterops to the sysfilt_ops array. Public filters should be added at the end | |
306 | * of the Public Filters section in the array. | |
307 | * Private filters: | |
308 | * - Add a new "EVFILT_" value to bsd/sys/event.h (typically a positive value) | |
309 | * in the XNU_KERNEL_PRIVATE section of the header | |
310 | * - Update the EVFILTID_MAX value to reflect the new addition | |
311 | * - Add a filterops to the sysfilt_ops. Private filters should be added at the end of | |
312 | * the Private filters section of the array. | |
313 | */ | |
314 | static_assert(EVFILTID_MAX < UINT8_MAX, "kn_filtid expects this to be true"); | |
315 | static const struct filterops * const sysfilt_ops[EVFILTID_MAX] = { | |
316 | /* Public Filters */ | |
317 | [~EVFILT_READ] = &file_filtops, | |
318 | [~EVFILT_WRITE] = &file_filtops, | |
319 | [~EVFILT_AIO] = &bad_filtops, | |
320 | [~EVFILT_VNODE] = &file_filtops, | |
321 | [~EVFILT_PROC] = &proc_filtops, | |
322 | [~EVFILT_SIGNAL] = &sig_filtops, | |
323 | [~EVFILT_TIMER] = &timer_filtops, | |
324 | [~EVFILT_MACHPORT] = &machport_filtops, | |
325 | [~EVFILT_FS] = &fs_filtops, | |
326 | [~EVFILT_USER] = &user_filtops, | |
327 | [~EVFILT_UNUSED_11] = &bad_filtops, | |
328 | [~EVFILT_VM] = &bad_filtops, | |
329 | [~EVFILT_SOCK] = &file_filtops, | |
330 | #if CONFIG_MEMORYSTATUS | |
331 | [~EVFILT_MEMORYSTATUS] = &memorystatus_filtops, | |
332 | #else | |
333 | [~EVFILT_MEMORYSTATUS] = &bad_filtops, | |
334 | #endif | |
335 | [~EVFILT_EXCEPT] = &file_filtops, | |
336 | [~EVFILT_WORKLOOP] = &workloop_filtops, | |
337 | ||
338 | /* Private filters */ | |
339 | [EVFILTID_KQREAD] = &kqread_filtops, | |
340 | [EVFILTID_PIPE_N] = &pipe_nfiltops, | |
341 | [EVFILTID_PIPE_R] = &pipe_rfiltops, | |
342 | [EVFILTID_PIPE_W] = &pipe_wfiltops, | |
343 | [EVFILTID_PTSD] = &ptsd_kqops, | |
344 | [EVFILTID_SOREAD] = &soread_filtops, | |
345 | [EVFILTID_SOWRITE] = &sowrite_filtops, | |
346 | [EVFILTID_SCK] = &sock_filtops, | |
347 | [EVFILTID_SOEXCEPT] = &soexcept_filtops, | |
348 | [EVFILTID_SPEC] = &spec_filtops, | |
349 | [EVFILTID_BPFREAD] = &bpfread_filtops, | |
350 | [EVFILTID_NECP_FD] = &necp_fd_rfiltops, | |
351 | [EVFILTID_FSEVENT] = &fsevent_filtops, | |
352 | [EVFILTID_VN] = &vnode_filtops, | |
353 | [EVFILTID_TTY] = &tty_filtops, | |
354 | [EVFILTID_PTMX] = &ptmx_kqops, | |
355 | ||
356 | /* fake filter for detached knotes, keep last */ | |
357 | [EVFILTID_DETACHED] = &bad_filtops, | |
358 | }; | |
359 | ||
360 | /* waitq prepost callback */ | |
361 | void waitq_set__CALLING_PREPOST_HOOK__(waitq_set_prepost_hook_t *kq_hook); | |
362 | ||
363 | static inline bool | |
364 | kqr_thread_bound(workq_threadreq_t kqr) | |
365 | { | |
366 | return kqr->tr_state == WORKQ_TR_STATE_BOUND; | |
367 | } | |
368 | ||
369 | static inline bool | |
370 | kqr_thread_requested_pending(workq_threadreq_t kqr) | |
371 | { | |
372 | workq_tr_state_t tr_state = kqr->tr_state; | |
373 | return tr_state > WORKQ_TR_STATE_IDLE && tr_state < WORKQ_TR_STATE_BOUND; | |
374 | } | |
375 | ||
376 | static inline bool | |
377 | kqr_thread_requested(workq_threadreq_t kqr) | |
378 | { | |
379 | return kqr->tr_state != WORKQ_TR_STATE_IDLE; | |
380 | } | |
381 | ||
382 | static inline thread_t | |
383 | kqr_thread_fast(workq_threadreq_t kqr) | |
384 | { | |
385 | assert(kqr_thread_bound(kqr)); | |
386 | return kqr->tr_thread; | |
387 | } | |
388 | ||
389 | static inline thread_t | |
390 | kqr_thread(workq_threadreq_t kqr) | |
391 | { | |
392 | return kqr_thread_bound(kqr) ? kqr->tr_thread : THREAD_NULL; | |
393 | } | |
394 | ||
395 | static inline struct kqworkloop * | |
396 | kqr_kqworkloop(workq_threadreq_t kqr) | |
397 | { | |
398 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { | |
399 | return __container_of(kqr, struct kqworkloop, kqwl_request); | |
400 | } | |
401 | return NULL; | |
402 | } | |
403 | ||
404 | static inline kqueue_t | |
405 | kqr_kqueue(proc_t p, workq_threadreq_t kqr) | |
406 | { | |
407 | kqueue_t kqu; | |
408 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { | |
409 | kqu.kqwl = kqr_kqworkloop(kqr); | |
410 | } else { | |
411 | kqu.kqwq = p->p_fd->fd_wqkqueue; | |
412 | assert(kqr >= kqu.kqwq->kqwq_request && | |
413 | kqr < kqu.kqwq->kqwq_request + KQWQ_NBUCKETS); | |
414 | } | |
415 | return kqu; | |
416 | } | |
417 | ||
418 | /* | |
419 | * kqueue/note lock implementations | |
420 | * | |
421 | * The kqueue lock guards the kq state, the state of its queues, | |
422 | * and the kqueue-aware status and locks of individual knotes. | |
423 | * | |
424 | * The kqueue workq lock is used to protect state guarding the | |
425 | * interaction of the kqueue with the workq. This state cannot | |
426 | * be guarded by the kq lock - as it needs to be taken when we | |
427 | * already have the waitq set lock held (during the waitq hook | |
428 | * callback). It might be better to use the waitq lock itself | |
429 | * for this, but the IRQ requirements make that difficult). | |
430 | * | |
431 | * Knote flags, filter flags, and associated data are protected | |
432 | * by the underlying object lock - and are only ever looked at | |
433 | * by calling the filter to get a [consistent] snapshot of that | |
434 | * data. | |
435 | */ | |
436 | static lck_grp_attr_t *kq_lck_grp_attr; | |
437 | static lck_grp_t *kq_lck_grp; | |
438 | static lck_attr_t *kq_lck_attr; | |
439 | ||
440 | static inline void | |
441 | kqlock(kqueue_t kqu) | |
442 | { | |
443 | lck_spin_lock(&kqu.kq->kq_lock); | |
444 | } | |
445 | ||
446 | static inline void | |
447 | kqlock_held(__assert_only kqueue_t kqu) | |
448 | { | |
449 | LCK_SPIN_ASSERT(&kqu.kq->kq_lock, LCK_ASSERT_OWNED); | |
450 | } | |
451 | ||
452 | static inline void | |
453 | kqunlock(kqueue_t kqu) | |
454 | { | |
455 | lck_spin_unlock(&kqu.kq->kq_lock); | |
456 | } | |
457 | ||
458 | static inline void | |
459 | knhash_lock(struct filedesc *fdp) | |
460 | { | |
461 | lck_mtx_lock(&fdp->fd_knhashlock); | |
462 | } | |
463 | ||
464 | static inline void | |
465 | knhash_unlock(struct filedesc *fdp) | |
466 | { | |
467 | lck_mtx_unlock(&fdp->fd_knhashlock); | |
468 | } | |
469 | ||
470 | /* wait event for knote locks */ | |
471 | static inline event_t | |
472 | knote_lock_wev(struct knote *kn) | |
473 | { | |
474 | return (event_t)(&kn->kn_hook); | |
475 | } | |
476 | ||
477 | /* wait event for kevent_register_wait_* */ | |
478 | static inline event64_t | |
479 | knote_filt_wev64(struct knote *kn) | |
480 | { | |
481 | /* kdp_workloop_sync_wait_find_owner knows about this */ | |
482 | return CAST_EVENT64_T(kn); | |
483 | } | |
484 | ||
485 | /* wait event for knote_post/knote_drop */ | |
486 | static inline event64_t | |
487 | knote_post_wev64(struct knote *kn) | |
488 | { | |
489 | return CAST_EVENT64_T(&kn->kn_kevent); | |
490 | } | |
491 | ||
492 | /*! | |
493 | * @function knote_has_qos | |
494 | * | |
495 | * @brief | |
496 | * Whether the knote has a regular QoS. | |
497 | * | |
498 | * @discussion | |
499 | * kn_qos_override is: | |
500 | * - 0 on kqfiles | |
501 | * - THREAD_QOS_LAST for special buckets (stayactive, manager) | |
502 | * | |
503 | * Other values mean the knote participates to QoS propagation. | |
504 | */ | |
505 | static inline bool | |
506 | knote_has_qos(struct knote *kn) | |
507 | { | |
508 | return kn->kn_qos_override > 0 && kn->kn_qos_override < THREAD_QOS_LAST; | |
509 | } | |
510 | ||
511 | #pragma mark knote locks | |
512 | ||
513 | /* | |
514 | * Enum used by the knote_lock_* functions. | |
515 | * | |
516 | * KNOTE_KQ_LOCK_ALWAYS | |
517 | * The function will always return with the kq lock held. | |
518 | * | |
519 | * KNOTE_KQ_LOCK_ON_SUCCESS | |
520 | * The function will return with the kq lock held if it was successful | |
521 | * (knote_lock() is the only function that can fail). | |
522 | * | |
523 | * KNOTE_KQ_LOCK_ON_FAILURE | |
524 | * The function will return with the kq lock held if it was unsuccessful | |
525 | * (knote_lock() is the only function that can fail). | |
526 | * | |
527 | * KNOTE_KQ_UNLOCK: | |
528 | * The function returns with the kq unlocked. | |
529 | */ | |
530 | enum kqlocking { | |
531 | KNOTE_KQ_LOCK_ALWAYS, | |
532 | KNOTE_KQ_LOCK_ON_SUCCESS, | |
533 | KNOTE_KQ_LOCK_ON_FAILURE, | |
534 | KNOTE_KQ_UNLOCK, | |
535 | }; | |
536 | ||
537 | static struct knote_lock_ctx * | |
538 | knote_lock_ctx_find(kqueue_t kqu, struct knote *kn) | |
539 | { | |
540 | struct knote_lock_ctx *ctx; | |
541 | LIST_FOREACH(ctx, &kqu.kq->kq_knlocks, knlc_link) { | |
542 | if (ctx->knlc_knote == kn) { | |
543 | return ctx; | |
544 | } | |
545 | } | |
546 | panic("knote lock context not found: %p", kn); | |
547 | __builtin_trap(); | |
548 | } | |
549 | ||
550 | /* slowpath of knote_lock() */ | |
551 | __attribute__((noinline)) | |
552 | static bool __result_use_check | |
553 | knote_lock_slow(kqueue_t kqu, struct knote *kn, | |
554 | struct knote_lock_ctx *knlc, int kqlocking) | |
555 | { | |
556 | struct knote_lock_ctx *owner_lc; | |
557 | struct uthread *uth = current_uthread(); | |
558 | wait_result_t wr; | |
559 | ||
560 | kqlock_held(kqu); | |
561 | ||
562 | owner_lc = knote_lock_ctx_find(kqu, kn); | |
563 | #if DEBUG || DEVELOPMENT | |
564 | knlc->knlc_state = KNOTE_LOCK_CTX_WAITING; | |
565 | #endif | |
566 | owner_lc->knlc_waiters++; | |
567 | ||
568 | /* | |
569 | * Make our lock context visible to knote_unlock() | |
570 | */ | |
571 | uth->uu_knlock = knlc; | |
572 | ||
573 | wr = lck_spin_sleep_with_inheritor(&kqu.kq->kq_lock, LCK_SLEEP_UNLOCK, | |
574 | knote_lock_wev(kn), owner_lc->knlc_thread, | |
575 | THREAD_UNINT | THREAD_WAIT_NOREPORT, TIMEOUT_WAIT_FOREVER); | |
576 | ||
577 | if (wr == THREAD_RESTART) { | |
578 | /* | |
579 | * We haven't been woken up by knote_unlock() but knote_unlock_cancel. | |
580 | * We need to cleanup the state since no one did. | |
581 | */ | |
582 | uth->uu_knlock = NULL; | |
583 | #if DEBUG || DEVELOPMENT | |
584 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_WAITING); | |
585 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; | |
586 | #endif | |
587 | ||
588 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || | |
589 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { | |
590 | kqlock(kqu); | |
591 | } | |
592 | return false; | |
593 | } else { | |
594 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || | |
595 | kqlocking == KNOTE_KQ_LOCK_ON_SUCCESS) { | |
596 | kqlock(kqu); | |
597 | #if DEBUG || DEVELOPMENT | |
598 | /* | |
599 | * This state is set under the lock so we can't | |
600 | * really assert this unless we hold the lock. | |
601 | */ | |
602 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); | |
603 | #endif | |
604 | } | |
605 | return true; | |
606 | } | |
607 | } | |
608 | ||
609 | /* | |
610 | * Attempts to take the "knote" lock. | |
611 | * | |
612 | * Called with the kqueue lock held. | |
613 | * | |
614 | * Returns true if the knote lock is acquired, false if it has been dropped | |
615 | */ | |
616 | static bool __result_use_check | |
617 | knote_lock(kqueue_t kqu, struct knote *kn, struct knote_lock_ctx *knlc, | |
618 | enum kqlocking kqlocking) | |
619 | { | |
620 | kqlock_held(kqu); | |
621 | ||
622 | #if DEBUG || DEVELOPMENT | |
623 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_UNLOCKED); | |
624 | #endif | |
625 | knlc->knlc_knote = kn; | |
626 | knlc->knlc_thread = current_thread(); | |
627 | knlc->knlc_waiters = 0; | |
628 | ||
629 | if (__improbable(kn->kn_status & KN_LOCKED)) { | |
630 | return knote_lock_slow(kqu, kn, knlc, kqlocking); | |
631 | } | |
632 | ||
633 | /* | |
634 | * When the knote will be dropped, the knote lock is taken before | |
635 | * KN_DROPPING is set, and then the knote will be removed from any | |
636 | * hash table that references it before the lock is canceled. | |
637 | */ | |
638 | assert((kn->kn_status & KN_DROPPING) == 0); | |
639 | LIST_INSERT_HEAD(&kqu.kq->kq_knlocks, knlc, knlc_link); | |
640 | kn->kn_status |= KN_LOCKED; | |
641 | #if DEBUG || DEVELOPMENT | |
642 | knlc->knlc_state = KNOTE_LOCK_CTX_LOCKED; | |
643 | #endif | |
644 | ||
645 | if (kqlocking == KNOTE_KQ_UNLOCK || | |
646 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { | |
647 | kqunlock(kqu); | |
648 | } | |
649 | return true; | |
650 | } | |
651 | ||
652 | /* | |
653 | * Unlocks a knote successfully locked with knote_lock(). | |
654 | * | |
655 | * Called with the kqueue lock held. | |
656 | * | |
657 | * Returns with the kqueue lock held according to KNOTE_KQ_* mode. | |
658 | */ | |
659 | static void | |
660 | knote_unlock(kqueue_t kqu, struct knote *kn, | |
661 | struct knote_lock_ctx *knlc, enum kqlocking kqlocking) | |
662 | { | |
663 | kqlock_held(kqu); | |
664 | ||
665 | assert(knlc->knlc_knote == kn); | |
666 | assert(kn->kn_status & KN_LOCKED); | |
667 | #if DEBUG || DEVELOPMENT | |
668 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); | |
669 | #endif | |
670 | ||
671 | LIST_REMOVE(knlc, knlc_link); | |
672 | ||
673 | if (knlc->knlc_waiters) { | |
674 | thread_t thread = THREAD_NULL; | |
675 | ||
676 | wakeup_one_with_inheritor(knote_lock_wev(kn), THREAD_AWAKENED, | |
677 | LCK_WAKE_DEFAULT, &thread); | |
678 | ||
679 | /* | |
680 | * knote_lock_slow() publishes the lock context of waiters | |
681 | * in uthread::uu_knlock. | |
682 | * | |
683 | * Reach out and make this context the new owner. | |
684 | */ | |
685 | struct uthread *ut = get_bsdthread_info(thread); | |
686 | struct knote_lock_ctx *next_owner_lc = ut->uu_knlock; | |
687 | ||
688 | assert(next_owner_lc->knlc_knote == kn); | |
689 | next_owner_lc->knlc_waiters = knlc->knlc_waiters - 1; | |
690 | LIST_INSERT_HEAD(&kqu.kq->kq_knlocks, next_owner_lc, knlc_link); | |
691 | #if DEBUG || DEVELOPMENT | |
692 | next_owner_lc->knlc_state = KNOTE_LOCK_CTX_LOCKED; | |
693 | #endif | |
694 | ut->uu_knlock = NULL; | |
695 | thread_deallocate_safe(thread); | |
696 | } else { | |
697 | kn->kn_status &= ~KN_LOCKED; | |
698 | } | |
699 | ||
700 | if ((kn->kn_status & KN_MERGE_QOS) && !(kn->kn_status & KN_POSTING)) { | |
701 | /* | |
702 | * No f_event() in flight anymore, we can leave QoS "Merge" mode | |
703 | * | |
704 | * See knote_adjust_qos() | |
705 | */ | |
706 | kn->kn_status &= ~KN_MERGE_QOS; | |
707 | } | |
708 | if (kqlocking == KNOTE_KQ_UNLOCK) { | |
709 | kqunlock(kqu); | |
710 | } | |
711 | #if DEBUG || DEVELOPMENT | |
712 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; | |
713 | #endif | |
714 | } | |
715 | ||
716 | /* | |
717 | * Aborts all waiters for a knote lock, and unlock the knote. | |
718 | * | |
719 | * Called with the kqueue lock held. | |
720 | * | |
721 | * Returns with the kqueue unlocked. | |
722 | */ | |
723 | static void | |
724 | knote_unlock_cancel(struct kqueue *kq, struct knote *kn, | |
725 | struct knote_lock_ctx *knlc) | |
726 | { | |
727 | kqlock_held(kq); | |
728 | ||
729 | assert(knlc->knlc_knote == kn); | |
730 | assert(kn->kn_status & KN_LOCKED); | |
731 | assert(kn->kn_status & KN_DROPPING); | |
732 | ||
733 | LIST_REMOVE(knlc, knlc_link); | |
734 | kn->kn_status &= ~KN_LOCKED; | |
735 | kqunlock(kq); | |
736 | ||
737 | if (knlc->knlc_waiters) { | |
738 | wakeup_all_with_inheritor(knote_lock_wev(kn), THREAD_RESTART); | |
739 | } | |
740 | #if DEBUG || DEVELOPMENT | |
741 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; | |
742 | #endif | |
743 | } | |
744 | ||
745 | /* | |
746 | * Call the f_event hook of a given filter. | |
747 | * | |
748 | * Takes a use count to protect against concurrent drops. | |
749 | */ | |
750 | static void | |
751 | knote_post(struct knote *kn, long hint) | |
752 | { | |
753 | struct kqueue *kq = knote_get_kq(kn); | |
754 | int dropping, result; | |
755 | ||
756 | kqlock(kq); | |
757 | ||
758 | if (__improbable(kn->kn_status & (KN_DROPPING | KN_VANISHED))) { | |
759 | return kqunlock(kq); | |
760 | } | |
761 | ||
762 | if (__improbable(kn->kn_status & KN_POSTING)) { | |
763 | panic("KNOTE() called concurrently on knote %p", kn); | |
764 | } | |
765 | ||
766 | kn->kn_status |= KN_POSTING; | |
767 | ||
768 | kqunlock(kq); | |
769 | result = filter_call(knote_fops(kn), f_event(kn, hint)); | |
770 | kqlock(kq); | |
771 | ||
772 | dropping = (kn->kn_status & KN_DROPPING); | |
773 | ||
774 | if (!dropping && (result & FILTER_ACTIVE)) { | |
775 | knote_activate(kq, kn, result); | |
776 | } | |
777 | ||
778 | if ((kn->kn_status & KN_LOCKED) == 0) { | |
779 | /* | |
780 | * There's no other f_* call in flight, we can leave QoS "Merge" mode. | |
781 | * | |
782 | * See knote_adjust_qos() | |
783 | */ | |
784 | kn->kn_status &= ~(KN_POSTING | KN_MERGE_QOS); | |
785 | } else { | |
786 | kn->kn_status &= ~KN_POSTING; | |
787 | } | |
788 | ||
789 | if (__improbable(dropping)) { | |
790 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, knote_post_wev64(kn), | |
791 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); | |
792 | } | |
793 | ||
794 | kqunlock(kq); | |
795 | } | |
796 | ||
797 | /* | |
798 | * Called by knote_drop() to wait for the last f_event() caller to be done. | |
799 | * | |
800 | * - kq locked at entry | |
801 | * - kq unlocked at exit | |
802 | */ | |
803 | static void | |
804 | knote_wait_for_post(struct kqueue *kq, struct knote *kn) | |
805 | { | |
806 | wait_result_t wr = THREAD_NOT_WAITING; | |
807 | ||
808 | kqlock_held(kq); | |
809 | ||
810 | assert(kn->kn_status & KN_DROPPING); | |
811 | ||
812 | if (kn->kn_status & KN_POSTING) { | |
813 | wr = waitq_assert_wait64((struct waitq *)&kq->kq_wqs, | |
814 | knote_post_wev64(kn), THREAD_UNINT | THREAD_WAIT_NOREPORT, | |
815 | TIMEOUT_WAIT_FOREVER); | |
816 | } | |
817 | kqunlock(kq); | |
818 | if (wr == THREAD_WAITING) { | |
819 | thread_block(THREAD_CONTINUE_NULL); | |
820 | } | |
821 | } | |
822 | ||
823 | #pragma mark knote helpers for filters | |
824 | ||
825 | OS_ALWAYS_INLINE | |
826 | void | |
827 | knote_set_error(struct knote *kn, int error) | |
828 | { | |
829 | kn->kn_flags |= EV_ERROR; | |
830 | kn->kn_sdata = error; | |
831 | } | |
832 | ||
833 | OS_ALWAYS_INLINE | |
834 | int64_t | |
835 | knote_low_watermark(const struct knote *kn) | |
836 | { | |
837 | return (kn->kn_sfflags & NOTE_LOWAT) ? kn->kn_sdata : 1; | |
838 | } | |
839 | ||
840 | /*! | |
841 | * @function knote_fill_kevent_with_sdata | |
842 | * | |
843 | * @brief | |
844 | * Fills in a kevent from the current content of a knote. | |
845 | * | |
846 | * @discussion | |
847 | * This is meant to be called from filter's f_event hooks. | |
848 | * The kevent data is filled with kn->kn_sdata. | |
849 | * | |
850 | * kn->kn_fflags is cleared if kn->kn_flags has EV_CLEAR set. | |
851 | * | |
852 | * Using knote_fill_kevent is typically preferred. | |
853 | */ | |
854 | OS_ALWAYS_INLINE | |
855 | void | |
856 | knote_fill_kevent_with_sdata(struct knote *kn, struct kevent_qos_s *kev) | |
857 | { | |
858 | #define knote_assert_aliases(name1, offs1, name2) \ | |
859 | static_assert(offsetof(struct kevent_qos_s, name1) + offs1 == \ | |
860 | offsetof(struct kevent_internal_s, name2), \ | |
861 | "kevent_qos_s::" #name1 " and kevent_internal_s::" #name2 "need to alias") | |
862 | /* | |
863 | * All the code makes assumptions on these aliasing, | |
864 | * so make sure we fail the build if we ever ever ever break them. | |
865 | */ | |
866 | knote_assert_aliases(ident, 0, kei_ident); | |
867 | #ifdef __LITTLE_ENDIAN__ | |
868 | knote_assert_aliases(filter, 0, kei_filter); // non trivial overlap | |
869 | knote_assert_aliases(filter, 1, kei_filtid); // non trivial overlap | |
870 | #else | |
871 | knote_assert_aliases(filter, 0, kei_filtid); // non trivial overlap | |
872 | knote_assert_aliases(filter, 1, kei_filter); // non trivial overlap | |
873 | #endif | |
874 | knote_assert_aliases(flags, 0, kei_flags); | |
875 | knote_assert_aliases(qos, 0, kei_qos); | |
876 | knote_assert_aliases(udata, 0, kei_udata); | |
877 | knote_assert_aliases(fflags, 0, kei_fflags); | |
878 | knote_assert_aliases(xflags, 0, kei_sfflags); // non trivial overlap | |
879 | knote_assert_aliases(data, 0, kei_sdata); // non trivial overlap | |
880 | knote_assert_aliases(ext, 0, kei_ext); | |
881 | #undef knote_assert_aliases | |
882 | ||
883 | /* | |
884 | * Fix the differences between kevent_qos_s and kevent_internal_s: | |
885 | * - xflags is where kn_sfflags lives, we need to zero it | |
886 | * - fixup the high bits of `filter` where kn_filtid lives | |
887 | */ | |
888 | *kev = *(struct kevent_qos_s *)&kn->kn_kevent; | |
889 | kev->xflags = 0; | |
890 | kev->filter |= 0xff00; | |
891 | if (kn->kn_flags & EV_CLEAR) { | |
892 | kn->kn_fflags = 0; | |
893 | } | |
894 | } | |
895 | ||
896 | /*! | |
897 | * @function knote_fill_kevent | |
898 | * | |
899 | * @brief | |
900 | * Fills in a kevent from the current content of a knote. | |
901 | * | |
902 | * @discussion | |
903 | * This is meant to be called from filter's f_event hooks. | |
904 | * The kevent data is filled with the passed in data. | |
905 | * | |
906 | * kn->kn_fflags is cleared if kn->kn_flags has EV_CLEAR set. | |
907 | */ | |
908 | OS_ALWAYS_INLINE | |
909 | void | |
910 | knote_fill_kevent(struct knote *kn, struct kevent_qos_s *kev, int64_t data) | |
911 | { | |
912 | knote_fill_kevent_with_sdata(kn, kev); | |
913 | kev->filter = kn->kn_filter; | |
914 | kev->data = data; | |
915 | } | |
916 | ||
917 | ||
918 | #pragma mark file_filtops | |
919 | ||
920 | static int | |
921 | filt_fileattach(struct knote *kn, struct kevent_qos_s *kev) | |
922 | { | |
923 | return fo_kqfilter(kn->kn_fp, kn, kev); | |
924 | } | |
925 | ||
926 | SECURITY_READ_ONLY_EARLY(static struct filterops) file_filtops = { | |
927 | .f_isfd = 1, | |
928 | .f_attach = filt_fileattach, | |
929 | }; | |
930 | ||
931 | #pragma mark kqread_filtops | |
932 | ||
933 | #define f_flag f_fglob->fg_flag | |
934 | #define f_ops f_fglob->fg_ops | |
935 | #define f_data f_fglob->fg_data | |
936 | #define f_lflags f_fglob->fg_lflags | |
937 | ||
938 | static void | |
939 | filt_kqdetach(struct knote *kn) | |
940 | { | |
941 | struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data; | |
942 | struct kqueue *kq = &kqf->kqf_kqueue; | |
943 | ||
944 | kqlock(kq); | |
945 | KNOTE_DETACH(&kqf->kqf_sel.si_note, kn); | |
946 | kqunlock(kq); | |
947 | } | |
948 | ||
949 | static int | |
950 | filt_kqueue(struct knote *kn, __unused long hint) | |
951 | { | |
952 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
953 | ||
954 | return kq->kq_count > 0; | |
955 | } | |
956 | ||
957 | static int | |
958 | filt_kqtouch(struct knote *kn, struct kevent_qos_s *kev) | |
959 | { | |
960 | #pragma unused(kev) | |
961 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
962 | int res; | |
963 | ||
964 | kqlock(kq); | |
965 | res = (kq->kq_count > 0); | |
966 | kqunlock(kq); | |
967 | ||
968 | return res; | |
969 | } | |
970 | ||
971 | static int | |
972 | filt_kqprocess(struct knote *kn, struct kevent_qos_s *kev) | |
973 | { | |
974 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
975 | int res = 0; | |
976 | ||
977 | kqlock(kq); | |
978 | if (kq->kq_count) { | |
979 | knote_fill_kevent(kn, kev, kq->kq_count); | |
980 | res = 1; | |
981 | } | |
982 | kqunlock(kq); | |
983 | ||
984 | return res; | |
985 | } | |
986 | ||
987 | SECURITY_READ_ONLY_EARLY(static struct filterops) kqread_filtops = { | |
988 | .f_isfd = 1, | |
989 | .f_detach = filt_kqdetach, | |
990 | .f_event = filt_kqueue, | |
991 | .f_touch = filt_kqtouch, | |
992 | .f_process = filt_kqprocess, | |
993 | }; | |
994 | ||
995 | #pragma mark proc_filtops | |
996 | ||
997 | static int | |
998 | filt_procattach(struct knote *kn, __unused struct kevent_qos_s *kev) | |
999 | { | |
1000 | struct proc *p; | |
1001 | ||
1002 | assert(PID_MAX < NOTE_PDATAMASK); | |
1003 | ||
1004 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) { | |
1005 | knote_set_error(kn, ENOTSUP); | |
1006 | return 0; | |
1007 | } | |
1008 | ||
1009 | p = proc_find(kn->kn_id); | |
1010 | if (p == NULL) { | |
1011 | knote_set_error(kn, ESRCH); | |
1012 | return 0; | |
1013 | } | |
1014 | ||
1015 | const uint32_t NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; | |
1016 | ||
1017 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) { | |
1018 | do { | |
1019 | pid_t selfpid = proc_selfpid(); | |
1020 | ||
1021 | if (p->p_ppid == selfpid) { | |
1022 | break; /* parent => ok */ | |
1023 | } | |
1024 | if ((p->p_lflag & P_LTRACED) != 0 && | |
1025 | (p->p_oppid == selfpid)) { | |
1026 | break; /* parent-in-waiting => ok */ | |
1027 | } | |
1028 | proc_rele(p); | |
1029 | knote_set_error(kn, EACCES); | |
1030 | return 0; | |
1031 | } while (0); | |
1032 | } | |
1033 | ||
1034 | kn->kn_proc = p; | |
1035 | kn->kn_flags |= EV_CLEAR; /* automatically set */ | |
1036 | kn->kn_sdata = 0; /* incoming data is ignored */ | |
1037 | ||
1038 | proc_klist_lock(); | |
1039 | ||
1040 | KNOTE_ATTACH(&p->p_klist, kn); | |
1041 | ||
1042 | proc_klist_unlock(); | |
1043 | ||
1044 | proc_rele(p); | |
1045 | ||
1046 | /* | |
1047 | * only captures edge-triggered events after this point | |
1048 | * so it can't already be fired. | |
1049 | */ | |
1050 | return 0; | |
1051 | } | |
1052 | ||
1053 | ||
1054 | /* | |
1055 | * The knote may be attached to a different process, which may exit, | |
1056 | * leaving nothing for the knote to be attached to. In that case, | |
1057 | * the pointer to the process will have already been nulled out. | |
1058 | */ | |
1059 | static void | |
1060 | filt_procdetach(struct knote *kn) | |
1061 | { | |
1062 | struct proc *p; | |
1063 | ||
1064 | proc_klist_lock(); | |
1065 | ||
1066 | p = kn->kn_proc; | |
1067 | if (p != PROC_NULL) { | |
1068 | kn->kn_proc = PROC_NULL; | |
1069 | KNOTE_DETACH(&p->p_klist, kn); | |
1070 | } | |
1071 | ||
1072 | proc_klist_unlock(); | |
1073 | } | |
1074 | ||
1075 | static int | |
1076 | filt_procevent(struct knote *kn, long hint) | |
1077 | { | |
1078 | u_int event; | |
1079 | ||
1080 | /* ALWAYS CALLED WITH proc_klist_lock */ | |
1081 | ||
1082 | /* | |
1083 | * Note: a lot of bits in hint may be obtained from the knote | |
1084 | * To free some of those bits, see <rdar://problem/12592988> Freeing up | |
1085 | * bits in hint for filt_procevent | |
1086 | * | |
1087 | * mask off extra data | |
1088 | */ | |
1089 | event = (u_int)hint & NOTE_PCTRLMASK; | |
1090 | ||
1091 | /* | |
1092 | * termination lifecycle events can happen while a debugger | |
1093 | * has reparented a process, in which case notifications | |
1094 | * should be quashed except to the tracing parent. When | |
1095 | * the debugger reaps the child (either via wait4(2) or | |
1096 | * process exit), the child will be reparented to the original | |
1097 | * parent and these knotes re-fired. | |
1098 | */ | |
1099 | if (event & NOTE_EXIT) { | |
1100 | if ((kn->kn_proc->p_oppid != 0) | |
1101 | && (knote_get_kq(kn)->kq_p->p_pid != kn->kn_proc->p_ppid)) { | |
1102 | /* | |
1103 | * This knote is not for the current ptrace(2) parent, ignore. | |
1104 | */ | |
1105 | return 0; | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * if the user is interested in this event, record it. | |
1111 | */ | |
1112 | if (kn->kn_sfflags & event) { | |
1113 | kn->kn_fflags |= event; | |
1114 | } | |
1115 | ||
1116 | #pragma clang diagnostic push | |
1117 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" | |
1118 | if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { | |
1119 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); | |
1120 | } | |
1121 | #pragma clang diagnostic pop | |
1122 | ||
1123 | ||
1124 | /* | |
1125 | * The kernel has a wrapper in place that returns the same data | |
1126 | * as is collected here, in kn_hook32. Any changes to how | |
1127 | * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected | |
1128 | * should also be reflected in the proc_pidnoteexit() wrapper. | |
1129 | */ | |
1130 | if (event == NOTE_EXIT) { | |
1131 | kn->kn_hook32 = 0; | |
1132 | if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { | |
1133 | kn->kn_fflags |= NOTE_EXITSTATUS; | |
1134 | kn->kn_hook32 |= (hint & NOTE_PDATAMASK); | |
1135 | } | |
1136 | if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { | |
1137 | kn->kn_fflags |= NOTE_EXIT_DETAIL; | |
1138 | if ((kn->kn_proc->p_lflag & | |
1139 | P_LTERM_DECRYPTFAIL) != 0) { | |
1140 | kn->kn_hook32 |= NOTE_EXIT_DECRYPTFAIL; | |
1141 | } | |
1142 | if ((kn->kn_proc->p_lflag & | |
1143 | P_LTERM_JETSAM) != 0) { | |
1144 | kn->kn_hook32 |= NOTE_EXIT_MEMORY; | |
1145 | switch (kn->kn_proc->p_lflag & P_JETSAM_MASK) { | |
1146 | case P_JETSAM_VMPAGESHORTAGE: | |
1147 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; | |
1148 | break; | |
1149 | case P_JETSAM_VMTHRASHING: | |
1150 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VMTHRASHING; | |
1151 | break; | |
1152 | case P_JETSAM_FCTHRASHING: | |
1153 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_FCTHRASHING; | |
1154 | break; | |
1155 | case P_JETSAM_VNODE: | |
1156 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VNODE; | |
1157 | break; | |
1158 | case P_JETSAM_HIWAT: | |
1159 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_HIWAT; | |
1160 | break; | |
1161 | case P_JETSAM_PID: | |
1162 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_PID; | |
1163 | break; | |
1164 | case P_JETSAM_IDLEEXIT: | |
1165 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_IDLE; | |
1166 | break; | |
1167 | } | |
1168 | } | |
1169 | if ((kn->kn_proc->p_csflags & | |
1170 | CS_KILLED) != 0) { | |
1171 | kn->kn_hook32 |= NOTE_EXIT_CSERROR; | |
1172 | } | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | /* if we have any matching state, activate the knote */ | |
1177 | return kn->kn_fflags != 0; | |
1178 | } | |
1179 | ||
1180 | static int | |
1181 | filt_proctouch(struct knote *kn, struct kevent_qos_s *kev) | |
1182 | { | |
1183 | int res; | |
1184 | ||
1185 | proc_klist_lock(); | |
1186 | ||
1187 | /* accept new filter flags and mask off output events no long interesting */ | |
1188 | kn->kn_sfflags = kev->fflags; | |
1189 | ||
1190 | /* restrict the current results to the (smaller?) set of new interest */ | |
1191 | /* | |
1192 | * For compatibility with previous implementations, we leave kn_fflags | |
1193 | * as they were before. | |
1194 | */ | |
1195 | //kn->kn_fflags &= kn->kn_sfflags; | |
1196 | ||
1197 | res = (kn->kn_fflags != 0); | |
1198 | ||
1199 | proc_klist_unlock(); | |
1200 | ||
1201 | return res; | |
1202 | } | |
1203 | ||
1204 | static int | |
1205 | filt_procprocess(struct knote *kn, struct kevent_qos_s *kev) | |
1206 | { | |
1207 | int res = 0; | |
1208 | ||
1209 | proc_klist_lock(); | |
1210 | if (kn->kn_fflags) { | |
1211 | knote_fill_kevent(kn, kev, kn->kn_hook32); | |
1212 | kn->kn_hook32 = 0; | |
1213 | res = 1; | |
1214 | } | |
1215 | proc_klist_unlock(); | |
1216 | return res; | |
1217 | } | |
1218 | ||
1219 | SECURITY_READ_ONLY_EARLY(static struct filterops) proc_filtops = { | |
1220 | .f_attach = filt_procattach, | |
1221 | .f_detach = filt_procdetach, | |
1222 | .f_event = filt_procevent, | |
1223 | .f_touch = filt_proctouch, | |
1224 | .f_process = filt_procprocess, | |
1225 | }; | |
1226 | ||
1227 | #pragma mark timer_filtops | |
1228 | ||
1229 | struct filt_timer_params { | |
1230 | uint64_t deadline; /* deadline in abs/cont time | |
1231 | * (or 0 if NOTE_ABSOLUTE and deadline is in past) */ | |
1232 | uint64_t leeway; /* leeway in abstime, or 0 if none */ | |
1233 | uint64_t interval; /* interval in abstime or 0 if non-repeating timer */ | |
1234 | }; | |
1235 | ||
1236 | /* | |
1237 | * Values stored in the knote at rest (using Mach absolute time units) | |
1238 | * | |
1239 | * kn->kn_thcall where the thread_call object is stored | |
1240 | * kn->kn_ext[0] next deadline or 0 if immediate expiration | |
1241 | * kn->kn_ext[1] leeway value | |
1242 | * kn->kn_sdata interval timer: the interval | |
1243 | * absolute/deadline timer: 0 | |
1244 | * kn->kn_hook32 timer state | |
1245 | * | |
1246 | * TIMER_IDLE: | |
1247 | * The timer has either never been scheduled or been cancelled. | |
1248 | * It is safe to schedule a new one in this state. | |
1249 | * | |
1250 | * TIMER_ARMED: | |
1251 | * The timer has been scheduled | |
1252 | * | |
1253 | * TIMER_FIRED | |
1254 | * The timer has fired and an event needs to be delivered. | |
1255 | * When in this state, the callout may still be running. | |
1256 | * | |
1257 | * TIMER_IMMEDIATE | |
1258 | * The timer has fired at registration time, and the callout was never | |
1259 | * dispatched. | |
1260 | */ | |
1261 | #define TIMER_IDLE 0x0 | |
1262 | #define TIMER_ARMED 0x1 | |
1263 | #define TIMER_FIRED 0x2 | |
1264 | #define TIMER_IMMEDIATE 0x3 | |
1265 | ||
1266 | static void | |
1267 | filt_timer_set_params(struct knote *kn, struct filt_timer_params *params) | |
1268 | { | |
1269 | kn->kn_ext[0] = params->deadline; | |
1270 | kn->kn_ext[1] = params->leeway; | |
1271 | kn->kn_sdata = params->interval; | |
1272 | } | |
1273 | ||
1274 | /* | |
1275 | * filt_timervalidate - process data from user | |
1276 | * | |
1277 | * Sets up the deadline, interval, and leeway from the provided user data | |
1278 | * | |
1279 | * Input: | |
1280 | * kn_sdata timer deadline or interval time | |
1281 | * kn_sfflags style of timer, unit of measurement | |
1282 | * | |
1283 | * Output: | |
1284 | * struct filter_timer_params to apply to the filter with | |
1285 | * filt_timer_set_params when changes are ready to be commited. | |
1286 | * | |
1287 | * Returns: | |
1288 | * EINVAL Invalid user data parameters | |
1289 | * ERANGE Various overflows with the parameters | |
1290 | * | |
1291 | * Called with timer filter lock held. | |
1292 | */ | |
1293 | static int | |
1294 | filt_timervalidate(const struct kevent_qos_s *kev, | |
1295 | struct filt_timer_params *params) | |
1296 | { | |
1297 | /* | |
1298 | * There are 5 knobs that need to be chosen for a timer registration: | |
1299 | * | |
1300 | * A) Units of time (what is the time duration of the specified number) | |
1301 | * Absolute and interval take: | |
1302 | * NOTE_SECONDS, NOTE_USECONDS, NOTE_NSECONDS, NOTE_MACHTIME | |
1303 | * Defaults to milliseconds if not specified | |
1304 | * | |
1305 | * B) Clock epoch (what is the zero point of the specified number) | |
1306 | * For interval, there is none | |
1307 | * For absolute, defaults to the gettimeofday/calendar epoch | |
1308 | * With NOTE_MACHTIME, uses mach_absolute_time() | |
1309 | * With NOTE_MACHTIME and NOTE_MACH_CONTINUOUS_TIME, uses mach_continuous_time() | |
1310 | * | |
1311 | * C) The knote's behavior on delivery | |
1312 | * Interval timer causes the knote to arm for the next interval unless one-shot is set | |
1313 | * Absolute is a forced one-shot timer which deletes on delivery | |
1314 | * TODO: Add a way for absolute to be not forced one-shot | |
1315 | * | |
1316 | * D) Whether the time duration is relative to now or absolute | |
1317 | * Interval fires at now + duration when it is set up | |
1318 | * Absolute fires at now + difference between now walltime and passed in walltime | |
1319 | * With NOTE_MACHTIME it fires at an absolute MAT or MCT. | |
1320 | * | |
1321 | * E) Whether the timer continues to tick across sleep | |
1322 | * By default all three do not. | |
1323 | * For interval and absolute, NOTE_MACH_CONTINUOUS_TIME causes them to tick across sleep | |
1324 | * With NOTE_ABSOLUTE | NOTE_MACHTIME | NOTE_MACH_CONTINUOUS_TIME: | |
1325 | * expires when mach_continuous_time() is > the passed in value. | |
1326 | */ | |
1327 | ||
1328 | uint64_t multiplier; | |
1329 | ||
1330 | boolean_t use_abstime = FALSE; | |
1331 | ||
1332 | switch (kev->fflags & (NOTE_SECONDS | NOTE_USECONDS | NOTE_NSECONDS | NOTE_MACHTIME)) { | |
1333 | case NOTE_SECONDS: | |
1334 | multiplier = NSEC_PER_SEC; | |
1335 | break; | |
1336 | case NOTE_USECONDS: | |
1337 | multiplier = NSEC_PER_USEC; | |
1338 | break; | |
1339 | case NOTE_NSECONDS: | |
1340 | multiplier = 1; | |
1341 | break; | |
1342 | case NOTE_MACHTIME: | |
1343 | multiplier = 0; | |
1344 | use_abstime = TRUE; | |
1345 | break; | |
1346 | case 0: /* milliseconds (default) */ | |
1347 | multiplier = NSEC_PER_SEC / 1000; | |
1348 | break; | |
1349 | default: | |
1350 | return EINVAL; | |
1351 | } | |
1352 | ||
1353 | /* transform the leeway in kn_ext[1] to same time scale */ | |
1354 | if (kev->fflags & NOTE_LEEWAY) { | |
1355 | uint64_t leeway_abs; | |
1356 | ||
1357 | if (use_abstime) { | |
1358 | leeway_abs = (uint64_t)kev->ext[1]; | |
1359 | } else { | |
1360 | uint64_t leeway_ns; | |
1361 | if (os_mul_overflow((uint64_t)kev->ext[1], multiplier, &leeway_ns)) { | |
1362 | return ERANGE; | |
1363 | } | |
1364 | ||
1365 | nanoseconds_to_absolutetime(leeway_ns, &leeway_abs); | |
1366 | } | |
1367 | ||
1368 | params->leeway = leeway_abs; | |
1369 | } else { | |
1370 | params->leeway = 0; | |
1371 | } | |
1372 | ||
1373 | if (kev->fflags & NOTE_ABSOLUTE) { | |
1374 | uint64_t deadline_abs; | |
1375 | ||
1376 | if (use_abstime) { | |
1377 | deadline_abs = (uint64_t)kev->data; | |
1378 | } else { | |
1379 | uint64_t calendar_deadline_ns; | |
1380 | ||
1381 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &calendar_deadline_ns)) { | |
1382 | return ERANGE; | |
1383 | } | |
1384 | ||
1385 | /* calendar_deadline_ns is in nanoseconds since the epoch */ | |
1386 | ||
1387 | clock_sec_t seconds; | |
1388 | clock_nsec_t nanoseconds; | |
1389 | ||
1390 | /* | |
1391 | * Note that the conversion through wall-time is only done once. | |
1392 | * | |
1393 | * If the relationship between MAT and gettimeofday changes, | |
1394 | * the underlying timer does not update. | |
1395 | * | |
1396 | * TODO: build a wall-time denominated timer_call queue | |
1397 | * and a flag to request DTRTing with wall-time timers | |
1398 | */ | |
1399 | clock_get_calendar_nanotime(&seconds, &nanoseconds); | |
1400 | ||
1401 | uint64_t calendar_now_ns = (uint64_t)seconds * NSEC_PER_SEC + nanoseconds; | |
1402 | ||
1403 | /* if deadline is in the future */ | |
1404 | if (calendar_now_ns < calendar_deadline_ns) { | |
1405 | uint64_t interval_ns = calendar_deadline_ns - calendar_now_ns; | |
1406 | uint64_t interval_abs; | |
1407 | ||
1408 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); | |
1409 | ||
1410 | /* | |
1411 | * Note that the NOTE_MACH_CONTINUOUS_TIME flag here only | |
1412 | * causes the timer to keep ticking across sleep, but | |
1413 | * it does not change the calendar timebase. | |
1414 | */ | |
1415 | ||
1416 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) { | |
1417 | clock_continuoustime_interval_to_deadline(interval_abs, | |
1418 | &deadline_abs); | |
1419 | } else { | |
1420 | clock_absolutetime_interval_to_deadline(interval_abs, | |
1421 | &deadline_abs); | |
1422 | } | |
1423 | } else { | |
1424 | deadline_abs = 0; /* cause immediate expiration */ | |
1425 | } | |
1426 | } | |
1427 | ||
1428 | params->deadline = deadline_abs; | |
1429 | params->interval = 0; /* NOTE_ABSOLUTE is non-repeating */ | |
1430 | } else if (kev->data < 0) { | |
1431 | /* | |
1432 | * Negative interval timers fire immediately, once. | |
1433 | * | |
1434 | * Ideally a negative interval would be an error, but certain clients | |
1435 | * pass negative values on accident, and expect an event back. | |
1436 | * | |
1437 | * In the old implementation the timer would repeat with no delay | |
1438 | * N times until mach_absolute_time() + (N * interval) underflowed, | |
1439 | * then it would wait ~forever by accidentally arming a timer for the far future. | |
1440 | * | |
1441 | * We now skip the power-wasting hot spin phase and go straight to the idle phase. | |
1442 | */ | |
1443 | ||
1444 | params->deadline = 0; /* expire immediately */ | |
1445 | params->interval = 0; /* non-repeating */ | |
1446 | } else { | |
1447 | uint64_t interval_abs = 0; | |
1448 | ||
1449 | if (use_abstime) { | |
1450 | interval_abs = (uint64_t)kev->data; | |
1451 | } else { | |
1452 | uint64_t interval_ns; | |
1453 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &interval_ns)) { | |
1454 | return ERANGE; | |
1455 | } | |
1456 | ||
1457 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); | |
1458 | } | |
1459 | ||
1460 | uint64_t deadline = 0; | |
1461 | ||
1462 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) { | |
1463 | clock_continuoustime_interval_to_deadline(interval_abs, &deadline); | |
1464 | } else { | |
1465 | clock_absolutetime_interval_to_deadline(interval_abs, &deadline); | |
1466 | } | |
1467 | ||
1468 | params->deadline = deadline; | |
1469 | params->interval = interval_abs; | |
1470 | } | |
1471 | ||
1472 | return 0; | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | * filt_timerexpire - the timer callout routine | |
1477 | */ | |
1478 | static void | |
1479 | filt_timerexpire(void *knx, __unused void *spare) | |
1480 | { | |
1481 | struct knote *kn = knx; | |
1482 | int v; | |
1483 | ||
1484 | if (os_atomic_cmpxchgv(&kn->kn_hook32, TIMER_ARMED, TIMER_FIRED, | |
1485 | &v, relaxed)) { | |
1486 | // our f_event always would say FILTER_ACTIVE, | |
1487 | // so be leaner and just do it. | |
1488 | struct kqueue *kq = knote_get_kq(kn); | |
1489 | kqlock(kq); | |
1490 | knote_activate(kq, kn, FILTER_ACTIVE); | |
1491 | kqunlock(kq); | |
1492 | } else { | |
1493 | /* | |
1494 | * From TIMER_ARMED, the only allowed transition are: | |
1495 | * - to TIMER_FIRED through the timer callout just above | |
1496 | * - to TIMER_IDLE due to filt_timercancel() which will wait for the | |
1497 | * timer callout (and any possible invocation of filt_timerexpire) to | |
1498 | * have finished before the state is changed again. | |
1499 | */ | |
1500 | assert(v == TIMER_IDLE); | |
1501 | } | |
1502 | } | |
1503 | ||
1504 | static void | |
1505 | filt_timercancel(struct knote *kn) | |
1506 | { | |
1507 | if (os_atomic_xchg(&kn->kn_hook32, TIMER_IDLE, relaxed) == TIMER_ARMED) { | |
1508 | /* cancel the thread call and wait for any filt_timerexpire in flight */ | |
1509 | thread_call_cancel_wait(kn->kn_thcall); | |
1510 | } | |
1511 | } | |
1512 | ||
1513 | /* | |
1514 | * Does this deadline needs a timer armed for it, or has it expired? | |
1515 | */ | |
1516 | static bool | |
1517 | filt_timer_is_ready(struct knote *kn) | |
1518 | { | |
1519 | uint64_t now, deadline = kn->kn_ext[0]; | |
1520 | ||
1521 | if (deadline == 0) { | |
1522 | return true; | |
1523 | } | |
1524 | ||
1525 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) { | |
1526 | now = mach_continuous_time(); | |
1527 | } else { | |
1528 | now = mach_absolute_time(); | |
1529 | } | |
1530 | return deadline <= now; | |
1531 | } | |
1532 | ||
1533 | /* | |
1534 | * Arm a timer | |
1535 | * | |
1536 | * It is the responsibility of the caller to make sure the timer call | |
1537 | * has completed or been cancelled properly prior to arming it. | |
1538 | */ | |
1539 | static void | |
1540 | filt_timerarm(struct knote *kn) | |
1541 | { | |
1542 | uint64_t deadline = kn->kn_ext[0]; | |
1543 | uint64_t leeway = kn->kn_ext[1]; | |
1544 | ||
1545 | int filter_flags = kn->kn_sfflags; | |
1546 | unsigned int timer_flags = 0; | |
1547 | ||
1548 | assert(os_atomic_load(&kn->kn_hook32, relaxed) == TIMER_IDLE); | |
1549 | ||
1550 | if (filter_flags & NOTE_CRITICAL) { | |
1551 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; | |
1552 | } else if (filter_flags & NOTE_BACKGROUND) { | |
1553 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; | |
1554 | } else { | |
1555 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; | |
1556 | } | |
1557 | ||
1558 | if (filter_flags & NOTE_LEEWAY) { | |
1559 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; | |
1560 | } | |
1561 | ||
1562 | if (filter_flags & NOTE_MACH_CONTINUOUS_TIME) { | |
1563 | timer_flags |= THREAD_CALL_CONTINUOUS; | |
1564 | } | |
1565 | ||
1566 | os_atomic_store(&kn->kn_hook32, TIMER_ARMED, relaxed); | |
1567 | thread_call_enter_delayed_with_leeway(kn->kn_thcall, NULL, | |
1568 | deadline, leeway, timer_flags); | |
1569 | } | |
1570 | ||
1571 | /* | |
1572 | * Allocate a thread call for the knote's lifetime, and kick off the timer. | |
1573 | */ | |
1574 | static int | |
1575 | filt_timerattach(struct knote *kn, struct kevent_qos_s *kev) | |
1576 | { | |
1577 | thread_call_t callout; | |
1578 | struct filt_timer_params params; | |
1579 | int error; | |
1580 | ||
1581 | if ((error = filt_timervalidate(kev, ¶ms)) != 0) { | |
1582 | knote_set_error(kn, error); | |
1583 | return 0; | |
1584 | } | |
1585 | ||
1586 | callout = thread_call_allocate_with_options(filt_timerexpire, | |
1587 | (thread_call_param_t)kn, THREAD_CALL_PRIORITY_HIGH, | |
1588 | THREAD_CALL_OPTIONS_ONCE); | |
1589 | ||
1590 | if (NULL == callout) { | |
1591 | knote_set_error(kn, ENOMEM); | |
1592 | return 0; | |
1593 | } | |
1594 | ||
1595 | filt_timer_set_params(kn, ¶ms); | |
1596 | kn->kn_thcall = callout; | |
1597 | kn->kn_flags |= EV_CLEAR; | |
1598 | os_atomic_store(&kn->kn_hook32, TIMER_IDLE, relaxed); | |
1599 | ||
1600 | /* NOTE_ABSOLUTE implies EV_ONESHOT */ | |
1601 | if (kn->kn_sfflags & NOTE_ABSOLUTE) { | |
1602 | kn->kn_flags |= EV_ONESHOT; | |
1603 | } | |
1604 | ||
1605 | if (filt_timer_is_ready(kn)) { | |
1606 | os_atomic_store(&kn->kn_hook32, TIMER_IMMEDIATE, relaxed); | |
1607 | return FILTER_ACTIVE; | |
1608 | } else { | |
1609 | filt_timerarm(kn); | |
1610 | return 0; | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | /* | |
1615 | * Shut down the timer if it's running, and free the callout. | |
1616 | */ | |
1617 | static void | |
1618 | filt_timerdetach(struct knote *kn) | |
1619 | { | |
1620 | __assert_only boolean_t freed; | |
1621 | ||
1622 | /* | |
1623 | * Unconditionally cancel to make sure there can't be any filt_timerexpire() | |
1624 | * running anymore. | |
1625 | */ | |
1626 | thread_call_cancel_wait(kn->kn_thcall); | |
1627 | freed = thread_call_free(kn->kn_thcall); | |
1628 | assert(freed); | |
1629 | } | |
1630 | ||
1631 | /* | |
1632 | * filt_timertouch - update timer knote with new user input | |
1633 | * | |
1634 | * Cancel and restart the timer based on new user data. When | |
1635 | * the user picks up a knote, clear the count of how many timer | |
1636 | * pops have gone off (in kn_data). | |
1637 | */ | |
1638 | static int | |
1639 | filt_timertouch(struct knote *kn, struct kevent_qos_s *kev) | |
1640 | { | |
1641 | struct filt_timer_params params; | |
1642 | uint32_t changed_flags = (kn->kn_sfflags ^ kev->fflags); | |
1643 | int error; | |
1644 | ||
1645 | if (changed_flags & NOTE_ABSOLUTE) { | |
1646 | kev->flags |= EV_ERROR; | |
1647 | kev->data = EINVAL; | |
1648 | return 0; | |
1649 | } | |
1650 | ||
1651 | if ((error = filt_timervalidate(kev, ¶ms)) != 0) { | |
1652 | kev->flags |= EV_ERROR; | |
1653 | kev->data = error; | |
1654 | return 0; | |
1655 | } | |
1656 | ||
1657 | /* capture the new values used to compute deadline */ | |
1658 | filt_timercancel(kn); | |
1659 | filt_timer_set_params(kn, ¶ms); | |
1660 | kn->kn_sfflags = kev->fflags; | |
1661 | ||
1662 | if (filt_timer_is_ready(kn)) { | |
1663 | os_atomic_store(&kn->kn_hook32, TIMER_IMMEDIATE, relaxed); | |
1664 | return FILTER_ACTIVE | FILTER_UPDATE_REQ_QOS; | |
1665 | } else { | |
1666 | filt_timerarm(kn); | |
1667 | return FILTER_UPDATE_REQ_QOS; | |
1668 | } | |
1669 | } | |
1670 | ||
1671 | /* | |
1672 | * filt_timerprocess - query state of knote and snapshot event data | |
1673 | * | |
1674 | * Determine if the timer has fired in the past, snapshot the state | |
1675 | * of the kevent for returning to user-space, and clear pending event | |
1676 | * counters for the next time. | |
1677 | */ | |
1678 | static int | |
1679 | filt_timerprocess(struct knote *kn, struct kevent_qos_s *kev) | |
1680 | { | |
1681 | /* | |
1682 | * filt_timerprocess is serialized with any filter routine except for | |
1683 | * filt_timerexpire which atomically does a TIMER_ARMED -> TIMER_FIRED | |
1684 | * transition, and on success, activates the knote. | |
1685 | * | |
1686 | * Hence, we don't need atomic modifications of the state, only to peek at | |
1687 | * whether we see any of the "FIRED" state, and if we do, it is safe to | |
1688 | * do simple state machine transitions. | |
1689 | */ | |
1690 | switch (os_atomic_load(&kn->kn_hook32, relaxed)) { | |
1691 | case TIMER_IDLE: | |
1692 | case TIMER_ARMED: | |
1693 | /* | |
1694 | * This can happen if a touch resets a timer that had fired | |
1695 | * without being processed | |
1696 | */ | |
1697 | return 0; | |
1698 | } | |
1699 | ||
1700 | os_atomic_store(&kn->kn_hook32, TIMER_IDLE, relaxed); | |
1701 | ||
1702 | /* | |
1703 | * Copy out the interesting kevent state, | |
1704 | * but don't leak out the raw time calculations. | |
1705 | * | |
1706 | * TODO: potential enhancements - tell the user about: | |
1707 | * - deadline to which this timer thought it was expiring | |
1708 | * - return kn_sfflags in the fflags field so the client can know | |
1709 | * under what flags the timer fired | |
1710 | */ | |
1711 | knote_fill_kevent(kn, kev, 1); | |
1712 | kev->ext[0] = 0; | |
1713 | /* kev->ext[1] = 0; JMM - shouldn't we hide this too? */ | |
1714 | ||
1715 | if (kn->kn_sdata != 0) { | |
1716 | /* | |
1717 | * This is a 'repeating' timer, so we have to emit | |
1718 | * how many intervals expired between the arm | |
1719 | * and the process. | |
1720 | * | |
1721 | * A very strange style of interface, because | |
1722 | * this could easily be done in the client... | |
1723 | */ | |
1724 | ||
1725 | uint64_t now; | |
1726 | ||
1727 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) { | |
1728 | now = mach_continuous_time(); | |
1729 | } else { | |
1730 | now = mach_absolute_time(); | |
1731 | } | |
1732 | ||
1733 | uint64_t first_deadline = kn->kn_ext[0]; | |
1734 | uint64_t interval_abs = kn->kn_sdata; | |
1735 | uint64_t orig_arm_time = first_deadline - interval_abs; | |
1736 | ||
1737 | assert(now > orig_arm_time); | |
1738 | assert(now > first_deadline); | |
1739 | ||
1740 | uint64_t elapsed = now - orig_arm_time; | |
1741 | ||
1742 | uint64_t num_fired = elapsed / interval_abs; | |
1743 | ||
1744 | /* | |
1745 | * To reach this code, we must have seen the timer pop | |
1746 | * and be in repeating mode, so therefore it must have been | |
1747 | * more than 'interval' time since the attach or last | |
1748 | * successful touch. | |
1749 | */ | |
1750 | assert(num_fired > 0); | |
1751 | ||
1752 | /* report how many intervals have elapsed to the user */ | |
1753 | kev->data = (int64_t)num_fired; | |
1754 | ||
1755 | /* We only need to re-arm the timer if it's not about to be destroyed */ | |
1756 | if ((kn->kn_flags & EV_ONESHOT) == 0) { | |
1757 | /* fire at the end of the next interval */ | |
1758 | uint64_t new_deadline = first_deadline + num_fired * interval_abs; | |
1759 | ||
1760 | assert(new_deadline > now); | |
1761 | ||
1762 | kn->kn_ext[0] = new_deadline; | |
1763 | ||
1764 | /* | |
1765 | * This can't shortcut setting up the thread call, because | |
1766 | * knote_process deactivates EV_CLEAR knotes unconditionnally. | |
1767 | */ | |
1768 | filt_timerarm(kn); | |
1769 | } | |
1770 | } | |
1771 | ||
1772 | return FILTER_ACTIVE; | |
1773 | } | |
1774 | ||
1775 | SECURITY_READ_ONLY_EARLY(static struct filterops) timer_filtops = { | |
1776 | .f_extended_codes = true, | |
1777 | .f_attach = filt_timerattach, | |
1778 | .f_detach = filt_timerdetach, | |
1779 | .f_event = filt_bad_event, | |
1780 | .f_touch = filt_timertouch, | |
1781 | .f_process = filt_timerprocess, | |
1782 | }; | |
1783 | ||
1784 | #pragma mark user_filtops | |
1785 | ||
1786 | static int | |
1787 | filt_userattach(struct knote *kn, __unused struct kevent_qos_s *kev) | |
1788 | { | |
1789 | if (kn->kn_sfflags & NOTE_TRIGGER) { | |
1790 | kn->kn_hook32 = FILTER_ACTIVE; | |
1791 | } else { | |
1792 | kn->kn_hook32 = 0; | |
1793 | } | |
1794 | return kn->kn_hook32; | |
1795 | } | |
1796 | ||
1797 | static int | |
1798 | filt_usertouch(struct knote *kn, struct kevent_qos_s *kev) | |
1799 | { | |
1800 | uint32_t ffctrl; | |
1801 | int fflags; | |
1802 | ||
1803 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; | |
1804 | fflags = kev->fflags & NOTE_FFLAGSMASK; | |
1805 | switch (ffctrl) { | |
1806 | case NOTE_FFNOP: | |
1807 | break; | |
1808 | case NOTE_FFAND: | |
1809 | kn->kn_sfflags &= fflags; | |
1810 | break; | |
1811 | case NOTE_FFOR: | |
1812 | kn->kn_sfflags |= fflags; | |
1813 | break; | |
1814 | case NOTE_FFCOPY: | |
1815 | kn->kn_sfflags = fflags; | |
1816 | break; | |
1817 | } | |
1818 | kn->kn_sdata = kev->data; | |
1819 | ||
1820 | if (kev->fflags & NOTE_TRIGGER) { | |
1821 | kn->kn_hook32 = FILTER_ACTIVE; | |
1822 | } | |
1823 | return (int)kn->kn_hook32; | |
1824 | } | |
1825 | ||
1826 | static int | |
1827 | filt_userprocess(struct knote *kn, struct kevent_qos_s *kev) | |
1828 | { | |
1829 | int result = (int)kn->kn_hook32; | |
1830 | ||
1831 | if (result) { | |
1832 | /* EVFILT_USER returns the data that was passed in */ | |
1833 | knote_fill_kevent_with_sdata(kn, kev); | |
1834 | kev->fflags = kn->kn_sfflags; | |
1835 | if (kn->kn_flags & EV_CLEAR) { | |
1836 | /* knote_fill_kevent cleared kn_fflags */ | |
1837 | kn->kn_hook32 = 0; | |
1838 | } | |
1839 | } | |
1840 | ||
1841 | return result; | |
1842 | } | |
1843 | ||
1844 | SECURITY_READ_ONLY_EARLY(static struct filterops) user_filtops = { | |
1845 | .f_extended_codes = true, | |
1846 | .f_attach = filt_userattach, | |
1847 | .f_detach = filt_no_detach, | |
1848 | .f_event = filt_bad_event, | |
1849 | .f_touch = filt_usertouch, | |
1850 | .f_process = filt_userprocess, | |
1851 | }; | |
1852 | ||
1853 | #pragma mark workloop_filtops | |
1854 | ||
1855 | #define EPREEMPTDISABLED (-1) | |
1856 | ||
1857 | static inline void | |
1858 | filt_wllock(struct kqworkloop *kqwl) | |
1859 | { | |
1860 | lck_spin_lock(&kqwl->kqwl_statelock); | |
1861 | } | |
1862 | ||
1863 | static inline void | |
1864 | filt_wlunlock(struct kqworkloop *kqwl) | |
1865 | { | |
1866 | lck_spin_unlock(&kqwl->kqwl_statelock); | |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * Returns true when the interlock for the turnstile is the workqueue lock | |
1871 | * | |
1872 | * When this is the case, all turnstiles operations are delegated | |
1873 | * to the workqueue subsystem. | |
1874 | * | |
1875 | * This is required because kqueue_threadreq_bind_prepost only holds the | |
1876 | * workqueue lock but needs to move the inheritor from the workloop turnstile | |
1877 | * away from the creator thread, so that this now fulfilled request cannot be | |
1878 | * picked anymore by other threads. | |
1879 | */ | |
1880 | static inline bool | |
1881 | filt_wlturnstile_interlock_is_workq(struct kqworkloop *kqwl) | |
1882 | { | |
1883 | return kqr_thread_requested_pending(&kqwl->kqwl_request); | |
1884 | } | |
1885 | ||
1886 | static void | |
1887 | filt_wlupdate_inheritor(struct kqworkloop *kqwl, struct turnstile *ts, | |
1888 | turnstile_update_flags_t flags) | |
1889 | { | |
1890 | turnstile_inheritor_t inheritor = TURNSTILE_INHERITOR_NULL; | |
1891 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
1892 | ||
1893 | /* | |
1894 | * binding to the workq should always happen through | |
1895 | * workq_kern_threadreq_update_inheritor() | |
1896 | */ | |
1897 | assert(!filt_wlturnstile_interlock_is_workq(kqwl)); | |
1898 | ||
1899 | if ((inheritor = kqwl->kqwl_owner)) { | |
1900 | flags |= TURNSTILE_INHERITOR_THREAD; | |
1901 | } else if ((inheritor = kqr_thread(kqr))) { | |
1902 | flags |= TURNSTILE_INHERITOR_THREAD; | |
1903 | } | |
1904 | ||
1905 | turnstile_update_inheritor(ts, inheritor, flags); | |
1906 | } | |
1907 | ||
1908 | #define EVFILT_WORKLOOP_EFAULT_RETRY_COUNT 100 | |
1909 | #define FILT_WLATTACH 0 | |
1910 | #define FILT_WLTOUCH 1 | |
1911 | #define FILT_WLDROP 2 | |
1912 | ||
1913 | __result_use_check | |
1914 | static int | |
1915 | filt_wlupdate(struct kqworkloop *kqwl, struct knote *kn, | |
1916 | struct kevent_qos_s *kev, kq_index_t qos_index, int op) | |
1917 | { | |
1918 | user_addr_t uaddr = CAST_USER_ADDR_T(kev->ext[EV_EXTIDX_WL_ADDR]); | |
1919 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
1920 | thread_t cur_owner, new_owner, extra_thread_ref = THREAD_NULL; | |
1921 | kq_index_t cur_override = THREAD_QOS_UNSPECIFIED; | |
1922 | int efault_retry = EVFILT_WORKLOOP_EFAULT_RETRY_COUNT; | |
1923 | int action = KQWL_UTQ_NONE, error = 0; | |
1924 | bool wl_inheritor_updated = false, needs_wake = false; | |
1925 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; | |
1926 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; | |
1927 | uint64_t udata = 0; | |
1928 | struct turnstile *ts = TURNSTILE_NULL; | |
1929 | ||
1930 | filt_wllock(kqwl); | |
1931 | ||
1932 | again: | |
1933 | new_owner = cur_owner = kqwl->kqwl_owner; | |
1934 | ||
1935 | /* | |
1936 | * Phase 1: | |
1937 | * | |
1938 | * If asked, load the uint64 value at the user provided address and compare | |
1939 | * it against the passed in mask and expected value. | |
1940 | * | |
1941 | * If NOTE_WL_DISCOVER_OWNER is specified, translate the loaded name as | |
1942 | * a thread reference. | |
1943 | * | |
1944 | * If NOTE_WL_END_OWNERSHIP is specified and the currently known owner is | |
1945 | * the current thread, then end ownership. | |
1946 | * | |
1947 | * Lastly decide whether we need to perform a QoS update. | |
1948 | */ | |
1949 | if (uaddr) { | |
1950 | /* | |
1951 | * Until <rdar://problem/24999882> exists, | |
1952 | * disabling preemption copyin forces any | |
1953 | * vm_fault we encounter to fail. | |
1954 | */ | |
1955 | error = copyin_atomic64(uaddr, &udata); | |
1956 | ||
1957 | /* | |
1958 | * If we get EFAULT, drop locks, and retry. | |
1959 | * If we still get an error report it, | |
1960 | * else assume the memory has been faulted | |
1961 | * and attempt to copyin under lock again. | |
1962 | */ | |
1963 | switch (error) { | |
1964 | case 0: | |
1965 | break; | |
1966 | case EFAULT: | |
1967 | if (efault_retry-- > 0) { | |
1968 | filt_wlunlock(kqwl); | |
1969 | error = copyin_atomic64(uaddr, &udata); | |
1970 | filt_wllock(kqwl); | |
1971 | if (error == 0) { | |
1972 | goto again; | |
1973 | } | |
1974 | } | |
1975 | /* FALLTHROUGH */ | |
1976 | default: | |
1977 | goto out; | |
1978 | } | |
1979 | ||
1980 | /* Update state as copied in. */ | |
1981 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; | |
1982 | ||
1983 | if ((udata & mask) != (kdata & mask)) { | |
1984 | error = ESTALE; | |
1985 | } else if (kev->fflags & NOTE_WL_DISCOVER_OWNER) { | |
1986 | /* | |
1987 | * Decipher the owner port name, and translate accordingly. | |
1988 | * The low 2 bits were borrowed for other flags, so mask them off. | |
1989 | * | |
1990 | * Then attempt translation to a thread reference or fail. | |
1991 | */ | |
1992 | mach_port_name_t name = (mach_port_name_t)udata & ~0x3; | |
1993 | if (name != MACH_PORT_NULL) { | |
1994 | name = ipc_entry_name_mask(name); | |
1995 | extra_thread_ref = port_name_to_thread(name, | |
1996 | PORT_TO_THREAD_IN_CURRENT_TASK); | |
1997 | if (extra_thread_ref == THREAD_NULL) { | |
1998 | error = EOWNERDEAD; | |
1999 | goto out; | |
2000 | } | |
2001 | new_owner = extra_thread_ref; | |
2002 | } | |
2003 | } | |
2004 | } | |
2005 | ||
2006 | if ((kev->fflags & NOTE_WL_END_OWNERSHIP) && new_owner == current_thread()) { | |
2007 | new_owner = THREAD_NULL; | |
2008 | } | |
2009 | ||
2010 | if (error == 0) { | |
2011 | if ((kev->fflags & NOTE_WL_THREAD_REQUEST) && (kev->flags & EV_DELETE)) { | |
2012 | action = KQWL_UTQ_SET_QOS_INDEX; | |
2013 | } else if (qos_index && kqr->tr_kq_qos_index != qos_index) { | |
2014 | action = KQWL_UTQ_SET_QOS_INDEX; | |
2015 | } | |
2016 | ||
2017 | if (op == FILT_WLTOUCH) { | |
2018 | /* | |
2019 | * Save off any additional fflags/data we just accepted | |
2020 | * But only keep the last round of "update" bits we acted on which helps | |
2021 | * debugging a lot. | |
2022 | */ | |
2023 | kn->kn_sfflags &= ~NOTE_WL_UPDATES_MASK; | |
2024 | kn->kn_sfflags |= kev->fflags; | |
2025 | if (kev->fflags & NOTE_WL_SYNC_WAKE) { | |
2026 | needs_wake = (kn->kn_thread != THREAD_NULL); | |
2027 | } | |
2028 | } else if (op == FILT_WLDROP) { | |
2029 | if ((kn->kn_sfflags & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE)) == | |
2030 | NOTE_WL_SYNC_WAIT) { | |
2031 | /* | |
2032 | * When deleting a SYNC_WAIT knote that hasn't been woken up | |
2033 | * explicitly, issue a wake up. | |
2034 | */ | |
2035 | kn->kn_sfflags |= NOTE_WL_SYNC_WAKE; | |
2036 | needs_wake = (kn->kn_thread != THREAD_NULL); | |
2037 | } | |
2038 | } | |
2039 | } | |
2040 | ||
2041 | /* | |
2042 | * Phase 2: | |
2043 | * | |
2044 | * Commit ownership and QoS changes if any, possibly wake up waiters | |
2045 | */ | |
2046 | ||
2047 | if (cur_owner == new_owner && action == KQWL_UTQ_NONE && !needs_wake) { | |
2048 | goto out; | |
2049 | } | |
2050 | ||
2051 | kqlock(kqwl); | |
2052 | ||
2053 | /* If already tracked as servicer, don't track as owner */ | |
2054 | if (new_owner == kqr_thread(kqr)) { | |
2055 | new_owner = THREAD_NULL; | |
2056 | } | |
2057 | ||
2058 | if (cur_owner != new_owner) { | |
2059 | kqwl->kqwl_owner = new_owner; | |
2060 | if (new_owner == extra_thread_ref) { | |
2061 | /* we just transfered this ref to kqwl_owner */ | |
2062 | extra_thread_ref = THREAD_NULL; | |
2063 | } | |
2064 | cur_override = kqworkloop_override(kqwl); | |
2065 | ||
2066 | if (new_owner) { | |
2067 | /* override it before we drop the old */ | |
2068 | if (cur_override != THREAD_QOS_UNSPECIFIED) { | |
2069 | thread_add_kevent_override(new_owner, cur_override); | |
2070 | } | |
2071 | if (kqr_thread_requested_pending(kqr)) { | |
2072 | if (action == KQWL_UTQ_NONE) { | |
2073 | action = KQWL_UTQ_REDRIVE_EVENTS; | |
2074 | } | |
2075 | } | |
2076 | } else { | |
2077 | if (!kqr_thread_requested(kqr) && kqr->tr_kq_wakeup) { | |
2078 | if (action == KQWL_UTQ_NONE) { | |
2079 | action = KQWL_UTQ_REDRIVE_EVENTS; | |
2080 | } | |
2081 | } | |
2082 | } | |
2083 | } | |
2084 | ||
2085 | if (action != KQWL_UTQ_NONE) { | |
2086 | kqworkloop_update_threads_qos(kqwl, action, qos_index); | |
2087 | } | |
2088 | ||
2089 | ts = kqwl->kqwl_turnstile; | |
2090 | if (cur_owner != new_owner && ts) { | |
2091 | if (action == KQWL_UTQ_REDRIVE_EVENTS) { | |
2092 | /* | |
2093 | * Note that when action is KQWL_UTQ_REDRIVE_EVENTS, | |
2094 | * the code went through workq_kern_threadreq_initiate() | |
2095 | * and the workqueue has set the inheritor already | |
2096 | */ | |
2097 | assert(filt_wlturnstile_interlock_is_workq(kqwl)); | |
2098 | } else if (filt_wlturnstile_interlock_is_workq(kqwl)) { | |
2099 | workq_kern_threadreq_lock(kqwl->kqwl_p); | |
2100 | workq_kern_threadreq_update_inheritor(kqwl->kqwl_p, kqr, new_owner, | |
2101 | ts, TURNSTILE_IMMEDIATE_UPDATE); | |
2102 | workq_kern_threadreq_unlock(kqwl->kqwl_p); | |
2103 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { | |
2104 | /* | |
2105 | * If the workq is no longer the interlock, then | |
2106 | * workq_kern_threadreq_update_inheritor() has finished a bind | |
2107 | * and we need to fallback to the regular path. | |
2108 | */ | |
2109 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); | |
2110 | } | |
2111 | wl_inheritor_updated = true; | |
2112 | } else { | |
2113 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); | |
2114 | wl_inheritor_updated = true; | |
2115 | } | |
2116 | ||
2117 | /* | |
2118 | * We need a turnstile reference because we are dropping the interlock | |
2119 | * and the caller has not called turnstile_prepare. | |
2120 | */ | |
2121 | if (wl_inheritor_updated) { | |
2122 | turnstile_reference(ts); | |
2123 | } | |
2124 | } | |
2125 | ||
2126 | if (needs_wake && ts) { | |
2127 | waitq_wakeup64_thread(&ts->ts_waitq, knote_filt_wev64(kn), | |
2128 | kn->kn_thread, THREAD_AWAKENED); | |
2129 | if (op == FILT_WLATTACH || op == FILT_WLTOUCH) { | |
2130 | disable_preemption(); | |
2131 | error = EPREEMPTDISABLED; | |
2132 | } | |
2133 | } | |
2134 | ||
2135 | kqunlock(kqwl); | |
2136 | ||
2137 | out: | |
2138 | /* | |
2139 | * Phase 3: | |
2140 | * | |
2141 | * Unlock and cleanup various lingering references and things. | |
2142 | */ | |
2143 | filt_wlunlock(kqwl); | |
2144 | ||
2145 | #if CONFIG_WORKLOOP_DEBUG | |
2146 | KQWL_HISTORY_WRITE_ENTRY(kqwl, { | |
2147 | .updater = current_thread(), | |
2148 | .servicer = kqr_thread(kqr), /* Note: racy */ | |
2149 | .old_owner = cur_owner, | |
2150 | .new_owner = new_owner, | |
2151 | ||
2152 | .kev_ident = kev->ident, | |
2153 | .error = (int16_t)error, | |
2154 | .kev_flags = kev->flags, | |
2155 | .kev_fflags = kev->fflags, | |
2156 | ||
2157 | .kev_mask = mask, | |
2158 | .kev_value = kdata, | |
2159 | .in_value = udata, | |
2160 | }); | |
2161 | #endif // CONFIG_WORKLOOP_DEBUG | |
2162 | ||
2163 | if (wl_inheritor_updated) { | |
2164 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_NOT_HELD); | |
2165 | turnstile_deallocate_safe(ts); | |
2166 | } | |
2167 | ||
2168 | if (cur_owner && new_owner != cur_owner) { | |
2169 | if (cur_override != THREAD_QOS_UNSPECIFIED) { | |
2170 | thread_drop_kevent_override(cur_owner); | |
2171 | } | |
2172 | thread_deallocate_safe(cur_owner); | |
2173 | } | |
2174 | if (extra_thread_ref) { | |
2175 | thread_deallocate_safe(extra_thread_ref); | |
2176 | } | |
2177 | return error; | |
2178 | } | |
2179 | ||
2180 | /* | |
2181 | * Remembers the last updated that came in from userspace for debugging reasons. | |
2182 | * - fflags is mirrored from the userspace kevent | |
2183 | * - ext[i, i != VALUE] is mirrored from the userspace kevent | |
2184 | * - ext[VALUE] is set to what the kernel loaded atomically | |
2185 | * - data is set to the error if any | |
2186 | */ | |
2187 | static inline void | |
2188 | filt_wlremember_last_update(struct knote *kn, struct kevent_qos_s *kev, | |
2189 | int error) | |
2190 | { | |
2191 | kn->kn_fflags = kev->fflags; | |
2192 | kn->kn_sdata = error; | |
2193 | memcpy(kn->kn_ext, kev->ext, sizeof(kev->ext)); | |
2194 | } | |
2195 | ||
2196 | static int | |
2197 | filt_wlupdate_sync_ipc(struct kqworkloop *kqwl, struct knote *kn, | |
2198 | struct kevent_qos_s *kev, int op) | |
2199 | { | |
2200 | uint64_t uaddr = kev->ext[EV_EXTIDX_WL_ADDR]; | |
2201 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; | |
2202 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; | |
2203 | uint64_t udata = 0; | |
2204 | int efault_retry = EVFILT_WORKLOOP_EFAULT_RETRY_COUNT; | |
2205 | int error = 0; | |
2206 | ||
2207 | if (op == FILT_WLATTACH) { | |
2208 | (void)kqueue_alloc_turnstile(&kqwl->kqwl_kqueue); | |
2209 | } else if (uaddr == 0) { | |
2210 | return 0; | |
2211 | } | |
2212 | ||
2213 | filt_wllock(kqwl); | |
2214 | ||
2215 | again: | |
2216 | ||
2217 | /* | |
2218 | * Do the debounce thing, the lock serializing the state is the knote lock. | |
2219 | */ | |
2220 | if (uaddr) { | |
2221 | /* | |
2222 | * Until <rdar://problem/24999882> exists, | |
2223 | * disabling preemption copyin forces any | |
2224 | * vm_fault we encounter to fail. | |
2225 | */ | |
2226 | error = copyin_atomic64(uaddr, &udata); | |
2227 | ||
2228 | /* | |
2229 | * If we get EFAULT, drop locks, and retry. | |
2230 | * If we still get an error report it, | |
2231 | * else assume the memory has been faulted | |
2232 | * and attempt to copyin under lock again. | |
2233 | */ | |
2234 | switch (error) { | |
2235 | case 0: | |
2236 | break; | |
2237 | case EFAULT: | |
2238 | if (efault_retry-- > 0) { | |
2239 | filt_wlunlock(kqwl); | |
2240 | error = copyin_atomic64(uaddr, &udata); | |
2241 | filt_wllock(kqwl); | |
2242 | if (error == 0) { | |
2243 | goto again; | |
2244 | } | |
2245 | } | |
2246 | /* FALLTHROUGH */ | |
2247 | default: | |
2248 | goto out; | |
2249 | } | |
2250 | ||
2251 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; | |
2252 | kn->kn_ext[EV_EXTIDX_WL_VALUE] = udata; | |
2253 | ||
2254 | if ((udata & mask) != (kdata & mask)) { | |
2255 | error = ESTALE; | |
2256 | goto out; | |
2257 | } | |
2258 | } | |
2259 | ||
2260 | if (op == FILT_WLATTACH) { | |
2261 | error = filt_wlattach_sync_ipc(kn); | |
2262 | if (error == 0) { | |
2263 | disable_preemption(); | |
2264 | error = EPREEMPTDISABLED; | |
2265 | } | |
2266 | } | |
2267 | ||
2268 | out: | |
2269 | filt_wlunlock(kqwl); | |
2270 | return error; | |
2271 | } | |
2272 | ||
2273 | static int | |
2274 | filt_wlattach(struct knote *kn, struct kevent_qos_s *kev) | |
2275 | { | |
2276 | struct kqueue *kq = knote_get_kq(kn); | |
2277 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2278 | int error = 0, result = 0; | |
2279 | kq_index_t qos_index = 0; | |
2280 | ||
2281 | if (__improbable((kq->kq_state & KQ_WORKLOOP) == 0)) { | |
2282 | error = ENOTSUP; | |
2283 | goto out; | |
2284 | } | |
2285 | ||
2286 | uint32_t command = (kn->kn_sfflags & NOTE_WL_COMMANDS_MASK); | |
2287 | switch (command) { | |
2288 | case NOTE_WL_THREAD_REQUEST: | |
2289 | if (kn->kn_id != kqwl->kqwl_dynamicid) { | |
2290 | error = EINVAL; | |
2291 | goto out; | |
2292 | } | |
2293 | qos_index = _pthread_priority_thread_qos(kn->kn_qos); | |
2294 | if (qos_index == THREAD_QOS_UNSPECIFIED) { | |
2295 | error = ERANGE; | |
2296 | goto out; | |
2297 | } | |
2298 | if (kqwl->kqwl_request.tr_kq_qos_index) { | |
2299 | /* | |
2300 | * There already is a thread request, and well, you're only allowed | |
2301 | * one per workloop, so fail the attach. | |
2302 | */ | |
2303 | error = EALREADY; | |
2304 | goto out; | |
2305 | } | |
2306 | break; | |
2307 | case NOTE_WL_SYNC_WAIT: | |
2308 | case NOTE_WL_SYNC_WAKE: | |
2309 | if (kn->kn_id == kqwl->kqwl_dynamicid) { | |
2310 | error = EINVAL; | |
2311 | goto out; | |
2312 | } | |
2313 | if ((kn->kn_flags & EV_DISABLE) == 0) { | |
2314 | error = EINVAL; | |
2315 | goto out; | |
2316 | } | |
2317 | if (kn->kn_sfflags & NOTE_WL_END_OWNERSHIP) { | |
2318 | error = EINVAL; | |
2319 | goto out; | |
2320 | } | |
2321 | break; | |
2322 | ||
2323 | case NOTE_WL_SYNC_IPC: | |
2324 | if ((kn->kn_flags & EV_DISABLE) == 0) { | |
2325 | error = EINVAL; | |
2326 | goto out; | |
2327 | } | |
2328 | if (kn->kn_sfflags & (NOTE_WL_UPDATE_QOS | NOTE_WL_DISCOVER_OWNER)) { | |
2329 | error = EINVAL; | |
2330 | goto out; | |
2331 | } | |
2332 | break; | |
2333 | default: | |
2334 | error = EINVAL; | |
2335 | goto out; | |
2336 | } | |
2337 | ||
2338 | if (command == NOTE_WL_SYNC_IPC) { | |
2339 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLATTACH); | |
2340 | } else { | |
2341 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLATTACH); | |
2342 | } | |
2343 | ||
2344 | if (error == EPREEMPTDISABLED) { | |
2345 | error = 0; | |
2346 | result = FILTER_THREADREQ_NODEFEER; | |
2347 | } | |
2348 | out: | |
2349 | if (error) { | |
2350 | /* If userland wants ESTALE to be hidden, fail the attach anyway */ | |
2351 | if (error == ESTALE && (kn->kn_sfflags & NOTE_WL_IGNORE_ESTALE)) { | |
2352 | error = 0; | |
2353 | } | |
2354 | knote_set_error(kn, error); | |
2355 | return result; | |
2356 | } | |
2357 | if (command == NOTE_WL_SYNC_WAIT) { | |
2358 | return kevent_register_wait_prepare(kn, kev, result); | |
2359 | } | |
2360 | /* Just attaching the thread request successfully will fire it */ | |
2361 | if (command == NOTE_WL_THREAD_REQUEST) { | |
2362 | /* | |
2363 | * Thread Request knotes need an explicit touch to be active again, | |
2364 | * so delivering an event needs to also consume it. | |
2365 | */ | |
2366 | kn->kn_flags |= EV_CLEAR; | |
2367 | return result | FILTER_ACTIVE; | |
2368 | } | |
2369 | return result; | |
2370 | } | |
2371 | ||
2372 | static void __dead2 | |
2373 | filt_wlwait_continue(void *parameter, wait_result_t wr) | |
2374 | { | |
2375 | struct _kevent_register *cont_args = parameter; | |
2376 | struct kqworkloop *kqwl = cont_args->kqwl; | |
2377 | ||
2378 | kqlock(kqwl); | |
2379 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { | |
2380 | workq_kern_threadreq_lock(kqwl->kqwl_p); | |
2381 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, NULL, TURNSTILE_WORKLOOPS); | |
2382 | workq_kern_threadreq_unlock(kqwl->kqwl_p); | |
2383 | } else { | |
2384 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, NULL, TURNSTILE_WORKLOOPS); | |
2385 | } | |
2386 | kqunlock(kqwl); | |
2387 | ||
2388 | turnstile_cleanup(); | |
2389 | ||
2390 | if (wr == THREAD_INTERRUPTED) { | |
2391 | cont_args->kev.flags |= EV_ERROR; | |
2392 | cont_args->kev.data = EINTR; | |
2393 | } else if (wr != THREAD_AWAKENED) { | |
2394 | panic("Unexpected wait result: %d", wr); | |
2395 | } | |
2396 | ||
2397 | kevent_register_wait_return(cont_args); | |
2398 | } | |
2399 | ||
2400 | /* | |
2401 | * Called with the workloop mutex held, most of the time never returns as it | |
2402 | * calls filt_wlwait_continue through a continuation. | |
2403 | */ | |
2404 | static void __dead2 | |
2405 | filt_wlpost_register_wait(struct uthread *uth, struct knote *kn, | |
2406 | struct _kevent_register *cont_args) | |
2407 | { | |
2408 | struct kqworkloop *kqwl = cont_args->kqwl; | |
2409 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
2410 | struct turnstile *ts; | |
2411 | bool workq_locked = false; | |
2412 | ||
2413 | kqlock_held(kqwl); | |
2414 | ||
2415 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { | |
2416 | workq_kern_threadreq_lock(kqwl->kqwl_p); | |
2417 | workq_locked = true; | |
2418 | } | |
2419 | ||
2420 | ts = turnstile_prepare((uintptr_t)kqwl, &kqwl->kqwl_turnstile, | |
2421 | TURNSTILE_NULL, TURNSTILE_WORKLOOPS); | |
2422 | ||
2423 | if (workq_locked) { | |
2424 | workq_kern_threadreq_update_inheritor(kqwl->kqwl_p, | |
2425 | &kqwl->kqwl_request, kqwl->kqwl_owner, ts, | |
2426 | TURNSTILE_DELAYED_UPDATE); | |
2427 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { | |
2428 | /* | |
2429 | * if the interlock is no longer the workqueue lock, | |
2430 | * then we don't need to hold it anymore. | |
2431 | */ | |
2432 | workq_kern_threadreq_unlock(kqwl->kqwl_p); | |
2433 | workq_locked = false; | |
2434 | } | |
2435 | } | |
2436 | if (!workq_locked) { | |
2437 | /* | |
2438 | * If the interlock is the workloop's, then it's our responsibility to | |
2439 | * call update_inheritor, so just do it. | |
2440 | */ | |
2441 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_DELAYED_UPDATE); | |
2442 | } | |
2443 | ||
2444 | thread_set_pending_block_hint(uth->uu_thread, kThreadWaitWorkloopSyncWait); | |
2445 | waitq_assert_wait64(&ts->ts_waitq, knote_filt_wev64(kn), | |
2446 | THREAD_ABORTSAFE, TIMEOUT_WAIT_FOREVER); | |
2447 | ||
2448 | if (workq_locked) { | |
2449 | workq_kern_threadreq_unlock(kqwl->kqwl_p); | |
2450 | } | |
2451 | ||
2452 | thread_t thread = kqwl->kqwl_owner ?: kqr_thread(kqr); | |
2453 | if (thread) { | |
2454 | thread_reference(thread); | |
2455 | } | |
2456 | ||
2457 | kevent_register_wait_block(ts, thread, filt_wlwait_continue, cont_args); | |
2458 | } | |
2459 | ||
2460 | /* called in stackshot context to report the thread responsible for blocking this thread */ | |
2461 | void | |
2462 | kdp_workloop_sync_wait_find_owner(__assert_only thread_t thread, | |
2463 | event64_t event, thread_waitinfo_t *waitinfo) | |
2464 | { | |
2465 | struct knote *kn = (struct knote *)event; | |
2466 | assert(kdp_is_in_zone(kn, "knote zone")); | |
2467 | ||
2468 | assert(kn->kn_thread == thread); | |
2469 | ||
2470 | struct kqueue *kq = knote_get_kq(kn); | |
2471 | assert(kdp_is_in_zone(kq, "kqueue workloop zone")); | |
2472 | assert(kq->kq_state & KQ_WORKLOOP); | |
2473 | ||
2474 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2475 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
2476 | ||
2477 | thread_t kqwl_owner = kqwl->kqwl_owner; | |
2478 | ||
2479 | if (kqwl_owner != THREAD_NULL) { | |
2480 | assert(kdp_is_in_zone(kqwl_owner, "threads")); | |
2481 | ||
2482 | waitinfo->owner = thread_tid(kqwl->kqwl_owner); | |
2483 | } else if (kqr_thread_requested_pending(kqr)) { | |
2484 | waitinfo->owner = STACKSHOT_WAITOWNER_THREQUESTED; | |
2485 | } else if (kqr->tr_state >= WORKQ_TR_STATE_BINDING) { | |
2486 | assert(kdp_is_in_zone(kqr->tr_thread, "threads")); | |
2487 | waitinfo->owner = thread_tid(kqr->tr_thread); | |
2488 | } else { | |
2489 | waitinfo->owner = 0; | |
2490 | } | |
2491 | ||
2492 | waitinfo->context = kqwl->kqwl_dynamicid; | |
2493 | } | |
2494 | ||
2495 | static void | |
2496 | filt_wldetach(struct knote *kn) | |
2497 | { | |
2498 | if (kn->kn_sfflags & NOTE_WL_SYNC_IPC) { | |
2499 | filt_wldetach_sync_ipc(kn); | |
2500 | } else if (kn->kn_thread) { | |
2501 | kevent_register_wait_cleanup(kn); | |
2502 | } | |
2503 | } | |
2504 | ||
2505 | static int | |
2506 | filt_wlvalidate_kev_flags(struct knote *kn, struct kevent_qos_s *kev, | |
2507 | thread_qos_t *qos_index) | |
2508 | { | |
2509 | uint32_t new_commands = kev->fflags & NOTE_WL_COMMANDS_MASK; | |
2510 | uint32_t sav_commands = kn->kn_sfflags & NOTE_WL_COMMANDS_MASK; | |
2511 | ||
2512 | if ((kev->fflags & NOTE_WL_DISCOVER_OWNER) && (kev->flags & EV_DELETE)) { | |
2513 | return EINVAL; | |
2514 | } | |
2515 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { | |
2516 | if (kev->flags & EV_DELETE) { | |
2517 | return EINVAL; | |
2518 | } | |
2519 | if (sav_commands != NOTE_WL_THREAD_REQUEST) { | |
2520 | return EINVAL; | |
2521 | } | |
2522 | if (!(*qos_index = _pthread_priority_thread_qos(kev->qos))) { | |
2523 | return ERANGE; | |
2524 | } | |
2525 | } | |
2526 | ||
2527 | switch (new_commands) { | |
2528 | case NOTE_WL_THREAD_REQUEST: | |
2529 | /* thread requests can only update themselves */ | |
2530 | if (sav_commands != NOTE_WL_THREAD_REQUEST) { | |
2531 | return EINVAL; | |
2532 | } | |
2533 | break; | |
2534 | ||
2535 | case NOTE_WL_SYNC_WAIT: | |
2536 | if (kev->fflags & NOTE_WL_END_OWNERSHIP) { | |
2537 | return EINVAL; | |
2538 | } | |
2539 | goto sync_checks; | |
2540 | ||
2541 | case NOTE_WL_SYNC_WAKE: | |
2542 | sync_checks: | |
2543 | if (!(sav_commands & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE))) { | |
2544 | return EINVAL; | |
2545 | } | |
2546 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) { | |
2547 | return EINVAL; | |
2548 | } | |
2549 | break; | |
2550 | ||
2551 | case NOTE_WL_SYNC_IPC: | |
2552 | if (sav_commands != NOTE_WL_SYNC_IPC) { | |
2553 | return EINVAL; | |
2554 | } | |
2555 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) { | |
2556 | return EINVAL; | |
2557 | } | |
2558 | break; | |
2559 | ||
2560 | default: | |
2561 | return EINVAL; | |
2562 | } | |
2563 | return 0; | |
2564 | } | |
2565 | ||
2566 | static int | |
2567 | filt_wltouch(struct knote *kn, struct kevent_qos_s *kev) | |
2568 | { | |
2569 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); | |
2570 | thread_qos_t qos_index = THREAD_QOS_UNSPECIFIED; | |
2571 | int result = 0; | |
2572 | ||
2573 | int error = filt_wlvalidate_kev_flags(kn, kev, &qos_index); | |
2574 | if (error) { | |
2575 | goto out; | |
2576 | } | |
2577 | ||
2578 | uint32_t command = kev->fflags & NOTE_WL_COMMANDS_MASK; | |
2579 | if (command == NOTE_WL_SYNC_IPC) { | |
2580 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLTOUCH); | |
2581 | } else { | |
2582 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLTOUCH); | |
2583 | filt_wlremember_last_update(kn, kev, error); | |
2584 | } | |
2585 | if (error == EPREEMPTDISABLED) { | |
2586 | error = 0; | |
2587 | result = FILTER_THREADREQ_NODEFEER; | |
2588 | } | |
2589 | ||
2590 | out: | |
2591 | if (error) { | |
2592 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { | |
2593 | /* If userland wants ESTALE to be hidden, do not activate */ | |
2594 | return result; | |
2595 | } | |
2596 | kev->flags |= EV_ERROR; | |
2597 | kev->data = error; | |
2598 | return result; | |
2599 | } | |
2600 | if (command == NOTE_WL_SYNC_WAIT && !(kn->kn_sfflags & NOTE_WL_SYNC_WAKE)) { | |
2601 | return kevent_register_wait_prepare(kn, kev, result); | |
2602 | } | |
2603 | /* Just touching the thread request successfully will fire it */ | |
2604 | if (command == NOTE_WL_THREAD_REQUEST) { | |
2605 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { | |
2606 | result |= FILTER_UPDATE_REQ_QOS; | |
2607 | } | |
2608 | result |= FILTER_ACTIVE; | |
2609 | } | |
2610 | return result; | |
2611 | } | |
2612 | ||
2613 | static bool | |
2614 | filt_wlallow_drop(struct knote *kn, struct kevent_qos_s *kev) | |
2615 | { | |
2616 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); | |
2617 | ||
2618 | int error = filt_wlvalidate_kev_flags(kn, kev, NULL); | |
2619 | if (error) { | |
2620 | goto out; | |
2621 | } | |
2622 | ||
2623 | uint32_t command = (kev->fflags & NOTE_WL_COMMANDS_MASK); | |
2624 | if (command == NOTE_WL_SYNC_IPC) { | |
2625 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLDROP); | |
2626 | } else { | |
2627 | error = filt_wlupdate(kqwl, kn, kev, 0, FILT_WLDROP); | |
2628 | filt_wlremember_last_update(kn, kev, error); | |
2629 | } | |
2630 | assert(error != EPREEMPTDISABLED); | |
2631 | ||
2632 | out: | |
2633 | if (error) { | |
2634 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { | |
2635 | return false; | |
2636 | } | |
2637 | kev->flags |= EV_ERROR; | |
2638 | kev->data = error; | |
2639 | return false; | |
2640 | } | |
2641 | return true; | |
2642 | } | |
2643 | ||
2644 | static int | |
2645 | filt_wlprocess(struct knote *kn, struct kevent_qos_s *kev) | |
2646 | { | |
2647 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); | |
2648 | int rc = 0; | |
2649 | ||
2650 | assert(kn->kn_sfflags & NOTE_WL_THREAD_REQUEST); | |
2651 | ||
2652 | kqlock(kqwl); | |
2653 | ||
2654 | if (kqwl->kqwl_owner) { | |
2655 | /* | |
2656 | * <rdar://problem/33584321> userspace sometimes due to events being | |
2657 | * delivered but not triggering a drain session can cause a process | |
2658 | * of the thread request knote. | |
2659 | * | |
2660 | * When that happens, the automatic deactivation due to process | |
2661 | * would swallow the event, so we have to activate the knote again. | |
2662 | */ | |
2663 | knote_activate(kqwl, kn, FILTER_ACTIVE); | |
2664 | } else { | |
2665 | #if DEBUG || DEVELOPMENT | |
2666 | if (kevent_debug_flags() & KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS) { | |
2667 | /* | |
2668 | * see src/queue_internal.h in libdispatch | |
2669 | */ | |
2670 | #define DISPATCH_QUEUE_ENQUEUED 0x1ull | |
2671 | user_addr_t addr = CAST_USER_ADDR_T(kn->kn_ext[EV_EXTIDX_WL_ADDR]); | |
2672 | task_t t = current_task(); | |
2673 | uint64_t val; | |
2674 | if (addr && task_is_active(t) && !task_is_halting(t) && | |
2675 | copyin_atomic64(addr, &val) == 0 && | |
2676 | val && (val & DISPATCH_QUEUE_ENQUEUED) == 0 && | |
2677 | (val >> 48) != 0xdead && (val >> 48) != 0 && (val >> 48) != 0xffff) { | |
2678 | panic("kevent: workloop %#016llx is not enqueued " | |
2679 | "(kn:%p dq_state:%#016llx kev.dq_state:%#016llx)", | |
2680 | kn->kn_udata, kn, val, kn->kn_ext[EV_EXTIDX_WL_VALUE]); | |
2681 | } | |
2682 | } | |
2683 | #endif | |
2684 | knote_fill_kevent(kn, kev, 0); | |
2685 | kev->fflags = kn->kn_sfflags; | |
2686 | rc |= FILTER_ACTIVE; | |
2687 | } | |
2688 | ||
2689 | kqunlock(kqwl); | |
2690 | ||
2691 | if (rc & FILTER_ACTIVE) { | |
2692 | workq_thread_set_max_qos(kqwl->kqwl_p, &kqwl->kqwl_request); | |
2693 | } | |
2694 | return rc; | |
2695 | } | |
2696 | ||
2697 | SECURITY_READ_ONLY_EARLY(static struct filterops) workloop_filtops = { | |
2698 | .f_extended_codes = true, | |
2699 | .f_attach = filt_wlattach, | |
2700 | .f_detach = filt_wldetach, | |
2701 | .f_event = filt_bad_event, | |
2702 | .f_touch = filt_wltouch, | |
2703 | .f_process = filt_wlprocess, | |
2704 | .f_allow_drop = filt_wlallow_drop, | |
2705 | .f_post_register_wait = filt_wlpost_register_wait, | |
2706 | }; | |
2707 | ||
2708 | #pragma mark - kqueues allocation and deallocation | |
2709 | ||
2710 | /*! | |
2711 | * @enum kqworkloop_dealloc_flags_t | |
2712 | * | |
2713 | * @brief | |
2714 | * Flags that alter kqworkloop_dealloc() behavior. | |
2715 | * | |
2716 | * @const KQWL_DEALLOC_NONE | |
2717 | * Convenient name for "no flags". | |
2718 | * | |
2719 | * @const KQWL_DEALLOC_SKIP_HASH_REMOVE | |
2720 | * Do not remove the workloop fromt he hash table. | |
2721 | * This is used for process tear-down codepaths as the workloops have been | |
2722 | * removed by the caller already. | |
2723 | */ | |
2724 | OS_OPTIONS(kqworkloop_dealloc_flags, unsigned, | |
2725 | KQWL_DEALLOC_NONE = 0x0000, | |
2726 | KQWL_DEALLOC_SKIP_HASH_REMOVE = 0x0001, | |
2727 | ); | |
2728 | ||
2729 | static void | |
2730 | kqworkloop_dealloc(struct kqworkloop *, kqworkloop_dealloc_flags_t, uint32_t); | |
2731 | ||
2732 | OS_NOINLINE OS_COLD OS_NORETURN | |
2733 | static void | |
2734 | kqworkloop_retain_panic(struct kqworkloop *kqwl, uint32_t previous) | |
2735 | { | |
2736 | if (previous == 0) { | |
2737 | panic("kq(%p) resurrection", kqwl); | |
2738 | } else { | |
2739 | panic("kq(%p) retain overflow", kqwl); | |
2740 | } | |
2741 | } | |
2742 | ||
2743 | OS_NOINLINE OS_COLD OS_NORETURN | |
2744 | static void | |
2745 | kqworkloop_release_panic(struct kqworkloop *kqwl) | |
2746 | { | |
2747 | panic("kq(%p) over-release", kqwl); | |
2748 | } | |
2749 | ||
2750 | OS_ALWAYS_INLINE | |
2751 | static inline bool | |
2752 | kqworkloop_try_retain(struct kqworkloop *kqwl) | |
2753 | { | |
2754 | uint32_t old_ref, new_ref; | |
2755 | os_atomic_rmw_loop(&kqwl->kqwl_retains, old_ref, new_ref, relaxed, { | |
2756 | if (__improbable(old_ref == 0)) { | |
2757 | os_atomic_rmw_loop_give_up(return false); | |
2758 | } | |
2759 | if (__improbable(old_ref >= KQ_WORKLOOP_RETAINS_MAX)) { | |
2760 | kqworkloop_retain_panic(kqwl, old_ref); | |
2761 | } | |
2762 | new_ref = old_ref + 1; | |
2763 | }); | |
2764 | return true; | |
2765 | } | |
2766 | ||
2767 | OS_ALWAYS_INLINE | |
2768 | static inline void | |
2769 | kqworkloop_retain(struct kqworkloop *kqwl) | |
2770 | { | |
2771 | uint32_t previous = os_atomic_inc_orig(&kqwl->kqwl_retains, relaxed); | |
2772 | if (__improbable(previous == 0 || previous >= KQ_WORKLOOP_RETAINS_MAX)) { | |
2773 | kqworkloop_retain_panic(kqwl, previous); | |
2774 | } | |
2775 | } | |
2776 | ||
2777 | OS_ALWAYS_INLINE | |
2778 | static inline void | |
2779 | kqueue_retain(kqueue_t kqu) | |
2780 | { | |
2781 | if (kqu.kq->kq_state & KQ_DYNAMIC) { | |
2782 | kqworkloop_retain(kqu.kqwl); | |
2783 | } | |
2784 | } | |
2785 | ||
2786 | OS_ALWAYS_INLINE | |
2787 | static inline void | |
2788 | kqworkloop_release_live(struct kqworkloop *kqwl) | |
2789 | { | |
2790 | uint32_t refs = os_atomic_dec_orig(&kqwl->kqwl_retains, relaxed); | |
2791 | if (__improbable(refs <= 1)) { | |
2792 | kqworkloop_release_panic(kqwl); | |
2793 | } | |
2794 | } | |
2795 | ||
2796 | OS_ALWAYS_INLINE | |
2797 | static inline void | |
2798 | kqueue_release_live(kqueue_t kqu) | |
2799 | { | |
2800 | if (kqu.kq->kq_state & KQ_DYNAMIC) { | |
2801 | kqworkloop_release_live(kqu.kqwl); | |
2802 | } | |
2803 | } | |
2804 | ||
2805 | OS_ALWAYS_INLINE | |
2806 | static inline void | |
2807 | kqworkloop_release(struct kqworkloop *kqwl) | |
2808 | { | |
2809 | uint32_t refs = os_atomic_dec_orig(&kqwl->kqwl_retains, relaxed); | |
2810 | ||
2811 | if (__improbable(refs <= 1)) { | |
2812 | kqworkloop_dealloc(kqwl, KQWL_DEALLOC_NONE, refs - 1); | |
2813 | } | |
2814 | } | |
2815 | ||
2816 | OS_ALWAYS_INLINE | |
2817 | static inline void | |
2818 | kqueue_release(kqueue_t kqu) | |
2819 | { | |
2820 | if (kqu.kq->kq_state & KQ_DYNAMIC) { | |
2821 | kqworkloop_release(kqu.kqwl); | |
2822 | } | |
2823 | } | |
2824 | ||
2825 | /*! | |
2826 | * @function kqueue_destroy | |
2827 | * | |
2828 | * @brief | |
2829 | * Common part to all kqueue dealloc functions. | |
2830 | */ | |
2831 | OS_NOINLINE | |
2832 | static void | |
2833 | kqueue_destroy(kqueue_t kqu, zone_t zone) | |
2834 | { | |
2835 | /* | |
2836 | * waitq_set_deinit() remove the KQ's waitq set from | |
2837 | * any select sets to which it may belong. | |
2838 | * | |
2839 | * The order of these deinits matter: before waitq_set_deinit() returns, | |
2840 | * waitq_set__CALLING_PREPOST_HOOK__ may be called and it will take the | |
2841 | * kq_lock. | |
2842 | */ | |
2843 | waitq_set_deinit(&kqu.kq->kq_wqs); | |
2844 | lck_spin_destroy(&kqu.kq->kq_lock, kq_lck_grp); | |
2845 | ||
2846 | zfree(zone, kqu.kq); | |
2847 | } | |
2848 | ||
2849 | /*! | |
2850 | * @function kqueue_init | |
2851 | * | |
2852 | * @brief | |
2853 | * Common part to all kqueue alloc functions. | |
2854 | */ | |
2855 | static kqueue_t | |
2856 | kqueue_init(kqueue_t kqu, waitq_set_prepost_hook_t *hook, int policy) | |
2857 | { | |
2858 | waitq_set_init(&kqu.kq->kq_wqs, policy, NULL, hook); | |
2859 | lck_spin_init(&kqu.kq->kq_lock, kq_lck_grp, kq_lck_attr); | |
2860 | return kqu; | |
2861 | } | |
2862 | ||
2863 | #pragma mark kqfile allocation and deallocation | |
2864 | ||
2865 | /*! | |
2866 | * @function kqueue_dealloc | |
2867 | * | |
2868 | * @brief | |
2869 | * Detach all knotes from a kqfile and free it. | |
2870 | * | |
2871 | * @discussion | |
2872 | * We walk each list looking for knotes referencing this | |
2873 | * this kqueue. If we find one, we try to drop it. But | |
2874 | * if we fail to get a drop reference, that will wait | |
2875 | * until it is dropped. So, we can just restart again | |
2876 | * safe in the assumption that the list will eventually | |
2877 | * not contain any more references to this kqueue (either | |
2878 | * we dropped them all, or someone else did). | |
2879 | * | |
2880 | * Assumes no new events are being added to the kqueue. | |
2881 | * Nothing locked on entry or exit. | |
2882 | */ | |
2883 | void | |
2884 | kqueue_dealloc(struct kqueue *kq) | |
2885 | { | |
2886 | KNOTE_LOCK_CTX(knlc); | |
2887 | struct proc *p = kq->kq_p; | |
2888 | struct filedesc *fdp = p->p_fd; | |
2889 | struct knote *kn; | |
2890 | ||
2891 | assert(kq && (kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); | |
2892 | ||
2893 | proc_fdlock(p); | |
2894 | for (int i = 0; i < fdp->fd_knlistsize; i++) { | |
2895 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
2896 | while (kn != NULL) { | |
2897 | if (kq == knote_get_kq(kn)) { | |
2898 | kqlock(kq); | |
2899 | proc_fdunlock(p); | |
2900 | if (knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { | |
2901 | knote_drop(kq, kn, &knlc); | |
2902 | } | |
2903 | proc_fdlock(p); | |
2904 | /* start over at beginning of list */ | |
2905 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
2906 | continue; | |
2907 | } | |
2908 | kn = SLIST_NEXT(kn, kn_link); | |
2909 | } | |
2910 | } | |
2911 | ||
2912 | knhash_lock(fdp); | |
2913 | proc_fdunlock(p); | |
2914 | ||
2915 | if (fdp->fd_knhashmask != 0) { | |
2916 | for (int i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
2917 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
2918 | while (kn != NULL) { | |
2919 | if (kq == knote_get_kq(kn)) { | |
2920 | kqlock(kq); | |
2921 | knhash_unlock(fdp); | |
2922 | if (knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { | |
2923 | knote_drop(kq, kn, &knlc); | |
2924 | } | |
2925 | knhash_lock(fdp); | |
2926 | /* start over at beginning of list */ | |
2927 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
2928 | continue; | |
2929 | } | |
2930 | kn = SLIST_NEXT(kn, kn_link); | |
2931 | } | |
2932 | } | |
2933 | } | |
2934 | knhash_unlock(fdp); | |
2935 | ||
2936 | kqueue_destroy(kq, kqfile_zone); | |
2937 | } | |
2938 | ||
2939 | /*! | |
2940 | * @function kqueue_alloc | |
2941 | * | |
2942 | * @brief | |
2943 | * Allocate a kqfile. | |
2944 | */ | |
2945 | struct kqueue * | |
2946 | kqueue_alloc(struct proc *p) | |
2947 | { | |
2948 | struct kqfile *kqf; | |
2949 | ||
2950 | kqf = (struct kqfile *)zalloc(kqfile_zone); | |
2951 | if (__improbable(kqf == NULL)) { | |
2952 | return NULL; | |
2953 | } | |
2954 | bzero(kqf, sizeof(struct kqfile)); | |
2955 | ||
2956 | /* | |
2957 | * kqfiles are created with kqueue() so we need to wait for | |
2958 | * the first kevent syscall to know which bit among | |
2959 | * KQ_KEV_{32,64,QOS} will be set in kqf_state | |
2960 | */ | |
2961 | kqf->kqf_p = p; | |
2962 | TAILQ_INIT_AFTER_BZERO(&kqf->kqf_queue); | |
2963 | TAILQ_INIT_AFTER_BZERO(&kqf->kqf_suppressed); | |
2964 | ||
2965 | return kqueue_init(kqf, NULL, SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST).kq; | |
2966 | } | |
2967 | ||
2968 | /*! | |
2969 | * @function kqueue_internal | |
2970 | * | |
2971 | * @brief | |
2972 | * Core implementation for kqueue and guarded_kqueue_np() | |
2973 | */ | |
2974 | int | |
2975 | kqueue_internal(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval) | |
2976 | { | |
2977 | struct kqueue *kq; | |
2978 | struct fileproc *fp; | |
2979 | int fd, error; | |
2980 | ||
2981 | error = falloc_withalloc(p, &fp, &fd, vfs_context_current(), fp_zalloc, cra); | |
2982 | if (error) { | |
2983 | return error; | |
2984 | } | |
2985 | ||
2986 | kq = kqueue_alloc(p); | |
2987 | if (kq == NULL) { | |
2988 | fp_free(p, fd, fp); | |
2989 | return ENOMEM; | |
2990 | } | |
2991 | ||
2992 | fp->f_flag = FREAD | FWRITE; | |
2993 | fp->f_ops = &kqueueops; | |
2994 | fp->f_data = kq; | |
2995 | fp->f_lflags |= FG_CONFINED; | |
2996 | ||
2997 | proc_fdlock(p); | |
2998 | *fdflags(p, fd) |= UF_EXCLOSE | UF_FORKCLOSE; | |
2999 | procfdtbl_releasefd(p, fd, NULL); | |
3000 | fp_drop(p, fd, fp, 1); | |
3001 | proc_fdunlock(p); | |
3002 | ||
3003 | *retval = fd; | |
3004 | return error; | |
3005 | } | |
3006 | ||
3007 | /*! | |
3008 | * @function kqueue | |
3009 | * | |
3010 | * @brief | |
3011 | * The kqueue syscall. | |
3012 | */ | |
3013 | int | |
3014 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) | |
3015 | { | |
3016 | return kqueue_internal(p, fileproc_alloc_init, NULL, retval); | |
3017 | } | |
3018 | ||
3019 | #pragma mark kqworkq allocation and deallocation | |
3020 | ||
3021 | /*! | |
3022 | * @function kqworkq_dealloc | |
3023 | * | |
3024 | * @brief | |
3025 | * Deallocates a workqueue kqueue. | |
3026 | * | |
3027 | * @discussion | |
3028 | * This only happens at process death, or for races with concurrent | |
3029 | * kevent_get_kqwq calls, hence we don't have to care about knotes referencing | |
3030 | * this kqueue, either there are none, or someone else took care of them. | |
3031 | */ | |
3032 | void | |
3033 | kqworkq_dealloc(struct kqworkq *kqwq) | |
3034 | { | |
3035 | kqueue_destroy(kqwq, kqworkq_zone); | |
3036 | } | |
3037 | ||
3038 | /*! | |
3039 | * @function kqworkq_alloc | |
3040 | * | |
3041 | * @brief | |
3042 | * Allocates a workqueue kqueue. | |
3043 | * | |
3044 | * @discussion | |
3045 | * This is the slow path of kevent_get_kqwq. | |
3046 | * This takes care of making sure procs have a single workq kqueue. | |
3047 | */ | |
3048 | OS_NOINLINE | |
3049 | static struct kqworkq * | |
3050 | kqworkq_alloc(struct proc *p, unsigned int flags) | |
3051 | { | |
3052 | struct kqworkq *kqwq, *tmp; | |
3053 | ||
3054 | kqwq = (struct kqworkq *)zalloc(kqworkq_zone); | |
3055 | if (__improbable(kqwq == NULL)) { | |
3056 | return NULL; | |
3057 | } | |
3058 | bzero(kqwq, sizeof(struct kqworkq)); | |
3059 | ||
3060 | assert((flags & KEVENT_FLAG_LEGACY32) == 0); | |
3061 | if (flags & KEVENT_FLAG_LEGACY64) { | |
3062 | kqwq->kqwq_state = KQ_WORKQ | KQ_KEV64; | |
3063 | } else { | |
3064 | kqwq->kqwq_state = KQ_WORKQ | KQ_KEV_QOS; | |
3065 | } | |
3066 | kqwq->kqwq_p = p; | |
3067 | ||
3068 | for (int i = 0; i < KQWQ_NBUCKETS; i++) { | |
3069 | TAILQ_INIT_AFTER_BZERO(&kqwq->kqwq_queue[i]); | |
3070 | TAILQ_INIT_AFTER_BZERO(&kqwq->kqwq_suppressed[i]); | |
3071 | } | |
3072 | for (int i = 0; i < KQWQ_NBUCKETS; i++) { | |
3073 | /* | |
3074 | * Because of how the bucketized system works, we mix overcommit | |
3075 | * sources with not overcommit: each time we move a knote from | |
3076 | * one bucket to the next due to overrides, we'd had to track | |
3077 | * overcommitness, and it's really not worth it in the workloop | |
3078 | * enabled world that track this faithfully. | |
3079 | * | |
3080 | * Incidentally, this behaves like the original manager-based | |
3081 | * kqwq where event delivery always happened (hence is | |
3082 | * "overcommit") | |
3083 | */ | |
3084 | kqwq->kqwq_request[i].tr_state = WORKQ_TR_STATE_IDLE; | |
3085 | kqwq->kqwq_request[i].tr_flags = WORKQ_TR_FLAG_KEVENT; | |
3086 | if (i != KQWQ_QOS_MANAGER) { | |
3087 | kqwq->kqwq_request[i].tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; | |
3088 | } | |
3089 | kqwq->kqwq_request[i].tr_kq_qos_index = i; | |
3090 | } | |
3091 | ||
3092 | kqueue_init(kqwq, &kqwq->kqwq_waitq_hook, SYNC_POLICY_FIFO); | |
3093 | ||
3094 | if (!os_atomic_cmpxchgv(&p->p_fd->fd_wqkqueue, NULL, kqwq, &tmp, release)) { | |
3095 | kqworkq_dealloc(kqwq); | |
3096 | return tmp; | |
3097 | } | |
3098 | ||
3099 | return kqwq; | |
3100 | } | |
3101 | ||
3102 | #pragma mark kqworkloop allocation and deallocation | |
3103 | ||
3104 | #define KQ_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) | |
3105 | #define CONFIG_KQ_HASHSIZE CONFIG_KN_HASHSIZE | |
3106 | ||
3107 | OS_ALWAYS_INLINE | |
3108 | static inline void | |
3109 | kqhash_lock(struct filedesc *fdp) | |
3110 | { | |
3111 | lck_mtx_lock_spin_always(&fdp->fd_kqhashlock); | |
3112 | } | |
3113 | ||
3114 | OS_ALWAYS_INLINE | |
3115 | static inline void | |
3116 | kqhash_unlock(struct filedesc *fdp) | |
3117 | { | |
3118 | lck_mtx_unlock(&fdp->fd_kqhashlock); | |
3119 | } | |
3120 | ||
3121 | OS_ALWAYS_INLINE | |
3122 | static inline void | |
3123 | kqworkloop_hash_insert_locked(struct filedesc *fdp, kqueue_id_t id, | |
3124 | struct kqworkloop *kqwl) | |
3125 | { | |
3126 | struct kqwllist *list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; | |
3127 | LIST_INSERT_HEAD(list, kqwl, kqwl_hashlink); | |
3128 | } | |
3129 | ||
3130 | OS_ALWAYS_INLINE | |
3131 | static inline struct kqworkloop * | |
3132 | kqworkloop_hash_lookup_locked(struct filedesc *fdp, kqueue_id_t id) | |
3133 | { | |
3134 | struct kqwllist *list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; | |
3135 | struct kqworkloop *kqwl; | |
3136 | ||
3137 | LIST_FOREACH(kqwl, list, kqwl_hashlink) { | |
3138 | if (kqwl->kqwl_dynamicid == id) { | |
3139 | return kqwl; | |
3140 | } | |
3141 | } | |
3142 | return NULL; | |
3143 | } | |
3144 | ||
3145 | static struct kqworkloop * | |
3146 | kqworkloop_hash_lookup_and_retain(struct filedesc *fdp, kqueue_id_t kq_id) | |
3147 | { | |
3148 | struct kqworkloop *kqwl = NULL; | |
3149 | ||
3150 | kqhash_lock(fdp); | |
3151 | if (__probable(fdp->fd_kqhash)) { | |
3152 | kqwl = kqworkloop_hash_lookup_locked(fdp, kq_id); | |
3153 | if (kqwl && !kqworkloop_try_retain(kqwl)) { | |
3154 | kqwl = NULL; | |
3155 | } | |
3156 | } | |
3157 | kqhash_unlock(fdp); | |
3158 | return kqwl; | |
3159 | } | |
3160 | ||
3161 | OS_NOINLINE | |
3162 | static void | |
3163 | kqworkloop_hash_init(struct filedesc *fdp) | |
3164 | { | |
3165 | struct kqwllist *alloc_hash; | |
3166 | u_long alloc_mask; | |
3167 | ||
3168 | kqhash_unlock(fdp); | |
3169 | alloc_hash = hashinit(CONFIG_KQ_HASHSIZE, M_KQUEUE, &alloc_mask); | |
3170 | kqhash_lock(fdp); | |
3171 | ||
3172 | /* See if we won the race */ | |
3173 | if (__probable(fdp->fd_kqhashmask == 0)) { | |
3174 | fdp->fd_kqhash = alloc_hash; | |
3175 | fdp->fd_kqhashmask = alloc_mask; | |
3176 | } else { | |
3177 | kqhash_unlock(fdp); | |
3178 | FREE(alloc_hash, M_KQUEUE); | |
3179 | kqhash_lock(fdp); | |
3180 | } | |
3181 | } | |
3182 | ||
3183 | /*! | |
3184 | * @function kqworkloop_dealloc | |
3185 | * | |
3186 | * @brief | |
3187 | * Deallocates a workloop kqueue. | |
3188 | * | |
3189 | * @discussion | |
3190 | * Knotes hold references on the workloop, so we can't really reach this | |
3191 | * function unless all of these are already gone. | |
3192 | * | |
3193 | * Nothing locked on entry or exit. | |
3194 | * | |
3195 | * @param flags | |
3196 | * Unless KQWL_DEALLOC_SKIP_HASH_REMOVE is set, the workloop is removed | |
3197 | * from its hash table. | |
3198 | * | |
3199 | * @param current_ref | |
3200 | * This function is also called to undo a kqworkloop_alloc in case of | |
3201 | * allocation races, expected_ref is the current refcount that is expected | |
3202 | * on the workloop object, usually 0, and 1 when a dealloc race is resolved. | |
3203 | */ | |
3204 | static void | |
3205 | kqworkloop_dealloc(struct kqworkloop *kqwl, kqworkloop_dealloc_flags_t flags, | |
3206 | uint32_t current_ref) | |
3207 | { | |
3208 | thread_t cur_owner; | |
3209 | ||
3210 | if (__improbable(current_ref > 1)) { | |
3211 | kqworkloop_release_panic(kqwl); | |
3212 | } | |
3213 | assert(kqwl->kqwl_retains == current_ref); | |
3214 | ||
3215 | /* pair with kqunlock() and other kq locks */ | |
3216 | os_atomic_thread_fence(acquire); | |
3217 | ||
3218 | cur_owner = kqwl->kqwl_owner; | |
3219 | if (cur_owner) { | |
3220 | if (kqworkloop_override(kqwl) != THREAD_QOS_UNSPECIFIED) { | |
3221 | thread_drop_kevent_override(cur_owner); | |
3222 | } | |
3223 | thread_deallocate(cur_owner); | |
3224 | kqwl->kqwl_owner = THREAD_NULL; | |
3225 | } | |
3226 | ||
3227 | if (kqwl->kqwl_state & KQ_HAS_TURNSTILE) { | |
3228 | struct turnstile *ts; | |
3229 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, | |
3230 | &ts, TURNSTILE_WORKLOOPS); | |
3231 | turnstile_cleanup(); | |
3232 | turnstile_deallocate(ts); | |
3233 | } | |
3234 | ||
3235 | if ((flags & KQWL_DEALLOC_SKIP_HASH_REMOVE) == 0) { | |
3236 | struct filedesc *fdp = kqwl->kqwl_p->p_fd; | |
3237 | ||
3238 | kqhash_lock(fdp); | |
3239 | LIST_REMOVE(kqwl, kqwl_hashlink); | |
3240 | kqhash_unlock(fdp); | |
3241 | } | |
3242 | ||
3243 | assert(TAILQ_EMPTY(&kqwl->kqwl_suppressed)); | |
3244 | assert(kqwl->kqwl_owner == THREAD_NULL); | |
3245 | assert(kqwl->kqwl_turnstile == TURNSTILE_NULL); | |
3246 | ||
3247 | lck_spin_destroy(&kqwl->kqwl_statelock, kq_lck_grp); | |
3248 | kqueue_destroy(kqwl, kqworkloop_zone); | |
3249 | } | |
3250 | ||
3251 | /*! | |
3252 | * @function kqworkloop_alloc | |
3253 | * | |
3254 | * @brief | |
3255 | * Allocates a workloop kqueue. | |
3256 | */ | |
3257 | static void | |
3258 | kqworkloop_init(struct kqworkloop *kqwl, proc_t p, | |
3259 | kqueue_id_t id, workq_threadreq_param_t *trp) | |
3260 | { | |
3261 | bzero(kqwl, sizeof(struct kqworkloop)); | |
3262 | ||
3263 | kqwl->kqwl_state = KQ_WORKLOOP | KQ_DYNAMIC | KQ_KEV_QOS; | |
3264 | kqwl->kqwl_retains = 1; /* donate a retain to creator */ | |
3265 | kqwl->kqwl_dynamicid = id; | |
3266 | kqwl->kqwl_p = p; | |
3267 | if (trp) { | |
3268 | kqwl->kqwl_params = trp->trp_value; | |
3269 | } | |
3270 | ||
3271 | workq_tr_flags_t tr_flags = WORKQ_TR_FLAG_WORKLOOP; | |
3272 | if (trp) { | |
3273 | if (trp->trp_flags & TRP_PRIORITY) { | |
3274 | tr_flags |= WORKQ_TR_FLAG_WL_OUTSIDE_QOS; | |
3275 | } | |
3276 | if (trp->trp_flags) { | |
3277 | tr_flags |= WORKQ_TR_FLAG_WL_PARAMS; | |
3278 | } | |
3279 | } | |
3280 | kqwl->kqwl_request.tr_state = WORKQ_TR_STATE_IDLE; | |
3281 | kqwl->kqwl_request.tr_flags = tr_flags; | |
3282 | ||
3283 | for (int i = 0; i < KQWL_NBUCKETS; i++) { | |
3284 | TAILQ_INIT_AFTER_BZERO(&kqwl->kqwl_queue[i]); | |
3285 | } | |
3286 | TAILQ_INIT_AFTER_BZERO(&kqwl->kqwl_suppressed); | |
3287 | ||
3288 | lck_spin_init(&kqwl->kqwl_statelock, kq_lck_grp, kq_lck_attr); | |
3289 | ||
3290 | kqueue_init(kqwl, &kqwl->kqwl_waitq_hook, SYNC_POLICY_FIFO); | |
3291 | } | |
3292 | ||
3293 | /*! | |
3294 | * @function kqworkloop_get_or_create | |
3295 | * | |
3296 | * @brief | |
3297 | * Wrapper around kqworkloop_alloc that handles the uniquing of workloops. | |
3298 | * | |
3299 | * @returns | |
3300 | * 0: success | |
3301 | * EINVAL: invalid parameters | |
3302 | * EEXIST: KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST is set and a collision exists. | |
3303 | * ENOENT: KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST is set and the entry wasn't found. | |
3304 | * ENOMEM: allocation failed | |
3305 | */ | |
3306 | static int | |
3307 | kqworkloop_get_or_create(struct proc *p, kqueue_id_t id, | |
3308 | workq_threadreq_param_t *trp, unsigned int flags, struct kqworkloop **kqwlp) | |
3309 | { | |
3310 | struct filedesc *fdp = p->p_fd; | |
3311 | struct kqworkloop *alloc_kqwl = NULL; | |
3312 | struct kqworkloop *kqwl = NULL; | |
3313 | int error = 0; | |
3314 | ||
3315 | assert(!trp || (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)); | |
3316 | ||
3317 | if (id == 0 || id == (kqueue_id_t)-1) { | |
3318 | return EINVAL; | |
3319 | } | |
3320 | ||
3321 | for (;;) { | |
3322 | kqhash_lock(fdp); | |
3323 | if (__improbable(fdp->fd_kqhash == NULL)) { | |
3324 | kqworkloop_hash_init(fdp); | |
3325 | } | |
3326 | ||
3327 | kqwl = kqworkloop_hash_lookup_locked(fdp, id); | |
3328 | if (kqwl) { | |
3329 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)) { | |
3330 | /* | |
3331 | * If MUST_NOT_EXIST was passed, even if we would have failed | |
3332 | * the try_retain, it could have gone the other way, and | |
3333 | * userspace can't tell. Let'em fix their race. | |
3334 | */ | |
3335 | error = EEXIST; | |
3336 | break; | |
3337 | } | |
3338 | ||
3339 | if (__probable(kqworkloop_try_retain(kqwl))) { | |
3340 | /* | |
3341 | * This is a valid live workloop ! | |
3342 | */ | |
3343 | *kqwlp = kqwl; | |
3344 | error = 0; | |
3345 | break; | |
3346 | } | |
3347 | } | |
3348 | ||
3349 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST)) { | |
3350 | error = ENOENT; | |
3351 | break; | |
3352 | } | |
3353 | ||
3354 | /* | |
3355 | * We didn't find what we were looking for. | |
3356 | * | |
3357 | * If this is the second time we reach this point (alloc_kqwl != NULL), | |
3358 | * then we're done. | |
3359 | * | |
3360 | * If this is the first time we reach this point (alloc_kqwl == NULL), | |
3361 | * then try to allocate one without blocking. | |
3362 | */ | |
3363 | if (__probable(alloc_kqwl == NULL)) { | |
3364 | alloc_kqwl = (struct kqworkloop *)zalloc_noblock(kqworkloop_zone); | |
3365 | } | |
3366 | if (__probable(alloc_kqwl)) { | |
3367 | kqworkloop_init(alloc_kqwl, p, id, trp); | |
3368 | kqworkloop_hash_insert_locked(fdp, id, alloc_kqwl); | |
3369 | kqhash_unlock(fdp); | |
3370 | *kqwlp = alloc_kqwl; | |
3371 | return 0; | |
3372 | } | |
3373 | ||
3374 | /* | |
3375 | * We have to block to allocate a workloop, drop the lock, | |
3376 | * allocate one, but then we need to retry lookups as someone | |
3377 | * else could race with us. | |
3378 | */ | |
3379 | kqhash_unlock(fdp); | |
3380 | ||
3381 | alloc_kqwl = (struct kqworkloop *)zalloc(kqworkloop_zone); | |
3382 | if (__improbable(!alloc_kqwl)) { | |
3383 | return ENOMEM; | |
3384 | } | |
3385 | } | |
3386 | ||
3387 | kqhash_unlock(fdp); | |
3388 | ||
3389 | if (__improbable(alloc_kqwl)) { | |
3390 | zfree(kqworkloop_zone, alloc_kqwl); | |
3391 | } | |
3392 | ||
3393 | return error; | |
3394 | } | |
3395 | ||
3396 | #pragma mark - knotes | |
3397 | ||
3398 | static int | |
3399 | filt_no_attach(struct knote *kn, __unused struct kevent_qos_s *kev) | |
3400 | { | |
3401 | knote_set_error(kn, ENOTSUP); | |
3402 | return 0; | |
3403 | } | |
3404 | ||
3405 | static void | |
3406 | filt_no_detach(__unused struct knote *kn) | |
3407 | { | |
3408 | } | |
3409 | ||
3410 | static int __dead2 | |
3411 | filt_bad_event(struct knote *kn, long hint) | |
3412 | { | |
3413 | panic("%s[%d](%p, %ld)", __func__, kn->kn_filter, kn, hint); | |
3414 | } | |
3415 | ||
3416 | static int __dead2 | |
3417 | filt_bad_touch(struct knote *kn, struct kevent_qos_s *kev) | |
3418 | { | |
3419 | panic("%s[%d](%p, %p)", __func__, kn->kn_filter, kn, kev); | |
3420 | } | |
3421 | ||
3422 | static int __dead2 | |
3423 | filt_bad_process(struct knote *kn, struct kevent_qos_s *kev) | |
3424 | { | |
3425 | panic("%s[%d](%p, %p)", __func__, kn->kn_filter, kn, kev); | |
3426 | } | |
3427 | ||
3428 | /* | |
3429 | * knotes_dealloc - detach all knotes for the process and drop them | |
3430 | * | |
3431 | * Called with proc_fdlock held. | |
3432 | * Returns with it locked. | |
3433 | * May drop it temporarily. | |
3434 | * Process is in such a state that it will not try to allocate | |
3435 | * any more knotes during this process (stopped for exit or exec). | |
3436 | */ | |
3437 | void | |
3438 | knotes_dealloc(proc_t p) | |
3439 | { | |
3440 | struct filedesc *fdp = p->p_fd; | |
3441 | struct kqueue *kq; | |
3442 | struct knote *kn; | |
3443 | struct klist *kn_hash = NULL; | |
3444 | int i; | |
3445 | ||
3446 | /* Close all the fd-indexed knotes up front */ | |
3447 | if (fdp->fd_knlistsize > 0) { | |
3448 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
3449 | while ((kn = SLIST_FIRST(&fdp->fd_knlist[i])) != NULL) { | |
3450 | kq = knote_get_kq(kn); | |
3451 | kqlock(kq); | |
3452 | proc_fdunlock(p); | |
3453 | knote_drop(kq, kn, NULL); | |
3454 | proc_fdlock(p); | |
3455 | } | |
3456 | } | |
3457 | /* free the table */ | |
3458 | FREE(fdp->fd_knlist, M_KQUEUE); | |
3459 | fdp->fd_knlist = NULL; | |
3460 | } | |
3461 | fdp->fd_knlistsize = 0; | |
3462 | ||
3463 | knhash_lock(fdp); | |
3464 | proc_fdunlock(p); | |
3465 | ||
3466 | /* Clean out all the hashed knotes as well */ | |
3467 | if (fdp->fd_knhashmask != 0) { | |
3468 | for (i = 0; i <= (int)fdp->fd_knhashmask; i++) { | |
3469 | while ((kn = SLIST_FIRST(&fdp->fd_knhash[i])) != NULL) { | |
3470 | kq = knote_get_kq(kn); | |
3471 | kqlock(kq); | |
3472 | knhash_unlock(fdp); | |
3473 | knote_drop(kq, kn, NULL); | |
3474 | knhash_lock(fdp); | |
3475 | } | |
3476 | } | |
3477 | kn_hash = fdp->fd_knhash; | |
3478 | fdp->fd_knhashmask = 0; | |
3479 | fdp->fd_knhash = NULL; | |
3480 | } | |
3481 | ||
3482 | knhash_unlock(fdp); | |
3483 | ||
3484 | /* free the kn_hash table */ | |
3485 | if (kn_hash) { | |
3486 | FREE(kn_hash, M_KQUEUE); | |
3487 | } | |
3488 | ||
3489 | proc_fdlock(p); | |
3490 | } | |
3491 | ||
3492 | /* | |
3493 | * kqworkloops_dealloc - rebalance retains on kqworkloops created with | |
3494 | * scheduling parameters | |
3495 | * | |
3496 | * Called with proc_fdlock held. | |
3497 | * Returns with it locked. | |
3498 | * Process is in such a state that it will not try to allocate | |
3499 | * any more knotes during this process (stopped for exit or exec). | |
3500 | */ | |
3501 | void | |
3502 | kqworkloops_dealloc(proc_t p) | |
3503 | { | |
3504 | struct filedesc *fdp = p->p_fd; | |
3505 | struct kqworkloop *kqwl, *kqwln; | |
3506 | struct kqwllist tofree; | |
3507 | ||
3508 | if (!(fdp->fd_flags & FD_WORKLOOP)) { | |
3509 | return; | |
3510 | } | |
3511 | ||
3512 | kqhash_lock(fdp); | |
3513 | ||
3514 | if (fdp->fd_kqhashmask == 0) { | |
3515 | kqhash_unlock(fdp); | |
3516 | return; | |
3517 | } | |
3518 | ||
3519 | LIST_INIT(&tofree); | |
3520 | ||
3521 | for (size_t i = 0; i <= fdp->fd_kqhashmask; i++) { | |
3522 | LIST_FOREACH_SAFE(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink, kqwln) { | |
3523 | /* | |
3524 | * kqworkloops that have scheduling parameters have an | |
3525 | * implicit retain from kqueue_workloop_ctl that needs | |
3526 | * to be balanced on process exit. | |
3527 | */ | |
3528 | assert(kqwl->kqwl_params); | |
3529 | LIST_REMOVE(kqwl, kqwl_hashlink); | |
3530 | LIST_INSERT_HEAD(&tofree, kqwl, kqwl_hashlink); | |
3531 | } | |
3532 | } | |
3533 | ||
3534 | kqhash_unlock(fdp); | |
3535 | ||
3536 | LIST_FOREACH_SAFE(kqwl, &tofree, kqwl_hashlink, kqwln) { | |
3537 | kqworkloop_dealloc(kqwl, KQWL_DEALLOC_SKIP_HASH_REMOVE, 1); | |
3538 | } | |
3539 | } | |
3540 | ||
3541 | static int | |
3542 | kevent_register_validate_priority(struct kqueue *kq, struct knote *kn, | |
3543 | struct kevent_qos_s *kev) | |
3544 | { | |
3545 | /* We don't care about the priority of a disabled or deleted knote */ | |
3546 | if (kev->flags & (EV_DISABLE | EV_DELETE)) { | |
3547 | return 0; | |
3548 | } | |
3549 | ||
3550 | if (kq->kq_state & KQ_WORKLOOP) { | |
3551 | /* | |
3552 | * Workloops need valid priorities with a QOS (excluding manager) for | |
3553 | * any enabled knote. | |
3554 | * | |
3555 | * When it is pre-existing, just make sure it has a valid QoS as | |
3556 | * kevent_register() will not use the incoming priority (filters who do | |
3557 | * have the responsibility to validate it again, see filt_wltouch). | |
3558 | * | |
3559 | * If the knote is being made, validate the incoming priority. | |
3560 | */ | |
3561 | if (!_pthread_priority_thread_qos(kn ? kn->kn_qos : kev->qos)) { | |
3562 | return ERANGE; | |
3563 | } | |
3564 | } | |
3565 | ||
3566 | return 0; | |
3567 | } | |
3568 | ||
3569 | /* | |
3570 | * Prepare a filter for waiting after register. | |
3571 | * | |
3572 | * The f_post_register_wait hook will be called later by kevent_register() | |
3573 | * and should call kevent_register_wait_block() | |
3574 | */ | |
3575 | static int | |
3576 | kevent_register_wait_prepare(struct knote *kn, struct kevent_qos_s *kev, int rc) | |
3577 | { | |
3578 | thread_t thread = current_thread(); | |
3579 | ||
3580 | assert(knote_fops(kn)->f_extended_codes); | |
3581 | ||
3582 | if (kn->kn_thread == NULL) { | |
3583 | thread_reference(thread); | |
3584 | kn->kn_thread = thread; | |
3585 | } else if (kn->kn_thread != thread) { | |
3586 | /* | |
3587 | * kn_thread may be set from a previous aborted wait | |
3588 | * However, it has to be from the same thread. | |
3589 | */ | |
3590 | kev->flags |= EV_ERROR; | |
3591 | kev->data = EXDEV; | |
3592 | return 0; | |
3593 | } | |
3594 | ||
3595 | return FILTER_REGISTER_WAIT | rc; | |
3596 | } | |
3597 | ||
3598 | /* | |
3599 | * Cleanup a kevent_register_wait_prepare() effect for threads that have been | |
3600 | * aborted instead of properly woken up with thread_wakeup_thread(). | |
3601 | */ | |
3602 | static void | |
3603 | kevent_register_wait_cleanup(struct knote *kn) | |
3604 | { | |
3605 | thread_t thread = kn->kn_thread; | |
3606 | kn->kn_thread = NULL; | |
3607 | thread_deallocate(thread); | |
3608 | } | |
3609 | ||
3610 | /* | |
3611 | * Must be called at the end of a f_post_register_wait call from a filter. | |
3612 | */ | |
3613 | static void | |
3614 | kevent_register_wait_block(struct turnstile *ts, thread_t thread, | |
3615 | thread_continue_t cont, struct _kevent_register *cont_args) | |
3616 | { | |
3617 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_HELD); | |
3618 | kqunlock(cont_args->kqwl); | |
3619 | cont_args->handoff_thread = thread; | |
3620 | thread_handoff_parameter(thread, cont, cont_args); | |
3621 | } | |
3622 | ||
3623 | /* | |
3624 | * Called by Filters using a f_post_register_wait to return from their wait. | |
3625 | */ | |
3626 | static void | |
3627 | kevent_register_wait_return(struct _kevent_register *cont_args) | |
3628 | { | |
3629 | struct kqworkloop *kqwl = cont_args->kqwl; | |
3630 | struct kevent_qos_s *kev = &cont_args->kev; | |
3631 | int error = 0; | |
3632 | ||
3633 | if (cont_args->handoff_thread) { | |
3634 | thread_deallocate(cont_args->handoff_thread); | |
3635 | } | |
3636 | ||
3637 | if (kev->flags & (EV_ERROR | EV_RECEIPT)) { | |
3638 | if ((kev->flags & EV_ERROR) == 0) { | |
3639 | kev->flags |= EV_ERROR; | |
3640 | kev->data = 0; | |
3641 | } | |
3642 | error = kevent_modern_copyout(kev, &cont_args->ueventlist); | |
3643 | if (error == 0) { | |
3644 | cont_args->eventout++; | |
3645 | } | |
3646 | } | |
3647 | ||
3648 | kqworkloop_release(kqwl); | |
3649 | if (error == 0) { | |
3650 | *(int32_t *)¤t_uthread()->uu_rval = cont_args->eventout; | |
3651 | } | |
3652 | unix_syscall_return(error); | |
3653 | } | |
3654 | ||
3655 | /* | |
3656 | * kevent_register - add a new event to a kqueue | |
3657 | * | |
3658 | * Creates a mapping between the event source and | |
3659 | * the kqueue via a knote data structure. | |
3660 | * | |
3661 | * Because many/most the event sources are file | |
3662 | * descriptor related, the knote is linked off | |
3663 | * the filedescriptor table for quick access. | |
3664 | * | |
3665 | * called with nothing locked | |
3666 | * caller holds a reference on the kqueue | |
3667 | */ | |
3668 | ||
3669 | int | |
3670 | kevent_register(struct kqueue *kq, struct kevent_qos_s *kev, | |
3671 | struct knote **kn_out) | |
3672 | { | |
3673 | struct proc *p = kq->kq_p; | |
3674 | const struct filterops *fops; | |
3675 | struct knote *kn = NULL; | |
3676 | int result = 0, error = 0; | |
3677 | unsigned short kev_flags = kev->flags; | |
3678 | KNOTE_LOCK_CTX(knlc); | |
3679 | ||
3680 | if (__probable(kev->filter < 0 && kev->filter + EVFILT_SYSCOUNT >= 0)) { | |
3681 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ | |
3682 | } else { | |
3683 | error = EINVAL; | |
3684 | goto out; | |
3685 | } | |
3686 | ||
3687 | /* restrict EV_VANISHED to adding udata-specific dispatch kevents */ | |
3688 | if (__improbable((kev->flags & EV_VANISHED) && | |
3689 | (kev->flags & (EV_ADD | EV_DISPATCH2)) != (EV_ADD | EV_DISPATCH2))) { | |
3690 | error = EINVAL; | |
3691 | goto out; | |
3692 | } | |
3693 | ||
3694 | /* Simplify the flags - delete and disable overrule */ | |
3695 | if (kev->flags & EV_DELETE) { | |
3696 | kev->flags &= ~EV_ADD; | |
3697 | } | |
3698 | if (kev->flags & EV_DISABLE) { | |
3699 | kev->flags &= ~EV_ENABLE; | |
3700 | } | |
3701 | ||
3702 | if (kq->kq_state & KQ_WORKLOOP) { | |
3703 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_REGISTER), | |
3704 | ((struct kqworkloop *)kq)->kqwl_dynamicid, | |
3705 | kev->udata, kev->flags, kev->filter); | |
3706 | } else if (kq->kq_state & KQ_WORKQ) { | |
3707 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_REGISTER), | |
3708 | 0, kev->udata, kev->flags, kev->filter); | |
3709 | } else { | |
3710 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_REGISTER), | |
3711 | VM_KERNEL_UNSLIDE_OR_PERM(kq), | |
3712 | kev->udata, kev->flags, kev->filter); | |
3713 | } | |
3714 | ||
3715 | restart: | |
3716 | /* find the matching knote from the fd tables/hashes */ | |
3717 | kn = kq_find_knote_and_kq_lock(kq, kev, fops->f_isfd, p); | |
3718 | error = kevent_register_validate_priority(kq, kn, kev); | |
3719 | result = 0; | |
3720 | if (error) { | |
3721 | goto out; | |
3722 | } | |
3723 | ||
3724 | if (kn == NULL && (kev->flags & EV_ADD) == 0) { | |
3725 | /* | |
3726 | * No knote found, EV_ADD wasn't specified | |
3727 | */ | |
3728 | ||
3729 | if ((kev_flags & EV_ADD) && (kev_flags & EV_DELETE) && | |
3730 | (kq->kq_state & KQ_WORKLOOP)) { | |
3731 | /* | |
3732 | * For workloops, understand EV_ADD|EV_DELETE as a "soft" delete | |
3733 | * that doesn't care about ENOENT, so just pretend the deletion | |
3734 | * happened. | |
3735 | */ | |
3736 | } else { | |
3737 | error = ENOENT; | |
3738 | } | |
3739 | goto out; | |
3740 | } else if (kn == NULL) { | |
3741 | /* | |
3742 | * No knote found, need to attach a new one (attach) | |
3743 | */ | |
3744 | ||
3745 | struct fileproc *knote_fp = NULL; | |
3746 | ||
3747 | /* grab a file reference for the new knote */ | |
3748 | if (fops->f_isfd) { | |
3749 | if ((error = fp_lookup(p, kev->ident, &knote_fp, 0)) != 0) { | |
3750 | goto out; | |
3751 | } | |
3752 | } | |
3753 | ||
3754 | kn = knote_alloc(); | |
3755 | if (kn == NULL) { | |
3756 | error = ENOMEM; | |
3757 | if (knote_fp != NULL) { | |
3758 | fp_drop(p, kev->ident, knote_fp, 0); | |
3759 | } | |
3760 | goto out; | |
3761 | } | |
3762 | ||
3763 | kn->kn_fp = knote_fp; | |
3764 | kn->kn_is_fd = fops->f_isfd; | |
3765 | kn->kn_kq_packed = (intptr_t)(struct kqueue *)kq; | |
3766 | kn->kn_status = 0; | |
3767 | ||
3768 | /* was vanish support requested */ | |
3769 | if (kev->flags & EV_VANISHED) { | |
3770 | kev->flags &= ~EV_VANISHED; | |
3771 | kn->kn_status |= KN_REQVANISH; | |
3772 | } | |
3773 | ||
3774 | /* snapshot matching/dispatching protcol flags into knote */ | |
3775 | if (kev->flags & EV_DISABLE) { | |
3776 | kn->kn_status |= KN_DISABLED; | |
3777 | } | |
3778 | ||
3779 | /* | |
3780 | * copy the kevent state into knote | |
3781 | * protocol is that fflags and data | |
3782 | * are saved off, and cleared before | |
3783 | * calling the attach routine. | |
3784 | * | |
3785 | * - kn->kn_sfflags aliases with kev->xflags | |
3786 | * - kn->kn_sdata aliases with kev->data | |
3787 | * - kn->kn_filter is the top 8 bits of kev->filter | |
3788 | */ | |
3789 | kn->kn_kevent = *(struct kevent_internal_s *)kev; | |
3790 | kn->kn_sfflags = kev->fflags; | |
3791 | kn->kn_filtid = (uint8_t)~kev->filter; | |
3792 | kn->kn_fflags = 0; | |
3793 | knote_reset_priority(kq, kn, kev->qos); | |
3794 | ||
3795 | /* Add the knote for lookup thru the fd table */ | |
3796 | error = kq_add_knote(kq, kn, &knlc, p); | |
3797 | if (error) { | |
3798 | knote_free(kn); | |
3799 | if (knote_fp != NULL) { | |
3800 | fp_drop(p, kev->ident, knote_fp, 0); | |
3801 | } | |
3802 | ||
3803 | if (error == ERESTART) { | |
3804 | goto restart; | |
3805 | } | |
3806 | goto out; | |
3807 | } | |
3808 | ||
3809 | /* fp reference count now applies to knote */ | |
3810 | ||
3811 | /* | |
3812 | * we can't use filter_call() because f_attach can change the filter ops | |
3813 | * for a filter that supports f_extended_codes, so we need to reload | |
3814 | * knote_fops() and not use `fops`. | |
3815 | */ | |
3816 | result = fops->f_attach(kn, kev); | |
3817 | if (result && !knote_fops(kn)->f_extended_codes) { | |
3818 | result = FILTER_ACTIVE; | |
3819 | } | |
3820 | ||
3821 | kqlock(kq); | |
3822 | ||
3823 | if (result & FILTER_THREADREQ_NODEFEER) { | |
3824 | enable_preemption(); | |
3825 | } | |
3826 | ||
3827 | if (kn->kn_flags & EV_ERROR) { | |
3828 | /* | |
3829 | * Failed to attach correctly, so drop. | |
3830 | */ | |
3831 | kn->kn_filtid = EVFILTID_DETACHED; | |
3832 | error = kn->kn_sdata; | |
3833 | knote_drop(kq, kn, &knlc); | |
3834 | result = 0; | |
3835 | goto out; | |
3836 | } | |
3837 | ||
3838 | /* | |
3839 | * end "attaching" phase - now just attached | |
3840 | * | |
3841 | * Mark the thread request overcommit, if appropos | |
3842 | * | |
3843 | * If the attach routine indicated that an | |
3844 | * event is already fired, activate the knote. | |
3845 | */ | |
3846 | if ((kn->kn_qos & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) && | |
3847 | (kq->kq_state & KQ_WORKLOOP)) { | |
3848 | kqworkloop_set_overcommit((struct kqworkloop *)kq); | |
3849 | } | |
3850 | } else if (!knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { | |
3851 | /* | |
3852 | * The knote was dropped while we were waiting for the lock, | |
3853 | * we need to re-evaluate entirely | |
3854 | */ | |
3855 | ||
3856 | goto restart; | |
3857 | } else if (kev->flags & EV_DELETE) { | |
3858 | /* | |
3859 | * Deletion of a knote (drop) | |
3860 | * | |
3861 | * If the filter wants to filter drop events, let it do so. | |
3862 | * | |
3863 | * defer-delete: when trying to delete a disabled EV_DISPATCH2 knote, | |
3864 | * we must wait for the knote to be re-enabled (unless it is being | |
3865 | * re-enabled atomically here). | |
3866 | */ | |
3867 | ||
3868 | if (knote_fops(kn)->f_allow_drop) { | |
3869 | bool drop; | |
3870 | ||
3871 | kqunlock(kq); | |
3872 | drop = knote_fops(kn)->f_allow_drop(kn, kev); | |
3873 | kqlock(kq); | |
3874 | ||
3875 | if (!drop) { | |
3876 | goto out_unlock; | |
3877 | } | |
3878 | } | |
3879 | ||
3880 | if ((kev->flags & EV_ENABLE) == 0 && | |
3881 | (kn->kn_flags & EV_DISPATCH2) == EV_DISPATCH2 && | |
3882 | (kn->kn_status & KN_DISABLED) != 0) { | |
3883 | kn->kn_status |= KN_DEFERDELETE; | |
3884 | error = EINPROGRESS; | |
3885 | goto out_unlock; | |
3886 | } | |
3887 | ||
3888 | knote_drop(kq, kn, &knlc); | |
3889 | goto out; | |
3890 | } else { | |
3891 | /* | |
3892 | * Regular update of a knote (touch) | |
3893 | * | |
3894 | * Call touch routine to notify filter of changes in filter values | |
3895 | * (and to re-determine if any events are fired). | |
3896 | * | |
3897 | * If the knote is in defer-delete, avoid calling the filter touch | |
3898 | * routine (it has delivered its last event already). | |
3899 | * | |
3900 | * If the touch routine had no failure, | |
3901 | * apply the requested side effects to the knote. | |
3902 | */ | |
3903 | ||
3904 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { | |
3905 | if (kev->flags & EV_ENABLE) { | |
3906 | result = FILTER_ACTIVE; | |
3907 | } | |
3908 | } else { | |
3909 | kqunlock(kq); | |
3910 | result = filter_call(knote_fops(kn), f_touch(kn, kev)); | |
3911 | kqlock(kq); | |
3912 | if (result & FILTER_THREADREQ_NODEFEER) { | |
3913 | enable_preemption(); | |
3914 | } | |
3915 | } | |
3916 | ||
3917 | if (kev->flags & EV_ERROR) { | |
3918 | result = 0; | |
3919 | goto out_unlock; | |
3920 | } | |
3921 | ||
3922 | if ((kn->kn_flags & EV_UDATA_SPECIFIC) == 0 && | |
3923 | kn->kn_udata != kev->udata) { | |
3924 | // this allows klist_copy_udata() not to take locks | |
3925 | os_atomic_store_wide(&kn->kn_udata, kev->udata, relaxed); | |
3926 | } | |
3927 | if ((kev->flags & EV_DISABLE) && !(kn->kn_status & KN_DISABLED)) { | |
3928 | kn->kn_status |= KN_DISABLED; | |
3929 | knote_dequeue(kq, kn); | |
3930 | } | |
3931 | } | |
3932 | ||
3933 | /* accept new kevent state */ | |
3934 | knote_apply_touch(kq, kn, kev, result); | |
3935 | ||
3936 | out_unlock: | |
3937 | /* | |
3938 | * When the filter asked for a post-register wait, | |
3939 | * we leave the kqueue locked for kevent_register() | |
3940 | * to call the filter's f_post_register_wait hook. | |
3941 | */ | |
3942 | if (result & FILTER_REGISTER_WAIT) { | |
3943 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); | |
3944 | *kn_out = kn; | |
3945 | } else { | |
3946 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_UNLOCK); | |
3947 | } | |
3948 | ||
3949 | out: | |
3950 | /* output local errors through the kevent */ | |
3951 | if (error) { | |
3952 | kev->flags |= EV_ERROR; | |
3953 | kev->data = error; | |
3954 | } | |
3955 | return result; | |
3956 | } | |
3957 | ||
3958 | /* | |
3959 | * knote_process - process a triggered event | |
3960 | * | |
3961 | * Validate that it is really still a triggered event | |
3962 | * by calling the filter routines (if necessary). Hold | |
3963 | * a use reference on the knote to avoid it being detached. | |
3964 | * | |
3965 | * If it is still considered triggered, we will have taken | |
3966 | * a copy of the state under the filter lock. We use that | |
3967 | * snapshot to dispatch the knote for future processing (or | |
3968 | * not, if this was a lost event). | |
3969 | * | |
3970 | * Our caller assures us that nobody else can be processing | |
3971 | * events from this knote during the whole operation. But | |
3972 | * others can be touching or posting events to the knote | |
3973 | * interspersed with our processing it. | |
3974 | * | |
3975 | * caller holds a reference on the kqueue. | |
3976 | * kqueue locked on entry and exit - but may be dropped | |
3977 | */ | |
3978 | static int | |
3979 | knote_process(struct knote *kn, kevent_ctx_t kectx, | |
3980 | kevent_callback_t callback) | |
3981 | { | |
3982 | struct kevent_qos_s kev; | |
3983 | struct kqueue *kq = knote_get_kq(kn); | |
3984 | KNOTE_LOCK_CTX(knlc); | |
3985 | int result = FILTER_ACTIVE; | |
3986 | int error = 0; | |
3987 | bool drop = false; | |
3988 | ||
3989 | /* | |
3990 | * Must be active or stayactive | |
3991 | * Must be queued and not disabled/suppressed or dropping | |
3992 | */ | |
3993 | assert(kn->kn_status & KN_QUEUED); | |
3994 | assert(kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)); | |
3995 | assert(!(kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING))); | |
3996 | ||
3997 | if (kq->kq_state & KQ_WORKLOOP) { | |
3998 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS), | |
3999 | ((struct kqworkloop *)kq)->kqwl_dynamicid, | |
4000 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
4001 | kn->kn_filtid); | |
4002 | } else if (kq->kq_state & KQ_WORKQ) { | |
4003 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS), | |
4004 | 0, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
4005 | kn->kn_filtid); | |
4006 | } else { | |
4007 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS), | |
4008 | VM_KERNEL_UNSLIDE_OR_PERM(kq), kn->kn_udata, | |
4009 | kn->kn_status | (kn->kn_id << 32), kn->kn_filtid); | |
4010 | } | |
4011 | ||
4012 | if (!knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS)) { | |
4013 | /* | |
4014 | * When the knote is dropping or has dropped, | |
4015 | * then there's nothing we want to process. | |
4016 | */ | |
4017 | return EJUSTRETURN; | |
4018 | } | |
4019 | ||
4020 | /* | |
4021 | * While waiting for the knote lock, we may have dropped the kq lock. | |
4022 | * and a touch may have disabled and dequeued the knote. | |
4023 | */ | |
4024 | if (!(kn->kn_status & KN_QUEUED)) { | |
4025 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); | |
4026 | return EJUSTRETURN; | |
4027 | } | |
4028 | ||
4029 | /* | |
4030 | * For deferred-drop or vanished events, we just create a fake | |
4031 | * event to acknowledge end-of-life. Otherwise, we call the | |
4032 | * filter's process routine to snapshot the kevent state under | |
4033 | * the filter's locking protocol. | |
4034 | * | |
4035 | * suppress knotes to avoid returning the same event multiple times in | |
4036 | * a single call. | |
4037 | */ | |
4038 | knote_suppress(kq, kn); | |
4039 | ||
4040 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { | |
4041 | int kev_flags = EV_DISPATCH2 | EV_ONESHOT; | |
4042 | if (kn->kn_status & KN_DEFERDELETE) { | |
4043 | kev_flags |= EV_DELETE; | |
4044 | } else { | |
4045 | kev_flags |= EV_VANISHED; | |
4046 | } | |
4047 | ||
4048 | /* create fake event */ | |
4049 | kev = (struct kevent_qos_s){ | |
4050 | .filter = kn->kn_filter, | |
4051 | .ident = kn->kn_id, | |
4052 | .flags = kev_flags, | |
4053 | .udata = kn->kn_udata, | |
4054 | }; | |
4055 | } else { | |
4056 | kqunlock(kq); | |
4057 | kev = (struct kevent_qos_s) { }; | |
4058 | result = filter_call(knote_fops(kn), f_process(kn, &kev)); | |
4059 | kqlock(kq); | |
4060 | } | |
4061 | ||
4062 | /* | |
4063 | * Determine how to dispatch the knote for future event handling. | |
4064 | * not-fired: just return (do not callout, leave deactivated). | |
4065 | * One-shot: If dispatch2, enter deferred-delete mode (unless this is | |
4066 | * is the deferred delete event delivery itself). Otherwise, | |
4067 | * drop it. | |
4068 | * Dispatch: don't clear state, just mark it disabled. | |
4069 | * Cleared: just leave it deactivated. | |
4070 | * Others: re-activate as there may be more events to handle. | |
4071 | * This will not wake up more handlers right now, but | |
4072 | * at the completion of handling events it may trigger | |
4073 | * more handler threads (TODO: optimize based on more than | |
4074 | * just this one event being detected by the filter). | |
4075 | */ | |
4076 | if ((result & FILTER_ACTIVE) == 0) { | |
4077 | if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0) { | |
4078 | /* | |
4079 | * Stay active knotes should not be unsuppressed or we'd create an | |
4080 | * infinite loop. | |
4081 | * | |
4082 | * Some knotes (like EVFILT_WORKLOOP) can be reactivated from | |
4083 | * within f_process() but that doesn't necessarily make them | |
4084 | * ready to process, so we should leave them be. | |
4085 | * | |
4086 | * For other knotes, since we will not return an event, | |
4087 | * there's no point keeping the knote suppressed. | |
4088 | */ | |
4089 | knote_unsuppress(kq, kn); | |
4090 | } | |
4091 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); | |
4092 | return EJUSTRETURN; | |
4093 | } | |
4094 | ||
4095 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) { | |
4096 | knote_adjust_qos(kq, kn, result); | |
4097 | } | |
4098 | kev.qos = _pthread_priority_combine(kn->kn_qos, kn->kn_qos_override); | |
4099 | ||
4100 | if (kev.flags & EV_ONESHOT) { | |
4101 | if ((kn->kn_flags & EV_DISPATCH2) == EV_DISPATCH2 && | |
4102 | (kn->kn_status & KN_DEFERDELETE) == 0) { | |
4103 | /* defer dropping non-delete oneshot dispatch2 events */ | |
4104 | kn->kn_status |= KN_DEFERDELETE | KN_DISABLED; | |
4105 | } else { | |
4106 | drop = true; | |
4107 | } | |
4108 | } else if (kn->kn_flags & EV_DISPATCH) { | |
4109 | /* disable all dispatch knotes */ | |
4110 | kn->kn_status |= KN_DISABLED; | |
4111 | } else if ((kn->kn_flags & EV_CLEAR) == 0) { | |
4112 | /* re-activate in case there are more events */ | |
4113 | knote_activate(kq, kn, FILTER_ACTIVE); | |
4114 | } | |
4115 | ||
4116 | /* | |
4117 | * callback to handle each event as we find it. | |
4118 | * If we have to detach and drop the knote, do | |
4119 | * it while we have the kq unlocked. | |
4120 | */ | |
4121 | if (drop) { | |
4122 | knote_drop(kq, kn, &knlc); | |
4123 | } else { | |
4124 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_UNLOCK); | |
4125 | } | |
4126 | ||
4127 | if (kev.flags & EV_VANISHED) { | |
4128 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KNOTE_VANISHED), | |
4129 | kev.ident, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
4130 | kn->kn_filtid); | |
4131 | } | |
4132 | ||
4133 | error = (callback)(&kev, kectx); | |
4134 | kqlock(kq); | |
4135 | return error; | |
4136 | } | |
4137 | ||
4138 | /* | |
4139 | * Returns -1 if the kqueue was unbound and processing should not happen | |
4140 | */ | |
4141 | #define KQWQAE_BEGIN_PROCESSING 1 | |
4142 | #define KQWQAE_END_PROCESSING 2 | |
4143 | #define KQWQAE_UNBIND 3 | |
4144 | static int | |
4145 | kqworkq_acknowledge_events(struct kqworkq *kqwq, workq_threadreq_t kqr, | |
4146 | int kevent_flags, int kqwqae_op) | |
4147 | { | |
4148 | thread_qos_t old_override = THREAD_QOS_UNSPECIFIED; | |
4149 | thread_t thread = kqr_thread_fast(kqr); | |
4150 | struct knote *kn; | |
4151 | int rc = 0; | |
4152 | bool unbind; | |
4153 | struct kqtailq *suppressq = &kqwq->kqwq_suppressed[kqr->tr_kq_qos_index]; | |
4154 | ||
4155 | kqlock_held(&kqwq->kqwq_kqueue); | |
4156 | ||
4157 | if (!TAILQ_EMPTY(suppressq)) { | |
4158 | /* | |
4159 | * Return suppressed knotes to their original state. | |
4160 | * For workq kqueues, suppressed ones that are still | |
4161 | * truly active (not just forced into the queue) will | |
4162 | * set flags we check below to see if anything got | |
4163 | * woken up. | |
4164 | */ | |
4165 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { | |
4166 | assert(kn->kn_status & KN_SUPPRESSED); | |
4167 | knote_unsuppress(kqwq, kn); | |
4168 | } | |
4169 | } | |
4170 | ||
4171 | #if DEBUG || DEVELOPMENT | |
4172 | thread_t self = current_thread(); | |
4173 | struct uthread *ut = get_bsdthread_info(self); | |
4174 | ||
4175 | assert(thread == self); | |
4176 | assert(ut->uu_kqr_bound == kqr); | |
4177 | #endif // DEBUG || DEVELOPMENT | |
4178 | ||
4179 | if (kqwqae_op == KQWQAE_UNBIND) { | |
4180 | unbind = true; | |
4181 | } else if ((kevent_flags & KEVENT_FLAG_PARKING) == 0) { | |
4182 | unbind = false; | |
4183 | } else { | |
4184 | unbind = !kqr->tr_kq_wakeup; | |
4185 | } | |
4186 | if (unbind) { | |
4187 | old_override = kqworkq_unbind_locked(kqwq, kqr, thread); | |
4188 | rc = -1; | |
4189 | /* | |
4190 | * request a new thread if we didn't process the whole queue or real events | |
4191 | * have happened (not just putting stay-active events back). | |
4192 | */ | |
4193 | if (kqr->tr_kq_wakeup) { | |
4194 | kqueue_threadreq_initiate(&kqwq->kqwq_kqueue, kqr, | |
4195 | kqr->tr_kq_qos_index, 0); | |
4196 | } | |
4197 | } | |
4198 | ||
4199 | if (rc == 0) { | |
4200 | /* | |
4201 | * Reset wakeup bit to notice events firing while we are processing, | |
4202 | * as we cannot rely on the bucket queue emptiness because of stay | |
4203 | * active knotes. | |
4204 | */ | |
4205 | kqr->tr_kq_wakeup = false; | |
4206 | } | |
4207 | ||
4208 | if (old_override) { | |
4209 | thread_drop_kevent_override(thread); | |
4210 | } | |
4211 | ||
4212 | return rc; | |
4213 | } | |
4214 | ||
4215 | /* | |
4216 | * Return 0 to indicate that processing should proceed, | |
4217 | * -1 if there is nothing to process. | |
4218 | * | |
4219 | * Called with kqueue locked and returns the same way, | |
4220 | * but may drop lock temporarily. | |
4221 | */ | |
4222 | static int | |
4223 | kqworkq_begin_processing(struct kqworkq *kqwq, workq_threadreq_t kqr, | |
4224 | int kevent_flags) | |
4225 | { | |
4226 | int rc = 0; | |
4227 | ||
4228 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_START, | |
4229 | 0, kqr->tr_kq_qos_index); | |
4230 | ||
4231 | rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, | |
4232 | KQWQAE_BEGIN_PROCESSING); | |
4233 | ||
4234 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
4235 | thread_tid(kqr_thread(kqr)), kqr->tr_kq_wakeup); | |
4236 | ||
4237 | return rc; | |
4238 | } | |
4239 | ||
4240 | static thread_qos_t | |
4241 | kqworkloop_acknowledge_events(struct kqworkloop *kqwl) | |
4242 | { | |
4243 | kq_index_t qos = THREAD_QOS_UNSPECIFIED; | |
4244 | struct knote *kn, *tmp; | |
4245 | ||
4246 | kqlock_held(kqwl); | |
4247 | ||
4248 | TAILQ_FOREACH_SAFE(kn, &kqwl->kqwl_suppressed, kn_tqe, tmp) { | |
4249 | /* | |
4250 | * If a knote that can adjust QoS is disabled because of the automatic | |
4251 | * behavior of EV_DISPATCH, the knotes should stay suppressed so that | |
4252 | * further overrides keep pushing. | |
4253 | */ | |
4254 | if (knote_fops(kn)->f_adjusts_qos && (kn->kn_status & KN_DISABLED) && | |
4255 | (kn->kn_status & (KN_STAYACTIVE | KN_DROPPING)) == 0 && | |
4256 | (kn->kn_flags & (EV_DISPATCH | EV_DISABLE)) == EV_DISPATCH) { | |
4257 | qos = MAX(qos, kn->kn_qos_override); | |
4258 | continue; | |
4259 | } | |
4260 | knote_unsuppress(kqwl, kn); | |
4261 | } | |
4262 | ||
4263 | return qos; | |
4264 | } | |
4265 | ||
4266 | static int | |
4267 | kqworkloop_begin_processing(struct kqworkloop *kqwl, unsigned int kevent_flags) | |
4268 | { | |
4269 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
4270 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
4271 | thread_qos_t qos_override; | |
4272 | thread_t thread = kqr_thread_fast(kqr); | |
4273 | int rc = 0, op = KQWL_UTQ_NONE; | |
4274 | ||
4275 | kqlock_held(kq); | |
4276 | ||
4277 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_START, | |
4278 | kqwl->kqwl_dynamicid, 0, 0); | |
4279 | ||
4280 | /* nobody else should still be processing */ | |
4281 | assert((kq->kq_state & KQ_PROCESSING) == 0); | |
4282 | ||
4283 | kq->kq_state |= KQ_PROCESSING; | |
4284 | ||
4285 | if (!TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { | |
4286 | op = KQWL_UTQ_RESET_WAKEUP_OVERRIDE; | |
4287 | } | |
4288 | ||
4289 | if (kevent_flags & KEVENT_FLAG_PARKING) { | |
4290 | /* | |
4291 | * When "parking" we want to process events and if no events are found | |
4292 | * unbind. | |
4293 | * | |
4294 | * However, non overcommit threads sometimes park even when they have | |
4295 | * more work so that the pool can narrow. For these, we need to unbind | |
4296 | * early, so that calling kqworkloop_update_threads_qos() can ask the | |
4297 | * workqueue subsystem whether the thread should park despite having | |
4298 | * pending events. | |
4299 | */ | |
4300 | if (kqr->tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) { | |
4301 | op = KQWL_UTQ_PARKING; | |
4302 | } else { | |
4303 | op = KQWL_UTQ_UNBINDING; | |
4304 | } | |
4305 | } | |
4306 | if (op == KQWL_UTQ_NONE) { | |
4307 | goto done; | |
4308 | } | |
4309 | ||
4310 | qos_override = kqworkloop_acknowledge_events(kqwl); | |
4311 | ||
4312 | if (op == KQWL_UTQ_UNBINDING) { | |
4313 | kqworkloop_unbind_locked(kqwl, thread, KQWL_OVERRIDE_DROP_IMMEDIATELY); | |
4314 | kqworkloop_release_live(kqwl); | |
4315 | } | |
4316 | kqworkloop_update_threads_qos(kqwl, op, qos_override); | |
4317 | if (op == KQWL_UTQ_PARKING) { | |
4318 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[KQWL_BUCKET_STAYACTIVE])) { | |
4319 | /* | |
4320 | * We cannot trust tr_kq_wakeup when looking at stay active knotes. | |
4321 | * We need to process once, and kqworkloop_end_processing will | |
4322 | * handle the unbind. | |
4323 | */ | |
4324 | } else if (!kqr->tr_kq_wakeup || kqwl->kqwl_owner) { | |
4325 | kqworkloop_unbind_locked(kqwl, thread, KQWL_OVERRIDE_DROP_DELAYED); | |
4326 | kqworkloop_release_live(kqwl); | |
4327 | rc = -1; | |
4328 | } | |
4329 | } else if (op == KQWL_UTQ_UNBINDING) { | |
4330 | if (kqr_thread(kqr) == thread) { | |
4331 | /* | |
4332 | * The thread request fired again, passed the admission check and | |
4333 | * got bound to the current thread again. | |
4334 | */ | |
4335 | } else { | |
4336 | rc = -1; | |
4337 | } | |
4338 | } | |
4339 | ||
4340 | if (rc == 0) { | |
4341 | /* | |
4342 | * Reset wakeup bit to notice stay active events firing while we are | |
4343 | * processing, as we cannot rely on the stayactive bucket emptiness. | |
4344 | */ | |
4345 | kqwl->kqwl_wakeup_indexes &= ~KQWL_STAYACTIVE_FIRED_BIT; | |
4346 | } else { | |
4347 | kq->kq_state &= ~KQ_PROCESSING; | |
4348 | } | |
4349 | ||
4350 | if (rc == -1) { | |
4351 | kqworkloop_unbind_delayed_override_drop(thread); | |
4352 | } | |
4353 | ||
4354 | done: | |
4355 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_END, | |
4356 | kqwl->kqwl_dynamicid, 0, 0); | |
4357 | ||
4358 | return rc; | |
4359 | } | |
4360 | ||
4361 | /* | |
4362 | * Return 0 to indicate that processing should proceed, | |
4363 | * -1 if there is nothing to process. | |
4364 | * EBADF if the kqueue is draining | |
4365 | * | |
4366 | * Called with kqueue locked and returns the same way, | |
4367 | * but may drop lock temporarily. | |
4368 | * May block. | |
4369 | */ | |
4370 | static int | |
4371 | kqfile_begin_processing(struct kqfile *kq) | |
4372 | { | |
4373 | struct kqtailq *suppressq; | |
4374 | ||
4375 | kqlock_held(kq); | |
4376 | ||
4377 | assert((kq->kqf_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); | |
4378 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_START, | |
4379 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); | |
4380 | ||
4381 | /* wait to become the exclusive processing thread */ | |
4382 | for (;;) { | |
4383 | if (kq->kqf_state & KQ_DRAIN) { | |
4384 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
4385 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 2); | |
4386 | return EBADF; | |
4387 | } | |
4388 | ||
4389 | if ((kq->kqf_state & KQ_PROCESSING) == 0) { | |
4390 | break; | |
4391 | } | |
4392 | ||
4393 | /* if someone else is processing the queue, wait */ | |
4394 | kq->kqf_state |= KQ_PROCWAIT; | |
4395 | suppressq = &kq->kqf_suppressed; | |
4396 | waitq_assert_wait64((struct waitq *)&kq->kqf_wqs, | |
4397 | CAST_EVENT64_T(suppressq), THREAD_UNINT | THREAD_WAIT_NOREPORT, | |
4398 | TIMEOUT_WAIT_FOREVER); | |
4399 | ||
4400 | kqunlock(kq); | |
4401 | thread_block(THREAD_CONTINUE_NULL); | |
4402 | kqlock(kq); | |
4403 | } | |
4404 | ||
4405 | /* Nobody else processing */ | |
4406 | ||
4407 | /* clear pre-posts and KQ_WAKEUP now, in case we bail early */ | |
4408 | waitq_set_clear_preposts(&kq->kqf_wqs); | |
4409 | kq->kqf_state &= ~KQ_WAKEUP; | |
4410 | ||
4411 | /* anything left to process? */ | |
4412 | if (TAILQ_EMPTY(&kq->kqf_queue)) { | |
4413 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
4414 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 1); | |
4415 | return -1; | |
4416 | } | |
4417 | ||
4418 | /* convert to processing mode */ | |
4419 | kq->kqf_state |= KQ_PROCESSING; | |
4420 | ||
4421 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
4422 | VM_KERNEL_UNSLIDE_OR_PERM(kq)); | |
4423 | ||
4424 | return 0; | |
4425 | } | |
4426 | ||
4427 | /* | |
4428 | * Try to end the processing, only called when a workq thread is attempting to | |
4429 | * park (KEVENT_FLAG_PARKING is set). | |
4430 | * | |
4431 | * When returning -1, the kqworkq is setup again so that it is ready to be | |
4432 | * processed. | |
4433 | */ | |
4434 | static int | |
4435 | kqworkq_end_processing(struct kqworkq *kqwq, workq_threadreq_t kqr, | |
4436 | int kevent_flags) | |
4437 | { | |
4438 | if (!TAILQ_EMPTY(&kqwq->kqwq_queue[kqr->tr_kq_qos_index])) { | |
4439 | /* remember we didn't process everything */ | |
4440 | kqr->tr_kq_wakeup = true; | |
4441 | } | |
4442 | ||
4443 | if (kevent_flags & KEVENT_FLAG_PARKING) { | |
4444 | /* | |
4445 | * if acknowledge events "succeeds" it means there are events, | |
4446 | * which is a failure condition for end_processing. | |
4447 | */ | |
4448 | int rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, | |
4449 | KQWQAE_END_PROCESSING); | |
4450 | if (rc == 0) { | |
4451 | return -1; | |
4452 | } | |
4453 | } | |
4454 | ||
4455 | return 0; | |
4456 | } | |
4457 | ||
4458 | /* | |
4459 | * Try to end the processing, only called when a workq thread is attempting to | |
4460 | * park (KEVENT_FLAG_PARKING is set). | |
4461 | * | |
4462 | * When returning -1, the kqworkq is setup again so that it is ready to be | |
4463 | * processed (as if kqworkloop_begin_processing had just been called). | |
4464 | * | |
4465 | * If successful and KEVENT_FLAG_PARKING was set in the kevent_flags, | |
4466 | * the kqworkloop is unbound from its servicer as a side effect. | |
4467 | */ | |
4468 | static int | |
4469 | kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags) | |
4470 | { | |
4471 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
4472 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
4473 | thread_qos_t qos_override; | |
4474 | thread_t thread = kqr_thread_fast(kqr); | |
4475 | int rc = 0; | |
4476 | ||
4477 | kqlock_held(kq); | |
4478 | ||
4479 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_START, | |
4480 | kqwl->kqwl_dynamicid, 0, 0); | |
4481 | ||
4482 | if (flags & KQ_PROCESSING) { | |
4483 | assert(kq->kq_state & KQ_PROCESSING); | |
4484 | ||
4485 | /* | |
4486 | * If we still have queued stayactive knotes, remember we didn't finish | |
4487 | * processing all of them. This should be extremely rare and would | |
4488 | * require to have a lot of them registered and fired. | |
4489 | */ | |
4490 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[KQWL_BUCKET_STAYACTIVE])) { | |
4491 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_QOS, | |
4492 | KQWL_BUCKET_STAYACTIVE); | |
4493 | } | |
4494 | ||
4495 | /* | |
4496 | * When KEVENT_FLAG_PARKING is set, we need to attempt an unbind while | |
4497 | * still under the lock. | |
4498 | * | |
4499 | * So we do everything kqworkloop_unbind() would do, but because we're | |
4500 | * inside kqueue_process(), if the workloop actually received events | |
4501 | * while our locks were dropped, we have the opportunity to fail the end | |
4502 | * processing and loop again. | |
4503 | * | |
4504 | * This avoids going through the process-wide workqueue lock hence | |
4505 | * scales better. | |
4506 | */ | |
4507 | if (kevent_flags & KEVENT_FLAG_PARKING) { | |
4508 | qos_override = kqworkloop_acknowledge_events(kqwl); | |
4509 | } | |
4510 | } | |
4511 | ||
4512 | if (kevent_flags & KEVENT_FLAG_PARKING) { | |
4513 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_PARKING, qos_override); | |
4514 | if (kqr->tr_kq_wakeup && !kqwl->kqwl_owner) { | |
4515 | /* | |
4516 | * Reset wakeup bit to notice stay active events firing while we are | |
4517 | * processing, as we cannot rely on the stayactive bucket emptiness. | |
4518 | */ | |
4519 | kqwl->kqwl_wakeup_indexes &= ~KQWL_STAYACTIVE_FIRED_BIT; | |
4520 | rc = -1; | |
4521 | } else { | |
4522 | kqworkloop_unbind_locked(kqwl, thread, KQWL_OVERRIDE_DROP_DELAYED); | |
4523 | kqworkloop_release_live(kqwl); | |
4524 | kq->kq_state &= ~flags; | |
4525 | } | |
4526 | } else { | |
4527 | kq->kq_state &= ~flags; | |
4528 | kq->kq_state |= KQ_R2K_ARMED; | |
4529 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, 0); | |
4530 | } | |
4531 | ||
4532 | if ((kevent_flags & KEVENT_FLAG_PARKING) && rc == 0) { | |
4533 | kqworkloop_unbind_delayed_override_drop(thread); | |
4534 | } | |
4535 | ||
4536 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_END, | |
4537 | kqwl->kqwl_dynamicid, 0, 0); | |
4538 | ||
4539 | return rc; | |
4540 | } | |
4541 | ||
4542 | /* | |
4543 | * Called with kqueue lock held. | |
4544 | * | |
4545 | * 0: no more events | |
4546 | * -1: has more events | |
4547 | * EBADF: kqueue is in draining mode | |
4548 | */ | |
4549 | static int | |
4550 | kqfile_end_processing(struct kqfile *kq) | |
4551 | { | |
4552 | struct kqtailq *suppressq = &kq->kqf_suppressed; | |
4553 | struct knote *kn; | |
4554 | int procwait; | |
4555 | ||
4556 | kqlock_held(kq); | |
4557 | ||
4558 | assert((kq->kqf_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); | |
4559 | ||
4560 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_END), | |
4561 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); | |
4562 | ||
4563 | /* | |
4564 | * Return suppressed knotes to their original state. | |
4565 | */ | |
4566 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { | |
4567 | assert(kn->kn_status & KN_SUPPRESSED); | |
4568 | knote_unsuppress(kq, kn); | |
4569 | } | |
4570 | ||
4571 | procwait = (kq->kqf_state & KQ_PROCWAIT); | |
4572 | kq->kqf_state &= ~(KQ_PROCESSING | KQ_PROCWAIT); | |
4573 | ||
4574 | if (procwait) { | |
4575 | /* first wake up any thread already waiting to process */ | |
4576 | waitq_wakeup64_all((struct waitq *)&kq->kqf_wqs, | |
4577 | CAST_EVENT64_T(suppressq), THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); | |
4578 | } | |
4579 | ||
4580 | if (kq->kqf_state & KQ_DRAIN) { | |
4581 | return EBADF; | |
4582 | } | |
4583 | return (kq->kqf_state & KQ_WAKEUP) ? -1 : 0; | |
4584 | } | |
4585 | ||
4586 | static int | |
4587 | kqueue_workloop_ctl_internal(proc_t p, uintptr_t cmd, uint64_t __unused options, | |
4588 | struct kqueue_workloop_params *params, int *retval) | |
4589 | { | |
4590 | int error = 0; | |
4591 | struct kqworkloop *kqwl; | |
4592 | struct filedesc *fdp = p->p_fd; | |
4593 | workq_threadreq_param_t trp = { }; | |
4594 | ||
4595 | switch (cmd) { | |
4596 | case KQ_WORKLOOP_CREATE: | |
4597 | if (!params->kqwlp_flags) { | |
4598 | error = EINVAL; | |
4599 | break; | |
4600 | } | |
4601 | ||
4602 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) && | |
4603 | (params->kqwlp_sched_pri < 1 || | |
4604 | params->kqwlp_sched_pri > 63 /* MAXPRI_USER */)) { | |
4605 | error = EINVAL; | |
4606 | break; | |
4607 | } | |
4608 | ||
4609 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) && | |
4610 | invalid_policy(params->kqwlp_sched_pol)) { | |
4611 | error = EINVAL; | |
4612 | break; | |
4613 | } | |
4614 | ||
4615 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) && | |
4616 | (params->kqwlp_cpu_percent <= 0 || | |
4617 | params->kqwlp_cpu_percent > 100 || | |
4618 | params->kqwlp_cpu_refillms <= 0 || | |
4619 | params->kqwlp_cpu_refillms > 0x00ffffff)) { | |
4620 | error = EINVAL; | |
4621 | break; | |
4622 | } | |
4623 | ||
4624 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) { | |
4625 | trp.trp_flags |= TRP_PRIORITY; | |
4626 | trp.trp_pri = params->kqwlp_sched_pri; | |
4627 | } | |
4628 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) { | |
4629 | trp.trp_flags |= TRP_POLICY; | |
4630 | trp.trp_pol = params->kqwlp_sched_pol; | |
4631 | } | |
4632 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) { | |
4633 | trp.trp_flags |= TRP_CPUPERCENT; | |
4634 | trp.trp_cpupercent = (uint8_t)params->kqwlp_cpu_percent; | |
4635 | trp.trp_refillms = params->kqwlp_cpu_refillms; | |
4636 | } | |
4637 | ||
4638 | error = kqworkloop_get_or_create(p, params->kqwlp_id, &trp, | |
4639 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | | |
4640 | KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST, &kqwl); | |
4641 | if (error) { | |
4642 | break; | |
4643 | } | |
4644 | ||
4645 | if (!(fdp->fd_flags & FD_WORKLOOP)) { | |
4646 | /* FD_WORKLOOP indicates we've ever created a workloop | |
4647 | * via this syscall but its only ever added to a process, never | |
4648 | * removed. | |
4649 | */ | |
4650 | proc_fdlock(p); | |
4651 | fdp->fd_flags |= FD_WORKLOOP; | |
4652 | proc_fdunlock(p); | |
4653 | } | |
4654 | break; | |
4655 | case KQ_WORKLOOP_DESTROY: | |
4656 | error = kqworkloop_get_or_create(p, params->kqwlp_id, NULL, | |
4657 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | | |
4658 | KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST, &kqwl); | |
4659 | if (error) { | |
4660 | break; | |
4661 | } | |
4662 | kqlock(kqwl); | |
4663 | trp.trp_value = kqwl->kqwl_params; | |
4664 | if (trp.trp_flags && !(trp.trp_flags & TRP_RELEASED)) { | |
4665 | trp.trp_flags |= TRP_RELEASED; | |
4666 | kqwl->kqwl_params = trp.trp_value; | |
4667 | kqworkloop_release_live(kqwl); | |
4668 | } else { | |
4669 | error = EINVAL; | |
4670 | } | |
4671 | kqunlock(kqwl); | |
4672 | kqworkloop_release(kqwl); | |
4673 | break; | |
4674 | } | |
4675 | *retval = 0; | |
4676 | return error; | |
4677 | } | |
4678 | ||
4679 | int | |
4680 | kqueue_workloop_ctl(proc_t p, struct kqueue_workloop_ctl_args *uap, int *retval) | |
4681 | { | |
4682 | struct kqueue_workloop_params params = { | |
4683 | .kqwlp_id = 0, | |
4684 | }; | |
4685 | if (uap->sz < sizeof(params.kqwlp_version)) { | |
4686 | return EINVAL; | |
4687 | } | |
4688 | ||
4689 | size_t copyin_sz = MIN(sizeof(params), uap->sz); | |
4690 | int rv = copyin(uap->addr, ¶ms, copyin_sz); | |
4691 | if (rv) { | |
4692 | return rv; | |
4693 | } | |
4694 | ||
4695 | if (params.kqwlp_version != (int)uap->sz) { | |
4696 | return EINVAL; | |
4697 | } | |
4698 | ||
4699 | return kqueue_workloop_ctl_internal(p, uap->cmd, uap->options, ¶ms, | |
4700 | retval); | |
4701 | } | |
4702 | ||
4703 | /*ARGSUSED*/ | |
4704 | static int | |
4705 | kqueue_select(struct fileproc *fp, int which, void *wq_link_id, | |
4706 | __unused vfs_context_t ctx) | |
4707 | { | |
4708 | struct kqfile *kq = (struct kqfile *)fp->f_data; | |
4709 | struct kqtailq *suppressq = &kq->kqf_suppressed; | |
4710 | struct kqtailq *queue = &kq->kqf_queue; | |
4711 | struct knote *kn; | |
4712 | int retnum = 0; | |
4713 | ||
4714 | if (which != FREAD) { | |
4715 | return 0; | |
4716 | } | |
4717 | ||
4718 | kqlock(kq); | |
4719 | ||
4720 | assert((kq->kqf_state & KQ_WORKQ) == 0); | |
4721 | ||
4722 | /* | |
4723 | * If this is the first pass, link the wait queue associated with the | |
4724 | * the kqueue onto the wait queue set for the select(). Normally we | |
4725 | * use selrecord() for this, but it uses the wait queue within the | |
4726 | * selinfo structure and we need to use the main one for the kqueue to | |
4727 | * catch events from KN_STAYQUEUED sources. So we do the linkage manually. | |
4728 | * (The select() call will unlink them when it ends). | |
4729 | */ | |
4730 | if (wq_link_id != NULL) { | |
4731 | thread_t cur_act = current_thread(); | |
4732 | struct uthread * ut = get_bsdthread_info(cur_act); | |
4733 | ||
4734 | kq->kqf_state |= KQ_SEL; | |
4735 | waitq_link((struct waitq *)&kq->kqf_wqs, ut->uu_wqset, | |
4736 | WAITQ_SHOULD_LOCK, (uint64_t *)wq_link_id); | |
4737 | ||
4738 | /* always consume the reserved link object */ | |
4739 | waitq_link_release(*(uint64_t *)wq_link_id); | |
4740 | *(uint64_t *)wq_link_id = 0; | |
4741 | ||
4742 | /* | |
4743 | * selprocess() is expecting that we send it back the waitq | |
4744 | * that was just added to the thread's waitq set. In order | |
4745 | * to not change the selrecord() API (which is exported to | |
4746 | * kexts), we pass this value back through the | |
4747 | * void *wq_link_id pointer we were passed. We need to use | |
4748 | * memcpy here because the pointer may not be properly aligned | |
4749 | * on 32-bit systems. | |
4750 | */ | |
4751 | void *wqptr = &kq->kqf_wqs; | |
4752 | memcpy(wq_link_id, (void *)&wqptr, sizeof(void *)); | |
4753 | } | |
4754 | ||
4755 | if (kqfile_begin_processing(kq) == -1) { | |
4756 | kqunlock(kq); | |
4757 | return 0; | |
4758 | } | |
4759 | ||
4760 | if (!TAILQ_EMPTY(queue)) { | |
4761 | /* | |
4762 | * there is something queued - but it might be a | |
4763 | * KN_STAYACTIVE knote, which may or may not have | |
4764 | * any events pending. Otherwise, we have to walk | |
4765 | * the list of knotes to see, and peek at the | |
4766 | * (non-vanished) stay-active ones to be really sure. | |
4767 | */ | |
4768 | while ((kn = (struct knote *)TAILQ_FIRST(queue)) != NULL) { | |
4769 | if (kn->kn_status & KN_ACTIVE) { | |
4770 | retnum = 1; | |
4771 | goto out; | |
4772 | } | |
4773 | assert(kn->kn_status & KN_STAYACTIVE); | |
4774 | knote_suppress(kq, kn); | |
4775 | } | |
4776 | ||
4777 | /* | |
4778 | * There were no regular events on the queue, so take | |
4779 | * a deeper look at the stay-queued ones we suppressed. | |
4780 | */ | |
4781 | while ((kn = (struct knote *)TAILQ_FIRST(suppressq)) != NULL) { | |
4782 | KNOTE_LOCK_CTX(knlc); | |
4783 | int result = 0; | |
4784 | ||
4785 | /* If didn't vanish while suppressed - peek at it */ | |
4786 | if ((kn->kn_status & KN_DROPPING) || !knote_lock(kq, kn, &knlc, | |
4787 | KNOTE_KQ_LOCK_ON_FAILURE)) { | |
4788 | continue; | |
4789 | } | |
4790 | ||
4791 | result = filter_call(knote_fops(kn), f_peek(kn)); | |
4792 | ||
4793 | kqlock(kq); | |
4794 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); | |
4795 | ||
4796 | /* unsuppress it */ | |
4797 | knote_unsuppress(kq, kn); | |
4798 | ||
4799 | /* has data or it has to report a vanish */ | |
4800 | if (result & FILTER_ACTIVE) { | |
4801 | retnum = 1; | |
4802 | goto out; | |
4803 | } | |
4804 | } | |
4805 | } | |
4806 | ||
4807 | out: | |
4808 | kqfile_end_processing(kq); | |
4809 | kqunlock(kq); | |
4810 | return retnum; | |
4811 | } | |
4812 | ||
4813 | /* | |
4814 | * kqueue_close - | |
4815 | */ | |
4816 | /*ARGSUSED*/ | |
4817 | static int | |
4818 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) | |
4819 | { | |
4820 | struct kqfile *kqf = (struct kqfile *)fg->fg_data; | |
4821 | ||
4822 | assert((kqf->kqf_state & KQ_WORKQ) == 0); | |
4823 | kqueue_dealloc(&kqf->kqf_kqueue); | |
4824 | fg->fg_data = NULL; | |
4825 | return 0; | |
4826 | } | |
4827 | ||
4828 | /* | |
4829 | * Max depth of the nested kq path that can be created. | |
4830 | * Note that this has to be less than the size of kq_level | |
4831 | * to avoid wrapping around and mislabeling the level. | |
4832 | */ | |
4833 | #define MAX_NESTED_KQ 1000 | |
4834 | ||
4835 | /*ARGSUSED*/ | |
4836 | /* | |
4837 | * The callers has taken a use-count reference on this kqueue and will donate it | |
4838 | * to the kqueue we are being added to. This keeps the kqueue from closing until | |
4839 | * that relationship is torn down. | |
4840 | */ | |
4841 | static int | |
4842 | kqueue_kqfilter(struct fileproc *fp, struct knote *kn, | |
4843 | __unused struct kevent_qos_s *kev) | |
4844 | { | |
4845 | struct kqfile *kqf = (struct kqfile *)fp->f_data; | |
4846 | struct kqueue *kq = &kqf->kqf_kqueue; | |
4847 | struct kqueue *parentkq = knote_get_kq(kn); | |
4848 | ||
4849 | assert((kqf->kqf_state & KQ_WORKQ) == 0); | |
4850 | ||
4851 | if (parentkq == kq || kn->kn_filter != EVFILT_READ) { | |
4852 | knote_set_error(kn, EINVAL); | |
4853 | return 0; | |
4854 | } | |
4855 | ||
4856 | /* | |
4857 | * We have to avoid creating a cycle when nesting kqueues | |
4858 | * inside another. Rather than trying to walk the whole | |
4859 | * potential DAG of nested kqueues, we just use a simple | |
4860 | * ceiling protocol. When a kqueue is inserted into another, | |
4861 | * we check that the (future) parent is not already nested | |
4862 | * into another kqueue at a lower level than the potenial | |
4863 | * child (because it could indicate a cycle). If that test | |
4864 | * passes, we just mark the nesting levels accordingly. | |
4865 | * | |
4866 | * Only up to MAX_NESTED_KQ can be nested. | |
4867 | * | |
4868 | * Note: kqworkq and kqworkloop cannot be nested and have reused their | |
4869 | * kq_level field, so ignore these as parent. | |
4870 | */ | |
4871 | ||
4872 | kqlock(parentkq); | |
4873 | ||
4874 | if ((parentkq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0) { | |
4875 | if (parentkq->kq_level > 0 && | |
4876 | parentkq->kq_level < kq->kq_level) { | |
4877 | kqunlock(parentkq); | |
4878 | knote_set_error(kn, EINVAL); | |
4879 | return 0; | |
4880 | } | |
4881 | ||
4882 | /* set parent level appropriately */ | |
4883 | uint16_t plevel = (parentkq->kq_level == 0)? 2: parentkq->kq_level; | |
4884 | if (plevel < kq->kq_level + 1) { | |
4885 | if (kq->kq_level + 1 > MAX_NESTED_KQ) { | |
4886 | kqunlock(parentkq); | |
4887 | knote_set_error(kn, EINVAL); | |
4888 | return 0; | |
4889 | } | |
4890 | plevel = kq->kq_level + 1; | |
4891 | } | |
4892 | ||
4893 | parentkq->kq_level = plevel; | |
4894 | } | |
4895 | ||
4896 | kqunlock(parentkq); | |
4897 | ||
4898 | kn->kn_filtid = EVFILTID_KQREAD; | |
4899 | kqlock(kq); | |
4900 | KNOTE_ATTACH(&kqf->kqf_sel.si_note, kn); | |
4901 | /* indicate nesting in child, if needed */ | |
4902 | if (kq->kq_level == 0) { | |
4903 | kq->kq_level = 1; | |
4904 | } | |
4905 | ||
4906 | int count = kq->kq_count; | |
4907 | kqunlock(kq); | |
4908 | return count > 0; | |
4909 | } | |
4910 | ||
4911 | /* | |
4912 | * kqueue_drain - called when kq is closed | |
4913 | */ | |
4914 | /*ARGSUSED*/ | |
4915 | static int | |
4916 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) | |
4917 | { | |
4918 | struct kqfile *kqf = (struct kqfile *)fp->f_fglob->fg_data; | |
4919 | ||
4920 | assert((kqf->kqf_state & KQ_WORKQ) == 0); | |
4921 | ||
4922 | kqlock(kqf); | |
4923 | kqf->kqf_state |= KQ_DRAIN; | |
4924 | ||
4925 | /* wakeup sleeping threads */ | |
4926 | if ((kqf->kqf_state & (KQ_SLEEP | KQ_SEL)) != 0) { | |
4927 | kqf->kqf_state &= ~(KQ_SLEEP | KQ_SEL); | |
4928 | (void)waitq_wakeup64_all((struct waitq *)&kqf->kqf_wqs, | |
4929 | KQ_EVENT, | |
4930 | THREAD_RESTART, | |
4931 | WAITQ_ALL_PRIORITIES); | |
4932 | } | |
4933 | ||
4934 | /* wakeup threads waiting their turn to process */ | |
4935 | if (kqf->kqf_state & KQ_PROCWAIT) { | |
4936 | assert(kqf->kqf_state & KQ_PROCESSING); | |
4937 | ||
4938 | kqf->kqf_state &= ~KQ_PROCWAIT; | |
4939 | (void)waitq_wakeup64_all((struct waitq *)&kqf->kqf_wqs, | |
4940 | CAST_EVENT64_T(&kqf->kqf_suppressed), | |
4941 | THREAD_RESTART, WAITQ_ALL_PRIORITIES); | |
4942 | } | |
4943 | ||
4944 | kqunlock(kqf); | |
4945 | return 0; | |
4946 | } | |
4947 | ||
4948 | /*ARGSUSED*/ | |
4949 | int | |
4950 | kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) | |
4951 | { | |
4952 | assert((kq->kq_state & KQ_WORKQ) == 0); | |
4953 | ||
4954 | kqlock(kq); | |
4955 | if (isstat64 != 0) { | |
4956 | struct stat64 *sb64 = (struct stat64 *)ub; | |
4957 | ||
4958 | bzero((void *)sb64, sizeof(*sb64)); | |
4959 | sb64->st_size = kq->kq_count; | |
4960 | if (kq->kq_state & KQ_KEV_QOS) { | |
4961 | sb64->st_blksize = sizeof(struct kevent_qos_s); | |
4962 | } else if (kq->kq_state & KQ_KEV64) { | |
4963 | sb64->st_blksize = sizeof(struct kevent64_s); | |
4964 | } else if (IS_64BIT_PROCESS(p)) { | |
4965 | sb64->st_blksize = sizeof(struct user64_kevent); | |
4966 | } else { | |
4967 | sb64->st_blksize = sizeof(struct user32_kevent); | |
4968 | } | |
4969 | sb64->st_mode = S_IFIFO; | |
4970 | } else { | |
4971 | struct stat *sb = (struct stat *)ub; | |
4972 | ||
4973 | bzero((void *)sb, sizeof(*sb)); | |
4974 | sb->st_size = kq->kq_count; | |
4975 | if (kq->kq_state & KQ_KEV_QOS) { | |
4976 | sb->st_blksize = sizeof(struct kevent_qos_s); | |
4977 | } else if (kq->kq_state & KQ_KEV64) { | |
4978 | sb->st_blksize = sizeof(struct kevent64_s); | |
4979 | } else if (IS_64BIT_PROCESS(p)) { | |
4980 | sb->st_blksize = sizeof(struct user64_kevent); | |
4981 | } else { | |
4982 | sb->st_blksize = sizeof(struct user32_kevent); | |
4983 | } | |
4984 | sb->st_mode = S_IFIFO; | |
4985 | } | |
4986 | kqunlock(kq); | |
4987 | return 0; | |
4988 | } | |
4989 | ||
4990 | static inline bool | |
4991 | kqueue_threadreq_can_use_ast(struct kqueue *kq) | |
4992 | { | |
4993 | if (current_proc() == kq->kq_p) { | |
4994 | /* | |
4995 | * Setting an AST from a non BSD syscall is unsafe: mach_msg_trap() can | |
4996 | * do combined send/receive and in the case of self-IPC, the AST may bet | |
4997 | * set on a thread that will not return to userspace and needs the | |
4998 | * thread the AST would create to unblock itself. | |
4999 | * | |
5000 | * At this time, we really want to target: | |
5001 | * | |
5002 | * - kevent variants that can cause thread creations, and dispatch | |
5003 | * really only uses kevent_qos and kevent_id, | |
5004 | * | |
5005 | * - workq_kernreturn (directly about thread creations) | |
5006 | * | |
5007 | * - bsdthread_ctl which is used for qos changes and has direct impact | |
5008 | * on the creator thread scheduling decisions. | |
5009 | */ | |
5010 | switch (current_uthread()->syscall_code) { | |
5011 | case SYS_kevent_qos: | |
5012 | case SYS_kevent_id: | |
5013 | case SYS_workq_kernreturn: | |
5014 | case SYS_bsdthread_ctl: | |
5015 | return true; | |
5016 | } | |
5017 | } | |
5018 | return false; | |
5019 | } | |
5020 | ||
5021 | /* | |
5022 | * Interact with the pthread kext to request a servicing there at a specific QoS | |
5023 | * level. | |
5024 | * | |
5025 | * - Caller holds the workq request lock | |
5026 | * | |
5027 | * - May be called with the kqueue's wait queue set locked, | |
5028 | * so cannot do anything that could recurse on that. | |
5029 | */ | |
5030 | static void | |
5031 | kqueue_threadreq_initiate(struct kqueue *kq, workq_threadreq_t kqr, | |
5032 | kq_index_t qos, int flags) | |
5033 | { | |
5034 | assert(kqr->tr_kq_wakeup); | |
5035 | assert(kqr_thread(kqr) == THREAD_NULL); | |
5036 | assert(!kqr_thread_requested(kqr)); | |
5037 | struct turnstile *ts = TURNSTILE_NULL; | |
5038 | ||
5039 | if (workq_is_exiting(kq->kq_p)) { | |
5040 | return; | |
5041 | } | |
5042 | ||
5043 | kqlock_held(kq); | |
5044 | ||
5045 | if (kq->kq_state & KQ_WORKLOOP) { | |
5046 | __assert_only struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
5047 | ||
5048 | assert(kqwl->kqwl_owner == THREAD_NULL); | |
5049 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THREQUEST), | |
5050 | kqwl->kqwl_dynamicid, 0, qos, kqr->tr_kq_wakeup); | |
5051 | ts = kqwl->kqwl_turnstile; | |
5052 | /* Add a thread request reference on the kqueue. */ | |
5053 | kqworkloop_retain(kqwl); | |
5054 | } else { | |
5055 | assert(kq->kq_state & KQ_WORKQ); | |
5056 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_THREQUEST), | |
5057 | -1, 0, qos, kqr->tr_kq_wakeup); | |
5058 | } | |
5059 | ||
5060 | /* | |
5061 | * New-style thread request supported. | |
5062 | * Provide the pthread kext a pointer to a workq_threadreq_s structure for | |
5063 | * its use until a corresponding kqueue_threadreq_bind callback. | |
5064 | */ | |
5065 | if (kqueue_threadreq_can_use_ast(kq)) { | |
5066 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; | |
5067 | } | |
5068 | if (qos == KQWQ_QOS_MANAGER) { | |
5069 | qos = WORKQ_THREAD_QOS_MANAGER; | |
5070 | } | |
5071 | if (!workq_kern_threadreq_initiate(kq->kq_p, kqr, ts, qos, flags)) { | |
5072 | /* | |
5073 | * Process is shutting down or exec'ing. | |
5074 | * All the kqueues are going to be cleaned up | |
5075 | * soon. Forget we even asked for a thread - | |
5076 | * and make sure we don't ask for more. | |
5077 | */ | |
5078 | kq->kq_state &= ~KQ_R2K_ARMED; | |
5079 | kqueue_release_live(kq); | |
5080 | } | |
5081 | } | |
5082 | ||
5083 | /* | |
5084 | * kqueue_threadreq_bind_prepost - prepost the bind to kevent | |
5085 | * | |
5086 | * This is used when kqueue_threadreq_bind may cause a lock inversion. | |
5087 | */ | |
5088 | __attribute__((always_inline)) | |
5089 | void | |
5090 | kqueue_threadreq_bind_prepost(struct proc *p __unused, workq_threadreq_t kqr, | |
5091 | struct uthread *ut) | |
5092 | { | |
5093 | ut->uu_kqr_bound = kqr; | |
5094 | kqr->tr_thread = ut->uu_thread; | |
5095 | kqr->tr_state = WORKQ_TR_STATE_BINDING; | |
5096 | } | |
5097 | ||
5098 | /* | |
5099 | * kqueue_threadreq_bind_commit - commit a bind prepost | |
5100 | * | |
5101 | * The workq code has to commit any binding prepost before the thread has | |
5102 | * a chance to come back to userspace (and do kevent syscalls) or be aborted. | |
5103 | */ | |
5104 | void | |
5105 | kqueue_threadreq_bind_commit(struct proc *p, thread_t thread) | |
5106 | { | |
5107 | struct uthread *ut = get_bsdthread_info(thread); | |
5108 | workq_threadreq_t kqr = ut->uu_kqr_bound; | |
5109 | kqueue_t kqu = kqr_kqueue(p, kqr); | |
5110 | ||
5111 | kqlock(kqu); | |
5112 | if (kqr->tr_state == WORKQ_TR_STATE_BINDING) { | |
5113 | kqueue_threadreq_bind(p, kqr, thread, 0); | |
5114 | } | |
5115 | kqunlock(kqu); | |
5116 | } | |
5117 | ||
5118 | static void | |
5119 | kqueue_threadreq_modify(kqueue_t kqu, workq_threadreq_t kqr, kq_index_t qos, | |
5120 | workq_kern_threadreq_flags_t flags) | |
5121 | { | |
5122 | assert(kqr_thread_requested_pending(kqr)); | |
5123 | ||
5124 | kqlock_held(kqu); | |
5125 | ||
5126 | if (kqueue_threadreq_can_use_ast(kqu.kq)) { | |
5127 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; | |
5128 | } | |
5129 | workq_kern_threadreq_modify(kqu.kq->kq_p, kqr, qos, flags); | |
5130 | } | |
5131 | ||
5132 | /* | |
5133 | * kqueue_threadreq_bind - bind thread to processing kqrequest | |
5134 | * | |
5135 | * The provided thread will be responsible for delivering events | |
5136 | * associated with the given kqrequest. Bind it and get ready for | |
5137 | * the thread to eventually arrive. | |
5138 | */ | |
5139 | void | |
5140 | kqueue_threadreq_bind(struct proc *p, workq_threadreq_t kqr, thread_t thread, | |
5141 | unsigned int flags) | |
5142 | { | |
5143 | kqueue_t kqu = kqr_kqueue(p, kqr); | |
5144 | struct uthread *ut = get_bsdthread_info(thread); | |
5145 | ||
5146 | kqlock_held(kqu); | |
5147 | ||
5148 | assert(ut->uu_kqueue_override == 0); | |
5149 | ||
5150 | if (kqr->tr_state == WORKQ_TR_STATE_BINDING) { | |
5151 | assert(ut->uu_kqr_bound == kqr); | |
5152 | assert(kqr->tr_thread == thread); | |
5153 | } else { | |
5154 | assert(kqr_thread_requested_pending(kqr)); | |
5155 | assert(kqr->tr_thread == THREAD_NULL); | |
5156 | assert(ut->uu_kqr_bound == NULL); | |
5157 | ut->uu_kqr_bound = kqr; | |
5158 | kqr->tr_thread = thread; | |
5159 | } | |
5160 | ||
5161 | kqr->tr_state = WORKQ_TR_STATE_BOUND; | |
5162 | ||
5163 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
5164 | struct turnstile *ts = kqu.kqwl->kqwl_turnstile; | |
5165 | ||
5166 | if (__improbable(thread == kqu.kqwl->kqwl_owner)) { | |
5167 | /* | |
5168 | * <rdar://problem/38626999> shows that asserting here is not ok. | |
5169 | * | |
5170 | * This is not supposed to happen for correct use of the interface, | |
5171 | * but it is sadly possible for userspace (with the help of memory | |
5172 | * corruption, such as over-release of a dispatch queue) to make | |
5173 | * the creator thread the "owner" of a workloop. | |
5174 | * | |
5175 | * Once that happens, and that creator thread picks up the same | |
5176 | * workloop as a servicer, we trip this codepath. We need to fixup | |
5177 | * the state to forget about this thread being the owner, as the | |
5178 | * entire workloop state machine expects servicers to never be | |
5179 | * owners and everything would basically go downhill from here. | |
5180 | */ | |
5181 | kqu.kqwl->kqwl_owner = THREAD_NULL; | |
5182 | if (kqworkloop_override(kqu.kqwl)) { | |
5183 | thread_drop_kevent_override(thread); | |
5184 | } | |
5185 | } | |
5186 | ||
5187 | if (ts && (flags & KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE) == 0) { | |
5188 | /* | |
5189 | * Past this point, the interlock is the kq req lock again, | |
5190 | * so we can fix the inheritor for good. | |
5191 | */ | |
5192 | filt_wlupdate_inheritor(kqu.kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); | |
5193 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_HELD); | |
5194 | } | |
5195 | ||
5196 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_BIND), kqu.kqwl->kqwl_dynamicid, | |
5197 | thread_tid(thread), kqr->tr_kq_qos_index, | |
5198 | (kqr->tr_kq_override_index << 16) | kqr->tr_kq_wakeup); | |
5199 | ||
5200 | ut->uu_kqueue_override = kqr->tr_kq_override_index; | |
5201 | if (kqr->tr_kq_override_index) { | |
5202 | thread_add_servicer_override(thread, kqr->tr_kq_override_index); | |
5203 | } | |
5204 | } else { | |
5205 | assert(kqr->tr_kq_override_index == 0); | |
5206 | ||
5207 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_BIND), -1, | |
5208 | thread_tid(thread), kqr->tr_kq_qos_index, | |
5209 | (kqr->tr_kq_override_index << 16) | kqr->tr_kq_wakeup); | |
5210 | } | |
5211 | } | |
5212 | ||
5213 | /* | |
5214 | * kqueue_threadreq_cancel - abort a pending thread request | |
5215 | * | |
5216 | * Called when exiting/exec'ing. Forget our pending request. | |
5217 | */ | |
5218 | void | |
5219 | kqueue_threadreq_cancel(struct proc *p, workq_threadreq_t kqr) | |
5220 | { | |
5221 | kqueue_release(kqr_kqueue(p, kqr)); | |
5222 | } | |
5223 | ||
5224 | workq_threadreq_param_t | |
5225 | kqueue_threadreq_workloop_param(workq_threadreq_t kqr) | |
5226 | { | |
5227 | struct kqworkloop *kqwl; | |
5228 | workq_threadreq_param_t trp; | |
5229 | ||
5230 | assert(kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP); | |
5231 | kqwl = __container_of(kqr, struct kqworkloop, kqwl_request); | |
5232 | trp.trp_value = kqwl->kqwl_params; | |
5233 | return trp; | |
5234 | } | |
5235 | ||
5236 | /* | |
5237 | * kqueue_threadreq_unbind - unbind thread from processing kqueue | |
5238 | * | |
5239 | * End processing the per-QoS bucket of events and allow other threads | |
5240 | * to be requested for future servicing. | |
5241 | * | |
5242 | * caller holds a reference on the kqueue. | |
5243 | */ | |
5244 | void | |
5245 | kqueue_threadreq_unbind(struct proc *p, workq_threadreq_t kqr) | |
5246 | { | |
5247 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { | |
5248 | kqworkloop_unbind(kqr_kqworkloop(kqr)); | |
5249 | } else { | |
5250 | kqworkq_unbind(p, kqr); | |
5251 | } | |
5252 | } | |
5253 | ||
5254 | /* | |
5255 | * If we aren't already busy processing events [for this QoS], | |
5256 | * request workq thread support as appropriate. | |
5257 | * | |
5258 | * TBD - for now, we don't segregate out processing by QoS. | |
5259 | * | |
5260 | * - May be called with the kqueue's wait queue set locked, | |
5261 | * so cannot do anything that could recurse on that. | |
5262 | */ | |
5263 | static void | |
5264 | kqworkq_wakeup(struct kqworkq *kqwq, kq_index_t qos_index) | |
5265 | { | |
5266 | workq_threadreq_t kqr = kqworkq_get_request(kqwq, qos_index); | |
5267 | ||
5268 | /* convert to thread qos value */ | |
5269 | assert(qos_index < KQWQ_NBUCKETS); | |
5270 | ||
5271 | if (!kqr->tr_kq_wakeup) { | |
5272 | kqr->tr_kq_wakeup = true; | |
5273 | if (!kqr_thread_requested(kqr)) { | |
5274 | kqueue_threadreq_initiate(&kqwq->kqwq_kqueue, kqr, qos_index, 0); | |
5275 | } | |
5276 | } | |
5277 | } | |
5278 | ||
5279 | /* | |
5280 | * This represent the asynchronous QoS a given workloop contributes, | |
5281 | * hence is the max of the current active knotes (override index) | |
5282 | * and the workloop max qos (userspace async qos). | |
5283 | */ | |
5284 | static kq_index_t | |
5285 | kqworkloop_override(struct kqworkloop *kqwl) | |
5286 | { | |
5287 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5288 | return MAX(kqr->tr_kq_qos_index, kqr->tr_kq_override_index); | |
5289 | } | |
5290 | ||
5291 | static inline void | |
5292 | kqworkloop_request_fire_r2k_notification(struct kqworkloop *kqwl) | |
5293 | { | |
5294 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5295 | ||
5296 | kqlock_held(kqwl); | |
5297 | ||
5298 | if (kqwl->kqwl_state & KQ_R2K_ARMED) { | |
5299 | kqwl->kqwl_state &= ~KQ_R2K_ARMED; | |
5300 | act_set_astkevent(kqr_thread_fast(kqr), AST_KEVENT_RETURN_TO_KERNEL); | |
5301 | } | |
5302 | } | |
5303 | ||
5304 | static void | |
5305 | kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos) | |
5306 | { | |
5307 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5308 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
5309 | kq_index_t old_override = kqworkloop_override(kqwl); | |
5310 | kq_index_t i; | |
5311 | ||
5312 | kqlock_held(kqwl); | |
5313 | ||
5314 | switch (op) { | |
5315 | case KQWL_UTQ_UPDATE_WAKEUP_QOS: | |
5316 | if (qos == KQWL_BUCKET_STAYACTIVE) { | |
5317 | /* | |
5318 | * the KQWL_BUCKET_STAYACTIVE is not a QoS bucket, we only remember | |
5319 | * a high watermark (kqwl_stayactive_qos) of any stay active knote | |
5320 | * that was ever registered with this workloop. | |
5321 | * | |
5322 | * When waitq_set__CALLING_PREPOST_HOOK__() wakes up any stay active | |
5323 | * knote, we use this high-watermark as a wakeup-index, and also set | |
5324 | * the magic KQWL_BUCKET_STAYACTIVE bit to make sure we remember | |
5325 | * there is at least one stay active knote fired until the next full | |
5326 | * processing of this bucket. | |
5327 | */ | |
5328 | kqwl->kqwl_wakeup_indexes |= KQWL_STAYACTIVE_FIRED_BIT; | |
5329 | qos = kqwl->kqwl_stayactive_qos; | |
5330 | assert(qos); | |
5331 | } | |
5332 | if (kqwl->kqwl_wakeup_indexes & (1 << qos)) { | |
5333 | assert(kqr->tr_kq_wakeup); | |
5334 | break; | |
5335 | } | |
5336 | ||
5337 | kqwl->kqwl_wakeup_indexes |= (1 << qos); | |
5338 | kqr->tr_kq_wakeup = true; | |
5339 | kqworkloop_request_fire_r2k_notification(kqwl); | |
5340 | goto recompute; | |
5341 | ||
5342 | case KQWL_UTQ_UPDATE_STAYACTIVE_QOS: | |
5343 | assert(qos); | |
5344 | if (kqwl->kqwl_stayactive_qos < qos) { | |
5345 | kqwl->kqwl_stayactive_qos = qos; | |
5346 | if (kqwl->kqwl_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT) { | |
5347 | assert(kqr->tr_kq_wakeup); | |
5348 | kqwl->kqwl_wakeup_indexes |= (1 << qos); | |
5349 | goto recompute; | |
5350 | } | |
5351 | } | |
5352 | break; | |
5353 | ||
5354 | case KQWL_UTQ_PARKING: | |
5355 | case KQWL_UTQ_UNBINDING: | |
5356 | kqr->tr_kq_override_index = qos; | |
5357 | /* FALLTHROUGH */ | |
5358 | case KQWL_UTQ_RECOMPUTE_WAKEUP_QOS: | |
5359 | if (op == KQWL_UTQ_RECOMPUTE_WAKEUP_QOS) { | |
5360 | assert(qos == THREAD_QOS_UNSPECIFIED); | |
5361 | } | |
5362 | i = KQWL_BUCKET_STAYACTIVE; | |
5363 | if (TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { | |
5364 | kqr->tr_kq_override_index = THREAD_QOS_UNSPECIFIED; | |
5365 | } | |
5366 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[i]) && | |
5367 | (kqwl->kqwl_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT)) { | |
5368 | /* | |
5369 | * If the KQWL_STAYACTIVE_FIRED_BIT is set, it means a stay active | |
5370 | * knote may have fired, so we need to merge in kqwl_stayactive_qos. | |
5371 | * | |
5372 | * Unlike other buckets, this one is never empty but could be idle. | |
5373 | */ | |
5374 | kqwl->kqwl_wakeup_indexes &= KQWL_STAYACTIVE_FIRED_BIT; | |
5375 | kqwl->kqwl_wakeup_indexes |= (1 << kqwl->kqwl_stayactive_qos); | |
5376 | } else { | |
5377 | kqwl->kqwl_wakeup_indexes = 0; | |
5378 | } | |
5379 | for (i = THREAD_QOS_UNSPECIFIED + 1; i < KQWL_BUCKET_STAYACTIVE; i++) { | |
5380 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[i])) { | |
5381 | kqwl->kqwl_wakeup_indexes |= (1 << i); | |
5382 | } | |
5383 | } | |
5384 | if (kqwl->kqwl_wakeup_indexes) { | |
5385 | kqr->tr_kq_wakeup = true; | |
5386 | kqworkloop_request_fire_r2k_notification(kqwl); | |
5387 | } else { | |
5388 | kqr->tr_kq_wakeup = false; | |
5389 | } | |
5390 | goto recompute; | |
5391 | ||
5392 | case KQWL_UTQ_RESET_WAKEUP_OVERRIDE: | |
5393 | kqr->tr_kq_override_index = qos; | |
5394 | goto recompute; | |
5395 | ||
5396 | case KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE: | |
5397 | recompute: | |
5398 | /* | |
5399 | * When modifying the wakeup QoS or the override QoS, we always need to | |
5400 | * maintain our invariant that kqr_override_index is at least as large | |
5401 | * as the highest QoS for which an event is fired. | |
5402 | * | |
5403 | * However this override index can be larger when there is an overriden | |
5404 | * suppressed knote pushing on the kqueue. | |
5405 | */ | |
5406 | if (kqwl->kqwl_wakeup_indexes > (1 << qos)) { | |
5407 | qos = fls(kqwl->kqwl_wakeup_indexes) - 1; /* fls is 1-based */ | |
5408 | } | |
5409 | if (kqr->tr_kq_override_index < qos) { | |
5410 | kqr->tr_kq_override_index = qos; | |
5411 | } | |
5412 | break; | |
5413 | ||
5414 | case KQWL_UTQ_REDRIVE_EVENTS: | |
5415 | break; | |
5416 | ||
5417 | case KQWL_UTQ_SET_QOS_INDEX: | |
5418 | kqr->tr_kq_qos_index = qos; | |
5419 | break; | |
5420 | ||
5421 | default: | |
5422 | panic("unknown kqwl thread qos update operation: %d", op); | |
5423 | } | |
5424 | ||
5425 | thread_t kqwl_owner = kqwl->kqwl_owner; | |
5426 | thread_t servicer = kqr_thread(kqr); | |
5427 | boolean_t qos_changed = FALSE; | |
5428 | kq_index_t new_override = kqworkloop_override(kqwl); | |
5429 | ||
5430 | /* | |
5431 | * Apply the diffs to the owner if applicable | |
5432 | */ | |
5433 | if (kqwl_owner) { | |
5434 | #if 0 | |
5435 | /* JMM - need new trace hooks for owner overrides */ | |
5436 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), | |
5437 | kqwl->kqwl_dynamicid, thread_tid(kqwl_owner), kqr->tr_kq_qos_index, | |
5438 | (kqr->tr_kq_override_index << 16) | kqr->tr_kq_wakeup); | |
5439 | #endif | |
5440 | if (new_override == old_override) { | |
5441 | // nothing to do | |
5442 | } else if (old_override == THREAD_QOS_UNSPECIFIED) { | |
5443 | thread_add_kevent_override(kqwl_owner, new_override); | |
5444 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { | |
5445 | thread_drop_kevent_override(kqwl_owner); | |
5446 | } else { /* old_override != new_override */ | |
5447 | thread_update_kevent_override(kqwl_owner, new_override); | |
5448 | } | |
5449 | } | |
5450 | ||
5451 | /* | |
5452 | * apply the diffs to the servicer | |
5453 | */ | |
5454 | if (!kqr_thread_requested(kqr)) { | |
5455 | /* | |
5456 | * No servicer, nor thread-request | |
5457 | * | |
5458 | * Make a new thread request, unless there is an owner (or the workloop | |
5459 | * is suspended in userland) or if there is no asynchronous work in the | |
5460 | * first place. | |
5461 | */ | |
5462 | ||
5463 | if (kqwl_owner == NULL && kqr->tr_kq_wakeup) { | |
5464 | int initiate_flags = 0; | |
5465 | if (op == KQWL_UTQ_UNBINDING) { | |
5466 | initiate_flags = WORKQ_THREADREQ_ATTEMPT_REBIND; | |
5467 | } | |
5468 | kqueue_threadreq_initiate(kq, kqr, new_override, initiate_flags); | |
5469 | } | |
5470 | } else if (servicer) { | |
5471 | /* | |
5472 | * Servicer in flight | |
5473 | * | |
5474 | * Just apply the diff to the servicer | |
5475 | */ | |
5476 | struct uthread *ut = get_bsdthread_info(servicer); | |
5477 | if (ut->uu_kqueue_override != new_override) { | |
5478 | if (ut->uu_kqueue_override == THREAD_QOS_UNSPECIFIED) { | |
5479 | thread_add_servicer_override(servicer, new_override); | |
5480 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { | |
5481 | thread_drop_servicer_override(servicer); | |
5482 | } else { /* ut->uu_kqueue_override != new_override */ | |
5483 | thread_update_servicer_override(servicer, new_override); | |
5484 | } | |
5485 | ut->uu_kqueue_override = new_override; | |
5486 | qos_changed = TRUE; | |
5487 | } | |
5488 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { | |
5489 | /* | |
5490 | * No events to deliver anymore. | |
5491 | * | |
5492 | * However canceling with turnstiles is challenging, so the fact that | |
5493 | * the request isn't useful will be discovered by the servicer himself | |
5494 | * later on. | |
5495 | */ | |
5496 | } else if (old_override != new_override) { | |
5497 | /* | |
5498 | * Request is in flight | |
5499 | * | |
5500 | * Apply the diff to the thread request | |
5501 | */ | |
5502 | kqueue_threadreq_modify(kq, kqr, new_override, WORKQ_THREADREQ_NONE); | |
5503 | qos_changed = TRUE; | |
5504 | } | |
5505 | ||
5506 | if (qos_changed) { | |
5507 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), kqwl->kqwl_dynamicid, | |
5508 | thread_tid(servicer), kqr->tr_kq_qos_index, | |
5509 | (kqr->tr_kq_override_index << 16) | kqr->tr_kq_wakeup); | |
5510 | } | |
5511 | } | |
5512 | ||
5513 | static void | |
5514 | kqworkloop_wakeup(struct kqworkloop *kqwl, kq_index_t qos) | |
5515 | { | |
5516 | if ((kqwl->kqwl_state & KQ_PROCESSING) && | |
5517 | kqr_thread(&kqwl->kqwl_request) == current_thread()) { | |
5518 | /* | |
5519 | * kqworkloop_end_processing() will perform the required QoS | |
5520 | * computations when it unsets the processing mode. | |
5521 | */ | |
5522 | return; | |
5523 | } | |
5524 | ||
5525 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_QOS, qos); | |
5526 | } | |
5527 | ||
5528 | static struct kqtailq * | |
5529 | kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn) | |
5530 | { | |
5531 | if (kq.kq->kq_state & KQ_WORKLOOP) { | |
5532 | return &kq.kqwl->kqwl_suppressed; | |
5533 | } else if (kq.kq->kq_state & KQ_WORKQ) { | |
5534 | return &kq.kqwq->kqwq_suppressed[kn->kn_qos_index]; | |
5535 | } else { | |
5536 | return &kq.kqf->kqf_suppressed; | |
5537 | } | |
5538 | } | |
5539 | ||
5540 | struct turnstile * | |
5541 | kqueue_alloc_turnstile(kqueue_t kqu) | |
5542 | { | |
5543 | struct kqworkloop *kqwl = kqu.kqwl; | |
5544 | kq_state_t kq_state; | |
5545 | ||
5546 | kq_state = os_atomic_load(&kqu.kq->kq_state, dependency); | |
5547 | if (kq_state & KQ_HAS_TURNSTILE) { | |
5548 | /* force a dependency to pair with the atomic or with release below */ | |
5549 | return os_atomic_load_with_dependency_on(&kqwl->kqwl_turnstile, | |
5550 | (uintptr_t)kq_state); | |
5551 | } | |
5552 | ||
5553 | if (!(kq_state & KQ_WORKLOOP)) { | |
5554 | return TURNSTILE_NULL; | |
5555 | } | |
5556 | ||
5557 | struct turnstile *ts = turnstile_alloc(), *free_ts = TURNSTILE_NULL; | |
5558 | bool workq_locked = false; | |
5559 | ||
5560 | kqlock(kqu); | |
5561 | ||
5562 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { | |
5563 | workq_locked = true; | |
5564 | workq_kern_threadreq_lock(kqwl->kqwl_p); | |
5565 | } | |
5566 | ||
5567 | if (kqwl->kqwl_state & KQ_HAS_TURNSTILE) { | |
5568 | free_ts = ts; | |
5569 | ts = kqwl->kqwl_turnstile; | |
5570 | } else { | |
5571 | ts = turnstile_prepare((uintptr_t)kqwl, &kqwl->kqwl_turnstile, | |
5572 | ts, TURNSTILE_WORKLOOPS); | |
5573 | ||
5574 | /* release-barrier to pair with the unlocked load of kqwl_turnstile above */ | |
5575 | os_atomic_or(&kqwl->kqwl_state, KQ_HAS_TURNSTILE, release); | |
5576 | ||
5577 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { | |
5578 | workq_kern_threadreq_update_inheritor(kqwl->kqwl_p, | |
5579 | &kqwl->kqwl_request, kqwl->kqwl_owner, | |
5580 | ts, TURNSTILE_IMMEDIATE_UPDATE); | |
5581 | /* | |
5582 | * The workq may no longer be the interlock after this. | |
5583 | * In which case the inheritor wasn't updated. | |
5584 | */ | |
5585 | } | |
5586 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { | |
5587 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); | |
5588 | } | |
5589 | } | |
5590 | ||
5591 | if (workq_locked) { | |
5592 | workq_kern_threadreq_unlock(kqwl->kqwl_p); | |
5593 | } | |
5594 | ||
5595 | kqunlock(kqu); | |
5596 | ||
5597 | if (free_ts) { | |
5598 | turnstile_deallocate(free_ts); | |
5599 | } else { | |
5600 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_NOT_HELD); | |
5601 | } | |
5602 | return ts; | |
5603 | } | |
5604 | ||
5605 | __attribute__((always_inline)) | |
5606 | struct turnstile * | |
5607 | kqueue_turnstile(kqueue_t kqu) | |
5608 | { | |
5609 | kq_state_t kq_state = os_atomic_load(&kqu.kq->kq_state, relaxed); | |
5610 | if (kq_state & KQ_WORKLOOP) { | |
5611 | return os_atomic_load(&kqu.kqwl->kqwl_turnstile, relaxed); | |
5612 | } | |
5613 | return TURNSTILE_NULL; | |
5614 | } | |
5615 | ||
5616 | __attribute__((always_inline)) | |
5617 | struct turnstile * | |
5618 | kqueue_threadreq_get_turnstile(workq_threadreq_t kqr) | |
5619 | { | |
5620 | struct kqworkloop *kqwl = kqr_kqworkloop(kqr); | |
5621 | if (kqwl) { | |
5622 | return os_atomic_load(&kqwl->kqwl_turnstile, relaxed); | |
5623 | } | |
5624 | return TURNSTILE_NULL; | |
5625 | } | |
5626 | ||
5627 | static void | |
5628 | kqworkloop_set_overcommit(struct kqworkloop *kqwl) | |
5629 | { | |
5630 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5631 | ||
5632 | /* | |
5633 | * This test is racy, but since we never remove this bit, | |
5634 | * it allows us to avoid taking a lock. | |
5635 | */ | |
5636 | if (kqr->tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) { | |
5637 | return; | |
5638 | } | |
5639 | ||
5640 | kqlock_held(kqwl); | |
5641 | ||
5642 | if (kqr_thread_requested_pending(kqr)) { | |
5643 | kqueue_threadreq_modify(kqwl, kqr, kqr->tr_qos, | |
5644 | WORKQ_THREADREQ_MAKE_OVERCOMMIT); | |
5645 | } else { | |
5646 | kqr->tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; | |
5647 | } | |
5648 | } | |
5649 | ||
5650 | static void | |
5651 | kqworkq_update_override(struct kqworkq *kqwq, struct knote *kn, | |
5652 | kq_index_t override_index) | |
5653 | { | |
5654 | workq_threadreq_t kqr; | |
5655 | kq_index_t old_override_index; | |
5656 | kq_index_t queue_index = kn->kn_qos_index; | |
5657 | ||
5658 | if (override_index <= queue_index) { | |
5659 | return; | |
5660 | } | |
5661 | ||
5662 | kqr = kqworkq_get_request(kqwq, queue_index); | |
5663 | ||
5664 | kqlock_held(kqwq); | |
5665 | ||
5666 | old_override_index = kqr->tr_kq_override_index; | |
5667 | if (override_index > MAX(kqr->tr_kq_qos_index, old_override_index)) { | |
5668 | thread_t servicer = kqr_thread(kqr); | |
5669 | kqr->tr_kq_override_index = override_index; | |
5670 | ||
5671 | /* apply the override to [incoming?] servicing thread */ | |
5672 | if (servicer) { | |
5673 | if (old_override_index) { | |
5674 | thread_update_kevent_override(servicer, override_index); | |
5675 | } else { | |
5676 | thread_add_kevent_override(servicer, override_index); | |
5677 | } | |
5678 | } | |
5679 | } | |
5680 | } | |
5681 | ||
5682 | static void | |
5683 | kqueue_update_override(kqueue_t kqu, struct knote *kn, thread_qos_t qos) | |
5684 | { | |
5685 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
5686 | kqworkloop_update_threads_qos(kqu.kqwl, KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, | |
5687 | qos); | |
5688 | } else { | |
5689 | kqworkq_update_override(kqu.kqwq, kn, qos); | |
5690 | } | |
5691 | } | |
5692 | ||
5693 | static void | |
5694 | kqworkloop_unbind_locked(struct kqworkloop *kqwl, thread_t thread, | |
5695 | enum kqwl_unbind_locked_mode how) | |
5696 | { | |
5697 | struct uthread *ut = get_bsdthread_info(thread); | |
5698 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5699 | ||
5700 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_UNBIND), kqwl->kqwl_dynamicid, | |
5701 | thread_tid(thread), 0, 0); | |
5702 | ||
5703 | kqlock_held(kqwl); | |
5704 | ||
5705 | assert(ut->uu_kqr_bound == kqr); | |
5706 | ut->uu_kqr_bound = NULL; | |
5707 | if (how == KQWL_OVERRIDE_DROP_IMMEDIATELY && | |
5708 | ut->uu_kqueue_override != THREAD_QOS_UNSPECIFIED) { | |
5709 | thread_drop_servicer_override(thread); | |
5710 | ut->uu_kqueue_override = THREAD_QOS_UNSPECIFIED; | |
5711 | } | |
5712 | ||
5713 | if (kqwl->kqwl_owner == NULL && kqwl->kqwl_turnstile) { | |
5714 | turnstile_update_inheritor(kqwl->kqwl_turnstile, | |
5715 | TURNSTILE_INHERITOR_NULL, TURNSTILE_IMMEDIATE_UPDATE); | |
5716 | turnstile_update_inheritor_complete(kqwl->kqwl_turnstile, | |
5717 | TURNSTILE_INTERLOCK_HELD); | |
5718 | } | |
5719 | ||
5720 | kqr->tr_thread = THREAD_NULL; | |
5721 | kqr->tr_state = WORKQ_TR_STATE_IDLE; | |
5722 | kqwl->kqwl_state &= ~KQ_R2K_ARMED; | |
5723 | } | |
5724 | ||
5725 | static void | |
5726 | kqworkloop_unbind_delayed_override_drop(thread_t thread) | |
5727 | { | |
5728 | struct uthread *ut = get_bsdthread_info(thread); | |
5729 | assert(ut->uu_kqr_bound == NULL); | |
5730 | if (ut->uu_kqueue_override != THREAD_QOS_UNSPECIFIED) { | |
5731 | thread_drop_servicer_override(thread); | |
5732 | ut->uu_kqueue_override = THREAD_QOS_UNSPECIFIED; | |
5733 | } | |
5734 | } | |
5735 | ||
5736 | /* | |
5737 | * kqworkloop_unbind - Unbind the servicer thread of a workloop kqueue | |
5738 | * | |
5739 | * It will acknowledge events, and possibly request a new thread if: | |
5740 | * - there were active events left | |
5741 | * - we pended waitq hook callouts during processing | |
5742 | * - we pended wakeups while processing (or unsuppressing) | |
5743 | * | |
5744 | * Called with kqueue lock held. | |
5745 | */ | |
5746 | static void | |
5747 | kqworkloop_unbind(struct kqworkloop *kqwl) | |
5748 | { | |
5749 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
5750 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
5751 | thread_t thread = kqr_thread_fast(kqr); | |
5752 | int op = KQWL_UTQ_PARKING; | |
5753 | kq_index_t qos_override = THREAD_QOS_UNSPECIFIED; | |
5754 | ||
5755 | assert(thread == current_thread()); | |
5756 | ||
5757 | kqlock(kqwl); | |
5758 | ||
5759 | /* | |
5760 | * Forcing the KQ_PROCESSING flag allows for QoS updates because of | |
5761 | * unsuppressing knotes not to be applied until the eventual call to | |
5762 | * kqworkloop_update_threads_qos() below. | |
5763 | */ | |
5764 | assert((kq->kq_state & KQ_PROCESSING) == 0); | |
5765 | if (!TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { | |
5766 | kq->kq_state |= KQ_PROCESSING; | |
5767 | qos_override = kqworkloop_acknowledge_events(kqwl); | |
5768 | kq->kq_state &= ~KQ_PROCESSING; | |
5769 | } | |
5770 | ||
5771 | kqworkloop_unbind_locked(kqwl, thread, KQWL_OVERRIDE_DROP_DELAYED); | |
5772 | kqworkloop_update_threads_qos(kqwl, op, qos_override); | |
5773 | ||
5774 | kqunlock(kqwl); | |
5775 | ||
5776 | /* | |
5777 | * Drop the override on the current thread last, after the call to | |
5778 | * kqworkloop_update_threads_qos above. | |
5779 | */ | |
5780 | kqworkloop_unbind_delayed_override_drop(thread); | |
5781 | ||
5782 | /* If last reference, dealloc the workloop kq */ | |
5783 | kqworkloop_release(kqwl); | |
5784 | } | |
5785 | ||
5786 | static thread_qos_t | |
5787 | kqworkq_unbind_locked(struct kqworkq *kqwq, | |
5788 | workq_threadreq_t kqr, thread_t thread) | |
5789 | { | |
5790 | struct uthread *ut = get_bsdthread_info(thread); | |
5791 | kq_index_t old_override = kqr->tr_kq_override_index; | |
5792 | ||
5793 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_UNBIND), -1, | |
5794 | thread_tid(kqr_thread(kqr)), kqr->tr_kq_qos_index, 0); | |
5795 | ||
5796 | kqlock_held(kqwq); | |
5797 | ||
5798 | assert(ut->uu_kqr_bound == kqr); | |
5799 | ut->uu_kqr_bound = NULL; | |
5800 | kqr->tr_thread = THREAD_NULL; | |
5801 | kqr->tr_state = WORKQ_TR_STATE_IDLE; | |
5802 | kqr->tr_kq_override_index = THREAD_QOS_UNSPECIFIED; | |
5803 | kqwq->kqwq_state &= ~KQ_R2K_ARMED; | |
5804 | ||
5805 | return old_override; | |
5806 | } | |
5807 | ||
5808 | /* | |
5809 | * kqworkq_unbind - unbind of a workq kqueue from a thread | |
5810 | * | |
5811 | * We may have to request new threads. | |
5812 | * This can happen there are no waiting processing threads and: | |
5813 | * - there were active events we never got to (count > 0) | |
5814 | * - we pended waitq hook callouts during processing | |
5815 | * - we pended wakeups while processing (or unsuppressing) | |
5816 | */ | |
5817 | static void | |
5818 | kqworkq_unbind(proc_t p, workq_threadreq_t kqr) | |
5819 | { | |
5820 | struct kqworkq *kqwq = (struct kqworkq *)p->p_fd->fd_wqkqueue; | |
5821 | __assert_only int rc; | |
5822 | ||
5823 | kqlock(kqwq); | |
5824 | rc = kqworkq_acknowledge_events(kqwq, kqr, 0, KQWQAE_UNBIND); | |
5825 | assert(rc == -1); | |
5826 | kqunlock(kqwq); | |
5827 | } | |
5828 | ||
5829 | workq_threadreq_t | |
5830 | kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index) | |
5831 | { | |
5832 | assert(qos_index < KQWQ_NBUCKETS); | |
5833 | return &kqwq->kqwq_request[qos_index]; | |
5834 | } | |
5835 | ||
5836 | static void | |
5837 | knote_reset_priority(kqueue_t kqu, struct knote *kn, pthread_priority_t pp) | |
5838 | { | |
5839 | kq_index_t qos = _pthread_priority_thread_qos(pp); | |
5840 | ||
5841 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
5842 | assert((pp & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG) == 0); | |
5843 | pp = _pthread_priority_normalize(pp); | |
5844 | } else if (kqu.kq->kq_state & KQ_WORKQ) { | |
5845 | if (qos == THREAD_QOS_UNSPECIFIED) { | |
5846 | /* On workqueues, outside of QoS means MANAGER */ | |
5847 | qos = KQWQ_QOS_MANAGER; | |
5848 | pp = _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
5849 | } else { | |
5850 | pp = _pthread_priority_normalize(pp); | |
5851 | } | |
5852 | } else { | |
5853 | pp = _pthread_unspecified_priority(); | |
5854 | qos = THREAD_QOS_UNSPECIFIED; | |
5855 | } | |
5856 | ||
5857 | kn->kn_qos = pp; | |
5858 | ||
5859 | if ((kn->kn_status & KN_MERGE_QOS) == 0 || qos > kn->kn_qos_override) { | |
5860 | /* Never lower QoS when in "Merge" mode */ | |
5861 | kn->kn_qos_override = qos; | |
5862 | } | |
5863 | ||
5864 | /* only adjust in-use qos index when not suppressed */ | |
5865 | if (kn->kn_status & KN_SUPPRESSED) { | |
5866 | kqueue_update_override(kqu, kn, qos); | |
5867 | } else if (kn->kn_qos_index != qos) { | |
5868 | knote_dequeue(kqu, kn); | |
5869 | kn->kn_qos_index = qos; | |
5870 | } | |
5871 | } | |
5872 | ||
5873 | static void | |
5874 | knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result) | |
5875 | { | |
5876 | thread_qos_t qos_index = (result >> FILTER_ADJUST_EVENT_QOS_SHIFT) & 7; | |
5877 | ||
5878 | kqlock_held(kq); | |
5879 | ||
5880 | assert(result & FILTER_ADJUST_EVENT_QOS_BIT); | |
5881 | assert(qos_index < THREAD_QOS_LAST); | |
5882 | ||
5883 | /* | |
5884 | * Early exit for knotes that should not change QoS | |
5885 | */ | |
5886 | if (__improbable(!knote_fops(kn)->f_adjusts_qos)) { | |
5887 | panic("filter %d cannot change QoS", kn->kn_filtid); | |
5888 | } else if (__improbable(!knote_has_qos(kn))) { | |
5889 | return; | |
5890 | } | |
5891 | ||
5892 | /* | |
5893 | * knotes with the FALLBACK flag will only use their registration QoS if the | |
5894 | * incoming event has no QoS, else, the registration QoS acts as a floor. | |
5895 | */ | |
5896 | thread_qos_t req_qos = _pthread_priority_thread_qos_fast(kn->kn_qos); | |
5897 | if (kn->kn_qos & _PTHREAD_PRIORITY_FALLBACK_FLAG) { | |
5898 | if (qos_index == THREAD_QOS_UNSPECIFIED) { | |
5899 | qos_index = req_qos; | |
5900 | } | |
5901 | } else { | |
5902 | if (qos_index < req_qos) { | |
5903 | qos_index = req_qos; | |
5904 | } | |
5905 | } | |
5906 | if ((kn->kn_status & KN_MERGE_QOS) && (qos_index < kn->kn_qos_override)) { | |
5907 | /* Never lower QoS when in "Merge" mode */ | |
5908 | return; | |
5909 | } | |
5910 | ||
5911 | if ((kn->kn_status & KN_LOCKED) && (kn->kn_status & KN_POSTING)) { | |
5912 | /* | |
5913 | * When we're trying to update the QoS override and that both an | |
5914 | * f_event() and other f_* calls are running concurrently, any of these | |
5915 | * in flight calls may want to perform overrides that aren't properly | |
5916 | * serialized with each other. | |
5917 | * | |
5918 | * The first update that observes this racy situation enters a "Merge" | |
5919 | * mode which causes subsequent override requests to saturate the | |
5920 | * override instead of replacing its value. | |
5921 | * | |
5922 | * This mode is left when knote_unlock() or knote_post() | |
5923 | * observe that no other f_* routine is in flight. | |
5924 | */ | |
5925 | kn->kn_status |= KN_MERGE_QOS; | |
5926 | } | |
5927 | ||
5928 | /* | |
5929 | * Now apply the override if it changed. | |
5930 | */ | |
5931 | ||
5932 | if (kn->kn_qos_override == qos_index) { | |
5933 | return; | |
5934 | } | |
5935 | ||
5936 | kn->kn_qos_override = qos_index; | |
5937 | ||
5938 | if (kn->kn_status & KN_SUPPRESSED) { | |
5939 | /* | |
5940 | * For suppressed events, the kn_qos_index field cannot be touched as it | |
5941 | * allows us to know on which supress queue the knote is for a kqworkq. | |
5942 | * | |
5943 | * Also, there's no natural push applied on the kqueues when this field | |
5944 | * changes anyway. We hence need to apply manual overrides in this case, | |
5945 | * which will be cleared when the events are later acknowledged. | |
5946 | */ | |
5947 | kqueue_update_override(kq, kn, qos_index); | |
5948 | } else if (kn->kn_qos_index != qos_index) { | |
5949 | knote_dequeue(kq, kn); | |
5950 | kn->kn_qos_index = qos_index; | |
5951 | } | |
5952 | } | |
5953 | ||
5954 | /* | |
5955 | * Called back from waitq code when no threads waiting and the hook was set. | |
5956 | * | |
5957 | * Preemption is disabled - minimal work can be done in this context!!! | |
5958 | */ | |
5959 | void | |
5960 | waitq_set__CALLING_PREPOST_HOOK__(waitq_set_prepost_hook_t *kq_hook) | |
5961 | { | |
5962 | kqueue_t kqu; | |
5963 | ||
5964 | kqu.kq = __container_of(kq_hook, struct kqueue, kq_waitq_hook); | |
5965 | assert(kqu.kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)); | |
5966 | ||
5967 | kqlock(kqu); | |
5968 | ||
5969 | if (kqu.kq->kq_count > 0) { | |
5970 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
5971 | kqworkloop_wakeup(kqu.kqwl, KQWL_BUCKET_STAYACTIVE); | |
5972 | } else { | |
5973 | kqworkq_wakeup(kqu.kqwq, KQWQ_QOS_MANAGER); | |
5974 | } | |
5975 | } | |
5976 | ||
5977 | kqunlock(kqu); | |
5978 | } | |
5979 | ||
5980 | void | |
5981 | klist_init(struct klist *list) | |
5982 | { | |
5983 | SLIST_INIT(list); | |
5984 | } | |
5985 | ||
5986 | ||
5987 | /* | |
5988 | * Query/Post each knote in the object's list | |
5989 | * | |
5990 | * The object lock protects the list. It is assumed | |
5991 | * that the filter/event routine for the object can | |
5992 | * determine that the object is already locked (via | |
5993 | * the hint) and not deadlock itself. | |
5994 | * | |
5995 | * The object lock should also hold off pending | |
5996 | * detach/drop operations. | |
5997 | */ | |
5998 | void | |
5999 | knote(struct klist *list, long hint) | |
6000 | { | |
6001 | struct knote *kn; | |
6002 | ||
6003 | SLIST_FOREACH(kn, list, kn_selnext) { | |
6004 | knote_post(kn, hint); | |
6005 | } | |
6006 | } | |
6007 | ||
6008 | /* | |
6009 | * attach a knote to the specified list. Return true if this is the first entry. | |
6010 | * The list is protected by whatever lock the object it is associated with uses. | |
6011 | */ | |
6012 | int | |
6013 | knote_attach(struct klist *list, struct knote *kn) | |
6014 | { | |
6015 | int ret = SLIST_EMPTY(list); | |
6016 | SLIST_INSERT_HEAD(list, kn, kn_selnext); | |
6017 | return ret; | |
6018 | } | |
6019 | ||
6020 | /* | |
6021 | * detach a knote from the specified list. Return true if that was the last entry. | |
6022 | * The list is protected by whatever lock the object it is associated with uses. | |
6023 | */ | |
6024 | int | |
6025 | knote_detach(struct klist *list, struct knote *kn) | |
6026 | { | |
6027 | SLIST_REMOVE(list, kn, knote, kn_selnext); | |
6028 | return SLIST_EMPTY(list); | |
6029 | } | |
6030 | ||
6031 | /* | |
6032 | * knote_vanish - Indicate that the source has vanished | |
6033 | * | |
6034 | * If the knote has requested EV_VANISHED delivery, | |
6035 | * arrange for that. Otherwise, deliver a NOTE_REVOKE | |
6036 | * event for backward compatibility. | |
6037 | * | |
6038 | * The knote is marked as having vanished, but is not | |
6039 | * actually detached from the source in this instance. | |
6040 | * The actual detach is deferred until the knote drop. | |
6041 | * | |
6042 | * Our caller already has the object lock held. Calling | |
6043 | * the detach routine would try to take that lock | |
6044 | * recursively - which likely is not supported. | |
6045 | */ | |
6046 | void | |
6047 | knote_vanish(struct klist *list, bool make_active) | |
6048 | { | |
6049 | struct knote *kn; | |
6050 | struct knote *kn_next; | |
6051 | ||
6052 | SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn_next) { | |
6053 | struct kqueue *kq = knote_get_kq(kn); | |
6054 | ||
6055 | kqlock(kq); | |
6056 | if (__probable(kn->kn_status & KN_REQVANISH)) { | |
6057 | /* | |
6058 | * If EV_VANISH supported - prepare to deliver one | |
6059 | */ | |
6060 | kn->kn_status |= KN_VANISHED; | |
6061 | } else { | |
6062 | /* | |
6063 | * Handle the legacy way to indicate that the port/portset was | |
6064 | * deallocated or left the current Mach portspace (modern technique | |
6065 | * is with an EV_VANISHED protocol). | |
6066 | * | |
6067 | * Deliver an EV_EOF event for these changes (hopefully it will get | |
6068 | * delivered before the port name recycles to the same generation | |
6069 | * count and someone tries to re-register a kevent for it or the | |
6070 | * events are udata-specific - avoiding a conflict). | |
6071 | */ | |
6072 | kn->kn_flags |= EV_EOF | EV_ONESHOT; | |
6073 | } | |
6074 | if (make_active) { | |
6075 | knote_activate(kq, kn, FILTER_ACTIVE); | |
6076 | } | |
6077 | kqunlock(kq); | |
6078 | } | |
6079 | } | |
6080 | ||
6081 | /* | |
6082 | * Force a lazy allocation of the waitqset link | |
6083 | * of the kq_wqs associated with the kn | |
6084 | * if it wasn't already allocated. | |
6085 | * | |
6086 | * This allows knote_link_waitq to never block | |
6087 | * if reserved_link is not NULL. | |
6088 | */ | |
6089 | void | |
6090 | knote_link_waitqset_lazy_alloc(struct knote *kn) | |
6091 | { | |
6092 | struct kqueue *kq = knote_get_kq(kn); | |
6093 | waitq_set_lazy_init_link(&kq->kq_wqs); | |
6094 | } | |
6095 | ||
6096 | /* | |
6097 | * Check if a lazy allocation for the waitqset link | |
6098 | * of the kq_wqs is needed. | |
6099 | */ | |
6100 | boolean_t | |
6101 | knote_link_waitqset_should_lazy_alloc(struct knote *kn) | |
6102 | { | |
6103 | struct kqueue *kq = knote_get_kq(kn); | |
6104 | return waitq_set_should_lazy_init_link(&kq->kq_wqs); | |
6105 | } | |
6106 | ||
6107 | /* | |
6108 | * For a given knote, link a provided wait queue directly with the kqueue. | |
6109 | * Wakeups will happen via recursive wait queue support. But nothing will move | |
6110 | * the knote to the active list at wakeup (nothing calls knote()). Instead, | |
6111 | * we permanently enqueue them here. | |
6112 | * | |
6113 | * kqueue and knote references are held by caller. | |
6114 | * waitq locked by caller. | |
6115 | * | |
6116 | * caller provides the wait queue link structure and insures that the kq->kq_wqs | |
6117 | * is linked by previously calling knote_link_waitqset_lazy_alloc. | |
6118 | */ | |
6119 | int | |
6120 | knote_link_waitq(struct knote *kn, struct waitq *wq, uint64_t *reserved_link) | |
6121 | { | |
6122 | struct kqueue *kq = knote_get_kq(kn); | |
6123 | kern_return_t kr; | |
6124 | ||
6125 | kr = waitq_link(wq, &kq->kq_wqs, WAITQ_ALREADY_LOCKED, reserved_link); | |
6126 | if (kr == KERN_SUCCESS) { | |
6127 | knote_markstayactive(kn); | |
6128 | return 0; | |
6129 | } else { | |
6130 | return EINVAL; | |
6131 | } | |
6132 | } | |
6133 | ||
6134 | /* | |
6135 | * Unlink the provided wait queue from the kqueue associated with a knote. | |
6136 | * Also remove it from the magic list of directly attached knotes. | |
6137 | * | |
6138 | * Note that the unlink may have already happened from the other side, so | |
6139 | * ignore any failures to unlink and just remove it from the kqueue list. | |
6140 | * | |
6141 | * On success, caller is responsible for the link structure | |
6142 | */ | |
6143 | int | |
6144 | knote_unlink_waitq(struct knote *kn, struct waitq *wq) | |
6145 | { | |
6146 | struct kqueue *kq = knote_get_kq(kn); | |
6147 | kern_return_t kr; | |
6148 | ||
6149 | kr = waitq_unlink(wq, &kq->kq_wqs); | |
6150 | knote_clearstayactive(kn); | |
6151 | return (kr != KERN_SUCCESS) ? EINVAL : 0; | |
6152 | } | |
6153 | ||
6154 | /* | |
6155 | * remove all knotes referencing a specified fd | |
6156 | * | |
6157 | * Entered with the proc_fd lock already held. | |
6158 | * It returns the same way, but may drop it temporarily. | |
6159 | */ | |
6160 | void | |
6161 | knote_fdclose(struct proc *p, int fd) | |
6162 | { | |
6163 | struct klist *list; | |
6164 | struct knote *kn; | |
6165 | KNOTE_LOCK_CTX(knlc); | |
6166 | ||
6167 | restart: | |
6168 | list = &p->p_fd->fd_knlist[fd]; | |
6169 | SLIST_FOREACH(kn, list, kn_link) { | |
6170 | struct kqueue *kq = knote_get_kq(kn); | |
6171 | ||
6172 | kqlock(kq); | |
6173 | ||
6174 | if (kq->kq_p != p) { | |
6175 | panic("%s: proc mismatch (kq->kq_p=%p != p=%p)", | |
6176 | __func__, kq->kq_p, p); | |
6177 | } | |
6178 | ||
6179 | /* | |
6180 | * If the knote supports EV_VANISHED delivery, | |
6181 | * transition it to vanished mode (or skip over | |
6182 | * it if already vanished). | |
6183 | */ | |
6184 | if (kn->kn_status & KN_VANISHED) { | |
6185 | kqunlock(kq); | |
6186 | continue; | |
6187 | } | |
6188 | ||
6189 | proc_fdunlock(p); | |
6190 | if (!knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { | |
6191 | /* the knote was dropped by someone, nothing to do */ | |
6192 | } else if (kn->kn_status & KN_REQVANISH) { | |
6193 | kn->kn_status |= KN_VANISHED; | |
6194 | ||
6195 | kqunlock(kq); | |
6196 | knote_fops(kn)->f_detach(kn); | |
6197 | if (kn->kn_is_fd) { | |
6198 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); | |
6199 | } | |
6200 | kn->kn_filtid = EVFILTID_DETACHED; | |
6201 | kqlock(kq); | |
6202 | ||
6203 | knote_activate(kq, kn, FILTER_ACTIVE); | |
6204 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_UNLOCK); | |
6205 | } else { | |
6206 | knote_drop(kq, kn, &knlc); | |
6207 | } | |
6208 | ||
6209 | proc_fdlock(p); | |
6210 | goto restart; | |
6211 | } | |
6212 | } | |
6213 | ||
6214 | /* | |
6215 | * knote_fdfind - lookup a knote in the fd table for process | |
6216 | * | |
6217 | * If the filter is file-based, lookup based on fd index. | |
6218 | * Otherwise use a hash based on the ident. | |
6219 | * | |
6220 | * Matching is based on kq, filter, and ident. Optionally, | |
6221 | * it may also be based on the udata field in the kevent - | |
6222 | * allowing multiple event registration for the file object | |
6223 | * per kqueue. | |
6224 | * | |
6225 | * fd_knhashlock or fdlock held on entry (and exit) | |
6226 | */ | |
6227 | static struct knote * | |
6228 | knote_fdfind(struct kqueue *kq, | |
6229 | const struct kevent_internal_s *kev, | |
6230 | bool is_fd, | |
6231 | struct proc *p) | |
6232 | { | |
6233 | struct filedesc *fdp = p->p_fd; | |
6234 | struct klist *list = NULL; | |
6235 | struct knote *kn = NULL; | |
6236 | ||
6237 | /* | |
6238 | * determine where to look for the knote | |
6239 | */ | |
6240 | if (is_fd) { | |
6241 | /* fd-based knotes are linked off the fd table */ | |
6242 | if (kev->kei_ident < (u_int)fdp->fd_knlistsize) { | |
6243 | list = &fdp->fd_knlist[kev->kei_ident]; | |
6244 | } | |
6245 | } else if (fdp->fd_knhashmask != 0) { | |
6246 | /* hash non-fd knotes here too */ | |
6247 | list = &fdp->fd_knhash[KN_HASH((u_long)kev->kei_ident, fdp->fd_knhashmask)]; | |
6248 | } | |
6249 | ||
6250 | /* | |
6251 | * scan the selected list looking for a match | |
6252 | */ | |
6253 | if (list != NULL) { | |
6254 | SLIST_FOREACH(kn, list, kn_link) { | |
6255 | if (kq == knote_get_kq(kn) && | |
6256 | kev->kei_ident == kn->kn_id && | |
6257 | kev->kei_filter == kn->kn_filter) { | |
6258 | if (kev->kei_flags & EV_UDATA_SPECIFIC) { | |
6259 | if ((kn->kn_flags & EV_UDATA_SPECIFIC) && | |
6260 | kev->kei_udata == kn->kn_udata) { | |
6261 | break; /* matching udata-specific knote */ | |
6262 | } | |
6263 | } else if ((kn->kn_flags & EV_UDATA_SPECIFIC) == 0) { | |
6264 | break; /* matching non-udata-specific knote */ | |
6265 | } | |
6266 | } | |
6267 | } | |
6268 | } | |
6269 | return kn; | |
6270 | } | |
6271 | ||
6272 | /* | |
6273 | * kq_add_knote- Add knote to the fd table for process | |
6274 | * while checking for duplicates. | |
6275 | * | |
6276 | * All file-based filters associate a list of knotes by file | |
6277 | * descriptor index. All other filters hash the knote by ident. | |
6278 | * | |
6279 | * May have to grow the table of knote lists to cover the | |
6280 | * file descriptor index presented. | |
6281 | * | |
6282 | * fd_knhashlock and fdlock unheld on entry (and exit). | |
6283 | * | |
6284 | * Takes a rwlock boost if inserting the knote is successful. | |
6285 | */ | |
6286 | static int | |
6287 | kq_add_knote(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc, | |
6288 | struct proc *p) | |
6289 | { | |
6290 | struct filedesc *fdp = p->p_fd; | |
6291 | struct klist *list = NULL; | |
6292 | int ret = 0; | |
6293 | bool is_fd = kn->kn_is_fd; | |
6294 | ||
6295 | if (is_fd) { | |
6296 | proc_fdlock(p); | |
6297 | } else { | |
6298 | knhash_lock(fdp); | |
6299 | } | |
6300 | ||
6301 | if (knote_fdfind(kq, &kn->kn_kevent, is_fd, p) != NULL) { | |
6302 | /* found an existing knote: we can't add this one */ | |
6303 | ret = ERESTART; | |
6304 | goto out_locked; | |
6305 | } | |
6306 | ||
6307 | /* knote was not found: add it now */ | |
6308 | if (!is_fd) { | |
6309 | if (fdp->fd_knhashmask == 0) { | |
6310 | u_long size = 0; | |
6311 | ||
6312 | list = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, &size); | |
6313 | if (list == NULL) { | |
6314 | ret = ENOMEM; | |
6315 | goto out_locked; | |
6316 | } | |
6317 | ||
6318 | fdp->fd_knhash = list; | |
6319 | fdp->fd_knhashmask = size; | |
6320 | } | |
6321 | ||
6322 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
6323 | SLIST_INSERT_HEAD(list, kn, kn_link); | |
6324 | ret = 0; | |
6325 | goto out_locked; | |
6326 | } else { | |
6327 | /* knote is fd based */ | |
6328 | ||
6329 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { | |
6330 | u_int size = 0; | |
6331 | ||
6332 | if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur | |
6333 | || kn->kn_id >= (uint64_t)maxfiles) { | |
6334 | ret = EINVAL; | |
6335 | goto out_locked; | |
6336 | } | |
6337 | /* have to grow the fd_knlist */ | |
6338 | size = fdp->fd_knlistsize; | |
6339 | while (size <= kn->kn_id) { | |
6340 | size += KQEXTENT; | |
6341 | } | |
6342 | ||
6343 | if (size >= (UINT_MAX / sizeof(struct klist *))) { | |
6344 | ret = EINVAL; | |
6345 | goto out_locked; | |
6346 | } | |
6347 | ||
6348 | MALLOC(list, struct klist *, | |
6349 | size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); | |
6350 | if (list == NULL) { | |
6351 | ret = ENOMEM; | |
6352 | goto out_locked; | |
6353 | } | |
6354 | ||
6355 | bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, | |
6356 | fdp->fd_knlistsize * sizeof(struct klist *)); | |
6357 | bzero((caddr_t)list + | |
6358 | fdp->fd_knlistsize * sizeof(struct klist *), | |
6359 | (size - fdp->fd_knlistsize) * sizeof(struct klist *)); | |
6360 | FREE(fdp->fd_knlist, M_KQUEUE); | |
6361 | fdp->fd_knlist = list; | |
6362 | fdp->fd_knlistsize = size; | |
6363 | } | |
6364 | ||
6365 | list = &fdp->fd_knlist[kn->kn_id]; | |
6366 | SLIST_INSERT_HEAD(list, kn, kn_link); | |
6367 | ret = 0; | |
6368 | goto out_locked; | |
6369 | } | |
6370 | ||
6371 | out_locked: | |
6372 | if (ret == 0) { | |
6373 | kqlock(kq); | |
6374 | assert((kn->kn_status & KN_LOCKED) == 0); | |
6375 | (void)knote_lock(kq, kn, knlc, KNOTE_KQ_UNLOCK); | |
6376 | kqueue_retain(kq); /* retain a kq ref */ | |
6377 | } | |
6378 | if (is_fd) { | |
6379 | proc_fdunlock(p); | |
6380 | } else { | |
6381 | knhash_unlock(fdp); | |
6382 | } | |
6383 | ||
6384 | return ret; | |
6385 | } | |
6386 | ||
6387 | /* | |
6388 | * kq_remove_knote - remove a knote from the fd table for process | |
6389 | * | |
6390 | * If the filter is file-based, remove based on fd index. | |
6391 | * Otherwise remove from the hash based on the ident. | |
6392 | * | |
6393 | * fd_knhashlock and fdlock unheld on entry (and exit). | |
6394 | */ | |
6395 | static void | |
6396 | kq_remove_knote(struct kqueue *kq, struct knote *kn, struct proc *p, | |
6397 | struct knote_lock_ctx *knlc) | |
6398 | { | |
6399 | struct filedesc *fdp = p->p_fd; | |
6400 | struct klist *list = NULL; | |
6401 | uint16_t kq_state; | |
6402 | bool is_fd = kn->kn_is_fd; | |
6403 | ||
6404 | if (is_fd) { | |
6405 | proc_fdlock(p); | |
6406 | } else { | |
6407 | knhash_lock(fdp); | |
6408 | } | |
6409 | ||
6410 | if (is_fd) { | |
6411 | assert((u_int)fdp->fd_knlistsize > kn->kn_id); | |
6412 | list = &fdp->fd_knlist[kn->kn_id]; | |
6413 | } else { | |
6414 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
6415 | } | |
6416 | SLIST_REMOVE(list, kn, knote, kn_link); | |
6417 | ||
6418 | kqlock(kq); | |
6419 | kq_state = kq->kq_state; | |
6420 | if (knlc) { | |
6421 | knote_unlock_cancel(kq, kn, knlc); | |
6422 | } else { | |
6423 | kqunlock(kq); | |
6424 | } | |
6425 | if (is_fd) { | |
6426 | proc_fdunlock(p); | |
6427 | } else { | |
6428 | knhash_unlock(fdp); | |
6429 | } | |
6430 | ||
6431 | if (kq_state & KQ_DYNAMIC) { | |
6432 | kqworkloop_release((struct kqworkloop *)kq); | |
6433 | } | |
6434 | } | |
6435 | ||
6436 | /* | |
6437 | * kq_find_knote_and_kq_lock - lookup a knote in the fd table for process | |
6438 | * and, if the knote is found, acquires the kqlock while holding the fd table lock/spinlock. | |
6439 | * | |
6440 | * fd_knhashlock or fdlock unheld on entry (and exit) | |
6441 | */ | |
6442 | ||
6443 | static struct knote * | |
6444 | kq_find_knote_and_kq_lock(struct kqueue *kq, struct kevent_qos_s *kev, | |
6445 | bool is_fd, struct proc *p) | |
6446 | { | |
6447 | struct filedesc *fdp = p->p_fd; | |
6448 | struct knote *kn; | |
6449 | ||
6450 | if (is_fd) { | |
6451 | proc_fdlock(p); | |
6452 | } else { | |
6453 | knhash_lock(fdp); | |
6454 | } | |
6455 | ||
6456 | /* | |
6457 | * Temporary horrible hack: | |
6458 | * this cast is gross and will go away in a future change. | |
6459 | * It is OK to do because we don't look at xflags/s_fflags, | |
6460 | * and that when we cast down the kev this way, | |
6461 | * the truncated filter field works. | |
6462 | */ | |
6463 | kn = knote_fdfind(kq, (struct kevent_internal_s *)kev, is_fd, p); | |
6464 | ||
6465 | if (kn) { | |
6466 | kqlock(kq); | |
6467 | assert(knote_get_kq(kn) == kq); | |
6468 | } | |
6469 | ||
6470 | if (is_fd) { | |
6471 | proc_fdunlock(p); | |
6472 | } else { | |
6473 | knhash_unlock(fdp); | |
6474 | } | |
6475 | ||
6476 | return kn; | |
6477 | } | |
6478 | ||
6479 | __attribute__((noinline)) | |
6480 | static void | |
6481 | kqfile_wakeup(struct kqfile *kqf, __unused kq_index_t qos) | |
6482 | { | |
6483 | /* flag wakeups during processing */ | |
6484 | if (kqf->kqf_state & KQ_PROCESSING) { | |
6485 | kqf->kqf_state |= KQ_WAKEUP; | |
6486 | } | |
6487 | ||
6488 | /* wakeup a thread waiting on this queue */ | |
6489 | if (kqf->kqf_state & (KQ_SLEEP | KQ_SEL)) { | |
6490 | kqf->kqf_state &= ~(KQ_SLEEP | KQ_SEL); | |
6491 | waitq_wakeup64_all((struct waitq *)&kqf->kqf_wqs, KQ_EVENT, | |
6492 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); | |
6493 | } | |
6494 | ||
6495 | /* wakeup other kqueues/select sets we're inside */ | |
6496 | KNOTE(&kqf->kqf_sel.si_note, 0); | |
6497 | } | |
6498 | ||
6499 | static struct kqtailq * | |
6500 | knote_get_tailq(kqueue_t kqu, struct knote *kn) | |
6501 | { | |
6502 | kq_index_t qos_index = kn->kn_qos_index; | |
6503 | ||
6504 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
6505 | assert(qos_index < KQWL_NBUCKETS); | |
6506 | } else if (kqu.kq->kq_state & KQ_WORKQ) { | |
6507 | assert(qos_index < KQWQ_NBUCKETS); | |
6508 | } else { | |
6509 | assert(qos_index == QOS_INDEX_KQFILE); | |
6510 | } | |
6511 | static_assert(offsetof(struct kqueue, kq_queue) == sizeof(struct kqueue), | |
6512 | "struct kqueue::kq_queue must be exactly at the end"); | |
6513 | return &kqu.kq->kq_queue[qos_index]; | |
6514 | } | |
6515 | ||
6516 | static void | |
6517 | knote_enqueue(kqueue_t kqu, struct knote *kn, kn_status_t wakeup_mask) | |
6518 | { | |
6519 | kqlock_held(kqu); | |
6520 | ||
6521 | if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0) { | |
6522 | return; | |
6523 | } | |
6524 | ||
6525 | if (kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING)) { | |
6526 | return; | |
6527 | } | |
6528 | ||
6529 | if ((kn->kn_status & KN_QUEUED) == 0) { | |
6530 | struct kqtailq *queue = knote_get_tailq(kqu, kn); | |
6531 | ||
6532 | TAILQ_INSERT_TAIL(queue, kn, kn_tqe); | |
6533 | kn->kn_status |= KN_QUEUED; | |
6534 | kqu.kq->kq_count++; | |
6535 | } else if ((kn->kn_status & KN_STAYACTIVE) == 0) { | |
6536 | return; | |
6537 | } | |
6538 | ||
6539 | if (kn->kn_status & wakeup_mask) { | |
6540 | if (kqu.kq->kq_state & KQ_WORKLOOP) { | |
6541 | kqworkloop_wakeup(kqu.kqwl, kn->kn_qos_index); | |
6542 | } else if (kqu.kq->kq_state & KQ_WORKQ) { | |
6543 | kqworkq_wakeup(kqu.kqwq, kn->kn_qos_index); | |
6544 | } else { | |
6545 | kqfile_wakeup(kqu.kqf, kn->kn_qos_index); | |
6546 | } | |
6547 | } | |
6548 | } | |
6549 | ||
6550 | __attribute__((always_inline)) | |
6551 | static inline void | |
6552 | knote_dequeue(kqueue_t kqu, struct knote *kn) | |
6553 | { | |
6554 | if (kn->kn_status & KN_QUEUED) { | |
6555 | struct kqtailq *queue = knote_get_tailq(kqu, kn); | |
6556 | ||
6557 | // attaching the knote calls knote_reset_priority() without | |
6558 | // the kqlock which is fine, so we can't call kqlock_held() | |
6559 | // if we're not queued. | |
6560 | kqlock_held(kqu); | |
6561 | ||
6562 | TAILQ_REMOVE(queue, kn, kn_tqe); | |
6563 | kn->kn_status &= ~KN_QUEUED; | |
6564 | kqu.kq->kq_count--; | |
6565 | } | |
6566 | } | |
6567 | ||
6568 | /* called with kqueue lock held */ | |
6569 | static void | |
6570 | knote_suppress(kqueue_t kqu, struct knote *kn) | |
6571 | { | |
6572 | struct kqtailq *suppressq; | |
6573 | ||
6574 | kqlock_held(kqu); | |
6575 | ||
6576 | assert((kn->kn_status & KN_SUPPRESSED) == 0); | |
6577 | assert(kn->kn_status & KN_QUEUED); | |
6578 | ||
6579 | knote_dequeue(kqu, kn); | |
6580 | /* deactivate - so new activations indicate a wakeup */ | |
6581 | kn->kn_status &= ~KN_ACTIVE; | |
6582 | kn->kn_status |= KN_SUPPRESSED; | |
6583 | suppressq = kqueue_get_suppressed_queue(kqu, kn); | |
6584 | TAILQ_INSERT_TAIL(suppressq, kn, kn_tqe); | |
6585 | } | |
6586 | ||
6587 | __attribute__((always_inline)) | |
6588 | static inline void | |
6589 | knote_unsuppress_noqueue(kqueue_t kqu, struct knote *kn) | |
6590 | { | |
6591 | struct kqtailq *suppressq; | |
6592 | ||
6593 | kqlock_held(kqu); | |
6594 | ||
6595 | assert(kn->kn_status & KN_SUPPRESSED); | |
6596 | ||
6597 | kn->kn_status &= ~KN_SUPPRESSED; | |
6598 | suppressq = kqueue_get_suppressed_queue(kqu, kn); | |
6599 | TAILQ_REMOVE(suppressq, kn, kn_tqe); | |
6600 | ||
6601 | /* | |
6602 | * If the knote is no longer active, reset its push, | |
6603 | * and resynchronize kn_qos_index with kn_qos_override | |
6604 | * for knotes with a real qos. | |
6605 | */ | |
6606 | if ((kn->kn_status & KN_ACTIVE) == 0 && knote_has_qos(kn)) { | |
6607 | kn->kn_qos_override = _pthread_priority_thread_qos_fast(kn->kn_qos); | |
6608 | } | |
6609 | kn->kn_qos_index = kn->kn_qos_override; | |
6610 | } | |
6611 | ||
6612 | /* called with kqueue lock held */ | |
6613 | static void | |
6614 | knote_unsuppress(kqueue_t kqu, struct knote *kn) | |
6615 | { | |
6616 | if (kn->kn_status & KN_SUPPRESSED) { | |
6617 | knote_unsuppress_noqueue(kqu, kn); | |
6618 | ||
6619 | /* don't wakeup if unsuppressing just a stay-active knote */ | |
6620 | knote_enqueue(kqu, kn, KN_ACTIVE); | |
6621 | } | |
6622 | } | |
6623 | ||
6624 | __attribute__((always_inline)) | |
6625 | static inline void | |
6626 | knote_mark_active(struct knote *kn) | |
6627 | { | |
6628 | if ((kn->kn_status & KN_ACTIVE) == 0) { | |
6629 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KNOTE_ACTIVATE), | |
6630 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
6631 | kn->kn_filtid); | |
6632 | } | |
6633 | ||
6634 | kn->kn_status |= KN_ACTIVE; | |
6635 | } | |
6636 | ||
6637 | /* called with kqueue lock held */ | |
6638 | static void | |
6639 | knote_activate(kqueue_t kqu, struct knote *kn, int result) | |
6640 | { | |
6641 | assert(result & FILTER_ACTIVE); | |
6642 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) { | |
6643 | // may dequeue the knote | |
6644 | knote_adjust_qos(kqu.kq, kn, result); | |
6645 | } | |
6646 | knote_mark_active(kn); | |
6647 | knote_enqueue(kqu, kn, KN_ACTIVE | KN_STAYACTIVE); | |
6648 | } | |
6649 | ||
6650 | /* | |
6651 | * This function applies changes requested by f_attach or f_touch for | |
6652 | * a given filter. It proceeds in a carefully chosen order to help | |
6653 | * every single transition do the minimal amount of work possible. | |
6654 | */ | |
6655 | static void | |
6656 | knote_apply_touch(kqueue_t kqu, struct knote *kn, struct kevent_qos_s *kev, | |
6657 | int result) | |
6658 | { | |
6659 | kn_status_t wakeup_mask = KN_ACTIVE; | |
6660 | ||
6661 | if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { | |
6662 | /* | |
6663 | * When a stayactive knote is reenabled, we may have missed wakeups | |
6664 | * while it was disabled, so we need to poll it. To do so, ask | |
6665 | * knote_enqueue() below to reenqueue it. | |
6666 | */ | |
6667 | wakeup_mask |= KN_STAYACTIVE; | |
6668 | kn->kn_status &= ~KN_DISABLED; | |
6669 | ||
6670 | /* | |
6671 | * it is possible for userland to have knotes registered for a given | |
6672 | * workloop `wl_orig` but really handled on another workloop `wl_new`. | |
6673 | * | |
6674 | * In that case, rearming will happen from the servicer thread of | |
6675 | * `wl_new` which if `wl_orig` is no longer being serviced, would cause | |
6676 | * this knote to stay suppressed forever if we only relied on | |
6677 | * kqworkloop_acknowledge_events to be called by `wl_orig`. | |
6678 | * | |
6679 | * However if we see the KQ_PROCESSING bit on `wl_orig` set, we can't | |
6680 | * unsuppress because that would mess with the processing phase of | |
6681 | * `wl_orig`, however it also means kqworkloop_acknowledge_events() | |
6682 | * will be called. | |
6683 | */ | |
6684 | if (__improbable(kn->kn_status & KN_SUPPRESSED)) { | |
6685 | if ((kqu.kq->kq_state & KQ_PROCESSING) == 0) { | |
6686 | knote_unsuppress_noqueue(kqu, kn); | |
6687 | } | |
6688 | } | |
6689 | } | |
6690 | ||
6691 | if ((result & FILTER_UPDATE_REQ_QOS) && kev->qos && kev->qos != kn->kn_qos) { | |
6692 | // may dequeue the knote | |
6693 | knote_reset_priority(kqu, kn, kev->qos); | |
6694 | } | |
6695 | ||
6696 | /* | |
6697 | * When we unsuppress above, or because of knote_reset_priority(), | |
6698 | * the knote may have been dequeued, we need to restore the invariant | |
6699 | * that if the knote is active it needs to be queued now that | |
6700 | * we're done applying changes. | |
6701 | */ | |
6702 | if (result & FILTER_ACTIVE) { | |
6703 | knote_activate(kqu, kn, result); | |
6704 | } else { | |
6705 | knote_enqueue(kqu, kn, wakeup_mask); | |
6706 | } | |
6707 | ||
6708 | if ((result & FILTER_THREADREQ_NODEFEER) && | |
6709 | act_clear_astkevent(current_thread(), AST_KEVENT_REDRIVE_THREADREQ)) { | |
6710 | workq_kern_threadreq_redrive(kqu.kq->kq_p, WORKQ_THREADREQ_NONE); | |
6711 | } | |
6712 | } | |
6713 | ||
6714 | /* | |
6715 | * knote_drop - disconnect and drop the knote | |
6716 | * | |
6717 | * Called with the kqueue locked, returns with the kqueue unlocked. | |
6718 | * | |
6719 | * If a knote locking context is passed, it is canceled. | |
6720 | * | |
6721 | * The knote may have already been detached from | |
6722 | * (or not yet attached to) its source object. | |
6723 | */ | |
6724 | static void | |
6725 | knote_drop(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc) | |
6726 | { | |
6727 | struct proc *p = kq->kq_p; | |
6728 | ||
6729 | kqlock_held(kq); | |
6730 | ||
6731 | assert((kn->kn_status & KN_DROPPING) == 0); | |
6732 | if (knlc == NULL) { | |
6733 | assert((kn->kn_status & KN_LOCKED) == 0); | |
6734 | } | |
6735 | kn->kn_status |= KN_DROPPING; | |
6736 | ||
6737 | if (kn->kn_status & KN_SUPPRESSED) { | |
6738 | knote_unsuppress_noqueue(kq, kn); | |
6739 | } else { | |
6740 | knote_dequeue(kq, kn); | |
6741 | } | |
6742 | knote_wait_for_post(kq, kn); | |
6743 | ||
6744 | knote_fops(kn)->f_detach(kn); | |
6745 | ||
6746 | /* kq may be freed when kq_remove_knote() returns */ | |
6747 | kq_remove_knote(kq, kn, p, knlc); | |
6748 | if (kn->kn_is_fd && ((kn->kn_status & KN_VANISHED) == 0)) { | |
6749 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); | |
6750 | } | |
6751 | ||
6752 | knote_free(kn); | |
6753 | } | |
6754 | ||
6755 | void | |
6756 | knote_init(void) | |
6757 | { | |
6758 | knote_zone = zinit(sizeof(struct knote), 8192 * sizeof(struct knote), | |
6759 | 8192, "knote zone"); | |
6760 | zone_change(knote_zone, Z_CACHING_ENABLED, TRUE); | |
6761 | ||
6762 | kqfile_zone = zinit(sizeof(struct kqfile), 8192 * sizeof(struct kqfile), | |
6763 | 8192, "kqueue file zone"); | |
6764 | ||
6765 | kqworkq_zone = zinit(sizeof(struct kqworkq), 8192 * sizeof(struct kqworkq), | |
6766 | 8192, "kqueue workq zone"); | |
6767 | ||
6768 | kqworkloop_zone = zinit(sizeof(struct kqworkloop), 8192 * sizeof(struct kqworkloop), | |
6769 | 8192, "kqueue workloop zone"); | |
6770 | zone_change(kqworkloop_zone, Z_CACHING_ENABLED, TRUE); | |
6771 | ||
6772 | /* allocate kq lock group attribute and group */ | |
6773 | kq_lck_grp_attr = lck_grp_attr_alloc_init(); | |
6774 | ||
6775 | kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr); | |
6776 | ||
6777 | /* Allocate kq lock attribute */ | |
6778 | kq_lck_attr = lck_attr_alloc_init(); | |
6779 | ||
6780 | #if CONFIG_MEMORYSTATUS | |
6781 | /* Initialize the memorystatus list lock */ | |
6782 | memorystatus_kevent_init(kq_lck_grp, kq_lck_attr); | |
6783 | #endif | |
6784 | } | |
6785 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL); | |
6786 | ||
6787 | const struct filterops * | |
6788 | knote_fops(struct knote *kn) | |
6789 | { | |
6790 | return sysfilt_ops[kn->kn_filtid]; | |
6791 | } | |
6792 | ||
6793 | static struct knote * | |
6794 | knote_alloc(void) | |
6795 | { | |
6796 | struct knote *kn = ((struct knote *)zalloc(knote_zone)); | |
6797 | bzero(kn, sizeof(struct knote)); | |
6798 | return kn; | |
6799 | } | |
6800 | ||
6801 | static void | |
6802 | knote_free(struct knote *kn) | |
6803 | { | |
6804 | assert((kn->kn_status & (KN_LOCKED | KN_POSTING)) == 0); | |
6805 | zfree(knote_zone, kn); | |
6806 | } | |
6807 | ||
6808 | #pragma mark - syscalls: kevent, kevent64, kevent_qos, kevent_id | |
6809 | ||
6810 | kevent_ctx_t | |
6811 | kevent_get_context(thread_t thread) | |
6812 | { | |
6813 | uthread_t ut = get_bsdthread_info(thread); | |
6814 | return &ut->uu_save.uus_kevent; | |
6815 | } | |
6816 | ||
6817 | static inline bool | |
6818 | kevent_args_requesting_events(unsigned int flags, int nevents) | |
6819 | { | |
6820 | return !(flags & KEVENT_FLAG_ERROR_EVENTS) && nevents > 0; | |
6821 | } | |
6822 | ||
6823 | static inline int | |
6824 | kevent_adjust_flags_for_proc(proc_t p, int flags) | |
6825 | { | |
6826 | __builtin_assume(p); | |
6827 | return flags | (IS_64BIT_PROCESS(p) ? KEVENT_FLAG_PROC64 : 0); | |
6828 | } | |
6829 | ||
6830 | /*! | |
6831 | * @function kevent_get_kqfile | |
6832 | * | |
6833 | * @brief | |
6834 | * Lookup a kqfile by fd. | |
6835 | * | |
6836 | * @discussion | |
6837 | * Callers: kevent, kevent64, kevent_qos | |
6838 | * | |
6839 | * This is not assumed to be a fastpath (kqfile interfaces are legacy) | |
6840 | */ | |
6841 | OS_NOINLINE | |
6842 | static int | |
6843 | kevent_get_kqfile(struct proc *p, int fd, int flags, | |
6844 | struct fileproc **fp, struct kqueue **kqp) | |
6845 | { | |
6846 | int error = 0; | |
6847 | struct kqueue *kq; | |
6848 | ||
6849 | error = fp_getfkq(p, fd, fp, &kq); | |
6850 | if (__improbable(error)) { | |
6851 | return error; | |
6852 | } | |
6853 | ||
6854 | uint16_t kq_state = os_atomic_load(&kq->kq_state, relaxed); | |
6855 | if (__improbable((kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) == 0)) { | |
6856 | kqlock(kq); | |
6857 | kq_state = kq->kq_state; | |
6858 | if (!(kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS))) { | |
6859 | if (flags & KEVENT_FLAG_LEGACY32) { | |
6860 | kq_state |= KQ_KEV32; | |
6861 | } else if (flags & KEVENT_FLAG_LEGACY64) { | |
6862 | kq_state |= KQ_KEV64; | |
6863 | } else { | |
6864 | kq_state |= KQ_KEV_QOS; | |
6865 | } | |
6866 | kq->kq_state = kq_state; | |
6867 | } | |
6868 | kqunlock(kq); | |
6869 | } | |
6870 | ||
6871 | /* | |
6872 | * kqfiles can't be used through the legacy kevent() | |
6873 | * and other interfaces at the same time. | |
6874 | */ | |
6875 | if (__improbable((bool)(flags & KEVENT_FLAG_LEGACY32) != | |
6876 | (bool)(kq_state & KQ_KEV32))) { | |
6877 | fp_drop(p, fd, *fp, 0); | |
6878 | return EINVAL; | |
6879 | } | |
6880 | ||
6881 | *kqp = kq; | |
6882 | return 0; | |
6883 | } | |
6884 | ||
6885 | /*! | |
6886 | * @function kevent_get_kqwq | |
6887 | * | |
6888 | * @brief | |
6889 | * Lookup or create the process kqwq (faspath). | |
6890 | * | |
6891 | * @discussion | |
6892 | * Callers: kevent64, kevent_qos | |
6893 | */ | |
6894 | OS_ALWAYS_INLINE | |
6895 | static int | |
6896 | kevent_get_kqwq(proc_t p, int flags, int nevents, struct kqueue **kqp) | |
6897 | { | |
6898 | struct kqworkq *kqwq = p->p_fd->fd_wqkqueue; | |
6899 | ||
6900 | if (__improbable(kevent_args_requesting_events(flags, nevents))) { | |
6901 | return EINVAL; | |
6902 | } | |
6903 | if (__improbable(kqwq == NULL)) { | |
6904 | kqwq = kqworkq_alloc(p, flags); | |
6905 | if (__improbable(kqwq == NULL)) { | |
6906 | return ENOMEM; | |
6907 | } | |
6908 | } | |
6909 | ||
6910 | *kqp = &kqwq->kqwq_kqueue; | |
6911 | return 0; | |
6912 | } | |
6913 | ||
6914 | #pragma mark kevent copyio | |
6915 | ||
6916 | /*! | |
6917 | * @function kevent_get_data_size | |
6918 | * | |
6919 | * @brief | |
6920 | * Copies in the extra data size from user-space. | |
6921 | */ | |
6922 | static int | |
6923 | kevent_get_data_size(int flags, user_addr_t data_avail, user_addr_t data_out, | |
6924 | kevent_ctx_t kectx) | |
6925 | { | |
6926 | if (!data_avail || !data_out) { | |
6927 | kectx->kec_data_size = 0; | |
6928 | kectx->kec_data_resid = 0; | |
6929 | } else if (flags & KEVENT_FLAG_PROC64) { | |
6930 | user64_size_t usize = 0; | |
6931 | int error = copyin((user_addr_t)data_avail, &usize, sizeof(usize)); | |
6932 | if (__improbable(error)) { | |
6933 | return error; | |
6934 | } | |
6935 | kectx->kec_data_resid = kectx->kec_data_size = (user_size_t)usize; | |
6936 | } else { | |
6937 | user32_size_t usize = 0; | |
6938 | int error = copyin((user_addr_t)data_avail, &usize, sizeof(usize)); | |
6939 | if (__improbable(error)) { | |
6940 | return error; | |
6941 | } | |
6942 | kectx->kec_data_avail = data_avail; | |
6943 | kectx->kec_data_resid = kectx->kec_data_size = (user_size_t)usize; | |
6944 | } | |
6945 | kectx->kec_data_out = data_out; | |
6946 | kectx->kec_data_avail = data_avail; | |
6947 | return 0; | |
6948 | } | |
6949 | ||
6950 | /*! | |
6951 | * @function kevent_put_data_size | |
6952 | * | |
6953 | * @brief | |
6954 | * Copies out the residual data size to user-space if any has been used. | |
6955 | */ | |
6956 | static int | |
6957 | kevent_put_data_size(unsigned int flags, kevent_ctx_t kectx) | |
6958 | { | |
6959 | if (kectx->kec_data_resid == kectx->kec_data_size) { | |
6960 | return 0; | |
6961 | } | |
6962 | if (flags & KEVENT_FLAG_KERNEL) { | |
6963 | *(user_size_t *)(uintptr_t)kectx->kec_data_avail = kectx->kec_data_resid; | |
6964 | return 0; | |
6965 | } | |
6966 | if (flags & KEVENT_FLAG_PROC64) { | |
6967 | user64_size_t usize = (user64_size_t)kectx->kec_data_resid; | |
6968 | return copyout(&usize, (user_addr_t)kectx->kec_data_avail, sizeof(usize)); | |
6969 | } else { | |
6970 | user32_size_t usize = (user32_size_t)kectx->kec_data_resid; | |
6971 | return copyout(&usize, (user_addr_t)kectx->kec_data_avail, sizeof(usize)); | |
6972 | } | |
6973 | } | |
6974 | ||
6975 | /*! | |
6976 | * @function kevent_legacy_copyin | |
6977 | * | |
6978 | * @brief | |
6979 | * Handles the copyin of a kevent/kevent64 event. | |
6980 | */ | |
6981 | static int | |
6982 | kevent_legacy_copyin(user_addr_t *addrp, struct kevent_qos_s *kevp, unsigned int flags) | |
6983 | { | |
6984 | int error; | |
6985 | ||
6986 | assert((flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64)) != 0); | |
6987 | ||
6988 | if (flags & KEVENT_FLAG_LEGACY64) { | |
6989 | struct kevent64_s kev64; | |
6990 | ||
6991 | error = copyin(*addrp, (caddr_t)&kev64, sizeof(kev64)); | |
6992 | if (__improbable(error)) { | |
6993 | return error; | |
6994 | } | |
6995 | *addrp += sizeof(kev64); | |
6996 | *kevp = (struct kevent_qos_s){ | |
6997 | .ident = kev64.ident, | |
6998 | .filter = kev64.filter, | |
6999 | /* Make sure user doesn't pass in any system flags */ | |
7000 | .flags = kev64.flags & ~EV_SYSFLAGS, | |
7001 | .udata = kev64.udata, | |
7002 | .fflags = kev64.fflags, | |
7003 | .data = kev64.data, | |
7004 | .ext[0] = kev64.ext[0], | |
7005 | .ext[1] = kev64.ext[1], | |
7006 | }; | |
7007 | } else if (flags & KEVENT_FLAG_PROC64) { | |
7008 | struct user64_kevent kev64; | |
7009 | ||
7010 | error = copyin(*addrp, (caddr_t)&kev64, sizeof(kev64)); | |
7011 | if (__improbable(error)) { | |
7012 | return error; | |
7013 | } | |
7014 | *addrp += sizeof(kev64); | |
7015 | *kevp = (struct kevent_qos_s){ | |
7016 | .ident = kev64.ident, | |
7017 | .filter = kev64.filter, | |
7018 | /* Make sure user doesn't pass in any system flags */ | |
7019 | .flags = kev64.flags & ~EV_SYSFLAGS, | |
7020 | .udata = kev64.udata, | |
7021 | .fflags = kev64.fflags, | |
7022 | .data = kev64.data, | |
7023 | }; | |
7024 | } else { | |
7025 | struct user32_kevent kev32; | |
7026 | ||
7027 | error = copyin(*addrp, (caddr_t)&kev32, sizeof(kev32)); | |
7028 | if (__improbable(error)) { | |
7029 | return error; | |
7030 | } | |
7031 | *addrp += sizeof(kev32); | |
7032 | *kevp = (struct kevent_qos_s){ | |
7033 | .ident = (uintptr_t)kev32.ident, | |
7034 | .filter = kev32.filter, | |
7035 | /* Make sure user doesn't pass in any system flags */ | |
7036 | .flags = kev32.flags & ~EV_SYSFLAGS, | |
7037 | .udata = CAST_USER_ADDR_T(kev32.udata), | |
7038 | .fflags = kev32.fflags, | |
7039 | .data = (intptr_t)kev32.data, | |
7040 | }; | |
7041 | } | |
7042 | ||
7043 | return 0; | |
7044 | } | |
7045 | ||
7046 | /*! | |
7047 | * @function kevent_modern_copyin | |
7048 | * | |
7049 | * @brief | |
7050 | * Handles the copyin of a kevent_qos/kevent_id event. | |
7051 | */ | |
7052 | static int | |
7053 | kevent_modern_copyin(user_addr_t *addrp, struct kevent_qos_s *kevp) | |
7054 | { | |
7055 | int error = copyin(*addrp, (caddr_t)kevp, sizeof(struct kevent_qos_s)); | |
7056 | if (__probable(!error)) { | |
7057 | /* Make sure user doesn't pass in any system flags */ | |
7058 | *addrp += sizeof(struct kevent_qos_s); | |
7059 | kevp->flags &= ~EV_SYSFLAGS; | |
7060 | } | |
7061 | return error; | |
7062 | } | |
7063 | ||
7064 | /*! | |
7065 | * @function kevent_legacy_copyout | |
7066 | * | |
7067 | * @brief | |
7068 | * Handles the copyout of a kevent/kevent64 event. | |
7069 | */ | |
7070 | static int | |
7071 | kevent_legacy_copyout(struct kevent_qos_s *kevp, user_addr_t *addrp, unsigned int flags) | |
7072 | { | |
7073 | int advance; | |
7074 | int error; | |
7075 | ||
7076 | assert((flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64)) != 0); | |
7077 | ||
7078 | /* | |
7079 | * fully initialize the differnt output event structure | |
7080 | * types from the internal kevent (and some universal | |
7081 | * defaults for fields not represented in the internal | |
7082 | * form). | |
7083 | * | |
7084 | * Note: these structures have no padding hence the C99 | |
7085 | * initializers below do not leak kernel info. | |
7086 | */ | |
7087 | if (flags & KEVENT_FLAG_LEGACY64) { | |
7088 | struct kevent64_s kev64 = { | |
7089 | .ident = kevp->ident, | |
7090 | .filter = kevp->filter, | |
7091 | .flags = kevp->flags, | |
7092 | .fflags = kevp->fflags, | |
7093 | .data = (int64_t)kevp->data, | |
7094 | .udata = kevp->udata, | |
7095 | .ext[0] = kevp->ext[0], | |
7096 | .ext[1] = kevp->ext[1], | |
7097 | }; | |
7098 | advance = sizeof(struct kevent64_s); | |
7099 | error = copyout((caddr_t)&kev64, *addrp, advance); | |
7100 | } else if (flags & KEVENT_FLAG_PROC64) { | |
7101 | /* | |
7102 | * deal with the special case of a user-supplied | |
7103 | * value of (uintptr_t)-1. | |
7104 | */ | |
7105 | uint64_t ident = (kevp->ident == (uintptr_t)-1) ? | |
7106 | (uint64_t)-1LL : (uint64_t)kevp->ident; | |
7107 | struct user64_kevent kev64 = { | |
7108 | .ident = ident, | |
7109 | .filter = kevp->filter, | |
7110 | .flags = kevp->flags, | |
7111 | .fflags = kevp->fflags, | |
7112 | .data = (int64_t) kevp->data, | |
7113 | .udata = kevp->udata, | |
7114 | }; | |
7115 | advance = sizeof(kev64); | |
7116 | error = copyout((caddr_t)&kev64, *addrp, advance); | |
7117 | } else { | |
7118 | struct user32_kevent kev32 = { | |
7119 | .ident = (uint32_t)kevp->ident, | |
7120 | .filter = kevp->filter, | |
7121 | .flags = kevp->flags, | |
7122 | .fflags = kevp->fflags, | |
7123 | .data = (int32_t)kevp->data, | |
7124 | .udata = kevp->udata, | |
7125 | }; | |
7126 | advance = sizeof(kev32); | |
7127 | error = copyout((caddr_t)&kev32, *addrp, advance); | |
7128 | } | |
7129 | if (__probable(!error)) { | |
7130 | *addrp += advance; | |
7131 | } | |
7132 | return error; | |
7133 | } | |
7134 | ||
7135 | /*! | |
7136 | * @function kevent_modern_copyout | |
7137 | * | |
7138 | * @brief | |
7139 | * Handles the copyout of a kevent_qos/kevent_id event. | |
7140 | */ | |
7141 | OS_ALWAYS_INLINE | |
7142 | static inline int | |
7143 | kevent_modern_copyout(struct kevent_qos_s *kevp, user_addr_t *addrp) | |
7144 | { | |
7145 | int error = copyout((caddr_t)kevp, *addrp, sizeof(struct kevent_qos_s)); | |
7146 | if (__probable(!error)) { | |
7147 | *addrp += sizeof(struct kevent_qos_s); | |
7148 | } | |
7149 | return error; | |
7150 | } | |
7151 | ||
7152 | #pragma mark kevent core implementation | |
7153 | ||
7154 | /*! | |
7155 | * @function kevent_callback_inline | |
7156 | * | |
7157 | * @brief | |
7158 | * Callback for each individual event | |
7159 | * | |
7160 | * @discussion | |
7161 | * This is meant to be inlined in kevent_modern_callback and | |
7162 | * kevent_legacy_callback. | |
7163 | */ | |
7164 | OS_ALWAYS_INLINE | |
7165 | static inline int | |
7166 | kevent_callback_inline(struct kevent_qos_s *kevp, kevent_ctx_t kectx, bool legacy) | |
7167 | { | |
7168 | int error; | |
7169 | ||
7170 | assert(kectx->kec_process_noutputs < kectx->kec_process_nevents); | |
7171 | ||
7172 | /* | |
7173 | * Copy out the appropriate amount of event data for this user. | |
7174 | */ | |
7175 | if (legacy) { | |
7176 | error = kevent_legacy_copyout(kevp, &kectx->kec_process_eventlist, | |
7177 | kectx->kec_process_flags); | |
7178 | } else { | |
7179 | error = kevent_modern_copyout(kevp, &kectx->kec_process_eventlist); | |
7180 | } | |
7181 | ||
7182 | /* | |
7183 | * If there isn't space for additional events, return | |
7184 | * a harmless error to stop the processing here | |
7185 | */ | |
7186 | if (error == 0 && ++kectx->kec_process_noutputs == kectx->kec_process_nevents) { | |
7187 | error = EWOULDBLOCK; | |
7188 | } | |
7189 | return error; | |
7190 | } | |
7191 | ||
7192 | /*! | |
7193 | * @function kevent_modern_callback | |
7194 | * | |
7195 | * @brief | |
7196 | * Callback for each individual modern event. | |
7197 | * | |
7198 | * @discussion | |
7199 | * This callback handles kevent_qos/kevent_id events. | |
7200 | */ | |
7201 | static int | |
7202 | kevent_modern_callback(struct kevent_qos_s *kevp, kevent_ctx_t kectx) | |
7203 | { | |
7204 | return kevent_callback_inline(kevp, kectx, /*legacy*/ false); | |
7205 | } | |
7206 | ||
7207 | /*! | |
7208 | * @function kevent_legacy_callback | |
7209 | * | |
7210 | * @brief | |
7211 | * Callback for each individual legacy event. | |
7212 | * | |
7213 | * @discussion | |
7214 | * This callback handles kevent/kevent64 events. | |
7215 | */ | |
7216 | static int | |
7217 | kevent_legacy_callback(struct kevent_qos_s *kevp, kevent_ctx_t kectx) | |
7218 | { | |
7219 | return kevent_callback_inline(kevp, kectx, /*legacy*/ true); | |
7220 | } | |
7221 | ||
7222 | /*! | |
7223 | * @function kevent_cleanup | |
7224 | * | |
7225 | * @brief | |
7226 | * Handles the cleanup returning from a kevent call. | |
7227 | * | |
7228 | * @discussion | |
7229 | * kevent entry points will take a reference on workloops, | |
7230 | * and a usecount on the fileglob of kqfiles. | |
7231 | * | |
7232 | * This function undoes this on the exit paths of kevents. | |
7233 | * | |
7234 | * @returns | |
7235 | * The error to return to userspace. | |
7236 | */ | |
7237 | static int | |
7238 | kevent_cleanup(kqueue_t kqu, int flags, int error, kevent_ctx_t kectx) | |
7239 | { | |
7240 | // poll should not call any codepath leading to this | |
7241 | assert((flags & KEVENT_FLAG_POLL) == 0); | |
7242 | ||
7243 | if (flags & KEVENT_FLAG_WORKLOOP) { | |
7244 | kqworkloop_release(kqu.kqwl); | |
7245 | } else if (flags & KEVENT_FLAG_WORKQ) { | |
7246 | /* nothing held */ | |
7247 | } else { | |
7248 | fp_drop(kqu.kqf->kqf_p, kectx->kec_fd, kectx->kec_fp, 0); | |
7249 | } | |
7250 | ||
7251 | /* don't restart after signals... */ | |
7252 | if (error == ERESTART) { | |
7253 | error = EINTR; | |
7254 | } else if (error == 0) { | |
7255 | /* don't abandon other output just because of residual copyout failures */ | |
7256 | (void)kevent_put_data_size(flags, kectx); | |
7257 | } | |
7258 | ||
7259 | if (flags & KEVENT_FLAG_PARKING) { | |
7260 | thread_t th = current_thread(); | |
7261 | struct uthread *uth = get_bsdthread_info(th); | |
7262 | if (uth->uu_kqr_bound) { | |
7263 | thread_unfreeze_base_pri(th); | |
7264 | } | |
7265 | } | |
7266 | return error; | |
7267 | } | |
7268 | ||
7269 | /*! | |
7270 | * @function kqueue_process | |
7271 | * | |
7272 | * @brief | |
7273 | * Process the triggered events in a kqueue. | |
7274 | * | |
7275 | * @discussion | |
7276 | * Walk the queued knotes and validate that they are really still triggered | |
7277 | * events by calling the filter routines (if necessary). | |
7278 | * | |
7279 | * For each event that is still considered triggered, invoke the callback | |
7280 | * routine provided. | |
7281 | * | |
7282 | * caller holds a reference on the kqueue. | |
7283 | * kqueue locked on entry and exit - but may be dropped | |
7284 | * kqueue list locked (held for duration of call) | |
7285 | * | |
7286 | * This is only called by kqueue_scan() so that the compiler can inline it. | |
7287 | * | |
7288 | * @returns | |
7289 | * - 0: no event was returned, no other error occured | |
7290 | * - EBADF: the kqueue is being destroyed (KQ_DRAIN is set) | |
7291 | * - EWOULDBLOCK: (not an error) events have been found and we should return | |
7292 | * - EFAULT: copyout failed | |
7293 | * - filter specific errors | |
7294 | */ | |
7295 | static int | |
7296 | kqueue_process(kqueue_t kqu, int flags, kevent_ctx_t kectx, | |
7297 | kevent_callback_t callback) | |
7298 | { | |
7299 | workq_threadreq_t kqr = current_uthread()->uu_kqr_bound; | |
7300 | struct knote *kn; | |
7301 | int error = 0, rc = 0; | |
7302 | struct kqtailq *base_queue, *queue; | |
7303 | #if DEBUG || DEVELOPMENT | |
7304 | int retries = 64; | |
7305 | #endif | |
7306 | uint16_t kq_type = (kqu.kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)); | |
7307 | ||
7308 | if (kq_type & KQ_WORKQ) { | |
7309 | rc = kqworkq_begin_processing(kqu.kqwq, kqr, flags); | |
7310 | } else if (kq_type & KQ_WORKLOOP) { | |
7311 | rc = kqworkloop_begin_processing(kqu.kqwl, flags); | |
7312 | } else { | |
7313 | kqfile_retry: | |
7314 | rc = kqfile_begin_processing(kqu.kqf); | |
7315 | if (rc == EBADF) { | |
7316 | return EBADF; | |
7317 | } | |
7318 | } | |
7319 | ||
7320 | if (rc == -1) { | |
7321 | /* Nothing to process */ | |
7322 | return 0; | |
7323 | } | |
7324 | ||
7325 | /* | |
7326 | * loop through the enqueued knotes associated with this request, | |
7327 | * processing each one. Each request may have several queues | |
7328 | * of knotes to process (depending on the type of kqueue) so we | |
7329 | * have to loop through all the queues as long as we have additional | |
7330 | * space. | |
7331 | */ | |
7332 | ||
7333 | process_again: | |
7334 | if (kq_type & KQ_WORKQ) { | |
7335 | base_queue = queue = &kqu.kqwq->kqwq_queue[kqr->tr_kq_qos_index]; | |
7336 | } else if (kq_type & KQ_WORKLOOP) { | |
7337 | base_queue = &kqu.kqwl->kqwl_queue[0]; | |
7338 | queue = &kqu.kqwl->kqwl_queue[KQWL_NBUCKETS - 1]; | |
7339 | } else { | |
7340 | base_queue = queue = &kqu.kqf->kqf_queue; | |
7341 | } | |
7342 | ||
7343 | do { | |
7344 | while ((kn = TAILQ_FIRST(queue)) != NULL) { | |
7345 | error = knote_process(kn, kectx, callback); | |
7346 | if (error == EJUSTRETURN) { | |
7347 | error = 0; | |
7348 | } else if (__improbable(error)) { | |
7349 | /* error is EWOULDBLOCK when the out event array is full */ | |
7350 | goto stop_processing; | |
7351 | } | |
7352 | } | |
7353 | } while (queue-- > base_queue); | |
7354 | ||
7355 | if (kectx->kec_process_noutputs) { | |
7356 | /* callers will transform this into no error */ | |
7357 | error = EWOULDBLOCK; | |
7358 | } | |
7359 | ||
7360 | stop_processing: | |
7361 | /* | |
7362 | * If KEVENT_FLAG_PARKING is set, and no kevents have been returned, | |
7363 | * we want to unbind the kqrequest from the thread. | |
7364 | * | |
7365 | * However, because the kq locks are dropped several times during process, | |
7366 | * new knotes may have fired again, in which case, we want to fail the end | |
7367 | * processing and process again, until it converges. | |
7368 | * | |
7369 | * If we have an error or returned events, end processing never fails. | |
7370 | */ | |
7371 | if (error) { | |
7372 | flags &= ~KEVENT_FLAG_PARKING; | |
7373 | } | |
7374 | if (kq_type & KQ_WORKQ) { | |
7375 | rc = kqworkq_end_processing(kqu.kqwq, kqr, flags); | |
7376 | } else if (kq_type & KQ_WORKLOOP) { | |
7377 | rc = kqworkloop_end_processing(kqu.kqwl, KQ_PROCESSING, flags); | |
7378 | } else { | |
7379 | rc = kqfile_end_processing(kqu.kqf); | |
7380 | } | |
7381 | ||
7382 | if (__probable(error)) { | |
7383 | return error; | |
7384 | } | |
7385 | ||
7386 | if (__probable(rc >= 0)) { | |
7387 | assert(rc == 0 || rc == EBADF); | |
7388 | return rc; | |
7389 | } | |
7390 | ||
7391 | #if DEBUG || DEVELOPMENT | |
7392 | if (retries-- == 0) { | |
7393 | panic("kevent: way too many knote_process retries, kq: %p (0x%04x)", | |
7394 | kqu.kq, kqu.kq->kq_state); | |
7395 | } | |
7396 | #endif | |
7397 | if (kq_type & (KQ_WORKQ | KQ_WORKLOOP)) { | |
7398 | assert(flags & KEVENT_FLAG_PARKING); | |
7399 | goto process_again; | |
7400 | } else { | |
7401 | goto kqfile_retry; | |
7402 | } | |
7403 | } | |
7404 | ||
7405 | /*! | |
7406 | * @function kqueue_scan_continue | |
7407 | * | |
7408 | * @brief | |
7409 | * The continuation used by kqueue_scan for kevent entry points. | |
7410 | * | |
7411 | * @discussion | |
7412 | * Assumes we inherit a use/ref count on the kq or its fileglob. | |
7413 | * | |
7414 | * This is called by kqueue_scan if neither KEVENT_FLAG_POLL nor | |
7415 | * KEVENT_FLAG_KERNEL was set, and the caller had to wait. | |
7416 | */ | |
7417 | OS_NORETURN OS_NOINLINE | |
7418 | static void | |
7419 | kqueue_scan_continue(void *data, wait_result_t wait_result) | |
7420 | { | |
7421 | uthread_t ut = current_uthread(); | |
7422 | kevent_ctx_t kectx = &ut->uu_save.uus_kevent; | |
7423 | int error = 0, flags = kectx->kec_process_flags; | |
7424 | struct kqueue *kq = data; | |
7425 | ||
7426 | /* | |
7427 | * only kevent variants call in here, so we know the callback is | |
7428 | * kevent_legacy_callback or kevent_modern_callback. | |
7429 | */ | |
7430 | assert((flags & (KEVENT_FLAG_POLL | KEVENT_FLAG_KERNEL)) == 0); | |
7431 | ||
7432 | switch (wait_result) { | |
7433 | case THREAD_AWAKENED: | |
7434 | if (__improbable(flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64))) { | |
7435 | error = kqueue_scan(kq, flags, kectx, kevent_legacy_callback); | |
7436 | } else { | |
7437 | error = kqueue_scan(kq, flags, kectx, kevent_modern_callback); | |
7438 | } | |
7439 | break; | |
7440 | case THREAD_TIMED_OUT: | |
7441 | error = 0; | |
7442 | break; | |
7443 | case THREAD_INTERRUPTED: | |
7444 | error = EINTR; | |
7445 | break; | |
7446 | case THREAD_RESTART: | |
7447 | error = EBADF; | |
7448 | break; | |
7449 | default: | |
7450 | panic("%s: - invalid wait_result (%d)", __func__, wait_result); | |
7451 | } | |
7452 | ||
7453 | ||
7454 | error = kevent_cleanup(kq, flags, error, kectx); | |
7455 | *(int32_t *)&ut->uu_rval = kectx->kec_process_noutputs; | |
7456 | unix_syscall_return(error); | |
7457 | } | |
7458 | ||
7459 | /*! | |
7460 | * @function kqueue_scan | |
7461 | * | |
7462 | * @brief | |
7463 | * Scan and wait for events in a kqueue (used by poll & kevent). | |
7464 | * | |
7465 | * @discussion | |
7466 | * Process the triggered events in a kqueue. | |
7467 | * | |
7468 | * If there are no events triggered arrange to wait for them: | |
7469 | * - unless KEVENT_FLAG_IMMEDIATE is set in kectx->kec_process_flags | |
7470 | * - possibly until kectx->kec_deadline expires | |
7471 | * | |
7472 | * When it waits, and that neither KEVENT_FLAG_POLL nor KEVENT_FLAG_KERNEL | |
7473 | * are set, then it will wait in the kqueue_scan_continue continuation. | |
7474 | * | |
7475 | * poll() will block in place, and KEVENT_FLAG_KERNEL calls | |
7476 | * all pass KEVENT_FLAG_IMMEDIATE and will not wait. | |
7477 | * | |
7478 | * @param kq | |
7479 | * The kqueue being scanned. | |
7480 | * | |
7481 | * @param flags | |
7482 | * The KEVENT_FLAG_* flags for this call. | |
7483 | * | |
7484 | * @param kectx | |
7485 | * The context used for this scan. | |
7486 | * The uthread_t::uu_save.uus_kevent storage is used for this purpose. | |
7487 | * | |
7488 | * @param callback | |
7489 | * The callback to be called on events sucessfully processed. | |
7490 | * (Either kevent_legacy_callback, kevent_modern_callback or poll_callback) | |
7491 | */ | |
7492 | int | |
7493 | kqueue_scan(struct kqueue *kq, int flags, kevent_ctx_t kectx, | |
7494 | kevent_callback_t callback) | |
7495 | { | |
7496 | int error; | |
7497 | ||
7498 | for (;;) { | |
7499 | kqlock(kq); | |
7500 | error = kqueue_process(kq, flags, kectx, callback); | |
7501 | ||
7502 | /* | |
7503 | * If we got an error, events returned (EWOULDBLOCK) | |
7504 | * or blocking was disallowed (KEVENT_FLAG_IMMEDIATE), | |
7505 | * just return. | |
7506 | */ | |
7507 | if (__probable(error || (flags & KEVENT_FLAG_IMMEDIATE))) { | |
7508 | kqunlock(kq); | |
7509 | return error == EWOULDBLOCK ? 0 : error; | |
7510 | } | |
7511 | ||
7512 | waitq_assert_wait64_leeway((struct waitq *)&kq->kq_wqs, | |
7513 | KQ_EVENT, THREAD_ABORTSAFE, TIMEOUT_URGENCY_USER_NORMAL, | |
7514 | kectx->kec_deadline, TIMEOUT_NO_LEEWAY); | |
7515 | kq->kq_state |= KQ_SLEEP; | |
7516 | ||
7517 | kqunlock(kq); | |
7518 | ||
7519 | if (__probable((flags & (KEVENT_FLAG_POLL | KEVENT_FLAG_KERNEL)) == 0)) { | |
7520 | thread_block_parameter(kqueue_scan_continue, kq); | |
7521 | __builtin_unreachable(); | |
7522 | } | |
7523 | ||
7524 | wait_result_t wr = thread_block(THREAD_CONTINUE_NULL); | |
7525 | switch (wr) { | |
7526 | case THREAD_AWAKENED: | |
7527 | break; | |
7528 | case THREAD_TIMED_OUT: | |
7529 | return 0; | |
7530 | case THREAD_INTERRUPTED: | |
7531 | return EINTR; | |
7532 | case THREAD_RESTART: | |
7533 | return EBADF; | |
7534 | default: | |
7535 | panic("%s: - bad wait_result (%d)", __func__, wr); | |
7536 | } | |
7537 | } | |
7538 | } | |
7539 | ||
7540 | /*! | |
7541 | * @function kevent_internal | |
7542 | * | |
7543 | * @brief | |
7544 | * Common kevent code. | |
7545 | * | |
7546 | * @discussion | |
7547 | * Needs to be inlined to specialize for legacy or modern and | |
7548 | * eliminate dead code. | |
7549 | * | |
7550 | * This is the core logic of kevent entry points, that will: | |
7551 | * - register kevents | |
7552 | * - optionally scan the kqueue for events | |
7553 | * | |
7554 | * The caller is giving kevent_internal a reference on the kqueue | |
7555 | * or its fileproc that needs to be cleaned up by kevent_cleanup(). | |
7556 | */ | |
7557 | OS_ALWAYS_INLINE | |
7558 | static inline int | |
7559 | kevent_internal(kqueue_t kqu, | |
7560 | user_addr_t changelist, int nchanges, | |
7561 | user_addr_t ueventlist, int nevents, | |
7562 | int flags, kevent_ctx_t kectx, int32_t *retval, | |
7563 | bool legacy) | |
7564 | { | |
7565 | int error = 0, noutputs = 0, register_rc; | |
7566 | ||
7567 | /* only bound threads can receive events on workloops */ | |
7568 | if (!legacy && (flags & KEVENT_FLAG_WORKLOOP)) { | |
7569 | #if CONFIG_WORKLOOP_DEBUG | |
7570 | UU_KEVENT_HISTORY_WRITE_ENTRY(current_uthread(), { | |
7571 | .uu_kqid = kqu.kqwl->kqwl_dynamicid, | |
7572 | .uu_kq = error ? NULL : kqu.kq, | |
7573 | .uu_error = error, | |
7574 | .uu_nchanges = nchanges, | |
7575 | .uu_nevents = nevents, | |
7576 | .uu_flags = flags, | |
7577 | }); | |
7578 | #endif // CONFIG_WORKLOOP_DEBUG | |
7579 | ||
7580 | if (flags & KEVENT_FLAG_KERNEL) { | |
7581 | /* see kevent_workq_internal */ | |
7582 | error = copyout(&kqu.kqwl->kqwl_dynamicid, | |
7583 | ueventlist - sizeof(kqueue_id_t), sizeof(kqueue_id_t)); | |
7584 | kectx->kec_data_resid -= sizeof(kqueue_id_t); | |
7585 | if (__improbable(error)) { | |
7586 | goto out; | |
7587 | } | |
7588 | } | |
7589 | ||
7590 | if (kevent_args_requesting_events(flags, nevents)) { | |
7591 | /* | |
7592 | * Disable the R2K notification while doing a register, if the | |
7593 | * caller wants events too, we don't want the AST to be set if we | |
7594 | * will process these events soon. | |
7595 | */ | |
7596 | kqlock(kqu); | |
7597 | kqu.kq->kq_state &= ~KQ_R2K_ARMED; | |
7598 | kqunlock(kqu); | |
7599 | flags |= KEVENT_FLAG_NEEDS_END_PROCESSING; | |
7600 | } | |
7601 | } | |
7602 | ||
7603 | /* register all the change requests the user provided... */ | |
7604 | while (nchanges > 0 && error == 0) { | |
7605 | struct kevent_qos_s kev; | |
7606 | struct knote *kn = NULL; | |
7607 | ||
7608 | if (legacy) { | |
7609 | error = kevent_legacy_copyin(&changelist, &kev, flags); | |
7610 | } else { | |
7611 | error = kevent_modern_copyin(&changelist, &kev); | |
7612 | } | |
7613 | if (error) { | |
7614 | break; | |
7615 | } | |
7616 | ||
7617 | register_rc = kevent_register(kqu.kq, &kev, &kn); | |
7618 | if (__improbable(!legacy && (register_rc & FILTER_REGISTER_WAIT))) { | |
7619 | thread_t thread = current_thread(); | |
7620 | ||
7621 | kqlock_held(kqu); | |
7622 | ||
7623 | if (act_clear_astkevent(thread, AST_KEVENT_REDRIVE_THREADREQ)) { | |
7624 | workq_kern_threadreq_redrive(kqu.kq->kq_p, WORKQ_THREADREQ_NONE); | |
7625 | } | |
7626 | ||
7627 | // f_post_register_wait is meant to call a continuation and not to | |
7628 | // return, which is why we don't support FILTER_REGISTER_WAIT if | |
7629 | // KEVENT_FLAG_ERROR_EVENTS is not passed, or if the event that | |
7630 | // waits isn't the last. | |
7631 | // | |
7632 | // It is implementable, but not used by any userspace code at the | |
7633 | // moment, so for now return ENOTSUP if someone tries to do it. | |
7634 | if (nchanges == 1 && noutputs < nevents && | |
7635 | (flags & KEVENT_FLAG_KERNEL) == 0 && | |
7636 | (flags & KEVENT_FLAG_PARKING) == 0 && | |
7637 | (flags & KEVENT_FLAG_ERROR_EVENTS) && | |
7638 | (flags & KEVENT_FLAG_WORKLOOP)) { | |
7639 | uthread_t ut = get_bsdthread_info(thread); | |
7640 | ||
7641 | /* | |
7642 | * store the continuation/completion data in the uthread | |
7643 | * | |
7644 | * Note: the kectx aliases with this, | |
7645 | * and is destroyed in the process. | |
7646 | */ | |
7647 | ut->uu_save.uus_kevent_register = (struct _kevent_register){ | |
7648 | .kev = kev, | |
7649 | .kqwl = kqu.kqwl, | |
7650 | .eventout = noutputs, | |
7651 | .ueventlist = ueventlist, | |
7652 | }; | |
7653 | knote_fops(kn)->f_post_register_wait(ut, kn, | |
7654 | &ut->uu_save.uus_kevent_register); | |
7655 | __builtin_unreachable(); | |
7656 | } | |
7657 | kqunlock(kqu); | |
7658 | ||
7659 | kev.flags |= EV_ERROR; | |
7660 | kev.data = ENOTSUP; | |
7661 | } else { | |
7662 | assert((register_rc & FILTER_REGISTER_WAIT) == 0); | |
7663 | } | |
7664 | ||
7665 | // keep in sync with kevent_register_wait_return() | |
7666 | if (noutputs < nevents && (kev.flags & (EV_ERROR | EV_RECEIPT))) { | |
7667 | if ((kev.flags & EV_ERROR) == 0) { | |
7668 | kev.flags |= EV_ERROR; | |
7669 | kev.data = 0; | |
7670 | } | |
7671 | if (legacy) { | |
7672 | error = kevent_legacy_copyout(&kev, &ueventlist, flags); | |
7673 | } else { | |
7674 | error = kevent_modern_copyout(&kev, &ueventlist); | |
7675 | } | |
7676 | if (error == 0) { | |
7677 | noutputs++; | |
7678 | } | |
7679 | } else if (kev.flags & EV_ERROR) { | |
7680 | error = kev.data; | |
7681 | } | |
7682 | nchanges--; | |
7683 | } | |
7684 | ||
7685 | if ((flags & KEVENT_FLAG_ERROR_EVENTS) == 0 && | |
7686 | nevents > 0 && noutputs == 0 && error == 0) { | |
7687 | kectx->kec_process_flags = flags; | |
7688 | kectx->kec_process_nevents = nevents; | |
7689 | kectx->kec_process_noutputs = 0; | |
7690 | kectx->kec_process_eventlist = ueventlist; | |
7691 | ||
7692 | if (legacy) { | |
7693 | error = kqueue_scan(kqu.kq, flags, kectx, kevent_legacy_callback); | |
7694 | } else { | |
7695 | error = kqueue_scan(kqu.kq, flags, kectx, kevent_modern_callback); | |
7696 | } | |
7697 | ||
7698 | noutputs = kectx->kec_process_noutputs; | |
7699 | } else if (!legacy && (flags & KEVENT_FLAG_NEEDS_END_PROCESSING)) { | |
7700 | /* | |
7701 | * If we didn't through kqworkloop_end_processing(), | |
7702 | * we need to do it here. | |
7703 | * | |
7704 | * kqueue_scan will call kqworkloop_end_processing(), | |
7705 | * so we only need to do it if we didn't scan. | |
7706 | */ | |
7707 | kqlock(kqu); | |
7708 | kqworkloop_end_processing(kqu.kqwl, 0, 0); | |
7709 | kqunlock(kqu); | |
7710 | } | |
7711 | ||
7712 | *retval = noutputs; | |
7713 | out: | |
7714 | return kevent_cleanup(kqu.kq, flags, error, kectx); | |
7715 | } | |
7716 | ||
7717 | #pragma mark modern syscalls: kevent_qos, kevent_id, kevent_workq_internal | |
7718 | ||
7719 | /*! | |
7720 | * @function kevent_modern_internal | |
7721 | * | |
7722 | * @brief | |
7723 | * The backend of the kevent_id and kevent_workq_internal entry points. | |
7724 | * | |
7725 | * @discussion | |
7726 | * Needs to be inline due to the number of arguments. | |
7727 | */ | |
7728 | OS_NOINLINE | |
7729 | static int | |
7730 | kevent_modern_internal(kqueue_t kqu, | |
7731 | user_addr_t changelist, int nchanges, | |
7732 | user_addr_t ueventlist, int nevents, | |
7733 | int flags, kevent_ctx_t kectx, int32_t *retval) | |
7734 | { | |
7735 | return kevent_internal(kqu.kq, changelist, nchanges, | |
7736 | ueventlist, nevents, flags, kectx, retval, /*legacy*/ false); | |
7737 | } | |
7738 | ||
7739 | /*! | |
7740 | * @function kevent_id | |
7741 | * | |
7742 | * @brief | |
7743 | * The kevent_id() syscall. | |
7744 | */ | |
7745 | int | |
7746 | kevent_id(struct proc *p, struct kevent_id_args *uap, int32_t *retval) | |
7747 | { | |
7748 | int error, flags = uap->flags & KEVENT_FLAG_USER; | |
7749 | uthread_t uth = current_uthread(); | |
7750 | workq_threadreq_t kqr = uth->uu_kqr_bound; | |
7751 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; | |
7752 | kqueue_t kqu; | |
7753 | ||
7754 | flags = kevent_adjust_flags_for_proc(p, flags); | |
7755 | flags |= KEVENT_FLAG_DYNAMIC_KQUEUE; | |
7756 | ||
7757 | if (__improbable((flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_WORKLOOP)) != | |
7758 | KEVENT_FLAG_WORKLOOP)) { | |
7759 | return EINVAL; | |
7760 | } | |
7761 | ||
7762 | error = kevent_get_data_size(flags, uap->data_available, uap->data_out, kectx); | |
7763 | if (__improbable(error)) { | |
7764 | return error; | |
7765 | } | |
7766 | ||
7767 | kectx->kec_deadline = 0; | |
7768 | kectx->kec_fp = NULL; | |
7769 | kectx->kec_fd = -1; | |
7770 | /* the kec_process_* fields are filled if kqueue_scann is called only */ | |
7771 | ||
7772 | /* | |
7773 | * Get the kq we are going to be working on | |
7774 | * As a fastpath, look at the currently bound workloop. | |
7775 | */ | |
7776 | kqu.kqwl = kqr ? kqr_kqworkloop(kqr) : NULL; | |
7777 | if (kqu.kqwl && kqu.kqwl->kqwl_dynamicid == uap->id) { | |
7778 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)) { | |
7779 | return EEXIST; | |
7780 | } | |
7781 | kqworkloop_retain(kqu.kqwl); | |
7782 | } else if (__improbable(kevent_args_requesting_events(flags, uap->nevents))) { | |
7783 | return EXDEV; | |
7784 | } else { | |
7785 | error = kqworkloop_get_or_create(p, uap->id, NULL, flags, &kqu.kqwl); | |
7786 | if (__improbable(error)) { | |
7787 | return error; | |
7788 | } | |
7789 | } | |
7790 | ||
7791 | return kevent_modern_internal(kqu, uap->changelist, uap->nchanges, | |
7792 | uap->eventlist, uap->nevents, flags, kectx, retval); | |
7793 | } | |
7794 | ||
7795 | /**! | |
7796 | * @function kevent_workq_internal | |
7797 | * | |
7798 | * @discussion | |
7799 | * This function is exported for the sake of the workqueue subsystem. | |
7800 | * | |
7801 | * It is called in two ways: | |
7802 | * - when a thread is about to go to userspace to ask for pending event | |
7803 | * - when a thread is returning from userspace with events back | |
7804 | * | |
7805 | * the workqueue subsystem will only use the following flags: | |
7806 | * - KEVENT_FLAG_STACK_DATA (always) | |
7807 | * - KEVENT_FLAG_IMMEDIATE (always) | |
7808 | * - KEVENT_FLAG_PARKING (depending on whether it is going to or returning from | |
7809 | * userspace). | |
7810 | * | |
7811 | * It implicitly acts on the bound kqueue, and for the case of workloops | |
7812 | * will copyout the kqueue ID before anything else. | |
7813 | * | |
7814 | * | |
7815 | * Pthread will have setup the various arguments to fit this stack layout: | |
7816 | * | |
7817 | * +-------....----+--------------+-----------+--------------------+ | |
7818 | * | user stack | data avail | nevents | pthread_self() | | |
7819 | * +-------....----+--------------+-----------+--------------------+ | |
7820 | * ^ ^ | |
7821 | * data_out eventlist | |
7822 | * | |
7823 | * When a workloop is used, the workloop ID is copied out right before | |
7824 | * the eventlist and is taken from the data buffer. | |
7825 | * | |
7826 | * @warning | |
7827 | * This function is carefuly tailored to not make any call except the final tail | |
7828 | * call into kevent_modern_internal. (LTO inlines current_uthread()). | |
7829 | * | |
7830 | * This function is performance sensitive due to the workq subsystem. | |
7831 | */ | |
7832 | int | |
7833 | kevent_workq_internal(struct proc *p, | |
7834 | user_addr_t changelist, int nchanges, | |
7835 | user_addr_t eventlist, int nevents, | |
7836 | user_addr_t data_out, user_size_t *data_available, | |
7837 | unsigned int flags, int32_t *retval) | |
7838 | { | |
7839 | uthread_t uth = current_uthread(); | |
7840 | workq_threadreq_t kqr = uth->uu_kqr_bound; | |
7841 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; | |
7842 | kqueue_t kqu; | |
7843 | ||
7844 | assert(flags == (KEVENT_FLAG_STACK_DATA | KEVENT_FLAG_IMMEDIATE) || | |
7845 | flags == (KEVENT_FLAG_STACK_DATA | KEVENT_FLAG_IMMEDIATE | KEVENT_FLAG_PARKING)); | |
7846 | ||
7847 | kectx->kec_data_out = data_out; | |
7848 | kectx->kec_data_avail = (uint64_t)data_available; | |
7849 | kectx->kec_data_size = *data_available; | |
7850 | kectx->kec_data_resid = *data_available; | |
7851 | kectx->kec_deadline = 0; | |
7852 | kectx->kec_fp = NULL; | |
7853 | kectx->kec_fd = -1; | |
7854 | /* the kec_process_* fields are filled if kqueue_scann is called only */ | |
7855 | ||
7856 | flags = kevent_adjust_flags_for_proc(p, flags); | |
7857 | ||
7858 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { | |
7859 | kqu.kqwl = __container_of(kqr, struct kqworkloop, kqwl_request); | |
7860 | kqworkloop_retain(kqu.kqwl); | |
7861 | ||
7862 | flags |= KEVENT_FLAG_WORKLOOP | KEVENT_FLAG_DYNAMIC_KQUEUE | | |
7863 | KEVENT_FLAG_KERNEL; | |
7864 | } else { | |
7865 | kqu.kqwq = p->p_fd->fd_wqkqueue; | |
7866 | ||
7867 | flags |= KEVENT_FLAG_WORKQ | KEVENT_FLAG_KERNEL; | |
7868 | } | |
7869 | ||
7870 | return kevent_modern_internal(kqu, changelist, nchanges, | |
7871 | eventlist, nevents, flags, kectx, retval); | |
7872 | } | |
7873 | ||
7874 | /*! | |
7875 | * @function kevent_qos | |
7876 | * | |
7877 | * @brief | |
7878 | * The kevent_qos() syscall. | |
7879 | */ | |
7880 | int | |
7881 | kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval) | |
7882 | { | |
7883 | uthread_t uth = current_uthread(); | |
7884 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; | |
7885 | int error, flags = uap->flags & KEVENT_FLAG_USER; | |
7886 | struct kqueue *kq; | |
7887 | ||
7888 | if (__improbable(flags & KEVENT_ID_FLAG_USER)) { | |
7889 | return EINVAL; | |
7890 | } | |
7891 | ||
7892 | flags = kevent_adjust_flags_for_proc(p, flags); | |
7893 | ||
7894 | error = kevent_get_data_size(flags, uap->data_available, uap->data_out, kectx); | |
7895 | if (__improbable(error)) { | |
7896 | return error; | |
7897 | } | |
7898 | ||
7899 | kectx->kec_deadline = 0; | |
7900 | kectx->kec_fp = NULL; | |
7901 | kectx->kec_fd = uap->fd; | |
7902 | /* the kec_process_* fields are filled if kqueue_scann is called only */ | |
7903 | ||
7904 | /* get the kq we are going to be working on */ | |
7905 | if (__probable(flags & KEVENT_FLAG_WORKQ)) { | |
7906 | error = kevent_get_kqwq(p, flags, uap->nevents, &kq); | |
7907 | } else { | |
7908 | error = kevent_get_kqfile(p, uap->fd, flags, &kectx->kec_fp, &kq); | |
7909 | } | |
7910 | if (__improbable(error)) { | |
7911 | return error; | |
7912 | } | |
7913 | ||
7914 | return kevent_modern_internal(kq, uap->changelist, uap->nchanges, | |
7915 | uap->eventlist, uap->nevents, flags, kectx, retval); | |
7916 | } | |
7917 | ||
7918 | #pragma mark legacy syscalls: kevent, kevent64 | |
7919 | ||
7920 | /*! | |
7921 | * @function kevent_legacy_get_deadline | |
7922 | * | |
7923 | * @brief | |
7924 | * Compute the deadline for the legacy kevent syscalls. | |
7925 | * | |
7926 | * @discussion | |
7927 | * This is not necessary if KEVENT_FLAG_IMMEDIATE is specified, | |
7928 | * as this takes precedence over the deadline. | |
7929 | * | |
7930 | * This function will fail if utimeout is USER_ADDR_NULL | |
7931 | * (the caller should check). | |
7932 | */ | |
7933 | static int | |
7934 | kevent_legacy_get_deadline(int flags, user_addr_t utimeout, uint64_t *deadline) | |
7935 | { | |
7936 | struct timespec ts; | |
7937 | ||
7938 | if (flags & KEVENT_FLAG_PROC64) { | |
7939 | struct user64_timespec ts64; | |
7940 | int error = copyin(utimeout, &ts64, sizeof(ts64)); | |
7941 | if (__improbable(error)) { | |
7942 | return error; | |
7943 | } | |
7944 | ts.tv_sec = ts64.tv_sec; | |
7945 | ts.tv_nsec = ts64.tv_nsec; | |
7946 | } else { | |
7947 | struct user32_timespec ts32; | |
7948 | int error = copyin(utimeout, &ts32, sizeof(ts32)); | |
7949 | if (__improbable(error)) { | |
7950 | return error; | |
7951 | } | |
7952 | ts.tv_sec = ts32.tv_sec; | |
7953 | ts.tv_nsec = ts32.tv_nsec; | |
7954 | } | |
7955 | if (!timespec_is_valid(&ts)) { | |
7956 | return EINVAL; | |
7957 | } | |
7958 | ||
7959 | clock_absolutetime_interval_to_deadline(tstoabstime(&ts), deadline); | |
7960 | return 0; | |
7961 | } | |
7962 | ||
7963 | /*! | |
7964 | * @function kevent_legacy_internal | |
7965 | * | |
7966 | * @brief | |
7967 | * The core implementation for kevent and kevent64 | |
7968 | */ | |
7969 | OS_NOINLINE | |
7970 | static int | |
7971 | kevent_legacy_internal(struct proc *p, struct kevent64_args *uap, | |
7972 | int32_t *retval, int flags) | |
7973 | { | |
7974 | uthread_t uth = current_uthread(); | |
7975 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; | |
7976 | struct kqueue *kq; | |
7977 | int error; | |
7978 | ||
7979 | if (__improbable(uap->flags & KEVENT_ID_FLAG_USER)) { | |
7980 | return EINVAL; | |
7981 | } | |
7982 | ||
7983 | flags = kevent_adjust_flags_for_proc(p, flags); | |
7984 | ||
7985 | kectx->kec_data_out = 0; | |
7986 | kectx->kec_data_avail = 0; | |
7987 | kectx->kec_data_size = 0; | |
7988 | kectx->kec_data_resid = 0; | |
7989 | kectx->kec_deadline = 0; | |
7990 | kectx->kec_fp = NULL; | |
7991 | kectx->kec_fd = uap->fd; | |
7992 | /* the kec_process_* fields are filled if kqueue_scann is called only */ | |
7993 | ||
7994 | /* convert timeout to absolute - if we have one (and not immediate) */ | |
7995 | if (__improbable(uap->timeout && !(flags & KEVENT_FLAG_IMMEDIATE))) { | |
7996 | error = kevent_legacy_get_deadline(flags, uap->timeout, | |
7997 | &kectx->kec_deadline); | |
7998 | if (__improbable(error)) { | |
7999 | return error; | |
8000 | } | |
8001 | } | |
8002 | ||
8003 | /* get the kq we are going to be working on */ | |
8004 | if (flags & KEVENT_FLAG_WORKQ) { | |
8005 | error = kevent_get_kqwq(p, flags, uap->nevents, &kq); | |
8006 | } else { | |
8007 | error = kevent_get_kqfile(p, uap->fd, flags, &kectx->kec_fp, &kq); | |
8008 | } | |
8009 | if (__improbable(error)) { | |
8010 | return error; | |
8011 | } | |
8012 | ||
8013 | return kevent_internal(kq, uap->changelist, uap->nchanges, | |
8014 | uap->eventlist, uap->nevents, flags, kectx, retval, | |
8015 | /*legacy*/ true); | |
8016 | } | |
8017 | ||
8018 | /*! | |
8019 | * @function kevent | |
8020 | * | |
8021 | * @brief | |
8022 | * The legacy kevent() syscall. | |
8023 | */ | |
8024 | int | |
8025 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) | |
8026 | { | |
8027 | struct kevent64_args args = { | |
8028 | .fd = uap->fd, | |
8029 | .changelist = uap->changelist, | |
8030 | .nchanges = uap->nchanges, | |
8031 | .eventlist = uap->eventlist, | |
8032 | .nevents = uap->nevents, | |
8033 | .timeout = uap->timeout, | |
8034 | }; | |
8035 | ||
8036 | return kevent_legacy_internal(p, &args, retval, KEVENT_FLAG_LEGACY32); | |
8037 | } | |
8038 | ||
8039 | /*! | |
8040 | * @function kevent64 | |
8041 | * | |
8042 | * @brief | |
8043 | * The legacy kevent64() syscall. | |
8044 | */ | |
8045 | int | |
8046 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) | |
8047 | { | |
8048 | int flags = (uap->flags & KEVENT_FLAG_USER) | KEVENT_FLAG_LEGACY64; | |
8049 | return kevent_legacy_internal(p, uap, retval, flags); | |
8050 | } | |
8051 | ||
8052 | #pragma mark - socket interface | |
8053 | ||
8054 | #if SOCKETS | |
8055 | #include <sys/param.h> | |
8056 | #include <sys/socket.h> | |
8057 | #include <sys/protosw.h> | |
8058 | #include <sys/domain.h> | |
8059 | #include <sys/mbuf.h> | |
8060 | #include <sys/kern_event.h> | |
8061 | #include <sys/malloc.h> | |
8062 | #include <sys/sys_domain.h> | |
8063 | #include <sys/syslog.h> | |
8064 | ||
8065 | #ifndef ROUNDUP64 | |
8066 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) | |
8067 | #endif | |
8068 | ||
8069 | #ifndef ADVANCE64 | |
8070 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) | |
8071 | #endif | |
8072 | ||
8073 | static lck_grp_attr_t *kev_lck_grp_attr; | |
8074 | static lck_attr_t *kev_lck_attr; | |
8075 | static lck_grp_t *kev_lck_grp; | |
8076 | static decl_lck_rw_data(, kev_lck_data); | |
8077 | static lck_rw_t *kev_rwlock = &kev_lck_data; | |
8078 | ||
8079 | static int kev_attach(struct socket *so, int proto, struct proc *p); | |
8080 | static int kev_detach(struct socket *so); | |
8081 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, | |
8082 | struct ifnet *ifp, struct proc *p); | |
8083 | static lck_mtx_t * event_getlock(struct socket *, int); | |
8084 | static int event_lock(struct socket *, int, void *); | |
8085 | static int event_unlock(struct socket *, int, void *); | |
8086 | ||
8087 | static int event_sofreelastref(struct socket *); | |
8088 | static void kev_delete(struct kern_event_pcb *); | |
8089 | ||
8090 | static struct pr_usrreqs event_usrreqs = { | |
8091 | .pru_attach = kev_attach, | |
8092 | .pru_control = kev_control, | |
8093 | .pru_detach = kev_detach, | |
8094 | .pru_soreceive = soreceive, | |
8095 | }; | |
8096 | ||
8097 | static struct protosw eventsw[] = { | |
8098 | { | |
8099 | .pr_type = SOCK_RAW, | |
8100 | .pr_protocol = SYSPROTO_EVENT, | |
8101 | .pr_flags = PR_ATOMIC, | |
8102 | .pr_usrreqs = &event_usrreqs, | |
8103 | .pr_lock = event_lock, | |
8104 | .pr_unlock = event_unlock, | |
8105 | .pr_getlock = event_getlock, | |
8106 | } | |
8107 | }; | |
8108 | ||
8109 | __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; | |
8110 | __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; | |
8111 | ||
8112 | SYSCTL_NODE(_net_systm, OID_AUTO, kevt, | |
8113 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Kernel event family"); | |
8114 | ||
8115 | struct kevtstat kevtstat; | |
8116 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, | |
8117 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
8118 | kevt_getstat, "S,kevtstat", ""); | |
8119 | ||
8120 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, | |
8121 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
8122 | kevt_pcblist, "S,xkevtpcb", ""); | |
8123 | ||
8124 | static lck_mtx_t * | |
8125 | event_getlock(struct socket *so, int flags) | |
8126 | { | |
8127 | #pragma unused(flags) | |
8128 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; | |
8129 | ||
8130 | if (so->so_pcb != NULL) { | |
8131 | if (so->so_usecount < 0) { | |
8132 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
8133 | so, so->so_usecount, solockhistory_nr(so)); | |
8134 | } | |
8135 | /* NOTREACHED */ | |
8136 | } else { | |
8137 | panic("%s: so=%p NULL NO so_pcb %s\n", __func__, | |
8138 | so, solockhistory_nr(so)); | |
8139 | /* NOTREACHED */ | |
8140 | } | |
8141 | return &ev_pcb->evp_mtx; | |
8142 | } | |
8143 | ||
8144 | static int | |
8145 | event_lock(struct socket *so, int refcount, void *lr) | |
8146 | { | |
8147 | void *lr_saved; | |
8148 | ||
8149 | if (lr == NULL) { | |
8150 | lr_saved = __builtin_return_address(0); | |
8151 | } else { | |
8152 | lr_saved = lr; | |
8153 | } | |
8154 | ||
8155 | if (so->so_pcb != NULL) { | |
8156 | lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
8157 | } else { | |
8158 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, | |
8159 | so, lr_saved, solockhistory_nr(so)); | |
8160 | /* NOTREACHED */ | |
8161 | } | |
8162 | ||
8163 | if (so->so_usecount < 0) { | |
8164 | panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__, | |
8165 | so, so->so_pcb, lr_saved, so->so_usecount, | |
8166 | solockhistory_nr(so)); | |
8167 | /* NOTREACHED */ | |
8168 | } | |
8169 | ||
8170 | if (refcount) { | |
8171 | so->so_usecount++; | |
8172 | } | |
8173 | ||
8174 | so->lock_lr[so->next_lock_lr] = lr_saved; | |
8175 | so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX; | |
8176 | return 0; | |
8177 | } | |
8178 | ||
8179 | static int | |
8180 | event_unlock(struct socket *so, int refcount, void *lr) | |
8181 | { | |
8182 | void *lr_saved; | |
8183 | lck_mtx_t *mutex_held; | |
8184 | ||
8185 | if (lr == NULL) { | |
8186 | lr_saved = __builtin_return_address(0); | |
8187 | } else { | |
8188 | lr_saved = lr; | |
8189 | } | |
8190 | ||
8191 | if (refcount) { | |
8192 | so->so_usecount--; | |
8193 | } | |
8194 | if (so->so_usecount < 0) { | |
8195 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
8196 | so, so->so_usecount, solockhistory_nr(so)); | |
8197 | /* NOTREACHED */ | |
8198 | } | |
8199 | if (so->so_pcb == NULL) { | |
8200 | panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__, | |
8201 | so, so->so_usecount, (void *)lr_saved, | |
8202 | solockhistory_nr(so)); | |
8203 | /* NOTREACHED */ | |
8204 | } | |
8205 | mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
8206 | ||
8207 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); | |
8208 | so->unlock_lr[so->next_unlock_lr] = lr_saved; | |
8209 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; | |
8210 | ||
8211 | if (so->so_usecount == 0) { | |
8212 | VERIFY(so->so_flags & SOF_PCBCLEARING); | |
8213 | event_sofreelastref(so); | |
8214 | } else { | |
8215 | lck_mtx_unlock(mutex_held); | |
8216 | } | |
8217 | ||
8218 | return 0; | |
8219 | } | |
8220 | ||
8221 | static int | |
8222 | event_sofreelastref(struct socket *so) | |
8223 | { | |
8224 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; | |
8225 | ||
8226 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); | |
8227 | ||
8228 | so->so_pcb = NULL; | |
8229 | ||
8230 | /* | |
8231 | * Disable upcall in the event another thread is in kev_post_msg() | |
8232 | * appending record to the receive socket buffer, since sbwakeup() | |
8233 | * may release the socket lock otherwise. | |
8234 | */ | |
8235 | so->so_rcv.sb_flags &= ~SB_UPCALL; | |
8236 | so->so_snd.sb_flags &= ~SB_UPCALL; | |
8237 | so->so_event = sonullevent; | |
8238 | lck_mtx_unlock(&(ev_pcb->evp_mtx)); | |
8239 | ||
8240 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); | |
8241 | lck_rw_lock_exclusive(kev_rwlock); | |
8242 | LIST_REMOVE(ev_pcb, evp_link); | |
8243 | kevtstat.kes_pcbcount--; | |
8244 | kevtstat.kes_gencnt++; | |
8245 | lck_rw_done(kev_rwlock); | |
8246 | kev_delete(ev_pcb); | |
8247 | ||
8248 | sofreelastref(so, 1); | |
8249 | return 0; | |
8250 | } | |
8251 | ||
8252 | static int event_proto_count = (sizeof(eventsw) / sizeof(struct protosw)); | |
8253 | ||
8254 | static | |
8255 | struct kern_event_head kern_event_head; | |
8256 | ||
8257 | static u_int32_t static_event_id = 0; | |
8258 | ||
8259 | #define EVPCB_ZONE_MAX 65536 | |
8260 | #define EVPCB_ZONE_NAME "kerneventpcb" | |
8261 | static struct zone *ev_pcb_zone; | |
8262 | ||
8263 | /* | |
8264 | * Install the protosw's for the NKE manager. Invoked at extension load time | |
8265 | */ | |
8266 | void | |
8267 | kern_event_init(struct domain *dp) | |
8268 | { | |
8269 | struct protosw *pr; | |
8270 | int i; | |
8271 | ||
8272 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
8273 | VERIFY(dp == systemdomain); | |
8274 | ||
8275 | kev_lck_grp_attr = lck_grp_attr_alloc_init(); | |
8276 | if (kev_lck_grp_attr == NULL) { | |
8277 | panic("%s: lck_grp_attr_alloc_init failed\n", __func__); | |
8278 | /* NOTREACHED */ | |
8279 | } | |
8280 | ||
8281 | kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol", | |
8282 | kev_lck_grp_attr); | |
8283 | if (kev_lck_grp == NULL) { | |
8284 | panic("%s: lck_grp_alloc_init failed\n", __func__); | |
8285 | /* NOTREACHED */ | |
8286 | } | |
8287 | ||
8288 | kev_lck_attr = lck_attr_alloc_init(); | |
8289 | if (kev_lck_attr == NULL) { | |
8290 | panic("%s: lck_attr_alloc_init failed\n", __func__); | |
8291 | /* NOTREACHED */ | |
8292 | } | |
8293 | ||
8294 | lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr); | |
8295 | if (kev_rwlock == NULL) { | |
8296 | panic("%s: lck_mtx_alloc_init failed\n", __func__); | |
8297 | /* NOTREACHED */ | |
8298 | } | |
8299 | ||
8300 | for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) { | |
8301 | net_add_proto(pr, dp, 1); | |
8302 | } | |
8303 | ||
8304 | ev_pcb_zone = zinit(sizeof(struct kern_event_pcb), | |
8305 | EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME); | |
8306 | if (ev_pcb_zone == NULL) { | |
8307 | panic("%s: failed allocating ev_pcb_zone", __func__); | |
8308 | /* NOTREACHED */ | |
8309 | } | |
8310 | zone_change(ev_pcb_zone, Z_EXPAND, TRUE); | |
8311 | zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE); | |
8312 | } | |
8313 | ||
8314 | static int | |
8315 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) | |
8316 | { | |
8317 | int error = 0; | |
8318 | struct kern_event_pcb *ev_pcb; | |
8319 | ||
8320 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); | |
8321 | if (error != 0) { | |
8322 | return error; | |
8323 | } | |
8324 | ||
8325 | if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) { | |
8326 | return ENOBUFS; | |
8327 | } | |
8328 | bzero(ev_pcb, sizeof(struct kern_event_pcb)); | |
8329 | lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr); | |
8330 | ||
8331 | ev_pcb->evp_socket = so; | |
8332 | ev_pcb->evp_vendor_code_filter = 0xffffffff; | |
8333 | ||
8334 | so->so_pcb = (caddr_t) ev_pcb; | |
8335 | lck_rw_lock_exclusive(kev_rwlock); | |
8336 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); | |
8337 | kevtstat.kes_pcbcount++; | |
8338 | kevtstat.kes_gencnt++; | |
8339 | lck_rw_done(kev_rwlock); | |
8340 | ||
8341 | return error; | |
8342 | } | |
8343 | ||
8344 | static void | |
8345 | kev_delete(struct kern_event_pcb *ev_pcb) | |
8346 | { | |
8347 | VERIFY(ev_pcb != NULL); | |
8348 | lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp); | |
8349 | zfree(ev_pcb_zone, ev_pcb); | |
8350 | } | |
8351 | ||
8352 | static int | |
8353 | kev_detach(struct socket *so) | |
8354 | { | |
8355 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
8356 | ||
8357 | if (ev_pcb != NULL) { | |
8358 | soisdisconnected(so); | |
8359 | so->so_flags |= SOF_PCBCLEARING; | |
8360 | } | |
8361 | ||
8362 | return 0; | |
8363 | } | |
8364 | ||
8365 | /* | |
8366 | * For now, kev_vendor_code and mbuf_tags use the same | |
8367 | * mechanism. | |
8368 | */ | |
8369 | errno_t | |
8370 | kev_vendor_code_find( | |
8371 | const char *string, | |
8372 | u_int32_t *out_vendor_code) | |
8373 | { | |
8374 | if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { | |
8375 | return EINVAL; | |
8376 | } | |
8377 | return net_str_id_find_internal(string, out_vendor_code, | |
8378 | NSI_VENDOR_CODE, 1); | |
8379 | } | |
8380 | ||
8381 | errno_t | |
8382 | kev_msg_post(struct kev_msg *event_msg) | |
8383 | { | |
8384 | mbuf_tag_id_t min_vendor, max_vendor; | |
8385 | ||
8386 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); | |
8387 | ||
8388 | if (event_msg == NULL) { | |
8389 | return EINVAL; | |
8390 | } | |
8391 | ||
8392 | /* | |
8393 | * Limit third parties to posting events for registered vendor codes | |
8394 | * only | |
8395 | */ | |
8396 | if (event_msg->vendor_code < min_vendor || | |
8397 | event_msg->vendor_code > max_vendor) { | |
8398 | os_atomic_inc(&kevtstat.kes_badvendor, relaxed); | |
8399 | return EINVAL; | |
8400 | } | |
8401 | return kev_post_msg(event_msg); | |
8402 | } | |
8403 | ||
8404 | int | |
8405 | kev_post_msg(struct kev_msg *event_msg) | |
8406 | { | |
8407 | struct mbuf *m, *m2; | |
8408 | struct kern_event_pcb *ev_pcb; | |
8409 | struct kern_event_msg *ev; | |
8410 | char *tmp; | |
8411 | u_int32_t total_size; | |
8412 | int i; | |
8413 | ||
8414 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ | |
8415 | total_size = KEV_MSG_HEADER_SIZE; | |
8416 | ||
8417 | for (i = 0; i < 5; i++) { | |
8418 | if (event_msg->dv[i].data_length == 0) { | |
8419 | break; | |
8420 | } | |
8421 | total_size += event_msg->dv[i].data_length; | |
8422 | } | |
8423 | ||
8424 | if (total_size > MLEN) { | |
8425 | os_atomic_inc(&kevtstat.kes_toobig, relaxed); | |
8426 | return EMSGSIZE; | |
8427 | } | |
8428 | ||
8429 | m = m_get(M_WAIT, MT_DATA); | |
8430 | if (m == 0) { | |
8431 | os_atomic_inc(&kevtstat.kes_nomem, relaxed); | |
8432 | return ENOMEM; | |
8433 | } | |
8434 | ev = mtod(m, struct kern_event_msg *); | |
8435 | total_size = KEV_MSG_HEADER_SIZE; | |
8436 | ||
8437 | tmp = (char *) &ev->event_data[0]; | |
8438 | for (i = 0; i < 5; i++) { | |
8439 | if (event_msg->dv[i].data_length == 0) { | |
8440 | break; | |
8441 | } | |
8442 | ||
8443 | total_size += event_msg->dv[i].data_length; | |
8444 | bcopy(event_msg->dv[i].data_ptr, tmp, | |
8445 | event_msg->dv[i].data_length); | |
8446 | tmp += event_msg->dv[i].data_length; | |
8447 | } | |
8448 | ||
8449 | ev->id = ++static_event_id; | |
8450 | ev->total_size = total_size; | |
8451 | ev->vendor_code = event_msg->vendor_code; | |
8452 | ev->kev_class = event_msg->kev_class; | |
8453 | ev->kev_subclass = event_msg->kev_subclass; | |
8454 | ev->event_code = event_msg->event_code; | |
8455 | ||
8456 | m->m_len = total_size; | |
8457 | lck_rw_lock_shared(kev_rwlock); | |
8458 | for (ev_pcb = LIST_FIRST(&kern_event_head); | |
8459 | ev_pcb; | |
8460 | ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
8461 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
8462 | if (ev_pcb->evp_socket->so_pcb == NULL) { | |
8463 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8464 | continue; | |
8465 | } | |
8466 | if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { | |
8467 | if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { | |
8468 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8469 | continue; | |
8470 | } | |
8471 | ||
8472 | if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { | |
8473 | if (ev_pcb->evp_class_filter != ev->kev_class) { | |
8474 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8475 | continue; | |
8476 | } | |
8477 | ||
8478 | if ((ev_pcb->evp_subclass_filter != | |
8479 | KEV_ANY_SUBCLASS) && | |
8480 | (ev_pcb->evp_subclass_filter != | |
8481 | ev->kev_subclass)) { | |
8482 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8483 | continue; | |
8484 | } | |
8485 | } | |
8486 | } | |
8487 | ||
8488 | m2 = m_copym(m, 0, m->m_len, M_WAIT); | |
8489 | if (m2 == 0) { | |
8490 | os_atomic_inc(&kevtstat.kes_nomem, relaxed); | |
8491 | m_free(m); | |
8492 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8493 | lck_rw_done(kev_rwlock); | |
8494 | return ENOMEM; | |
8495 | } | |
8496 | if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) { | |
8497 | /* | |
8498 | * We use "m" for the socket stats as it would be | |
8499 | * unsafe to use "m2" | |
8500 | */ | |
8501 | so_inc_recv_data_stat(ev_pcb->evp_socket, | |
8502 | 1, m->m_len, MBUF_TC_BE); | |
8503 | ||
8504 | sorwakeup(ev_pcb->evp_socket); | |
8505 | os_atomic_inc(&kevtstat.kes_posted, relaxed); | |
8506 | } else { | |
8507 | os_atomic_inc(&kevtstat.kes_fullsock, relaxed); | |
8508 | } | |
8509 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8510 | } | |
8511 | m_free(m); | |
8512 | lck_rw_done(kev_rwlock); | |
8513 | ||
8514 | return 0; | |
8515 | } | |
8516 | ||
8517 | static int | |
8518 | kev_control(struct socket *so, | |
8519 | u_long cmd, | |
8520 | caddr_t data, | |
8521 | __unused struct ifnet *ifp, | |
8522 | __unused struct proc *p) | |
8523 | { | |
8524 | struct kev_request *kev_req = (struct kev_request *) data; | |
8525 | struct kern_event_pcb *ev_pcb; | |
8526 | struct kev_vendor_code *kev_vendor; | |
8527 | u_int32_t *id_value = (u_int32_t *) data; | |
8528 | ||
8529 | switch (cmd) { | |
8530 | case SIOCGKEVID: | |
8531 | *id_value = static_event_id; | |
8532 | break; | |
8533 | case SIOCSKEVFILT: | |
8534 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
8535 | ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; | |
8536 | ev_pcb->evp_class_filter = kev_req->kev_class; | |
8537 | ev_pcb->evp_subclass_filter = kev_req->kev_subclass; | |
8538 | break; | |
8539 | case SIOCGKEVFILT: | |
8540 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
8541 | kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; | |
8542 | kev_req->kev_class = ev_pcb->evp_class_filter; | |
8543 | kev_req->kev_subclass = ev_pcb->evp_subclass_filter; | |
8544 | break; | |
8545 | case SIOCGKEVVENDOR: | |
8546 | kev_vendor = (struct kev_vendor_code *)data; | |
8547 | /* Make sure string is NULL terminated */ | |
8548 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN - 1] = 0; | |
8549 | return net_str_id_find_internal(kev_vendor->vendor_string, | |
8550 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0); | |
8551 | default: | |
8552 | return ENOTSUP; | |
8553 | } | |
8554 | ||
8555 | return 0; | |
8556 | } | |
8557 | ||
8558 | int | |
8559 | kevt_getstat SYSCTL_HANDLER_ARGS | |
8560 | { | |
8561 | #pragma unused(oidp, arg1, arg2) | |
8562 | int error = 0; | |
8563 | ||
8564 | lck_rw_lock_shared(kev_rwlock); | |
8565 | ||
8566 | if (req->newptr != USER_ADDR_NULL) { | |
8567 | error = EPERM; | |
8568 | goto done; | |
8569 | } | |
8570 | if (req->oldptr == USER_ADDR_NULL) { | |
8571 | req->oldidx = sizeof(struct kevtstat); | |
8572 | goto done; | |
8573 | } | |
8574 | ||
8575 | error = SYSCTL_OUT(req, &kevtstat, | |
8576 | MIN(sizeof(struct kevtstat), req->oldlen)); | |
8577 | done: | |
8578 | lck_rw_done(kev_rwlock); | |
8579 | ||
8580 | return error; | |
8581 | } | |
8582 | ||
8583 | __private_extern__ int | |
8584 | kevt_pcblist SYSCTL_HANDLER_ARGS | |
8585 | { | |
8586 | #pragma unused(oidp, arg1, arg2) | |
8587 | int error = 0; | |
8588 | int n, i; | |
8589 | struct xsystmgen xsg; | |
8590 | void *buf = NULL; | |
8591 | size_t item_size = ROUNDUP64(sizeof(struct xkevtpcb)) + | |
8592 | ROUNDUP64(sizeof(struct xsocket_n)) + | |
8593 | 2 * ROUNDUP64(sizeof(struct xsockbuf_n)) + | |
8594 | ROUNDUP64(sizeof(struct xsockstat_n)); | |
8595 | struct kern_event_pcb *ev_pcb; | |
8596 | ||
8597 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
8598 | if (buf == NULL) { | |
8599 | return ENOMEM; | |
8600 | } | |
8601 | ||
8602 | lck_rw_lock_shared(kev_rwlock); | |
8603 | ||
8604 | n = kevtstat.kes_pcbcount; | |
8605 | ||
8606 | if (req->oldptr == USER_ADDR_NULL) { | |
8607 | req->oldidx = (n + n / 8) * item_size; | |
8608 | goto done; | |
8609 | } | |
8610 | if (req->newptr != USER_ADDR_NULL) { | |
8611 | error = EPERM; | |
8612 | goto done; | |
8613 | } | |
8614 | bzero(&xsg, sizeof(xsg)); | |
8615 | xsg.xg_len = sizeof(xsg); | |
8616 | xsg.xg_count = n; | |
8617 | xsg.xg_gen = kevtstat.kes_gencnt; | |
8618 | xsg.xg_sogen = so_gencnt; | |
8619 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
8620 | if (error) { | |
8621 | goto done; | |
8622 | } | |
8623 | /* | |
8624 | * We are done if there is no pcb | |
8625 | */ | |
8626 | if (n == 0) { | |
8627 | goto done; | |
8628 | } | |
8629 | ||
8630 | i = 0; | |
8631 | for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); | |
8632 | i < n && ev_pcb != NULL; | |
8633 | i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
8634 | struct xkevtpcb *xk = (struct xkevtpcb *)buf; | |
8635 | struct xsocket_n *xso = (struct xsocket_n *) | |
8636 | ADVANCE64(xk, sizeof(*xk)); | |
8637 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) | |
8638 | ADVANCE64(xso, sizeof(*xso)); | |
8639 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) | |
8640 | ADVANCE64(xsbrcv, sizeof(*xsbrcv)); | |
8641 | struct xsockstat_n *xsostats = (struct xsockstat_n *) | |
8642 | ADVANCE64(xsbsnd, sizeof(*xsbsnd)); | |
8643 | ||
8644 | bzero(buf, item_size); | |
8645 | ||
8646 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
8647 | ||
8648 | xk->kep_len = sizeof(struct xkevtpcb); | |
8649 | xk->kep_kind = XSO_EVT; | |
8650 | xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb); | |
8651 | xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; | |
8652 | xk->kep_class_filter = ev_pcb->evp_class_filter; | |
8653 | xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; | |
8654 | ||
8655 | sotoxsocket_n(ev_pcb->evp_socket, xso); | |
8656 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
8657 | &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); | |
8658 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
8659 | &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); | |
8660 | sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); | |
8661 | ||
8662 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8663 | ||
8664 | error = SYSCTL_OUT(req, buf, item_size); | |
8665 | } | |
8666 | ||
8667 | if (error == 0) { | |
8668 | /* | |
8669 | * Give the user an updated idea of our state. | |
8670 | * If the generation differs from what we told | |
8671 | * her before, she knows that something happened | |
8672 | * while we were processing this request, and it | |
8673 | * might be necessary to retry. | |
8674 | */ | |
8675 | bzero(&xsg, sizeof(xsg)); | |
8676 | xsg.xg_len = sizeof(xsg); | |
8677 | xsg.xg_count = n; | |
8678 | xsg.xg_gen = kevtstat.kes_gencnt; | |
8679 | xsg.xg_sogen = so_gencnt; | |
8680 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
8681 | if (error) { | |
8682 | goto done; | |
8683 | } | |
8684 | } | |
8685 | ||
8686 | done: | |
8687 | lck_rw_done(kev_rwlock); | |
8688 | ||
8689 | return error; | |
8690 | } | |
8691 | ||
8692 | #endif /* SOCKETS */ | |
8693 | ||
8694 | ||
8695 | int | |
8696 | fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) | |
8697 | { | |
8698 | struct vinfo_stat * st; | |
8699 | ||
8700 | st = &kinfo->kq_stat; | |
8701 | ||
8702 | st->vst_size = kq->kq_count; | |
8703 | if (kq->kq_state & KQ_KEV_QOS) { | |
8704 | st->vst_blksize = sizeof(struct kevent_qos_s); | |
8705 | } else if (kq->kq_state & KQ_KEV64) { | |
8706 | st->vst_blksize = sizeof(struct kevent64_s); | |
8707 | } else { | |
8708 | st->vst_blksize = sizeof(struct kevent); | |
8709 | } | |
8710 | st->vst_mode = S_IFIFO; | |
8711 | st->vst_ino = (kq->kq_state & KQ_DYNAMIC) ? | |
8712 | ((struct kqworkloop *)kq)->kqwl_dynamicid : 0; | |
8713 | ||
8714 | /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */ | |
8715 | #define PROC_KQUEUE_MASK (KQ_SEL|KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS|KQ_WORKQ|KQ_WORKLOOP) | |
8716 | kinfo->kq_state = kq->kq_state & PROC_KQUEUE_MASK; | |
8717 | ||
8718 | return 0; | |
8719 | } | |
8720 | ||
8721 | static int | |
8722 | fill_kqueue_dyninfo(struct kqworkloop *kqwl, struct kqueue_dyninfo *kqdi) | |
8723 | { | |
8724 | workq_threadreq_t kqr = &kqwl->kqwl_request; | |
8725 | workq_threadreq_param_t trp = {}; | |
8726 | int err; | |
8727 | ||
8728 | if ((kqwl->kqwl_state & KQ_WORKLOOP) == 0) { | |
8729 | return EINVAL; | |
8730 | } | |
8731 | ||
8732 | if ((err = fill_kqueueinfo(&kqwl->kqwl_kqueue, &kqdi->kqdi_info))) { | |
8733 | return err; | |
8734 | } | |
8735 | ||
8736 | kqlock(kqwl); | |
8737 | ||
8738 | kqdi->kqdi_servicer = thread_tid(kqr_thread(kqr)); | |
8739 | kqdi->kqdi_owner = thread_tid(kqwl->kqwl_owner); | |
8740 | kqdi->kqdi_request_state = kqr->tr_state; | |
8741 | kqdi->kqdi_async_qos = kqr->tr_kq_qos_index; | |
8742 | kqdi->kqdi_events_qos = kqr->tr_kq_override_index; | |
8743 | kqdi->kqdi_sync_waiters = 0; | |
8744 | kqdi->kqdi_sync_waiter_qos = 0; | |
8745 | ||
8746 | trp.trp_value = kqwl->kqwl_params; | |
8747 | if (trp.trp_flags & TRP_PRIORITY) { | |
8748 | kqdi->kqdi_pri = trp.trp_pri; | |
8749 | } else { | |
8750 | kqdi->kqdi_pri = 0; | |
8751 | } | |
8752 | ||
8753 | if (trp.trp_flags & TRP_POLICY) { | |
8754 | kqdi->kqdi_pol = trp.trp_pol; | |
8755 | } else { | |
8756 | kqdi->kqdi_pol = 0; | |
8757 | } | |
8758 | ||
8759 | if (trp.trp_flags & TRP_CPUPERCENT) { | |
8760 | kqdi->kqdi_cpupercent = trp.trp_cpupercent; | |
8761 | } else { | |
8762 | kqdi->kqdi_cpupercent = 0; | |
8763 | } | |
8764 | ||
8765 | kqunlock(kqwl); | |
8766 | ||
8767 | return 0; | |
8768 | } | |
8769 | ||
8770 | ||
8771 | void | |
8772 | knote_markstayactive(struct knote *kn) | |
8773 | { | |
8774 | struct kqueue *kq = knote_get_kq(kn); | |
8775 | kq_index_t qos; | |
8776 | ||
8777 | kqlock(kq); | |
8778 | kn->kn_status |= KN_STAYACTIVE; | |
8779 | ||
8780 | /* | |
8781 | * Making a knote stay active is a property of the knote that must be | |
8782 | * established before it is fully attached. | |
8783 | */ | |
8784 | assert((kn->kn_status & (KN_QUEUED | KN_SUPPRESSED)) == 0); | |
8785 | ||
8786 | /* handle all stayactive knotes on the (appropriate) manager */ | |
8787 | if (kq->kq_state & KQ_WORKLOOP) { | |
8788 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
8789 | ||
8790 | qos = _pthread_priority_thread_qos(kn->kn_qos); | |
8791 | assert(qos && qos < THREAD_QOS_LAST); | |
8792 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_STAYACTIVE_QOS, qos); | |
8793 | qos = KQWL_BUCKET_STAYACTIVE; | |
8794 | } else if (kq->kq_state & KQ_WORKQ) { | |
8795 | qos = KQWQ_QOS_MANAGER; | |
8796 | } else { | |
8797 | qos = THREAD_QOS_UNSPECIFIED; | |
8798 | } | |
8799 | ||
8800 | kn->kn_qos_override = qos; | |
8801 | kn->kn_qos_index = qos; | |
8802 | ||
8803 | knote_activate(kq, kn, FILTER_ACTIVE); | |
8804 | kqunlock(kq); | |
8805 | } | |
8806 | ||
8807 | void | |
8808 | knote_clearstayactive(struct knote *kn) | |
8809 | { | |
8810 | struct kqueue *kq = knote_get_kq(kn); | |
8811 | kqlock(kq); | |
8812 | kn->kn_status &= ~(KN_STAYACTIVE | KN_ACTIVE); | |
8813 | knote_dequeue(kq, kn); | |
8814 | kqunlock(kq); | |
8815 | } | |
8816 | ||
8817 | static unsigned long | |
8818 | kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf, | |
8819 | unsigned long buflen, unsigned long nknotes) | |
8820 | { | |
8821 | for (; kn; kn = SLIST_NEXT(kn, kn_link)) { | |
8822 | if (kq == knote_get_kq(kn)) { | |
8823 | if (nknotes < buflen) { | |
8824 | struct kevent_extinfo *info = &buf[nknotes]; | |
8825 | ||
8826 | kqlock(kq); | |
8827 | ||
8828 | info->kqext_kev = *(struct kevent_qos_s *)&kn->kn_kevent; | |
8829 | if (knote_has_qos(kn)) { | |
8830 | info->kqext_kev.qos = | |
8831 | _pthread_priority_thread_qos_fast(kn->kn_qos); | |
8832 | } else { | |
8833 | info->kqext_kev.qos = kn->kn_qos_override; | |
8834 | } | |
8835 | info->kqext_kev.filter |= 0xff00; /* sign extend filter */ | |
8836 | info->kqext_kev.xflags = 0; /* this is where sfflags lives */ | |
8837 | info->kqext_kev.data = 0; /* this is where sdata lives */ | |
8838 | info->kqext_sdata = kn->kn_sdata; | |
8839 | info->kqext_status = kn->kn_status; | |
8840 | info->kqext_sfflags = kn->kn_sfflags; | |
8841 | ||
8842 | kqunlock(kq); | |
8843 | } | |
8844 | ||
8845 | /* we return total number of knotes, which may be more than requested */ | |
8846 | nknotes++; | |
8847 | } | |
8848 | } | |
8849 | ||
8850 | return nknotes; | |
8851 | } | |
8852 | ||
8853 | int | |
8854 | kevent_copyout_proc_dynkqids(void *proc, user_addr_t ubuf, uint32_t ubufsize, | |
8855 | int32_t *nkqueues_out) | |
8856 | { | |
8857 | proc_t p = (proc_t)proc; | |
8858 | struct filedesc *fdp = p->p_fd; | |
8859 | unsigned int nkqueues = 0; | |
8860 | unsigned long ubuflen = ubufsize / sizeof(kqueue_id_t); | |
8861 | size_t buflen, bufsize; | |
8862 | kqueue_id_t *kq_ids = NULL; | |
8863 | int err = 0; | |
8864 | ||
8865 | assert(p != NULL); | |
8866 | ||
8867 | if (ubuf == USER_ADDR_NULL && ubufsize != 0) { | |
8868 | err = EINVAL; | |
8869 | goto out; | |
8870 | } | |
8871 | ||
8872 | buflen = min(ubuflen, PROC_PIDDYNKQUEUES_MAX); | |
8873 | ||
8874 | if (ubuflen != 0) { | |
8875 | if (os_mul_overflow(sizeof(kqueue_id_t), buflen, &bufsize)) { | |
8876 | err = ERANGE; | |
8877 | goto out; | |
8878 | } | |
8879 | kq_ids = kalloc(bufsize); | |
8880 | if (!kq_ids) { | |
8881 | err = ENOMEM; | |
8882 | goto out; | |
8883 | } | |
8884 | bzero(kq_ids, bufsize); | |
8885 | } | |
8886 | ||
8887 | kqhash_lock(fdp); | |
8888 | ||
8889 | if (fdp->fd_kqhashmask > 0) { | |
8890 | for (uint32_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { | |
8891 | struct kqworkloop *kqwl; | |
8892 | ||
8893 | LIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { | |
8894 | /* report the number of kqueues, even if they don't all fit */ | |
8895 | if (nkqueues < buflen) { | |
8896 | kq_ids[nkqueues] = kqwl->kqwl_dynamicid; | |
8897 | } | |
8898 | nkqueues++; | |
8899 | } | |
8900 | } | |
8901 | } | |
8902 | ||
8903 | kqhash_unlock(fdp); | |
8904 | ||
8905 | if (kq_ids) { | |
8906 | size_t copysize; | |
8907 | if (os_mul_overflow(sizeof(kqueue_id_t), min(buflen, nkqueues), ©size)) { | |
8908 | err = ERANGE; | |
8909 | goto out; | |
8910 | } | |
8911 | ||
8912 | assert(ubufsize >= copysize); | |
8913 | err = copyout(kq_ids, ubuf, copysize); | |
8914 | } | |
8915 | ||
8916 | out: | |
8917 | if (kq_ids) { | |
8918 | kfree(kq_ids, bufsize); | |
8919 | } | |
8920 | ||
8921 | if (!err) { | |
8922 | *nkqueues_out = (int)min(nkqueues, PROC_PIDDYNKQUEUES_MAX); | |
8923 | } | |
8924 | return err; | |
8925 | } | |
8926 | ||
8927 | int | |
8928 | kevent_copyout_dynkqinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, | |
8929 | uint32_t ubufsize, int32_t *size_out) | |
8930 | { | |
8931 | proc_t p = (proc_t)proc; | |
8932 | struct kqworkloop *kqwl; | |
8933 | int err = 0; | |
8934 | struct kqueue_dyninfo kqdi = { }; | |
8935 | ||
8936 | assert(p != NULL); | |
8937 | ||
8938 | if (ubufsize < sizeof(struct kqueue_info)) { | |
8939 | return ENOBUFS; | |
8940 | } | |
8941 | ||
8942 | kqwl = kqworkloop_hash_lookup_and_retain(p->p_fd, kq_id); | |
8943 | if (!kqwl) { | |
8944 | return ESRCH; | |
8945 | } | |
8946 | ||
8947 | /* | |
8948 | * backward compatibility: allow the argument to this call to only be | |
8949 | * a struct kqueue_info | |
8950 | */ | |
8951 | if (ubufsize >= sizeof(struct kqueue_dyninfo)) { | |
8952 | ubufsize = sizeof(struct kqueue_dyninfo); | |
8953 | err = fill_kqueue_dyninfo(kqwl, &kqdi); | |
8954 | } else { | |
8955 | ubufsize = sizeof(struct kqueue_info); | |
8956 | err = fill_kqueueinfo(&kqwl->kqwl_kqueue, &kqdi.kqdi_info); | |
8957 | } | |
8958 | if (err == 0 && (err = copyout(&kqdi, ubuf, ubufsize)) == 0) { | |
8959 | *size_out = ubufsize; | |
8960 | } | |
8961 | kqworkloop_release(kqwl); | |
8962 | return err; | |
8963 | } | |
8964 | ||
8965 | int | |
8966 | kevent_copyout_dynkqextinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, | |
8967 | uint32_t ubufsize, int32_t *nknotes_out) | |
8968 | { | |
8969 | proc_t p = (proc_t)proc; | |
8970 | struct kqworkloop *kqwl; | |
8971 | int err; | |
8972 | ||
8973 | kqwl = kqworkloop_hash_lookup_and_retain(p->p_fd, kq_id); | |
8974 | if (!kqwl) { | |
8975 | return ESRCH; | |
8976 | } | |
8977 | ||
8978 | err = pid_kqueue_extinfo(p, &kqwl->kqwl_kqueue, ubuf, ubufsize, nknotes_out); | |
8979 | kqworkloop_release(kqwl); | |
8980 | return err; | |
8981 | } | |
8982 | ||
8983 | int | |
8984 | pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf, | |
8985 | uint32_t bufsize, int32_t *retval) | |
8986 | { | |
8987 | struct knote *kn; | |
8988 | int i; | |
8989 | int err = 0; | |
8990 | struct filedesc *fdp = p->p_fd; | |
8991 | unsigned long nknotes = 0; | |
8992 | unsigned long buflen = bufsize / sizeof(struct kevent_extinfo); | |
8993 | struct kevent_extinfo *kqext = NULL; | |
8994 | ||
8995 | /* arbitrary upper limit to cap kernel memory usage, copyout size, etc. */ | |
8996 | buflen = min(buflen, PROC_PIDFDKQUEUE_KNOTES_MAX); | |
8997 | ||
8998 | kqext = kalloc(buflen * sizeof(struct kevent_extinfo)); | |
8999 | if (kqext == NULL) { | |
9000 | err = ENOMEM; | |
9001 | goto out; | |
9002 | } | |
9003 | bzero(kqext, buflen * sizeof(struct kevent_extinfo)); | |
9004 | ||
9005 | proc_fdlock(p); | |
9006 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
9007 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
9008 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); | |
9009 | } | |
9010 | proc_fdunlock(p); | |
9011 | ||
9012 | if (fdp->fd_knhashmask != 0) { | |
9013 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
9014 | knhash_lock(fdp); | |
9015 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
9016 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); | |
9017 | knhash_unlock(fdp); | |
9018 | } | |
9019 | } | |
9020 | ||
9021 | assert(bufsize >= sizeof(struct kevent_extinfo) * min(buflen, nknotes)); | |
9022 | err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * min(buflen, nknotes)); | |
9023 | ||
9024 | out: | |
9025 | if (kqext) { | |
9026 | kfree(kqext, buflen * sizeof(struct kevent_extinfo)); | |
9027 | kqext = NULL; | |
9028 | } | |
9029 | ||
9030 | if (!err) { | |
9031 | *retval = min(nknotes, PROC_PIDFDKQUEUE_KNOTES_MAX); | |
9032 | } | |
9033 | return err; | |
9034 | } | |
9035 | ||
9036 | static unsigned int | |
9037 | klist_copy_udata(struct klist *list, uint64_t *buf, | |
9038 | unsigned int buflen, unsigned int nknotes) | |
9039 | { | |
9040 | struct knote *kn; | |
9041 | SLIST_FOREACH(kn, list, kn_link) { | |
9042 | if (nknotes < buflen) { | |
9043 | /* | |
9044 | * kevent_register will always set kn_udata atomically | |
9045 | * so that we don't have to take any kqlock here. | |
9046 | */ | |
9047 | buf[nknotes] = os_atomic_load_wide(&kn->kn_udata, relaxed); | |
9048 | } | |
9049 | /* we return total number of knotes, which may be more than requested */ | |
9050 | nknotes++; | |
9051 | } | |
9052 | ||
9053 | return nknotes; | |
9054 | } | |
9055 | ||
9056 | int | |
9057 | kevent_proc_copy_uptrs(void *proc, uint64_t *buf, int bufsize) | |
9058 | { | |
9059 | proc_t p = (proc_t)proc; | |
9060 | struct filedesc *fdp = p->p_fd; | |
9061 | unsigned int nuptrs = 0; | |
9062 | unsigned long buflen = bufsize / sizeof(uint64_t); | |
9063 | struct kqworkloop *kqwl; | |
9064 | ||
9065 | if (buflen > 0) { | |
9066 | assert(buf != NULL); | |
9067 | } | |
9068 | ||
9069 | proc_fdlock(p); | |
9070 | for (int i = 0; i < fdp->fd_knlistsize; i++) { | |
9071 | nuptrs = klist_copy_udata(&fdp->fd_knlist[i], buf, buflen, nuptrs); | |
9072 | } | |
9073 | proc_fdunlock(p); | |
9074 | ||
9075 | knhash_lock(fdp); | |
9076 | if (fdp->fd_knhashmask != 0) { | |
9077 | for (size_t i = 0; i < fdp->fd_knhashmask + 1; i++) { | |
9078 | nuptrs = klist_copy_udata(&fdp->fd_knhash[i], buf, buflen, nuptrs); | |
9079 | } | |
9080 | } | |
9081 | knhash_unlock(fdp); | |
9082 | ||
9083 | kqhash_lock(fdp); | |
9084 | if (fdp->fd_kqhashmask != 0) { | |
9085 | for (size_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { | |
9086 | LIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { | |
9087 | if (nuptrs < buflen) { | |
9088 | buf[nuptrs] = kqwl->kqwl_dynamicid; | |
9089 | } | |
9090 | nuptrs++; | |
9091 | } | |
9092 | } | |
9093 | } | |
9094 | kqhash_unlock(fdp); | |
9095 | ||
9096 | return (int)nuptrs; | |
9097 | } | |
9098 | ||
9099 | static void | |
9100 | kevent_set_return_to_kernel_user_tsd(proc_t p, thread_t thread) | |
9101 | { | |
9102 | uint64_t ast_addr; | |
9103 | bool proc_is_64bit = !!(p->p_flag & P_LP64); | |
9104 | size_t user_addr_size = proc_is_64bit ? 8 : 4; | |
9105 | uint32_t ast_flags32 = 0; | |
9106 | uint64_t ast_flags64 = 0; | |
9107 | struct uthread *ut = get_bsdthread_info(thread); | |
9108 | ||
9109 | if (ut->uu_kqr_bound != NULL) { | |
9110 | ast_flags64 |= R2K_WORKLOOP_PENDING_EVENTS; | |
9111 | } | |
9112 | ||
9113 | if (ast_flags64 == 0) { | |
9114 | return; | |
9115 | } | |
9116 | ||
9117 | if (!(p->p_flag & P_LP64)) { | |
9118 | ast_flags32 = (uint32_t)ast_flags64; | |
9119 | assert(ast_flags64 < 0x100000000ull); | |
9120 | } | |
9121 | ||
9122 | ast_addr = thread_rettokern_addr(thread); | |
9123 | if (ast_addr == 0) { | |
9124 | return; | |
9125 | } | |
9126 | ||
9127 | if (copyout((proc_is_64bit ? (void *)&ast_flags64 : (void *)&ast_flags32), | |
9128 | (user_addr_t)ast_addr, | |
9129 | user_addr_size) != 0) { | |
9130 | printf("pid %d (tid:%llu): copyout of return_to_kernel ast flags failed with " | |
9131 | "ast_addr = %llu\n", p->p_pid, thread_tid(current_thread()), ast_addr); | |
9132 | } | |
9133 | } | |
9134 | ||
9135 | void | |
9136 | kevent_ast(thread_t thread, uint16_t bits) | |
9137 | { | |
9138 | proc_t p = current_proc(); | |
9139 | ||
9140 | if (bits & AST_KEVENT_REDRIVE_THREADREQ) { | |
9141 | workq_kern_threadreq_redrive(p, WORKQ_THREADREQ_CAN_CREATE_THREADS); | |
9142 | } | |
9143 | if (bits & AST_KEVENT_RETURN_TO_KERNEL) { | |
9144 | kevent_set_return_to_kernel_user_tsd(p, thread); | |
9145 | } | |
9146 | } | |
9147 | ||
9148 | #if DEVELOPMENT || DEBUG | |
9149 | ||
9150 | #define KEVENT_SYSCTL_BOUND_ID 1 | |
9151 | ||
9152 | static int | |
9153 | kevent_sysctl SYSCTL_HANDLER_ARGS | |
9154 | { | |
9155 | #pragma unused(oidp, arg2) | |
9156 | uintptr_t type = (uintptr_t)arg1; | |
9157 | uint64_t bound_id = 0; | |
9158 | ||
9159 | if (type != KEVENT_SYSCTL_BOUND_ID) { | |
9160 | return EINVAL; | |
9161 | } | |
9162 | ||
9163 | if (req->newptr) { | |
9164 | return EINVAL; | |
9165 | } | |
9166 | ||
9167 | struct uthread *ut = get_bsdthread_info(current_thread()); | |
9168 | if (!ut) { | |
9169 | return EFAULT; | |
9170 | } | |
9171 | ||
9172 | workq_threadreq_t kqr = ut->uu_kqr_bound; | |
9173 | if (kqr) { | |
9174 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { | |
9175 | bound_id = kqr_kqworkloop(kqr)->kqwl_dynamicid; | |
9176 | } else { | |
9177 | bound_id = -1; | |
9178 | } | |
9179 | } | |
9180 | ||
9181 | return sysctl_io_number(req, bound_id, sizeof(bound_id), NULL, NULL); | |
9182 | } | |
9183 | ||
9184 | SYSCTL_NODE(_kern, OID_AUTO, kevent, CTLFLAG_RW | CTLFLAG_LOCKED, 0, | |
9185 | "kevent information"); | |
9186 | ||
9187 | SYSCTL_PROC(_kern_kevent, OID_AUTO, bound_id, | |
9188 | CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, | |
9189 | (void *)KEVENT_SYSCTL_BOUND_ID, | |
9190 | sizeof(kqueue_id_t), kevent_sysctl, "Q", | |
9191 | "get the ID of the bound kqueue"); | |
9192 | ||
9193 | #endif /* DEVELOPMENT || DEBUG */ |