]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_map.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * Virtual memory mapping module. | |
64 | */ | |
65 | ||
66 | #include <task_swapper.h> | |
67 | #include <mach_assert.h> | |
68 | ||
69 | #include <vm/vm_options.h> | |
70 | ||
71 | #include <libkern/OSAtomic.h> | |
72 | ||
73 | #include <mach/kern_return.h> | |
74 | #include <mach/port.h> | |
75 | #include <mach/vm_attributes.h> | |
76 | #include <mach/vm_param.h> | |
77 | #include <mach/vm_behavior.h> | |
78 | #include <mach/vm_statistics.h> | |
79 | #include <mach/memory_object.h> | |
80 | #include <mach/mach_vm.h> | |
81 | #include <machine/cpu_capabilities.h> | |
82 | #include <mach/sdt.h> | |
83 | ||
84 | #include <kern/assert.h> | |
85 | #include <kern/counters.h> | |
86 | #include <kern/kalloc.h> | |
87 | #include <kern/zalloc.h> | |
88 | ||
89 | #include <vm/cpm.h> | |
90 | #include <vm/vm_compressor_pager.h> | |
91 | #include <vm/vm_init.h> | |
92 | #include <vm/vm_fault.h> | |
93 | #include <vm/vm_map.h> | |
94 | #include <vm/vm_object.h> | |
95 | #include <vm/vm_page.h> | |
96 | #include <vm/vm_pageout.h> | |
97 | #include <vm/vm_kern.h> | |
98 | #include <ipc/ipc_port.h> | |
99 | #include <kern/sched_prim.h> | |
100 | #include <kern/misc_protos.h> | |
101 | #include <kern/xpr.h> | |
102 | ||
103 | #include <mach/vm_map_server.h> | |
104 | #include <mach/mach_host_server.h> | |
105 | #include <vm/vm_protos.h> | |
106 | #include <vm/vm_purgeable_internal.h> | |
107 | ||
108 | #include <vm/vm_protos.h> | |
109 | #include <vm/vm_shared_region.h> | |
110 | #include <vm/vm_map_store.h> | |
111 | ||
112 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ | |
113 | /* Internal prototypes | |
114 | */ | |
115 | ||
116 | static void vm_map_simplify_range( | |
117 | vm_map_t map, | |
118 | vm_map_offset_t start, | |
119 | vm_map_offset_t end); /* forward */ | |
120 | ||
121 | static boolean_t vm_map_range_check( | |
122 | vm_map_t map, | |
123 | vm_map_offset_t start, | |
124 | vm_map_offset_t end, | |
125 | vm_map_entry_t *entry); | |
126 | ||
127 | static vm_map_entry_t _vm_map_entry_create( | |
128 | struct vm_map_header *map_header, boolean_t map_locked); | |
129 | ||
130 | static void _vm_map_entry_dispose( | |
131 | struct vm_map_header *map_header, | |
132 | vm_map_entry_t entry); | |
133 | ||
134 | static void vm_map_pmap_enter( | |
135 | vm_map_t map, | |
136 | vm_map_offset_t addr, | |
137 | vm_map_offset_t end_addr, | |
138 | vm_object_t object, | |
139 | vm_object_offset_t offset, | |
140 | vm_prot_t protection); | |
141 | ||
142 | static void _vm_map_clip_end( | |
143 | struct vm_map_header *map_header, | |
144 | vm_map_entry_t entry, | |
145 | vm_map_offset_t end); | |
146 | ||
147 | static void _vm_map_clip_start( | |
148 | struct vm_map_header *map_header, | |
149 | vm_map_entry_t entry, | |
150 | vm_map_offset_t start); | |
151 | ||
152 | static void vm_map_entry_delete( | |
153 | vm_map_t map, | |
154 | vm_map_entry_t entry); | |
155 | ||
156 | static kern_return_t vm_map_delete( | |
157 | vm_map_t map, | |
158 | vm_map_offset_t start, | |
159 | vm_map_offset_t end, | |
160 | int flags, | |
161 | vm_map_t zap_map); | |
162 | ||
163 | static kern_return_t vm_map_copy_overwrite_unaligned( | |
164 | vm_map_t dst_map, | |
165 | vm_map_entry_t entry, | |
166 | vm_map_copy_t copy, | |
167 | vm_map_address_t start, | |
168 | boolean_t discard_on_success); | |
169 | ||
170 | static kern_return_t vm_map_copy_overwrite_aligned( | |
171 | vm_map_t dst_map, | |
172 | vm_map_entry_t tmp_entry, | |
173 | vm_map_copy_t copy, | |
174 | vm_map_offset_t start, | |
175 | pmap_t pmap); | |
176 | ||
177 | static kern_return_t vm_map_copyin_kernel_buffer( | |
178 | vm_map_t src_map, | |
179 | vm_map_address_t src_addr, | |
180 | vm_map_size_t len, | |
181 | boolean_t src_destroy, | |
182 | vm_map_copy_t *copy_result); /* OUT */ | |
183 | ||
184 | static kern_return_t vm_map_copyout_kernel_buffer( | |
185 | vm_map_t map, | |
186 | vm_map_address_t *addr, /* IN/OUT */ | |
187 | vm_map_copy_t copy, | |
188 | boolean_t overwrite, | |
189 | boolean_t consume_on_success); | |
190 | ||
191 | static void vm_map_fork_share( | |
192 | vm_map_t old_map, | |
193 | vm_map_entry_t old_entry, | |
194 | vm_map_t new_map); | |
195 | ||
196 | static boolean_t vm_map_fork_copy( | |
197 | vm_map_t old_map, | |
198 | vm_map_entry_t *old_entry_p, | |
199 | vm_map_t new_map); | |
200 | ||
201 | void vm_map_region_top_walk( | |
202 | vm_map_entry_t entry, | |
203 | vm_region_top_info_t top); | |
204 | ||
205 | void vm_map_region_walk( | |
206 | vm_map_t map, | |
207 | vm_map_offset_t va, | |
208 | vm_map_entry_t entry, | |
209 | vm_object_offset_t offset, | |
210 | vm_object_size_t range, | |
211 | vm_region_extended_info_t extended, | |
212 | boolean_t look_for_pages, | |
213 | mach_msg_type_number_t count); | |
214 | ||
215 | static kern_return_t vm_map_wire_nested( | |
216 | vm_map_t map, | |
217 | vm_map_offset_t start, | |
218 | vm_map_offset_t end, | |
219 | vm_prot_t access_type, | |
220 | boolean_t user_wire, | |
221 | pmap_t map_pmap, | |
222 | vm_map_offset_t pmap_addr, | |
223 | ppnum_t *physpage_p); | |
224 | ||
225 | static kern_return_t vm_map_unwire_nested( | |
226 | vm_map_t map, | |
227 | vm_map_offset_t start, | |
228 | vm_map_offset_t end, | |
229 | boolean_t user_wire, | |
230 | pmap_t map_pmap, | |
231 | vm_map_offset_t pmap_addr); | |
232 | ||
233 | static kern_return_t vm_map_overwrite_submap_recurse( | |
234 | vm_map_t dst_map, | |
235 | vm_map_offset_t dst_addr, | |
236 | vm_map_size_t dst_size); | |
237 | ||
238 | static kern_return_t vm_map_copy_overwrite_nested( | |
239 | vm_map_t dst_map, | |
240 | vm_map_offset_t dst_addr, | |
241 | vm_map_copy_t copy, | |
242 | boolean_t interruptible, | |
243 | pmap_t pmap, | |
244 | boolean_t discard_on_success); | |
245 | ||
246 | static kern_return_t vm_map_remap_extract( | |
247 | vm_map_t map, | |
248 | vm_map_offset_t addr, | |
249 | vm_map_size_t size, | |
250 | boolean_t copy, | |
251 | struct vm_map_header *map_header, | |
252 | vm_prot_t *cur_protection, | |
253 | vm_prot_t *max_protection, | |
254 | vm_inherit_t inheritance, | |
255 | boolean_t pageable); | |
256 | ||
257 | static kern_return_t vm_map_remap_range_allocate( | |
258 | vm_map_t map, | |
259 | vm_map_address_t *address, | |
260 | vm_map_size_t size, | |
261 | vm_map_offset_t mask, | |
262 | int flags, | |
263 | vm_map_entry_t *map_entry); | |
264 | ||
265 | static void vm_map_region_look_for_page( | |
266 | vm_map_t map, | |
267 | vm_map_offset_t va, | |
268 | vm_object_t object, | |
269 | vm_object_offset_t offset, | |
270 | int max_refcnt, | |
271 | int depth, | |
272 | vm_region_extended_info_t extended, | |
273 | mach_msg_type_number_t count); | |
274 | ||
275 | static int vm_map_region_count_obj_refs( | |
276 | vm_map_entry_t entry, | |
277 | vm_object_t object); | |
278 | ||
279 | ||
280 | static kern_return_t vm_map_willneed( | |
281 | vm_map_t map, | |
282 | vm_map_offset_t start, | |
283 | vm_map_offset_t end); | |
284 | ||
285 | static kern_return_t vm_map_reuse_pages( | |
286 | vm_map_t map, | |
287 | vm_map_offset_t start, | |
288 | vm_map_offset_t end); | |
289 | ||
290 | static kern_return_t vm_map_reusable_pages( | |
291 | vm_map_t map, | |
292 | vm_map_offset_t start, | |
293 | vm_map_offset_t end); | |
294 | ||
295 | static kern_return_t vm_map_can_reuse( | |
296 | vm_map_t map, | |
297 | vm_map_offset_t start, | |
298 | vm_map_offset_t end); | |
299 | ||
300 | ||
301 | /* | |
302 | * Macros to copy a vm_map_entry. We must be careful to correctly | |
303 | * manage the wired page count. vm_map_entry_copy() creates a new | |
304 | * map entry to the same memory - the wired count in the new entry | |
305 | * must be set to zero. vm_map_entry_copy_full() creates a new | |
306 | * entry that is identical to the old entry. This preserves the | |
307 | * wire count; it's used for map splitting and zone changing in | |
308 | * vm_map_copyout. | |
309 | */ | |
310 | ||
311 | #define vm_map_entry_copy(NEW,OLD) \ | |
312 | MACRO_BEGIN \ | |
313 | boolean_t _vmec_reserved = (NEW)->from_reserved_zone; \ | |
314 | *(NEW) = *(OLD); \ | |
315 | (NEW)->is_shared = FALSE; \ | |
316 | (NEW)->needs_wakeup = FALSE; \ | |
317 | (NEW)->in_transition = FALSE; \ | |
318 | (NEW)->wired_count = 0; \ | |
319 | (NEW)->user_wired_count = 0; \ | |
320 | (NEW)->permanent = FALSE; \ | |
321 | (NEW)->used_for_jit = FALSE; \ | |
322 | (NEW)->from_reserved_zone = _vmec_reserved; \ | |
323 | (NEW)->iokit_acct = FALSE; \ | |
324 | MACRO_END | |
325 | ||
326 | #define vm_map_entry_copy_full(NEW,OLD) \ | |
327 | MACRO_BEGIN \ | |
328 | boolean_t _vmecf_reserved = (NEW)->from_reserved_zone; \ | |
329 | (*(NEW) = *(OLD)); \ | |
330 | (NEW)->from_reserved_zone = _vmecf_reserved; \ | |
331 | MACRO_END | |
332 | ||
333 | /* | |
334 | * Decide if we want to allow processes to execute from their data or stack areas. | |
335 | * override_nx() returns true if we do. Data/stack execution can be enabled independently | |
336 | * for 32 and 64 bit processes. Set the VM_ABI_32 or VM_ABI_64 flags in allow_data_exec | |
337 | * or allow_stack_exec to enable data execution for that type of data area for that particular | |
338 | * ABI (or both by or'ing the flags together). These are initialized in the architecture | |
339 | * specific pmap files since the default behavior varies according to architecture. The | |
340 | * main reason it varies is because of the need to provide binary compatibility with old | |
341 | * applications that were written before these restrictions came into being. In the old | |
342 | * days, an app could execute anything it could read, but this has slowly been tightened | |
343 | * up over time. The default behavior is: | |
344 | * | |
345 | * 32-bit PPC apps may execute from both stack and data areas | |
346 | * 32-bit Intel apps may exeucte from data areas but not stack | |
347 | * 64-bit PPC/Intel apps may not execute from either data or stack | |
348 | * | |
349 | * An application on any architecture may override these defaults by explicitly | |
350 | * adding PROT_EXEC permission to the page in question with the mprotect(2) | |
351 | * system call. This code here just determines what happens when an app tries to | |
352 | * execute from a page that lacks execute permission. | |
353 | * | |
354 | * Note that allow_data_exec or allow_stack_exec may also be modified by sysctl to change the | |
355 | * default behavior for both 32 and 64 bit apps on a system-wide basis. Furthermore, | |
356 | * a Mach-O header flag bit (MH_NO_HEAP_EXECUTION) can be used to forcibly disallow | |
357 | * execution from data areas for a particular binary even if the arch normally permits it. As | |
358 | * a final wrinkle, a posix_spawn attribute flag can be used to negate this opt-in header bit | |
359 | * to support some complicated use cases, notably browsers with out-of-process plugins that | |
360 | * are not all NX-safe. | |
361 | */ | |
362 | ||
363 | extern int allow_data_exec, allow_stack_exec; | |
364 | ||
365 | int | |
366 | override_nx(vm_map_t map, uint32_t user_tag) /* map unused on arm */ | |
367 | { | |
368 | int current_abi; | |
369 | ||
370 | /* | |
371 | * Determine if the app is running in 32 or 64 bit mode. | |
372 | */ | |
373 | ||
374 | if (vm_map_is_64bit(map)) | |
375 | current_abi = VM_ABI_64; | |
376 | else | |
377 | current_abi = VM_ABI_32; | |
378 | ||
379 | /* | |
380 | * Determine if we should allow the execution based on whether it's a | |
381 | * stack or data area and the current architecture. | |
382 | */ | |
383 | ||
384 | if (user_tag == VM_MEMORY_STACK) | |
385 | return allow_stack_exec & current_abi; | |
386 | ||
387 | return (allow_data_exec & current_abi) && (map->map_disallow_data_exec == FALSE); | |
388 | } | |
389 | ||
390 | ||
391 | /* | |
392 | * Virtual memory maps provide for the mapping, protection, | |
393 | * and sharing of virtual memory objects. In addition, | |
394 | * this module provides for an efficient virtual copy of | |
395 | * memory from one map to another. | |
396 | * | |
397 | * Synchronization is required prior to most operations. | |
398 | * | |
399 | * Maps consist of an ordered doubly-linked list of simple | |
400 | * entries; a single hint is used to speed up lookups. | |
401 | * | |
402 | * Sharing maps have been deleted from this version of Mach. | |
403 | * All shared objects are now mapped directly into the respective | |
404 | * maps. This requires a change in the copy on write strategy; | |
405 | * the asymmetric (delayed) strategy is used for shared temporary | |
406 | * objects instead of the symmetric (shadow) strategy. All maps | |
407 | * are now "top level" maps (either task map, kernel map or submap | |
408 | * of the kernel map). | |
409 | * | |
410 | * Since portions of maps are specified by start/end addreses, | |
411 | * which may not align with existing map entries, all | |
412 | * routines merely "clip" entries to these start/end values. | |
413 | * [That is, an entry is split into two, bordering at a | |
414 | * start or end value.] Note that these clippings may not | |
415 | * always be necessary (as the two resulting entries are then | |
416 | * not changed); however, the clipping is done for convenience. | |
417 | * No attempt is currently made to "glue back together" two | |
418 | * abutting entries. | |
419 | * | |
420 | * The symmetric (shadow) copy strategy implements virtual copy | |
421 | * by copying VM object references from one map to | |
422 | * another, and then marking both regions as copy-on-write. | |
423 | * It is important to note that only one writeable reference | |
424 | * to a VM object region exists in any map when this strategy | |
425 | * is used -- this means that shadow object creation can be | |
426 | * delayed until a write operation occurs. The symmetric (delayed) | |
427 | * strategy allows multiple maps to have writeable references to | |
428 | * the same region of a vm object, and hence cannot delay creating | |
429 | * its copy objects. See vm_object_copy_quickly() in vm_object.c. | |
430 | * Copying of permanent objects is completely different; see | |
431 | * vm_object_copy_strategically() in vm_object.c. | |
432 | */ | |
433 | ||
434 | static zone_t vm_map_zone; /* zone for vm_map structures */ | |
435 | static zone_t vm_map_entry_zone; /* zone for vm_map_entry structures */ | |
436 | static zone_t vm_map_entry_reserved_zone; /* zone with reserve for non-blocking | |
437 | * allocations */ | |
438 | static zone_t vm_map_copy_zone; /* zone for vm_map_copy structures */ | |
439 | ||
440 | ||
441 | /* | |
442 | * Placeholder object for submap operations. This object is dropped | |
443 | * into the range by a call to vm_map_find, and removed when | |
444 | * vm_map_submap creates the submap. | |
445 | */ | |
446 | ||
447 | vm_object_t vm_submap_object; | |
448 | ||
449 | static void *map_data; | |
450 | static vm_size_t map_data_size; | |
451 | static void *kentry_data; | |
452 | static vm_size_t kentry_data_size; | |
453 | ||
454 | #define NO_COALESCE_LIMIT ((1024 * 128) - 1) | |
455 | ||
456 | /* Skip acquiring locks if we're in the midst of a kernel core dump */ | |
457 | unsigned int not_in_kdp = 1; | |
458 | ||
459 | unsigned int vm_map_set_cache_attr_count = 0; | |
460 | ||
461 | kern_return_t | |
462 | vm_map_set_cache_attr( | |
463 | vm_map_t map, | |
464 | vm_map_offset_t va) | |
465 | { | |
466 | vm_map_entry_t map_entry; | |
467 | vm_object_t object; | |
468 | kern_return_t kr = KERN_SUCCESS; | |
469 | ||
470 | vm_map_lock_read(map); | |
471 | ||
472 | if (!vm_map_lookup_entry(map, va, &map_entry) || | |
473 | map_entry->is_sub_map) { | |
474 | /* | |
475 | * that memory is not properly mapped | |
476 | */ | |
477 | kr = KERN_INVALID_ARGUMENT; | |
478 | goto done; | |
479 | } | |
480 | object = map_entry->object.vm_object; | |
481 | ||
482 | if (object == VM_OBJECT_NULL) { | |
483 | /* | |
484 | * there should be a VM object here at this point | |
485 | */ | |
486 | kr = KERN_INVALID_ARGUMENT; | |
487 | goto done; | |
488 | } | |
489 | vm_object_lock(object); | |
490 | object->set_cache_attr = TRUE; | |
491 | vm_object_unlock(object); | |
492 | ||
493 | vm_map_set_cache_attr_count++; | |
494 | done: | |
495 | vm_map_unlock_read(map); | |
496 | ||
497 | return kr; | |
498 | } | |
499 | ||
500 | ||
501 | #if CONFIG_CODE_DECRYPTION | |
502 | /* | |
503 | * vm_map_apple_protected: | |
504 | * This remaps the requested part of the object with an object backed by | |
505 | * the decrypting pager. | |
506 | * crypt_info contains entry points and session data for the crypt module. | |
507 | * The crypt_info block will be copied by vm_map_apple_protected. The data structures | |
508 | * referenced in crypt_info must remain valid until crypt_info->crypt_end() is called. | |
509 | */ | |
510 | kern_return_t | |
511 | vm_map_apple_protected( | |
512 | vm_map_t map, | |
513 | vm_map_offset_t start, | |
514 | vm_map_offset_t end, | |
515 | struct pager_crypt_info *crypt_info) | |
516 | { | |
517 | boolean_t map_locked; | |
518 | kern_return_t kr; | |
519 | vm_map_entry_t map_entry; | |
520 | memory_object_t protected_mem_obj; | |
521 | vm_object_t protected_object; | |
522 | vm_map_offset_t map_addr; | |
523 | ||
524 | vm_map_lock_read(map); | |
525 | map_locked = TRUE; | |
526 | ||
527 | /* lookup the protected VM object */ | |
528 | if (!vm_map_lookup_entry(map, | |
529 | start, | |
530 | &map_entry) || | |
531 | map_entry->vme_end < end || | |
532 | map_entry->is_sub_map || | |
533 | !(map_entry->protection & VM_PROT_EXECUTE)) { | |
534 | /* that memory is not properly mapped */ | |
535 | kr = KERN_INVALID_ARGUMENT; | |
536 | goto done; | |
537 | } | |
538 | protected_object = map_entry->object.vm_object; | |
539 | if (protected_object == VM_OBJECT_NULL) { | |
540 | /* there should be a VM object here at this point */ | |
541 | kr = KERN_INVALID_ARGUMENT; | |
542 | goto done; | |
543 | } | |
544 | ||
545 | /* make sure protected object stays alive while map is unlocked */ | |
546 | vm_object_reference(protected_object); | |
547 | ||
548 | vm_map_unlock_read(map); | |
549 | map_locked = FALSE; | |
550 | ||
551 | /* | |
552 | * Lookup (and create if necessary) the protected memory object | |
553 | * matching that VM object. | |
554 | * If successful, this also grabs a reference on the memory object, | |
555 | * to guarantee that it doesn't go away before we get a chance to map | |
556 | * it. | |
557 | */ | |
558 | protected_mem_obj = apple_protect_pager_setup(protected_object, crypt_info); | |
559 | ||
560 | /* release extra ref on protected object */ | |
561 | vm_object_deallocate(protected_object); | |
562 | ||
563 | if (protected_mem_obj == NULL) { | |
564 | kr = KERN_FAILURE; | |
565 | goto done; | |
566 | } | |
567 | ||
568 | /* map this memory object in place of the current one */ | |
569 | map_addr = start; | |
570 | kr = vm_map_enter_mem_object(map, | |
571 | &map_addr, | |
572 | end - start, | |
573 | (mach_vm_offset_t) 0, | |
574 | VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, | |
575 | (ipc_port_t) protected_mem_obj, | |
576 | (map_entry->offset + | |
577 | (start - map_entry->vme_start)), | |
578 | TRUE, | |
579 | map_entry->protection, | |
580 | map_entry->max_protection, | |
581 | map_entry->inheritance); | |
582 | assert(map_addr == start); | |
583 | /* | |
584 | * Release the reference obtained by apple_protect_pager_setup(). | |
585 | * The mapping (if it succeeded) is now holding a reference on the | |
586 | * memory object. | |
587 | */ | |
588 | memory_object_deallocate(protected_mem_obj); | |
589 | ||
590 | done: | |
591 | if (map_locked) { | |
592 | vm_map_unlock_read(map); | |
593 | } | |
594 | return kr; | |
595 | } | |
596 | #endif /* CONFIG_CODE_DECRYPTION */ | |
597 | ||
598 | ||
599 | lck_grp_t vm_map_lck_grp; | |
600 | lck_grp_attr_t vm_map_lck_grp_attr; | |
601 | lck_attr_t vm_map_lck_attr; | |
602 | lck_attr_t vm_map_lck_rw_attr; | |
603 | ||
604 | ||
605 | /* | |
606 | * vm_map_init: | |
607 | * | |
608 | * Initialize the vm_map module. Must be called before | |
609 | * any other vm_map routines. | |
610 | * | |
611 | * Map and entry structures are allocated from zones -- we must | |
612 | * initialize those zones. | |
613 | * | |
614 | * There are three zones of interest: | |
615 | * | |
616 | * vm_map_zone: used to allocate maps. | |
617 | * vm_map_entry_zone: used to allocate map entries. | |
618 | * vm_map_entry_reserved_zone: fallback zone for kernel map entries | |
619 | * | |
620 | * The kernel allocates map entries from a special zone that is initially | |
621 | * "crammed" with memory. It would be difficult (perhaps impossible) for | |
622 | * the kernel to allocate more memory to a entry zone when it became | |
623 | * empty since the very act of allocating memory implies the creation | |
624 | * of a new entry. | |
625 | */ | |
626 | void | |
627 | vm_map_init( | |
628 | void) | |
629 | { | |
630 | vm_size_t entry_zone_alloc_size; | |
631 | const char *mez_name = "VM map entries"; | |
632 | ||
633 | vm_map_zone = zinit((vm_map_size_t) sizeof(struct _vm_map), 40*1024, | |
634 | PAGE_SIZE, "maps"); | |
635 | zone_change(vm_map_zone, Z_NOENCRYPT, TRUE); | |
636 | #if defined(__LP64__) | |
637 | entry_zone_alloc_size = PAGE_SIZE * 5; | |
638 | #else | |
639 | entry_zone_alloc_size = PAGE_SIZE * 6; | |
640 | #endif | |
641 | vm_map_entry_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry), | |
642 | 1024*1024, entry_zone_alloc_size, | |
643 | mez_name); | |
644 | zone_change(vm_map_entry_zone, Z_NOENCRYPT, TRUE); | |
645 | zone_change(vm_map_entry_zone, Z_NOCALLOUT, TRUE); | |
646 | zone_change(vm_map_entry_zone, Z_GZALLOC_EXEMPT, TRUE); | |
647 | ||
648 | vm_map_entry_reserved_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry), | |
649 | kentry_data_size * 64, kentry_data_size, | |
650 | "Reserved VM map entries"); | |
651 | zone_change(vm_map_entry_reserved_zone, Z_NOENCRYPT, TRUE); | |
652 | ||
653 | vm_map_copy_zone = zinit((vm_map_size_t) sizeof(struct vm_map_copy), | |
654 | 16*1024, PAGE_SIZE, "VM map copies"); | |
655 | zone_change(vm_map_copy_zone, Z_NOENCRYPT, TRUE); | |
656 | ||
657 | /* | |
658 | * Cram the map and kentry zones with initial data. | |
659 | * Set reserved_zone non-collectible to aid zone_gc(). | |
660 | */ | |
661 | zone_change(vm_map_zone, Z_COLLECT, FALSE); | |
662 | ||
663 | zone_change(vm_map_entry_reserved_zone, Z_COLLECT, FALSE); | |
664 | zone_change(vm_map_entry_reserved_zone, Z_EXPAND, FALSE); | |
665 | zone_change(vm_map_entry_reserved_zone, Z_FOREIGN, TRUE); | |
666 | zone_change(vm_map_entry_reserved_zone, Z_NOCALLOUT, TRUE); | |
667 | zone_change(vm_map_entry_reserved_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ | |
668 | zone_change(vm_map_copy_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ | |
669 | zone_change(vm_map_entry_reserved_zone, Z_GZALLOC_EXEMPT, TRUE); | |
670 | ||
671 | zcram(vm_map_zone, (vm_offset_t)map_data, map_data_size); | |
672 | zcram(vm_map_entry_reserved_zone, (vm_offset_t)kentry_data, kentry_data_size); | |
673 | ||
674 | lck_grp_attr_setdefault(&vm_map_lck_grp_attr); | |
675 | lck_grp_init(&vm_map_lck_grp, "vm_map", &vm_map_lck_grp_attr); | |
676 | lck_attr_setdefault(&vm_map_lck_attr); | |
677 | ||
678 | lck_attr_setdefault(&vm_map_lck_rw_attr); | |
679 | lck_attr_cleardebug(&vm_map_lck_rw_attr); | |
680 | ||
681 | #if CONFIG_FREEZE | |
682 | default_freezer_init(); | |
683 | #endif /* CONFIG_FREEZE */ | |
684 | } | |
685 | ||
686 | void | |
687 | vm_map_steal_memory( | |
688 | void) | |
689 | { | |
690 | uint32_t kentry_initial_pages; | |
691 | ||
692 | map_data_size = round_page(10 * sizeof(struct _vm_map)); | |
693 | map_data = pmap_steal_memory(map_data_size); | |
694 | ||
695 | /* | |
696 | * kentry_initial_pages corresponds to the number of kernel map entries | |
697 | * required during bootstrap until the asynchronous replenishment | |
698 | * scheme is activated and/or entries are available from the general | |
699 | * map entry pool. | |
700 | */ | |
701 | #if defined(__LP64__) | |
702 | kentry_initial_pages = 10; | |
703 | #else | |
704 | kentry_initial_pages = 6; | |
705 | #endif | |
706 | ||
707 | #if CONFIG_GZALLOC | |
708 | /* If using the guard allocator, reserve more memory for the kernel | |
709 | * reserved map entry pool. | |
710 | */ | |
711 | if (gzalloc_enabled()) | |
712 | kentry_initial_pages *= 1024; | |
713 | #endif | |
714 | ||
715 | kentry_data_size = kentry_initial_pages * PAGE_SIZE; | |
716 | kentry_data = pmap_steal_memory(kentry_data_size); | |
717 | } | |
718 | ||
719 | void vm_kernel_reserved_entry_init(void) { | |
720 | zone_prio_refill_configure(vm_map_entry_reserved_zone, (6*PAGE_SIZE)/sizeof(struct vm_map_entry)); | |
721 | } | |
722 | ||
723 | /* | |
724 | * vm_map_create: | |
725 | * | |
726 | * Creates and returns a new empty VM map with | |
727 | * the given physical map structure, and having | |
728 | * the given lower and upper address bounds. | |
729 | */ | |
730 | vm_map_t | |
731 | vm_map_create( | |
732 | pmap_t pmap, | |
733 | vm_map_offset_t min, | |
734 | vm_map_offset_t max, | |
735 | boolean_t pageable) | |
736 | { | |
737 | static int color_seed = 0; | |
738 | register vm_map_t result; | |
739 | ||
740 | result = (vm_map_t) zalloc(vm_map_zone); | |
741 | if (result == VM_MAP_NULL) | |
742 | panic("vm_map_create"); | |
743 | ||
744 | vm_map_first_entry(result) = vm_map_to_entry(result); | |
745 | vm_map_last_entry(result) = vm_map_to_entry(result); | |
746 | result->hdr.nentries = 0; | |
747 | result->hdr.entries_pageable = pageable; | |
748 | ||
749 | vm_map_store_init( &(result->hdr) ); | |
750 | ||
751 | result->hdr.page_shift = PAGE_SHIFT; | |
752 | ||
753 | result->size = 0; | |
754 | result->user_wire_limit = MACH_VM_MAX_ADDRESS; /* default limit is unlimited */ | |
755 | result->user_wire_size = 0; | |
756 | result->ref_count = 1; | |
757 | #if TASK_SWAPPER | |
758 | result->res_count = 1; | |
759 | result->sw_state = MAP_SW_IN; | |
760 | #endif /* TASK_SWAPPER */ | |
761 | result->pmap = pmap; | |
762 | result->min_offset = min; | |
763 | result->max_offset = max; | |
764 | result->wiring_required = FALSE; | |
765 | result->no_zero_fill = FALSE; | |
766 | result->mapped_in_other_pmaps = FALSE; | |
767 | result->wait_for_space = FALSE; | |
768 | result->switch_protect = FALSE; | |
769 | result->disable_vmentry_reuse = FALSE; | |
770 | result->map_disallow_data_exec = FALSE; | |
771 | result->highest_entry_end = 0; | |
772 | result->first_free = vm_map_to_entry(result); | |
773 | result->hint = vm_map_to_entry(result); | |
774 | result->color_rr = (color_seed++) & vm_color_mask; | |
775 | result->jit_entry_exists = FALSE; | |
776 | #if CONFIG_FREEZE | |
777 | result->default_freezer_handle = NULL; | |
778 | #endif | |
779 | vm_map_lock_init(result); | |
780 | lck_mtx_init_ext(&result->s_lock, &result->s_lock_ext, &vm_map_lck_grp, &vm_map_lck_attr); | |
781 | ||
782 | return(result); | |
783 | } | |
784 | ||
785 | /* | |
786 | * vm_map_entry_create: [ internal use only ] | |
787 | * | |
788 | * Allocates a VM map entry for insertion in the | |
789 | * given map (or map copy). No fields are filled. | |
790 | */ | |
791 | #define vm_map_entry_create(map, map_locked) _vm_map_entry_create(&(map)->hdr, map_locked) | |
792 | ||
793 | #define vm_map_copy_entry_create(copy, map_locked) \ | |
794 | _vm_map_entry_create(&(copy)->cpy_hdr, map_locked) | |
795 | unsigned reserved_zalloc_count, nonreserved_zalloc_count; | |
796 | ||
797 | static vm_map_entry_t | |
798 | _vm_map_entry_create( | |
799 | struct vm_map_header *map_header, boolean_t __unused map_locked) | |
800 | { | |
801 | zone_t zone; | |
802 | vm_map_entry_t entry; | |
803 | ||
804 | zone = vm_map_entry_zone; | |
805 | ||
806 | assert(map_header->entries_pageable ? !map_locked : TRUE); | |
807 | ||
808 | if (map_header->entries_pageable) { | |
809 | entry = (vm_map_entry_t) zalloc(zone); | |
810 | } | |
811 | else { | |
812 | entry = (vm_map_entry_t) zalloc_canblock(zone, FALSE); | |
813 | ||
814 | if (entry == VM_MAP_ENTRY_NULL) { | |
815 | zone = vm_map_entry_reserved_zone; | |
816 | entry = (vm_map_entry_t) zalloc(zone); | |
817 | OSAddAtomic(1, &reserved_zalloc_count); | |
818 | } else | |
819 | OSAddAtomic(1, &nonreserved_zalloc_count); | |
820 | } | |
821 | ||
822 | if (entry == VM_MAP_ENTRY_NULL) | |
823 | panic("vm_map_entry_create"); | |
824 | entry->from_reserved_zone = (zone == vm_map_entry_reserved_zone); | |
825 | ||
826 | vm_map_store_update( (vm_map_t) NULL, entry, VM_MAP_ENTRY_CREATE); | |
827 | #if MAP_ENTRY_CREATION_DEBUG | |
828 | entry->vme_creation_maphdr = map_header; | |
829 | fastbacktrace(&entry->vme_creation_bt[0], | |
830 | (sizeof(entry->vme_creation_bt)/sizeof(uintptr_t))); | |
831 | #endif | |
832 | return(entry); | |
833 | } | |
834 | ||
835 | /* | |
836 | * vm_map_entry_dispose: [ internal use only ] | |
837 | * | |
838 | * Inverse of vm_map_entry_create. | |
839 | * | |
840 | * write map lock held so no need to | |
841 | * do anything special to insure correctness | |
842 | * of the stores | |
843 | */ | |
844 | #define vm_map_entry_dispose(map, entry) \ | |
845 | _vm_map_entry_dispose(&(map)->hdr, (entry)) | |
846 | ||
847 | #define vm_map_copy_entry_dispose(map, entry) \ | |
848 | _vm_map_entry_dispose(&(copy)->cpy_hdr, (entry)) | |
849 | ||
850 | static void | |
851 | _vm_map_entry_dispose( | |
852 | register struct vm_map_header *map_header, | |
853 | register vm_map_entry_t entry) | |
854 | { | |
855 | register zone_t zone; | |
856 | ||
857 | if (map_header->entries_pageable || !(entry->from_reserved_zone)) | |
858 | zone = vm_map_entry_zone; | |
859 | else | |
860 | zone = vm_map_entry_reserved_zone; | |
861 | ||
862 | if (!map_header->entries_pageable) { | |
863 | if (zone == vm_map_entry_zone) | |
864 | OSAddAtomic(-1, &nonreserved_zalloc_count); | |
865 | else | |
866 | OSAddAtomic(-1, &reserved_zalloc_count); | |
867 | } | |
868 | ||
869 | zfree(zone, entry); | |
870 | } | |
871 | ||
872 | #if MACH_ASSERT | |
873 | static boolean_t first_free_check = FALSE; | |
874 | boolean_t | |
875 | first_free_is_valid( | |
876 | vm_map_t map) | |
877 | { | |
878 | if (!first_free_check) | |
879 | return TRUE; | |
880 | ||
881 | return( first_free_is_valid_store( map )); | |
882 | } | |
883 | #endif /* MACH_ASSERT */ | |
884 | ||
885 | ||
886 | #define vm_map_copy_entry_link(copy, after_where, entry) \ | |
887 | _vm_map_store_entry_link(&(copy)->cpy_hdr, after_where, (entry)) | |
888 | ||
889 | #define vm_map_copy_entry_unlink(copy, entry) \ | |
890 | _vm_map_store_entry_unlink(&(copy)->cpy_hdr, (entry)) | |
891 | ||
892 | #if MACH_ASSERT && TASK_SWAPPER | |
893 | /* | |
894 | * vm_map_res_reference: | |
895 | * | |
896 | * Adds another valid residence count to the given map. | |
897 | * | |
898 | * Map is locked so this function can be called from | |
899 | * vm_map_swapin. | |
900 | * | |
901 | */ | |
902 | void vm_map_res_reference(register vm_map_t map) | |
903 | { | |
904 | /* assert map is locked */ | |
905 | assert(map->res_count >= 0); | |
906 | assert(map->ref_count >= map->res_count); | |
907 | if (map->res_count == 0) { | |
908 | lck_mtx_unlock(&map->s_lock); | |
909 | vm_map_lock(map); | |
910 | vm_map_swapin(map); | |
911 | lck_mtx_lock(&map->s_lock); | |
912 | ++map->res_count; | |
913 | vm_map_unlock(map); | |
914 | } else | |
915 | ++map->res_count; | |
916 | } | |
917 | ||
918 | /* | |
919 | * vm_map_reference_swap: | |
920 | * | |
921 | * Adds valid reference and residence counts to the given map. | |
922 | * | |
923 | * The map may not be in memory (i.e. zero residence count). | |
924 | * | |
925 | */ | |
926 | void vm_map_reference_swap(register vm_map_t map) | |
927 | { | |
928 | assert(map != VM_MAP_NULL); | |
929 | lck_mtx_lock(&map->s_lock); | |
930 | assert(map->res_count >= 0); | |
931 | assert(map->ref_count >= map->res_count); | |
932 | map->ref_count++; | |
933 | vm_map_res_reference(map); | |
934 | lck_mtx_unlock(&map->s_lock); | |
935 | } | |
936 | ||
937 | /* | |
938 | * vm_map_res_deallocate: | |
939 | * | |
940 | * Decrement residence count on a map; possibly causing swapout. | |
941 | * | |
942 | * The map must be in memory (i.e. non-zero residence count). | |
943 | * | |
944 | * The map is locked, so this function is callable from vm_map_deallocate. | |
945 | * | |
946 | */ | |
947 | void vm_map_res_deallocate(register vm_map_t map) | |
948 | { | |
949 | assert(map->res_count > 0); | |
950 | if (--map->res_count == 0) { | |
951 | lck_mtx_unlock(&map->s_lock); | |
952 | vm_map_lock(map); | |
953 | vm_map_swapout(map); | |
954 | vm_map_unlock(map); | |
955 | lck_mtx_lock(&map->s_lock); | |
956 | } | |
957 | assert(map->ref_count >= map->res_count); | |
958 | } | |
959 | #endif /* MACH_ASSERT && TASK_SWAPPER */ | |
960 | ||
961 | /* | |
962 | * vm_map_destroy: | |
963 | * | |
964 | * Actually destroy a map. | |
965 | */ | |
966 | void | |
967 | vm_map_destroy( | |
968 | vm_map_t map, | |
969 | int flags) | |
970 | { | |
971 | vm_map_lock(map); | |
972 | ||
973 | /* clean up regular map entries */ | |
974 | (void) vm_map_delete(map, map->min_offset, map->max_offset, | |
975 | flags, VM_MAP_NULL); | |
976 | /* clean up leftover special mappings (commpage, etc...) */ | |
977 | (void) vm_map_delete(map, 0x0, 0xFFFFFFFFFFFFF000ULL, | |
978 | flags, VM_MAP_NULL); | |
979 | ||
980 | #if CONFIG_FREEZE | |
981 | if (map->default_freezer_handle) { | |
982 | default_freezer_handle_deallocate(map->default_freezer_handle); | |
983 | map->default_freezer_handle = NULL; | |
984 | } | |
985 | #endif | |
986 | vm_map_unlock(map); | |
987 | ||
988 | assert(map->hdr.nentries == 0); | |
989 | ||
990 | if(map->pmap) | |
991 | pmap_destroy(map->pmap); | |
992 | ||
993 | zfree(vm_map_zone, map); | |
994 | } | |
995 | ||
996 | #if TASK_SWAPPER | |
997 | /* | |
998 | * vm_map_swapin/vm_map_swapout | |
999 | * | |
1000 | * Swap a map in and out, either referencing or releasing its resources. | |
1001 | * These functions are internal use only; however, they must be exported | |
1002 | * because they may be called from macros, which are exported. | |
1003 | * | |
1004 | * In the case of swapout, there could be races on the residence count, | |
1005 | * so if the residence count is up, we return, assuming that a | |
1006 | * vm_map_deallocate() call in the near future will bring us back. | |
1007 | * | |
1008 | * Locking: | |
1009 | * -- We use the map write lock for synchronization among races. | |
1010 | * -- The map write lock, and not the simple s_lock, protects the | |
1011 | * swap state of the map. | |
1012 | * -- If a map entry is a share map, then we hold both locks, in | |
1013 | * hierarchical order. | |
1014 | * | |
1015 | * Synchronization Notes: | |
1016 | * 1) If a vm_map_swapin() call happens while swapout in progress, it | |
1017 | * will block on the map lock and proceed when swapout is through. | |
1018 | * 2) A vm_map_reference() call at this time is illegal, and will | |
1019 | * cause a panic. vm_map_reference() is only allowed on resident | |
1020 | * maps, since it refuses to block. | |
1021 | * 3) A vm_map_swapin() call during a swapin will block, and | |
1022 | * proceeed when the first swapin is done, turning into a nop. | |
1023 | * This is the reason the res_count is not incremented until | |
1024 | * after the swapin is complete. | |
1025 | * 4) There is a timing hole after the checks of the res_count, before | |
1026 | * the map lock is taken, during which a swapin may get the lock | |
1027 | * before a swapout about to happen. If this happens, the swapin | |
1028 | * will detect the state and increment the reference count, causing | |
1029 | * the swapout to be a nop, thereby delaying it until a later | |
1030 | * vm_map_deallocate. If the swapout gets the lock first, then | |
1031 | * the swapin will simply block until the swapout is done, and | |
1032 | * then proceed. | |
1033 | * | |
1034 | * Because vm_map_swapin() is potentially an expensive operation, it | |
1035 | * should be used with caution. | |
1036 | * | |
1037 | * Invariants: | |
1038 | * 1) A map with a residence count of zero is either swapped, or | |
1039 | * being swapped. | |
1040 | * 2) A map with a non-zero residence count is either resident, | |
1041 | * or being swapped in. | |
1042 | */ | |
1043 | ||
1044 | int vm_map_swap_enable = 1; | |
1045 | ||
1046 | void vm_map_swapin (vm_map_t map) | |
1047 | { | |
1048 | register vm_map_entry_t entry; | |
1049 | ||
1050 | if (!vm_map_swap_enable) /* debug */ | |
1051 | return; | |
1052 | ||
1053 | /* | |
1054 | * Map is locked | |
1055 | * First deal with various races. | |
1056 | */ | |
1057 | if (map->sw_state == MAP_SW_IN) | |
1058 | /* | |
1059 | * we raced with swapout and won. Returning will incr. | |
1060 | * the res_count, turning the swapout into a nop. | |
1061 | */ | |
1062 | return; | |
1063 | ||
1064 | /* | |
1065 | * The residence count must be zero. If we raced with another | |
1066 | * swapin, the state would have been IN; if we raced with a | |
1067 | * swapout (after another competing swapin), we must have lost | |
1068 | * the race to get here (see above comment), in which case | |
1069 | * res_count is still 0. | |
1070 | */ | |
1071 | assert(map->res_count == 0); | |
1072 | ||
1073 | /* | |
1074 | * There are no intermediate states of a map going out or | |
1075 | * coming in, since the map is locked during the transition. | |
1076 | */ | |
1077 | assert(map->sw_state == MAP_SW_OUT); | |
1078 | ||
1079 | /* | |
1080 | * We now operate upon each map entry. If the entry is a sub- | |
1081 | * or share-map, we call vm_map_res_reference upon it. | |
1082 | * If the entry is an object, we call vm_object_res_reference | |
1083 | * (this may iterate through the shadow chain). | |
1084 | * Note that we hold the map locked the entire time, | |
1085 | * even if we get back here via a recursive call in | |
1086 | * vm_map_res_reference. | |
1087 | */ | |
1088 | entry = vm_map_first_entry(map); | |
1089 | ||
1090 | while (entry != vm_map_to_entry(map)) { | |
1091 | if (entry->object.vm_object != VM_OBJECT_NULL) { | |
1092 | if (entry->is_sub_map) { | |
1093 | vm_map_t lmap = entry->object.sub_map; | |
1094 | lck_mtx_lock(&lmap->s_lock); | |
1095 | vm_map_res_reference(lmap); | |
1096 | lck_mtx_unlock(&lmap->s_lock); | |
1097 | } else { | |
1098 | vm_object_t object = entry->object.vm_object; | |
1099 | vm_object_lock(object); | |
1100 | /* | |
1101 | * This call may iterate through the | |
1102 | * shadow chain. | |
1103 | */ | |
1104 | vm_object_res_reference(object); | |
1105 | vm_object_unlock(object); | |
1106 | } | |
1107 | } | |
1108 | entry = entry->vme_next; | |
1109 | } | |
1110 | assert(map->sw_state == MAP_SW_OUT); | |
1111 | map->sw_state = MAP_SW_IN; | |
1112 | } | |
1113 | ||
1114 | void vm_map_swapout(vm_map_t map) | |
1115 | { | |
1116 | register vm_map_entry_t entry; | |
1117 | ||
1118 | /* | |
1119 | * Map is locked | |
1120 | * First deal with various races. | |
1121 | * If we raced with a swapin and lost, the residence count | |
1122 | * will have been incremented to 1, and we simply return. | |
1123 | */ | |
1124 | lck_mtx_lock(&map->s_lock); | |
1125 | if (map->res_count != 0) { | |
1126 | lck_mtx_unlock(&map->s_lock); | |
1127 | return; | |
1128 | } | |
1129 | lck_mtx_unlock(&map->s_lock); | |
1130 | ||
1131 | /* | |
1132 | * There are no intermediate states of a map going out or | |
1133 | * coming in, since the map is locked during the transition. | |
1134 | */ | |
1135 | assert(map->sw_state == MAP_SW_IN); | |
1136 | ||
1137 | if (!vm_map_swap_enable) | |
1138 | return; | |
1139 | ||
1140 | /* | |
1141 | * We now operate upon each map entry. If the entry is a sub- | |
1142 | * or share-map, we call vm_map_res_deallocate upon it. | |
1143 | * If the entry is an object, we call vm_object_res_deallocate | |
1144 | * (this may iterate through the shadow chain). | |
1145 | * Note that we hold the map locked the entire time, | |
1146 | * even if we get back here via a recursive call in | |
1147 | * vm_map_res_deallocate. | |
1148 | */ | |
1149 | entry = vm_map_first_entry(map); | |
1150 | ||
1151 | while (entry != vm_map_to_entry(map)) { | |
1152 | if (entry->object.vm_object != VM_OBJECT_NULL) { | |
1153 | if (entry->is_sub_map) { | |
1154 | vm_map_t lmap = entry->object.sub_map; | |
1155 | lck_mtx_lock(&lmap->s_lock); | |
1156 | vm_map_res_deallocate(lmap); | |
1157 | lck_mtx_unlock(&lmap->s_lock); | |
1158 | } else { | |
1159 | vm_object_t object = entry->object.vm_object; | |
1160 | vm_object_lock(object); | |
1161 | /* | |
1162 | * This call may take a long time, | |
1163 | * since it could actively push | |
1164 | * out pages (if we implement it | |
1165 | * that way). | |
1166 | */ | |
1167 | vm_object_res_deallocate(object); | |
1168 | vm_object_unlock(object); | |
1169 | } | |
1170 | } | |
1171 | entry = entry->vme_next; | |
1172 | } | |
1173 | assert(map->sw_state == MAP_SW_IN); | |
1174 | map->sw_state = MAP_SW_OUT; | |
1175 | } | |
1176 | ||
1177 | #endif /* TASK_SWAPPER */ | |
1178 | ||
1179 | /* | |
1180 | * vm_map_lookup_entry: [ internal use only ] | |
1181 | * | |
1182 | * Calls into the vm map store layer to find the map | |
1183 | * entry containing (or immediately preceding) the | |
1184 | * specified address in the given map; the entry is returned | |
1185 | * in the "entry" parameter. The boolean | |
1186 | * result indicates whether the address is | |
1187 | * actually contained in the map. | |
1188 | */ | |
1189 | boolean_t | |
1190 | vm_map_lookup_entry( | |
1191 | register vm_map_t map, | |
1192 | register vm_map_offset_t address, | |
1193 | vm_map_entry_t *entry) /* OUT */ | |
1194 | { | |
1195 | return ( vm_map_store_lookup_entry( map, address, entry )); | |
1196 | } | |
1197 | ||
1198 | /* | |
1199 | * Routine: vm_map_find_space | |
1200 | * Purpose: | |
1201 | * Allocate a range in the specified virtual address map, | |
1202 | * returning the entry allocated for that range. | |
1203 | * Used by kmem_alloc, etc. | |
1204 | * | |
1205 | * The map must be NOT be locked. It will be returned locked | |
1206 | * on KERN_SUCCESS, unlocked on failure. | |
1207 | * | |
1208 | * If an entry is allocated, the object/offset fields | |
1209 | * are initialized to zero. | |
1210 | */ | |
1211 | kern_return_t | |
1212 | vm_map_find_space( | |
1213 | register vm_map_t map, | |
1214 | vm_map_offset_t *address, /* OUT */ | |
1215 | vm_map_size_t size, | |
1216 | vm_map_offset_t mask, | |
1217 | int flags, | |
1218 | vm_map_entry_t *o_entry) /* OUT */ | |
1219 | { | |
1220 | register vm_map_entry_t entry, new_entry; | |
1221 | register vm_map_offset_t start; | |
1222 | register vm_map_offset_t end; | |
1223 | ||
1224 | if (size == 0) { | |
1225 | *address = 0; | |
1226 | return KERN_INVALID_ARGUMENT; | |
1227 | } | |
1228 | ||
1229 | if (flags & VM_FLAGS_GUARD_AFTER) { | |
1230 | /* account for the back guard page in the size */ | |
1231 | size += VM_MAP_PAGE_SIZE(map); | |
1232 | } | |
1233 | ||
1234 | new_entry = vm_map_entry_create(map, FALSE); | |
1235 | ||
1236 | /* | |
1237 | * Look for the first possible address; if there's already | |
1238 | * something at this address, we have to start after it. | |
1239 | */ | |
1240 | ||
1241 | vm_map_lock(map); | |
1242 | ||
1243 | if( map->disable_vmentry_reuse == TRUE) { | |
1244 | VM_MAP_HIGHEST_ENTRY(map, entry, start); | |
1245 | } else { | |
1246 | assert(first_free_is_valid(map)); | |
1247 | if ((entry = map->first_free) == vm_map_to_entry(map)) | |
1248 | start = map->min_offset; | |
1249 | else | |
1250 | start = entry->vme_end; | |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | * In any case, the "entry" always precedes | |
1255 | * the proposed new region throughout the loop: | |
1256 | */ | |
1257 | ||
1258 | while (TRUE) { | |
1259 | register vm_map_entry_t next; | |
1260 | ||
1261 | /* | |
1262 | * Find the end of the proposed new region. | |
1263 | * Be sure we didn't go beyond the end, or | |
1264 | * wrap around the address. | |
1265 | */ | |
1266 | ||
1267 | if (flags & VM_FLAGS_GUARD_BEFORE) { | |
1268 | /* reserve space for the front guard page */ | |
1269 | start += VM_MAP_PAGE_SIZE(map); | |
1270 | } | |
1271 | end = ((start + mask) & ~mask); | |
1272 | ||
1273 | if (end < start) { | |
1274 | vm_map_entry_dispose(map, new_entry); | |
1275 | vm_map_unlock(map); | |
1276 | return(KERN_NO_SPACE); | |
1277 | } | |
1278 | start = end; | |
1279 | end += size; | |
1280 | ||
1281 | if ((end > map->max_offset) || (end < start)) { | |
1282 | vm_map_entry_dispose(map, new_entry); | |
1283 | vm_map_unlock(map); | |
1284 | return(KERN_NO_SPACE); | |
1285 | } | |
1286 | ||
1287 | /* | |
1288 | * If there are no more entries, we must win. | |
1289 | */ | |
1290 | ||
1291 | next = entry->vme_next; | |
1292 | if (next == vm_map_to_entry(map)) | |
1293 | break; | |
1294 | ||
1295 | /* | |
1296 | * If there is another entry, it must be | |
1297 | * after the end of the potential new region. | |
1298 | */ | |
1299 | ||
1300 | if (next->vme_start >= end) | |
1301 | break; | |
1302 | ||
1303 | /* | |
1304 | * Didn't fit -- move to the next entry. | |
1305 | */ | |
1306 | ||
1307 | entry = next; | |
1308 | start = entry->vme_end; | |
1309 | } | |
1310 | ||
1311 | /* | |
1312 | * At this point, | |
1313 | * "start" and "end" should define the endpoints of the | |
1314 | * available new range, and | |
1315 | * "entry" should refer to the region before the new | |
1316 | * range, and | |
1317 | * | |
1318 | * the map should be locked. | |
1319 | */ | |
1320 | ||
1321 | if (flags & VM_FLAGS_GUARD_BEFORE) { | |
1322 | /* go back for the front guard page */ | |
1323 | start -= VM_MAP_PAGE_SIZE(map); | |
1324 | } | |
1325 | *address = start; | |
1326 | ||
1327 | assert(start < end); | |
1328 | new_entry->vme_start = start; | |
1329 | new_entry->vme_end = end; | |
1330 | assert(page_aligned(new_entry->vme_start)); | |
1331 | assert(page_aligned(new_entry->vme_end)); | |
1332 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start, | |
1333 | VM_MAP_PAGE_MASK(map))); | |
1334 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end, | |
1335 | VM_MAP_PAGE_MASK(map))); | |
1336 | ||
1337 | new_entry->is_shared = FALSE; | |
1338 | new_entry->is_sub_map = FALSE; | |
1339 | new_entry->use_pmap = TRUE; | |
1340 | new_entry->object.vm_object = VM_OBJECT_NULL; | |
1341 | new_entry->offset = (vm_object_offset_t) 0; | |
1342 | ||
1343 | new_entry->needs_copy = FALSE; | |
1344 | ||
1345 | new_entry->inheritance = VM_INHERIT_DEFAULT; | |
1346 | new_entry->protection = VM_PROT_DEFAULT; | |
1347 | new_entry->max_protection = VM_PROT_ALL; | |
1348 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; | |
1349 | new_entry->wired_count = 0; | |
1350 | new_entry->user_wired_count = 0; | |
1351 | ||
1352 | new_entry->in_transition = FALSE; | |
1353 | new_entry->needs_wakeup = FALSE; | |
1354 | new_entry->no_cache = FALSE; | |
1355 | new_entry->permanent = FALSE; | |
1356 | new_entry->superpage_size = FALSE; | |
1357 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { | |
1358 | new_entry->map_aligned = TRUE; | |
1359 | } else { | |
1360 | new_entry->map_aligned = FALSE; | |
1361 | } | |
1362 | ||
1363 | new_entry->used_for_jit = 0; | |
1364 | ||
1365 | new_entry->alias = 0; | |
1366 | new_entry->zero_wired_pages = FALSE; | |
1367 | new_entry->iokit_acct = FALSE; | |
1368 | ||
1369 | VM_GET_FLAGS_ALIAS(flags, new_entry->alias); | |
1370 | ||
1371 | /* | |
1372 | * Insert the new entry into the list | |
1373 | */ | |
1374 | ||
1375 | vm_map_store_entry_link(map, entry, new_entry); | |
1376 | ||
1377 | map->size += size; | |
1378 | ||
1379 | /* | |
1380 | * Update the lookup hint | |
1381 | */ | |
1382 | SAVE_HINT_MAP_WRITE(map, new_entry); | |
1383 | ||
1384 | *o_entry = new_entry; | |
1385 | return(KERN_SUCCESS); | |
1386 | } | |
1387 | ||
1388 | int vm_map_pmap_enter_print = FALSE; | |
1389 | int vm_map_pmap_enter_enable = FALSE; | |
1390 | ||
1391 | /* | |
1392 | * Routine: vm_map_pmap_enter [internal only] | |
1393 | * | |
1394 | * Description: | |
1395 | * Force pages from the specified object to be entered into | |
1396 | * the pmap at the specified address if they are present. | |
1397 | * As soon as a page not found in the object the scan ends. | |
1398 | * | |
1399 | * Returns: | |
1400 | * Nothing. | |
1401 | * | |
1402 | * In/out conditions: | |
1403 | * The source map should not be locked on entry. | |
1404 | */ | |
1405 | __unused static void | |
1406 | vm_map_pmap_enter( | |
1407 | vm_map_t map, | |
1408 | register vm_map_offset_t addr, | |
1409 | register vm_map_offset_t end_addr, | |
1410 | register vm_object_t object, | |
1411 | vm_object_offset_t offset, | |
1412 | vm_prot_t protection) | |
1413 | { | |
1414 | int type_of_fault; | |
1415 | kern_return_t kr; | |
1416 | ||
1417 | if(map->pmap == 0) | |
1418 | return; | |
1419 | ||
1420 | while (addr < end_addr) { | |
1421 | register vm_page_t m; | |
1422 | ||
1423 | ||
1424 | /* | |
1425 | * TODO: | |
1426 | * From vm_map_enter(), we come into this function without the map | |
1427 | * lock held or the object lock held. | |
1428 | * We haven't taken a reference on the object either. | |
1429 | * We should do a proper lookup on the map to make sure | |
1430 | * that things are sane before we go locking objects that | |
1431 | * could have been deallocated from under us. | |
1432 | */ | |
1433 | ||
1434 | vm_object_lock(object); | |
1435 | ||
1436 | m = vm_page_lookup(object, offset); | |
1437 | /* | |
1438 | * ENCRYPTED SWAP: | |
1439 | * The user should never see encrypted data, so do not | |
1440 | * enter an encrypted page in the page table. | |
1441 | */ | |
1442 | if (m == VM_PAGE_NULL || m->busy || m->encrypted || | |
1443 | m->fictitious || | |
1444 | (m->unusual && ( m->error || m->restart || m->absent))) { | |
1445 | vm_object_unlock(object); | |
1446 | return; | |
1447 | } | |
1448 | ||
1449 | if (vm_map_pmap_enter_print) { | |
1450 | printf("vm_map_pmap_enter:"); | |
1451 | printf("map: %p, addr: %llx, object: %p, offset: %llx\n", | |
1452 | map, (unsigned long long)addr, object, (unsigned long long)offset); | |
1453 | } | |
1454 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
1455 | kr = vm_fault_enter(m, map->pmap, addr, protection, protection, | |
1456 | VM_PAGE_WIRED(m), FALSE, FALSE, FALSE, | |
1457 | 0, /* XXX need user tag / alias? */ | |
1458 | 0, /* alternate accounting? */ | |
1459 | NULL, | |
1460 | &type_of_fault); | |
1461 | ||
1462 | vm_object_unlock(object); | |
1463 | ||
1464 | offset += PAGE_SIZE_64; | |
1465 | addr += PAGE_SIZE; | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | boolean_t vm_map_pmap_is_empty( | |
1470 | vm_map_t map, | |
1471 | vm_map_offset_t start, | |
1472 | vm_map_offset_t end); | |
1473 | boolean_t vm_map_pmap_is_empty( | |
1474 | vm_map_t map, | |
1475 | vm_map_offset_t start, | |
1476 | vm_map_offset_t end) | |
1477 | { | |
1478 | #ifdef MACHINE_PMAP_IS_EMPTY | |
1479 | return pmap_is_empty(map->pmap, start, end); | |
1480 | #else /* MACHINE_PMAP_IS_EMPTY */ | |
1481 | vm_map_offset_t offset; | |
1482 | ppnum_t phys_page; | |
1483 | ||
1484 | if (map->pmap == NULL) { | |
1485 | return TRUE; | |
1486 | } | |
1487 | ||
1488 | for (offset = start; | |
1489 | offset < end; | |
1490 | offset += PAGE_SIZE) { | |
1491 | phys_page = pmap_find_phys(map->pmap, offset); | |
1492 | if (phys_page) { | |
1493 | kprintf("vm_map_pmap_is_empty(%p,0x%llx,0x%llx): " | |
1494 | "page %d at 0x%llx\n", | |
1495 | map, (long long)start, (long long)end, | |
1496 | phys_page, (long long)offset); | |
1497 | return FALSE; | |
1498 | } | |
1499 | } | |
1500 | return TRUE; | |
1501 | #endif /* MACHINE_PMAP_IS_EMPTY */ | |
1502 | } | |
1503 | ||
1504 | #define MAX_TRIES_TO_GET_RANDOM_ADDRESS 1000 | |
1505 | kern_return_t | |
1506 | vm_map_random_address_for_size( | |
1507 | vm_map_t map, | |
1508 | vm_map_offset_t *address, | |
1509 | vm_map_size_t size) | |
1510 | { | |
1511 | kern_return_t kr = KERN_SUCCESS; | |
1512 | int tries = 0; | |
1513 | vm_map_offset_t random_addr = 0; | |
1514 | vm_map_offset_t hole_end; | |
1515 | ||
1516 | vm_map_entry_t next_entry = VM_MAP_ENTRY_NULL; | |
1517 | vm_map_entry_t prev_entry = VM_MAP_ENTRY_NULL; | |
1518 | vm_map_size_t vm_hole_size = 0; | |
1519 | vm_map_size_t addr_space_size; | |
1520 | ||
1521 | addr_space_size = vm_map_max(map) - vm_map_min(map); | |
1522 | ||
1523 | assert(page_aligned(size)); | |
1524 | ||
1525 | while (tries < MAX_TRIES_TO_GET_RANDOM_ADDRESS) { | |
1526 | random_addr = ((vm_map_offset_t)random()) << PAGE_SHIFT; | |
1527 | random_addr = vm_map_trunc_page( | |
1528 | vm_map_min(map) +(random_addr % addr_space_size), | |
1529 | VM_MAP_PAGE_MASK(map)); | |
1530 | ||
1531 | if (vm_map_lookup_entry(map, random_addr, &prev_entry) == FALSE) { | |
1532 | if (prev_entry == vm_map_to_entry(map)) { | |
1533 | next_entry = vm_map_first_entry(map); | |
1534 | } else { | |
1535 | next_entry = prev_entry->vme_next; | |
1536 | } | |
1537 | if (next_entry == vm_map_to_entry(map)) { | |
1538 | hole_end = vm_map_max(map); | |
1539 | } else { | |
1540 | hole_end = next_entry->vme_start; | |
1541 | } | |
1542 | vm_hole_size = hole_end - random_addr; | |
1543 | if (vm_hole_size >= size) { | |
1544 | *address = random_addr; | |
1545 | break; | |
1546 | } | |
1547 | } | |
1548 | tries++; | |
1549 | } | |
1550 | ||
1551 | if (tries == MAX_TRIES_TO_GET_RANDOM_ADDRESS) { | |
1552 | kr = KERN_NO_SPACE; | |
1553 | } | |
1554 | return kr; | |
1555 | } | |
1556 | ||
1557 | /* | |
1558 | * Routine: vm_map_enter | |
1559 | * | |
1560 | * Description: | |
1561 | * Allocate a range in the specified virtual address map. | |
1562 | * The resulting range will refer to memory defined by | |
1563 | * the given memory object and offset into that object. | |
1564 | * | |
1565 | * Arguments are as defined in the vm_map call. | |
1566 | */ | |
1567 | int _map_enter_debug = 0; | |
1568 | static unsigned int vm_map_enter_restore_successes = 0; | |
1569 | static unsigned int vm_map_enter_restore_failures = 0; | |
1570 | kern_return_t | |
1571 | vm_map_enter( | |
1572 | vm_map_t map, | |
1573 | vm_map_offset_t *address, /* IN/OUT */ | |
1574 | vm_map_size_t size, | |
1575 | vm_map_offset_t mask, | |
1576 | int flags, | |
1577 | vm_object_t object, | |
1578 | vm_object_offset_t offset, | |
1579 | boolean_t needs_copy, | |
1580 | vm_prot_t cur_protection, | |
1581 | vm_prot_t max_protection, | |
1582 | vm_inherit_t inheritance) | |
1583 | { | |
1584 | vm_map_entry_t entry, new_entry; | |
1585 | vm_map_offset_t start, tmp_start, tmp_offset; | |
1586 | vm_map_offset_t end, tmp_end; | |
1587 | vm_map_offset_t tmp2_start, tmp2_end; | |
1588 | vm_map_offset_t step; | |
1589 | kern_return_t result = KERN_SUCCESS; | |
1590 | vm_map_t zap_old_map = VM_MAP_NULL; | |
1591 | vm_map_t zap_new_map = VM_MAP_NULL; | |
1592 | boolean_t map_locked = FALSE; | |
1593 | boolean_t pmap_empty = TRUE; | |
1594 | boolean_t new_mapping_established = FALSE; | |
1595 | boolean_t keep_map_locked = ((flags & VM_FLAGS_KEEP_MAP_LOCKED) != 0); | |
1596 | boolean_t anywhere = ((flags & VM_FLAGS_ANYWHERE) != 0); | |
1597 | boolean_t purgable = ((flags & VM_FLAGS_PURGABLE) != 0); | |
1598 | boolean_t overwrite = ((flags & VM_FLAGS_OVERWRITE) != 0); | |
1599 | boolean_t no_cache = ((flags & VM_FLAGS_NO_CACHE) != 0); | |
1600 | boolean_t is_submap = ((flags & VM_FLAGS_SUBMAP) != 0); | |
1601 | boolean_t permanent = ((flags & VM_FLAGS_PERMANENT) != 0); | |
1602 | boolean_t entry_for_jit = ((flags & VM_FLAGS_MAP_JIT) != 0); | |
1603 | boolean_t iokit_acct = ((flags & VM_FLAGS_IOKIT_ACCT) != 0); | |
1604 | unsigned int superpage_size = ((flags & VM_FLAGS_SUPERPAGE_MASK) >> VM_FLAGS_SUPERPAGE_SHIFT); | |
1605 | char alias; | |
1606 | vm_map_offset_t effective_min_offset, effective_max_offset; | |
1607 | kern_return_t kr; | |
1608 | boolean_t clear_map_aligned = FALSE; | |
1609 | ||
1610 | if (superpage_size) { | |
1611 | switch (superpage_size) { | |
1612 | /* | |
1613 | * Note that the current implementation only supports | |
1614 | * a single size for superpages, SUPERPAGE_SIZE, per | |
1615 | * architecture. As soon as more sizes are supposed | |
1616 | * to be supported, SUPERPAGE_SIZE has to be replaced | |
1617 | * with a lookup of the size depending on superpage_size. | |
1618 | */ | |
1619 | #ifdef __x86_64__ | |
1620 | case SUPERPAGE_SIZE_ANY: | |
1621 | /* handle it like 2 MB and round up to page size */ | |
1622 | size = (size + 2*1024*1024 - 1) & ~(2*1024*1024 - 1); | |
1623 | case SUPERPAGE_SIZE_2MB: | |
1624 | break; | |
1625 | #endif | |
1626 | default: | |
1627 | return KERN_INVALID_ARGUMENT; | |
1628 | } | |
1629 | mask = SUPERPAGE_SIZE-1; | |
1630 | if (size & (SUPERPAGE_SIZE-1)) | |
1631 | return KERN_INVALID_ARGUMENT; | |
1632 | inheritance = VM_INHERIT_NONE; /* fork() children won't inherit superpages */ | |
1633 | } | |
1634 | ||
1635 | ||
1636 | ||
1637 | if (is_submap) { | |
1638 | if (purgable) { | |
1639 | /* submaps can not be purgeable */ | |
1640 | return KERN_INVALID_ARGUMENT; | |
1641 | } | |
1642 | if (object == VM_OBJECT_NULL) { | |
1643 | /* submaps can not be created lazily */ | |
1644 | return KERN_INVALID_ARGUMENT; | |
1645 | } | |
1646 | } | |
1647 | if (flags & VM_FLAGS_ALREADY) { | |
1648 | /* | |
1649 | * VM_FLAGS_ALREADY says that it's OK if the same mapping | |
1650 | * is already present. For it to be meaningul, the requested | |
1651 | * mapping has to be at a fixed address (!VM_FLAGS_ANYWHERE) and | |
1652 | * we shouldn't try and remove what was mapped there first | |
1653 | * (!VM_FLAGS_OVERWRITE). | |
1654 | */ | |
1655 | if ((flags & VM_FLAGS_ANYWHERE) || | |
1656 | (flags & VM_FLAGS_OVERWRITE)) { | |
1657 | return KERN_INVALID_ARGUMENT; | |
1658 | } | |
1659 | } | |
1660 | ||
1661 | effective_min_offset = map->min_offset; | |
1662 | ||
1663 | if (flags & VM_FLAGS_BEYOND_MAX) { | |
1664 | /* | |
1665 | * Allow an insertion beyond the map's max offset. | |
1666 | */ | |
1667 | if (vm_map_is_64bit(map)) | |
1668 | effective_max_offset = 0xFFFFFFFFFFFFF000ULL; | |
1669 | else | |
1670 | effective_max_offset = 0x00000000FFFFF000ULL; | |
1671 | } else { | |
1672 | effective_max_offset = map->max_offset; | |
1673 | } | |
1674 | ||
1675 | if (size == 0 || | |
1676 | (offset & PAGE_MASK_64) != 0) { | |
1677 | *address = 0; | |
1678 | return KERN_INVALID_ARGUMENT; | |
1679 | } | |
1680 | ||
1681 | VM_GET_FLAGS_ALIAS(flags, alias); | |
1682 | ||
1683 | #define RETURN(value) { result = value; goto BailOut; } | |
1684 | ||
1685 | assert(page_aligned(*address)); | |
1686 | assert(page_aligned(size)); | |
1687 | ||
1688 | if (!VM_MAP_PAGE_ALIGNED(size, VM_MAP_PAGE_MASK(map))) { | |
1689 | /* | |
1690 | * In most cases, the caller rounds the size up to the | |
1691 | * map's page size. | |
1692 | * If we get a size that is explicitly not map-aligned here, | |
1693 | * we'll have to respect the caller's wish and mark the | |
1694 | * mapping as "not map-aligned" to avoid tripping the | |
1695 | * map alignment checks later. | |
1696 | */ | |
1697 | clear_map_aligned = TRUE; | |
1698 | } | |
1699 | if (!anywhere && | |
1700 | !VM_MAP_PAGE_ALIGNED(*address, VM_MAP_PAGE_MASK(map))) { | |
1701 | /* | |
1702 | * We've been asked to map at a fixed address and that | |
1703 | * address is not aligned to the map's specific alignment. | |
1704 | * The caller should know what it's doing (i.e. most likely | |
1705 | * mapping some fragmented copy map, transferring memory from | |
1706 | * a VM map with a different alignment), so clear map_aligned | |
1707 | * for this new VM map entry and proceed. | |
1708 | */ | |
1709 | clear_map_aligned = TRUE; | |
1710 | } | |
1711 | ||
1712 | /* | |
1713 | * Only zero-fill objects are allowed to be purgable. | |
1714 | * LP64todo - limit purgable objects to 32-bits for now | |
1715 | */ | |
1716 | if (purgable && | |
1717 | (offset != 0 || | |
1718 | (object != VM_OBJECT_NULL && | |
1719 | (object->vo_size != size || | |
1720 | object->purgable == VM_PURGABLE_DENY)) | |
1721 | || size > ANON_MAX_SIZE)) /* LP64todo: remove when dp capable */ | |
1722 | return KERN_INVALID_ARGUMENT; | |
1723 | ||
1724 | if (!anywhere && overwrite) { | |
1725 | /* | |
1726 | * Create a temporary VM map to hold the old mappings in the | |
1727 | * affected area while we create the new one. | |
1728 | * This avoids releasing the VM map lock in | |
1729 | * vm_map_entry_delete() and allows atomicity | |
1730 | * when we want to replace some mappings with a new one. | |
1731 | * It also allows us to restore the old VM mappings if the | |
1732 | * new mapping fails. | |
1733 | */ | |
1734 | zap_old_map = vm_map_create(PMAP_NULL, | |
1735 | *address, | |
1736 | *address + size, | |
1737 | map->hdr.entries_pageable); | |
1738 | vm_map_set_page_shift(zap_old_map, VM_MAP_PAGE_SHIFT(map)); | |
1739 | } | |
1740 | ||
1741 | StartAgain: ; | |
1742 | ||
1743 | start = *address; | |
1744 | ||
1745 | if (anywhere) { | |
1746 | vm_map_lock(map); | |
1747 | map_locked = TRUE; | |
1748 | ||
1749 | if (entry_for_jit) { | |
1750 | if (map->jit_entry_exists) { | |
1751 | result = KERN_INVALID_ARGUMENT; | |
1752 | goto BailOut; | |
1753 | } | |
1754 | /* | |
1755 | * Get a random start address. | |
1756 | */ | |
1757 | result = vm_map_random_address_for_size(map, address, size); | |
1758 | if (result != KERN_SUCCESS) { | |
1759 | goto BailOut; | |
1760 | } | |
1761 | start = *address; | |
1762 | } | |
1763 | ||
1764 | ||
1765 | /* | |
1766 | * Calculate the first possible address. | |
1767 | */ | |
1768 | ||
1769 | if (start < effective_min_offset) | |
1770 | start = effective_min_offset; | |
1771 | if (start > effective_max_offset) | |
1772 | RETURN(KERN_NO_SPACE); | |
1773 | ||
1774 | /* | |
1775 | * Look for the first possible address; | |
1776 | * if there's already something at this | |
1777 | * address, we have to start after it. | |
1778 | */ | |
1779 | ||
1780 | if( map->disable_vmentry_reuse == TRUE) { | |
1781 | VM_MAP_HIGHEST_ENTRY(map, entry, start); | |
1782 | } else { | |
1783 | assert(first_free_is_valid(map)); | |
1784 | ||
1785 | entry = map->first_free; | |
1786 | ||
1787 | if (entry == vm_map_to_entry(map)) { | |
1788 | entry = NULL; | |
1789 | } else { | |
1790 | if (entry->vme_next == vm_map_to_entry(map)){ | |
1791 | /* | |
1792 | * Hole at the end of the map. | |
1793 | */ | |
1794 | entry = NULL; | |
1795 | } else { | |
1796 | if (start < (entry->vme_next)->vme_start ) { | |
1797 | start = entry->vme_end; | |
1798 | start = vm_map_round_page(start, | |
1799 | VM_MAP_PAGE_MASK(map)); | |
1800 | } else { | |
1801 | /* | |
1802 | * Need to do a lookup. | |
1803 | */ | |
1804 | entry = NULL; | |
1805 | } | |
1806 | } | |
1807 | } | |
1808 | ||
1809 | if (entry == NULL) { | |
1810 | vm_map_entry_t tmp_entry; | |
1811 | if (vm_map_lookup_entry(map, start, &tmp_entry)) { | |
1812 | assert(!entry_for_jit); | |
1813 | start = tmp_entry->vme_end; | |
1814 | start = vm_map_round_page(start, | |
1815 | VM_MAP_PAGE_MASK(map)); | |
1816 | } | |
1817 | entry = tmp_entry; | |
1818 | } | |
1819 | } | |
1820 | ||
1821 | /* | |
1822 | * In any case, the "entry" always precedes | |
1823 | * the proposed new region throughout the | |
1824 | * loop: | |
1825 | */ | |
1826 | ||
1827 | while (TRUE) { | |
1828 | register vm_map_entry_t next; | |
1829 | ||
1830 | /* | |
1831 | * Find the end of the proposed new region. | |
1832 | * Be sure we didn't go beyond the end, or | |
1833 | * wrap around the address. | |
1834 | */ | |
1835 | ||
1836 | end = ((start + mask) & ~mask); | |
1837 | end = vm_map_round_page(end, | |
1838 | VM_MAP_PAGE_MASK(map)); | |
1839 | if (end < start) | |
1840 | RETURN(KERN_NO_SPACE); | |
1841 | start = end; | |
1842 | assert(VM_MAP_PAGE_ALIGNED(start, | |
1843 | VM_MAP_PAGE_MASK(map))); | |
1844 | end += size; | |
1845 | ||
1846 | if ((end > effective_max_offset) || (end < start)) { | |
1847 | if (map->wait_for_space) { | |
1848 | assert(!keep_map_locked); | |
1849 | if (size <= (effective_max_offset - | |
1850 | effective_min_offset)) { | |
1851 | assert_wait((event_t)map, | |
1852 | THREAD_ABORTSAFE); | |
1853 | vm_map_unlock(map); | |
1854 | map_locked = FALSE; | |
1855 | thread_block(THREAD_CONTINUE_NULL); | |
1856 | goto StartAgain; | |
1857 | } | |
1858 | } | |
1859 | RETURN(KERN_NO_SPACE); | |
1860 | } | |
1861 | ||
1862 | /* | |
1863 | * If there are no more entries, we must win. | |
1864 | */ | |
1865 | ||
1866 | next = entry->vme_next; | |
1867 | if (next == vm_map_to_entry(map)) | |
1868 | break; | |
1869 | ||
1870 | /* | |
1871 | * If there is another entry, it must be | |
1872 | * after the end of the potential new region. | |
1873 | */ | |
1874 | ||
1875 | if (next->vme_start >= end) | |
1876 | break; | |
1877 | ||
1878 | /* | |
1879 | * Didn't fit -- move to the next entry. | |
1880 | */ | |
1881 | ||
1882 | entry = next; | |
1883 | start = entry->vme_end; | |
1884 | start = vm_map_round_page(start, | |
1885 | VM_MAP_PAGE_MASK(map)); | |
1886 | } | |
1887 | *address = start; | |
1888 | assert(VM_MAP_PAGE_ALIGNED(*address, | |
1889 | VM_MAP_PAGE_MASK(map))); | |
1890 | } else { | |
1891 | /* | |
1892 | * Verify that: | |
1893 | * the address doesn't itself violate | |
1894 | * the mask requirement. | |
1895 | */ | |
1896 | ||
1897 | vm_map_lock(map); | |
1898 | map_locked = TRUE; | |
1899 | if ((start & mask) != 0) | |
1900 | RETURN(KERN_NO_SPACE); | |
1901 | ||
1902 | /* | |
1903 | * ... the address is within bounds | |
1904 | */ | |
1905 | ||
1906 | end = start + size; | |
1907 | ||
1908 | if ((start < effective_min_offset) || | |
1909 | (end > effective_max_offset) || | |
1910 | (start >= end)) { | |
1911 | RETURN(KERN_INVALID_ADDRESS); | |
1912 | } | |
1913 | ||
1914 | if (overwrite && zap_old_map != VM_MAP_NULL) { | |
1915 | /* | |
1916 | * Fixed mapping and "overwrite" flag: attempt to | |
1917 | * remove all existing mappings in the specified | |
1918 | * address range, saving them in our "zap_old_map". | |
1919 | */ | |
1920 | (void) vm_map_delete(map, start, end, | |
1921 | (VM_MAP_REMOVE_SAVE_ENTRIES | | |
1922 | VM_MAP_REMOVE_NO_MAP_ALIGN), | |
1923 | zap_old_map); | |
1924 | } | |
1925 | ||
1926 | /* | |
1927 | * ... the starting address isn't allocated | |
1928 | */ | |
1929 | ||
1930 | if (vm_map_lookup_entry(map, start, &entry)) { | |
1931 | if (! (flags & VM_FLAGS_ALREADY)) { | |
1932 | RETURN(KERN_NO_SPACE); | |
1933 | } | |
1934 | /* | |
1935 | * Check if what's already there is what we want. | |
1936 | */ | |
1937 | tmp_start = start; | |
1938 | tmp_offset = offset; | |
1939 | if (entry->vme_start < start) { | |
1940 | tmp_start -= start - entry->vme_start; | |
1941 | tmp_offset -= start - entry->vme_start; | |
1942 | ||
1943 | } | |
1944 | for (; entry->vme_start < end; | |
1945 | entry = entry->vme_next) { | |
1946 | /* | |
1947 | * Check if the mapping's attributes | |
1948 | * match the existing map entry. | |
1949 | */ | |
1950 | if (entry == vm_map_to_entry(map) || | |
1951 | entry->vme_start != tmp_start || | |
1952 | entry->is_sub_map != is_submap || | |
1953 | entry->offset != tmp_offset || | |
1954 | entry->needs_copy != needs_copy || | |
1955 | entry->protection != cur_protection || | |
1956 | entry->max_protection != max_protection || | |
1957 | entry->inheritance != inheritance || | |
1958 | entry->iokit_acct != iokit_acct || | |
1959 | entry->alias != alias) { | |
1960 | /* not the same mapping ! */ | |
1961 | RETURN(KERN_NO_SPACE); | |
1962 | } | |
1963 | /* | |
1964 | * Check if the same object is being mapped. | |
1965 | */ | |
1966 | if (is_submap) { | |
1967 | if (entry->object.sub_map != | |
1968 | (vm_map_t) object) { | |
1969 | /* not the same submap */ | |
1970 | RETURN(KERN_NO_SPACE); | |
1971 | } | |
1972 | } else { | |
1973 | if (entry->object.vm_object != object) { | |
1974 | /* not the same VM object... */ | |
1975 | vm_object_t obj2; | |
1976 | ||
1977 | obj2 = entry->object.vm_object; | |
1978 | if ((obj2 == VM_OBJECT_NULL || | |
1979 | obj2->internal) && | |
1980 | (object == VM_OBJECT_NULL || | |
1981 | object->internal)) { | |
1982 | /* | |
1983 | * ... but both are | |
1984 | * anonymous memory, | |
1985 | * so equivalent. | |
1986 | */ | |
1987 | } else { | |
1988 | RETURN(KERN_NO_SPACE); | |
1989 | } | |
1990 | } | |
1991 | } | |
1992 | ||
1993 | tmp_offset += entry->vme_end - entry->vme_start; | |
1994 | tmp_start += entry->vme_end - entry->vme_start; | |
1995 | if (entry->vme_end >= end) { | |
1996 | /* reached the end of our mapping */ | |
1997 | break; | |
1998 | } | |
1999 | } | |
2000 | /* it all matches: let's use what's already there ! */ | |
2001 | RETURN(KERN_MEMORY_PRESENT); | |
2002 | } | |
2003 | ||
2004 | /* | |
2005 | * ... the next region doesn't overlap the | |
2006 | * end point. | |
2007 | */ | |
2008 | ||
2009 | if ((entry->vme_next != vm_map_to_entry(map)) && | |
2010 | (entry->vme_next->vme_start < end)) | |
2011 | RETURN(KERN_NO_SPACE); | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | * At this point, | |
2016 | * "start" and "end" should define the endpoints of the | |
2017 | * available new range, and | |
2018 | * "entry" should refer to the region before the new | |
2019 | * range, and | |
2020 | * | |
2021 | * the map should be locked. | |
2022 | */ | |
2023 | ||
2024 | /* | |
2025 | * See whether we can avoid creating a new entry (and object) by | |
2026 | * extending one of our neighbors. [So far, we only attempt to | |
2027 | * extend from below.] Note that we can never extend/join | |
2028 | * purgable objects because they need to remain distinct | |
2029 | * entities in order to implement their "volatile object" | |
2030 | * semantics. | |
2031 | */ | |
2032 | ||
2033 | if (purgable || entry_for_jit) { | |
2034 | if (object == VM_OBJECT_NULL) { | |
2035 | object = vm_object_allocate(size); | |
2036 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
2037 | object->true_share = TRUE; | |
2038 | if (purgable) { | |
2039 | task_t owner; | |
2040 | object->purgable = VM_PURGABLE_NONVOLATILE; | |
2041 | if (map->pmap == kernel_pmap) { | |
2042 | /* | |
2043 | * Purgeable mappings made in a kernel | |
2044 | * map are "owned" by the kernel itself | |
2045 | * rather than the current user task | |
2046 | * because they're likely to be used by | |
2047 | * more than this user task (see | |
2048 | * execargs_purgeable_allocate(), for | |
2049 | * example). | |
2050 | */ | |
2051 | owner = kernel_task; | |
2052 | } else { | |
2053 | owner = current_task(); | |
2054 | } | |
2055 | assert(object->vo_purgeable_owner == NULL); | |
2056 | assert(object->resident_page_count == 0); | |
2057 | assert(object->wired_page_count == 0); | |
2058 | vm_object_lock(object); | |
2059 | vm_purgeable_nonvolatile_enqueue(object, owner); | |
2060 | vm_object_unlock(object); | |
2061 | } | |
2062 | offset = (vm_object_offset_t)0; | |
2063 | } | |
2064 | } else if ((is_submap == FALSE) && | |
2065 | (object == VM_OBJECT_NULL) && | |
2066 | (entry != vm_map_to_entry(map)) && | |
2067 | (entry->vme_end == start) && | |
2068 | (!entry->is_shared) && | |
2069 | (!entry->is_sub_map) && | |
2070 | (!entry->in_transition) && | |
2071 | (!entry->needs_wakeup) && | |
2072 | (entry->behavior == VM_BEHAVIOR_DEFAULT) && | |
2073 | (entry->protection == cur_protection) && | |
2074 | (entry->max_protection == max_protection) && | |
2075 | (entry->inheritance == inheritance) && | |
2076 | ((alias == VM_MEMORY_REALLOC) || (entry->alias == alias)) && | |
2077 | (entry->no_cache == no_cache) && | |
2078 | (entry->permanent == permanent) && | |
2079 | (!entry->superpage_size && !superpage_size) && | |
2080 | /* | |
2081 | * No coalescing if not map-aligned, to avoid propagating | |
2082 | * that condition any further than needed: | |
2083 | */ | |
2084 | (!entry->map_aligned || !clear_map_aligned) && | |
2085 | (!entry->zero_wired_pages) && | |
2086 | (!entry->used_for_jit && !entry_for_jit) && | |
2087 | (entry->iokit_acct == iokit_acct) && | |
2088 | ||
2089 | ((entry->vme_end - entry->vme_start) + size <= | |
2090 | (alias == VM_MEMORY_REALLOC ? | |
2091 | ANON_CHUNK_SIZE : | |
2092 | NO_COALESCE_LIMIT)) && | |
2093 | ||
2094 | (entry->wired_count == 0)) { /* implies user_wired_count == 0 */ | |
2095 | if (vm_object_coalesce(entry->object.vm_object, | |
2096 | VM_OBJECT_NULL, | |
2097 | entry->offset, | |
2098 | (vm_object_offset_t) 0, | |
2099 | (vm_map_size_t)(entry->vme_end - entry->vme_start), | |
2100 | (vm_map_size_t)(end - entry->vme_end))) { | |
2101 | ||
2102 | /* | |
2103 | * Coalesced the two objects - can extend | |
2104 | * the previous map entry to include the | |
2105 | * new range. | |
2106 | */ | |
2107 | map->size += (end - entry->vme_end); | |
2108 | assert(entry->vme_start < end); | |
2109 | assert(VM_MAP_PAGE_ALIGNED(end, | |
2110 | VM_MAP_PAGE_MASK(map))); | |
2111 | entry->vme_end = end; | |
2112 | vm_map_store_update_first_free(map, map->first_free); | |
2113 | new_mapping_established = TRUE; | |
2114 | RETURN(KERN_SUCCESS); | |
2115 | } | |
2116 | } | |
2117 | ||
2118 | step = superpage_size ? SUPERPAGE_SIZE : (end - start); | |
2119 | new_entry = NULL; | |
2120 | ||
2121 | for (tmp2_start = start; tmp2_start<end; tmp2_start += step) { | |
2122 | tmp2_end = tmp2_start + step; | |
2123 | /* | |
2124 | * Create a new entry | |
2125 | * LP64todo - for now, we can only allocate 4GB internal objects | |
2126 | * because the default pager can't page bigger ones. Remove this | |
2127 | * when it can. | |
2128 | * | |
2129 | * XXX FBDP | |
2130 | * The reserved "page zero" in each process's address space can | |
2131 | * be arbitrarily large. Splitting it into separate 4GB objects and | |
2132 | * therefore different VM map entries serves no purpose and just | |
2133 | * slows down operations on the VM map, so let's not split the | |
2134 | * allocation into 4GB chunks if the max protection is NONE. That | |
2135 | * memory should never be accessible, so it will never get to the | |
2136 | * default pager. | |
2137 | */ | |
2138 | tmp_start = tmp2_start; | |
2139 | if (object == VM_OBJECT_NULL && | |
2140 | size > (vm_map_size_t)ANON_CHUNK_SIZE && | |
2141 | max_protection != VM_PROT_NONE && | |
2142 | superpage_size == 0) | |
2143 | tmp_end = tmp_start + (vm_map_size_t)ANON_CHUNK_SIZE; | |
2144 | else | |
2145 | tmp_end = tmp2_end; | |
2146 | do { | |
2147 | new_entry = vm_map_entry_insert(map, entry, tmp_start, tmp_end, | |
2148 | object, offset, needs_copy, | |
2149 | FALSE, FALSE, | |
2150 | cur_protection, max_protection, | |
2151 | VM_BEHAVIOR_DEFAULT, | |
2152 | (entry_for_jit)? VM_INHERIT_NONE: inheritance, | |
2153 | 0, no_cache, | |
2154 | permanent, | |
2155 | superpage_size, | |
2156 | clear_map_aligned, | |
2157 | is_submap); | |
2158 | new_entry->alias = alias; | |
2159 | if (entry_for_jit){ | |
2160 | if (!(map->jit_entry_exists)){ | |
2161 | new_entry->used_for_jit = TRUE; | |
2162 | map->jit_entry_exists = TRUE; | |
2163 | } | |
2164 | } | |
2165 | ||
2166 | assert(!new_entry->iokit_acct); | |
2167 | if (!is_submap && | |
2168 | object != VM_OBJECT_NULL && | |
2169 | object->purgable != VM_PURGABLE_DENY) { | |
2170 | assert(new_entry->use_pmap); | |
2171 | assert(!new_entry->iokit_acct); | |
2172 | /* | |
2173 | * Turn off pmap accounting since | |
2174 | * purgeable objects have their | |
2175 | * own ledgers. | |
2176 | */ | |
2177 | new_entry->use_pmap = FALSE; | |
2178 | } else if (!is_submap && | |
2179 | iokit_acct) { | |
2180 | /* alternate accounting */ | |
2181 | assert(!new_entry->iokit_acct); | |
2182 | assert(new_entry->use_pmap); | |
2183 | new_entry->iokit_acct = TRUE; | |
2184 | new_entry->use_pmap = FALSE; | |
2185 | vm_map_iokit_mapped_region( | |
2186 | map, | |
2187 | (new_entry->vme_end - | |
2188 | new_entry->vme_start)); | |
2189 | } else if (!is_submap) { | |
2190 | assert(!new_entry->iokit_acct); | |
2191 | assert(new_entry->use_pmap); | |
2192 | } | |
2193 | ||
2194 | if (is_submap) { | |
2195 | vm_map_t submap; | |
2196 | boolean_t submap_is_64bit; | |
2197 | boolean_t use_pmap; | |
2198 | ||
2199 | assert(new_entry->is_sub_map); | |
2200 | assert(!new_entry->use_pmap); | |
2201 | assert(!new_entry->iokit_acct); | |
2202 | submap = (vm_map_t) object; | |
2203 | submap_is_64bit = vm_map_is_64bit(submap); | |
2204 | use_pmap = (alias == VM_MEMORY_SHARED_PMAP); | |
2205 | #ifndef NO_NESTED_PMAP | |
2206 | if (use_pmap && submap->pmap == NULL) { | |
2207 | ledger_t ledger = map->pmap->ledger; | |
2208 | /* we need a sub pmap to nest... */ | |
2209 | submap->pmap = pmap_create(ledger, 0, | |
2210 | submap_is_64bit); | |
2211 | if (submap->pmap == NULL) { | |
2212 | /* let's proceed without nesting... */ | |
2213 | } | |
2214 | } | |
2215 | if (use_pmap && submap->pmap != NULL) { | |
2216 | kr = pmap_nest(map->pmap, | |
2217 | submap->pmap, | |
2218 | tmp_start, | |
2219 | tmp_start, | |
2220 | tmp_end - tmp_start); | |
2221 | if (kr != KERN_SUCCESS) { | |
2222 | printf("vm_map_enter: " | |
2223 | "pmap_nest(0x%llx,0x%llx) " | |
2224 | "error 0x%x\n", | |
2225 | (long long)tmp_start, | |
2226 | (long long)tmp_end, | |
2227 | kr); | |
2228 | } else { | |
2229 | /* we're now nested ! */ | |
2230 | new_entry->use_pmap = TRUE; | |
2231 | pmap_empty = FALSE; | |
2232 | } | |
2233 | } | |
2234 | #endif /* NO_NESTED_PMAP */ | |
2235 | } | |
2236 | entry = new_entry; | |
2237 | ||
2238 | if (superpage_size) { | |
2239 | vm_page_t pages, m; | |
2240 | vm_object_t sp_object; | |
2241 | ||
2242 | entry->offset = 0; | |
2243 | ||
2244 | /* allocate one superpage */ | |
2245 | kr = cpm_allocate(SUPERPAGE_SIZE, &pages, 0, SUPERPAGE_NBASEPAGES-1, TRUE, 0); | |
2246 | if (kr != KERN_SUCCESS) { | |
2247 | new_mapping_established = TRUE; /* will cause deallocation of whole range */ | |
2248 | RETURN(kr); | |
2249 | } | |
2250 | ||
2251 | /* create one vm_object per superpage */ | |
2252 | sp_object = vm_object_allocate((vm_map_size_t)(entry->vme_end - entry->vme_start)); | |
2253 | sp_object->phys_contiguous = TRUE; | |
2254 | sp_object->vo_shadow_offset = (vm_object_offset_t)pages->phys_page*PAGE_SIZE; | |
2255 | entry->object.vm_object = sp_object; | |
2256 | assert(entry->use_pmap); | |
2257 | ||
2258 | /* enter the base pages into the object */ | |
2259 | vm_object_lock(sp_object); | |
2260 | for (offset = 0; offset < SUPERPAGE_SIZE; offset += PAGE_SIZE) { | |
2261 | m = pages; | |
2262 | pmap_zero_page(m->phys_page); | |
2263 | pages = NEXT_PAGE(m); | |
2264 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; | |
2265 | vm_page_insert(m, sp_object, offset); | |
2266 | } | |
2267 | vm_object_unlock(sp_object); | |
2268 | } | |
2269 | } while (tmp_end != tmp2_end && | |
2270 | (tmp_start = tmp_end) && | |
2271 | (tmp_end = (tmp2_end - tmp_end > (vm_map_size_t)ANON_CHUNK_SIZE) ? | |
2272 | tmp_end + (vm_map_size_t)ANON_CHUNK_SIZE : tmp2_end)); | |
2273 | } | |
2274 | ||
2275 | new_mapping_established = TRUE; | |
2276 | ||
2277 | BailOut: | |
2278 | assert(map_locked == TRUE); | |
2279 | ||
2280 | if (result == KERN_SUCCESS) { | |
2281 | vm_prot_t pager_prot; | |
2282 | memory_object_t pager; | |
2283 | ||
2284 | #if DEBUG | |
2285 | if (pmap_empty && | |
2286 | !(flags & VM_FLAGS_NO_PMAP_CHECK)) { | |
2287 | assert(vm_map_pmap_is_empty(map, | |
2288 | *address, | |
2289 | *address+size)); | |
2290 | } | |
2291 | #endif /* DEBUG */ | |
2292 | ||
2293 | /* | |
2294 | * For "named" VM objects, let the pager know that the | |
2295 | * memory object is being mapped. Some pagers need to keep | |
2296 | * track of this, to know when they can reclaim the memory | |
2297 | * object, for example. | |
2298 | * VM calls memory_object_map() for each mapping (specifying | |
2299 | * the protection of each mapping) and calls | |
2300 | * memory_object_last_unmap() when all the mappings are gone. | |
2301 | */ | |
2302 | pager_prot = max_protection; | |
2303 | if (needs_copy) { | |
2304 | /* | |
2305 | * Copy-On-Write mapping: won't modify | |
2306 | * the memory object. | |
2307 | */ | |
2308 | pager_prot &= ~VM_PROT_WRITE; | |
2309 | } | |
2310 | if (!is_submap && | |
2311 | object != VM_OBJECT_NULL && | |
2312 | object->named && | |
2313 | object->pager != MEMORY_OBJECT_NULL) { | |
2314 | vm_object_lock(object); | |
2315 | pager = object->pager; | |
2316 | if (object->named && | |
2317 | pager != MEMORY_OBJECT_NULL) { | |
2318 | assert(object->pager_ready); | |
2319 | vm_object_mapping_wait(object, THREAD_UNINT); | |
2320 | vm_object_mapping_begin(object); | |
2321 | vm_object_unlock(object); | |
2322 | ||
2323 | kr = memory_object_map(pager, pager_prot); | |
2324 | assert(kr == KERN_SUCCESS); | |
2325 | ||
2326 | vm_object_lock(object); | |
2327 | vm_object_mapping_end(object); | |
2328 | } | |
2329 | vm_object_unlock(object); | |
2330 | } | |
2331 | } | |
2332 | ||
2333 | assert(map_locked == TRUE); | |
2334 | ||
2335 | if (!keep_map_locked) { | |
2336 | vm_map_unlock(map); | |
2337 | map_locked = FALSE; | |
2338 | } | |
2339 | ||
2340 | /* | |
2341 | * We can't hold the map lock if we enter this block. | |
2342 | */ | |
2343 | ||
2344 | if (result == KERN_SUCCESS) { | |
2345 | ||
2346 | /* Wire down the new entry if the user | |
2347 | * requested all new map entries be wired. | |
2348 | */ | |
2349 | if ((map->wiring_required)||(superpage_size)) { | |
2350 | assert(!keep_map_locked); | |
2351 | pmap_empty = FALSE; /* pmap won't be empty */ | |
2352 | kr = vm_map_wire(map, start, end, | |
2353 | new_entry->protection, TRUE); | |
2354 | result = kr; | |
2355 | } | |
2356 | ||
2357 | } | |
2358 | ||
2359 | if (result != KERN_SUCCESS) { | |
2360 | if (new_mapping_established) { | |
2361 | /* | |
2362 | * We have to get rid of the new mappings since we | |
2363 | * won't make them available to the user. | |
2364 | * Try and do that atomically, to minimize the risk | |
2365 | * that someone else create new mappings that range. | |
2366 | */ | |
2367 | zap_new_map = vm_map_create(PMAP_NULL, | |
2368 | *address, | |
2369 | *address + size, | |
2370 | map->hdr.entries_pageable); | |
2371 | vm_map_set_page_shift(zap_new_map, | |
2372 | VM_MAP_PAGE_SHIFT(map)); | |
2373 | if (!map_locked) { | |
2374 | vm_map_lock(map); | |
2375 | map_locked = TRUE; | |
2376 | } | |
2377 | (void) vm_map_delete(map, *address, *address+size, | |
2378 | (VM_MAP_REMOVE_SAVE_ENTRIES | | |
2379 | VM_MAP_REMOVE_NO_MAP_ALIGN), | |
2380 | zap_new_map); | |
2381 | } | |
2382 | if (zap_old_map != VM_MAP_NULL && | |
2383 | zap_old_map->hdr.nentries != 0) { | |
2384 | vm_map_entry_t entry1, entry2; | |
2385 | ||
2386 | /* | |
2387 | * The new mapping failed. Attempt to restore | |
2388 | * the old mappings, saved in the "zap_old_map". | |
2389 | */ | |
2390 | if (!map_locked) { | |
2391 | vm_map_lock(map); | |
2392 | map_locked = TRUE; | |
2393 | } | |
2394 | ||
2395 | /* first check if the coast is still clear */ | |
2396 | start = vm_map_first_entry(zap_old_map)->vme_start; | |
2397 | end = vm_map_last_entry(zap_old_map)->vme_end; | |
2398 | if (vm_map_lookup_entry(map, start, &entry1) || | |
2399 | vm_map_lookup_entry(map, end, &entry2) || | |
2400 | entry1 != entry2) { | |
2401 | /* | |
2402 | * Part of that range has already been | |
2403 | * re-mapped: we can't restore the old | |
2404 | * mappings... | |
2405 | */ | |
2406 | vm_map_enter_restore_failures++; | |
2407 | } else { | |
2408 | /* | |
2409 | * Transfer the saved map entries from | |
2410 | * "zap_old_map" to the original "map", | |
2411 | * inserting them all after "entry1". | |
2412 | */ | |
2413 | for (entry2 = vm_map_first_entry(zap_old_map); | |
2414 | entry2 != vm_map_to_entry(zap_old_map); | |
2415 | entry2 = vm_map_first_entry(zap_old_map)) { | |
2416 | vm_map_size_t entry_size; | |
2417 | ||
2418 | entry_size = (entry2->vme_end - | |
2419 | entry2->vme_start); | |
2420 | vm_map_store_entry_unlink(zap_old_map, | |
2421 | entry2); | |
2422 | zap_old_map->size -= entry_size; | |
2423 | vm_map_store_entry_link(map, entry1, entry2); | |
2424 | map->size += entry_size; | |
2425 | entry1 = entry2; | |
2426 | } | |
2427 | if (map->wiring_required) { | |
2428 | /* | |
2429 | * XXX TODO: we should rewire the | |
2430 | * old pages here... | |
2431 | */ | |
2432 | } | |
2433 | vm_map_enter_restore_successes++; | |
2434 | } | |
2435 | } | |
2436 | } | |
2437 | ||
2438 | /* | |
2439 | * The caller is responsible for releasing the lock if it requested to | |
2440 | * keep the map locked. | |
2441 | */ | |
2442 | if (map_locked && !keep_map_locked) { | |
2443 | vm_map_unlock(map); | |
2444 | } | |
2445 | ||
2446 | /* | |
2447 | * Get rid of the "zap_maps" and all the map entries that | |
2448 | * they may still contain. | |
2449 | */ | |
2450 | if (zap_old_map != VM_MAP_NULL) { | |
2451 | vm_map_destroy(zap_old_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); | |
2452 | zap_old_map = VM_MAP_NULL; | |
2453 | } | |
2454 | if (zap_new_map != VM_MAP_NULL) { | |
2455 | vm_map_destroy(zap_new_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); | |
2456 | zap_new_map = VM_MAP_NULL; | |
2457 | } | |
2458 | ||
2459 | return result; | |
2460 | ||
2461 | #undef RETURN | |
2462 | } | |
2463 | ||
2464 | /* | |
2465 | * Counters for the prefault optimization. | |
2466 | */ | |
2467 | int64_t vm_prefault_nb_pages = 0; | |
2468 | int64_t vm_prefault_nb_bailout = 0; | |
2469 | ||
2470 | static kern_return_t | |
2471 | vm_map_enter_mem_object_helper( | |
2472 | vm_map_t target_map, | |
2473 | vm_map_offset_t *address, | |
2474 | vm_map_size_t initial_size, | |
2475 | vm_map_offset_t mask, | |
2476 | int flags, | |
2477 | ipc_port_t port, | |
2478 | vm_object_offset_t offset, | |
2479 | boolean_t copy, | |
2480 | vm_prot_t cur_protection, | |
2481 | vm_prot_t max_protection, | |
2482 | vm_inherit_t inheritance, | |
2483 | upl_page_list_ptr_t page_list, | |
2484 | unsigned int page_list_count) | |
2485 | { | |
2486 | vm_map_address_t map_addr; | |
2487 | vm_map_size_t map_size; | |
2488 | vm_object_t object; | |
2489 | vm_object_size_t size; | |
2490 | kern_return_t result; | |
2491 | boolean_t mask_cur_protection, mask_max_protection; | |
2492 | boolean_t try_prefault = (page_list_count != 0); | |
2493 | vm_map_offset_t offset_in_mapping; | |
2494 | ||
2495 | mask_cur_protection = cur_protection & VM_PROT_IS_MASK; | |
2496 | mask_max_protection = max_protection & VM_PROT_IS_MASK; | |
2497 | cur_protection &= ~VM_PROT_IS_MASK; | |
2498 | max_protection &= ~VM_PROT_IS_MASK; | |
2499 | ||
2500 | /* | |
2501 | * Check arguments for validity | |
2502 | */ | |
2503 | if ((target_map == VM_MAP_NULL) || | |
2504 | (cur_protection & ~VM_PROT_ALL) || | |
2505 | (max_protection & ~VM_PROT_ALL) || | |
2506 | (inheritance > VM_INHERIT_LAST_VALID) || | |
2507 | (try_prefault && (copy || !page_list)) || | |
2508 | initial_size == 0) | |
2509 | return KERN_INVALID_ARGUMENT; | |
2510 | ||
2511 | map_addr = vm_map_trunc_page(*address, | |
2512 | VM_MAP_PAGE_MASK(target_map)); | |
2513 | map_size = vm_map_round_page(initial_size, | |
2514 | VM_MAP_PAGE_MASK(target_map)); | |
2515 | size = vm_object_round_page(initial_size); | |
2516 | ||
2517 | /* | |
2518 | * Find the vm object (if any) corresponding to this port. | |
2519 | */ | |
2520 | if (!IP_VALID(port)) { | |
2521 | object = VM_OBJECT_NULL; | |
2522 | offset = 0; | |
2523 | copy = FALSE; | |
2524 | } else if (ip_kotype(port) == IKOT_NAMED_ENTRY) { | |
2525 | vm_named_entry_t named_entry; | |
2526 | ||
2527 | named_entry = (vm_named_entry_t) port->ip_kobject; | |
2528 | ||
2529 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2530 | offset += named_entry->data_offset; | |
2531 | } | |
2532 | ||
2533 | /* a few checks to make sure user is obeying rules */ | |
2534 | if (size == 0) { | |
2535 | if (offset >= named_entry->size) | |
2536 | return KERN_INVALID_RIGHT; | |
2537 | size = named_entry->size - offset; | |
2538 | } | |
2539 | if (mask_max_protection) { | |
2540 | max_protection &= named_entry->protection; | |
2541 | } | |
2542 | if (mask_cur_protection) { | |
2543 | cur_protection &= named_entry->protection; | |
2544 | } | |
2545 | if ((named_entry->protection & max_protection) != | |
2546 | max_protection) | |
2547 | return KERN_INVALID_RIGHT; | |
2548 | if ((named_entry->protection & cur_protection) != | |
2549 | cur_protection) | |
2550 | return KERN_INVALID_RIGHT; | |
2551 | if (offset + size < offset) { | |
2552 | /* overflow */ | |
2553 | return KERN_INVALID_ARGUMENT; | |
2554 | } | |
2555 | if (named_entry->size < (offset + size)) | |
2556 | return KERN_INVALID_ARGUMENT; | |
2557 | ||
2558 | if (named_entry->is_copy) { | |
2559 | /* for a vm_map_copy, we can only map it whole */ | |
2560 | if ((size != named_entry->size) && | |
2561 | (vm_map_round_page(size, | |
2562 | VM_MAP_PAGE_MASK(target_map)) == | |
2563 | named_entry->size)) { | |
2564 | /* XXX FBDP use the rounded size... */ | |
2565 | size = vm_map_round_page( | |
2566 | size, | |
2567 | VM_MAP_PAGE_MASK(target_map)); | |
2568 | } | |
2569 | ||
2570 | if (!(flags & VM_FLAGS_ANYWHERE) && | |
2571 | (offset != 0 || | |
2572 | size != named_entry->size)) { | |
2573 | /* | |
2574 | * XXX for a mapping at a "fixed" address, | |
2575 | * we can't trim after mapping the whole | |
2576 | * memory entry, so reject a request for a | |
2577 | * partial mapping. | |
2578 | */ | |
2579 | return KERN_INVALID_ARGUMENT; | |
2580 | } | |
2581 | } | |
2582 | ||
2583 | /* the callers parameter offset is defined to be the */ | |
2584 | /* offset from beginning of named entry offset in object */ | |
2585 | offset = offset + named_entry->offset; | |
2586 | ||
2587 | if (! VM_MAP_PAGE_ALIGNED(size, | |
2588 | VM_MAP_PAGE_MASK(target_map))) { | |
2589 | /* | |
2590 | * Let's not map more than requested; | |
2591 | * vm_map_enter() will handle this "not map-aligned" | |
2592 | * case. | |
2593 | */ | |
2594 | map_size = size; | |
2595 | } | |
2596 | ||
2597 | named_entry_lock(named_entry); | |
2598 | if (named_entry->is_sub_map) { | |
2599 | vm_map_t submap; | |
2600 | ||
2601 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2602 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap."); | |
2603 | } | |
2604 | ||
2605 | submap = named_entry->backing.map; | |
2606 | vm_map_lock(submap); | |
2607 | vm_map_reference(submap); | |
2608 | vm_map_unlock(submap); | |
2609 | named_entry_unlock(named_entry); | |
2610 | ||
2611 | result = vm_map_enter(target_map, | |
2612 | &map_addr, | |
2613 | map_size, | |
2614 | mask, | |
2615 | flags | VM_FLAGS_SUBMAP, | |
2616 | (vm_object_t) submap, | |
2617 | offset, | |
2618 | copy, | |
2619 | cur_protection, | |
2620 | max_protection, | |
2621 | inheritance); | |
2622 | if (result != KERN_SUCCESS) { | |
2623 | vm_map_deallocate(submap); | |
2624 | } else { | |
2625 | /* | |
2626 | * No need to lock "submap" just to check its | |
2627 | * "mapped" flag: that flag is never reset | |
2628 | * once it's been set and if we race, we'll | |
2629 | * just end up setting it twice, which is OK. | |
2630 | */ | |
2631 | if (submap->mapped_in_other_pmaps == FALSE && | |
2632 | vm_map_pmap(submap) != PMAP_NULL && | |
2633 | vm_map_pmap(submap) != | |
2634 | vm_map_pmap(target_map)) { | |
2635 | /* | |
2636 | * This submap is being mapped in a map | |
2637 | * that uses a different pmap. | |
2638 | * Set its "mapped_in_other_pmaps" flag | |
2639 | * to indicate that we now need to | |
2640 | * remove mappings from all pmaps rather | |
2641 | * than just the submap's pmap. | |
2642 | */ | |
2643 | vm_map_lock(submap); | |
2644 | submap->mapped_in_other_pmaps = TRUE; | |
2645 | vm_map_unlock(submap); | |
2646 | } | |
2647 | *address = map_addr; | |
2648 | } | |
2649 | return result; | |
2650 | ||
2651 | } else if (named_entry->is_pager) { | |
2652 | unsigned int access; | |
2653 | vm_prot_t protections; | |
2654 | unsigned int wimg_mode; | |
2655 | ||
2656 | protections = named_entry->protection & VM_PROT_ALL; | |
2657 | access = GET_MAP_MEM(named_entry->protection); | |
2658 | ||
2659 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2660 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap."); | |
2661 | } | |
2662 | ||
2663 | object = vm_object_enter(named_entry->backing.pager, | |
2664 | named_entry->size, | |
2665 | named_entry->internal, | |
2666 | FALSE, | |
2667 | FALSE); | |
2668 | if (object == VM_OBJECT_NULL) { | |
2669 | named_entry_unlock(named_entry); | |
2670 | return KERN_INVALID_OBJECT; | |
2671 | } | |
2672 | ||
2673 | /* JMM - drop reference on pager here */ | |
2674 | ||
2675 | /* create an extra ref for the named entry */ | |
2676 | vm_object_lock(object); | |
2677 | vm_object_reference_locked(object); | |
2678 | named_entry->backing.object = object; | |
2679 | named_entry->is_pager = FALSE; | |
2680 | named_entry_unlock(named_entry); | |
2681 | ||
2682 | wimg_mode = object->wimg_bits; | |
2683 | ||
2684 | if (access == MAP_MEM_IO) { | |
2685 | wimg_mode = VM_WIMG_IO; | |
2686 | } else if (access == MAP_MEM_COPYBACK) { | |
2687 | wimg_mode = VM_WIMG_USE_DEFAULT; | |
2688 | } else if (access == MAP_MEM_INNERWBACK) { | |
2689 | wimg_mode = VM_WIMG_INNERWBACK; | |
2690 | } else if (access == MAP_MEM_WTHRU) { | |
2691 | wimg_mode = VM_WIMG_WTHRU; | |
2692 | } else if (access == MAP_MEM_WCOMB) { | |
2693 | wimg_mode = VM_WIMG_WCOMB; | |
2694 | } | |
2695 | ||
2696 | /* wait for object (if any) to be ready */ | |
2697 | if (!named_entry->internal) { | |
2698 | while (!object->pager_ready) { | |
2699 | vm_object_wait( | |
2700 | object, | |
2701 | VM_OBJECT_EVENT_PAGER_READY, | |
2702 | THREAD_UNINT); | |
2703 | vm_object_lock(object); | |
2704 | } | |
2705 | } | |
2706 | ||
2707 | if (object->wimg_bits != wimg_mode) | |
2708 | vm_object_change_wimg_mode(object, wimg_mode); | |
2709 | ||
2710 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
2711 | if (!object->true_share && | |
2712 | vm_object_tracking_inited) { | |
2713 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
2714 | int num = 0; | |
2715 | ||
2716 | num = OSBacktrace(bt, | |
2717 | VM_OBJECT_TRACKING_BTDEPTH); | |
2718 | btlog_add_entry(vm_object_tracking_btlog, | |
2719 | object, | |
2720 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
2721 | bt, | |
2722 | num); | |
2723 | } | |
2724 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
2725 | ||
2726 | object->true_share = TRUE; | |
2727 | ||
2728 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) | |
2729 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
2730 | vm_object_unlock(object); | |
2731 | ||
2732 | } else if (named_entry->is_copy) { | |
2733 | kern_return_t kr; | |
2734 | vm_map_copy_t copy_map; | |
2735 | vm_map_entry_t copy_entry; | |
2736 | vm_map_offset_t copy_addr; | |
2737 | ||
2738 | if (flags & ~(VM_FLAGS_FIXED | | |
2739 | VM_FLAGS_ANYWHERE | | |
2740 | VM_FLAGS_OVERWRITE | | |
2741 | VM_FLAGS_RETURN_DATA_ADDR)) { | |
2742 | named_entry_unlock(named_entry); | |
2743 | return KERN_INVALID_ARGUMENT; | |
2744 | } | |
2745 | ||
2746 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2747 | offset_in_mapping = offset - vm_object_trunc_page(offset); | |
2748 | offset = vm_object_trunc_page(offset); | |
2749 | map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset; | |
2750 | } | |
2751 | ||
2752 | copy_map = named_entry->backing.copy; | |
2753 | assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST); | |
2754 | if (copy_map->type != VM_MAP_COPY_ENTRY_LIST) { | |
2755 | /* unsupported type; should not happen */ | |
2756 | printf("vm_map_enter_mem_object: " | |
2757 | "memory_entry->backing.copy " | |
2758 | "unsupported type 0x%x\n", | |
2759 | copy_map->type); | |
2760 | named_entry_unlock(named_entry); | |
2761 | return KERN_INVALID_ARGUMENT; | |
2762 | } | |
2763 | ||
2764 | /* reserve a contiguous range */ | |
2765 | kr = vm_map_enter(target_map, | |
2766 | &map_addr, | |
2767 | /* map whole mem entry, trim later: */ | |
2768 | named_entry->size, | |
2769 | mask, | |
2770 | flags & (VM_FLAGS_ANYWHERE | | |
2771 | VM_FLAGS_OVERWRITE | | |
2772 | VM_FLAGS_RETURN_DATA_ADDR), | |
2773 | VM_OBJECT_NULL, | |
2774 | 0, | |
2775 | FALSE, /* copy */ | |
2776 | cur_protection, | |
2777 | max_protection, | |
2778 | inheritance); | |
2779 | if (kr != KERN_SUCCESS) { | |
2780 | named_entry_unlock(named_entry); | |
2781 | return kr; | |
2782 | } | |
2783 | ||
2784 | copy_addr = map_addr; | |
2785 | ||
2786 | for (copy_entry = vm_map_copy_first_entry(copy_map); | |
2787 | copy_entry != vm_map_copy_to_entry(copy_map); | |
2788 | copy_entry = copy_entry->vme_next) { | |
2789 | int remap_flags = 0; | |
2790 | vm_map_t copy_submap; | |
2791 | vm_object_t copy_object; | |
2792 | vm_map_size_t copy_size; | |
2793 | vm_object_offset_t copy_offset; | |
2794 | ||
2795 | copy_offset = copy_entry->offset; | |
2796 | copy_size = (copy_entry->vme_end - | |
2797 | copy_entry->vme_start); | |
2798 | ||
2799 | /* sanity check */ | |
2800 | if ((copy_addr + copy_size) > | |
2801 | (map_addr + | |
2802 | named_entry->size /* XXX full size */ )) { | |
2803 | /* over-mapping too much !? */ | |
2804 | kr = KERN_INVALID_ARGUMENT; | |
2805 | /* abort */ | |
2806 | break; | |
2807 | } | |
2808 | ||
2809 | /* take a reference on the object */ | |
2810 | if (copy_entry->is_sub_map) { | |
2811 | remap_flags |= VM_FLAGS_SUBMAP; | |
2812 | copy_submap = | |
2813 | copy_entry->object.sub_map; | |
2814 | vm_map_lock(copy_submap); | |
2815 | vm_map_reference(copy_submap); | |
2816 | vm_map_unlock(copy_submap); | |
2817 | copy_object = (vm_object_t) copy_submap; | |
2818 | } else { | |
2819 | copy_object = | |
2820 | copy_entry->object.vm_object; | |
2821 | vm_object_reference(copy_object); | |
2822 | } | |
2823 | ||
2824 | /* over-map the object into destination */ | |
2825 | remap_flags |= flags; | |
2826 | remap_flags |= VM_FLAGS_FIXED; | |
2827 | remap_flags |= VM_FLAGS_OVERWRITE; | |
2828 | remap_flags &= ~VM_FLAGS_ANYWHERE; | |
2829 | kr = vm_map_enter(target_map, | |
2830 | ©_addr, | |
2831 | copy_size, | |
2832 | (vm_map_offset_t) 0, | |
2833 | remap_flags, | |
2834 | copy_object, | |
2835 | copy_offset, | |
2836 | copy, | |
2837 | cur_protection, | |
2838 | max_protection, | |
2839 | inheritance); | |
2840 | if (kr != KERN_SUCCESS) { | |
2841 | if (copy_entry->is_sub_map) { | |
2842 | vm_map_deallocate(copy_submap); | |
2843 | } else { | |
2844 | vm_object_deallocate(copy_object); | |
2845 | } | |
2846 | /* abort */ | |
2847 | break; | |
2848 | } | |
2849 | ||
2850 | /* next mapping */ | |
2851 | copy_addr += copy_size; | |
2852 | } | |
2853 | ||
2854 | if (kr == KERN_SUCCESS) { | |
2855 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2856 | *address = map_addr + offset_in_mapping; | |
2857 | } else { | |
2858 | *address = map_addr; | |
2859 | } | |
2860 | ||
2861 | if (offset) { | |
2862 | /* | |
2863 | * Trim in front, from 0 to "offset". | |
2864 | */ | |
2865 | vm_map_remove(target_map, | |
2866 | map_addr, | |
2867 | map_addr + offset, | |
2868 | 0); | |
2869 | *address += offset; | |
2870 | } | |
2871 | if (offset + map_size < named_entry->size) { | |
2872 | /* | |
2873 | * Trim in back, from | |
2874 | * "offset + map_size" to | |
2875 | * "named_entry->size". | |
2876 | */ | |
2877 | vm_map_remove(target_map, | |
2878 | (map_addr + | |
2879 | offset + map_size), | |
2880 | (map_addr + | |
2881 | named_entry->size), | |
2882 | 0); | |
2883 | } | |
2884 | } | |
2885 | named_entry_unlock(named_entry); | |
2886 | ||
2887 | if (kr != KERN_SUCCESS) { | |
2888 | if (! (flags & VM_FLAGS_OVERWRITE)) { | |
2889 | /* deallocate the contiguous range */ | |
2890 | (void) vm_deallocate(target_map, | |
2891 | map_addr, | |
2892 | map_size); | |
2893 | } | |
2894 | } | |
2895 | ||
2896 | return kr; | |
2897 | ||
2898 | } else { | |
2899 | /* This is the case where we are going to map */ | |
2900 | /* an already mapped object. If the object is */ | |
2901 | /* not ready it is internal. An external */ | |
2902 | /* object cannot be mapped until it is ready */ | |
2903 | /* we can therefore avoid the ready check */ | |
2904 | /* in this case. */ | |
2905 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2906 | offset_in_mapping = offset - vm_object_trunc_page(offset); | |
2907 | offset = vm_object_trunc_page(offset); | |
2908 | map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset; | |
2909 | } | |
2910 | ||
2911 | object = named_entry->backing.object; | |
2912 | assert(object != VM_OBJECT_NULL); | |
2913 | named_entry_unlock(named_entry); | |
2914 | vm_object_reference(object); | |
2915 | } | |
2916 | } else if (ip_kotype(port) == IKOT_MEMORY_OBJECT) { | |
2917 | /* | |
2918 | * JMM - This is temporary until we unify named entries | |
2919 | * and raw memory objects. | |
2920 | * | |
2921 | * Detected fake ip_kotype for a memory object. In | |
2922 | * this case, the port isn't really a port at all, but | |
2923 | * instead is just a raw memory object. | |
2924 | */ | |
2925 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
2926 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for raw memory object."); | |
2927 | } | |
2928 | ||
2929 | object = vm_object_enter((memory_object_t)port, | |
2930 | size, FALSE, FALSE, FALSE); | |
2931 | if (object == VM_OBJECT_NULL) | |
2932 | return KERN_INVALID_OBJECT; | |
2933 | ||
2934 | /* wait for object (if any) to be ready */ | |
2935 | if (object != VM_OBJECT_NULL) { | |
2936 | if (object == kernel_object) { | |
2937 | printf("Warning: Attempt to map kernel object" | |
2938 | " by a non-private kernel entity\n"); | |
2939 | return KERN_INVALID_OBJECT; | |
2940 | } | |
2941 | if (!object->pager_ready) { | |
2942 | vm_object_lock(object); | |
2943 | ||
2944 | while (!object->pager_ready) { | |
2945 | vm_object_wait(object, | |
2946 | VM_OBJECT_EVENT_PAGER_READY, | |
2947 | THREAD_UNINT); | |
2948 | vm_object_lock(object); | |
2949 | } | |
2950 | vm_object_unlock(object); | |
2951 | } | |
2952 | } | |
2953 | } else { | |
2954 | return KERN_INVALID_OBJECT; | |
2955 | } | |
2956 | ||
2957 | if (object != VM_OBJECT_NULL && | |
2958 | object->named && | |
2959 | object->pager != MEMORY_OBJECT_NULL && | |
2960 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { | |
2961 | memory_object_t pager; | |
2962 | vm_prot_t pager_prot; | |
2963 | kern_return_t kr; | |
2964 | ||
2965 | /* | |
2966 | * For "named" VM objects, let the pager know that the | |
2967 | * memory object is being mapped. Some pagers need to keep | |
2968 | * track of this, to know when they can reclaim the memory | |
2969 | * object, for example. | |
2970 | * VM calls memory_object_map() for each mapping (specifying | |
2971 | * the protection of each mapping) and calls | |
2972 | * memory_object_last_unmap() when all the mappings are gone. | |
2973 | */ | |
2974 | pager_prot = max_protection; | |
2975 | if (copy) { | |
2976 | /* | |
2977 | * Copy-On-Write mapping: won't modify the | |
2978 | * memory object. | |
2979 | */ | |
2980 | pager_prot &= ~VM_PROT_WRITE; | |
2981 | } | |
2982 | vm_object_lock(object); | |
2983 | pager = object->pager; | |
2984 | if (object->named && | |
2985 | pager != MEMORY_OBJECT_NULL && | |
2986 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { | |
2987 | assert(object->pager_ready); | |
2988 | vm_object_mapping_wait(object, THREAD_UNINT); | |
2989 | vm_object_mapping_begin(object); | |
2990 | vm_object_unlock(object); | |
2991 | ||
2992 | kr = memory_object_map(pager, pager_prot); | |
2993 | assert(kr == KERN_SUCCESS); | |
2994 | ||
2995 | vm_object_lock(object); | |
2996 | vm_object_mapping_end(object); | |
2997 | } | |
2998 | vm_object_unlock(object); | |
2999 | } | |
3000 | ||
3001 | /* | |
3002 | * Perform the copy if requested | |
3003 | */ | |
3004 | ||
3005 | if (copy) { | |
3006 | vm_object_t new_object; | |
3007 | vm_object_offset_t new_offset; | |
3008 | ||
3009 | result = vm_object_copy_strategically(object, offset, size, | |
3010 | &new_object, &new_offset, | |
3011 | ©); | |
3012 | ||
3013 | ||
3014 | if (result == KERN_MEMORY_RESTART_COPY) { | |
3015 | boolean_t success; | |
3016 | boolean_t src_needs_copy; | |
3017 | ||
3018 | /* | |
3019 | * XXX | |
3020 | * We currently ignore src_needs_copy. | |
3021 | * This really is the issue of how to make | |
3022 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for | |
3023 | * non-kernel users to use. Solution forthcoming. | |
3024 | * In the meantime, since we don't allow non-kernel | |
3025 | * memory managers to specify symmetric copy, | |
3026 | * we won't run into problems here. | |
3027 | */ | |
3028 | new_object = object; | |
3029 | new_offset = offset; | |
3030 | success = vm_object_copy_quickly(&new_object, | |
3031 | new_offset, size, | |
3032 | &src_needs_copy, | |
3033 | ©); | |
3034 | assert(success); | |
3035 | result = KERN_SUCCESS; | |
3036 | } | |
3037 | /* | |
3038 | * Throw away the reference to the | |
3039 | * original object, as it won't be mapped. | |
3040 | */ | |
3041 | ||
3042 | vm_object_deallocate(object); | |
3043 | ||
3044 | if (result != KERN_SUCCESS) | |
3045 | return result; | |
3046 | ||
3047 | object = new_object; | |
3048 | offset = new_offset; | |
3049 | } | |
3050 | ||
3051 | /* | |
3052 | * If users want to try to prefault pages, the mapping and prefault | |
3053 | * needs to be atomic. | |
3054 | */ | |
3055 | if (try_prefault) | |
3056 | flags |= VM_FLAGS_KEEP_MAP_LOCKED; | |
3057 | result = vm_map_enter(target_map, | |
3058 | &map_addr, map_size, | |
3059 | (vm_map_offset_t)mask, | |
3060 | flags, | |
3061 | object, offset, | |
3062 | copy, | |
3063 | cur_protection, max_protection, inheritance); | |
3064 | if (result != KERN_SUCCESS) | |
3065 | vm_object_deallocate(object); | |
3066 | ||
3067 | /* | |
3068 | * Try to prefault, and do not forget to release the vm map lock. | |
3069 | */ | |
3070 | if (result == KERN_SUCCESS && try_prefault) { | |
3071 | mach_vm_address_t va = map_addr; | |
3072 | kern_return_t kr = KERN_SUCCESS; | |
3073 | unsigned int i = 0; | |
3074 | ||
3075 | for (i = 0; i < page_list_count; ++i) { | |
3076 | if (UPL_VALID_PAGE(page_list, i)) { | |
3077 | /* | |
3078 | * If this function call failed, we should stop | |
3079 | * trying to optimize, other calls are likely | |
3080 | * going to fail too. | |
3081 | * | |
3082 | * We are not gonna report an error for such | |
3083 | * failure though. That's an optimization, not | |
3084 | * something critical. | |
3085 | */ | |
3086 | kr = pmap_enter_options(target_map->pmap, | |
3087 | va, UPL_PHYS_PAGE(page_list, i), | |
3088 | cur_protection, VM_PROT_NONE, | |
3089 | 0, TRUE, PMAP_OPTIONS_NOWAIT, NULL); | |
3090 | if (kr != KERN_SUCCESS) { | |
3091 | OSIncrementAtomic64(&vm_prefault_nb_bailout); | |
3092 | goto BailOut; | |
3093 | } | |
3094 | OSIncrementAtomic64(&vm_prefault_nb_pages); | |
3095 | } | |
3096 | ||
3097 | /* Next virtual address */ | |
3098 | va += PAGE_SIZE; | |
3099 | } | |
3100 | BailOut: | |
3101 | vm_map_unlock(target_map); | |
3102 | } | |
3103 | ||
3104 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
3105 | *address = map_addr + offset_in_mapping; | |
3106 | } else { | |
3107 | *address = map_addr; | |
3108 | } | |
3109 | return result; | |
3110 | } | |
3111 | ||
3112 | kern_return_t | |
3113 | vm_map_enter_mem_object( | |
3114 | vm_map_t target_map, | |
3115 | vm_map_offset_t *address, | |
3116 | vm_map_size_t initial_size, | |
3117 | vm_map_offset_t mask, | |
3118 | int flags, | |
3119 | ipc_port_t port, | |
3120 | vm_object_offset_t offset, | |
3121 | boolean_t copy, | |
3122 | vm_prot_t cur_protection, | |
3123 | vm_prot_t max_protection, | |
3124 | vm_inherit_t inheritance) | |
3125 | { | |
3126 | return vm_map_enter_mem_object_helper(target_map, address, initial_size, mask, flags, | |
3127 | port, offset, copy, cur_protection, max_protection, | |
3128 | inheritance, NULL, 0); | |
3129 | } | |
3130 | ||
3131 | kern_return_t | |
3132 | vm_map_enter_mem_object_prefault( | |
3133 | vm_map_t target_map, | |
3134 | vm_map_offset_t *address, | |
3135 | vm_map_size_t initial_size, | |
3136 | vm_map_offset_t mask, | |
3137 | int flags, | |
3138 | ipc_port_t port, | |
3139 | vm_object_offset_t offset, | |
3140 | vm_prot_t cur_protection, | |
3141 | vm_prot_t max_protection, | |
3142 | upl_page_list_ptr_t page_list, | |
3143 | unsigned int page_list_count) | |
3144 | { | |
3145 | return vm_map_enter_mem_object_helper(target_map, address, initial_size, mask, flags, | |
3146 | port, offset, FALSE, cur_protection, max_protection, | |
3147 | VM_INHERIT_DEFAULT, page_list, page_list_count); | |
3148 | } | |
3149 | ||
3150 | ||
3151 | kern_return_t | |
3152 | vm_map_enter_mem_object_control( | |
3153 | vm_map_t target_map, | |
3154 | vm_map_offset_t *address, | |
3155 | vm_map_size_t initial_size, | |
3156 | vm_map_offset_t mask, | |
3157 | int flags, | |
3158 | memory_object_control_t control, | |
3159 | vm_object_offset_t offset, | |
3160 | boolean_t copy, | |
3161 | vm_prot_t cur_protection, | |
3162 | vm_prot_t max_protection, | |
3163 | vm_inherit_t inheritance) | |
3164 | { | |
3165 | vm_map_address_t map_addr; | |
3166 | vm_map_size_t map_size; | |
3167 | vm_object_t object; | |
3168 | vm_object_size_t size; | |
3169 | kern_return_t result; | |
3170 | memory_object_t pager; | |
3171 | vm_prot_t pager_prot; | |
3172 | kern_return_t kr; | |
3173 | ||
3174 | /* | |
3175 | * Check arguments for validity | |
3176 | */ | |
3177 | if ((target_map == VM_MAP_NULL) || | |
3178 | (cur_protection & ~VM_PROT_ALL) || | |
3179 | (max_protection & ~VM_PROT_ALL) || | |
3180 | (inheritance > VM_INHERIT_LAST_VALID) || | |
3181 | initial_size == 0) | |
3182 | return KERN_INVALID_ARGUMENT; | |
3183 | ||
3184 | map_addr = vm_map_trunc_page(*address, | |
3185 | VM_MAP_PAGE_MASK(target_map)); | |
3186 | map_size = vm_map_round_page(initial_size, | |
3187 | VM_MAP_PAGE_MASK(target_map)); | |
3188 | size = vm_object_round_page(initial_size); | |
3189 | ||
3190 | object = memory_object_control_to_vm_object(control); | |
3191 | ||
3192 | if (object == VM_OBJECT_NULL) | |
3193 | return KERN_INVALID_OBJECT; | |
3194 | ||
3195 | if (object == kernel_object) { | |
3196 | printf("Warning: Attempt to map kernel object" | |
3197 | " by a non-private kernel entity\n"); | |
3198 | return KERN_INVALID_OBJECT; | |
3199 | } | |
3200 | ||
3201 | vm_object_lock(object); | |
3202 | object->ref_count++; | |
3203 | vm_object_res_reference(object); | |
3204 | ||
3205 | /* | |
3206 | * For "named" VM objects, let the pager know that the | |
3207 | * memory object is being mapped. Some pagers need to keep | |
3208 | * track of this, to know when they can reclaim the memory | |
3209 | * object, for example. | |
3210 | * VM calls memory_object_map() for each mapping (specifying | |
3211 | * the protection of each mapping) and calls | |
3212 | * memory_object_last_unmap() when all the mappings are gone. | |
3213 | */ | |
3214 | pager_prot = max_protection; | |
3215 | if (copy) { | |
3216 | pager_prot &= ~VM_PROT_WRITE; | |
3217 | } | |
3218 | pager = object->pager; | |
3219 | if (object->named && | |
3220 | pager != MEMORY_OBJECT_NULL && | |
3221 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { | |
3222 | assert(object->pager_ready); | |
3223 | vm_object_mapping_wait(object, THREAD_UNINT); | |
3224 | vm_object_mapping_begin(object); | |
3225 | vm_object_unlock(object); | |
3226 | ||
3227 | kr = memory_object_map(pager, pager_prot); | |
3228 | assert(kr == KERN_SUCCESS); | |
3229 | ||
3230 | vm_object_lock(object); | |
3231 | vm_object_mapping_end(object); | |
3232 | } | |
3233 | vm_object_unlock(object); | |
3234 | ||
3235 | /* | |
3236 | * Perform the copy if requested | |
3237 | */ | |
3238 | ||
3239 | if (copy) { | |
3240 | vm_object_t new_object; | |
3241 | vm_object_offset_t new_offset; | |
3242 | ||
3243 | result = vm_object_copy_strategically(object, offset, size, | |
3244 | &new_object, &new_offset, | |
3245 | ©); | |
3246 | ||
3247 | ||
3248 | if (result == KERN_MEMORY_RESTART_COPY) { | |
3249 | boolean_t success; | |
3250 | boolean_t src_needs_copy; | |
3251 | ||
3252 | /* | |
3253 | * XXX | |
3254 | * We currently ignore src_needs_copy. | |
3255 | * This really is the issue of how to make | |
3256 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for | |
3257 | * non-kernel users to use. Solution forthcoming. | |
3258 | * In the meantime, since we don't allow non-kernel | |
3259 | * memory managers to specify symmetric copy, | |
3260 | * we won't run into problems here. | |
3261 | */ | |
3262 | new_object = object; | |
3263 | new_offset = offset; | |
3264 | success = vm_object_copy_quickly(&new_object, | |
3265 | new_offset, size, | |
3266 | &src_needs_copy, | |
3267 | ©); | |
3268 | assert(success); | |
3269 | result = KERN_SUCCESS; | |
3270 | } | |
3271 | /* | |
3272 | * Throw away the reference to the | |
3273 | * original object, as it won't be mapped. | |
3274 | */ | |
3275 | ||
3276 | vm_object_deallocate(object); | |
3277 | ||
3278 | if (result != KERN_SUCCESS) | |
3279 | return result; | |
3280 | ||
3281 | object = new_object; | |
3282 | offset = new_offset; | |
3283 | } | |
3284 | ||
3285 | result = vm_map_enter(target_map, | |
3286 | &map_addr, map_size, | |
3287 | (vm_map_offset_t)mask, | |
3288 | flags, | |
3289 | object, offset, | |
3290 | copy, | |
3291 | cur_protection, max_protection, inheritance); | |
3292 | if (result != KERN_SUCCESS) | |
3293 | vm_object_deallocate(object); | |
3294 | *address = map_addr; | |
3295 | ||
3296 | return result; | |
3297 | } | |
3298 | ||
3299 | ||
3300 | #if VM_CPM | |
3301 | ||
3302 | #ifdef MACH_ASSERT | |
3303 | extern pmap_paddr_t avail_start, avail_end; | |
3304 | #endif | |
3305 | ||
3306 | /* | |
3307 | * Allocate memory in the specified map, with the caveat that | |
3308 | * the memory is physically contiguous. This call may fail | |
3309 | * if the system can't find sufficient contiguous memory. | |
3310 | * This call may cause or lead to heart-stopping amounts of | |
3311 | * paging activity. | |
3312 | * | |
3313 | * Memory obtained from this call should be freed in the | |
3314 | * normal way, viz., via vm_deallocate. | |
3315 | */ | |
3316 | kern_return_t | |
3317 | vm_map_enter_cpm( | |
3318 | vm_map_t map, | |
3319 | vm_map_offset_t *addr, | |
3320 | vm_map_size_t size, | |
3321 | int flags) | |
3322 | { | |
3323 | vm_object_t cpm_obj; | |
3324 | pmap_t pmap; | |
3325 | vm_page_t m, pages; | |
3326 | kern_return_t kr; | |
3327 | vm_map_offset_t va, start, end, offset; | |
3328 | #if MACH_ASSERT | |
3329 | vm_map_offset_t prev_addr = 0; | |
3330 | #endif /* MACH_ASSERT */ | |
3331 | ||
3332 | boolean_t anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); | |
3333 | ||
3334 | if (size == 0) { | |
3335 | *addr = 0; | |
3336 | return KERN_SUCCESS; | |
3337 | } | |
3338 | if (anywhere) | |
3339 | *addr = vm_map_min(map); | |
3340 | else | |
3341 | *addr = vm_map_trunc_page(*addr, | |
3342 | VM_MAP_PAGE_MASK(map)); | |
3343 | size = vm_map_round_page(size, | |
3344 | VM_MAP_PAGE_MASK(map)); | |
3345 | ||
3346 | /* | |
3347 | * LP64todo - cpm_allocate should probably allow | |
3348 | * allocations of >4GB, but not with the current | |
3349 | * algorithm, so just cast down the size for now. | |
3350 | */ | |
3351 | if (size > VM_MAX_ADDRESS) | |
3352 | return KERN_RESOURCE_SHORTAGE; | |
3353 | if ((kr = cpm_allocate(CAST_DOWN(vm_size_t, size), | |
3354 | &pages, 0, 0, TRUE, flags)) != KERN_SUCCESS) | |
3355 | return kr; | |
3356 | ||
3357 | cpm_obj = vm_object_allocate((vm_object_size_t)size); | |
3358 | assert(cpm_obj != VM_OBJECT_NULL); | |
3359 | assert(cpm_obj->internal); | |
3360 | assert(cpm_obj->vo_size == (vm_object_size_t)size); | |
3361 | assert(cpm_obj->can_persist == FALSE); | |
3362 | assert(cpm_obj->pager_created == FALSE); | |
3363 | assert(cpm_obj->pageout == FALSE); | |
3364 | assert(cpm_obj->shadow == VM_OBJECT_NULL); | |
3365 | ||
3366 | /* | |
3367 | * Insert pages into object. | |
3368 | */ | |
3369 | ||
3370 | vm_object_lock(cpm_obj); | |
3371 | for (offset = 0; offset < size; offset += PAGE_SIZE) { | |
3372 | m = pages; | |
3373 | pages = NEXT_PAGE(m); | |
3374 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; | |
3375 | ||
3376 | assert(!m->gobbled); | |
3377 | assert(!m->wanted); | |
3378 | assert(!m->pageout); | |
3379 | assert(!m->tabled); | |
3380 | assert(VM_PAGE_WIRED(m)); | |
3381 | /* | |
3382 | * ENCRYPTED SWAP: | |
3383 | * "m" is not supposed to be pageable, so it | |
3384 | * should not be encrypted. It wouldn't be safe | |
3385 | * to enter it in a new VM object while encrypted. | |
3386 | */ | |
3387 | ASSERT_PAGE_DECRYPTED(m); | |
3388 | assert(m->busy); | |
3389 | assert(m->phys_page>=(avail_start>>PAGE_SHIFT) && m->phys_page<=(avail_end>>PAGE_SHIFT)); | |
3390 | ||
3391 | m->busy = FALSE; | |
3392 | vm_page_insert(m, cpm_obj, offset); | |
3393 | } | |
3394 | assert(cpm_obj->resident_page_count == size / PAGE_SIZE); | |
3395 | vm_object_unlock(cpm_obj); | |
3396 | ||
3397 | /* | |
3398 | * Hang onto a reference on the object in case a | |
3399 | * multi-threaded application for some reason decides | |
3400 | * to deallocate the portion of the address space into | |
3401 | * which we will insert this object. | |
3402 | * | |
3403 | * Unfortunately, we must insert the object now before | |
3404 | * we can talk to the pmap module about which addresses | |
3405 | * must be wired down. Hence, the race with a multi- | |
3406 | * threaded app. | |
3407 | */ | |
3408 | vm_object_reference(cpm_obj); | |
3409 | ||
3410 | /* | |
3411 | * Insert object into map. | |
3412 | */ | |
3413 | ||
3414 | kr = vm_map_enter( | |
3415 | map, | |
3416 | addr, | |
3417 | size, | |
3418 | (vm_map_offset_t)0, | |
3419 | flags, | |
3420 | cpm_obj, | |
3421 | (vm_object_offset_t)0, | |
3422 | FALSE, | |
3423 | VM_PROT_ALL, | |
3424 | VM_PROT_ALL, | |
3425 | VM_INHERIT_DEFAULT); | |
3426 | ||
3427 | if (kr != KERN_SUCCESS) { | |
3428 | /* | |
3429 | * A CPM object doesn't have can_persist set, | |
3430 | * so all we have to do is deallocate it to | |
3431 | * free up these pages. | |
3432 | */ | |
3433 | assert(cpm_obj->pager_created == FALSE); | |
3434 | assert(cpm_obj->can_persist == FALSE); | |
3435 | assert(cpm_obj->pageout == FALSE); | |
3436 | assert(cpm_obj->shadow == VM_OBJECT_NULL); | |
3437 | vm_object_deallocate(cpm_obj); /* kill acquired ref */ | |
3438 | vm_object_deallocate(cpm_obj); /* kill creation ref */ | |
3439 | } | |
3440 | ||
3441 | /* | |
3442 | * Inform the physical mapping system that the | |
3443 | * range of addresses may not fault, so that | |
3444 | * page tables and such can be locked down as well. | |
3445 | */ | |
3446 | start = *addr; | |
3447 | end = start + size; | |
3448 | pmap = vm_map_pmap(map); | |
3449 | pmap_pageable(pmap, start, end, FALSE); | |
3450 | ||
3451 | /* | |
3452 | * Enter each page into the pmap, to avoid faults. | |
3453 | * Note that this loop could be coded more efficiently, | |
3454 | * if the need arose, rather than looking up each page | |
3455 | * again. | |
3456 | */ | |
3457 | for (offset = 0, va = start; offset < size; | |
3458 | va += PAGE_SIZE, offset += PAGE_SIZE) { | |
3459 | int type_of_fault; | |
3460 | ||
3461 | vm_object_lock(cpm_obj); | |
3462 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); | |
3463 | assert(m != VM_PAGE_NULL); | |
3464 | ||
3465 | vm_page_zero_fill(m); | |
3466 | ||
3467 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
3468 | ||
3469 | vm_fault_enter(m, pmap, va, VM_PROT_ALL, VM_PROT_WRITE, | |
3470 | VM_PAGE_WIRED(m), FALSE, FALSE, FALSE, 0, NULL, | |
3471 | &type_of_fault); | |
3472 | ||
3473 | vm_object_unlock(cpm_obj); | |
3474 | } | |
3475 | ||
3476 | #if MACH_ASSERT | |
3477 | /* | |
3478 | * Verify ordering in address space. | |
3479 | */ | |
3480 | for (offset = 0; offset < size; offset += PAGE_SIZE) { | |
3481 | vm_object_lock(cpm_obj); | |
3482 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); | |
3483 | vm_object_unlock(cpm_obj); | |
3484 | if (m == VM_PAGE_NULL) | |
3485 | panic("vm_allocate_cpm: obj %p off 0x%llx no page", | |
3486 | cpm_obj, (uint64_t)offset); | |
3487 | assert(m->tabled); | |
3488 | assert(!m->busy); | |
3489 | assert(!m->wanted); | |
3490 | assert(!m->fictitious); | |
3491 | assert(!m->private); | |
3492 | assert(!m->absent); | |
3493 | assert(!m->error); | |
3494 | assert(!m->cleaning); | |
3495 | assert(!m->laundry); | |
3496 | assert(!m->precious); | |
3497 | assert(!m->clustered); | |
3498 | if (offset != 0) { | |
3499 | if (m->phys_page != prev_addr + 1) { | |
3500 | printf("start 0x%llx end 0x%llx va 0x%llx\n", | |
3501 | (uint64_t)start, (uint64_t)end, (uint64_t)va); | |
3502 | printf("obj %p off 0x%llx\n", cpm_obj, (uint64_t)offset); | |
3503 | printf("m %p prev_address 0x%llx\n", m, (uint64_t)prev_addr); | |
3504 | panic("vm_allocate_cpm: pages not contig!"); | |
3505 | } | |
3506 | } | |
3507 | prev_addr = m->phys_page; | |
3508 | } | |
3509 | #endif /* MACH_ASSERT */ | |
3510 | ||
3511 | vm_object_deallocate(cpm_obj); /* kill extra ref */ | |
3512 | ||
3513 | return kr; | |
3514 | } | |
3515 | ||
3516 | ||
3517 | #else /* VM_CPM */ | |
3518 | ||
3519 | /* | |
3520 | * Interface is defined in all cases, but unless the kernel | |
3521 | * is built explicitly for this option, the interface does | |
3522 | * nothing. | |
3523 | */ | |
3524 | ||
3525 | kern_return_t | |
3526 | vm_map_enter_cpm( | |
3527 | __unused vm_map_t map, | |
3528 | __unused vm_map_offset_t *addr, | |
3529 | __unused vm_map_size_t size, | |
3530 | __unused int flags) | |
3531 | { | |
3532 | return KERN_FAILURE; | |
3533 | } | |
3534 | #endif /* VM_CPM */ | |
3535 | ||
3536 | /* Not used without nested pmaps */ | |
3537 | #ifndef NO_NESTED_PMAP | |
3538 | /* | |
3539 | * Clip and unnest a portion of a nested submap mapping. | |
3540 | */ | |
3541 | ||
3542 | ||
3543 | static void | |
3544 | vm_map_clip_unnest( | |
3545 | vm_map_t map, | |
3546 | vm_map_entry_t entry, | |
3547 | vm_map_offset_t start_unnest, | |
3548 | vm_map_offset_t end_unnest) | |
3549 | { | |
3550 | vm_map_offset_t old_start_unnest = start_unnest; | |
3551 | vm_map_offset_t old_end_unnest = end_unnest; | |
3552 | ||
3553 | assert(entry->is_sub_map); | |
3554 | assert(entry->object.sub_map != NULL); | |
3555 | assert(entry->use_pmap); | |
3556 | ||
3557 | /* | |
3558 | * Query the platform for the optimal unnest range. | |
3559 | * DRK: There's some duplication of effort here, since | |
3560 | * callers may have adjusted the range to some extent. This | |
3561 | * routine was introduced to support 1GiB subtree nesting | |
3562 | * for x86 platforms, which can also nest on 2MiB boundaries | |
3563 | * depending on size/alignment. | |
3564 | */ | |
3565 | if (pmap_adjust_unnest_parameters(map->pmap, &start_unnest, &end_unnest)) { | |
3566 | log_unnest_badness(map, old_start_unnest, old_end_unnest); | |
3567 | } | |
3568 | ||
3569 | if (entry->vme_start > start_unnest || | |
3570 | entry->vme_end < end_unnest) { | |
3571 | panic("vm_map_clip_unnest(0x%llx,0x%llx): " | |
3572 | "bad nested entry: start=0x%llx end=0x%llx\n", | |
3573 | (long long)start_unnest, (long long)end_unnest, | |
3574 | (long long)entry->vme_start, (long long)entry->vme_end); | |
3575 | } | |
3576 | ||
3577 | if (start_unnest > entry->vme_start) { | |
3578 | _vm_map_clip_start(&map->hdr, | |
3579 | entry, | |
3580 | start_unnest); | |
3581 | vm_map_store_update_first_free(map, map->first_free); | |
3582 | } | |
3583 | if (entry->vme_end > end_unnest) { | |
3584 | _vm_map_clip_end(&map->hdr, | |
3585 | entry, | |
3586 | end_unnest); | |
3587 | vm_map_store_update_first_free(map, map->first_free); | |
3588 | } | |
3589 | ||
3590 | pmap_unnest(map->pmap, | |
3591 | entry->vme_start, | |
3592 | entry->vme_end - entry->vme_start); | |
3593 | if ((map->mapped_in_other_pmaps) && (map->ref_count)) { | |
3594 | /* clean up parent map/maps */ | |
3595 | vm_map_submap_pmap_clean( | |
3596 | map, entry->vme_start, | |
3597 | entry->vme_end, | |
3598 | entry->object.sub_map, | |
3599 | entry->offset); | |
3600 | } | |
3601 | entry->use_pmap = FALSE; | |
3602 | if (entry->alias == VM_MEMORY_SHARED_PMAP) { | |
3603 | entry->alias = VM_MEMORY_UNSHARED_PMAP; | |
3604 | } | |
3605 | } | |
3606 | #endif /* NO_NESTED_PMAP */ | |
3607 | ||
3608 | /* | |
3609 | * vm_map_clip_start: [ internal use only ] | |
3610 | * | |
3611 | * Asserts that the given entry begins at or after | |
3612 | * the specified address; if necessary, | |
3613 | * it splits the entry into two. | |
3614 | */ | |
3615 | void | |
3616 | vm_map_clip_start( | |
3617 | vm_map_t map, | |
3618 | vm_map_entry_t entry, | |
3619 | vm_map_offset_t startaddr) | |
3620 | { | |
3621 | #ifndef NO_NESTED_PMAP | |
3622 | if (entry->is_sub_map && | |
3623 | entry->use_pmap && | |
3624 | startaddr >= entry->vme_start) { | |
3625 | vm_map_offset_t start_unnest, end_unnest; | |
3626 | ||
3627 | /* | |
3628 | * Make sure "startaddr" is no longer in a nested range | |
3629 | * before we clip. Unnest only the minimum range the platform | |
3630 | * can handle. | |
3631 | * vm_map_clip_unnest may perform additional adjustments to | |
3632 | * the unnest range. | |
3633 | */ | |
3634 | start_unnest = startaddr & ~(pmap_nesting_size_min - 1); | |
3635 | end_unnest = start_unnest + pmap_nesting_size_min; | |
3636 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); | |
3637 | } | |
3638 | #endif /* NO_NESTED_PMAP */ | |
3639 | if (startaddr > entry->vme_start) { | |
3640 | if (entry->object.vm_object && | |
3641 | !entry->is_sub_map && | |
3642 | entry->object.vm_object->phys_contiguous) { | |
3643 | pmap_remove(map->pmap, | |
3644 | (addr64_t)(entry->vme_start), | |
3645 | (addr64_t)(entry->vme_end)); | |
3646 | } | |
3647 | _vm_map_clip_start(&map->hdr, entry, startaddr); | |
3648 | vm_map_store_update_first_free(map, map->first_free); | |
3649 | } | |
3650 | } | |
3651 | ||
3652 | ||
3653 | #define vm_map_copy_clip_start(copy, entry, startaddr) \ | |
3654 | MACRO_BEGIN \ | |
3655 | if ((startaddr) > (entry)->vme_start) \ | |
3656 | _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \ | |
3657 | MACRO_END | |
3658 | ||
3659 | /* | |
3660 | * This routine is called only when it is known that | |
3661 | * the entry must be split. | |
3662 | */ | |
3663 | static void | |
3664 | _vm_map_clip_start( | |
3665 | register struct vm_map_header *map_header, | |
3666 | register vm_map_entry_t entry, | |
3667 | register vm_map_offset_t start) | |
3668 | { | |
3669 | register vm_map_entry_t new_entry; | |
3670 | ||
3671 | /* | |
3672 | * Split off the front portion -- | |
3673 | * note that we must insert the new | |
3674 | * entry BEFORE this one, so that | |
3675 | * this entry has the specified starting | |
3676 | * address. | |
3677 | */ | |
3678 | ||
3679 | if (entry->map_aligned) { | |
3680 | assert(VM_MAP_PAGE_ALIGNED(start, | |
3681 | VM_MAP_HDR_PAGE_MASK(map_header))); | |
3682 | } | |
3683 | ||
3684 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); | |
3685 | vm_map_entry_copy_full(new_entry, entry); | |
3686 | ||
3687 | new_entry->vme_end = start; | |
3688 | assert(new_entry->vme_start < new_entry->vme_end); | |
3689 | entry->offset += (start - entry->vme_start); | |
3690 | assert(start < entry->vme_end); | |
3691 | entry->vme_start = start; | |
3692 | ||
3693 | _vm_map_store_entry_link(map_header, entry->vme_prev, new_entry); | |
3694 | ||
3695 | if (entry->is_sub_map) | |
3696 | vm_map_reference(new_entry->object.sub_map); | |
3697 | else | |
3698 | vm_object_reference(new_entry->object.vm_object); | |
3699 | } | |
3700 | ||
3701 | ||
3702 | /* | |
3703 | * vm_map_clip_end: [ internal use only ] | |
3704 | * | |
3705 | * Asserts that the given entry ends at or before | |
3706 | * the specified address; if necessary, | |
3707 | * it splits the entry into two. | |
3708 | */ | |
3709 | void | |
3710 | vm_map_clip_end( | |
3711 | vm_map_t map, | |
3712 | vm_map_entry_t entry, | |
3713 | vm_map_offset_t endaddr) | |
3714 | { | |
3715 | if (endaddr > entry->vme_end) { | |
3716 | /* | |
3717 | * Within the scope of this clipping, limit "endaddr" to | |
3718 | * the end of this map entry... | |
3719 | */ | |
3720 | endaddr = entry->vme_end; | |
3721 | } | |
3722 | #ifndef NO_NESTED_PMAP | |
3723 | if (entry->is_sub_map && entry->use_pmap) { | |
3724 | vm_map_offset_t start_unnest, end_unnest; | |
3725 | ||
3726 | /* | |
3727 | * Make sure the range between the start of this entry and | |
3728 | * the new "endaddr" is no longer nested before we clip. | |
3729 | * Unnest only the minimum range the platform can handle. | |
3730 | * vm_map_clip_unnest may perform additional adjustments to | |
3731 | * the unnest range. | |
3732 | */ | |
3733 | start_unnest = entry->vme_start; | |
3734 | end_unnest = | |
3735 | (endaddr + pmap_nesting_size_min - 1) & | |
3736 | ~(pmap_nesting_size_min - 1); | |
3737 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); | |
3738 | } | |
3739 | #endif /* NO_NESTED_PMAP */ | |
3740 | if (endaddr < entry->vme_end) { | |
3741 | if (entry->object.vm_object && | |
3742 | !entry->is_sub_map && | |
3743 | entry->object.vm_object->phys_contiguous) { | |
3744 | pmap_remove(map->pmap, | |
3745 | (addr64_t)(entry->vme_start), | |
3746 | (addr64_t)(entry->vme_end)); | |
3747 | } | |
3748 | _vm_map_clip_end(&map->hdr, entry, endaddr); | |
3749 | vm_map_store_update_first_free(map, map->first_free); | |
3750 | } | |
3751 | } | |
3752 | ||
3753 | ||
3754 | #define vm_map_copy_clip_end(copy, entry, endaddr) \ | |
3755 | MACRO_BEGIN \ | |
3756 | if ((endaddr) < (entry)->vme_end) \ | |
3757 | _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \ | |
3758 | MACRO_END | |
3759 | ||
3760 | /* | |
3761 | * This routine is called only when it is known that | |
3762 | * the entry must be split. | |
3763 | */ | |
3764 | static void | |
3765 | _vm_map_clip_end( | |
3766 | register struct vm_map_header *map_header, | |
3767 | register vm_map_entry_t entry, | |
3768 | register vm_map_offset_t end) | |
3769 | { | |
3770 | register vm_map_entry_t new_entry; | |
3771 | ||
3772 | /* | |
3773 | * Create a new entry and insert it | |
3774 | * AFTER the specified entry | |
3775 | */ | |
3776 | ||
3777 | if (entry->map_aligned) { | |
3778 | assert(VM_MAP_PAGE_ALIGNED(end, | |
3779 | VM_MAP_HDR_PAGE_MASK(map_header))); | |
3780 | } | |
3781 | ||
3782 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); | |
3783 | vm_map_entry_copy_full(new_entry, entry); | |
3784 | ||
3785 | assert(entry->vme_start < end); | |
3786 | new_entry->vme_start = entry->vme_end = end; | |
3787 | new_entry->offset += (end - entry->vme_start); | |
3788 | assert(new_entry->vme_start < new_entry->vme_end); | |
3789 | ||
3790 | _vm_map_store_entry_link(map_header, entry, new_entry); | |
3791 | ||
3792 | if (entry->is_sub_map) | |
3793 | vm_map_reference(new_entry->object.sub_map); | |
3794 | else | |
3795 | vm_object_reference(new_entry->object.vm_object); | |
3796 | } | |
3797 | ||
3798 | ||
3799 | /* | |
3800 | * VM_MAP_RANGE_CHECK: [ internal use only ] | |
3801 | * | |
3802 | * Asserts that the starting and ending region | |
3803 | * addresses fall within the valid range of the map. | |
3804 | */ | |
3805 | #define VM_MAP_RANGE_CHECK(map, start, end) \ | |
3806 | MACRO_BEGIN \ | |
3807 | if (start < vm_map_min(map)) \ | |
3808 | start = vm_map_min(map); \ | |
3809 | if (end > vm_map_max(map)) \ | |
3810 | end = vm_map_max(map); \ | |
3811 | if (start > end) \ | |
3812 | start = end; \ | |
3813 | MACRO_END | |
3814 | ||
3815 | /* | |
3816 | * vm_map_range_check: [ internal use only ] | |
3817 | * | |
3818 | * Check that the region defined by the specified start and | |
3819 | * end addresses are wholly contained within a single map | |
3820 | * entry or set of adjacent map entries of the spacified map, | |
3821 | * i.e. the specified region contains no unmapped space. | |
3822 | * If any or all of the region is unmapped, FALSE is returned. | |
3823 | * Otherwise, TRUE is returned and if the output argument 'entry' | |
3824 | * is not NULL it points to the map entry containing the start | |
3825 | * of the region. | |
3826 | * | |
3827 | * The map is locked for reading on entry and is left locked. | |
3828 | */ | |
3829 | static boolean_t | |
3830 | vm_map_range_check( | |
3831 | register vm_map_t map, | |
3832 | register vm_map_offset_t start, | |
3833 | register vm_map_offset_t end, | |
3834 | vm_map_entry_t *entry) | |
3835 | { | |
3836 | vm_map_entry_t cur; | |
3837 | register vm_map_offset_t prev; | |
3838 | ||
3839 | /* | |
3840 | * Basic sanity checks first | |
3841 | */ | |
3842 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) | |
3843 | return (FALSE); | |
3844 | ||
3845 | /* | |
3846 | * Check first if the region starts within a valid | |
3847 | * mapping for the map. | |
3848 | */ | |
3849 | if (!vm_map_lookup_entry(map, start, &cur)) | |
3850 | return (FALSE); | |
3851 | ||
3852 | /* | |
3853 | * Optimize for the case that the region is contained | |
3854 | * in a single map entry. | |
3855 | */ | |
3856 | if (entry != (vm_map_entry_t *) NULL) | |
3857 | *entry = cur; | |
3858 | if (end <= cur->vme_end) | |
3859 | return (TRUE); | |
3860 | ||
3861 | /* | |
3862 | * If the region is not wholly contained within a | |
3863 | * single entry, walk the entries looking for holes. | |
3864 | */ | |
3865 | prev = cur->vme_end; | |
3866 | cur = cur->vme_next; | |
3867 | while ((cur != vm_map_to_entry(map)) && (prev == cur->vme_start)) { | |
3868 | if (end <= cur->vme_end) | |
3869 | return (TRUE); | |
3870 | prev = cur->vme_end; | |
3871 | cur = cur->vme_next; | |
3872 | } | |
3873 | return (FALSE); | |
3874 | } | |
3875 | ||
3876 | /* | |
3877 | * vm_map_submap: [ kernel use only ] | |
3878 | * | |
3879 | * Mark the given range as handled by a subordinate map. | |
3880 | * | |
3881 | * This range must have been created with vm_map_find using | |
3882 | * the vm_submap_object, and no other operations may have been | |
3883 | * performed on this range prior to calling vm_map_submap. | |
3884 | * | |
3885 | * Only a limited number of operations can be performed | |
3886 | * within this rage after calling vm_map_submap: | |
3887 | * vm_fault | |
3888 | * [Don't try vm_map_copyin!] | |
3889 | * | |
3890 | * To remove a submapping, one must first remove the | |
3891 | * range from the superior map, and then destroy the | |
3892 | * submap (if desired). [Better yet, don't try it.] | |
3893 | */ | |
3894 | kern_return_t | |
3895 | vm_map_submap( | |
3896 | vm_map_t map, | |
3897 | vm_map_offset_t start, | |
3898 | vm_map_offset_t end, | |
3899 | vm_map_t submap, | |
3900 | vm_map_offset_t offset, | |
3901 | #ifdef NO_NESTED_PMAP | |
3902 | __unused | |
3903 | #endif /* NO_NESTED_PMAP */ | |
3904 | boolean_t use_pmap) | |
3905 | { | |
3906 | vm_map_entry_t entry; | |
3907 | register kern_return_t result = KERN_INVALID_ARGUMENT; | |
3908 | register vm_object_t object; | |
3909 | ||
3910 | vm_map_lock(map); | |
3911 | ||
3912 | if (! vm_map_lookup_entry(map, start, &entry)) { | |
3913 | entry = entry->vme_next; | |
3914 | } | |
3915 | ||
3916 | if (entry == vm_map_to_entry(map) || | |
3917 | entry->is_sub_map) { | |
3918 | vm_map_unlock(map); | |
3919 | return KERN_INVALID_ARGUMENT; | |
3920 | } | |
3921 | ||
3922 | vm_map_clip_start(map, entry, start); | |
3923 | vm_map_clip_end(map, entry, end); | |
3924 | ||
3925 | if ((entry->vme_start == start) && (entry->vme_end == end) && | |
3926 | (!entry->is_sub_map) && | |
3927 | ((object = entry->object.vm_object) == vm_submap_object) && | |
3928 | (object->resident_page_count == 0) && | |
3929 | (object->copy == VM_OBJECT_NULL) && | |
3930 | (object->shadow == VM_OBJECT_NULL) && | |
3931 | (!object->pager_created)) { | |
3932 | entry->offset = (vm_object_offset_t)offset; | |
3933 | entry->object.vm_object = VM_OBJECT_NULL; | |
3934 | vm_object_deallocate(object); | |
3935 | entry->is_sub_map = TRUE; | |
3936 | entry->use_pmap = FALSE; | |
3937 | entry->object.sub_map = submap; | |
3938 | vm_map_reference(submap); | |
3939 | if (submap->mapped_in_other_pmaps == FALSE && | |
3940 | vm_map_pmap(submap) != PMAP_NULL && | |
3941 | vm_map_pmap(submap) != vm_map_pmap(map)) { | |
3942 | /* | |
3943 | * This submap is being mapped in a map | |
3944 | * that uses a different pmap. | |
3945 | * Set its "mapped_in_other_pmaps" flag | |
3946 | * to indicate that we now need to | |
3947 | * remove mappings from all pmaps rather | |
3948 | * than just the submap's pmap. | |
3949 | */ | |
3950 | submap->mapped_in_other_pmaps = TRUE; | |
3951 | } | |
3952 | ||
3953 | #ifndef NO_NESTED_PMAP | |
3954 | if (use_pmap) { | |
3955 | /* nest if platform code will allow */ | |
3956 | if(submap->pmap == NULL) { | |
3957 | ledger_t ledger = map->pmap->ledger; | |
3958 | submap->pmap = pmap_create(ledger, | |
3959 | (vm_map_size_t) 0, FALSE); | |
3960 | if(submap->pmap == PMAP_NULL) { | |
3961 | vm_map_unlock(map); | |
3962 | return(KERN_NO_SPACE); | |
3963 | } | |
3964 | } | |
3965 | result = pmap_nest(map->pmap, | |
3966 | (entry->object.sub_map)->pmap, | |
3967 | (addr64_t)start, | |
3968 | (addr64_t)start, | |
3969 | (uint64_t)(end - start)); | |
3970 | if(result) | |
3971 | panic("vm_map_submap: pmap_nest failed, rc = %08X\n", result); | |
3972 | entry->use_pmap = TRUE; | |
3973 | } | |
3974 | #else /* NO_NESTED_PMAP */ | |
3975 | pmap_remove(map->pmap, (addr64_t)start, (addr64_t)end); | |
3976 | #endif /* NO_NESTED_PMAP */ | |
3977 | result = KERN_SUCCESS; | |
3978 | } | |
3979 | vm_map_unlock(map); | |
3980 | ||
3981 | return(result); | |
3982 | } | |
3983 | ||
3984 | /* | |
3985 | * vm_map_protect: | |
3986 | * | |
3987 | * Sets the protection of the specified address | |
3988 | * region in the target map. If "set_max" is | |
3989 | * specified, the maximum protection is to be set; | |
3990 | * otherwise, only the current protection is affected. | |
3991 | */ | |
3992 | kern_return_t | |
3993 | vm_map_protect( | |
3994 | register vm_map_t map, | |
3995 | register vm_map_offset_t start, | |
3996 | register vm_map_offset_t end, | |
3997 | register vm_prot_t new_prot, | |
3998 | register boolean_t set_max) | |
3999 | { | |
4000 | register vm_map_entry_t current; | |
4001 | register vm_map_offset_t prev; | |
4002 | vm_map_entry_t entry; | |
4003 | vm_prot_t new_max; | |
4004 | ||
4005 | XPR(XPR_VM_MAP, | |
4006 | "vm_map_protect, 0x%X start 0x%X end 0x%X, new 0x%X %d", | |
4007 | map, start, end, new_prot, set_max); | |
4008 | ||
4009 | vm_map_lock(map); | |
4010 | ||
4011 | /* LP64todo - remove this check when vm_map_commpage64() | |
4012 | * no longer has to stuff in a map_entry for the commpage | |
4013 | * above the map's max_offset. | |
4014 | */ | |
4015 | if (start >= map->max_offset) { | |
4016 | vm_map_unlock(map); | |
4017 | return(KERN_INVALID_ADDRESS); | |
4018 | } | |
4019 | ||
4020 | while(1) { | |
4021 | /* | |
4022 | * Lookup the entry. If it doesn't start in a valid | |
4023 | * entry, return an error. | |
4024 | */ | |
4025 | if (! vm_map_lookup_entry(map, start, &entry)) { | |
4026 | vm_map_unlock(map); | |
4027 | return(KERN_INVALID_ADDRESS); | |
4028 | } | |
4029 | ||
4030 | if (entry->superpage_size && (start & (SUPERPAGE_SIZE-1))) { /* extend request to whole entry */ | |
4031 | start = SUPERPAGE_ROUND_DOWN(start); | |
4032 | continue; | |
4033 | } | |
4034 | break; | |
4035 | } | |
4036 | if (entry->superpage_size) | |
4037 | end = SUPERPAGE_ROUND_UP(end); | |
4038 | ||
4039 | /* | |
4040 | * Make a first pass to check for protection and address | |
4041 | * violations. | |
4042 | */ | |
4043 | ||
4044 | current = entry; | |
4045 | prev = current->vme_start; | |
4046 | while ((current != vm_map_to_entry(map)) && | |
4047 | (current->vme_start < end)) { | |
4048 | ||
4049 | /* | |
4050 | * If there is a hole, return an error. | |
4051 | */ | |
4052 | if (current->vme_start != prev) { | |
4053 | vm_map_unlock(map); | |
4054 | return(KERN_INVALID_ADDRESS); | |
4055 | } | |
4056 | ||
4057 | new_max = current->max_protection; | |
4058 | if(new_prot & VM_PROT_COPY) { | |
4059 | new_max |= VM_PROT_WRITE; | |
4060 | if ((new_prot & (new_max | VM_PROT_COPY)) != new_prot) { | |
4061 | vm_map_unlock(map); | |
4062 | return(KERN_PROTECTION_FAILURE); | |
4063 | } | |
4064 | } else { | |
4065 | if ((new_prot & new_max) != new_prot) { | |
4066 | vm_map_unlock(map); | |
4067 | return(KERN_PROTECTION_FAILURE); | |
4068 | } | |
4069 | } | |
4070 | ||
4071 | ||
4072 | prev = current->vme_end; | |
4073 | current = current->vme_next; | |
4074 | } | |
4075 | if (end > prev) { | |
4076 | vm_map_unlock(map); | |
4077 | return(KERN_INVALID_ADDRESS); | |
4078 | } | |
4079 | ||
4080 | /* | |
4081 | * Go back and fix up protections. | |
4082 | * Clip to start here if the range starts within | |
4083 | * the entry. | |
4084 | */ | |
4085 | ||
4086 | current = entry; | |
4087 | if (current != vm_map_to_entry(map)) { | |
4088 | /* clip and unnest if necessary */ | |
4089 | vm_map_clip_start(map, current, start); | |
4090 | } | |
4091 | ||
4092 | while ((current != vm_map_to_entry(map)) && | |
4093 | (current->vme_start < end)) { | |
4094 | ||
4095 | vm_prot_t old_prot; | |
4096 | ||
4097 | vm_map_clip_end(map, current, end); | |
4098 | ||
4099 | if (current->is_sub_map) { | |
4100 | /* clipping did unnest if needed */ | |
4101 | assert(!current->use_pmap); | |
4102 | } | |
4103 | ||
4104 | old_prot = current->protection; | |
4105 | ||
4106 | if(new_prot & VM_PROT_COPY) { | |
4107 | /* caller is asking specifically to copy the */ | |
4108 | /* mapped data, this implies that max protection */ | |
4109 | /* will include write. Caller must be prepared */ | |
4110 | /* for loss of shared memory communication in the */ | |
4111 | /* target area after taking this step */ | |
4112 | ||
4113 | if (current->is_sub_map == FALSE && current->object.vm_object == VM_OBJECT_NULL){ | |
4114 | current->object.vm_object = vm_object_allocate((vm_map_size_t)(current->vme_end - current->vme_start)); | |
4115 | current->offset = 0; | |
4116 | assert(current->use_pmap); | |
4117 | } | |
4118 | current->needs_copy = TRUE; | |
4119 | current->max_protection |= VM_PROT_WRITE; | |
4120 | } | |
4121 | ||
4122 | if (set_max) | |
4123 | current->protection = | |
4124 | (current->max_protection = | |
4125 | new_prot & ~VM_PROT_COPY) & | |
4126 | old_prot; | |
4127 | else | |
4128 | current->protection = new_prot & ~VM_PROT_COPY; | |
4129 | ||
4130 | /* | |
4131 | * Update physical map if necessary. | |
4132 | * If the request is to turn off write protection, | |
4133 | * we won't do it for real (in pmap). This is because | |
4134 | * it would cause copy-on-write to fail. We've already | |
4135 | * set, the new protection in the map, so if a | |
4136 | * write-protect fault occurred, it will be fixed up | |
4137 | * properly, COW or not. | |
4138 | */ | |
4139 | if (current->protection != old_prot) { | |
4140 | /* Look one level in we support nested pmaps */ | |
4141 | /* from mapped submaps which are direct entries */ | |
4142 | /* in our map */ | |
4143 | ||
4144 | vm_prot_t prot; | |
4145 | ||
4146 | prot = current->protection & ~VM_PROT_WRITE; | |
4147 | ||
4148 | if (override_nx(map, current->alias) && prot) | |
4149 | prot |= VM_PROT_EXECUTE; | |
4150 | ||
4151 | if (current->is_sub_map && current->use_pmap) { | |
4152 | pmap_protect(current->object.sub_map->pmap, | |
4153 | current->vme_start, | |
4154 | current->vme_end, | |
4155 | prot); | |
4156 | } else { | |
4157 | pmap_protect(map->pmap, | |
4158 | current->vme_start, | |
4159 | current->vme_end, | |
4160 | prot); | |
4161 | } | |
4162 | } | |
4163 | current = current->vme_next; | |
4164 | } | |
4165 | ||
4166 | current = entry; | |
4167 | while ((current != vm_map_to_entry(map)) && | |
4168 | (current->vme_start <= end)) { | |
4169 | vm_map_simplify_entry(map, current); | |
4170 | current = current->vme_next; | |
4171 | } | |
4172 | ||
4173 | vm_map_unlock(map); | |
4174 | return(KERN_SUCCESS); | |
4175 | } | |
4176 | ||
4177 | /* | |
4178 | * vm_map_inherit: | |
4179 | * | |
4180 | * Sets the inheritance of the specified address | |
4181 | * range in the target map. Inheritance | |
4182 | * affects how the map will be shared with | |
4183 | * child maps at the time of vm_map_fork. | |
4184 | */ | |
4185 | kern_return_t | |
4186 | vm_map_inherit( | |
4187 | register vm_map_t map, | |
4188 | register vm_map_offset_t start, | |
4189 | register vm_map_offset_t end, | |
4190 | register vm_inherit_t new_inheritance) | |
4191 | { | |
4192 | register vm_map_entry_t entry; | |
4193 | vm_map_entry_t temp_entry; | |
4194 | ||
4195 | vm_map_lock(map); | |
4196 | ||
4197 | VM_MAP_RANGE_CHECK(map, start, end); | |
4198 | ||
4199 | if (vm_map_lookup_entry(map, start, &temp_entry)) { | |
4200 | entry = temp_entry; | |
4201 | } | |
4202 | else { | |
4203 | temp_entry = temp_entry->vme_next; | |
4204 | entry = temp_entry; | |
4205 | } | |
4206 | ||
4207 | /* first check entire range for submaps which can't support the */ | |
4208 | /* given inheritance. */ | |
4209 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
4210 | if(entry->is_sub_map) { | |
4211 | if(new_inheritance == VM_INHERIT_COPY) { | |
4212 | vm_map_unlock(map); | |
4213 | return(KERN_INVALID_ARGUMENT); | |
4214 | } | |
4215 | } | |
4216 | ||
4217 | entry = entry->vme_next; | |
4218 | } | |
4219 | ||
4220 | entry = temp_entry; | |
4221 | if (entry != vm_map_to_entry(map)) { | |
4222 | /* clip and unnest if necessary */ | |
4223 | vm_map_clip_start(map, entry, start); | |
4224 | } | |
4225 | ||
4226 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
4227 | vm_map_clip_end(map, entry, end); | |
4228 | if (entry->is_sub_map) { | |
4229 | /* clip did unnest if needed */ | |
4230 | assert(!entry->use_pmap); | |
4231 | } | |
4232 | ||
4233 | entry->inheritance = new_inheritance; | |
4234 | ||
4235 | entry = entry->vme_next; | |
4236 | } | |
4237 | ||
4238 | vm_map_unlock(map); | |
4239 | return(KERN_SUCCESS); | |
4240 | } | |
4241 | ||
4242 | /* | |
4243 | * Update the accounting for the amount of wired memory in this map. If the user has | |
4244 | * exceeded the defined limits, then we fail. Wiring on behalf of the kernel never fails. | |
4245 | */ | |
4246 | ||
4247 | static kern_return_t | |
4248 | add_wire_counts( | |
4249 | vm_map_t map, | |
4250 | vm_map_entry_t entry, | |
4251 | boolean_t user_wire) | |
4252 | { | |
4253 | vm_map_size_t size; | |
4254 | ||
4255 | if (user_wire) { | |
4256 | unsigned int total_wire_count = vm_page_wire_count + vm_lopage_free_count; | |
4257 | ||
4258 | /* | |
4259 | * We're wiring memory at the request of the user. Check if this is the first time the user is wiring | |
4260 | * this map entry. | |
4261 | */ | |
4262 | ||
4263 | if (entry->user_wired_count == 0) { | |
4264 | size = entry->vme_end - entry->vme_start; | |
4265 | ||
4266 | /* | |
4267 | * Since this is the first time the user is wiring this map entry, check to see if we're | |
4268 | * exceeding the user wire limits. There is a per map limit which is the smaller of either | |
4269 | * the process's rlimit or the global vm_user_wire_limit which caps this value. There is also | |
4270 | * a system-wide limit on the amount of memory all users can wire. If the user is over either | |
4271 | * limit, then we fail. | |
4272 | */ | |
4273 | ||
4274 | if(size + map->user_wire_size > MIN(map->user_wire_limit, vm_user_wire_limit) || | |
4275 | size + ptoa_64(total_wire_count) > vm_global_user_wire_limit || | |
4276 | size + ptoa_64(total_wire_count) > max_mem - vm_global_no_user_wire_amount) | |
4277 | return KERN_RESOURCE_SHORTAGE; | |
4278 | ||
4279 | /* | |
4280 | * The first time the user wires an entry, we also increment the wired_count and add this to | |
4281 | * the total that has been wired in the map. | |
4282 | */ | |
4283 | ||
4284 | if (entry->wired_count >= MAX_WIRE_COUNT) | |
4285 | return KERN_FAILURE; | |
4286 | ||
4287 | entry->wired_count++; | |
4288 | map->user_wire_size += size; | |
4289 | } | |
4290 | ||
4291 | if (entry->user_wired_count >= MAX_WIRE_COUNT) | |
4292 | return KERN_FAILURE; | |
4293 | ||
4294 | entry->user_wired_count++; | |
4295 | ||
4296 | } else { | |
4297 | ||
4298 | /* | |
4299 | * The kernel's wiring the memory. Just bump the count and continue. | |
4300 | */ | |
4301 | ||
4302 | if (entry->wired_count >= MAX_WIRE_COUNT) | |
4303 | panic("vm_map_wire: too many wirings"); | |
4304 | ||
4305 | entry->wired_count++; | |
4306 | } | |
4307 | ||
4308 | return KERN_SUCCESS; | |
4309 | } | |
4310 | ||
4311 | /* | |
4312 | * Update the memory wiring accounting now that the given map entry is being unwired. | |
4313 | */ | |
4314 | ||
4315 | static void | |
4316 | subtract_wire_counts( | |
4317 | vm_map_t map, | |
4318 | vm_map_entry_t entry, | |
4319 | boolean_t user_wire) | |
4320 | { | |
4321 | ||
4322 | if (user_wire) { | |
4323 | ||
4324 | /* | |
4325 | * We're unwiring memory at the request of the user. See if we're removing the last user wire reference. | |
4326 | */ | |
4327 | ||
4328 | if (entry->user_wired_count == 1) { | |
4329 | ||
4330 | /* | |
4331 | * We're removing the last user wire reference. Decrement the wired_count and the total | |
4332 | * user wired memory for this map. | |
4333 | */ | |
4334 | ||
4335 | assert(entry->wired_count >= 1); | |
4336 | entry->wired_count--; | |
4337 | map->user_wire_size -= entry->vme_end - entry->vme_start; | |
4338 | } | |
4339 | ||
4340 | assert(entry->user_wired_count >= 1); | |
4341 | entry->user_wired_count--; | |
4342 | ||
4343 | } else { | |
4344 | ||
4345 | /* | |
4346 | * The kernel is unwiring the memory. Just update the count. | |
4347 | */ | |
4348 | ||
4349 | assert(entry->wired_count >= 1); | |
4350 | entry->wired_count--; | |
4351 | } | |
4352 | } | |
4353 | ||
4354 | /* | |
4355 | * vm_map_wire: | |
4356 | * | |
4357 | * Sets the pageability of the specified address range in the | |
4358 | * target map as wired. Regions specified as not pageable require | |
4359 | * locked-down physical memory and physical page maps. The | |
4360 | * access_type variable indicates types of accesses that must not | |
4361 | * generate page faults. This is checked against protection of | |
4362 | * memory being locked-down. | |
4363 | * | |
4364 | * The map must not be locked, but a reference must remain to the | |
4365 | * map throughout the call. | |
4366 | */ | |
4367 | static kern_return_t | |
4368 | vm_map_wire_nested( | |
4369 | register vm_map_t map, | |
4370 | register vm_map_offset_t start, | |
4371 | register vm_map_offset_t end, | |
4372 | register vm_prot_t access_type, | |
4373 | boolean_t user_wire, | |
4374 | pmap_t map_pmap, | |
4375 | vm_map_offset_t pmap_addr, | |
4376 | ppnum_t *physpage_p) | |
4377 | { | |
4378 | register vm_map_entry_t entry; | |
4379 | struct vm_map_entry *first_entry, tmp_entry; | |
4380 | vm_map_t real_map; | |
4381 | register vm_map_offset_t s,e; | |
4382 | kern_return_t rc; | |
4383 | boolean_t need_wakeup; | |
4384 | boolean_t main_map = FALSE; | |
4385 | wait_interrupt_t interruptible_state; | |
4386 | thread_t cur_thread; | |
4387 | unsigned int last_timestamp; | |
4388 | vm_map_size_t size; | |
4389 | boolean_t wire_and_extract; | |
4390 | ||
4391 | wire_and_extract = FALSE; | |
4392 | if (physpage_p != NULL) { | |
4393 | /* | |
4394 | * The caller wants the physical page number of the | |
4395 | * wired page. We return only one physical page number | |
4396 | * so this works for only one page at a time. | |
4397 | */ | |
4398 | if ((end - start) != PAGE_SIZE) { | |
4399 | return KERN_INVALID_ARGUMENT; | |
4400 | } | |
4401 | wire_and_extract = TRUE; | |
4402 | *physpage_p = 0; | |
4403 | } | |
4404 | ||
4405 | vm_map_lock(map); | |
4406 | if(map_pmap == NULL) | |
4407 | main_map = TRUE; | |
4408 | last_timestamp = map->timestamp; | |
4409 | ||
4410 | VM_MAP_RANGE_CHECK(map, start, end); | |
4411 | assert(page_aligned(start)); | |
4412 | assert(page_aligned(end)); | |
4413 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); | |
4414 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); | |
4415 | if (start == end) { | |
4416 | /* We wired what the caller asked for, zero pages */ | |
4417 | vm_map_unlock(map); | |
4418 | return KERN_SUCCESS; | |
4419 | } | |
4420 | ||
4421 | need_wakeup = FALSE; | |
4422 | cur_thread = current_thread(); | |
4423 | ||
4424 | s = start; | |
4425 | rc = KERN_SUCCESS; | |
4426 | ||
4427 | if (vm_map_lookup_entry(map, s, &first_entry)) { | |
4428 | entry = first_entry; | |
4429 | /* | |
4430 | * vm_map_clip_start will be done later. | |
4431 | * We don't want to unnest any nested submaps here ! | |
4432 | */ | |
4433 | } else { | |
4434 | /* Start address is not in map */ | |
4435 | rc = KERN_INVALID_ADDRESS; | |
4436 | goto done; | |
4437 | } | |
4438 | ||
4439 | while ((entry != vm_map_to_entry(map)) && (s < end)) { | |
4440 | /* | |
4441 | * At this point, we have wired from "start" to "s". | |
4442 | * We still need to wire from "s" to "end". | |
4443 | * | |
4444 | * "entry" hasn't been clipped, so it could start before "s" | |
4445 | * and/or end after "end". | |
4446 | */ | |
4447 | ||
4448 | /* "e" is how far we want to wire in this entry */ | |
4449 | e = entry->vme_end; | |
4450 | if (e > end) | |
4451 | e = end; | |
4452 | ||
4453 | /* | |
4454 | * If another thread is wiring/unwiring this entry then | |
4455 | * block after informing other thread to wake us up. | |
4456 | */ | |
4457 | if (entry->in_transition) { | |
4458 | wait_result_t wait_result; | |
4459 | ||
4460 | /* | |
4461 | * We have not clipped the entry. Make sure that | |
4462 | * the start address is in range so that the lookup | |
4463 | * below will succeed. | |
4464 | * "s" is the current starting point: we've already | |
4465 | * wired from "start" to "s" and we still have | |
4466 | * to wire from "s" to "end". | |
4467 | */ | |
4468 | ||
4469 | entry->needs_wakeup = TRUE; | |
4470 | ||
4471 | /* | |
4472 | * wake up anybody waiting on entries that we have | |
4473 | * already wired. | |
4474 | */ | |
4475 | if (need_wakeup) { | |
4476 | vm_map_entry_wakeup(map); | |
4477 | need_wakeup = FALSE; | |
4478 | } | |
4479 | /* | |
4480 | * User wiring is interruptible | |
4481 | */ | |
4482 | wait_result = vm_map_entry_wait(map, | |
4483 | (user_wire) ? THREAD_ABORTSAFE : | |
4484 | THREAD_UNINT); | |
4485 | if (user_wire && wait_result == THREAD_INTERRUPTED) { | |
4486 | /* | |
4487 | * undo the wirings we have done so far | |
4488 | * We do not clear the needs_wakeup flag, | |
4489 | * because we cannot tell if we were the | |
4490 | * only one waiting. | |
4491 | */ | |
4492 | rc = KERN_FAILURE; | |
4493 | goto done; | |
4494 | } | |
4495 | ||
4496 | /* | |
4497 | * Cannot avoid a lookup here. reset timestamp. | |
4498 | */ | |
4499 | last_timestamp = map->timestamp; | |
4500 | ||
4501 | /* | |
4502 | * The entry could have been clipped, look it up again. | |
4503 | * Worse that can happen is, it may not exist anymore. | |
4504 | */ | |
4505 | if (!vm_map_lookup_entry(map, s, &first_entry)) { | |
4506 | /* | |
4507 | * User: undo everything upto the previous | |
4508 | * entry. let vm_map_unwire worry about | |
4509 | * checking the validity of the range. | |
4510 | */ | |
4511 | rc = KERN_FAILURE; | |
4512 | goto done; | |
4513 | } | |
4514 | entry = first_entry; | |
4515 | continue; | |
4516 | } | |
4517 | ||
4518 | if (entry->is_sub_map) { | |
4519 | vm_map_offset_t sub_start; | |
4520 | vm_map_offset_t sub_end; | |
4521 | vm_map_offset_t local_start; | |
4522 | vm_map_offset_t local_end; | |
4523 | pmap_t pmap; | |
4524 | ||
4525 | if (wire_and_extract) { | |
4526 | /* | |
4527 | * Wiring would result in copy-on-write | |
4528 | * which would not be compatible with | |
4529 | * the sharing we have with the original | |
4530 | * provider of this memory. | |
4531 | */ | |
4532 | rc = KERN_INVALID_ARGUMENT; | |
4533 | goto done; | |
4534 | } | |
4535 | ||
4536 | vm_map_clip_start(map, entry, s); | |
4537 | vm_map_clip_end(map, entry, end); | |
4538 | ||
4539 | sub_start = entry->offset; | |
4540 | sub_end = entry->vme_end; | |
4541 | sub_end += entry->offset - entry->vme_start; | |
4542 | ||
4543 | local_end = entry->vme_end; | |
4544 | if(map_pmap == NULL) { | |
4545 | vm_object_t object; | |
4546 | vm_object_offset_t offset; | |
4547 | vm_prot_t prot; | |
4548 | boolean_t wired; | |
4549 | vm_map_entry_t local_entry; | |
4550 | vm_map_version_t version; | |
4551 | vm_map_t lookup_map; | |
4552 | ||
4553 | if(entry->use_pmap) { | |
4554 | pmap = entry->object.sub_map->pmap; | |
4555 | /* ppc implementation requires that */ | |
4556 | /* submaps pmap address ranges line */ | |
4557 | /* up with parent map */ | |
4558 | #ifdef notdef | |
4559 | pmap_addr = sub_start; | |
4560 | #endif | |
4561 | pmap_addr = s; | |
4562 | } else { | |
4563 | pmap = map->pmap; | |
4564 | pmap_addr = s; | |
4565 | } | |
4566 | ||
4567 | if (entry->wired_count) { | |
4568 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) | |
4569 | goto done; | |
4570 | ||
4571 | /* | |
4572 | * The map was not unlocked: | |
4573 | * no need to goto re-lookup. | |
4574 | * Just go directly to next entry. | |
4575 | */ | |
4576 | entry = entry->vme_next; | |
4577 | s = entry->vme_start; | |
4578 | continue; | |
4579 | ||
4580 | } | |
4581 | ||
4582 | /* call vm_map_lookup_locked to */ | |
4583 | /* cause any needs copy to be */ | |
4584 | /* evaluated */ | |
4585 | local_start = entry->vme_start; | |
4586 | lookup_map = map; | |
4587 | vm_map_lock_write_to_read(map); | |
4588 | if(vm_map_lookup_locked( | |
4589 | &lookup_map, local_start, | |
4590 | access_type, | |
4591 | OBJECT_LOCK_EXCLUSIVE, | |
4592 | &version, &object, | |
4593 | &offset, &prot, &wired, | |
4594 | NULL, | |
4595 | &real_map)) { | |
4596 | ||
4597 | vm_map_unlock_read(lookup_map); | |
4598 | vm_map_unwire(map, start, | |
4599 | s, user_wire); | |
4600 | return(KERN_FAILURE); | |
4601 | } | |
4602 | vm_object_unlock(object); | |
4603 | if(real_map != lookup_map) | |
4604 | vm_map_unlock(real_map); | |
4605 | vm_map_unlock_read(lookup_map); | |
4606 | vm_map_lock(map); | |
4607 | ||
4608 | /* we unlocked, so must re-lookup */ | |
4609 | if (!vm_map_lookup_entry(map, | |
4610 | local_start, | |
4611 | &local_entry)) { | |
4612 | rc = KERN_FAILURE; | |
4613 | goto done; | |
4614 | } | |
4615 | ||
4616 | /* | |
4617 | * entry could have been "simplified", | |
4618 | * so re-clip | |
4619 | */ | |
4620 | entry = local_entry; | |
4621 | assert(s == local_start); | |
4622 | vm_map_clip_start(map, entry, s); | |
4623 | vm_map_clip_end(map, entry, end); | |
4624 | /* re-compute "e" */ | |
4625 | e = entry->vme_end; | |
4626 | if (e > end) | |
4627 | e = end; | |
4628 | ||
4629 | /* did we have a change of type? */ | |
4630 | if (!entry->is_sub_map) { | |
4631 | last_timestamp = map->timestamp; | |
4632 | continue; | |
4633 | } | |
4634 | } else { | |
4635 | local_start = entry->vme_start; | |
4636 | pmap = map_pmap; | |
4637 | } | |
4638 | ||
4639 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) | |
4640 | goto done; | |
4641 | ||
4642 | entry->in_transition = TRUE; | |
4643 | ||
4644 | vm_map_unlock(map); | |
4645 | rc = vm_map_wire_nested(entry->object.sub_map, | |
4646 | sub_start, sub_end, | |
4647 | access_type, | |
4648 | user_wire, pmap, pmap_addr, | |
4649 | NULL); | |
4650 | vm_map_lock(map); | |
4651 | ||
4652 | /* | |
4653 | * Find the entry again. It could have been clipped | |
4654 | * after we unlocked the map. | |
4655 | */ | |
4656 | if (!vm_map_lookup_entry(map, local_start, | |
4657 | &first_entry)) | |
4658 | panic("vm_map_wire: re-lookup failed"); | |
4659 | entry = first_entry; | |
4660 | ||
4661 | assert(local_start == s); | |
4662 | /* re-compute "e" */ | |
4663 | e = entry->vme_end; | |
4664 | if (e > end) | |
4665 | e = end; | |
4666 | ||
4667 | last_timestamp = map->timestamp; | |
4668 | while ((entry != vm_map_to_entry(map)) && | |
4669 | (entry->vme_start < e)) { | |
4670 | assert(entry->in_transition); | |
4671 | entry->in_transition = FALSE; | |
4672 | if (entry->needs_wakeup) { | |
4673 | entry->needs_wakeup = FALSE; | |
4674 | need_wakeup = TRUE; | |
4675 | } | |
4676 | if (rc != KERN_SUCCESS) {/* from vm_*_wire */ | |
4677 | subtract_wire_counts(map, entry, user_wire); | |
4678 | } | |
4679 | entry = entry->vme_next; | |
4680 | } | |
4681 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
4682 | goto done; | |
4683 | } | |
4684 | ||
4685 | /* no need to relookup again */ | |
4686 | s = entry->vme_start; | |
4687 | continue; | |
4688 | } | |
4689 | ||
4690 | /* | |
4691 | * If this entry is already wired then increment | |
4692 | * the appropriate wire reference count. | |
4693 | */ | |
4694 | if (entry->wired_count) { | |
4695 | ||
4696 | if ((entry->protection & access_type) != access_type) { | |
4697 | /* found a protection problem */ | |
4698 | ||
4699 | /* | |
4700 | * XXX FBDP | |
4701 | * We should always return an error | |
4702 | * in this case but since we didn't | |
4703 | * enforce it before, let's do | |
4704 | * it only for the new "wire_and_extract" | |
4705 | * code path for now... | |
4706 | */ | |
4707 | if (wire_and_extract) { | |
4708 | rc = KERN_PROTECTION_FAILURE; | |
4709 | goto done; | |
4710 | } | |
4711 | } | |
4712 | ||
4713 | /* | |
4714 | * entry is already wired down, get our reference | |
4715 | * after clipping to our range. | |
4716 | */ | |
4717 | vm_map_clip_start(map, entry, s); | |
4718 | vm_map_clip_end(map, entry, end); | |
4719 | ||
4720 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) | |
4721 | goto done; | |
4722 | ||
4723 | if (wire_and_extract) { | |
4724 | vm_object_t object; | |
4725 | vm_object_offset_t offset; | |
4726 | vm_page_t m; | |
4727 | ||
4728 | /* | |
4729 | * We don't have to "wire" the page again | |
4730 | * bit we still have to "extract" its | |
4731 | * physical page number, after some sanity | |
4732 | * checks. | |
4733 | */ | |
4734 | assert((entry->vme_end - entry->vme_start) | |
4735 | == PAGE_SIZE); | |
4736 | assert(!entry->needs_copy); | |
4737 | assert(!entry->is_sub_map); | |
4738 | assert(entry->object.vm_object); | |
4739 | if (((entry->vme_end - entry->vme_start) | |
4740 | != PAGE_SIZE) || | |
4741 | entry->needs_copy || | |
4742 | entry->is_sub_map || | |
4743 | entry->object.vm_object == VM_OBJECT_NULL) { | |
4744 | rc = KERN_INVALID_ARGUMENT; | |
4745 | goto done; | |
4746 | } | |
4747 | ||
4748 | object = entry->object.vm_object; | |
4749 | offset = entry->offset; | |
4750 | /* need exclusive lock to update m->dirty */ | |
4751 | if (entry->protection & VM_PROT_WRITE) { | |
4752 | vm_object_lock(object); | |
4753 | } else { | |
4754 | vm_object_lock_shared(object); | |
4755 | } | |
4756 | m = vm_page_lookup(object, offset); | |
4757 | assert(m != VM_PAGE_NULL); | |
4758 | assert(m->wire_count); | |
4759 | if (m != VM_PAGE_NULL && m->wire_count) { | |
4760 | *physpage_p = m->phys_page; | |
4761 | if (entry->protection & VM_PROT_WRITE) { | |
4762 | vm_object_lock_assert_exclusive( | |
4763 | m->object); | |
4764 | m->dirty = TRUE; | |
4765 | } | |
4766 | } else { | |
4767 | /* not already wired !? */ | |
4768 | *physpage_p = 0; | |
4769 | } | |
4770 | vm_object_unlock(object); | |
4771 | } | |
4772 | ||
4773 | /* map was not unlocked: no need to relookup */ | |
4774 | entry = entry->vme_next; | |
4775 | s = entry->vme_start; | |
4776 | continue; | |
4777 | } | |
4778 | ||
4779 | /* | |
4780 | * Unwired entry or wire request transmitted via submap | |
4781 | */ | |
4782 | ||
4783 | ||
4784 | /* | |
4785 | * Perform actions of vm_map_lookup that need the write | |
4786 | * lock on the map: create a shadow object for a | |
4787 | * copy-on-write region, or an object for a zero-fill | |
4788 | * region. | |
4789 | */ | |
4790 | size = entry->vme_end - entry->vme_start; | |
4791 | /* | |
4792 | * If wiring a copy-on-write page, we need to copy it now | |
4793 | * even if we're only (currently) requesting read access. | |
4794 | * This is aggressive, but once it's wired we can't move it. | |
4795 | */ | |
4796 | if (entry->needs_copy) { | |
4797 | if (wire_and_extract) { | |
4798 | /* | |
4799 | * We're supposed to share with the original | |
4800 | * provider so should not be "needs_copy" | |
4801 | */ | |
4802 | rc = KERN_INVALID_ARGUMENT; | |
4803 | goto done; | |
4804 | } | |
4805 | ||
4806 | vm_object_shadow(&entry->object.vm_object, | |
4807 | &entry->offset, size); | |
4808 | entry->needs_copy = FALSE; | |
4809 | } else if (entry->object.vm_object == VM_OBJECT_NULL) { | |
4810 | if (wire_and_extract) { | |
4811 | /* | |
4812 | * We're supposed to share with the original | |
4813 | * provider so should already have an object. | |
4814 | */ | |
4815 | rc = KERN_INVALID_ARGUMENT; | |
4816 | goto done; | |
4817 | } | |
4818 | entry->object.vm_object = vm_object_allocate(size); | |
4819 | entry->offset = (vm_object_offset_t)0; | |
4820 | assert(entry->use_pmap); | |
4821 | } | |
4822 | ||
4823 | vm_map_clip_start(map, entry, s); | |
4824 | vm_map_clip_end(map, entry, end); | |
4825 | ||
4826 | /* re-compute "e" */ | |
4827 | e = entry->vme_end; | |
4828 | if (e > end) | |
4829 | e = end; | |
4830 | ||
4831 | /* | |
4832 | * Check for holes and protection mismatch. | |
4833 | * Holes: Next entry should be contiguous unless this | |
4834 | * is the end of the region. | |
4835 | * Protection: Access requested must be allowed, unless | |
4836 | * wiring is by protection class | |
4837 | */ | |
4838 | if ((entry->vme_end < end) && | |
4839 | ((entry->vme_next == vm_map_to_entry(map)) || | |
4840 | (entry->vme_next->vme_start > entry->vme_end))) { | |
4841 | /* found a hole */ | |
4842 | rc = KERN_INVALID_ADDRESS; | |
4843 | goto done; | |
4844 | } | |
4845 | if ((entry->protection & access_type) != access_type) { | |
4846 | /* found a protection problem */ | |
4847 | rc = KERN_PROTECTION_FAILURE; | |
4848 | goto done; | |
4849 | } | |
4850 | ||
4851 | assert(entry->wired_count == 0 && entry->user_wired_count == 0); | |
4852 | ||
4853 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) | |
4854 | goto done; | |
4855 | ||
4856 | entry->in_transition = TRUE; | |
4857 | ||
4858 | /* | |
4859 | * This entry might get split once we unlock the map. | |
4860 | * In vm_fault_wire(), we need the current range as | |
4861 | * defined by this entry. In order for this to work | |
4862 | * along with a simultaneous clip operation, we make a | |
4863 | * temporary copy of this entry and use that for the | |
4864 | * wiring. Note that the underlying objects do not | |
4865 | * change during a clip. | |
4866 | */ | |
4867 | tmp_entry = *entry; | |
4868 | ||
4869 | /* | |
4870 | * The in_transition state guarentees that the entry | |
4871 | * (or entries for this range, if split occured) will be | |
4872 | * there when the map lock is acquired for the second time. | |
4873 | */ | |
4874 | vm_map_unlock(map); | |
4875 | ||
4876 | if (!user_wire && cur_thread != THREAD_NULL) | |
4877 | interruptible_state = thread_interrupt_level(THREAD_UNINT); | |
4878 | else | |
4879 | interruptible_state = THREAD_UNINT; | |
4880 | ||
4881 | if(map_pmap) | |
4882 | rc = vm_fault_wire(map, | |
4883 | &tmp_entry, map_pmap, pmap_addr, | |
4884 | physpage_p); | |
4885 | else | |
4886 | rc = vm_fault_wire(map, | |
4887 | &tmp_entry, map->pmap, | |
4888 | tmp_entry.vme_start, | |
4889 | physpage_p); | |
4890 | ||
4891 | if (!user_wire && cur_thread != THREAD_NULL) | |
4892 | thread_interrupt_level(interruptible_state); | |
4893 | ||
4894 | vm_map_lock(map); | |
4895 | ||
4896 | if (last_timestamp+1 != map->timestamp) { | |
4897 | /* | |
4898 | * Find the entry again. It could have been clipped | |
4899 | * after we unlocked the map. | |
4900 | */ | |
4901 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, | |
4902 | &first_entry)) | |
4903 | panic("vm_map_wire: re-lookup failed"); | |
4904 | ||
4905 | entry = first_entry; | |
4906 | } | |
4907 | ||
4908 | last_timestamp = map->timestamp; | |
4909 | ||
4910 | while ((entry != vm_map_to_entry(map)) && | |
4911 | (entry->vme_start < tmp_entry.vme_end)) { | |
4912 | assert(entry->in_transition); | |
4913 | entry->in_transition = FALSE; | |
4914 | if (entry->needs_wakeup) { | |
4915 | entry->needs_wakeup = FALSE; | |
4916 | need_wakeup = TRUE; | |
4917 | } | |
4918 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
4919 | subtract_wire_counts(map, entry, user_wire); | |
4920 | } | |
4921 | entry = entry->vme_next; | |
4922 | } | |
4923 | ||
4924 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
4925 | goto done; | |
4926 | } | |
4927 | ||
4928 | s = entry->vme_start; | |
4929 | } /* end while loop through map entries */ | |
4930 | ||
4931 | done: | |
4932 | if (rc == KERN_SUCCESS) { | |
4933 | /* repair any damage we may have made to the VM map */ | |
4934 | vm_map_simplify_range(map, start, end); | |
4935 | } | |
4936 | ||
4937 | vm_map_unlock(map); | |
4938 | ||
4939 | /* | |
4940 | * wake up anybody waiting on entries we wired. | |
4941 | */ | |
4942 | if (need_wakeup) | |
4943 | vm_map_entry_wakeup(map); | |
4944 | ||
4945 | if (rc != KERN_SUCCESS) { | |
4946 | /* undo what has been wired so far */ | |
4947 | vm_map_unwire(map, start, s, user_wire); | |
4948 | if (physpage_p) { | |
4949 | *physpage_p = 0; | |
4950 | } | |
4951 | } | |
4952 | ||
4953 | return rc; | |
4954 | ||
4955 | } | |
4956 | ||
4957 | kern_return_t | |
4958 | vm_map_wire( | |
4959 | register vm_map_t map, | |
4960 | register vm_map_offset_t start, | |
4961 | register vm_map_offset_t end, | |
4962 | register vm_prot_t access_type, | |
4963 | boolean_t user_wire) | |
4964 | { | |
4965 | ||
4966 | kern_return_t kret; | |
4967 | ||
4968 | kret = vm_map_wire_nested(map, start, end, access_type, | |
4969 | user_wire, (pmap_t)NULL, 0, NULL); | |
4970 | return kret; | |
4971 | } | |
4972 | ||
4973 | kern_return_t | |
4974 | vm_map_wire_and_extract( | |
4975 | vm_map_t map, | |
4976 | vm_map_offset_t start, | |
4977 | vm_prot_t access_type, | |
4978 | boolean_t user_wire, | |
4979 | ppnum_t *physpage_p) | |
4980 | { | |
4981 | ||
4982 | kern_return_t kret; | |
4983 | ||
4984 | kret = vm_map_wire_nested(map, | |
4985 | start, | |
4986 | start+VM_MAP_PAGE_SIZE(map), | |
4987 | access_type, | |
4988 | user_wire, | |
4989 | (pmap_t)NULL, | |
4990 | 0, | |
4991 | physpage_p); | |
4992 | if (kret != KERN_SUCCESS && | |
4993 | physpage_p != NULL) { | |
4994 | *physpage_p = 0; | |
4995 | } | |
4996 | return kret; | |
4997 | } | |
4998 | ||
4999 | /* | |
5000 | * vm_map_unwire: | |
5001 | * | |
5002 | * Sets the pageability of the specified address range in the target | |
5003 | * as pageable. Regions specified must have been wired previously. | |
5004 | * | |
5005 | * The map must not be locked, but a reference must remain to the map | |
5006 | * throughout the call. | |
5007 | * | |
5008 | * Kernel will panic on failures. User unwire ignores holes and | |
5009 | * unwired and intransition entries to avoid losing memory by leaving | |
5010 | * it unwired. | |
5011 | */ | |
5012 | static kern_return_t | |
5013 | vm_map_unwire_nested( | |
5014 | register vm_map_t map, | |
5015 | register vm_map_offset_t start, | |
5016 | register vm_map_offset_t end, | |
5017 | boolean_t user_wire, | |
5018 | pmap_t map_pmap, | |
5019 | vm_map_offset_t pmap_addr) | |
5020 | { | |
5021 | register vm_map_entry_t entry; | |
5022 | struct vm_map_entry *first_entry, tmp_entry; | |
5023 | boolean_t need_wakeup; | |
5024 | boolean_t main_map = FALSE; | |
5025 | unsigned int last_timestamp; | |
5026 | ||
5027 | vm_map_lock(map); | |
5028 | if(map_pmap == NULL) | |
5029 | main_map = TRUE; | |
5030 | last_timestamp = map->timestamp; | |
5031 | ||
5032 | VM_MAP_RANGE_CHECK(map, start, end); | |
5033 | assert(page_aligned(start)); | |
5034 | assert(page_aligned(end)); | |
5035 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); | |
5036 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); | |
5037 | ||
5038 | if (start == end) { | |
5039 | /* We unwired what the caller asked for: zero pages */ | |
5040 | vm_map_unlock(map); | |
5041 | return KERN_SUCCESS; | |
5042 | } | |
5043 | ||
5044 | if (vm_map_lookup_entry(map, start, &first_entry)) { | |
5045 | entry = first_entry; | |
5046 | /* | |
5047 | * vm_map_clip_start will be done later. | |
5048 | * We don't want to unnest any nested sub maps here ! | |
5049 | */ | |
5050 | } | |
5051 | else { | |
5052 | if (!user_wire) { | |
5053 | panic("vm_map_unwire: start not found"); | |
5054 | } | |
5055 | /* Start address is not in map. */ | |
5056 | vm_map_unlock(map); | |
5057 | return(KERN_INVALID_ADDRESS); | |
5058 | } | |
5059 | ||
5060 | if (entry->superpage_size) { | |
5061 | /* superpages are always wired */ | |
5062 | vm_map_unlock(map); | |
5063 | return KERN_INVALID_ADDRESS; | |
5064 | } | |
5065 | ||
5066 | need_wakeup = FALSE; | |
5067 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
5068 | if (entry->in_transition) { | |
5069 | /* | |
5070 | * 1) | |
5071 | * Another thread is wiring down this entry. Note | |
5072 | * that if it is not for the other thread we would | |
5073 | * be unwiring an unwired entry. This is not | |
5074 | * permitted. If we wait, we will be unwiring memory | |
5075 | * we did not wire. | |
5076 | * | |
5077 | * 2) | |
5078 | * Another thread is unwiring this entry. We did not | |
5079 | * have a reference to it, because if we did, this | |
5080 | * entry will not be getting unwired now. | |
5081 | */ | |
5082 | if (!user_wire) { | |
5083 | /* | |
5084 | * XXX FBDP | |
5085 | * This could happen: there could be some | |
5086 | * overlapping vslock/vsunlock operations | |
5087 | * going on. | |
5088 | * We should probably just wait and retry, | |
5089 | * but then we have to be careful that this | |
5090 | * entry could get "simplified" after | |
5091 | * "in_transition" gets unset and before | |
5092 | * we re-lookup the entry, so we would | |
5093 | * have to re-clip the entry to avoid | |
5094 | * re-unwiring what we have already unwired... | |
5095 | * See vm_map_wire_nested(). | |
5096 | * | |
5097 | * Or we could just ignore "in_transition" | |
5098 | * here and proceed to decement the wired | |
5099 | * count(s) on this entry. That should be fine | |
5100 | * as long as "wired_count" doesn't drop all | |
5101 | * the way to 0 (and we should panic if THAT | |
5102 | * happens). | |
5103 | */ | |
5104 | panic("vm_map_unwire: in_transition entry"); | |
5105 | } | |
5106 | ||
5107 | entry = entry->vme_next; | |
5108 | continue; | |
5109 | } | |
5110 | ||
5111 | if (entry->is_sub_map) { | |
5112 | vm_map_offset_t sub_start; | |
5113 | vm_map_offset_t sub_end; | |
5114 | vm_map_offset_t local_end; | |
5115 | pmap_t pmap; | |
5116 | ||
5117 | vm_map_clip_start(map, entry, start); | |
5118 | vm_map_clip_end(map, entry, end); | |
5119 | ||
5120 | sub_start = entry->offset; | |
5121 | sub_end = entry->vme_end - entry->vme_start; | |
5122 | sub_end += entry->offset; | |
5123 | local_end = entry->vme_end; | |
5124 | if(map_pmap == NULL) { | |
5125 | if(entry->use_pmap) { | |
5126 | pmap = entry->object.sub_map->pmap; | |
5127 | pmap_addr = sub_start; | |
5128 | } else { | |
5129 | pmap = map->pmap; | |
5130 | pmap_addr = start; | |
5131 | } | |
5132 | if (entry->wired_count == 0 || | |
5133 | (user_wire && entry->user_wired_count == 0)) { | |
5134 | if (!user_wire) | |
5135 | panic("vm_map_unwire: entry is unwired"); | |
5136 | entry = entry->vme_next; | |
5137 | continue; | |
5138 | } | |
5139 | ||
5140 | /* | |
5141 | * Check for holes | |
5142 | * Holes: Next entry should be contiguous unless | |
5143 | * this is the end of the region. | |
5144 | */ | |
5145 | if (((entry->vme_end < end) && | |
5146 | ((entry->vme_next == vm_map_to_entry(map)) || | |
5147 | (entry->vme_next->vme_start | |
5148 | > entry->vme_end)))) { | |
5149 | if (!user_wire) | |
5150 | panic("vm_map_unwire: non-contiguous region"); | |
5151 | /* | |
5152 | entry = entry->vme_next; | |
5153 | continue; | |
5154 | */ | |
5155 | } | |
5156 | ||
5157 | subtract_wire_counts(map, entry, user_wire); | |
5158 | ||
5159 | if (entry->wired_count != 0) { | |
5160 | entry = entry->vme_next; | |
5161 | continue; | |
5162 | } | |
5163 | ||
5164 | entry->in_transition = TRUE; | |
5165 | tmp_entry = *entry;/* see comment in vm_map_wire() */ | |
5166 | ||
5167 | /* | |
5168 | * We can unlock the map now. The in_transition state | |
5169 | * guarantees existance of the entry. | |
5170 | */ | |
5171 | vm_map_unlock(map); | |
5172 | vm_map_unwire_nested(entry->object.sub_map, | |
5173 | sub_start, sub_end, user_wire, pmap, pmap_addr); | |
5174 | vm_map_lock(map); | |
5175 | ||
5176 | if (last_timestamp+1 != map->timestamp) { | |
5177 | /* | |
5178 | * Find the entry again. It could have been | |
5179 | * clipped or deleted after we unlocked the map. | |
5180 | */ | |
5181 | if (!vm_map_lookup_entry(map, | |
5182 | tmp_entry.vme_start, | |
5183 | &first_entry)) { | |
5184 | if (!user_wire) | |
5185 | panic("vm_map_unwire: re-lookup failed"); | |
5186 | entry = first_entry->vme_next; | |
5187 | } else | |
5188 | entry = first_entry; | |
5189 | } | |
5190 | last_timestamp = map->timestamp; | |
5191 | ||
5192 | /* | |
5193 | * clear transition bit for all constituent entries | |
5194 | * that were in the original entry (saved in | |
5195 | * tmp_entry). Also check for waiters. | |
5196 | */ | |
5197 | while ((entry != vm_map_to_entry(map)) && | |
5198 | (entry->vme_start < tmp_entry.vme_end)) { | |
5199 | assert(entry->in_transition); | |
5200 | entry->in_transition = FALSE; | |
5201 | if (entry->needs_wakeup) { | |
5202 | entry->needs_wakeup = FALSE; | |
5203 | need_wakeup = TRUE; | |
5204 | } | |
5205 | entry = entry->vme_next; | |
5206 | } | |
5207 | continue; | |
5208 | } else { | |
5209 | vm_map_unlock(map); | |
5210 | vm_map_unwire_nested(entry->object.sub_map, | |
5211 | sub_start, sub_end, user_wire, map_pmap, | |
5212 | pmap_addr); | |
5213 | vm_map_lock(map); | |
5214 | ||
5215 | if (last_timestamp+1 != map->timestamp) { | |
5216 | /* | |
5217 | * Find the entry again. It could have been | |
5218 | * clipped or deleted after we unlocked the map. | |
5219 | */ | |
5220 | if (!vm_map_lookup_entry(map, | |
5221 | tmp_entry.vme_start, | |
5222 | &first_entry)) { | |
5223 | if (!user_wire) | |
5224 | panic("vm_map_unwire: re-lookup failed"); | |
5225 | entry = first_entry->vme_next; | |
5226 | } else | |
5227 | entry = first_entry; | |
5228 | } | |
5229 | last_timestamp = map->timestamp; | |
5230 | } | |
5231 | } | |
5232 | ||
5233 | ||
5234 | if ((entry->wired_count == 0) || | |
5235 | (user_wire && entry->user_wired_count == 0)) { | |
5236 | if (!user_wire) | |
5237 | panic("vm_map_unwire: entry is unwired"); | |
5238 | ||
5239 | entry = entry->vme_next; | |
5240 | continue; | |
5241 | } | |
5242 | ||
5243 | assert(entry->wired_count > 0 && | |
5244 | (!user_wire || entry->user_wired_count > 0)); | |
5245 | ||
5246 | vm_map_clip_start(map, entry, start); | |
5247 | vm_map_clip_end(map, entry, end); | |
5248 | ||
5249 | /* | |
5250 | * Check for holes | |
5251 | * Holes: Next entry should be contiguous unless | |
5252 | * this is the end of the region. | |
5253 | */ | |
5254 | if (((entry->vme_end < end) && | |
5255 | ((entry->vme_next == vm_map_to_entry(map)) || | |
5256 | (entry->vme_next->vme_start > entry->vme_end)))) { | |
5257 | ||
5258 | if (!user_wire) | |
5259 | panic("vm_map_unwire: non-contiguous region"); | |
5260 | entry = entry->vme_next; | |
5261 | continue; | |
5262 | } | |
5263 | ||
5264 | subtract_wire_counts(map, entry, user_wire); | |
5265 | ||
5266 | if (entry->wired_count != 0) { | |
5267 | entry = entry->vme_next; | |
5268 | continue; | |
5269 | } | |
5270 | ||
5271 | if(entry->zero_wired_pages) { | |
5272 | entry->zero_wired_pages = FALSE; | |
5273 | } | |
5274 | ||
5275 | entry->in_transition = TRUE; | |
5276 | tmp_entry = *entry; /* see comment in vm_map_wire() */ | |
5277 | ||
5278 | /* | |
5279 | * We can unlock the map now. The in_transition state | |
5280 | * guarantees existance of the entry. | |
5281 | */ | |
5282 | vm_map_unlock(map); | |
5283 | if(map_pmap) { | |
5284 | vm_fault_unwire(map, | |
5285 | &tmp_entry, FALSE, map_pmap, pmap_addr); | |
5286 | } else { | |
5287 | vm_fault_unwire(map, | |
5288 | &tmp_entry, FALSE, map->pmap, | |
5289 | tmp_entry.vme_start); | |
5290 | } | |
5291 | vm_map_lock(map); | |
5292 | ||
5293 | if (last_timestamp+1 != map->timestamp) { | |
5294 | /* | |
5295 | * Find the entry again. It could have been clipped | |
5296 | * or deleted after we unlocked the map. | |
5297 | */ | |
5298 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, | |
5299 | &first_entry)) { | |
5300 | if (!user_wire) | |
5301 | panic("vm_map_unwire: re-lookup failed"); | |
5302 | entry = first_entry->vme_next; | |
5303 | } else | |
5304 | entry = first_entry; | |
5305 | } | |
5306 | last_timestamp = map->timestamp; | |
5307 | ||
5308 | /* | |
5309 | * clear transition bit for all constituent entries that | |
5310 | * were in the original entry (saved in tmp_entry). Also | |
5311 | * check for waiters. | |
5312 | */ | |
5313 | while ((entry != vm_map_to_entry(map)) && | |
5314 | (entry->vme_start < tmp_entry.vme_end)) { | |
5315 | assert(entry->in_transition); | |
5316 | entry->in_transition = FALSE; | |
5317 | if (entry->needs_wakeup) { | |
5318 | entry->needs_wakeup = FALSE; | |
5319 | need_wakeup = TRUE; | |
5320 | } | |
5321 | entry = entry->vme_next; | |
5322 | } | |
5323 | } | |
5324 | ||
5325 | /* | |
5326 | * We might have fragmented the address space when we wired this | |
5327 | * range of addresses. Attempt to re-coalesce these VM map entries | |
5328 | * with their neighbors now that they're no longer wired. | |
5329 | * Under some circumstances, address space fragmentation can | |
5330 | * prevent VM object shadow chain collapsing, which can cause | |
5331 | * swap space leaks. | |
5332 | */ | |
5333 | vm_map_simplify_range(map, start, end); | |
5334 | ||
5335 | vm_map_unlock(map); | |
5336 | /* | |
5337 | * wake up anybody waiting on entries that we have unwired. | |
5338 | */ | |
5339 | if (need_wakeup) | |
5340 | vm_map_entry_wakeup(map); | |
5341 | return(KERN_SUCCESS); | |
5342 | ||
5343 | } | |
5344 | ||
5345 | kern_return_t | |
5346 | vm_map_unwire( | |
5347 | register vm_map_t map, | |
5348 | register vm_map_offset_t start, | |
5349 | register vm_map_offset_t end, | |
5350 | boolean_t user_wire) | |
5351 | { | |
5352 | return vm_map_unwire_nested(map, start, end, | |
5353 | user_wire, (pmap_t)NULL, 0); | |
5354 | } | |
5355 | ||
5356 | ||
5357 | /* | |
5358 | * vm_map_entry_delete: [ internal use only ] | |
5359 | * | |
5360 | * Deallocate the given entry from the target map. | |
5361 | */ | |
5362 | static void | |
5363 | vm_map_entry_delete( | |
5364 | register vm_map_t map, | |
5365 | register vm_map_entry_t entry) | |
5366 | { | |
5367 | register vm_map_offset_t s, e; | |
5368 | register vm_object_t object; | |
5369 | register vm_map_t submap; | |
5370 | ||
5371 | s = entry->vme_start; | |
5372 | e = entry->vme_end; | |
5373 | assert(page_aligned(s)); | |
5374 | assert(page_aligned(e)); | |
5375 | if (entry->map_aligned == TRUE) { | |
5376 | assert(VM_MAP_PAGE_ALIGNED(s, VM_MAP_PAGE_MASK(map))); | |
5377 | assert(VM_MAP_PAGE_ALIGNED(e, VM_MAP_PAGE_MASK(map))); | |
5378 | } | |
5379 | assert(entry->wired_count == 0); | |
5380 | assert(entry->user_wired_count == 0); | |
5381 | assert(!entry->permanent); | |
5382 | ||
5383 | if (entry->is_sub_map) { | |
5384 | object = NULL; | |
5385 | submap = entry->object.sub_map; | |
5386 | } else { | |
5387 | submap = NULL; | |
5388 | object = entry->object.vm_object; | |
5389 | } | |
5390 | ||
5391 | vm_map_store_entry_unlink(map, entry); | |
5392 | map->size -= e - s; | |
5393 | ||
5394 | vm_map_entry_dispose(map, entry); | |
5395 | ||
5396 | vm_map_unlock(map); | |
5397 | /* | |
5398 | * Deallocate the object only after removing all | |
5399 | * pmap entries pointing to its pages. | |
5400 | */ | |
5401 | if (submap) | |
5402 | vm_map_deallocate(submap); | |
5403 | else | |
5404 | vm_object_deallocate(object); | |
5405 | ||
5406 | } | |
5407 | ||
5408 | void | |
5409 | vm_map_submap_pmap_clean( | |
5410 | vm_map_t map, | |
5411 | vm_map_offset_t start, | |
5412 | vm_map_offset_t end, | |
5413 | vm_map_t sub_map, | |
5414 | vm_map_offset_t offset) | |
5415 | { | |
5416 | vm_map_offset_t submap_start; | |
5417 | vm_map_offset_t submap_end; | |
5418 | vm_map_size_t remove_size; | |
5419 | vm_map_entry_t entry; | |
5420 | ||
5421 | submap_end = offset + (end - start); | |
5422 | submap_start = offset; | |
5423 | ||
5424 | vm_map_lock_read(sub_map); | |
5425 | if(vm_map_lookup_entry(sub_map, offset, &entry)) { | |
5426 | ||
5427 | remove_size = (entry->vme_end - entry->vme_start); | |
5428 | if(offset > entry->vme_start) | |
5429 | remove_size -= offset - entry->vme_start; | |
5430 | ||
5431 | ||
5432 | if(submap_end < entry->vme_end) { | |
5433 | remove_size -= | |
5434 | entry->vme_end - submap_end; | |
5435 | } | |
5436 | if(entry->is_sub_map) { | |
5437 | vm_map_submap_pmap_clean( | |
5438 | sub_map, | |
5439 | start, | |
5440 | start + remove_size, | |
5441 | entry->object.sub_map, | |
5442 | entry->offset); | |
5443 | } else { | |
5444 | ||
5445 | if((map->mapped_in_other_pmaps) && (map->ref_count) | |
5446 | && (entry->object.vm_object != NULL)) { | |
5447 | vm_object_pmap_protect( | |
5448 | entry->object.vm_object, | |
5449 | entry->offset+(offset-entry->vme_start), | |
5450 | remove_size, | |
5451 | PMAP_NULL, | |
5452 | entry->vme_start, | |
5453 | VM_PROT_NONE); | |
5454 | } else { | |
5455 | pmap_remove(map->pmap, | |
5456 | (addr64_t)start, | |
5457 | (addr64_t)(start + remove_size)); | |
5458 | } | |
5459 | } | |
5460 | } | |
5461 | ||
5462 | entry = entry->vme_next; | |
5463 | ||
5464 | while((entry != vm_map_to_entry(sub_map)) | |
5465 | && (entry->vme_start < submap_end)) { | |
5466 | remove_size = (entry->vme_end - entry->vme_start); | |
5467 | if(submap_end < entry->vme_end) { | |
5468 | remove_size -= entry->vme_end - submap_end; | |
5469 | } | |
5470 | if(entry->is_sub_map) { | |
5471 | vm_map_submap_pmap_clean( | |
5472 | sub_map, | |
5473 | (start + entry->vme_start) - offset, | |
5474 | ((start + entry->vme_start) - offset) + remove_size, | |
5475 | entry->object.sub_map, | |
5476 | entry->offset); | |
5477 | } else { | |
5478 | if((map->mapped_in_other_pmaps) && (map->ref_count) | |
5479 | && (entry->object.vm_object != NULL)) { | |
5480 | vm_object_pmap_protect( | |
5481 | entry->object.vm_object, | |
5482 | entry->offset, | |
5483 | remove_size, | |
5484 | PMAP_NULL, | |
5485 | entry->vme_start, | |
5486 | VM_PROT_NONE); | |
5487 | } else { | |
5488 | pmap_remove(map->pmap, | |
5489 | (addr64_t)((start + entry->vme_start) | |
5490 | - offset), | |
5491 | (addr64_t)(((start + entry->vme_start) | |
5492 | - offset) + remove_size)); | |
5493 | } | |
5494 | } | |
5495 | entry = entry->vme_next; | |
5496 | } | |
5497 | vm_map_unlock_read(sub_map); | |
5498 | return; | |
5499 | } | |
5500 | ||
5501 | /* | |
5502 | * vm_map_delete: [ internal use only ] | |
5503 | * | |
5504 | * Deallocates the given address range from the target map. | |
5505 | * Removes all user wirings. Unwires one kernel wiring if | |
5506 | * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go | |
5507 | * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps | |
5508 | * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set. | |
5509 | * | |
5510 | * This routine is called with map locked and leaves map locked. | |
5511 | */ | |
5512 | static kern_return_t | |
5513 | vm_map_delete( | |
5514 | vm_map_t map, | |
5515 | vm_map_offset_t start, | |
5516 | vm_map_offset_t end, | |
5517 | int flags, | |
5518 | vm_map_t zap_map) | |
5519 | { | |
5520 | vm_map_entry_t entry, next; | |
5521 | struct vm_map_entry *first_entry, tmp_entry; | |
5522 | register vm_map_offset_t s; | |
5523 | register vm_object_t object; | |
5524 | boolean_t need_wakeup; | |
5525 | unsigned int last_timestamp = ~0; /* unlikely value */ | |
5526 | int interruptible; | |
5527 | ||
5528 | interruptible = (flags & VM_MAP_REMOVE_INTERRUPTIBLE) ? | |
5529 | THREAD_ABORTSAFE : THREAD_UNINT; | |
5530 | ||
5531 | /* | |
5532 | * All our DMA I/O operations in IOKit are currently done by | |
5533 | * wiring through the map entries of the task requesting the I/O. | |
5534 | * Because of this, we must always wait for kernel wirings | |
5535 | * to go away on the entries before deleting them. | |
5536 | * | |
5537 | * Any caller who wants to actually remove a kernel wiring | |
5538 | * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to | |
5539 | * properly remove one wiring instead of blasting through | |
5540 | * them all. | |
5541 | */ | |
5542 | flags |= VM_MAP_REMOVE_WAIT_FOR_KWIRE; | |
5543 | ||
5544 | while(1) { | |
5545 | /* | |
5546 | * Find the start of the region, and clip it | |
5547 | */ | |
5548 | if (vm_map_lookup_entry(map, start, &first_entry)) { | |
5549 | entry = first_entry; | |
5550 | if (map == kalloc_map && | |
5551 | (entry->vme_start != start || | |
5552 | entry->vme_end != end)) { | |
5553 | panic("vm_map_delete(%p,0x%llx,0x%llx): " | |
5554 | "mismatched entry %p [0x%llx:0x%llx]\n", | |
5555 | map, | |
5556 | (uint64_t)start, | |
5557 | (uint64_t)end, | |
5558 | entry, | |
5559 | (uint64_t)entry->vme_start, | |
5560 | (uint64_t)entry->vme_end); | |
5561 | } | |
5562 | if (entry->superpage_size && (start & ~SUPERPAGE_MASK)) { /* extend request to whole entry */ start = SUPERPAGE_ROUND_DOWN(start); | |
5563 | start = SUPERPAGE_ROUND_DOWN(start); | |
5564 | continue; | |
5565 | } | |
5566 | if (start == entry->vme_start) { | |
5567 | /* | |
5568 | * No need to clip. We don't want to cause | |
5569 | * any unnecessary unnesting in this case... | |
5570 | */ | |
5571 | } else { | |
5572 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && | |
5573 | entry->map_aligned && | |
5574 | !VM_MAP_PAGE_ALIGNED( | |
5575 | start, | |
5576 | VM_MAP_PAGE_MASK(map))) { | |
5577 | /* | |
5578 | * The entry will no longer be | |
5579 | * map-aligned after clipping | |
5580 | * and the caller said it's OK. | |
5581 | */ | |
5582 | entry->map_aligned = FALSE; | |
5583 | } | |
5584 | if (map == kalloc_map) { | |
5585 | panic("vm_map_delete(%p,0x%llx,0x%llx):" | |
5586 | " clipping %p at 0x%llx\n", | |
5587 | map, | |
5588 | (uint64_t)start, | |
5589 | (uint64_t)end, | |
5590 | entry, | |
5591 | (uint64_t)start); | |
5592 | } | |
5593 | vm_map_clip_start(map, entry, start); | |
5594 | } | |
5595 | ||
5596 | /* | |
5597 | * Fix the lookup hint now, rather than each | |
5598 | * time through the loop. | |
5599 | */ | |
5600 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
5601 | } else { | |
5602 | if (map->pmap == kernel_pmap && | |
5603 | map->ref_count != 0) { | |
5604 | panic("vm_map_delete(%p,0x%llx,0x%llx): " | |
5605 | "no map entry at 0x%llx\n", | |
5606 | map, | |
5607 | (uint64_t)start, | |
5608 | (uint64_t)end, | |
5609 | (uint64_t)start); | |
5610 | } | |
5611 | entry = first_entry->vme_next; | |
5612 | } | |
5613 | break; | |
5614 | } | |
5615 | if (entry->superpage_size) | |
5616 | end = SUPERPAGE_ROUND_UP(end); | |
5617 | ||
5618 | need_wakeup = FALSE; | |
5619 | /* | |
5620 | * Step through all entries in this region | |
5621 | */ | |
5622 | s = entry->vme_start; | |
5623 | while ((entry != vm_map_to_entry(map)) && (s < end)) { | |
5624 | /* | |
5625 | * At this point, we have deleted all the memory entries | |
5626 | * between "start" and "s". We still need to delete | |
5627 | * all memory entries between "s" and "end". | |
5628 | * While we were blocked and the map was unlocked, some | |
5629 | * new memory entries could have been re-allocated between | |
5630 | * "start" and "s" and we don't want to mess with those. | |
5631 | * Some of those entries could even have been re-assembled | |
5632 | * with an entry after "s" (in vm_map_simplify_entry()), so | |
5633 | * we may have to vm_map_clip_start() again. | |
5634 | */ | |
5635 | ||
5636 | if (entry->vme_start >= s) { | |
5637 | /* | |
5638 | * This entry starts on or after "s" | |
5639 | * so no need to clip its start. | |
5640 | */ | |
5641 | } else { | |
5642 | /* | |
5643 | * This entry has been re-assembled by a | |
5644 | * vm_map_simplify_entry(). We need to | |
5645 | * re-clip its start. | |
5646 | */ | |
5647 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && | |
5648 | entry->map_aligned && | |
5649 | !VM_MAP_PAGE_ALIGNED(s, | |
5650 | VM_MAP_PAGE_MASK(map))) { | |
5651 | /* | |
5652 | * The entry will no longer be map-aligned | |
5653 | * after clipping and the caller said it's OK. | |
5654 | */ | |
5655 | entry->map_aligned = FALSE; | |
5656 | } | |
5657 | if (map == kalloc_map) { | |
5658 | panic("vm_map_delete(%p,0x%llx,0x%llx): " | |
5659 | "clipping %p at 0x%llx\n", | |
5660 | map, | |
5661 | (uint64_t)start, | |
5662 | (uint64_t)end, | |
5663 | entry, | |
5664 | (uint64_t)s); | |
5665 | } | |
5666 | vm_map_clip_start(map, entry, s); | |
5667 | } | |
5668 | if (entry->vme_end <= end) { | |
5669 | /* | |
5670 | * This entry is going away completely, so no need | |
5671 | * to clip and possibly cause an unnecessary unnesting. | |
5672 | */ | |
5673 | } else { | |
5674 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && | |
5675 | entry->map_aligned && | |
5676 | !VM_MAP_PAGE_ALIGNED(end, | |
5677 | VM_MAP_PAGE_MASK(map))) { | |
5678 | /* | |
5679 | * The entry will no longer be map-aligned | |
5680 | * after clipping and the caller said it's OK. | |
5681 | */ | |
5682 | entry->map_aligned = FALSE; | |
5683 | } | |
5684 | if (map == kalloc_map) { | |
5685 | panic("vm_map_delete(%p,0x%llx,0x%llx): " | |
5686 | "clipping %p at 0x%llx\n", | |
5687 | map, | |
5688 | (uint64_t)start, | |
5689 | (uint64_t)end, | |
5690 | entry, | |
5691 | (uint64_t)end); | |
5692 | } | |
5693 | vm_map_clip_end(map, entry, end); | |
5694 | } | |
5695 | ||
5696 | if (entry->permanent) { | |
5697 | panic("attempt to remove permanent VM map entry " | |
5698 | "%p [0x%llx:0x%llx]\n", | |
5699 | entry, (uint64_t) s, (uint64_t) end); | |
5700 | } | |
5701 | ||
5702 | ||
5703 | if (entry->in_transition) { | |
5704 | wait_result_t wait_result; | |
5705 | ||
5706 | /* | |
5707 | * Another thread is wiring/unwiring this entry. | |
5708 | * Let the other thread know we are waiting. | |
5709 | */ | |
5710 | assert(s == entry->vme_start); | |
5711 | entry->needs_wakeup = TRUE; | |
5712 | ||
5713 | /* | |
5714 | * wake up anybody waiting on entries that we have | |
5715 | * already unwired/deleted. | |
5716 | */ | |
5717 | if (need_wakeup) { | |
5718 | vm_map_entry_wakeup(map); | |
5719 | need_wakeup = FALSE; | |
5720 | } | |
5721 | ||
5722 | wait_result = vm_map_entry_wait(map, interruptible); | |
5723 | ||
5724 | if (interruptible && | |
5725 | wait_result == THREAD_INTERRUPTED) { | |
5726 | /* | |
5727 | * We do not clear the needs_wakeup flag, | |
5728 | * since we cannot tell if we were the only one. | |
5729 | */ | |
5730 | return KERN_ABORTED; | |
5731 | } | |
5732 | ||
5733 | /* | |
5734 | * The entry could have been clipped or it | |
5735 | * may not exist anymore. Look it up again. | |
5736 | */ | |
5737 | if (!vm_map_lookup_entry(map, s, &first_entry)) { | |
5738 | assert((map != kernel_map) && | |
5739 | (!entry->is_sub_map)); | |
5740 | /* | |
5741 | * User: use the next entry | |
5742 | */ | |
5743 | entry = first_entry->vme_next; | |
5744 | s = entry->vme_start; | |
5745 | } else { | |
5746 | entry = first_entry; | |
5747 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
5748 | } | |
5749 | last_timestamp = map->timestamp; | |
5750 | continue; | |
5751 | } /* end in_transition */ | |
5752 | ||
5753 | if (entry->wired_count) { | |
5754 | boolean_t user_wire; | |
5755 | ||
5756 | user_wire = entry->user_wired_count > 0; | |
5757 | ||
5758 | /* | |
5759 | * Remove a kernel wiring if requested | |
5760 | */ | |
5761 | if (flags & VM_MAP_REMOVE_KUNWIRE) { | |
5762 | entry->wired_count--; | |
5763 | } | |
5764 | ||
5765 | /* | |
5766 | * Remove all user wirings for proper accounting | |
5767 | */ | |
5768 | if (entry->user_wired_count > 0) { | |
5769 | while (entry->user_wired_count) | |
5770 | subtract_wire_counts(map, entry, user_wire); | |
5771 | } | |
5772 | ||
5773 | if (entry->wired_count != 0) { | |
5774 | assert(map != kernel_map); | |
5775 | /* | |
5776 | * Cannot continue. Typical case is when | |
5777 | * a user thread has physical io pending on | |
5778 | * on this page. Either wait for the | |
5779 | * kernel wiring to go away or return an | |
5780 | * error. | |
5781 | */ | |
5782 | if (flags & VM_MAP_REMOVE_WAIT_FOR_KWIRE) { | |
5783 | wait_result_t wait_result; | |
5784 | ||
5785 | assert(s == entry->vme_start); | |
5786 | entry->needs_wakeup = TRUE; | |
5787 | wait_result = vm_map_entry_wait(map, | |
5788 | interruptible); | |
5789 | ||
5790 | if (interruptible && | |
5791 | wait_result == THREAD_INTERRUPTED) { | |
5792 | /* | |
5793 | * We do not clear the | |
5794 | * needs_wakeup flag, since we | |
5795 | * cannot tell if we were the | |
5796 | * only one. | |
5797 | */ | |
5798 | return KERN_ABORTED; | |
5799 | } | |
5800 | ||
5801 | /* | |
5802 | * The entry could have been clipped or | |
5803 | * it may not exist anymore. Look it | |
5804 | * up again. | |
5805 | */ | |
5806 | if (!vm_map_lookup_entry(map, s, | |
5807 | &first_entry)) { | |
5808 | assert(map != kernel_map); | |
5809 | /* | |
5810 | * User: use the next entry | |
5811 | */ | |
5812 | entry = first_entry->vme_next; | |
5813 | s = entry->vme_start; | |
5814 | } else { | |
5815 | entry = first_entry; | |
5816 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
5817 | } | |
5818 | last_timestamp = map->timestamp; | |
5819 | continue; | |
5820 | } | |
5821 | else { | |
5822 | return KERN_FAILURE; | |
5823 | } | |
5824 | } | |
5825 | ||
5826 | entry->in_transition = TRUE; | |
5827 | /* | |
5828 | * copy current entry. see comment in vm_map_wire() | |
5829 | */ | |
5830 | tmp_entry = *entry; | |
5831 | assert(s == entry->vme_start); | |
5832 | ||
5833 | /* | |
5834 | * We can unlock the map now. The in_transition | |
5835 | * state guarentees existance of the entry. | |
5836 | */ | |
5837 | vm_map_unlock(map); | |
5838 | ||
5839 | if (tmp_entry.is_sub_map) { | |
5840 | vm_map_t sub_map; | |
5841 | vm_map_offset_t sub_start, sub_end; | |
5842 | pmap_t pmap; | |
5843 | vm_map_offset_t pmap_addr; | |
5844 | ||
5845 | ||
5846 | sub_map = tmp_entry.object.sub_map; | |
5847 | sub_start = tmp_entry.offset; | |
5848 | sub_end = sub_start + (tmp_entry.vme_end - | |
5849 | tmp_entry.vme_start); | |
5850 | if (tmp_entry.use_pmap) { | |
5851 | pmap = sub_map->pmap; | |
5852 | pmap_addr = tmp_entry.vme_start; | |
5853 | } else { | |
5854 | pmap = map->pmap; | |
5855 | pmap_addr = tmp_entry.vme_start; | |
5856 | } | |
5857 | (void) vm_map_unwire_nested(sub_map, | |
5858 | sub_start, sub_end, | |
5859 | user_wire, | |
5860 | pmap, pmap_addr); | |
5861 | } else { | |
5862 | ||
5863 | if (tmp_entry.object.vm_object == kernel_object) { | |
5864 | pmap_protect_options( | |
5865 | map->pmap, | |
5866 | tmp_entry.vme_start, | |
5867 | tmp_entry.vme_end, | |
5868 | VM_PROT_NONE, | |
5869 | PMAP_OPTIONS_REMOVE, | |
5870 | NULL); | |
5871 | } | |
5872 | vm_fault_unwire(map, &tmp_entry, | |
5873 | tmp_entry.object.vm_object == kernel_object, | |
5874 | map->pmap, tmp_entry.vme_start); | |
5875 | } | |
5876 | ||
5877 | vm_map_lock(map); | |
5878 | ||
5879 | if (last_timestamp+1 != map->timestamp) { | |
5880 | /* | |
5881 | * Find the entry again. It could have | |
5882 | * been clipped after we unlocked the map. | |
5883 | */ | |
5884 | if (!vm_map_lookup_entry(map, s, &first_entry)){ | |
5885 | assert((map != kernel_map) && | |
5886 | (!entry->is_sub_map)); | |
5887 | first_entry = first_entry->vme_next; | |
5888 | s = first_entry->vme_start; | |
5889 | } else { | |
5890 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
5891 | } | |
5892 | } else { | |
5893 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
5894 | first_entry = entry; | |
5895 | } | |
5896 | ||
5897 | last_timestamp = map->timestamp; | |
5898 | ||
5899 | entry = first_entry; | |
5900 | while ((entry != vm_map_to_entry(map)) && | |
5901 | (entry->vme_start < tmp_entry.vme_end)) { | |
5902 | assert(entry->in_transition); | |
5903 | entry->in_transition = FALSE; | |
5904 | if (entry->needs_wakeup) { | |
5905 | entry->needs_wakeup = FALSE; | |
5906 | need_wakeup = TRUE; | |
5907 | } | |
5908 | entry = entry->vme_next; | |
5909 | } | |
5910 | /* | |
5911 | * We have unwired the entry(s). Go back and | |
5912 | * delete them. | |
5913 | */ | |
5914 | entry = first_entry; | |
5915 | continue; | |
5916 | } | |
5917 | ||
5918 | /* entry is unwired */ | |
5919 | assert(entry->wired_count == 0); | |
5920 | assert(entry->user_wired_count == 0); | |
5921 | ||
5922 | assert(s == entry->vme_start); | |
5923 | ||
5924 | if (flags & VM_MAP_REMOVE_NO_PMAP_CLEANUP) { | |
5925 | /* | |
5926 | * XXX with the VM_MAP_REMOVE_SAVE_ENTRIES flag to | |
5927 | * vm_map_delete(), some map entries might have been | |
5928 | * transferred to a "zap_map", which doesn't have a | |
5929 | * pmap. The original pmap has already been flushed | |
5930 | * in the vm_map_delete() call targeting the original | |
5931 | * map, but when we get to destroying the "zap_map", | |
5932 | * we don't have any pmap to flush, so let's just skip | |
5933 | * all this. | |
5934 | */ | |
5935 | } else if (entry->is_sub_map) { | |
5936 | if (entry->use_pmap) { | |
5937 | #ifndef NO_NESTED_PMAP | |
5938 | pmap_unnest(map->pmap, | |
5939 | (addr64_t)entry->vme_start, | |
5940 | entry->vme_end - entry->vme_start); | |
5941 | #endif /* NO_NESTED_PMAP */ | |
5942 | if ((map->mapped_in_other_pmaps) && (map->ref_count)) { | |
5943 | /* clean up parent map/maps */ | |
5944 | vm_map_submap_pmap_clean( | |
5945 | map, entry->vme_start, | |
5946 | entry->vme_end, | |
5947 | entry->object.sub_map, | |
5948 | entry->offset); | |
5949 | } | |
5950 | } else { | |
5951 | vm_map_submap_pmap_clean( | |
5952 | map, entry->vme_start, entry->vme_end, | |
5953 | entry->object.sub_map, | |
5954 | entry->offset); | |
5955 | } | |
5956 | } else if (entry->object.vm_object != kernel_object && | |
5957 | entry->object.vm_object != compressor_object) { | |
5958 | object = entry->object.vm_object; | |
5959 | if ((map->mapped_in_other_pmaps) && (map->ref_count)) { | |
5960 | vm_object_pmap_protect_options( | |
5961 | object, entry->offset, | |
5962 | entry->vme_end - entry->vme_start, | |
5963 | PMAP_NULL, | |
5964 | entry->vme_start, | |
5965 | VM_PROT_NONE, | |
5966 | PMAP_OPTIONS_REMOVE); | |
5967 | } else if ((entry->object.vm_object != | |
5968 | VM_OBJECT_NULL) || | |
5969 | (map->pmap == kernel_pmap)) { | |
5970 | /* Remove translations associated | |
5971 | * with this range unless the entry | |
5972 | * does not have an object, or | |
5973 | * it's the kernel map or a descendant | |
5974 | * since the platform could potentially | |
5975 | * create "backdoor" mappings invisible | |
5976 | * to the VM. It is expected that | |
5977 | * objectless, non-kernel ranges | |
5978 | * do not have such VM invisible | |
5979 | * translations. | |
5980 | */ | |
5981 | pmap_remove_options(map->pmap, | |
5982 | (addr64_t)entry->vme_start, | |
5983 | (addr64_t)entry->vme_end, | |
5984 | PMAP_OPTIONS_REMOVE); | |
5985 | } | |
5986 | } | |
5987 | ||
5988 | if (entry->iokit_acct) { | |
5989 | /* alternate accounting */ | |
5990 | vm_map_iokit_unmapped_region(map, | |
5991 | (entry->vme_end - | |
5992 | entry->vme_start)); | |
5993 | entry->iokit_acct = FALSE; | |
5994 | } | |
5995 | ||
5996 | /* | |
5997 | * All pmap mappings for this map entry must have been | |
5998 | * cleared by now. | |
5999 | */ | |
6000 | #if DEBUG | |
6001 | assert(vm_map_pmap_is_empty(map, | |
6002 | entry->vme_start, | |
6003 | entry->vme_end)); | |
6004 | #endif /* DEBUG */ | |
6005 | ||
6006 | next = entry->vme_next; | |
6007 | ||
6008 | if (map->pmap == kernel_pmap && | |
6009 | map->ref_count != 0 && | |
6010 | entry->vme_end < end && | |
6011 | (next == vm_map_to_entry(map) || | |
6012 | next->vme_start != entry->vme_end)) { | |
6013 | panic("vm_map_delete(%p,0x%llx,0x%llx): " | |
6014 | "hole after %p at 0x%llx\n", | |
6015 | map, | |
6016 | (uint64_t)start, | |
6017 | (uint64_t)end, | |
6018 | entry, | |
6019 | (uint64_t)entry->vme_end); | |
6020 | } | |
6021 | ||
6022 | s = next->vme_start; | |
6023 | last_timestamp = map->timestamp; | |
6024 | ||
6025 | if ((flags & VM_MAP_REMOVE_SAVE_ENTRIES) && | |
6026 | zap_map != VM_MAP_NULL) { | |
6027 | vm_map_size_t entry_size; | |
6028 | /* | |
6029 | * The caller wants to save the affected VM map entries | |
6030 | * into the "zap_map". The caller will take care of | |
6031 | * these entries. | |
6032 | */ | |
6033 | /* unlink the entry from "map" ... */ | |
6034 | vm_map_store_entry_unlink(map, entry); | |
6035 | /* ... and add it to the end of the "zap_map" */ | |
6036 | vm_map_store_entry_link(zap_map, | |
6037 | vm_map_last_entry(zap_map), | |
6038 | entry); | |
6039 | entry_size = entry->vme_end - entry->vme_start; | |
6040 | map->size -= entry_size; | |
6041 | zap_map->size += entry_size; | |
6042 | /* we didn't unlock the map, so no timestamp increase */ | |
6043 | last_timestamp--; | |
6044 | } else { | |
6045 | vm_map_entry_delete(map, entry); | |
6046 | /* vm_map_entry_delete unlocks the map */ | |
6047 | vm_map_lock(map); | |
6048 | } | |
6049 | ||
6050 | entry = next; | |
6051 | ||
6052 | if(entry == vm_map_to_entry(map)) { | |
6053 | break; | |
6054 | } | |
6055 | if (last_timestamp+1 != map->timestamp) { | |
6056 | /* | |
6057 | * we are responsible for deleting everything | |
6058 | * from the give space, if someone has interfered | |
6059 | * we pick up where we left off, back fills should | |
6060 | * be all right for anyone except map_delete and | |
6061 | * we have to assume that the task has been fully | |
6062 | * disabled before we get here | |
6063 | */ | |
6064 | if (!vm_map_lookup_entry(map, s, &entry)){ | |
6065 | entry = entry->vme_next; | |
6066 | s = entry->vme_start; | |
6067 | } else { | |
6068 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); | |
6069 | } | |
6070 | /* | |
6071 | * others can not only allocate behind us, we can | |
6072 | * also see coalesce while we don't have the map lock | |
6073 | */ | |
6074 | if(entry == vm_map_to_entry(map)) { | |
6075 | break; | |
6076 | } | |
6077 | } | |
6078 | last_timestamp = map->timestamp; | |
6079 | } | |
6080 | ||
6081 | if (map->wait_for_space) | |
6082 | thread_wakeup((event_t) map); | |
6083 | /* | |
6084 | * wake up anybody waiting on entries that we have already deleted. | |
6085 | */ | |
6086 | if (need_wakeup) | |
6087 | vm_map_entry_wakeup(map); | |
6088 | ||
6089 | return KERN_SUCCESS; | |
6090 | } | |
6091 | ||
6092 | /* | |
6093 | * vm_map_remove: | |
6094 | * | |
6095 | * Remove the given address range from the target map. | |
6096 | * This is the exported form of vm_map_delete. | |
6097 | */ | |
6098 | kern_return_t | |
6099 | vm_map_remove( | |
6100 | register vm_map_t map, | |
6101 | register vm_map_offset_t start, | |
6102 | register vm_map_offset_t end, | |
6103 | register boolean_t flags) | |
6104 | { | |
6105 | register kern_return_t result; | |
6106 | ||
6107 | vm_map_lock(map); | |
6108 | VM_MAP_RANGE_CHECK(map, start, end); | |
6109 | /* | |
6110 | * For the zone_map, the kernel controls the allocation/freeing of memory. | |
6111 | * Any free to the zone_map should be within the bounds of the map and | |
6112 | * should free up memory. If the VM_MAP_RANGE_CHECK() silently converts a | |
6113 | * free to the zone_map into a no-op, there is a problem and we should | |
6114 | * panic. | |
6115 | */ | |
6116 | if ((map == zone_map) && (start == end)) | |
6117 | panic("Nothing being freed to the zone_map. start = end = %p\n", (void *)start); | |
6118 | result = vm_map_delete(map, start, end, flags, VM_MAP_NULL); | |
6119 | vm_map_unlock(map); | |
6120 | ||
6121 | return(result); | |
6122 | } | |
6123 | ||
6124 | ||
6125 | /* | |
6126 | * Routine: vm_map_copy_discard | |
6127 | * | |
6128 | * Description: | |
6129 | * Dispose of a map copy object (returned by | |
6130 | * vm_map_copyin). | |
6131 | */ | |
6132 | void | |
6133 | vm_map_copy_discard( | |
6134 | vm_map_copy_t copy) | |
6135 | { | |
6136 | if (copy == VM_MAP_COPY_NULL) | |
6137 | return; | |
6138 | ||
6139 | switch (copy->type) { | |
6140 | case VM_MAP_COPY_ENTRY_LIST: | |
6141 | while (vm_map_copy_first_entry(copy) != | |
6142 | vm_map_copy_to_entry(copy)) { | |
6143 | vm_map_entry_t entry = vm_map_copy_first_entry(copy); | |
6144 | ||
6145 | vm_map_copy_entry_unlink(copy, entry); | |
6146 | if (entry->is_sub_map) { | |
6147 | vm_map_deallocate(entry->object.sub_map); | |
6148 | } else { | |
6149 | vm_object_deallocate(entry->object.vm_object); | |
6150 | } | |
6151 | vm_map_copy_entry_dispose(copy, entry); | |
6152 | } | |
6153 | break; | |
6154 | case VM_MAP_COPY_OBJECT: | |
6155 | vm_object_deallocate(copy->cpy_object); | |
6156 | break; | |
6157 | case VM_MAP_COPY_KERNEL_BUFFER: | |
6158 | ||
6159 | /* | |
6160 | * The vm_map_copy_t and possibly the data buffer were | |
6161 | * allocated by a single call to kalloc(), i.e. the | |
6162 | * vm_map_copy_t was not allocated out of the zone. | |
6163 | */ | |
6164 | kfree(copy, copy->cpy_kalloc_size); | |
6165 | return; | |
6166 | } | |
6167 | zfree(vm_map_copy_zone, copy); | |
6168 | } | |
6169 | ||
6170 | /* | |
6171 | * Routine: vm_map_copy_copy | |
6172 | * | |
6173 | * Description: | |
6174 | * Move the information in a map copy object to | |
6175 | * a new map copy object, leaving the old one | |
6176 | * empty. | |
6177 | * | |
6178 | * This is used by kernel routines that need | |
6179 | * to look at out-of-line data (in copyin form) | |
6180 | * before deciding whether to return SUCCESS. | |
6181 | * If the routine returns FAILURE, the original | |
6182 | * copy object will be deallocated; therefore, | |
6183 | * these routines must make a copy of the copy | |
6184 | * object and leave the original empty so that | |
6185 | * deallocation will not fail. | |
6186 | */ | |
6187 | vm_map_copy_t | |
6188 | vm_map_copy_copy( | |
6189 | vm_map_copy_t copy) | |
6190 | { | |
6191 | vm_map_copy_t new_copy; | |
6192 | ||
6193 | if (copy == VM_MAP_COPY_NULL) | |
6194 | return VM_MAP_COPY_NULL; | |
6195 | ||
6196 | /* | |
6197 | * Allocate a new copy object, and copy the information | |
6198 | * from the old one into it. | |
6199 | */ | |
6200 | ||
6201 | new_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
6202 | new_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
6203 | *new_copy = *copy; | |
6204 | ||
6205 | if (copy->type == VM_MAP_COPY_ENTRY_LIST) { | |
6206 | /* | |
6207 | * The links in the entry chain must be | |
6208 | * changed to point to the new copy object. | |
6209 | */ | |
6210 | vm_map_copy_first_entry(copy)->vme_prev | |
6211 | = vm_map_copy_to_entry(new_copy); | |
6212 | vm_map_copy_last_entry(copy)->vme_next | |
6213 | = vm_map_copy_to_entry(new_copy); | |
6214 | } | |
6215 | ||
6216 | /* | |
6217 | * Change the old copy object into one that contains | |
6218 | * nothing to be deallocated. | |
6219 | */ | |
6220 | copy->type = VM_MAP_COPY_OBJECT; | |
6221 | copy->cpy_object = VM_OBJECT_NULL; | |
6222 | ||
6223 | /* | |
6224 | * Return the new object. | |
6225 | */ | |
6226 | return new_copy; | |
6227 | } | |
6228 | ||
6229 | static kern_return_t | |
6230 | vm_map_overwrite_submap_recurse( | |
6231 | vm_map_t dst_map, | |
6232 | vm_map_offset_t dst_addr, | |
6233 | vm_map_size_t dst_size) | |
6234 | { | |
6235 | vm_map_offset_t dst_end; | |
6236 | vm_map_entry_t tmp_entry; | |
6237 | vm_map_entry_t entry; | |
6238 | kern_return_t result; | |
6239 | boolean_t encountered_sub_map = FALSE; | |
6240 | ||
6241 | ||
6242 | ||
6243 | /* | |
6244 | * Verify that the destination is all writeable | |
6245 | * initially. We have to trunc the destination | |
6246 | * address and round the copy size or we'll end up | |
6247 | * splitting entries in strange ways. | |
6248 | */ | |
6249 | ||
6250 | dst_end = vm_map_round_page(dst_addr + dst_size, | |
6251 | VM_MAP_PAGE_MASK(dst_map)); | |
6252 | vm_map_lock(dst_map); | |
6253 | ||
6254 | start_pass_1: | |
6255 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { | |
6256 | vm_map_unlock(dst_map); | |
6257 | return(KERN_INVALID_ADDRESS); | |
6258 | } | |
6259 | ||
6260 | vm_map_clip_start(dst_map, | |
6261 | tmp_entry, | |
6262 | vm_map_trunc_page(dst_addr, | |
6263 | VM_MAP_PAGE_MASK(dst_map))); | |
6264 | if (tmp_entry->is_sub_map) { | |
6265 | /* clipping did unnest if needed */ | |
6266 | assert(!tmp_entry->use_pmap); | |
6267 | } | |
6268 | ||
6269 | for (entry = tmp_entry;;) { | |
6270 | vm_map_entry_t next; | |
6271 | ||
6272 | next = entry->vme_next; | |
6273 | while(entry->is_sub_map) { | |
6274 | vm_map_offset_t sub_start; | |
6275 | vm_map_offset_t sub_end; | |
6276 | vm_map_offset_t local_end; | |
6277 | ||
6278 | if (entry->in_transition) { | |
6279 | /* | |
6280 | * Say that we are waiting, and wait for entry. | |
6281 | */ | |
6282 | entry->needs_wakeup = TRUE; | |
6283 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
6284 | ||
6285 | goto start_pass_1; | |
6286 | } | |
6287 | ||
6288 | encountered_sub_map = TRUE; | |
6289 | sub_start = entry->offset; | |
6290 | ||
6291 | if(entry->vme_end < dst_end) | |
6292 | sub_end = entry->vme_end; | |
6293 | else | |
6294 | sub_end = dst_end; | |
6295 | sub_end -= entry->vme_start; | |
6296 | sub_end += entry->offset; | |
6297 | local_end = entry->vme_end; | |
6298 | vm_map_unlock(dst_map); | |
6299 | ||
6300 | result = vm_map_overwrite_submap_recurse( | |
6301 | entry->object.sub_map, | |
6302 | sub_start, | |
6303 | sub_end - sub_start); | |
6304 | ||
6305 | if(result != KERN_SUCCESS) | |
6306 | return result; | |
6307 | if (dst_end <= entry->vme_end) | |
6308 | return KERN_SUCCESS; | |
6309 | vm_map_lock(dst_map); | |
6310 | if(!vm_map_lookup_entry(dst_map, local_end, | |
6311 | &tmp_entry)) { | |
6312 | vm_map_unlock(dst_map); | |
6313 | return(KERN_INVALID_ADDRESS); | |
6314 | } | |
6315 | entry = tmp_entry; | |
6316 | next = entry->vme_next; | |
6317 | } | |
6318 | ||
6319 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
6320 | vm_map_unlock(dst_map); | |
6321 | return(KERN_PROTECTION_FAILURE); | |
6322 | } | |
6323 | ||
6324 | /* | |
6325 | * If the entry is in transition, we must wait | |
6326 | * for it to exit that state. Anything could happen | |
6327 | * when we unlock the map, so start over. | |
6328 | */ | |
6329 | if (entry->in_transition) { | |
6330 | ||
6331 | /* | |
6332 | * Say that we are waiting, and wait for entry. | |
6333 | */ | |
6334 | entry->needs_wakeup = TRUE; | |
6335 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
6336 | ||
6337 | goto start_pass_1; | |
6338 | } | |
6339 | ||
6340 | /* | |
6341 | * our range is contained completely within this map entry | |
6342 | */ | |
6343 | if (dst_end <= entry->vme_end) { | |
6344 | vm_map_unlock(dst_map); | |
6345 | return KERN_SUCCESS; | |
6346 | } | |
6347 | /* | |
6348 | * check that range specified is contiguous region | |
6349 | */ | |
6350 | if ((next == vm_map_to_entry(dst_map)) || | |
6351 | (next->vme_start != entry->vme_end)) { | |
6352 | vm_map_unlock(dst_map); | |
6353 | return(KERN_INVALID_ADDRESS); | |
6354 | } | |
6355 | ||
6356 | /* | |
6357 | * Check for permanent objects in the destination. | |
6358 | */ | |
6359 | if ((entry->object.vm_object != VM_OBJECT_NULL) && | |
6360 | ((!entry->object.vm_object->internal) || | |
6361 | (entry->object.vm_object->true_share))) { | |
6362 | if(encountered_sub_map) { | |
6363 | vm_map_unlock(dst_map); | |
6364 | return(KERN_FAILURE); | |
6365 | } | |
6366 | } | |
6367 | ||
6368 | ||
6369 | entry = next; | |
6370 | }/* for */ | |
6371 | vm_map_unlock(dst_map); | |
6372 | return(KERN_SUCCESS); | |
6373 | } | |
6374 | ||
6375 | /* | |
6376 | * Routine: vm_map_copy_overwrite | |
6377 | * | |
6378 | * Description: | |
6379 | * Copy the memory described by the map copy | |
6380 | * object (copy; returned by vm_map_copyin) onto | |
6381 | * the specified destination region (dst_map, dst_addr). | |
6382 | * The destination must be writeable. | |
6383 | * | |
6384 | * Unlike vm_map_copyout, this routine actually | |
6385 | * writes over previously-mapped memory. If the | |
6386 | * previous mapping was to a permanent (user-supplied) | |
6387 | * memory object, it is preserved. | |
6388 | * | |
6389 | * The attributes (protection and inheritance) of the | |
6390 | * destination region are preserved. | |
6391 | * | |
6392 | * If successful, consumes the copy object. | |
6393 | * Otherwise, the caller is responsible for it. | |
6394 | * | |
6395 | * Implementation notes: | |
6396 | * To overwrite aligned temporary virtual memory, it is | |
6397 | * sufficient to remove the previous mapping and insert | |
6398 | * the new copy. This replacement is done either on | |
6399 | * the whole region (if no permanent virtual memory | |
6400 | * objects are embedded in the destination region) or | |
6401 | * in individual map entries. | |
6402 | * | |
6403 | * To overwrite permanent virtual memory , it is necessary | |
6404 | * to copy each page, as the external memory management | |
6405 | * interface currently does not provide any optimizations. | |
6406 | * | |
6407 | * Unaligned memory also has to be copied. It is possible | |
6408 | * to use 'vm_trickery' to copy the aligned data. This is | |
6409 | * not done but not hard to implement. | |
6410 | * | |
6411 | * Once a page of permanent memory has been overwritten, | |
6412 | * it is impossible to interrupt this function; otherwise, | |
6413 | * the call would be neither atomic nor location-independent. | |
6414 | * The kernel-state portion of a user thread must be | |
6415 | * interruptible. | |
6416 | * | |
6417 | * It may be expensive to forward all requests that might | |
6418 | * overwrite permanent memory (vm_write, vm_copy) to | |
6419 | * uninterruptible kernel threads. This routine may be | |
6420 | * called by interruptible threads; however, success is | |
6421 | * not guaranteed -- if the request cannot be performed | |
6422 | * atomically and interruptibly, an error indication is | |
6423 | * returned. | |
6424 | */ | |
6425 | ||
6426 | static kern_return_t | |
6427 | vm_map_copy_overwrite_nested( | |
6428 | vm_map_t dst_map, | |
6429 | vm_map_address_t dst_addr, | |
6430 | vm_map_copy_t copy, | |
6431 | boolean_t interruptible, | |
6432 | pmap_t pmap, | |
6433 | boolean_t discard_on_success) | |
6434 | { | |
6435 | vm_map_offset_t dst_end; | |
6436 | vm_map_entry_t tmp_entry; | |
6437 | vm_map_entry_t entry; | |
6438 | kern_return_t kr; | |
6439 | boolean_t aligned = TRUE; | |
6440 | boolean_t contains_permanent_objects = FALSE; | |
6441 | boolean_t encountered_sub_map = FALSE; | |
6442 | vm_map_offset_t base_addr; | |
6443 | vm_map_size_t copy_size; | |
6444 | vm_map_size_t total_size; | |
6445 | ||
6446 | ||
6447 | /* | |
6448 | * Check for null copy object. | |
6449 | */ | |
6450 | ||
6451 | if (copy == VM_MAP_COPY_NULL) | |
6452 | return(KERN_SUCCESS); | |
6453 | ||
6454 | /* | |
6455 | * Check for special kernel buffer allocated | |
6456 | * by new_ipc_kmsg_copyin. | |
6457 | */ | |
6458 | ||
6459 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { | |
6460 | return(vm_map_copyout_kernel_buffer( | |
6461 | dst_map, &dst_addr, | |
6462 | copy, TRUE, discard_on_success)); | |
6463 | } | |
6464 | ||
6465 | /* | |
6466 | * Only works for entry lists at the moment. Will | |
6467 | * support page lists later. | |
6468 | */ | |
6469 | ||
6470 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); | |
6471 | ||
6472 | if (copy->size == 0) { | |
6473 | if (discard_on_success) | |
6474 | vm_map_copy_discard(copy); | |
6475 | return(KERN_SUCCESS); | |
6476 | } | |
6477 | ||
6478 | /* | |
6479 | * Verify that the destination is all writeable | |
6480 | * initially. We have to trunc the destination | |
6481 | * address and round the copy size or we'll end up | |
6482 | * splitting entries in strange ways. | |
6483 | */ | |
6484 | ||
6485 | if (!VM_MAP_PAGE_ALIGNED(copy->size, | |
6486 | VM_MAP_PAGE_MASK(dst_map)) || | |
6487 | !VM_MAP_PAGE_ALIGNED(copy->offset, | |
6488 | VM_MAP_PAGE_MASK(dst_map)) || | |
6489 | !VM_MAP_PAGE_ALIGNED(dst_addr, | |
6490 | VM_MAP_PAGE_MASK(dst_map))) | |
6491 | { | |
6492 | aligned = FALSE; | |
6493 | dst_end = vm_map_round_page(dst_addr + copy->size, | |
6494 | VM_MAP_PAGE_MASK(dst_map)); | |
6495 | } else { | |
6496 | dst_end = dst_addr + copy->size; | |
6497 | } | |
6498 | ||
6499 | vm_map_lock(dst_map); | |
6500 | ||
6501 | /* LP64todo - remove this check when vm_map_commpage64() | |
6502 | * no longer has to stuff in a map_entry for the commpage | |
6503 | * above the map's max_offset. | |
6504 | */ | |
6505 | if (dst_addr >= dst_map->max_offset) { | |
6506 | vm_map_unlock(dst_map); | |
6507 | return(KERN_INVALID_ADDRESS); | |
6508 | } | |
6509 | ||
6510 | start_pass_1: | |
6511 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { | |
6512 | vm_map_unlock(dst_map); | |
6513 | return(KERN_INVALID_ADDRESS); | |
6514 | } | |
6515 | vm_map_clip_start(dst_map, | |
6516 | tmp_entry, | |
6517 | vm_map_trunc_page(dst_addr, | |
6518 | VM_MAP_PAGE_MASK(dst_map))); | |
6519 | for (entry = tmp_entry;;) { | |
6520 | vm_map_entry_t next = entry->vme_next; | |
6521 | ||
6522 | while(entry->is_sub_map) { | |
6523 | vm_map_offset_t sub_start; | |
6524 | vm_map_offset_t sub_end; | |
6525 | vm_map_offset_t local_end; | |
6526 | ||
6527 | if (entry->in_transition) { | |
6528 | ||
6529 | /* | |
6530 | * Say that we are waiting, and wait for entry. | |
6531 | */ | |
6532 | entry->needs_wakeup = TRUE; | |
6533 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
6534 | ||
6535 | goto start_pass_1; | |
6536 | } | |
6537 | ||
6538 | local_end = entry->vme_end; | |
6539 | if (!(entry->needs_copy)) { | |
6540 | /* if needs_copy we are a COW submap */ | |
6541 | /* in such a case we just replace so */ | |
6542 | /* there is no need for the follow- */ | |
6543 | /* ing check. */ | |
6544 | encountered_sub_map = TRUE; | |
6545 | sub_start = entry->offset; | |
6546 | ||
6547 | if(entry->vme_end < dst_end) | |
6548 | sub_end = entry->vme_end; | |
6549 | else | |
6550 | sub_end = dst_end; | |
6551 | sub_end -= entry->vme_start; | |
6552 | sub_end += entry->offset; | |
6553 | vm_map_unlock(dst_map); | |
6554 | ||
6555 | kr = vm_map_overwrite_submap_recurse( | |
6556 | entry->object.sub_map, | |
6557 | sub_start, | |
6558 | sub_end - sub_start); | |
6559 | if(kr != KERN_SUCCESS) | |
6560 | return kr; | |
6561 | vm_map_lock(dst_map); | |
6562 | } | |
6563 | ||
6564 | if (dst_end <= entry->vme_end) | |
6565 | goto start_overwrite; | |
6566 | if(!vm_map_lookup_entry(dst_map, local_end, | |
6567 | &entry)) { | |
6568 | vm_map_unlock(dst_map); | |
6569 | return(KERN_INVALID_ADDRESS); | |
6570 | } | |
6571 | next = entry->vme_next; | |
6572 | } | |
6573 | ||
6574 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
6575 | vm_map_unlock(dst_map); | |
6576 | return(KERN_PROTECTION_FAILURE); | |
6577 | } | |
6578 | ||
6579 | /* | |
6580 | * If the entry is in transition, we must wait | |
6581 | * for it to exit that state. Anything could happen | |
6582 | * when we unlock the map, so start over. | |
6583 | */ | |
6584 | if (entry->in_transition) { | |
6585 | ||
6586 | /* | |
6587 | * Say that we are waiting, and wait for entry. | |
6588 | */ | |
6589 | entry->needs_wakeup = TRUE; | |
6590 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
6591 | ||
6592 | goto start_pass_1; | |
6593 | } | |
6594 | ||
6595 | /* | |
6596 | * our range is contained completely within this map entry | |
6597 | */ | |
6598 | if (dst_end <= entry->vme_end) | |
6599 | break; | |
6600 | /* | |
6601 | * check that range specified is contiguous region | |
6602 | */ | |
6603 | if ((next == vm_map_to_entry(dst_map)) || | |
6604 | (next->vme_start != entry->vme_end)) { | |
6605 | vm_map_unlock(dst_map); | |
6606 | return(KERN_INVALID_ADDRESS); | |
6607 | } | |
6608 | ||
6609 | ||
6610 | /* | |
6611 | * Check for permanent objects in the destination. | |
6612 | */ | |
6613 | if ((entry->object.vm_object != VM_OBJECT_NULL) && | |
6614 | ((!entry->object.vm_object->internal) || | |
6615 | (entry->object.vm_object->true_share))) { | |
6616 | contains_permanent_objects = TRUE; | |
6617 | } | |
6618 | ||
6619 | entry = next; | |
6620 | }/* for */ | |
6621 | ||
6622 | start_overwrite: | |
6623 | /* | |
6624 | * If there are permanent objects in the destination, then | |
6625 | * the copy cannot be interrupted. | |
6626 | */ | |
6627 | ||
6628 | if (interruptible && contains_permanent_objects) { | |
6629 | vm_map_unlock(dst_map); | |
6630 | return(KERN_FAILURE); /* XXX */ | |
6631 | } | |
6632 | ||
6633 | /* | |
6634 | * | |
6635 | * Make a second pass, overwriting the data | |
6636 | * At the beginning of each loop iteration, | |
6637 | * the next entry to be overwritten is "tmp_entry" | |
6638 | * (initially, the value returned from the lookup above), | |
6639 | * and the starting address expected in that entry | |
6640 | * is "start". | |
6641 | */ | |
6642 | ||
6643 | total_size = copy->size; | |
6644 | if(encountered_sub_map) { | |
6645 | copy_size = 0; | |
6646 | /* re-calculate tmp_entry since we've had the map */ | |
6647 | /* unlocked */ | |
6648 | if (!vm_map_lookup_entry( dst_map, dst_addr, &tmp_entry)) { | |
6649 | vm_map_unlock(dst_map); | |
6650 | return(KERN_INVALID_ADDRESS); | |
6651 | } | |
6652 | } else { | |
6653 | copy_size = copy->size; | |
6654 | } | |
6655 | ||
6656 | base_addr = dst_addr; | |
6657 | while(TRUE) { | |
6658 | /* deconstruct the copy object and do in parts */ | |
6659 | /* only in sub_map, interruptable case */ | |
6660 | vm_map_entry_t copy_entry; | |
6661 | vm_map_entry_t previous_prev = VM_MAP_ENTRY_NULL; | |
6662 | vm_map_entry_t next_copy = VM_MAP_ENTRY_NULL; | |
6663 | int nentries; | |
6664 | int remaining_entries = 0; | |
6665 | vm_map_offset_t new_offset = 0; | |
6666 | ||
6667 | for (entry = tmp_entry; copy_size == 0;) { | |
6668 | vm_map_entry_t next; | |
6669 | ||
6670 | next = entry->vme_next; | |
6671 | ||
6672 | /* tmp_entry and base address are moved along */ | |
6673 | /* each time we encounter a sub-map. Otherwise */ | |
6674 | /* entry can outpase tmp_entry, and the copy_size */ | |
6675 | /* may reflect the distance between them */ | |
6676 | /* if the current entry is found to be in transition */ | |
6677 | /* we will start over at the beginning or the last */ | |
6678 | /* encounter of a submap as dictated by base_addr */ | |
6679 | /* we will zero copy_size accordingly. */ | |
6680 | if (entry->in_transition) { | |
6681 | /* | |
6682 | * Say that we are waiting, and wait for entry. | |
6683 | */ | |
6684 | entry->needs_wakeup = TRUE; | |
6685 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
6686 | ||
6687 | if(!vm_map_lookup_entry(dst_map, base_addr, | |
6688 | &tmp_entry)) { | |
6689 | vm_map_unlock(dst_map); | |
6690 | return(KERN_INVALID_ADDRESS); | |
6691 | } | |
6692 | copy_size = 0; | |
6693 | entry = tmp_entry; | |
6694 | continue; | |
6695 | } | |
6696 | if(entry->is_sub_map) { | |
6697 | vm_map_offset_t sub_start; | |
6698 | vm_map_offset_t sub_end; | |
6699 | vm_map_offset_t local_end; | |
6700 | ||
6701 | if (entry->needs_copy) { | |
6702 | /* if this is a COW submap */ | |
6703 | /* just back the range with a */ | |
6704 | /* anonymous entry */ | |
6705 | if(entry->vme_end < dst_end) | |
6706 | sub_end = entry->vme_end; | |
6707 | else | |
6708 | sub_end = dst_end; | |
6709 | if(entry->vme_start < base_addr) | |
6710 | sub_start = base_addr; | |
6711 | else | |
6712 | sub_start = entry->vme_start; | |
6713 | vm_map_clip_end( | |
6714 | dst_map, entry, sub_end); | |
6715 | vm_map_clip_start( | |
6716 | dst_map, entry, sub_start); | |
6717 | assert(!entry->use_pmap); | |
6718 | entry->is_sub_map = FALSE; | |
6719 | vm_map_deallocate( | |
6720 | entry->object.sub_map); | |
6721 | entry->object.sub_map = NULL; | |
6722 | entry->is_shared = FALSE; | |
6723 | entry->needs_copy = FALSE; | |
6724 | entry->offset = 0; | |
6725 | /* | |
6726 | * XXX FBDP | |
6727 | * We should propagate the protections | |
6728 | * of the submap entry here instead | |
6729 | * of forcing them to VM_PROT_ALL... | |
6730 | * Or better yet, we should inherit | |
6731 | * the protection of the copy_entry. | |
6732 | */ | |
6733 | entry->protection = VM_PROT_ALL; | |
6734 | entry->max_protection = VM_PROT_ALL; | |
6735 | entry->wired_count = 0; | |
6736 | entry->user_wired_count = 0; | |
6737 | if(entry->inheritance | |
6738 | == VM_INHERIT_SHARE) | |
6739 | entry->inheritance = VM_INHERIT_COPY; | |
6740 | continue; | |
6741 | } | |
6742 | /* first take care of any non-sub_map */ | |
6743 | /* entries to send */ | |
6744 | if(base_addr < entry->vme_start) { | |
6745 | /* stuff to send */ | |
6746 | copy_size = | |
6747 | entry->vme_start - base_addr; | |
6748 | break; | |
6749 | } | |
6750 | sub_start = entry->offset; | |
6751 | ||
6752 | if(entry->vme_end < dst_end) | |
6753 | sub_end = entry->vme_end; | |
6754 | else | |
6755 | sub_end = dst_end; | |
6756 | sub_end -= entry->vme_start; | |
6757 | sub_end += entry->offset; | |
6758 | local_end = entry->vme_end; | |
6759 | vm_map_unlock(dst_map); | |
6760 | copy_size = sub_end - sub_start; | |
6761 | ||
6762 | /* adjust the copy object */ | |
6763 | if (total_size > copy_size) { | |
6764 | vm_map_size_t local_size = 0; | |
6765 | vm_map_size_t entry_size; | |
6766 | ||
6767 | nentries = 1; | |
6768 | new_offset = copy->offset; | |
6769 | copy_entry = vm_map_copy_first_entry(copy); | |
6770 | while(copy_entry != | |
6771 | vm_map_copy_to_entry(copy)){ | |
6772 | entry_size = copy_entry->vme_end - | |
6773 | copy_entry->vme_start; | |
6774 | if((local_size < copy_size) && | |
6775 | ((local_size + entry_size) | |
6776 | >= copy_size)) { | |
6777 | vm_map_copy_clip_end(copy, | |
6778 | copy_entry, | |
6779 | copy_entry->vme_start + | |
6780 | (copy_size - local_size)); | |
6781 | entry_size = copy_entry->vme_end - | |
6782 | copy_entry->vme_start; | |
6783 | local_size += entry_size; | |
6784 | new_offset += entry_size; | |
6785 | } | |
6786 | if(local_size >= copy_size) { | |
6787 | next_copy = copy_entry->vme_next; | |
6788 | copy_entry->vme_next = | |
6789 | vm_map_copy_to_entry(copy); | |
6790 | previous_prev = | |
6791 | copy->cpy_hdr.links.prev; | |
6792 | copy->cpy_hdr.links.prev = copy_entry; | |
6793 | copy->size = copy_size; | |
6794 | remaining_entries = | |
6795 | copy->cpy_hdr.nentries; | |
6796 | remaining_entries -= nentries; | |
6797 | copy->cpy_hdr.nentries = nentries; | |
6798 | break; | |
6799 | } else { | |
6800 | local_size += entry_size; | |
6801 | new_offset += entry_size; | |
6802 | nentries++; | |
6803 | } | |
6804 | copy_entry = copy_entry->vme_next; | |
6805 | } | |
6806 | } | |
6807 | ||
6808 | if((entry->use_pmap) && (pmap == NULL)) { | |
6809 | kr = vm_map_copy_overwrite_nested( | |
6810 | entry->object.sub_map, | |
6811 | sub_start, | |
6812 | copy, | |
6813 | interruptible, | |
6814 | entry->object.sub_map->pmap, | |
6815 | TRUE); | |
6816 | } else if (pmap != NULL) { | |
6817 | kr = vm_map_copy_overwrite_nested( | |
6818 | entry->object.sub_map, | |
6819 | sub_start, | |
6820 | copy, | |
6821 | interruptible, pmap, | |
6822 | TRUE); | |
6823 | } else { | |
6824 | kr = vm_map_copy_overwrite_nested( | |
6825 | entry->object.sub_map, | |
6826 | sub_start, | |
6827 | copy, | |
6828 | interruptible, | |
6829 | dst_map->pmap, | |
6830 | TRUE); | |
6831 | } | |
6832 | if(kr != KERN_SUCCESS) { | |
6833 | if(next_copy != NULL) { | |
6834 | copy->cpy_hdr.nentries += | |
6835 | remaining_entries; | |
6836 | copy->cpy_hdr.links.prev->vme_next = | |
6837 | next_copy; | |
6838 | copy->cpy_hdr.links.prev | |
6839 | = previous_prev; | |
6840 | copy->size = total_size; | |
6841 | } | |
6842 | return kr; | |
6843 | } | |
6844 | if (dst_end <= local_end) { | |
6845 | return(KERN_SUCCESS); | |
6846 | } | |
6847 | /* otherwise copy no longer exists, it was */ | |
6848 | /* destroyed after successful copy_overwrite */ | |
6849 | copy = (vm_map_copy_t) | |
6850 | zalloc(vm_map_copy_zone); | |
6851 | copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
6852 | vm_map_copy_first_entry(copy) = | |
6853 | vm_map_copy_last_entry(copy) = | |
6854 | vm_map_copy_to_entry(copy); | |
6855 | copy->type = VM_MAP_COPY_ENTRY_LIST; | |
6856 | copy->offset = new_offset; | |
6857 | ||
6858 | /* | |
6859 | * XXX FBDP | |
6860 | * this does not seem to deal with | |
6861 | * the VM map store (R&B tree) | |
6862 | */ | |
6863 | ||
6864 | total_size -= copy_size; | |
6865 | copy_size = 0; | |
6866 | /* put back remainder of copy in container */ | |
6867 | if(next_copy != NULL) { | |
6868 | copy->cpy_hdr.nentries = remaining_entries; | |
6869 | copy->cpy_hdr.links.next = next_copy; | |
6870 | copy->cpy_hdr.links.prev = previous_prev; | |
6871 | copy->size = total_size; | |
6872 | next_copy->vme_prev = | |
6873 | vm_map_copy_to_entry(copy); | |
6874 | next_copy = NULL; | |
6875 | } | |
6876 | base_addr = local_end; | |
6877 | vm_map_lock(dst_map); | |
6878 | if(!vm_map_lookup_entry(dst_map, | |
6879 | local_end, &tmp_entry)) { | |
6880 | vm_map_unlock(dst_map); | |
6881 | return(KERN_INVALID_ADDRESS); | |
6882 | } | |
6883 | entry = tmp_entry; | |
6884 | continue; | |
6885 | } | |
6886 | if (dst_end <= entry->vme_end) { | |
6887 | copy_size = dst_end - base_addr; | |
6888 | break; | |
6889 | } | |
6890 | ||
6891 | if ((next == vm_map_to_entry(dst_map)) || | |
6892 | (next->vme_start != entry->vme_end)) { | |
6893 | vm_map_unlock(dst_map); | |
6894 | return(KERN_INVALID_ADDRESS); | |
6895 | } | |
6896 | ||
6897 | entry = next; | |
6898 | }/* for */ | |
6899 | ||
6900 | next_copy = NULL; | |
6901 | nentries = 1; | |
6902 | ||
6903 | /* adjust the copy object */ | |
6904 | if (total_size > copy_size) { | |
6905 | vm_map_size_t local_size = 0; | |
6906 | vm_map_size_t entry_size; | |
6907 | ||
6908 | new_offset = copy->offset; | |
6909 | copy_entry = vm_map_copy_first_entry(copy); | |
6910 | while(copy_entry != vm_map_copy_to_entry(copy)) { | |
6911 | entry_size = copy_entry->vme_end - | |
6912 | copy_entry->vme_start; | |
6913 | if((local_size < copy_size) && | |
6914 | ((local_size + entry_size) | |
6915 | >= copy_size)) { | |
6916 | vm_map_copy_clip_end(copy, copy_entry, | |
6917 | copy_entry->vme_start + | |
6918 | (copy_size - local_size)); | |
6919 | entry_size = copy_entry->vme_end - | |
6920 | copy_entry->vme_start; | |
6921 | local_size += entry_size; | |
6922 | new_offset += entry_size; | |
6923 | } | |
6924 | if(local_size >= copy_size) { | |
6925 | next_copy = copy_entry->vme_next; | |
6926 | copy_entry->vme_next = | |
6927 | vm_map_copy_to_entry(copy); | |
6928 | previous_prev = | |
6929 | copy->cpy_hdr.links.prev; | |
6930 | copy->cpy_hdr.links.prev = copy_entry; | |
6931 | copy->size = copy_size; | |
6932 | remaining_entries = | |
6933 | copy->cpy_hdr.nentries; | |
6934 | remaining_entries -= nentries; | |
6935 | copy->cpy_hdr.nentries = nentries; | |
6936 | break; | |
6937 | } else { | |
6938 | local_size += entry_size; | |
6939 | new_offset += entry_size; | |
6940 | nentries++; | |
6941 | } | |
6942 | copy_entry = copy_entry->vme_next; | |
6943 | } | |
6944 | } | |
6945 | ||
6946 | if (aligned) { | |
6947 | pmap_t local_pmap; | |
6948 | ||
6949 | if(pmap) | |
6950 | local_pmap = pmap; | |
6951 | else | |
6952 | local_pmap = dst_map->pmap; | |
6953 | ||
6954 | if ((kr = vm_map_copy_overwrite_aligned( | |
6955 | dst_map, tmp_entry, copy, | |
6956 | base_addr, local_pmap)) != KERN_SUCCESS) { | |
6957 | if(next_copy != NULL) { | |
6958 | copy->cpy_hdr.nentries += | |
6959 | remaining_entries; | |
6960 | copy->cpy_hdr.links.prev->vme_next = | |
6961 | next_copy; | |
6962 | copy->cpy_hdr.links.prev = | |
6963 | previous_prev; | |
6964 | copy->size += copy_size; | |
6965 | } | |
6966 | return kr; | |
6967 | } | |
6968 | vm_map_unlock(dst_map); | |
6969 | } else { | |
6970 | /* | |
6971 | * Performance gain: | |
6972 | * | |
6973 | * if the copy and dst address are misaligned but the same | |
6974 | * offset within the page we can copy_not_aligned the | |
6975 | * misaligned parts and copy aligned the rest. If they are | |
6976 | * aligned but len is unaligned we simply need to copy | |
6977 | * the end bit unaligned. We'll need to split the misaligned | |
6978 | * bits of the region in this case ! | |
6979 | */ | |
6980 | /* ALWAYS UNLOCKS THE dst_map MAP */ | |
6981 | kr = vm_map_copy_overwrite_unaligned( | |
6982 | dst_map, | |
6983 | tmp_entry, | |
6984 | copy, | |
6985 | base_addr, | |
6986 | discard_on_success); | |
6987 | if (kr != KERN_SUCCESS) { | |
6988 | if(next_copy != NULL) { | |
6989 | copy->cpy_hdr.nentries += | |
6990 | remaining_entries; | |
6991 | copy->cpy_hdr.links.prev->vme_next = | |
6992 | next_copy; | |
6993 | copy->cpy_hdr.links.prev = | |
6994 | previous_prev; | |
6995 | copy->size += copy_size; | |
6996 | } | |
6997 | return kr; | |
6998 | } | |
6999 | } | |
7000 | total_size -= copy_size; | |
7001 | if(total_size == 0) | |
7002 | break; | |
7003 | base_addr += copy_size; | |
7004 | copy_size = 0; | |
7005 | copy->offset = new_offset; | |
7006 | if(next_copy != NULL) { | |
7007 | copy->cpy_hdr.nentries = remaining_entries; | |
7008 | copy->cpy_hdr.links.next = next_copy; | |
7009 | copy->cpy_hdr.links.prev = previous_prev; | |
7010 | next_copy->vme_prev = vm_map_copy_to_entry(copy); | |
7011 | copy->size = total_size; | |
7012 | } | |
7013 | vm_map_lock(dst_map); | |
7014 | while(TRUE) { | |
7015 | if (!vm_map_lookup_entry(dst_map, | |
7016 | base_addr, &tmp_entry)) { | |
7017 | vm_map_unlock(dst_map); | |
7018 | return(KERN_INVALID_ADDRESS); | |
7019 | } | |
7020 | if (tmp_entry->in_transition) { | |
7021 | entry->needs_wakeup = TRUE; | |
7022 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
7023 | } else { | |
7024 | break; | |
7025 | } | |
7026 | } | |
7027 | vm_map_clip_start(dst_map, | |
7028 | tmp_entry, | |
7029 | vm_map_trunc_page(base_addr, | |
7030 | VM_MAP_PAGE_MASK(dst_map))); | |
7031 | ||
7032 | entry = tmp_entry; | |
7033 | } /* while */ | |
7034 | ||
7035 | /* | |
7036 | * Throw away the vm_map_copy object | |
7037 | */ | |
7038 | if (discard_on_success) | |
7039 | vm_map_copy_discard(copy); | |
7040 | ||
7041 | return(KERN_SUCCESS); | |
7042 | }/* vm_map_copy_overwrite */ | |
7043 | ||
7044 | kern_return_t | |
7045 | vm_map_copy_overwrite( | |
7046 | vm_map_t dst_map, | |
7047 | vm_map_offset_t dst_addr, | |
7048 | vm_map_copy_t copy, | |
7049 | boolean_t interruptible) | |
7050 | { | |
7051 | vm_map_size_t head_size, tail_size; | |
7052 | vm_map_copy_t head_copy, tail_copy; | |
7053 | vm_map_offset_t head_addr, tail_addr; | |
7054 | vm_map_entry_t entry; | |
7055 | kern_return_t kr; | |
7056 | ||
7057 | head_size = 0; | |
7058 | tail_size = 0; | |
7059 | head_copy = NULL; | |
7060 | tail_copy = NULL; | |
7061 | head_addr = 0; | |
7062 | tail_addr = 0; | |
7063 | ||
7064 | if (interruptible || | |
7065 | copy == VM_MAP_COPY_NULL || | |
7066 | copy->type != VM_MAP_COPY_ENTRY_LIST) { | |
7067 | /* | |
7068 | * We can't split the "copy" map if we're interruptible | |
7069 | * or if we don't have a "copy" map... | |
7070 | */ | |
7071 | blunt_copy: | |
7072 | return vm_map_copy_overwrite_nested(dst_map, | |
7073 | dst_addr, | |
7074 | copy, | |
7075 | interruptible, | |
7076 | (pmap_t) NULL, | |
7077 | TRUE); | |
7078 | } | |
7079 | ||
7080 | if (copy->size < 3 * PAGE_SIZE) { | |
7081 | /* | |
7082 | * Too small to bother with optimizing... | |
7083 | */ | |
7084 | goto blunt_copy; | |
7085 | } | |
7086 | ||
7087 | if ((dst_addr & VM_MAP_PAGE_MASK(dst_map)) != | |
7088 | (copy->offset & VM_MAP_PAGE_MASK(dst_map))) { | |
7089 | /* | |
7090 | * Incompatible mis-alignment of source and destination... | |
7091 | */ | |
7092 | goto blunt_copy; | |
7093 | } | |
7094 | ||
7095 | /* | |
7096 | * Proper alignment or identical mis-alignment at the beginning. | |
7097 | * Let's try and do a small unaligned copy first (if needed) | |
7098 | * and then an aligned copy for the rest. | |
7099 | */ | |
7100 | if (!page_aligned(dst_addr)) { | |
7101 | head_addr = dst_addr; | |
7102 | head_size = (VM_MAP_PAGE_SIZE(dst_map) - | |
7103 | (copy->offset & VM_MAP_PAGE_MASK(dst_map))); | |
7104 | } | |
7105 | if (!page_aligned(copy->offset + copy->size)) { | |
7106 | /* | |
7107 | * Mis-alignment at the end. | |
7108 | * Do an aligned copy up to the last page and | |
7109 | * then an unaligned copy for the remaining bytes. | |
7110 | */ | |
7111 | tail_size = ((copy->offset + copy->size) & | |
7112 | VM_MAP_PAGE_MASK(dst_map)); | |
7113 | tail_addr = dst_addr + copy->size - tail_size; | |
7114 | } | |
7115 | ||
7116 | if (head_size + tail_size == copy->size) { | |
7117 | /* | |
7118 | * It's all unaligned, no optimization possible... | |
7119 | */ | |
7120 | goto blunt_copy; | |
7121 | } | |
7122 | ||
7123 | /* | |
7124 | * Can't optimize if there are any submaps in the | |
7125 | * destination due to the way we free the "copy" map | |
7126 | * progressively in vm_map_copy_overwrite_nested() | |
7127 | * in that case. | |
7128 | */ | |
7129 | vm_map_lock_read(dst_map); | |
7130 | if (! vm_map_lookup_entry(dst_map, dst_addr, &entry)) { | |
7131 | vm_map_unlock_read(dst_map); | |
7132 | goto blunt_copy; | |
7133 | } | |
7134 | for (; | |
7135 | (entry != vm_map_copy_to_entry(copy) && | |
7136 | entry->vme_start < dst_addr + copy->size); | |
7137 | entry = entry->vme_next) { | |
7138 | if (entry->is_sub_map) { | |
7139 | vm_map_unlock_read(dst_map); | |
7140 | goto blunt_copy; | |
7141 | } | |
7142 | } | |
7143 | vm_map_unlock_read(dst_map); | |
7144 | ||
7145 | if (head_size) { | |
7146 | /* | |
7147 | * Unaligned copy of the first "head_size" bytes, to reach | |
7148 | * a page boundary. | |
7149 | */ | |
7150 | ||
7151 | /* | |
7152 | * Extract "head_copy" out of "copy". | |
7153 | */ | |
7154 | head_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
7155 | head_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
7156 | vm_map_copy_first_entry(head_copy) = | |
7157 | vm_map_copy_to_entry(head_copy); | |
7158 | vm_map_copy_last_entry(head_copy) = | |
7159 | vm_map_copy_to_entry(head_copy); | |
7160 | head_copy->type = VM_MAP_COPY_ENTRY_LIST; | |
7161 | head_copy->cpy_hdr.nentries = 0; | |
7162 | head_copy->cpy_hdr.entries_pageable = | |
7163 | copy->cpy_hdr.entries_pageable; | |
7164 | vm_map_store_init(&head_copy->cpy_hdr); | |
7165 | ||
7166 | head_copy->offset = copy->offset; | |
7167 | head_copy->size = head_size; | |
7168 | ||
7169 | copy->offset += head_size; | |
7170 | copy->size -= head_size; | |
7171 | ||
7172 | entry = vm_map_copy_first_entry(copy); | |
7173 | vm_map_copy_clip_end(copy, entry, copy->offset); | |
7174 | vm_map_copy_entry_unlink(copy, entry); | |
7175 | vm_map_copy_entry_link(head_copy, | |
7176 | vm_map_copy_to_entry(head_copy), | |
7177 | entry); | |
7178 | ||
7179 | /* | |
7180 | * Do the unaligned copy. | |
7181 | */ | |
7182 | kr = vm_map_copy_overwrite_nested(dst_map, | |
7183 | head_addr, | |
7184 | head_copy, | |
7185 | interruptible, | |
7186 | (pmap_t) NULL, | |
7187 | FALSE); | |
7188 | if (kr != KERN_SUCCESS) | |
7189 | goto done; | |
7190 | } | |
7191 | ||
7192 | if (tail_size) { | |
7193 | /* | |
7194 | * Extract "tail_copy" out of "copy". | |
7195 | */ | |
7196 | tail_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
7197 | tail_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
7198 | vm_map_copy_first_entry(tail_copy) = | |
7199 | vm_map_copy_to_entry(tail_copy); | |
7200 | vm_map_copy_last_entry(tail_copy) = | |
7201 | vm_map_copy_to_entry(tail_copy); | |
7202 | tail_copy->type = VM_MAP_COPY_ENTRY_LIST; | |
7203 | tail_copy->cpy_hdr.nentries = 0; | |
7204 | tail_copy->cpy_hdr.entries_pageable = | |
7205 | copy->cpy_hdr.entries_pageable; | |
7206 | vm_map_store_init(&tail_copy->cpy_hdr); | |
7207 | ||
7208 | tail_copy->offset = copy->offset + copy->size - tail_size; | |
7209 | tail_copy->size = tail_size; | |
7210 | ||
7211 | copy->size -= tail_size; | |
7212 | ||
7213 | entry = vm_map_copy_last_entry(copy); | |
7214 | vm_map_copy_clip_start(copy, entry, tail_copy->offset); | |
7215 | entry = vm_map_copy_last_entry(copy); | |
7216 | vm_map_copy_entry_unlink(copy, entry); | |
7217 | vm_map_copy_entry_link(tail_copy, | |
7218 | vm_map_copy_last_entry(tail_copy), | |
7219 | entry); | |
7220 | } | |
7221 | ||
7222 | /* | |
7223 | * Copy most (or possibly all) of the data. | |
7224 | */ | |
7225 | kr = vm_map_copy_overwrite_nested(dst_map, | |
7226 | dst_addr + head_size, | |
7227 | copy, | |
7228 | interruptible, | |
7229 | (pmap_t) NULL, | |
7230 | FALSE); | |
7231 | if (kr != KERN_SUCCESS) { | |
7232 | goto done; | |
7233 | } | |
7234 | ||
7235 | if (tail_size) { | |
7236 | kr = vm_map_copy_overwrite_nested(dst_map, | |
7237 | tail_addr, | |
7238 | tail_copy, | |
7239 | interruptible, | |
7240 | (pmap_t) NULL, | |
7241 | FALSE); | |
7242 | } | |
7243 | ||
7244 | done: | |
7245 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); | |
7246 | if (kr == KERN_SUCCESS) { | |
7247 | /* | |
7248 | * Discard all the copy maps. | |
7249 | */ | |
7250 | if (head_copy) { | |
7251 | vm_map_copy_discard(head_copy); | |
7252 | head_copy = NULL; | |
7253 | } | |
7254 | vm_map_copy_discard(copy); | |
7255 | if (tail_copy) { | |
7256 | vm_map_copy_discard(tail_copy); | |
7257 | tail_copy = NULL; | |
7258 | } | |
7259 | } else { | |
7260 | /* | |
7261 | * Re-assemble the original copy map. | |
7262 | */ | |
7263 | if (head_copy) { | |
7264 | entry = vm_map_copy_first_entry(head_copy); | |
7265 | vm_map_copy_entry_unlink(head_copy, entry); | |
7266 | vm_map_copy_entry_link(copy, | |
7267 | vm_map_copy_to_entry(copy), | |
7268 | entry); | |
7269 | copy->offset -= head_size; | |
7270 | copy->size += head_size; | |
7271 | vm_map_copy_discard(head_copy); | |
7272 | head_copy = NULL; | |
7273 | } | |
7274 | if (tail_copy) { | |
7275 | entry = vm_map_copy_last_entry(tail_copy); | |
7276 | vm_map_copy_entry_unlink(tail_copy, entry); | |
7277 | vm_map_copy_entry_link(copy, | |
7278 | vm_map_copy_last_entry(copy), | |
7279 | entry); | |
7280 | copy->size += tail_size; | |
7281 | vm_map_copy_discard(tail_copy); | |
7282 | tail_copy = NULL; | |
7283 | } | |
7284 | } | |
7285 | return kr; | |
7286 | } | |
7287 | ||
7288 | ||
7289 | /* | |
7290 | * Routine: vm_map_copy_overwrite_unaligned [internal use only] | |
7291 | * | |
7292 | * Decription: | |
7293 | * Physically copy unaligned data | |
7294 | * | |
7295 | * Implementation: | |
7296 | * Unaligned parts of pages have to be physically copied. We use | |
7297 | * a modified form of vm_fault_copy (which understands none-aligned | |
7298 | * page offsets and sizes) to do the copy. We attempt to copy as | |
7299 | * much memory in one go as possibly, however vm_fault_copy copies | |
7300 | * within 1 memory object so we have to find the smaller of "amount left" | |
7301 | * "source object data size" and "target object data size". With | |
7302 | * unaligned data we don't need to split regions, therefore the source | |
7303 | * (copy) object should be one map entry, the target range may be split | |
7304 | * over multiple map entries however. In any event we are pessimistic | |
7305 | * about these assumptions. | |
7306 | * | |
7307 | * Assumptions: | |
7308 | * dst_map is locked on entry and is return locked on success, | |
7309 | * unlocked on error. | |
7310 | */ | |
7311 | ||
7312 | static kern_return_t | |
7313 | vm_map_copy_overwrite_unaligned( | |
7314 | vm_map_t dst_map, | |
7315 | vm_map_entry_t entry, | |
7316 | vm_map_copy_t copy, | |
7317 | vm_map_offset_t start, | |
7318 | boolean_t discard_on_success) | |
7319 | { | |
7320 | vm_map_entry_t copy_entry; | |
7321 | vm_map_entry_t copy_entry_next; | |
7322 | vm_map_version_t version; | |
7323 | vm_object_t dst_object; | |
7324 | vm_object_offset_t dst_offset; | |
7325 | vm_object_offset_t src_offset; | |
7326 | vm_object_offset_t entry_offset; | |
7327 | vm_map_offset_t entry_end; | |
7328 | vm_map_size_t src_size, | |
7329 | dst_size, | |
7330 | copy_size, | |
7331 | amount_left; | |
7332 | kern_return_t kr = KERN_SUCCESS; | |
7333 | ||
7334 | ||
7335 | copy_entry = vm_map_copy_first_entry(copy); | |
7336 | ||
7337 | vm_map_lock_write_to_read(dst_map); | |
7338 | ||
7339 | src_offset = copy->offset - vm_object_trunc_page(copy->offset); | |
7340 | amount_left = copy->size; | |
7341 | /* | |
7342 | * unaligned so we never clipped this entry, we need the offset into | |
7343 | * the vm_object not just the data. | |
7344 | */ | |
7345 | while (amount_left > 0) { | |
7346 | ||
7347 | if (entry == vm_map_to_entry(dst_map)) { | |
7348 | vm_map_unlock_read(dst_map); | |
7349 | return KERN_INVALID_ADDRESS; | |
7350 | } | |
7351 | ||
7352 | /* "start" must be within the current map entry */ | |
7353 | assert ((start>=entry->vme_start) && (start<entry->vme_end)); | |
7354 | ||
7355 | dst_offset = start - entry->vme_start; | |
7356 | ||
7357 | dst_size = entry->vme_end - start; | |
7358 | ||
7359 | src_size = copy_entry->vme_end - | |
7360 | (copy_entry->vme_start + src_offset); | |
7361 | ||
7362 | if (dst_size < src_size) { | |
7363 | /* | |
7364 | * we can only copy dst_size bytes before | |
7365 | * we have to get the next destination entry | |
7366 | */ | |
7367 | copy_size = dst_size; | |
7368 | } else { | |
7369 | /* | |
7370 | * we can only copy src_size bytes before | |
7371 | * we have to get the next source copy entry | |
7372 | */ | |
7373 | copy_size = src_size; | |
7374 | } | |
7375 | ||
7376 | if (copy_size > amount_left) { | |
7377 | copy_size = amount_left; | |
7378 | } | |
7379 | /* | |
7380 | * Entry needs copy, create a shadow shadow object for | |
7381 | * Copy on write region. | |
7382 | */ | |
7383 | if (entry->needs_copy && | |
7384 | ((entry->protection & VM_PROT_WRITE) != 0)) | |
7385 | { | |
7386 | if (vm_map_lock_read_to_write(dst_map)) { | |
7387 | vm_map_lock_read(dst_map); | |
7388 | goto RetryLookup; | |
7389 | } | |
7390 | vm_object_shadow(&entry->object.vm_object, | |
7391 | &entry->offset, | |
7392 | (vm_map_size_t)(entry->vme_end | |
7393 | - entry->vme_start)); | |
7394 | entry->needs_copy = FALSE; | |
7395 | vm_map_lock_write_to_read(dst_map); | |
7396 | } | |
7397 | dst_object = entry->object.vm_object; | |
7398 | /* | |
7399 | * unlike with the virtual (aligned) copy we're going | |
7400 | * to fault on it therefore we need a target object. | |
7401 | */ | |
7402 | if (dst_object == VM_OBJECT_NULL) { | |
7403 | if (vm_map_lock_read_to_write(dst_map)) { | |
7404 | vm_map_lock_read(dst_map); | |
7405 | goto RetryLookup; | |
7406 | } | |
7407 | dst_object = vm_object_allocate((vm_map_size_t) | |
7408 | entry->vme_end - entry->vme_start); | |
7409 | entry->object.vm_object = dst_object; | |
7410 | entry->offset = 0; | |
7411 | assert(entry->use_pmap); | |
7412 | vm_map_lock_write_to_read(dst_map); | |
7413 | } | |
7414 | /* | |
7415 | * Take an object reference and unlock map. The "entry" may | |
7416 | * disappear or change when the map is unlocked. | |
7417 | */ | |
7418 | vm_object_reference(dst_object); | |
7419 | version.main_timestamp = dst_map->timestamp; | |
7420 | entry_offset = entry->offset; | |
7421 | entry_end = entry->vme_end; | |
7422 | vm_map_unlock_read(dst_map); | |
7423 | /* | |
7424 | * Copy as much as possible in one pass | |
7425 | */ | |
7426 | kr = vm_fault_copy( | |
7427 | copy_entry->object.vm_object, | |
7428 | copy_entry->offset + src_offset, | |
7429 | ©_size, | |
7430 | dst_object, | |
7431 | entry_offset + dst_offset, | |
7432 | dst_map, | |
7433 | &version, | |
7434 | THREAD_UNINT ); | |
7435 | ||
7436 | start += copy_size; | |
7437 | src_offset += copy_size; | |
7438 | amount_left -= copy_size; | |
7439 | /* | |
7440 | * Release the object reference | |
7441 | */ | |
7442 | vm_object_deallocate(dst_object); | |
7443 | /* | |
7444 | * If a hard error occurred, return it now | |
7445 | */ | |
7446 | if (kr != KERN_SUCCESS) | |
7447 | return kr; | |
7448 | ||
7449 | if ((copy_entry->vme_start + src_offset) == copy_entry->vme_end | |
7450 | || amount_left == 0) | |
7451 | { | |
7452 | /* | |
7453 | * all done with this copy entry, dispose. | |
7454 | */ | |
7455 | copy_entry_next = copy_entry->vme_next; | |
7456 | ||
7457 | if (discard_on_success) { | |
7458 | vm_map_copy_entry_unlink(copy, copy_entry); | |
7459 | assert(!copy_entry->is_sub_map); | |
7460 | vm_object_deallocate( | |
7461 | copy_entry->object.vm_object); | |
7462 | vm_map_copy_entry_dispose(copy, copy_entry); | |
7463 | } | |
7464 | ||
7465 | if (copy_entry_next == vm_map_copy_to_entry(copy) && | |
7466 | amount_left) { | |
7467 | /* | |
7468 | * not finished copying but run out of source | |
7469 | */ | |
7470 | return KERN_INVALID_ADDRESS; | |
7471 | } | |
7472 | ||
7473 | copy_entry = copy_entry_next; | |
7474 | ||
7475 | src_offset = 0; | |
7476 | } | |
7477 | ||
7478 | if (amount_left == 0) | |
7479 | return KERN_SUCCESS; | |
7480 | ||
7481 | vm_map_lock_read(dst_map); | |
7482 | if (version.main_timestamp == dst_map->timestamp) { | |
7483 | if (start == entry_end) { | |
7484 | /* | |
7485 | * destination region is split. Use the version | |
7486 | * information to avoid a lookup in the normal | |
7487 | * case. | |
7488 | */ | |
7489 | entry = entry->vme_next; | |
7490 | /* | |
7491 | * should be contiguous. Fail if we encounter | |
7492 | * a hole in the destination. | |
7493 | */ | |
7494 | if (start != entry->vme_start) { | |
7495 | vm_map_unlock_read(dst_map); | |
7496 | return KERN_INVALID_ADDRESS ; | |
7497 | } | |
7498 | } | |
7499 | } else { | |
7500 | /* | |
7501 | * Map version check failed. | |
7502 | * we must lookup the entry because somebody | |
7503 | * might have changed the map behind our backs. | |
7504 | */ | |
7505 | RetryLookup: | |
7506 | if (!vm_map_lookup_entry(dst_map, start, &entry)) | |
7507 | { | |
7508 | vm_map_unlock_read(dst_map); | |
7509 | return KERN_INVALID_ADDRESS ; | |
7510 | } | |
7511 | } | |
7512 | }/* while */ | |
7513 | ||
7514 | return KERN_SUCCESS; | |
7515 | }/* vm_map_copy_overwrite_unaligned */ | |
7516 | ||
7517 | /* | |
7518 | * Routine: vm_map_copy_overwrite_aligned [internal use only] | |
7519 | * | |
7520 | * Description: | |
7521 | * Does all the vm_trickery possible for whole pages. | |
7522 | * | |
7523 | * Implementation: | |
7524 | * | |
7525 | * If there are no permanent objects in the destination, | |
7526 | * and the source and destination map entry zones match, | |
7527 | * and the destination map entry is not shared, | |
7528 | * then the map entries can be deleted and replaced | |
7529 | * with those from the copy. The following code is the | |
7530 | * basic idea of what to do, but there are lots of annoying | |
7531 | * little details about getting protection and inheritance | |
7532 | * right. Should add protection, inheritance, and sharing checks | |
7533 | * to the above pass and make sure that no wiring is involved. | |
7534 | */ | |
7535 | ||
7536 | int vm_map_copy_overwrite_aligned_src_not_internal = 0; | |
7537 | int vm_map_copy_overwrite_aligned_src_not_symmetric = 0; | |
7538 | int vm_map_copy_overwrite_aligned_src_large = 0; | |
7539 | ||
7540 | static kern_return_t | |
7541 | vm_map_copy_overwrite_aligned( | |
7542 | vm_map_t dst_map, | |
7543 | vm_map_entry_t tmp_entry, | |
7544 | vm_map_copy_t copy, | |
7545 | vm_map_offset_t start, | |
7546 | __unused pmap_t pmap) | |
7547 | { | |
7548 | vm_object_t object; | |
7549 | vm_map_entry_t copy_entry; | |
7550 | vm_map_size_t copy_size; | |
7551 | vm_map_size_t size; | |
7552 | vm_map_entry_t entry; | |
7553 | ||
7554 | while ((copy_entry = vm_map_copy_first_entry(copy)) | |
7555 | != vm_map_copy_to_entry(copy)) | |
7556 | { | |
7557 | copy_size = (copy_entry->vme_end - copy_entry->vme_start); | |
7558 | ||
7559 | entry = tmp_entry; | |
7560 | if (entry->is_sub_map) { | |
7561 | /* unnested when clipped earlier */ | |
7562 | assert(!entry->use_pmap); | |
7563 | } | |
7564 | if (entry == vm_map_to_entry(dst_map)) { | |
7565 | vm_map_unlock(dst_map); | |
7566 | return KERN_INVALID_ADDRESS; | |
7567 | } | |
7568 | size = (entry->vme_end - entry->vme_start); | |
7569 | /* | |
7570 | * Make sure that no holes popped up in the | |
7571 | * address map, and that the protection is | |
7572 | * still valid, in case the map was unlocked | |
7573 | * earlier. | |
7574 | */ | |
7575 | ||
7576 | if ((entry->vme_start != start) || ((entry->is_sub_map) | |
7577 | && !entry->needs_copy)) { | |
7578 | vm_map_unlock(dst_map); | |
7579 | return(KERN_INVALID_ADDRESS); | |
7580 | } | |
7581 | assert(entry != vm_map_to_entry(dst_map)); | |
7582 | ||
7583 | /* | |
7584 | * Check protection again | |
7585 | */ | |
7586 | ||
7587 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
7588 | vm_map_unlock(dst_map); | |
7589 | return(KERN_PROTECTION_FAILURE); | |
7590 | } | |
7591 | ||
7592 | /* | |
7593 | * Adjust to source size first | |
7594 | */ | |
7595 | ||
7596 | if (copy_size < size) { | |
7597 | if (entry->map_aligned && | |
7598 | !VM_MAP_PAGE_ALIGNED(entry->vme_start + copy_size, | |
7599 | VM_MAP_PAGE_MASK(dst_map))) { | |
7600 | /* no longer map-aligned */ | |
7601 | entry->map_aligned = FALSE; | |
7602 | } | |
7603 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size); | |
7604 | size = copy_size; | |
7605 | } | |
7606 | ||
7607 | /* | |
7608 | * Adjust to destination size | |
7609 | */ | |
7610 | ||
7611 | if (size < copy_size) { | |
7612 | vm_map_copy_clip_end(copy, copy_entry, | |
7613 | copy_entry->vme_start + size); | |
7614 | copy_size = size; | |
7615 | } | |
7616 | ||
7617 | assert((entry->vme_end - entry->vme_start) == size); | |
7618 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size); | |
7619 | assert((copy_entry->vme_end - copy_entry->vme_start) == size); | |
7620 | ||
7621 | /* | |
7622 | * If the destination contains temporary unshared memory, | |
7623 | * we can perform the copy by throwing it away and | |
7624 | * installing the source data. | |
7625 | */ | |
7626 | ||
7627 | object = entry->object.vm_object; | |
7628 | if ((!entry->is_shared && | |
7629 | ((object == VM_OBJECT_NULL) || | |
7630 | (object->internal && !object->true_share))) || | |
7631 | entry->needs_copy) { | |
7632 | vm_object_t old_object = entry->object.vm_object; | |
7633 | vm_object_offset_t old_offset = entry->offset; | |
7634 | vm_object_offset_t offset; | |
7635 | ||
7636 | /* | |
7637 | * Ensure that the source and destination aren't | |
7638 | * identical | |
7639 | */ | |
7640 | if (old_object == copy_entry->object.vm_object && | |
7641 | old_offset == copy_entry->offset) { | |
7642 | vm_map_copy_entry_unlink(copy, copy_entry); | |
7643 | vm_map_copy_entry_dispose(copy, copy_entry); | |
7644 | ||
7645 | if (old_object != VM_OBJECT_NULL) | |
7646 | vm_object_deallocate(old_object); | |
7647 | ||
7648 | start = tmp_entry->vme_end; | |
7649 | tmp_entry = tmp_entry->vme_next; | |
7650 | continue; | |
7651 | } | |
7652 | ||
7653 | #define __TRADEOFF1_OBJ_SIZE (64 * 1024 * 1024) /* 64 MB */ | |
7654 | #define __TRADEOFF1_COPY_SIZE (128 * 1024) /* 128 KB */ | |
7655 | if (copy_entry->object.vm_object != VM_OBJECT_NULL && | |
7656 | copy_entry->object.vm_object->vo_size >= __TRADEOFF1_OBJ_SIZE && | |
7657 | copy_size <= __TRADEOFF1_COPY_SIZE) { | |
7658 | /* | |
7659 | * Virtual vs. Physical copy tradeoff #1. | |
7660 | * | |
7661 | * Copying only a few pages out of a large | |
7662 | * object: do a physical copy instead of | |
7663 | * a virtual copy, to avoid possibly keeping | |
7664 | * the entire large object alive because of | |
7665 | * those few copy-on-write pages. | |
7666 | */ | |
7667 | vm_map_copy_overwrite_aligned_src_large++; | |
7668 | goto slow_copy; | |
7669 | } | |
7670 | ||
7671 | if (entry->alias >= VM_MEMORY_MALLOC && | |
7672 | entry->alias <= VM_MEMORY_MALLOC_LARGE_REUSED) { | |
7673 | vm_object_t new_object, new_shadow; | |
7674 | ||
7675 | /* | |
7676 | * We're about to map something over a mapping | |
7677 | * established by malloc()... | |
7678 | */ | |
7679 | new_object = copy_entry->object.vm_object; | |
7680 | if (new_object != VM_OBJECT_NULL) { | |
7681 | vm_object_lock_shared(new_object); | |
7682 | } | |
7683 | while (new_object != VM_OBJECT_NULL && | |
7684 | !new_object->true_share && | |
7685 | new_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && | |
7686 | new_object->internal) { | |
7687 | new_shadow = new_object->shadow; | |
7688 | if (new_shadow == VM_OBJECT_NULL) { | |
7689 | break; | |
7690 | } | |
7691 | vm_object_lock_shared(new_shadow); | |
7692 | vm_object_unlock(new_object); | |
7693 | new_object = new_shadow; | |
7694 | } | |
7695 | if (new_object != VM_OBJECT_NULL) { | |
7696 | if (!new_object->internal) { | |
7697 | /* | |
7698 | * The new mapping is backed | |
7699 | * by an external object. We | |
7700 | * don't want malloc'ed memory | |
7701 | * to be replaced with such a | |
7702 | * non-anonymous mapping, so | |
7703 | * let's go off the optimized | |
7704 | * path... | |
7705 | */ | |
7706 | vm_map_copy_overwrite_aligned_src_not_internal++; | |
7707 | vm_object_unlock(new_object); | |
7708 | goto slow_copy; | |
7709 | } | |
7710 | if (new_object->true_share || | |
7711 | new_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { | |
7712 | /* | |
7713 | * Same if there's a "true_share" | |
7714 | * object in the shadow chain, or | |
7715 | * an object with a non-default | |
7716 | * (SYMMETRIC) copy strategy. | |
7717 | */ | |
7718 | vm_map_copy_overwrite_aligned_src_not_symmetric++; | |
7719 | vm_object_unlock(new_object); | |
7720 | goto slow_copy; | |
7721 | } | |
7722 | vm_object_unlock(new_object); | |
7723 | } | |
7724 | /* | |
7725 | * The new mapping is still backed by | |
7726 | * anonymous (internal) memory, so it's | |
7727 | * OK to substitute it for the original | |
7728 | * malloc() mapping. | |
7729 | */ | |
7730 | } | |
7731 | ||
7732 | if (old_object != VM_OBJECT_NULL) { | |
7733 | if(entry->is_sub_map) { | |
7734 | if(entry->use_pmap) { | |
7735 | #ifndef NO_NESTED_PMAP | |
7736 | pmap_unnest(dst_map->pmap, | |
7737 | (addr64_t)entry->vme_start, | |
7738 | entry->vme_end - entry->vme_start); | |
7739 | #endif /* NO_NESTED_PMAP */ | |
7740 | if(dst_map->mapped_in_other_pmaps) { | |
7741 | /* clean up parent */ | |
7742 | /* map/maps */ | |
7743 | vm_map_submap_pmap_clean( | |
7744 | dst_map, entry->vme_start, | |
7745 | entry->vme_end, | |
7746 | entry->object.sub_map, | |
7747 | entry->offset); | |
7748 | } | |
7749 | } else { | |
7750 | vm_map_submap_pmap_clean( | |
7751 | dst_map, entry->vme_start, | |
7752 | entry->vme_end, | |
7753 | entry->object.sub_map, | |
7754 | entry->offset); | |
7755 | } | |
7756 | vm_map_deallocate( | |
7757 | entry->object.sub_map); | |
7758 | } else { | |
7759 | if(dst_map->mapped_in_other_pmaps) { | |
7760 | vm_object_pmap_protect_options( | |
7761 | entry->object.vm_object, | |
7762 | entry->offset, | |
7763 | entry->vme_end | |
7764 | - entry->vme_start, | |
7765 | PMAP_NULL, | |
7766 | entry->vme_start, | |
7767 | VM_PROT_NONE, | |
7768 | PMAP_OPTIONS_REMOVE); | |
7769 | } else { | |
7770 | pmap_remove_options( | |
7771 | dst_map->pmap, | |
7772 | (addr64_t)(entry->vme_start), | |
7773 | (addr64_t)(entry->vme_end), | |
7774 | PMAP_OPTIONS_REMOVE); | |
7775 | } | |
7776 | vm_object_deallocate(old_object); | |
7777 | } | |
7778 | } | |
7779 | ||
7780 | entry->is_sub_map = FALSE; | |
7781 | entry->object = copy_entry->object; | |
7782 | object = entry->object.vm_object; | |
7783 | entry->needs_copy = copy_entry->needs_copy; | |
7784 | entry->wired_count = 0; | |
7785 | entry->user_wired_count = 0; | |
7786 | offset = entry->offset = copy_entry->offset; | |
7787 | ||
7788 | vm_map_copy_entry_unlink(copy, copy_entry); | |
7789 | vm_map_copy_entry_dispose(copy, copy_entry); | |
7790 | ||
7791 | /* | |
7792 | * we could try to push pages into the pmap at this point, BUT | |
7793 | * this optimization only saved on average 2 us per page if ALL | |
7794 | * the pages in the source were currently mapped | |
7795 | * and ALL the pages in the dest were touched, if there were fewer | |
7796 | * than 2/3 of the pages touched, this optimization actually cost more cycles | |
7797 | * it also puts a lot of pressure on the pmap layer w/r to mapping structures | |
7798 | */ | |
7799 | ||
7800 | /* | |
7801 | * Set up for the next iteration. The map | |
7802 | * has not been unlocked, so the next | |
7803 | * address should be at the end of this | |
7804 | * entry, and the next map entry should be | |
7805 | * the one following it. | |
7806 | */ | |
7807 | ||
7808 | start = tmp_entry->vme_end; | |
7809 | tmp_entry = tmp_entry->vme_next; | |
7810 | } else { | |
7811 | vm_map_version_t version; | |
7812 | vm_object_t dst_object; | |
7813 | vm_object_offset_t dst_offset; | |
7814 | kern_return_t r; | |
7815 | ||
7816 | slow_copy: | |
7817 | if (entry->needs_copy) { | |
7818 | vm_object_shadow(&entry->object.vm_object, | |
7819 | &entry->offset, | |
7820 | (entry->vme_end - | |
7821 | entry->vme_start)); | |
7822 | entry->needs_copy = FALSE; | |
7823 | } | |
7824 | ||
7825 | dst_object = entry->object.vm_object; | |
7826 | dst_offset = entry->offset; | |
7827 | ||
7828 | /* | |
7829 | * Take an object reference, and record | |
7830 | * the map version information so that the | |
7831 | * map can be safely unlocked. | |
7832 | */ | |
7833 | ||
7834 | if (dst_object == VM_OBJECT_NULL) { | |
7835 | /* | |
7836 | * We would usually have just taken the | |
7837 | * optimized path above if the destination | |
7838 | * object has not been allocated yet. But we | |
7839 | * now disable that optimization if the copy | |
7840 | * entry's object is not backed by anonymous | |
7841 | * memory to avoid replacing malloc'ed | |
7842 | * (i.e. re-usable) anonymous memory with a | |
7843 | * not-so-anonymous mapping. | |
7844 | * So we have to handle this case here and | |
7845 | * allocate a new VM object for this map entry. | |
7846 | */ | |
7847 | dst_object = vm_object_allocate( | |
7848 | entry->vme_end - entry->vme_start); | |
7849 | dst_offset = 0; | |
7850 | entry->object.vm_object = dst_object; | |
7851 | entry->offset = dst_offset; | |
7852 | assert(entry->use_pmap); | |
7853 | ||
7854 | } | |
7855 | ||
7856 | vm_object_reference(dst_object); | |
7857 | ||
7858 | /* account for unlock bumping up timestamp */ | |
7859 | version.main_timestamp = dst_map->timestamp + 1; | |
7860 | ||
7861 | vm_map_unlock(dst_map); | |
7862 | ||
7863 | /* | |
7864 | * Copy as much as possible in one pass | |
7865 | */ | |
7866 | ||
7867 | copy_size = size; | |
7868 | r = vm_fault_copy( | |
7869 | copy_entry->object.vm_object, | |
7870 | copy_entry->offset, | |
7871 | ©_size, | |
7872 | dst_object, | |
7873 | dst_offset, | |
7874 | dst_map, | |
7875 | &version, | |
7876 | THREAD_UNINT ); | |
7877 | ||
7878 | /* | |
7879 | * Release the object reference | |
7880 | */ | |
7881 | ||
7882 | vm_object_deallocate(dst_object); | |
7883 | ||
7884 | /* | |
7885 | * If a hard error occurred, return it now | |
7886 | */ | |
7887 | ||
7888 | if (r != KERN_SUCCESS) | |
7889 | return(r); | |
7890 | ||
7891 | if (copy_size != 0) { | |
7892 | /* | |
7893 | * Dispose of the copied region | |
7894 | */ | |
7895 | ||
7896 | vm_map_copy_clip_end(copy, copy_entry, | |
7897 | copy_entry->vme_start + copy_size); | |
7898 | vm_map_copy_entry_unlink(copy, copy_entry); | |
7899 | vm_object_deallocate(copy_entry->object.vm_object); | |
7900 | vm_map_copy_entry_dispose(copy, copy_entry); | |
7901 | } | |
7902 | ||
7903 | /* | |
7904 | * Pick up in the destination map where we left off. | |
7905 | * | |
7906 | * Use the version information to avoid a lookup | |
7907 | * in the normal case. | |
7908 | */ | |
7909 | ||
7910 | start += copy_size; | |
7911 | vm_map_lock(dst_map); | |
7912 | if (version.main_timestamp == dst_map->timestamp && | |
7913 | copy_size != 0) { | |
7914 | /* We can safely use saved tmp_entry value */ | |
7915 | ||
7916 | if (tmp_entry->map_aligned && | |
7917 | !VM_MAP_PAGE_ALIGNED( | |
7918 | start, | |
7919 | VM_MAP_PAGE_MASK(dst_map))) { | |
7920 | /* no longer map-aligned */ | |
7921 | tmp_entry->map_aligned = FALSE; | |
7922 | } | |
7923 | vm_map_clip_end(dst_map, tmp_entry, start); | |
7924 | tmp_entry = tmp_entry->vme_next; | |
7925 | } else { | |
7926 | /* Must do lookup of tmp_entry */ | |
7927 | ||
7928 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { | |
7929 | vm_map_unlock(dst_map); | |
7930 | return(KERN_INVALID_ADDRESS); | |
7931 | } | |
7932 | if (tmp_entry->map_aligned && | |
7933 | !VM_MAP_PAGE_ALIGNED( | |
7934 | start, | |
7935 | VM_MAP_PAGE_MASK(dst_map))) { | |
7936 | /* no longer map-aligned */ | |
7937 | tmp_entry->map_aligned = FALSE; | |
7938 | } | |
7939 | vm_map_clip_start(dst_map, tmp_entry, start); | |
7940 | } | |
7941 | } | |
7942 | }/* while */ | |
7943 | ||
7944 | return(KERN_SUCCESS); | |
7945 | }/* vm_map_copy_overwrite_aligned */ | |
7946 | ||
7947 | /* | |
7948 | * Routine: vm_map_copyin_kernel_buffer [internal use only] | |
7949 | * | |
7950 | * Description: | |
7951 | * Copy in data to a kernel buffer from space in the | |
7952 | * source map. The original space may be optionally | |
7953 | * deallocated. | |
7954 | * | |
7955 | * If successful, returns a new copy object. | |
7956 | */ | |
7957 | static kern_return_t | |
7958 | vm_map_copyin_kernel_buffer( | |
7959 | vm_map_t src_map, | |
7960 | vm_map_offset_t src_addr, | |
7961 | vm_map_size_t len, | |
7962 | boolean_t src_destroy, | |
7963 | vm_map_copy_t *copy_result) | |
7964 | { | |
7965 | kern_return_t kr; | |
7966 | vm_map_copy_t copy; | |
7967 | vm_size_t kalloc_size; | |
7968 | ||
7969 | if ((vm_size_t) len != len) { | |
7970 | /* "len" is too big and doesn't fit in a "vm_size_t" */ | |
7971 | return KERN_RESOURCE_SHORTAGE; | |
7972 | } | |
7973 | kalloc_size = (vm_size_t) (sizeof(struct vm_map_copy) + len); | |
7974 | assert((vm_map_size_t) kalloc_size == sizeof (struct vm_map_copy) + len); | |
7975 | ||
7976 | copy = (vm_map_copy_t) kalloc(kalloc_size); | |
7977 | if (copy == VM_MAP_COPY_NULL) { | |
7978 | return KERN_RESOURCE_SHORTAGE; | |
7979 | } | |
7980 | copy->type = VM_MAP_COPY_KERNEL_BUFFER; | |
7981 | copy->size = len; | |
7982 | copy->offset = 0; | |
7983 | copy->cpy_kdata = (void *) (copy + 1); | |
7984 | copy->cpy_kalloc_size = kalloc_size; | |
7985 | ||
7986 | kr = copyinmap(src_map, src_addr, copy->cpy_kdata, (vm_size_t) len); | |
7987 | if (kr != KERN_SUCCESS) { | |
7988 | kfree(copy, kalloc_size); | |
7989 | return kr; | |
7990 | } | |
7991 | if (src_destroy) { | |
7992 | (void) vm_map_remove( | |
7993 | src_map, | |
7994 | vm_map_trunc_page(src_addr, | |
7995 | VM_MAP_PAGE_MASK(src_map)), | |
7996 | vm_map_round_page(src_addr + len, | |
7997 | VM_MAP_PAGE_MASK(src_map)), | |
7998 | (VM_MAP_REMOVE_INTERRUPTIBLE | | |
7999 | VM_MAP_REMOVE_WAIT_FOR_KWIRE | | |
8000 | (src_map == kernel_map) ? VM_MAP_REMOVE_KUNWIRE : 0)); | |
8001 | } | |
8002 | *copy_result = copy; | |
8003 | return KERN_SUCCESS; | |
8004 | } | |
8005 | ||
8006 | /* | |
8007 | * Routine: vm_map_copyout_kernel_buffer [internal use only] | |
8008 | * | |
8009 | * Description: | |
8010 | * Copy out data from a kernel buffer into space in the | |
8011 | * destination map. The space may be otpionally dynamically | |
8012 | * allocated. | |
8013 | * | |
8014 | * If successful, consumes the copy object. | |
8015 | * Otherwise, the caller is responsible for it. | |
8016 | */ | |
8017 | static int vm_map_copyout_kernel_buffer_failures = 0; | |
8018 | static kern_return_t | |
8019 | vm_map_copyout_kernel_buffer( | |
8020 | vm_map_t map, | |
8021 | vm_map_address_t *addr, /* IN/OUT */ | |
8022 | vm_map_copy_t copy, | |
8023 | boolean_t overwrite, | |
8024 | boolean_t consume_on_success) | |
8025 | { | |
8026 | kern_return_t kr = KERN_SUCCESS; | |
8027 | thread_t thread = current_thread(); | |
8028 | ||
8029 | if (!overwrite) { | |
8030 | ||
8031 | /* | |
8032 | * Allocate space in the target map for the data | |
8033 | */ | |
8034 | *addr = 0; | |
8035 | kr = vm_map_enter(map, | |
8036 | addr, | |
8037 | vm_map_round_page(copy->size, | |
8038 | VM_MAP_PAGE_MASK(map)), | |
8039 | (vm_map_offset_t) 0, | |
8040 | VM_FLAGS_ANYWHERE, | |
8041 | VM_OBJECT_NULL, | |
8042 | (vm_object_offset_t) 0, | |
8043 | FALSE, | |
8044 | VM_PROT_DEFAULT, | |
8045 | VM_PROT_ALL, | |
8046 | VM_INHERIT_DEFAULT); | |
8047 | if (kr != KERN_SUCCESS) | |
8048 | return kr; | |
8049 | } | |
8050 | ||
8051 | /* | |
8052 | * Copyout the data from the kernel buffer to the target map. | |
8053 | */ | |
8054 | if (thread->map == map) { | |
8055 | ||
8056 | /* | |
8057 | * If the target map is the current map, just do | |
8058 | * the copy. | |
8059 | */ | |
8060 | assert((vm_size_t) copy->size == copy->size); | |
8061 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t) copy->size)) { | |
8062 | kr = KERN_INVALID_ADDRESS; | |
8063 | } | |
8064 | } | |
8065 | else { | |
8066 | vm_map_t oldmap; | |
8067 | ||
8068 | /* | |
8069 | * If the target map is another map, assume the | |
8070 | * target's address space identity for the duration | |
8071 | * of the copy. | |
8072 | */ | |
8073 | vm_map_reference(map); | |
8074 | oldmap = vm_map_switch(map); | |
8075 | ||
8076 | assert((vm_size_t) copy->size == copy->size); | |
8077 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t) copy->size)) { | |
8078 | vm_map_copyout_kernel_buffer_failures++; | |
8079 | kr = KERN_INVALID_ADDRESS; | |
8080 | } | |
8081 | ||
8082 | (void) vm_map_switch(oldmap); | |
8083 | vm_map_deallocate(map); | |
8084 | } | |
8085 | ||
8086 | if (kr != KERN_SUCCESS) { | |
8087 | /* the copy failed, clean up */ | |
8088 | if (!overwrite) { | |
8089 | /* | |
8090 | * Deallocate the space we allocated in the target map. | |
8091 | */ | |
8092 | (void) vm_map_remove( | |
8093 | map, | |
8094 | vm_map_trunc_page(*addr, | |
8095 | VM_MAP_PAGE_MASK(map)), | |
8096 | vm_map_round_page((*addr + | |
8097 | vm_map_round_page(copy->size, | |
8098 | VM_MAP_PAGE_MASK(map))), | |
8099 | VM_MAP_PAGE_MASK(map)), | |
8100 | VM_MAP_NO_FLAGS); | |
8101 | *addr = 0; | |
8102 | } | |
8103 | } else { | |
8104 | /* copy was successful, dicard the copy structure */ | |
8105 | if (consume_on_success) { | |
8106 | kfree(copy, copy->cpy_kalloc_size); | |
8107 | } | |
8108 | } | |
8109 | ||
8110 | return kr; | |
8111 | } | |
8112 | ||
8113 | /* | |
8114 | * Macro: vm_map_copy_insert | |
8115 | * | |
8116 | * Description: | |
8117 | * Link a copy chain ("copy") into a map at the | |
8118 | * specified location (after "where"). | |
8119 | * Side effects: | |
8120 | * The copy chain is destroyed. | |
8121 | * Warning: | |
8122 | * The arguments are evaluated multiple times. | |
8123 | */ | |
8124 | #define vm_map_copy_insert(map, where, copy) \ | |
8125 | MACRO_BEGIN \ | |
8126 | vm_map_store_copy_insert(map, where, copy); \ | |
8127 | zfree(vm_map_copy_zone, copy); \ | |
8128 | MACRO_END | |
8129 | ||
8130 | void | |
8131 | vm_map_copy_remap( | |
8132 | vm_map_t map, | |
8133 | vm_map_entry_t where, | |
8134 | vm_map_copy_t copy, | |
8135 | vm_map_offset_t adjustment, | |
8136 | vm_prot_t cur_prot, | |
8137 | vm_prot_t max_prot, | |
8138 | vm_inherit_t inheritance) | |
8139 | { | |
8140 | vm_map_entry_t copy_entry, new_entry; | |
8141 | ||
8142 | for (copy_entry = vm_map_copy_first_entry(copy); | |
8143 | copy_entry != vm_map_copy_to_entry(copy); | |
8144 | copy_entry = copy_entry->vme_next) { | |
8145 | /* get a new VM map entry for the map */ | |
8146 | new_entry = vm_map_entry_create(map, | |
8147 | !map->hdr.entries_pageable); | |
8148 | /* copy the "copy entry" to the new entry */ | |
8149 | vm_map_entry_copy(new_entry, copy_entry); | |
8150 | /* adjust "start" and "end" */ | |
8151 | new_entry->vme_start += adjustment; | |
8152 | new_entry->vme_end += adjustment; | |
8153 | /* clear some attributes */ | |
8154 | new_entry->inheritance = inheritance; | |
8155 | new_entry->protection = cur_prot; | |
8156 | new_entry->max_protection = max_prot; | |
8157 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; | |
8158 | /* take an extra reference on the entry's "object" */ | |
8159 | if (new_entry->is_sub_map) { | |
8160 | assert(!new_entry->use_pmap); /* not nested */ | |
8161 | vm_map_lock(new_entry->object.sub_map); | |
8162 | vm_map_reference(new_entry->object.sub_map); | |
8163 | vm_map_unlock(new_entry->object.sub_map); | |
8164 | } else { | |
8165 | vm_object_reference(new_entry->object.vm_object); | |
8166 | } | |
8167 | /* insert the new entry in the map */ | |
8168 | vm_map_store_entry_link(map, where, new_entry); | |
8169 | /* continue inserting the "copy entries" after the new entry */ | |
8170 | where = new_entry; | |
8171 | } | |
8172 | } | |
8173 | ||
8174 | /* | |
8175 | * Routine: vm_map_copyout | |
8176 | * | |
8177 | * Description: | |
8178 | * Copy out a copy chain ("copy") into newly-allocated | |
8179 | * space in the destination map. | |
8180 | * | |
8181 | * If successful, consumes the copy object. | |
8182 | * Otherwise, the caller is responsible for it. | |
8183 | */ | |
8184 | ||
8185 | kern_return_t | |
8186 | vm_map_copyout( | |
8187 | vm_map_t dst_map, | |
8188 | vm_map_address_t *dst_addr, /* OUT */ | |
8189 | vm_map_copy_t copy) | |
8190 | { | |
8191 | return vm_map_copyout_internal(dst_map, dst_addr, copy, | |
8192 | TRUE, /* consume_on_success */ | |
8193 | VM_PROT_DEFAULT, | |
8194 | VM_PROT_ALL, | |
8195 | VM_INHERIT_DEFAULT); | |
8196 | } | |
8197 | ||
8198 | kern_return_t | |
8199 | vm_map_copyout_internal( | |
8200 | vm_map_t dst_map, | |
8201 | vm_map_address_t *dst_addr, /* OUT */ | |
8202 | vm_map_copy_t copy, | |
8203 | boolean_t consume_on_success, | |
8204 | vm_prot_t cur_protection, | |
8205 | vm_prot_t max_protection, | |
8206 | vm_inherit_t inheritance) | |
8207 | { | |
8208 | vm_map_size_t size; | |
8209 | vm_map_size_t adjustment; | |
8210 | vm_map_offset_t start; | |
8211 | vm_object_offset_t vm_copy_start; | |
8212 | vm_map_entry_t last; | |
8213 | vm_map_entry_t entry; | |
8214 | ||
8215 | /* | |
8216 | * Check for null copy object. | |
8217 | */ | |
8218 | ||
8219 | if (copy == VM_MAP_COPY_NULL) { | |
8220 | *dst_addr = 0; | |
8221 | return(KERN_SUCCESS); | |
8222 | } | |
8223 | ||
8224 | /* | |
8225 | * Check for special copy object, created | |
8226 | * by vm_map_copyin_object. | |
8227 | */ | |
8228 | ||
8229 | if (copy->type == VM_MAP_COPY_OBJECT) { | |
8230 | vm_object_t object = copy->cpy_object; | |
8231 | kern_return_t kr; | |
8232 | vm_object_offset_t offset; | |
8233 | ||
8234 | offset = vm_object_trunc_page(copy->offset); | |
8235 | size = vm_map_round_page((copy->size + | |
8236 | (vm_map_size_t)(copy->offset - | |
8237 | offset)), | |
8238 | VM_MAP_PAGE_MASK(dst_map)); | |
8239 | *dst_addr = 0; | |
8240 | kr = vm_map_enter(dst_map, dst_addr, size, | |
8241 | (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE, | |
8242 | object, offset, FALSE, | |
8243 | VM_PROT_DEFAULT, VM_PROT_ALL, | |
8244 | VM_INHERIT_DEFAULT); | |
8245 | if (kr != KERN_SUCCESS) | |
8246 | return(kr); | |
8247 | /* Account for non-pagealigned copy object */ | |
8248 | *dst_addr += (vm_map_offset_t)(copy->offset - offset); | |
8249 | if (consume_on_success) | |
8250 | zfree(vm_map_copy_zone, copy); | |
8251 | return(KERN_SUCCESS); | |
8252 | } | |
8253 | ||
8254 | /* | |
8255 | * Check for special kernel buffer allocated | |
8256 | * by new_ipc_kmsg_copyin. | |
8257 | */ | |
8258 | ||
8259 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { | |
8260 | return vm_map_copyout_kernel_buffer(dst_map, dst_addr, | |
8261 | copy, FALSE, | |
8262 | consume_on_success); | |
8263 | } | |
8264 | ||
8265 | ||
8266 | /* | |
8267 | * Find space for the data | |
8268 | */ | |
8269 | ||
8270 | vm_copy_start = vm_map_trunc_page((vm_map_size_t)copy->offset, | |
8271 | VM_MAP_COPY_PAGE_MASK(copy)); | |
8272 | size = vm_map_round_page((vm_map_size_t)copy->offset + copy->size, | |
8273 | VM_MAP_COPY_PAGE_MASK(copy)) | |
8274 | - vm_copy_start; | |
8275 | ||
8276 | ||
8277 | StartAgain: ; | |
8278 | ||
8279 | vm_map_lock(dst_map); | |
8280 | if( dst_map->disable_vmentry_reuse == TRUE) { | |
8281 | VM_MAP_HIGHEST_ENTRY(dst_map, entry, start); | |
8282 | last = entry; | |
8283 | } else { | |
8284 | assert(first_free_is_valid(dst_map)); | |
8285 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)) ? | |
8286 | vm_map_min(dst_map) : last->vme_end; | |
8287 | start = vm_map_round_page(start, | |
8288 | VM_MAP_PAGE_MASK(dst_map)); | |
8289 | } | |
8290 | ||
8291 | while (TRUE) { | |
8292 | vm_map_entry_t next = last->vme_next; | |
8293 | vm_map_offset_t end = start + size; | |
8294 | ||
8295 | if ((end > dst_map->max_offset) || (end < start)) { | |
8296 | if (dst_map->wait_for_space) { | |
8297 | if (size <= (dst_map->max_offset - dst_map->min_offset)) { | |
8298 | assert_wait((event_t) dst_map, | |
8299 | THREAD_INTERRUPTIBLE); | |
8300 | vm_map_unlock(dst_map); | |
8301 | thread_block(THREAD_CONTINUE_NULL); | |
8302 | goto StartAgain; | |
8303 | } | |
8304 | } | |
8305 | vm_map_unlock(dst_map); | |
8306 | return(KERN_NO_SPACE); | |
8307 | } | |
8308 | ||
8309 | if ((next == vm_map_to_entry(dst_map)) || | |
8310 | (next->vme_start >= end)) | |
8311 | break; | |
8312 | ||
8313 | last = next; | |
8314 | start = last->vme_end; | |
8315 | start = vm_map_round_page(start, | |
8316 | VM_MAP_PAGE_MASK(dst_map)); | |
8317 | } | |
8318 | ||
8319 | adjustment = start - vm_copy_start; | |
8320 | if (! consume_on_success) { | |
8321 | /* | |
8322 | * We're not allowed to consume "copy", so we'll have to | |
8323 | * copy its map entries into the destination map below. | |
8324 | * No need to re-allocate map entries from the correct | |
8325 | * (pageable or not) zone, since we'll get new map entries | |
8326 | * during the transfer. | |
8327 | * We'll also adjust the map entries's "start" and "end" | |
8328 | * during the transfer, to keep "copy"'s entries consistent | |
8329 | * with its "offset". | |
8330 | */ | |
8331 | goto after_adjustments; | |
8332 | } | |
8333 | ||
8334 | /* | |
8335 | * Since we're going to just drop the map | |
8336 | * entries from the copy into the destination | |
8337 | * map, they must come from the same pool. | |
8338 | */ | |
8339 | ||
8340 | if (copy->cpy_hdr.entries_pageable != dst_map->hdr.entries_pageable) { | |
8341 | /* | |
8342 | * Mismatches occur when dealing with the default | |
8343 | * pager. | |
8344 | */ | |
8345 | zone_t old_zone; | |
8346 | vm_map_entry_t next, new; | |
8347 | ||
8348 | /* | |
8349 | * Find the zone that the copies were allocated from | |
8350 | */ | |
8351 | ||
8352 | entry = vm_map_copy_first_entry(copy); | |
8353 | ||
8354 | /* | |
8355 | * Reinitialize the copy so that vm_map_copy_entry_link | |
8356 | * will work. | |
8357 | */ | |
8358 | vm_map_store_copy_reset(copy, entry); | |
8359 | copy->cpy_hdr.entries_pageable = dst_map->hdr.entries_pageable; | |
8360 | ||
8361 | /* | |
8362 | * Copy each entry. | |
8363 | */ | |
8364 | while (entry != vm_map_copy_to_entry(copy)) { | |
8365 | new = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); | |
8366 | vm_map_entry_copy_full(new, entry); | |
8367 | assert(!new->iokit_acct); | |
8368 | if (new->is_sub_map) { | |
8369 | /* clr address space specifics */ | |
8370 | new->use_pmap = FALSE; | |
8371 | } | |
8372 | vm_map_copy_entry_link(copy, | |
8373 | vm_map_copy_last_entry(copy), | |
8374 | new); | |
8375 | next = entry->vme_next; | |
8376 | old_zone = entry->from_reserved_zone ? vm_map_entry_reserved_zone : vm_map_entry_zone; | |
8377 | zfree(old_zone, entry); | |
8378 | entry = next; | |
8379 | } | |
8380 | } | |
8381 | ||
8382 | /* | |
8383 | * Adjust the addresses in the copy chain, and | |
8384 | * reset the region attributes. | |
8385 | */ | |
8386 | ||
8387 | for (entry = vm_map_copy_first_entry(copy); | |
8388 | entry != vm_map_copy_to_entry(copy); | |
8389 | entry = entry->vme_next) { | |
8390 | if (VM_MAP_PAGE_SHIFT(dst_map) == PAGE_SHIFT) { | |
8391 | /* | |
8392 | * We're injecting this copy entry into a map that | |
8393 | * has the standard page alignment, so clear | |
8394 | * "map_aligned" (which might have been inherited | |
8395 | * from the original map entry). | |
8396 | */ | |
8397 | entry->map_aligned = FALSE; | |
8398 | } | |
8399 | ||
8400 | entry->vme_start += adjustment; | |
8401 | entry->vme_end += adjustment; | |
8402 | ||
8403 | if (entry->map_aligned) { | |
8404 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_start, | |
8405 | VM_MAP_PAGE_MASK(dst_map))); | |
8406 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_end, | |
8407 | VM_MAP_PAGE_MASK(dst_map))); | |
8408 | } | |
8409 | ||
8410 | entry->inheritance = VM_INHERIT_DEFAULT; | |
8411 | entry->protection = VM_PROT_DEFAULT; | |
8412 | entry->max_protection = VM_PROT_ALL; | |
8413 | entry->behavior = VM_BEHAVIOR_DEFAULT; | |
8414 | ||
8415 | /* | |
8416 | * If the entry is now wired, | |
8417 | * map the pages into the destination map. | |
8418 | */ | |
8419 | if (entry->wired_count != 0) { | |
8420 | register vm_map_offset_t va; | |
8421 | vm_object_offset_t offset; | |
8422 | register vm_object_t object; | |
8423 | vm_prot_t prot; | |
8424 | int type_of_fault; | |
8425 | ||
8426 | object = entry->object.vm_object; | |
8427 | offset = entry->offset; | |
8428 | va = entry->vme_start; | |
8429 | ||
8430 | pmap_pageable(dst_map->pmap, | |
8431 | entry->vme_start, | |
8432 | entry->vme_end, | |
8433 | TRUE); | |
8434 | ||
8435 | while (va < entry->vme_end) { | |
8436 | register vm_page_t m; | |
8437 | ||
8438 | /* | |
8439 | * Look up the page in the object. | |
8440 | * Assert that the page will be found in the | |
8441 | * top object: | |
8442 | * either | |
8443 | * the object was newly created by | |
8444 | * vm_object_copy_slowly, and has | |
8445 | * copies of all of the pages from | |
8446 | * the source object | |
8447 | * or | |
8448 | * the object was moved from the old | |
8449 | * map entry; because the old map | |
8450 | * entry was wired, all of the pages | |
8451 | * were in the top-level object. | |
8452 | * (XXX not true if we wire pages for | |
8453 | * reading) | |
8454 | */ | |
8455 | vm_object_lock(object); | |
8456 | ||
8457 | m = vm_page_lookup(object, offset); | |
8458 | if (m == VM_PAGE_NULL || !VM_PAGE_WIRED(m) || | |
8459 | m->absent) | |
8460 | panic("vm_map_copyout: wiring %p", m); | |
8461 | ||
8462 | /* | |
8463 | * ENCRYPTED SWAP: | |
8464 | * The page is assumed to be wired here, so it | |
8465 | * shouldn't be encrypted. Otherwise, we | |
8466 | * couldn't enter it in the page table, since | |
8467 | * we don't want the user to see the encrypted | |
8468 | * data. | |
8469 | */ | |
8470 | ASSERT_PAGE_DECRYPTED(m); | |
8471 | ||
8472 | prot = entry->protection; | |
8473 | ||
8474 | if (override_nx(dst_map, entry->alias) && prot) | |
8475 | prot |= VM_PROT_EXECUTE; | |
8476 | ||
8477 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
8478 | ||
8479 | vm_fault_enter(m, dst_map->pmap, va, prot, prot, | |
8480 | VM_PAGE_WIRED(m), FALSE, FALSE, | |
8481 | FALSE, entry->alias, | |
8482 | ((entry->iokit_acct || | |
8483 | (!entry->is_sub_map && | |
8484 | !entry->use_pmap)) | |
8485 | ? PMAP_OPTIONS_ALT_ACCT | |
8486 | : 0), | |
8487 | NULL, &type_of_fault); | |
8488 | ||
8489 | vm_object_unlock(object); | |
8490 | ||
8491 | offset += PAGE_SIZE_64; | |
8492 | va += PAGE_SIZE; | |
8493 | } | |
8494 | } | |
8495 | } | |
8496 | ||
8497 | after_adjustments: | |
8498 | ||
8499 | /* | |
8500 | * Correct the page alignment for the result | |
8501 | */ | |
8502 | ||
8503 | *dst_addr = start + (copy->offset - vm_copy_start); | |
8504 | ||
8505 | /* | |
8506 | * Update the hints and the map size | |
8507 | */ | |
8508 | ||
8509 | if (consume_on_success) { | |
8510 | SAVE_HINT_MAP_WRITE(dst_map, vm_map_copy_last_entry(copy)); | |
8511 | } else { | |
8512 | SAVE_HINT_MAP_WRITE(dst_map, last); | |
8513 | } | |
8514 | ||
8515 | dst_map->size += size; | |
8516 | ||
8517 | /* | |
8518 | * Link in the copy | |
8519 | */ | |
8520 | ||
8521 | if (consume_on_success) { | |
8522 | vm_map_copy_insert(dst_map, last, copy); | |
8523 | } else { | |
8524 | vm_map_copy_remap(dst_map, last, copy, adjustment, | |
8525 | cur_protection, max_protection, | |
8526 | inheritance); | |
8527 | } | |
8528 | ||
8529 | vm_map_unlock(dst_map); | |
8530 | ||
8531 | /* | |
8532 | * XXX If wiring_required, call vm_map_pageable | |
8533 | */ | |
8534 | ||
8535 | return(KERN_SUCCESS); | |
8536 | } | |
8537 | ||
8538 | /* | |
8539 | * Routine: vm_map_copyin | |
8540 | * | |
8541 | * Description: | |
8542 | * see vm_map_copyin_common. Exported via Unsupported.exports. | |
8543 | * | |
8544 | */ | |
8545 | ||
8546 | #undef vm_map_copyin | |
8547 | ||
8548 | kern_return_t | |
8549 | vm_map_copyin( | |
8550 | vm_map_t src_map, | |
8551 | vm_map_address_t src_addr, | |
8552 | vm_map_size_t len, | |
8553 | boolean_t src_destroy, | |
8554 | vm_map_copy_t *copy_result) /* OUT */ | |
8555 | { | |
8556 | return(vm_map_copyin_common(src_map, src_addr, len, src_destroy, | |
8557 | FALSE, copy_result, FALSE)); | |
8558 | } | |
8559 | ||
8560 | /* | |
8561 | * Routine: vm_map_copyin_common | |
8562 | * | |
8563 | * Description: | |
8564 | * Copy the specified region (src_addr, len) from the | |
8565 | * source address space (src_map), possibly removing | |
8566 | * the region from the source address space (src_destroy). | |
8567 | * | |
8568 | * Returns: | |
8569 | * A vm_map_copy_t object (copy_result), suitable for | |
8570 | * insertion into another address space (using vm_map_copyout), | |
8571 | * copying over another address space region (using | |
8572 | * vm_map_copy_overwrite). If the copy is unused, it | |
8573 | * should be destroyed (using vm_map_copy_discard). | |
8574 | * | |
8575 | * In/out conditions: | |
8576 | * The source map should not be locked on entry. | |
8577 | */ | |
8578 | ||
8579 | typedef struct submap_map { | |
8580 | vm_map_t parent_map; | |
8581 | vm_map_offset_t base_start; | |
8582 | vm_map_offset_t base_end; | |
8583 | vm_map_size_t base_len; | |
8584 | struct submap_map *next; | |
8585 | } submap_map_t; | |
8586 | ||
8587 | kern_return_t | |
8588 | vm_map_copyin_common( | |
8589 | vm_map_t src_map, | |
8590 | vm_map_address_t src_addr, | |
8591 | vm_map_size_t len, | |
8592 | boolean_t src_destroy, | |
8593 | __unused boolean_t src_volatile, | |
8594 | vm_map_copy_t *copy_result, /* OUT */ | |
8595 | boolean_t use_maxprot) | |
8596 | { | |
8597 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- | |
8598 | * in multi-level lookup, this | |
8599 | * entry contains the actual | |
8600 | * vm_object/offset. | |
8601 | */ | |
8602 | register | |
8603 | vm_map_entry_t new_entry = VM_MAP_ENTRY_NULL; /* Map entry for copy */ | |
8604 | ||
8605 | vm_map_offset_t src_start; /* Start of current entry -- | |
8606 | * where copy is taking place now | |
8607 | */ | |
8608 | vm_map_offset_t src_end; /* End of entire region to be | |
8609 | * copied */ | |
8610 | vm_map_offset_t src_base; | |
8611 | vm_map_t base_map = src_map; | |
8612 | boolean_t map_share=FALSE; | |
8613 | submap_map_t *parent_maps = NULL; | |
8614 | ||
8615 | register | |
8616 | vm_map_copy_t copy; /* Resulting copy */ | |
8617 | vm_map_address_t copy_addr; | |
8618 | vm_map_size_t copy_size; | |
8619 | ||
8620 | /* | |
8621 | * Check for copies of zero bytes. | |
8622 | */ | |
8623 | ||
8624 | if (len == 0) { | |
8625 | *copy_result = VM_MAP_COPY_NULL; | |
8626 | return(KERN_SUCCESS); | |
8627 | } | |
8628 | ||
8629 | /* | |
8630 | * Check that the end address doesn't overflow | |
8631 | */ | |
8632 | src_end = src_addr + len; | |
8633 | if (src_end < src_addr) | |
8634 | return KERN_INVALID_ADDRESS; | |
8635 | ||
8636 | /* | |
8637 | * If the copy is sufficiently small, use a kernel buffer instead | |
8638 | * of making a virtual copy. The theory being that the cost of | |
8639 | * setting up VM (and taking C-O-W faults) dominates the copy costs | |
8640 | * for small regions. | |
8641 | */ | |
8642 | if ((len < msg_ool_size_small) && !use_maxprot) | |
8643 | return vm_map_copyin_kernel_buffer(src_map, src_addr, len, | |
8644 | src_destroy, copy_result); | |
8645 | ||
8646 | /* | |
8647 | * Compute (page aligned) start and end of region | |
8648 | */ | |
8649 | src_start = vm_map_trunc_page(src_addr, | |
8650 | VM_MAP_PAGE_MASK(src_map)); | |
8651 | src_end = vm_map_round_page(src_end, | |
8652 | VM_MAP_PAGE_MASK(src_map)); | |
8653 | ||
8654 | XPR(XPR_VM_MAP, "vm_map_copyin_common map 0x%x addr 0x%x len 0x%x dest %d\n", src_map, src_addr, len, src_destroy, 0); | |
8655 | ||
8656 | /* | |
8657 | * Allocate a header element for the list. | |
8658 | * | |
8659 | * Use the start and end in the header to | |
8660 | * remember the endpoints prior to rounding. | |
8661 | */ | |
8662 | ||
8663 | copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
8664 | copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
8665 | vm_map_copy_first_entry(copy) = | |
8666 | vm_map_copy_last_entry(copy) = vm_map_copy_to_entry(copy); | |
8667 | copy->type = VM_MAP_COPY_ENTRY_LIST; | |
8668 | copy->cpy_hdr.nentries = 0; | |
8669 | copy->cpy_hdr.entries_pageable = TRUE; | |
8670 | #if 00 | |
8671 | copy->cpy_hdr.page_shift = src_map->hdr.page_shift; | |
8672 | #else | |
8673 | /* | |
8674 | * The copy entries can be broken down for a variety of reasons, | |
8675 | * so we can't guarantee that they will remain map-aligned... | |
8676 | * Will need to adjust the first copy_entry's "vme_start" and | |
8677 | * the last copy_entry's "vme_end" to be rounded to PAGE_MASK | |
8678 | * rather than the original map's alignment. | |
8679 | */ | |
8680 | copy->cpy_hdr.page_shift = PAGE_SHIFT; | |
8681 | #endif | |
8682 | ||
8683 | vm_map_store_init( &(copy->cpy_hdr) ); | |
8684 | ||
8685 | copy->offset = src_addr; | |
8686 | copy->size = len; | |
8687 | ||
8688 | new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); | |
8689 | ||
8690 | #define RETURN(x) \ | |
8691 | MACRO_BEGIN \ | |
8692 | vm_map_unlock(src_map); \ | |
8693 | if(src_map != base_map) \ | |
8694 | vm_map_deallocate(src_map); \ | |
8695 | if (new_entry != VM_MAP_ENTRY_NULL) \ | |
8696 | vm_map_copy_entry_dispose(copy,new_entry); \ | |
8697 | vm_map_copy_discard(copy); \ | |
8698 | { \ | |
8699 | submap_map_t *_ptr; \ | |
8700 | \ | |
8701 | for(_ptr = parent_maps; _ptr != NULL; _ptr = parent_maps) { \ | |
8702 | parent_maps=parent_maps->next; \ | |
8703 | if (_ptr->parent_map != base_map) \ | |
8704 | vm_map_deallocate(_ptr->parent_map); \ | |
8705 | kfree(_ptr, sizeof(submap_map_t)); \ | |
8706 | } \ | |
8707 | } \ | |
8708 | MACRO_RETURN(x); \ | |
8709 | MACRO_END | |
8710 | ||
8711 | /* | |
8712 | * Find the beginning of the region. | |
8713 | */ | |
8714 | ||
8715 | vm_map_lock(src_map); | |
8716 | ||
8717 | /* | |
8718 | * Lookup the original "src_addr" rather than the truncated | |
8719 | * "src_start", in case "src_start" falls in a non-map-aligned | |
8720 | * map entry *before* the map entry that contains "src_addr"... | |
8721 | */ | |
8722 | if (!vm_map_lookup_entry(src_map, src_addr, &tmp_entry)) | |
8723 | RETURN(KERN_INVALID_ADDRESS); | |
8724 | if(!tmp_entry->is_sub_map) { | |
8725 | /* | |
8726 | * ... but clip to the map-rounded "src_start" rather than | |
8727 | * "src_addr" to preserve map-alignment. We'll adjust the | |
8728 | * first copy entry at the end, if needed. | |
8729 | */ | |
8730 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
8731 | } | |
8732 | if (src_start < tmp_entry->vme_start) { | |
8733 | /* | |
8734 | * Move "src_start" up to the start of the | |
8735 | * first map entry to copy. | |
8736 | */ | |
8737 | src_start = tmp_entry->vme_start; | |
8738 | } | |
8739 | /* set for later submap fix-up */ | |
8740 | copy_addr = src_start; | |
8741 | ||
8742 | /* | |
8743 | * Go through entries until we get to the end. | |
8744 | */ | |
8745 | ||
8746 | while (TRUE) { | |
8747 | register | |
8748 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ | |
8749 | vm_map_size_t src_size; /* Size of source | |
8750 | * map entry (in both | |
8751 | * maps) | |
8752 | */ | |
8753 | ||
8754 | register | |
8755 | vm_object_t src_object; /* Object to copy */ | |
8756 | vm_object_offset_t src_offset; | |
8757 | ||
8758 | boolean_t src_needs_copy; /* Should source map | |
8759 | * be made read-only | |
8760 | * for copy-on-write? | |
8761 | */ | |
8762 | ||
8763 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ | |
8764 | ||
8765 | boolean_t was_wired; /* Was source wired? */ | |
8766 | vm_map_version_t version; /* Version before locks | |
8767 | * dropped to make copy | |
8768 | */ | |
8769 | kern_return_t result; /* Return value from | |
8770 | * copy_strategically. | |
8771 | */ | |
8772 | while(tmp_entry->is_sub_map) { | |
8773 | vm_map_size_t submap_len; | |
8774 | submap_map_t *ptr; | |
8775 | ||
8776 | ptr = (submap_map_t *)kalloc(sizeof(submap_map_t)); | |
8777 | ptr->next = parent_maps; | |
8778 | parent_maps = ptr; | |
8779 | ptr->parent_map = src_map; | |
8780 | ptr->base_start = src_start; | |
8781 | ptr->base_end = src_end; | |
8782 | submap_len = tmp_entry->vme_end - src_start; | |
8783 | if(submap_len > (src_end-src_start)) | |
8784 | submap_len = src_end-src_start; | |
8785 | ptr->base_len = submap_len; | |
8786 | ||
8787 | src_start -= tmp_entry->vme_start; | |
8788 | src_start += tmp_entry->offset; | |
8789 | src_end = src_start + submap_len; | |
8790 | src_map = tmp_entry->object.sub_map; | |
8791 | vm_map_lock(src_map); | |
8792 | /* keep an outstanding reference for all maps in */ | |
8793 | /* the parents tree except the base map */ | |
8794 | vm_map_reference(src_map); | |
8795 | vm_map_unlock(ptr->parent_map); | |
8796 | if (!vm_map_lookup_entry( | |
8797 | src_map, src_start, &tmp_entry)) | |
8798 | RETURN(KERN_INVALID_ADDRESS); | |
8799 | map_share = TRUE; | |
8800 | if(!tmp_entry->is_sub_map) | |
8801 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
8802 | src_entry = tmp_entry; | |
8803 | } | |
8804 | /* we are now in the lowest level submap... */ | |
8805 | ||
8806 | if ((tmp_entry->object.vm_object != VM_OBJECT_NULL) && | |
8807 | (tmp_entry->object.vm_object->phys_contiguous)) { | |
8808 | /* This is not, supported for now.In future */ | |
8809 | /* we will need to detect the phys_contig */ | |
8810 | /* condition and then upgrade copy_slowly */ | |
8811 | /* to do physical copy from the device mem */ | |
8812 | /* based object. We can piggy-back off of */ | |
8813 | /* the was wired boolean to set-up the */ | |
8814 | /* proper handling */ | |
8815 | RETURN(KERN_PROTECTION_FAILURE); | |
8816 | } | |
8817 | /* | |
8818 | * Create a new address map entry to hold the result. | |
8819 | * Fill in the fields from the appropriate source entries. | |
8820 | * We must unlock the source map to do this if we need | |
8821 | * to allocate a map entry. | |
8822 | */ | |
8823 | if (new_entry == VM_MAP_ENTRY_NULL) { | |
8824 | version.main_timestamp = src_map->timestamp; | |
8825 | vm_map_unlock(src_map); | |
8826 | ||
8827 | new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); | |
8828 | ||
8829 | vm_map_lock(src_map); | |
8830 | if ((version.main_timestamp + 1) != src_map->timestamp) { | |
8831 | if (!vm_map_lookup_entry(src_map, src_start, | |
8832 | &tmp_entry)) { | |
8833 | RETURN(KERN_INVALID_ADDRESS); | |
8834 | } | |
8835 | if (!tmp_entry->is_sub_map) | |
8836 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
8837 | continue; /* restart w/ new tmp_entry */ | |
8838 | } | |
8839 | } | |
8840 | ||
8841 | /* | |
8842 | * Verify that the region can be read. | |
8843 | */ | |
8844 | if (((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE && | |
8845 | !use_maxprot) || | |
8846 | (src_entry->max_protection & VM_PROT_READ) == 0) | |
8847 | RETURN(KERN_PROTECTION_FAILURE); | |
8848 | ||
8849 | /* | |
8850 | * Clip against the endpoints of the entire region. | |
8851 | */ | |
8852 | ||
8853 | vm_map_clip_end(src_map, src_entry, src_end); | |
8854 | ||
8855 | src_size = src_entry->vme_end - src_start; | |
8856 | src_object = src_entry->object.vm_object; | |
8857 | src_offset = src_entry->offset; | |
8858 | was_wired = (src_entry->wired_count != 0); | |
8859 | ||
8860 | vm_map_entry_copy(new_entry, src_entry); | |
8861 | if (new_entry->is_sub_map) { | |
8862 | /* clr address space specifics */ | |
8863 | new_entry->use_pmap = FALSE; | |
8864 | } | |
8865 | ||
8866 | /* | |
8867 | * Attempt non-blocking copy-on-write optimizations. | |
8868 | */ | |
8869 | ||
8870 | if (src_destroy && | |
8871 | (src_object == VM_OBJECT_NULL || | |
8872 | (src_object->internal && !src_object->true_share | |
8873 | && !map_share))) { | |
8874 | /* | |
8875 | * If we are destroying the source, and the object | |
8876 | * is internal, we can move the object reference | |
8877 | * from the source to the copy. The copy is | |
8878 | * copy-on-write only if the source is. | |
8879 | * We make another reference to the object, because | |
8880 | * destroying the source entry will deallocate it. | |
8881 | */ | |
8882 | vm_object_reference(src_object); | |
8883 | ||
8884 | /* | |
8885 | * Copy is always unwired. vm_map_copy_entry | |
8886 | * set its wired count to zero. | |
8887 | */ | |
8888 | ||
8889 | goto CopySuccessful; | |
8890 | } | |
8891 | ||
8892 | ||
8893 | RestartCopy: | |
8894 | XPR(XPR_VM_MAP, "vm_map_copyin_common src_obj 0x%x ent 0x%x obj 0x%x was_wired %d\n", | |
8895 | src_object, new_entry, new_entry->object.vm_object, | |
8896 | was_wired, 0); | |
8897 | if ((src_object == VM_OBJECT_NULL || | |
8898 | (!was_wired && !map_share && !tmp_entry->is_shared)) && | |
8899 | vm_object_copy_quickly( | |
8900 | &new_entry->object.vm_object, | |
8901 | src_offset, | |
8902 | src_size, | |
8903 | &src_needs_copy, | |
8904 | &new_entry_needs_copy)) { | |
8905 | ||
8906 | new_entry->needs_copy = new_entry_needs_copy; | |
8907 | ||
8908 | /* | |
8909 | * Handle copy-on-write obligations | |
8910 | */ | |
8911 | ||
8912 | if (src_needs_copy && !tmp_entry->needs_copy) { | |
8913 | vm_prot_t prot; | |
8914 | ||
8915 | prot = src_entry->protection & ~VM_PROT_WRITE; | |
8916 | ||
8917 | if (override_nx(src_map, src_entry->alias) && prot) | |
8918 | prot |= VM_PROT_EXECUTE; | |
8919 | ||
8920 | vm_object_pmap_protect( | |
8921 | src_object, | |
8922 | src_offset, | |
8923 | src_size, | |
8924 | (src_entry->is_shared ? | |
8925 | PMAP_NULL | |
8926 | : src_map->pmap), | |
8927 | src_entry->vme_start, | |
8928 | prot); | |
8929 | ||
8930 | tmp_entry->needs_copy = TRUE; | |
8931 | } | |
8932 | ||
8933 | /* | |
8934 | * The map has never been unlocked, so it's safe | |
8935 | * to move to the next entry rather than doing | |
8936 | * another lookup. | |
8937 | */ | |
8938 | ||
8939 | goto CopySuccessful; | |
8940 | } | |
8941 | ||
8942 | /* | |
8943 | * Take an object reference, so that we may | |
8944 | * release the map lock(s). | |
8945 | */ | |
8946 | ||
8947 | assert(src_object != VM_OBJECT_NULL); | |
8948 | vm_object_reference(src_object); | |
8949 | ||
8950 | /* | |
8951 | * Record the timestamp for later verification. | |
8952 | * Unlock the map. | |
8953 | */ | |
8954 | ||
8955 | version.main_timestamp = src_map->timestamp; | |
8956 | vm_map_unlock(src_map); /* Increments timestamp once! */ | |
8957 | ||
8958 | /* | |
8959 | * Perform the copy | |
8960 | */ | |
8961 | ||
8962 | if (was_wired) { | |
8963 | CopySlowly: | |
8964 | vm_object_lock(src_object); | |
8965 | result = vm_object_copy_slowly( | |
8966 | src_object, | |
8967 | src_offset, | |
8968 | src_size, | |
8969 | THREAD_UNINT, | |
8970 | &new_entry->object.vm_object); | |
8971 | new_entry->offset = 0; | |
8972 | new_entry->needs_copy = FALSE; | |
8973 | ||
8974 | } | |
8975 | else if (src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && | |
8976 | (tmp_entry->is_shared || map_share)) { | |
8977 | vm_object_t new_object; | |
8978 | ||
8979 | vm_object_lock_shared(src_object); | |
8980 | new_object = vm_object_copy_delayed( | |
8981 | src_object, | |
8982 | src_offset, | |
8983 | src_size, | |
8984 | TRUE); | |
8985 | if (new_object == VM_OBJECT_NULL) | |
8986 | goto CopySlowly; | |
8987 | ||
8988 | new_entry->object.vm_object = new_object; | |
8989 | new_entry->needs_copy = TRUE; | |
8990 | assert(!new_entry->iokit_acct); | |
8991 | assert(new_object->purgable == VM_PURGABLE_DENY); | |
8992 | new_entry->use_pmap = TRUE; | |
8993 | result = KERN_SUCCESS; | |
8994 | ||
8995 | } else { | |
8996 | result = vm_object_copy_strategically(src_object, | |
8997 | src_offset, | |
8998 | src_size, | |
8999 | &new_entry->object.vm_object, | |
9000 | &new_entry->offset, | |
9001 | &new_entry_needs_copy); | |
9002 | ||
9003 | new_entry->needs_copy = new_entry_needs_copy; | |
9004 | } | |
9005 | ||
9006 | if (result != KERN_SUCCESS && | |
9007 | result != KERN_MEMORY_RESTART_COPY) { | |
9008 | vm_map_lock(src_map); | |
9009 | RETURN(result); | |
9010 | } | |
9011 | ||
9012 | /* | |
9013 | * Throw away the extra reference | |
9014 | */ | |
9015 | ||
9016 | vm_object_deallocate(src_object); | |
9017 | ||
9018 | /* | |
9019 | * Verify that the map has not substantially | |
9020 | * changed while the copy was being made. | |
9021 | */ | |
9022 | ||
9023 | vm_map_lock(src_map); | |
9024 | ||
9025 | if ((version.main_timestamp + 1) == src_map->timestamp) | |
9026 | goto VerificationSuccessful; | |
9027 | ||
9028 | /* | |
9029 | * Simple version comparison failed. | |
9030 | * | |
9031 | * Retry the lookup and verify that the | |
9032 | * same object/offset are still present. | |
9033 | * | |
9034 | * [Note: a memory manager that colludes with | |
9035 | * the calling task can detect that we have | |
9036 | * cheated. While the map was unlocked, the | |
9037 | * mapping could have been changed and restored.] | |
9038 | */ | |
9039 | ||
9040 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { | |
9041 | if (result != KERN_MEMORY_RESTART_COPY) { | |
9042 | vm_object_deallocate(new_entry->object.vm_object); | |
9043 | new_entry->object.vm_object = VM_OBJECT_NULL; | |
9044 | assert(!new_entry->iokit_acct); | |
9045 | new_entry->use_pmap = TRUE; | |
9046 | } | |
9047 | RETURN(KERN_INVALID_ADDRESS); | |
9048 | } | |
9049 | ||
9050 | src_entry = tmp_entry; | |
9051 | vm_map_clip_start(src_map, src_entry, src_start); | |
9052 | ||
9053 | if ((((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE) && | |
9054 | !use_maxprot) || | |
9055 | ((src_entry->max_protection & VM_PROT_READ) == 0)) | |
9056 | goto VerificationFailed; | |
9057 | ||
9058 | if (src_entry->vme_end < new_entry->vme_end) { | |
9059 | assert(VM_MAP_PAGE_ALIGNED(src_entry->vme_end, | |
9060 | VM_MAP_COPY_PAGE_MASK(copy))); | |
9061 | new_entry->vme_end = src_entry->vme_end; | |
9062 | src_size = new_entry->vme_end - src_start; | |
9063 | } | |
9064 | ||
9065 | if ((src_entry->object.vm_object != src_object) || | |
9066 | (src_entry->offset != src_offset) ) { | |
9067 | ||
9068 | /* | |
9069 | * Verification failed. | |
9070 | * | |
9071 | * Start over with this top-level entry. | |
9072 | */ | |
9073 | ||
9074 | VerificationFailed: ; | |
9075 | ||
9076 | vm_object_deallocate(new_entry->object.vm_object); | |
9077 | tmp_entry = src_entry; | |
9078 | continue; | |
9079 | } | |
9080 | ||
9081 | /* | |
9082 | * Verification succeeded. | |
9083 | */ | |
9084 | ||
9085 | VerificationSuccessful: ; | |
9086 | ||
9087 | if (result == KERN_MEMORY_RESTART_COPY) | |
9088 | goto RestartCopy; | |
9089 | ||
9090 | /* | |
9091 | * Copy succeeded. | |
9092 | */ | |
9093 | ||
9094 | CopySuccessful: ; | |
9095 | ||
9096 | /* | |
9097 | * Link in the new copy entry. | |
9098 | */ | |
9099 | ||
9100 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy), | |
9101 | new_entry); | |
9102 | ||
9103 | /* | |
9104 | * Determine whether the entire region | |
9105 | * has been copied. | |
9106 | */ | |
9107 | src_base = src_start; | |
9108 | src_start = new_entry->vme_end; | |
9109 | new_entry = VM_MAP_ENTRY_NULL; | |
9110 | while ((src_start >= src_end) && (src_end != 0)) { | |
9111 | submap_map_t *ptr; | |
9112 | ||
9113 | if (src_map == base_map) { | |
9114 | /* back to the top */ | |
9115 | break; | |
9116 | } | |
9117 | ||
9118 | ptr = parent_maps; | |
9119 | assert(ptr != NULL); | |
9120 | parent_maps = parent_maps->next; | |
9121 | ||
9122 | /* fix up the damage we did in that submap */ | |
9123 | vm_map_simplify_range(src_map, | |
9124 | src_base, | |
9125 | src_end); | |
9126 | ||
9127 | vm_map_unlock(src_map); | |
9128 | vm_map_deallocate(src_map); | |
9129 | vm_map_lock(ptr->parent_map); | |
9130 | src_map = ptr->parent_map; | |
9131 | src_base = ptr->base_start; | |
9132 | src_start = ptr->base_start + ptr->base_len; | |
9133 | src_end = ptr->base_end; | |
9134 | if (!vm_map_lookup_entry(src_map, | |
9135 | src_start, | |
9136 | &tmp_entry) && | |
9137 | (src_end > src_start)) { | |
9138 | RETURN(KERN_INVALID_ADDRESS); | |
9139 | } | |
9140 | kfree(ptr, sizeof(submap_map_t)); | |
9141 | if (parent_maps == NULL) | |
9142 | map_share = FALSE; | |
9143 | src_entry = tmp_entry->vme_prev; | |
9144 | } | |
9145 | ||
9146 | if ((VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) && | |
9147 | (src_start >= src_addr + len) && | |
9148 | (src_addr + len != 0)) { | |
9149 | /* | |
9150 | * Stop copying now, even though we haven't reached | |
9151 | * "src_end". We'll adjust the end of the last copy | |
9152 | * entry at the end, if needed. | |
9153 | * | |
9154 | * If src_map's aligment is different from the | |
9155 | * system's page-alignment, there could be | |
9156 | * extra non-map-aligned map entries between | |
9157 | * the original (non-rounded) "src_addr + len" | |
9158 | * and the rounded "src_end". | |
9159 | * We do not want to copy those map entries since | |
9160 | * they're not part of the copied range. | |
9161 | */ | |
9162 | break; | |
9163 | } | |
9164 | ||
9165 | if ((src_start >= src_end) && (src_end != 0)) | |
9166 | break; | |
9167 | ||
9168 | /* | |
9169 | * Verify that there are no gaps in the region | |
9170 | */ | |
9171 | ||
9172 | tmp_entry = src_entry->vme_next; | |
9173 | if ((tmp_entry->vme_start != src_start) || | |
9174 | (tmp_entry == vm_map_to_entry(src_map))) { | |
9175 | RETURN(KERN_INVALID_ADDRESS); | |
9176 | } | |
9177 | } | |
9178 | ||
9179 | /* | |
9180 | * If the source should be destroyed, do it now, since the | |
9181 | * copy was successful. | |
9182 | */ | |
9183 | if (src_destroy) { | |
9184 | (void) vm_map_delete( | |
9185 | src_map, | |
9186 | vm_map_trunc_page(src_addr, | |
9187 | VM_MAP_PAGE_MASK(src_map)), | |
9188 | src_end, | |
9189 | ((src_map == kernel_map) ? | |
9190 | VM_MAP_REMOVE_KUNWIRE : | |
9191 | VM_MAP_NO_FLAGS), | |
9192 | VM_MAP_NULL); | |
9193 | } else { | |
9194 | /* fix up the damage we did in the base map */ | |
9195 | vm_map_simplify_range( | |
9196 | src_map, | |
9197 | vm_map_trunc_page(src_addr, | |
9198 | VM_MAP_PAGE_MASK(src_map)), | |
9199 | vm_map_round_page(src_end, | |
9200 | VM_MAP_PAGE_MASK(src_map))); | |
9201 | } | |
9202 | ||
9203 | vm_map_unlock(src_map); | |
9204 | ||
9205 | if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) { | |
9206 | vm_map_offset_t original_start, original_offset, original_end; | |
9207 | ||
9208 | assert(VM_MAP_COPY_PAGE_MASK(copy) == PAGE_MASK); | |
9209 | ||
9210 | /* adjust alignment of first copy_entry's "vme_start" */ | |
9211 | tmp_entry = vm_map_copy_first_entry(copy); | |
9212 | if (tmp_entry != vm_map_copy_to_entry(copy)) { | |
9213 | vm_map_offset_t adjustment; | |
9214 | ||
9215 | original_start = tmp_entry->vme_start; | |
9216 | original_offset = tmp_entry->offset; | |
9217 | ||
9218 | /* map-align the start of the first copy entry... */ | |
9219 | adjustment = (tmp_entry->vme_start - | |
9220 | vm_map_trunc_page( | |
9221 | tmp_entry->vme_start, | |
9222 | VM_MAP_PAGE_MASK(src_map))); | |
9223 | tmp_entry->vme_start -= adjustment; | |
9224 | tmp_entry->offset -= adjustment; | |
9225 | copy_addr -= adjustment; | |
9226 | assert(tmp_entry->vme_start < tmp_entry->vme_end); | |
9227 | /* ... adjust for mis-aligned start of copy range */ | |
9228 | adjustment = | |
9229 | (vm_map_trunc_page(copy->offset, | |
9230 | PAGE_MASK) - | |
9231 | vm_map_trunc_page(copy->offset, | |
9232 | VM_MAP_PAGE_MASK(src_map))); | |
9233 | if (adjustment) { | |
9234 | assert(page_aligned(adjustment)); | |
9235 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); | |
9236 | tmp_entry->vme_start += adjustment; | |
9237 | tmp_entry->offset += adjustment; | |
9238 | copy_addr += adjustment; | |
9239 | assert(tmp_entry->vme_start < tmp_entry->vme_end); | |
9240 | } | |
9241 | ||
9242 | /* | |
9243 | * Assert that the adjustments haven't exposed | |
9244 | * more than was originally copied... | |
9245 | */ | |
9246 | assert(tmp_entry->vme_start >= original_start); | |
9247 | assert(tmp_entry->offset >= original_offset); | |
9248 | /* | |
9249 | * ... and that it did not adjust outside of a | |
9250 | * a single 16K page. | |
9251 | */ | |
9252 | assert(vm_map_trunc_page(tmp_entry->vme_start, | |
9253 | VM_MAP_PAGE_MASK(src_map)) == | |
9254 | vm_map_trunc_page(original_start, | |
9255 | VM_MAP_PAGE_MASK(src_map))); | |
9256 | } | |
9257 | ||
9258 | /* adjust alignment of last copy_entry's "vme_end" */ | |
9259 | tmp_entry = vm_map_copy_last_entry(copy); | |
9260 | if (tmp_entry != vm_map_copy_to_entry(copy)) { | |
9261 | vm_map_offset_t adjustment; | |
9262 | ||
9263 | original_end = tmp_entry->vme_end; | |
9264 | ||
9265 | /* map-align the end of the last copy entry... */ | |
9266 | tmp_entry->vme_end = | |
9267 | vm_map_round_page(tmp_entry->vme_end, | |
9268 | VM_MAP_PAGE_MASK(src_map)); | |
9269 | /* ... adjust for mis-aligned end of copy range */ | |
9270 | adjustment = | |
9271 | (vm_map_round_page((copy->offset + | |
9272 | copy->size), | |
9273 | VM_MAP_PAGE_MASK(src_map)) - | |
9274 | vm_map_round_page((copy->offset + | |
9275 | copy->size), | |
9276 | PAGE_MASK)); | |
9277 | if (adjustment) { | |
9278 | assert(page_aligned(adjustment)); | |
9279 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); | |
9280 | tmp_entry->vme_end -= adjustment; | |
9281 | assert(tmp_entry->vme_start < tmp_entry->vme_end); | |
9282 | } | |
9283 | ||
9284 | /* | |
9285 | * Assert that the adjustments haven't exposed | |
9286 | * more than was originally copied... | |
9287 | */ | |
9288 | assert(tmp_entry->vme_end <= original_end); | |
9289 | /* | |
9290 | * ... and that it did not adjust outside of a | |
9291 | * a single 16K page. | |
9292 | */ | |
9293 | assert(vm_map_round_page(tmp_entry->vme_end, | |
9294 | VM_MAP_PAGE_MASK(src_map)) == | |
9295 | vm_map_round_page(original_end, | |
9296 | VM_MAP_PAGE_MASK(src_map))); | |
9297 | } | |
9298 | } | |
9299 | ||
9300 | /* Fix-up start and end points in copy. This is necessary */ | |
9301 | /* when the various entries in the copy object were picked */ | |
9302 | /* up from different sub-maps */ | |
9303 | ||
9304 | tmp_entry = vm_map_copy_first_entry(copy); | |
9305 | copy_size = 0; /* compute actual size */ | |
9306 | while (tmp_entry != vm_map_copy_to_entry(copy)) { | |
9307 | assert(VM_MAP_PAGE_ALIGNED( | |
9308 | copy_addr + (tmp_entry->vme_end - | |
9309 | tmp_entry->vme_start), | |
9310 | VM_MAP_COPY_PAGE_MASK(copy))); | |
9311 | assert(VM_MAP_PAGE_ALIGNED( | |
9312 | copy_addr, | |
9313 | VM_MAP_COPY_PAGE_MASK(copy))); | |
9314 | ||
9315 | /* | |
9316 | * The copy_entries will be injected directly into the | |
9317 | * destination map and might not be "map aligned" there... | |
9318 | */ | |
9319 | tmp_entry->map_aligned = FALSE; | |
9320 | ||
9321 | tmp_entry->vme_end = copy_addr + | |
9322 | (tmp_entry->vme_end - tmp_entry->vme_start); | |
9323 | tmp_entry->vme_start = copy_addr; | |
9324 | assert(tmp_entry->vme_start < tmp_entry->vme_end); | |
9325 | copy_addr += tmp_entry->vme_end - tmp_entry->vme_start; | |
9326 | copy_size += tmp_entry->vme_end - tmp_entry->vme_start; | |
9327 | tmp_entry = (struct vm_map_entry *)tmp_entry->vme_next; | |
9328 | } | |
9329 | ||
9330 | if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT && | |
9331 | copy_size < copy->size) { | |
9332 | /* | |
9333 | * The actual size of the VM map copy is smaller than what | |
9334 | * was requested by the caller. This must be because some | |
9335 | * PAGE_SIZE-sized pages are missing at the end of the last | |
9336 | * VM_MAP_PAGE_SIZE(src_map)-sized chunk of the range. | |
9337 | * The caller might not have been aware of those missing | |
9338 | * pages and might not want to be aware of it, which is | |
9339 | * fine as long as they don't try to access (and crash on) | |
9340 | * those missing pages. | |
9341 | * Let's adjust the size of the "copy", to avoid failing | |
9342 | * in vm_map_copyout() or vm_map_copy_overwrite(). | |
9343 | */ | |
9344 | assert(vm_map_round_page(copy_size, | |
9345 | VM_MAP_PAGE_MASK(src_map)) == | |
9346 | vm_map_round_page(copy->size, | |
9347 | VM_MAP_PAGE_MASK(src_map))); | |
9348 | copy->size = copy_size; | |
9349 | } | |
9350 | ||
9351 | *copy_result = copy; | |
9352 | return(KERN_SUCCESS); | |
9353 | ||
9354 | #undef RETURN | |
9355 | } | |
9356 | ||
9357 | kern_return_t | |
9358 | vm_map_copy_extract( | |
9359 | vm_map_t src_map, | |
9360 | vm_map_address_t src_addr, | |
9361 | vm_map_size_t len, | |
9362 | vm_map_copy_t *copy_result, /* OUT */ | |
9363 | vm_prot_t *cur_prot, /* OUT */ | |
9364 | vm_prot_t *max_prot) | |
9365 | { | |
9366 | vm_map_offset_t src_start, src_end; | |
9367 | vm_map_copy_t copy; | |
9368 | kern_return_t kr; | |
9369 | ||
9370 | /* | |
9371 | * Check for copies of zero bytes. | |
9372 | */ | |
9373 | ||
9374 | if (len == 0) { | |
9375 | *copy_result = VM_MAP_COPY_NULL; | |
9376 | return(KERN_SUCCESS); | |
9377 | } | |
9378 | ||
9379 | /* | |
9380 | * Check that the end address doesn't overflow | |
9381 | */ | |
9382 | src_end = src_addr + len; | |
9383 | if (src_end < src_addr) | |
9384 | return KERN_INVALID_ADDRESS; | |
9385 | ||
9386 | /* | |
9387 | * Compute (page aligned) start and end of region | |
9388 | */ | |
9389 | src_start = vm_map_trunc_page(src_addr, PAGE_MASK); | |
9390 | src_end = vm_map_round_page(src_end, PAGE_MASK); | |
9391 | ||
9392 | /* | |
9393 | * Allocate a header element for the list. | |
9394 | * | |
9395 | * Use the start and end in the header to | |
9396 | * remember the endpoints prior to rounding. | |
9397 | */ | |
9398 | ||
9399 | copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
9400 | copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
9401 | vm_map_copy_first_entry(copy) = | |
9402 | vm_map_copy_last_entry(copy) = vm_map_copy_to_entry(copy); | |
9403 | copy->type = VM_MAP_COPY_ENTRY_LIST; | |
9404 | copy->cpy_hdr.nentries = 0; | |
9405 | copy->cpy_hdr.entries_pageable = TRUE; | |
9406 | ||
9407 | vm_map_store_init(©->cpy_hdr); | |
9408 | ||
9409 | copy->offset = 0; | |
9410 | copy->size = len; | |
9411 | ||
9412 | kr = vm_map_remap_extract(src_map, | |
9413 | src_addr, | |
9414 | len, | |
9415 | FALSE, /* copy */ | |
9416 | ©->cpy_hdr, | |
9417 | cur_prot, | |
9418 | max_prot, | |
9419 | VM_INHERIT_SHARE, | |
9420 | TRUE); /* pageable */ | |
9421 | if (kr != KERN_SUCCESS) { | |
9422 | vm_map_copy_discard(copy); | |
9423 | return kr; | |
9424 | } | |
9425 | ||
9426 | *copy_result = copy; | |
9427 | return KERN_SUCCESS; | |
9428 | } | |
9429 | ||
9430 | /* | |
9431 | * vm_map_copyin_object: | |
9432 | * | |
9433 | * Create a copy object from an object. | |
9434 | * Our caller donates an object reference. | |
9435 | */ | |
9436 | ||
9437 | kern_return_t | |
9438 | vm_map_copyin_object( | |
9439 | vm_object_t object, | |
9440 | vm_object_offset_t offset, /* offset of region in object */ | |
9441 | vm_object_size_t size, /* size of region in object */ | |
9442 | vm_map_copy_t *copy_result) /* OUT */ | |
9443 | { | |
9444 | vm_map_copy_t copy; /* Resulting copy */ | |
9445 | ||
9446 | /* | |
9447 | * We drop the object into a special copy object | |
9448 | * that contains the object directly. | |
9449 | */ | |
9450 | ||
9451 | copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
9452 | copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; | |
9453 | copy->type = VM_MAP_COPY_OBJECT; | |
9454 | copy->cpy_object = object; | |
9455 | copy->offset = offset; | |
9456 | copy->size = size; | |
9457 | ||
9458 | *copy_result = copy; | |
9459 | return(KERN_SUCCESS); | |
9460 | } | |
9461 | ||
9462 | static void | |
9463 | vm_map_fork_share( | |
9464 | vm_map_t old_map, | |
9465 | vm_map_entry_t old_entry, | |
9466 | vm_map_t new_map) | |
9467 | { | |
9468 | vm_object_t object; | |
9469 | vm_map_entry_t new_entry; | |
9470 | ||
9471 | /* | |
9472 | * New sharing code. New map entry | |
9473 | * references original object. Internal | |
9474 | * objects use asynchronous copy algorithm for | |
9475 | * future copies. First make sure we have | |
9476 | * the right object. If we need a shadow, | |
9477 | * or someone else already has one, then | |
9478 | * make a new shadow and share it. | |
9479 | */ | |
9480 | ||
9481 | object = old_entry->object.vm_object; | |
9482 | if (old_entry->is_sub_map) { | |
9483 | assert(old_entry->wired_count == 0); | |
9484 | #ifndef NO_NESTED_PMAP | |
9485 | if(old_entry->use_pmap) { | |
9486 | kern_return_t result; | |
9487 | ||
9488 | result = pmap_nest(new_map->pmap, | |
9489 | (old_entry->object.sub_map)->pmap, | |
9490 | (addr64_t)old_entry->vme_start, | |
9491 | (addr64_t)old_entry->vme_start, | |
9492 | (uint64_t)(old_entry->vme_end - old_entry->vme_start)); | |
9493 | if(result) | |
9494 | panic("vm_map_fork_share: pmap_nest failed!"); | |
9495 | } | |
9496 | #endif /* NO_NESTED_PMAP */ | |
9497 | } else if (object == VM_OBJECT_NULL) { | |
9498 | object = vm_object_allocate((vm_map_size_t)(old_entry->vme_end - | |
9499 | old_entry->vme_start)); | |
9500 | old_entry->offset = 0; | |
9501 | old_entry->object.vm_object = object; | |
9502 | old_entry->use_pmap = TRUE; | |
9503 | assert(!old_entry->needs_copy); | |
9504 | } else if (object->copy_strategy != | |
9505 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
9506 | ||
9507 | /* | |
9508 | * We are already using an asymmetric | |
9509 | * copy, and therefore we already have | |
9510 | * the right object. | |
9511 | */ | |
9512 | ||
9513 | assert(! old_entry->needs_copy); | |
9514 | } | |
9515 | else if (old_entry->needs_copy || /* case 1 */ | |
9516 | object->shadowed || /* case 2 */ | |
9517 | (!object->true_share && /* case 3 */ | |
9518 | !old_entry->is_shared && | |
9519 | (object->vo_size > | |
9520 | (vm_map_size_t)(old_entry->vme_end - | |
9521 | old_entry->vme_start)))) { | |
9522 | ||
9523 | /* | |
9524 | * We need to create a shadow. | |
9525 | * There are three cases here. | |
9526 | * In the first case, we need to | |
9527 | * complete a deferred symmetrical | |
9528 | * copy that we participated in. | |
9529 | * In the second and third cases, | |
9530 | * we need to create the shadow so | |
9531 | * that changes that we make to the | |
9532 | * object do not interfere with | |
9533 | * any symmetrical copies which | |
9534 | * have occured (case 2) or which | |
9535 | * might occur (case 3). | |
9536 | * | |
9537 | * The first case is when we had | |
9538 | * deferred shadow object creation | |
9539 | * via the entry->needs_copy mechanism. | |
9540 | * This mechanism only works when | |
9541 | * only one entry points to the source | |
9542 | * object, and we are about to create | |
9543 | * a second entry pointing to the | |
9544 | * same object. The problem is that | |
9545 | * there is no way of mapping from | |
9546 | * an object to the entries pointing | |
9547 | * to it. (Deferred shadow creation | |
9548 | * works with one entry because occurs | |
9549 | * at fault time, and we walk from the | |
9550 | * entry to the object when handling | |
9551 | * the fault.) | |
9552 | * | |
9553 | * The second case is when the object | |
9554 | * to be shared has already been copied | |
9555 | * with a symmetric copy, but we point | |
9556 | * directly to the object without | |
9557 | * needs_copy set in our entry. (This | |
9558 | * can happen because different ranges | |
9559 | * of an object can be pointed to by | |
9560 | * different entries. In particular, | |
9561 | * a single entry pointing to an object | |
9562 | * can be split by a call to vm_inherit, | |
9563 | * which, combined with task_create, can | |
9564 | * result in the different entries | |
9565 | * having different needs_copy values.) | |
9566 | * The shadowed flag in the object allows | |
9567 | * us to detect this case. The problem | |
9568 | * with this case is that if this object | |
9569 | * has or will have shadows, then we | |
9570 | * must not perform an asymmetric copy | |
9571 | * of this object, since such a copy | |
9572 | * allows the object to be changed, which | |
9573 | * will break the previous symmetrical | |
9574 | * copies (which rely upon the object | |
9575 | * not changing). In a sense, the shadowed | |
9576 | * flag says "don't change this object". | |
9577 | * We fix this by creating a shadow | |
9578 | * object for this object, and sharing | |
9579 | * that. This works because we are free | |
9580 | * to change the shadow object (and thus | |
9581 | * to use an asymmetric copy strategy); | |
9582 | * this is also semantically correct, | |
9583 | * since this object is temporary, and | |
9584 | * therefore a copy of the object is | |
9585 | * as good as the object itself. (This | |
9586 | * is not true for permanent objects, | |
9587 | * since the pager needs to see changes, | |
9588 | * which won't happen if the changes | |
9589 | * are made to a copy.) | |
9590 | * | |
9591 | * The third case is when the object | |
9592 | * to be shared has parts sticking | |
9593 | * outside of the entry we're working | |
9594 | * with, and thus may in the future | |
9595 | * be subject to a symmetrical copy. | |
9596 | * (This is a preemptive version of | |
9597 | * case 2.) | |
9598 | */ | |
9599 | vm_object_shadow(&old_entry->object.vm_object, | |
9600 | &old_entry->offset, | |
9601 | (vm_map_size_t) (old_entry->vme_end - | |
9602 | old_entry->vme_start)); | |
9603 | ||
9604 | /* | |
9605 | * If we're making a shadow for other than | |
9606 | * copy on write reasons, then we have | |
9607 | * to remove write permission. | |
9608 | */ | |
9609 | ||
9610 | if (!old_entry->needs_copy && | |
9611 | (old_entry->protection & VM_PROT_WRITE)) { | |
9612 | vm_prot_t prot; | |
9613 | ||
9614 | prot = old_entry->protection & ~VM_PROT_WRITE; | |
9615 | ||
9616 | if (override_nx(old_map, old_entry->alias) && prot) | |
9617 | prot |= VM_PROT_EXECUTE; | |
9618 | ||
9619 | if (old_map->mapped_in_other_pmaps) { | |
9620 | vm_object_pmap_protect( | |
9621 | old_entry->object.vm_object, | |
9622 | old_entry->offset, | |
9623 | (old_entry->vme_end - | |
9624 | old_entry->vme_start), | |
9625 | PMAP_NULL, | |
9626 | old_entry->vme_start, | |
9627 | prot); | |
9628 | } else { | |
9629 | pmap_protect(old_map->pmap, | |
9630 | old_entry->vme_start, | |
9631 | old_entry->vme_end, | |
9632 | prot); | |
9633 | } | |
9634 | } | |
9635 | ||
9636 | old_entry->needs_copy = FALSE; | |
9637 | object = old_entry->object.vm_object; | |
9638 | } | |
9639 | ||
9640 | ||
9641 | /* | |
9642 | * If object was using a symmetric copy strategy, | |
9643 | * change its copy strategy to the default | |
9644 | * asymmetric copy strategy, which is copy_delay | |
9645 | * in the non-norma case and copy_call in the | |
9646 | * norma case. Bump the reference count for the | |
9647 | * new entry. | |
9648 | */ | |
9649 | ||
9650 | if(old_entry->is_sub_map) { | |
9651 | vm_map_lock(old_entry->object.sub_map); | |
9652 | vm_map_reference(old_entry->object.sub_map); | |
9653 | vm_map_unlock(old_entry->object.sub_map); | |
9654 | } else { | |
9655 | vm_object_lock(object); | |
9656 | vm_object_reference_locked(object); | |
9657 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
9658 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
9659 | } | |
9660 | vm_object_unlock(object); | |
9661 | } | |
9662 | ||
9663 | /* | |
9664 | * Clone the entry, using object ref from above. | |
9665 | * Mark both entries as shared. | |
9666 | */ | |
9667 | ||
9668 | new_entry = vm_map_entry_create(new_map, FALSE); /* Never the kernel | |
9669 | * map or descendants */ | |
9670 | vm_map_entry_copy(new_entry, old_entry); | |
9671 | old_entry->is_shared = TRUE; | |
9672 | new_entry->is_shared = TRUE; | |
9673 | ||
9674 | /* | |
9675 | * Insert the entry into the new map -- we | |
9676 | * know we're inserting at the end of the new | |
9677 | * map. | |
9678 | */ | |
9679 | ||
9680 | vm_map_store_entry_link(new_map, vm_map_last_entry(new_map), new_entry); | |
9681 | ||
9682 | /* | |
9683 | * Update the physical map | |
9684 | */ | |
9685 | ||
9686 | if (old_entry->is_sub_map) { | |
9687 | /* Bill Angell pmap support goes here */ | |
9688 | } else { | |
9689 | pmap_copy(new_map->pmap, old_map->pmap, new_entry->vme_start, | |
9690 | old_entry->vme_end - old_entry->vme_start, | |
9691 | old_entry->vme_start); | |
9692 | } | |
9693 | } | |
9694 | ||
9695 | static boolean_t | |
9696 | vm_map_fork_copy( | |
9697 | vm_map_t old_map, | |
9698 | vm_map_entry_t *old_entry_p, | |
9699 | vm_map_t new_map) | |
9700 | { | |
9701 | vm_map_entry_t old_entry = *old_entry_p; | |
9702 | vm_map_size_t entry_size = old_entry->vme_end - old_entry->vme_start; | |
9703 | vm_map_offset_t start = old_entry->vme_start; | |
9704 | vm_map_copy_t copy; | |
9705 | vm_map_entry_t last = vm_map_last_entry(new_map); | |
9706 | ||
9707 | vm_map_unlock(old_map); | |
9708 | /* | |
9709 | * Use maxprot version of copyin because we | |
9710 | * care about whether this memory can ever | |
9711 | * be accessed, not just whether it's accessible | |
9712 | * right now. | |
9713 | */ | |
9714 | if (vm_map_copyin_maxprot(old_map, start, entry_size, FALSE, ©) | |
9715 | != KERN_SUCCESS) { | |
9716 | /* | |
9717 | * The map might have changed while it | |
9718 | * was unlocked, check it again. Skip | |
9719 | * any blank space or permanently | |
9720 | * unreadable region. | |
9721 | */ | |
9722 | vm_map_lock(old_map); | |
9723 | if (!vm_map_lookup_entry(old_map, start, &last) || | |
9724 | (last->max_protection & VM_PROT_READ) == VM_PROT_NONE) { | |
9725 | last = last->vme_next; | |
9726 | } | |
9727 | *old_entry_p = last; | |
9728 | ||
9729 | /* | |
9730 | * XXX For some error returns, want to | |
9731 | * XXX skip to the next element. Note | |
9732 | * that INVALID_ADDRESS and | |
9733 | * PROTECTION_FAILURE are handled above. | |
9734 | */ | |
9735 | ||
9736 | return FALSE; | |
9737 | } | |
9738 | ||
9739 | /* | |
9740 | * Insert the copy into the new map | |
9741 | */ | |
9742 | ||
9743 | vm_map_copy_insert(new_map, last, copy); | |
9744 | ||
9745 | /* | |
9746 | * Pick up the traversal at the end of | |
9747 | * the copied region. | |
9748 | */ | |
9749 | ||
9750 | vm_map_lock(old_map); | |
9751 | start += entry_size; | |
9752 | if (! vm_map_lookup_entry(old_map, start, &last)) { | |
9753 | last = last->vme_next; | |
9754 | } else { | |
9755 | if (last->vme_start == start) { | |
9756 | /* | |
9757 | * No need to clip here and we don't | |
9758 | * want to cause any unnecessary | |
9759 | * unnesting... | |
9760 | */ | |
9761 | } else { | |
9762 | vm_map_clip_start(old_map, last, start); | |
9763 | } | |
9764 | } | |
9765 | *old_entry_p = last; | |
9766 | ||
9767 | return TRUE; | |
9768 | } | |
9769 | ||
9770 | /* | |
9771 | * vm_map_fork: | |
9772 | * | |
9773 | * Create and return a new map based on the old | |
9774 | * map, according to the inheritance values on the | |
9775 | * regions in that map. | |
9776 | * | |
9777 | * The source map must not be locked. | |
9778 | */ | |
9779 | vm_map_t | |
9780 | vm_map_fork( | |
9781 | ledger_t ledger, | |
9782 | vm_map_t old_map) | |
9783 | { | |
9784 | pmap_t new_pmap; | |
9785 | vm_map_t new_map; | |
9786 | vm_map_entry_t old_entry; | |
9787 | vm_map_size_t new_size = 0, entry_size; | |
9788 | vm_map_entry_t new_entry; | |
9789 | boolean_t src_needs_copy; | |
9790 | boolean_t new_entry_needs_copy; | |
9791 | ||
9792 | new_pmap = pmap_create(ledger, (vm_map_size_t) 0, | |
9793 | #if defined(__i386__) || defined(__x86_64__) | |
9794 | old_map->pmap->pm_task_map != TASK_MAP_32BIT | |
9795 | #else | |
9796 | #error Unknown architecture. | |
9797 | #endif | |
9798 | ); | |
9799 | ||
9800 | vm_map_reference_swap(old_map); | |
9801 | vm_map_lock(old_map); | |
9802 | ||
9803 | new_map = vm_map_create(new_pmap, | |
9804 | old_map->min_offset, | |
9805 | old_map->max_offset, | |
9806 | old_map->hdr.entries_pageable); | |
9807 | /* inherit the parent map's page size */ | |
9808 | vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(old_map)); | |
9809 | for ( | |
9810 | old_entry = vm_map_first_entry(old_map); | |
9811 | old_entry != vm_map_to_entry(old_map); | |
9812 | ) { | |
9813 | ||
9814 | entry_size = old_entry->vme_end - old_entry->vme_start; | |
9815 | ||
9816 | switch (old_entry->inheritance) { | |
9817 | case VM_INHERIT_NONE: | |
9818 | break; | |
9819 | ||
9820 | case VM_INHERIT_SHARE: | |
9821 | vm_map_fork_share(old_map, old_entry, new_map); | |
9822 | new_size += entry_size; | |
9823 | break; | |
9824 | ||
9825 | case VM_INHERIT_COPY: | |
9826 | ||
9827 | /* | |
9828 | * Inline the copy_quickly case; | |
9829 | * upon failure, fall back on call | |
9830 | * to vm_map_fork_copy. | |
9831 | */ | |
9832 | ||
9833 | if(old_entry->is_sub_map) | |
9834 | break; | |
9835 | if ((old_entry->wired_count != 0) || | |
9836 | ((old_entry->object.vm_object != NULL) && | |
9837 | (old_entry->object.vm_object->true_share))) { | |
9838 | goto slow_vm_map_fork_copy; | |
9839 | } | |
9840 | ||
9841 | new_entry = vm_map_entry_create(new_map, FALSE); /* never the kernel map or descendants */ | |
9842 | vm_map_entry_copy(new_entry, old_entry); | |
9843 | if (new_entry->is_sub_map) { | |
9844 | /* clear address space specifics */ | |
9845 | new_entry->use_pmap = FALSE; | |
9846 | } | |
9847 | ||
9848 | if (! vm_object_copy_quickly( | |
9849 | &new_entry->object.vm_object, | |
9850 | old_entry->offset, | |
9851 | (old_entry->vme_end - | |
9852 | old_entry->vme_start), | |
9853 | &src_needs_copy, | |
9854 | &new_entry_needs_copy)) { | |
9855 | vm_map_entry_dispose(new_map, new_entry); | |
9856 | goto slow_vm_map_fork_copy; | |
9857 | } | |
9858 | ||
9859 | /* | |
9860 | * Handle copy-on-write obligations | |
9861 | */ | |
9862 | ||
9863 | if (src_needs_copy && !old_entry->needs_copy) { | |
9864 | vm_prot_t prot; | |
9865 | ||
9866 | prot = old_entry->protection & ~VM_PROT_WRITE; | |
9867 | ||
9868 | if (override_nx(old_map, old_entry->alias) && prot) | |
9869 | prot |= VM_PROT_EXECUTE; | |
9870 | ||
9871 | vm_object_pmap_protect( | |
9872 | old_entry->object.vm_object, | |
9873 | old_entry->offset, | |
9874 | (old_entry->vme_end - | |
9875 | old_entry->vme_start), | |
9876 | ((old_entry->is_shared | |
9877 | || old_map->mapped_in_other_pmaps) | |
9878 | ? PMAP_NULL : | |
9879 | old_map->pmap), | |
9880 | old_entry->vme_start, | |
9881 | prot); | |
9882 | ||
9883 | old_entry->needs_copy = TRUE; | |
9884 | } | |
9885 | new_entry->needs_copy = new_entry_needs_copy; | |
9886 | ||
9887 | /* | |
9888 | * Insert the entry at the end | |
9889 | * of the map. | |
9890 | */ | |
9891 | ||
9892 | vm_map_store_entry_link(new_map, vm_map_last_entry(new_map), | |
9893 | new_entry); | |
9894 | new_size += entry_size; | |
9895 | break; | |
9896 | ||
9897 | slow_vm_map_fork_copy: | |
9898 | if (vm_map_fork_copy(old_map, &old_entry, new_map)) { | |
9899 | new_size += entry_size; | |
9900 | } | |
9901 | continue; | |
9902 | } | |
9903 | old_entry = old_entry->vme_next; | |
9904 | } | |
9905 | ||
9906 | ||
9907 | new_map->size = new_size; | |
9908 | vm_map_unlock(old_map); | |
9909 | vm_map_deallocate(old_map); | |
9910 | ||
9911 | return(new_map); | |
9912 | } | |
9913 | ||
9914 | /* | |
9915 | * vm_map_exec: | |
9916 | * | |
9917 | * Setup the "new_map" with the proper execution environment according | |
9918 | * to the type of executable (platform, 64bit, chroot environment). | |
9919 | * Map the comm page and shared region, etc... | |
9920 | */ | |
9921 | kern_return_t | |
9922 | vm_map_exec( | |
9923 | vm_map_t new_map, | |
9924 | task_t task, | |
9925 | void *fsroot, | |
9926 | cpu_type_t cpu) | |
9927 | { | |
9928 | SHARED_REGION_TRACE_DEBUG( | |
9929 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): ->\n", | |
9930 | (void *)VM_KERNEL_ADDRPERM(current_task()), | |
9931 | (void *)VM_KERNEL_ADDRPERM(new_map), | |
9932 | (void *)VM_KERNEL_ADDRPERM(task), | |
9933 | (void *)VM_KERNEL_ADDRPERM(fsroot), | |
9934 | cpu)); | |
9935 | (void) vm_commpage_enter(new_map, task); | |
9936 | (void) vm_shared_region_enter(new_map, task, fsroot, cpu); | |
9937 | SHARED_REGION_TRACE_DEBUG( | |
9938 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): <-\n", | |
9939 | (void *)VM_KERNEL_ADDRPERM(current_task()), | |
9940 | (void *)VM_KERNEL_ADDRPERM(new_map), | |
9941 | (void *)VM_KERNEL_ADDRPERM(task), | |
9942 | (void *)VM_KERNEL_ADDRPERM(fsroot), | |
9943 | cpu)); | |
9944 | return KERN_SUCCESS; | |
9945 | } | |
9946 | ||
9947 | /* | |
9948 | * vm_map_lookup_locked: | |
9949 | * | |
9950 | * Finds the VM object, offset, and | |
9951 | * protection for a given virtual address in the | |
9952 | * specified map, assuming a page fault of the | |
9953 | * type specified. | |
9954 | * | |
9955 | * Returns the (object, offset, protection) for | |
9956 | * this address, whether it is wired down, and whether | |
9957 | * this map has the only reference to the data in question. | |
9958 | * In order to later verify this lookup, a "version" | |
9959 | * is returned. | |
9960 | * | |
9961 | * The map MUST be locked by the caller and WILL be | |
9962 | * locked on exit. In order to guarantee the | |
9963 | * existence of the returned object, it is returned | |
9964 | * locked. | |
9965 | * | |
9966 | * If a lookup is requested with "write protection" | |
9967 | * specified, the map may be changed to perform virtual | |
9968 | * copying operations, although the data referenced will | |
9969 | * remain the same. | |
9970 | */ | |
9971 | kern_return_t | |
9972 | vm_map_lookup_locked( | |
9973 | vm_map_t *var_map, /* IN/OUT */ | |
9974 | vm_map_offset_t vaddr, | |
9975 | vm_prot_t fault_type, | |
9976 | int object_lock_type, | |
9977 | vm_map_version_t *out_version, /* OUT */ | |
9978 | vm_object_t *object, /* OUT */ | |
9979 | vm_object_offset_t *offset, /* OUT */ | |
9980 | vm_prot_t *out_prot, /* OUT */ | |
9981 | boolean_t *wired, /* OUT */ | |
9982 | vm_object_fault_info_t fault_info, /* OUT */ | |
9983 | vm_map_t *real_map) | |
9984 | { | |
9985 | vm_map_entry_t entry; | |
9986 | register vm_map_t map = *var_map; | |
9987 | vm_map_t old_map = *var_map; | |
9988 | vm_map_t cow_sub_map_parent = VM_MAP_NULL; | |
9989 | vm_map_offset_t cow_parent_vaddr = 0; | |
9990 | vm_map_offset_t old_start = 0; | |
9991 | vm_map_offset_t old_end = 0; | |
9992 | register vm_prot_t prot; | |
9993 | boolean_t mask_protections; | |
9994 | boolean_t force_copy; | |
9995 | vm_prot_t original_fault_type; | |
9996 | ||
9997 | /* | |
9998 | * VM_PROT_MASK means that the caller wants us to use "fault_type" | |
9999 | * as a mask against the mapping's actual protections, not as an | |
10000 | * absolute value. | |
10001 | */ | |
10002 | mask_protections = (fault_type & VM_PROT_IS_MASK) ? TRUE : FALSE; | |
10003 | force_copy = (fault_type & VM_PROT_COPY) ? TRUE : FALSE; | |
10004 | fault_type &= VM_PROT_ALL; | |
10005 | original_fault_type = fault_type; | |
10006 | ||
10007 | *real_map = map; | |
10008 | ||
10009 | RetryLookup: | |
10010 | fault_type = original_fault_type; | |
10011 | ||
10012 | /* | |
10013 | * If the map has an interesting hint, try it before calling | |
10014 | * full blown lookup routine. | |
10015 | */ | |
10016 | entry = map->hint; | |
10017 | ||
10018 | if ((entry == vm_map_to_entry(map)) || | |
10019 | (vaddr < entry->vme_start) || (vaddr >= entry->vme_end)) { | |
10020 | vm_map_entry_t tmp_entry; | |
10021 | ||
10022 | /* | |
10023 | * Entry was either not a valid hint, or the vaddr | |
10024 | * was not contained in the entry, so do a full lookup. | |
10025 | */ | |
10026 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { | |
10027 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)) | |
10028 | vm_map_unlock(cow_sub_map_parent); | |
10029 | if((*real_map != map) | |
10030 | && (*real_map != cow_sub_map_parent)) | |
10031 | vm_map_unlock(*real_map); | |
10032 | return KERN_INVALID_ADDRESS; | |
10033 | } | |
10034 | ||
10035 | entry = tmp_entry; | |
10036 | } | |
10037 | if(map == old_map) { | |
10038 | old_start = entry->vme_start; | |
10039 | old_end = entry->vme_end; | |
10040 | } | |
10041 | ||
10042 | /* | |
10043 | * Handle submaps. Drop lock on upper map, submap is | |
10044 | * returned locked. | |
10045 | */ | |
10046 | ||
10047 | submap_recurse: | |
10048 | if (entry->is_sub_map) { | |
10049 | vm_map_offset_t local_vaddr; | |
10050 | vm_map_offset_t end_delta; | |
10051 | vm_map_offset_t start_delta; | |
10052 | vm_map_entry_t submap_entry; | |
10053 | boolean_t mapped_needs_copy=FALSE; | |
10054 | ||
10055 | local_vaddr = vaddr; | |
10056 | ||
10057 | if ((entry->use_pmap && !(fault_type & VM_PROT_WRITE))) { | |
10058 | /* if real_map equals map we unlock below */ | |
10059 | if ((*real_map != map) && | |
10060 | (*real_map != cow_sub_map_parent)) | |
10061 | vm_map_unlock(*real_map); | |
10062 | *real_map = entry->object.sub_map; | |
10063 | } | |
10064 | ||
10065 | if(entry->needs_copy && (fault_type & VM_PROT_WRITE)) { | |
10066 | if (!mapped_needs_copy) { | |
10067 | if (vm_map_lock_read_to_write(map)) { | |
10068 | vm_map_lock_read(map); | |
10069 | *real_map = map; | |
10070 | goto RetryLookup; | |
10071 | } | |
10072 | vm_map_lock_read(entry->object.sub_map); | |
10073 | *var_map = entry->object.sub_map; | |
10074 | cow_sub_map_parent = map; | |
10075 | /* reset base to map before cow object */ | |
10076 | /* this is the map which will accept */ | |
10077 | /* the new cow object */ | |
10078 | old_start = entry->vme_start; | |
10079 | old_end = entry->vme_end; | |
10080 | cow_parent_vaddr = vaddr; | |
10081 | mapped_needs_copy = TRUE; | |
10082 | } else { | |
10083 | vm_map_lock_read(entry->object.sub_map); | |
10084 | *var_map = entry->object.sub_map; | |
10085 | if((cow_sub_map_parent != map) && | |
10086 | (*real_map != map)) | |
10087 | vm_map_unlock(map); | |
10088 | } | |
10089 | } else { | |
10090 | vm_map_lock_read(entry->object.sub_map); | |
10091 | *var_map = entry->object.sub_map; | |
10092 | /* leave map locked if it is a target */ | |
10093 | /* cow sub_map above otherwise, just */ | |
10094 | /* follow the maps down to the object */ | |
10095 | /* here we unlock knowing we are not */ | |
10096 | /* revisiting the map. */ | |
10097 | if((*real_map != map) && (map != cow_sub_map_parent)) | |
10098 | vm_map_unlock_read(map); | |
10099 | } | |
10100 | ||
10101 | map = *var_map; | |
10102 | ||
10103 | /* calculate the offset in the submap for vaddr */ | |
10104 | local_vaddr = (local_vaddr - entry->vme_start) + entry->offset; | |
10105 | ||
10106 | RetrySubMap: | |
10107 | if(!vm_map_lookup_entry(map, local_vaddr, &submap_entry)) { | |
10108 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)){ | |
10109 | vm_map_unlock(cow_sub_map_parent); | |
10110 | } | |
10111 | if((*real_map != map) | |
10112 | && (*real_map != cow_sub_map_parent)) { | |
10113 | vm_map_unlock(*real_map); | |
10114 | } | |
10115 | *real_map = map; | |
10116 | return KERN_INVALID_ADDRESS; | |
10117 | } | |
10118 | ||
10119 | /* find the attenuated shadow of the underlying object */ | |
10120 | /* on our target map */ | |
10121 | ||
10122 | /* in english the submap object may extend beyond the */ | |
10123 | /* region mapped by the entry or, may only fill a portion */ | |
10124 | /* of it. For our purposes, we only care if the object */ | |
10125 | /* doesn't fill. In this case the area which will */ | |
10126 | /* ultimately be clipped in the top map will only need */ | |
10127 | /* to be as big as the portion of the underlying entry */ | |
10128 | /* which is mapped */ | |
10129 | start_delta = submap_entry->vme_start > entry->offset ? | |
10130 | submap_entry->vme_start - entry->offset : 0; | |
10131 | ||
10132 | end_delta = | |
10133 | (entry->offset + start_delta + (old_end - old_start)) <= | |
10134 | submap_entry->vme_end ? | |
10135 | 0 : (entry->offset + | |
10136 | (old_end - old_start)) | |
10137 | - submap_entry->vme_end; | |
10138 | ||
10139 | old_start += start_delta; | |
10140 | old_end -= end_delta; | |
10141 | ||
10142 | if(submap_entry->is_sub_map) { | |
10143 | entry = submap_entry; | |
10144 | vaddr = local_vaddr; | |
10145 | goto submap_recurse; | |
10146 | } | |
10147 | ||
10148 | if(((fault_type & VM_PROT_WRITE) && cow_sub_map_parent)) { | |
10149 | ||
10150 | vm_object_t sub_object, copy_object; | |
10151 | vm_object_offset_t copy_offset; | |
10152 | vm_map_offset_t local_start; | |
10153 | vm_map_offset_t local_end; | |
10154 | boolean_t copied_slowly = FALSE; | |
10155 | ||
10156 | if (vm_map_lock_read_to_write(map)) { | |
10157 | vm_map_lock_read(map); | |
10158 | old_start -= start_delta; | |
10159 | old_end += end_delta; | |
10160 | goto RetrySubMap; | |
10161 | } | |
10162 | ||
10163 | ||
10164 | sub_object = submap_entry->object.vm_object; | |
10165 | if (sub_object == VM_OBJECT_NULL) { | |
10166 | sub_object = | |
10167 | vm_object_allocate( | |
10168 | (vm_map_size_t) | |
10169 | (submap_entry->vme_end - | |
10170 | submap_entry->vme_start)); | |
10171 | submap_entry->object.vm_object = sub_object; | |
10172 | submap_entry->offset = 0; | |
10173 | } | |
10174 | local_start = local_vaddr - | |
10175 | (cow_parent_vaddr - old_start); | |
10176 | local_end = local_vaddr + | |
10177 | (old_end - cow_parent_vaddr); | |
10178 | vm_map_clip_start(map, submap_entry, local_start); | |
10179 | vm_map_clip_end(map, submap_entry, local_end); | |
10180 | if (submap_entry->is_sub_map) { | |
10181 | /* unnesting was done when clipping */ | |
10182 | assert(!submap_entry->use_pmap); | |
10183 | } | |
10184 | ||
10185 | /* This is the COW case, lets connect */ | |
10186 | /* an entry in our space to the underlying */ | |
10187 | /* object in the submap, bypassing the */ | |
10188 | /* submap. */ | |
10189 | ||
10190 | ||
10191 | if(submap_entry->wired_count != 0 || | |
10192 | (sub_object->copy_strategy == | |
10193 | MEMORY_OBJECT_COPY_NONE)) { | |
10194 | vm_object_lock(sub_object); | |
10195 | vm_object_copy_slowly(sub_object, | |
10196 | submap_entry->offset, | |
10197 | (submap_entry->vme_end - | |
10198 | submap_entry->vme_start), | |
10199 | FALSE, | |
10200 | ©_object); | |
10201 | copied_slowly = TRUE; | |
10202 | } else { | |
10203 | ||
10204 | /* set up shadow object */ | |
10205 | copy_object = sub_object; | |
10206 | vm_object_reference(copy_object); | |
10207 | sub_object->shadowed = TRUE; | |
10208 | submap_entry->needs_copy = TRUE; | |
10209 | ||
10210 | prot = submap_entry->protection & ~VM_PROT_WRITE; | |
10211 | ||
10212 | if (override_nx(old_map, submap_entry->alias) && prot) | |
10213 | prot |= VM_PROT_EXECUTE; | |
10214 | ||
10215 | vm_object_pmap_protect( | |
10216 | sub_object, | |
10217 | submap_entry->offset, | |
10218 | submap_entry->vme_end - | |
10219 | submap_entry->vme_start, | |
10220 | (submap_entry->is_shared | |
10221 | || map->mapped_in_other_pmaps) ? | |
10222 | PMAP_NULL : map->pmap, | |
10223 | submap_entry->vme_start, | |
10224 | prot); | |
10225 | } | |
10226 | ||
10227 | /* | |
10228 | * Adjust the fault offset to the submap entry. | |
10229 | */ | |
10230 | copy_offset = (local_vaddr - | |
10231 | submap_entry->vme_start + | |
10232 | submap_entry->offset); | |
10233 | ||
10234 | /* This works diffently than the */ | |
10235 | /* normal submap case. We go back */ | |
10236 | /* to the parent of the cow map and*/ | |
10237 | /* clip out the target portion of */ | |
10238 | /* the sub_map, substituting the */ | |
10239 | /* new copy object, */ | |
10240 | ||
10241 | vm_map_unlock(map); | |
10242 | local_start = old_start; | |
10243 | local_end = old_end; | |
10244 | map = cow_sub_map_parent; | |
10245 | *var_map = cow_sub_map_parent; | |
10246 | vaddr = cow_parent_vaddr; | |
10247 | cow_sub_map_parent = NULL; | |
10248 | ||
10249 | if(!vm_map_lookup_entry(map, | |
10250 | vaddr, &entry)) { | |
10251 | vm_object_deallocate( | |
10252 | copy_object); | |
10253 | vm_map_lock_write_to_read(map); | |
10254 | return KERN_INVALID_ADDRESS; | |
10255 | } | |
10256 | ||
10257 | /* clip out the portion of space */ | |
10258 | /* mapped by the sub map which */ | |
10259 | /* corresponds to the underlying */ | |
10260 | /* object */ | |
10261 | ||
10262 | /* | |
10263 | * Clip (and unnest) the smallest nested chunk | |
10264 | * possible around the faulting address... | |
10265 | */ | |
10266 | local_start = vaddr & ~(pmap_nesting_size_min - 1); | |
10267 | local_end = local_start + pmap_nesting_size_min; | |
10268 | /* | |
10269 | * ... but don't go beyond the "old_start" to "old_end" | |
10270 | * range, to avoid spanning over another VM region | |
10271 | * with a possibly different VM object and/or offset. | |
10272 | */ | |
10273 | if (local_start < old_start) { | |
10274 | local_start = old_start; | |
10275 | } | |
10276 | if (local_end > old_end) { | |
10277 | local_end = old_end; | |
10278 | } | |
10279 | /* | |
10280 | * Adjust copy_offset to the start of the range. | |
10281 | */ | |
10282 | copy_offset -= (vaddr - local_start); | |
10283 | ||
10284 | vm_map_clip_start(map, entry, local_start); | |
10285 | vm_map_clip_end(map, entry, local_end); | |
10286 | if (entry->is_sub_map) { | |
10287 | /* unnesting was done when clipping */ | |
10288 | assert(!entry->use_pmap); | |
10289 | } | |
10290 | ||
10291 | /* substitute copy object for */ | |
10292 | /* shared map entry */ | |
10293 | vm_map_deallocate(entry->object.sub_map); | |
10294 | assert(!entry->iokit_acct); | |
10295 | entry->is_sub_map = FALSE; | |
10296 | entry->use_pmap = TRUE; | |
10297 | entry->object.vm_object = copy_object; | |
10298 | ||
10299 | /* propagate the submap entry's protections */ | |
10300 | entry->protection |= submap_entry->protection; | |
10301 | entry->max_protection |= submap_entry->max_protection; | |
10302 | ||
10303 | if(copied_slowly) { | |
10304 | entry->offset = local_start - old_start; | |
10305 | entry->needs_copy = FALSE; | |
10306 | entry->is_shared = FALSE; | |
10307 | } else { | |
10308 | entry->offset = copy_offset; | |
10309 | entry->needs_copy = TRUE; | |
10310 | if(entry->inheritance == VM_INHERIT_SHARE) | |
10311 | entry->inheritance = VM_INHERIT_COPY; | |
10312 | if (map != old_map) | |
10313 | entry->is_shared = TRUE; | |
10314 | } | |
10315 | if(entry->inheritance == VM_INHERIT_SHARE) | |
10316 | entry->inheritance = VM_INHERIT_COPY; | |
10317 | ||
10318 | vm_map_lock_write_to_read(map); | |
10319 | } else { | |
10320 | if((cow_sub_map_parent) | |
10321 | && (cow_sub_map_parent != *real_map) | |
10322 | && (cow_sub_map_parent != map)) { | |
10323 | vm_map_unlock(cow_sub_map_parent); | |
10324 | } | |
10325 | entry = submap_entry; | |
10326 | vaddr = local_vaddr; | |
10327 | } | |
10328 | } | |
10329 | ||
10330 | /* | |
10331 | * Check whether this task is allowed to have | |
10332 | * this page. | |
10333 | */ | |
10334 | ||
10335 | prot = entry->protection; | |
10336 | ||
10337 | if (override_nx(old_map, entry->alias) && prot) { | |
10338 | /* | |
10339 | * HACK -- if not a stack, then allow execution | |
10340 | */ | |
10341 | prot |= VM_PROT_EXECUTE; | |
10342 | } | |
10343 | ||
10344 | if (mask_protections) { | |
10345 | fault_type &= prot; | |
10346 | if (fault_type == VM_PROT_NONE) { | |
10347 | goto protection_failure; | |
10348 | } | |
10349 | } | |
10350 | if ((fault_type & (prot)) != fault_type) { | |
10351 | protection_failure: | |
10352 | if (*real_map != map) { | |
10353 | vm_map_unlock(*real_map); | |
10354 | } | |
10355 | *real_map = map; | |
10356 | ||
10357 | if ((fault_type & VM_PROT_EXECUTE) && prot) | |
10358 | log_stack_execution_failure((addr64_t)vaddr, prot); | |
10359 | ||
10360 | DTRACE_VM2(prot_fault, int, 1, (uint64_t *), NULL); | |
10361 | return KERN_PROTECTION_FAILURE; | |
10362 | } | |
10363 | ||
10364 | /* | |
10365 | * If this page is not pageable, we have to get | |
10366 | * it for all possible accesses. | |
10367 | */ | |
10368 | ||
10369 | *wired = (entry->wired_count != 0); | |
10370 | if (*wired) | |
10371 | fault_type = prot; | |
10372 | ||
10373 | /* | |
10374 | * If the entry was copy-on-write, we either ... | |
10375 | */ | |
10376 | ||
10377 | if (entry->needs_copy) { | |
10378 | /* | |
10379 | * If we want to write the page, we may as well | |
10380 | * handle that now since we've got the map locked. | |
10381 | * | |
10382 | * If we don't need to write the page, we just | |
10383 | * demote the permissions allowed. | |
10384 | */ | |
10385 | ||
10386 | if ((fault_type & VM_PROT_WRITE) || *wired || force_copy) { | |
10387 | /* | |
10388 | * Make a new object, and place it in the | |
10389 | * object chain. Note that no new references | |
10390 | * have appeared -- one just moved from the | |
10391 | * map to the new object. | |
10392 | */ | |
10393 | ||
10394 | if (vm_map_lock_read_to_write(map)) { | |
10395 | vm_map_lock_read(map); | |
10396 | goto RetryLookup; | |
10397 | } | |
10398 | vm_object_shadow(&entry->object.vm_object, | |
10399 | &entry->offset, | |
10400 | (vm_map_size_t) (entry->vme_end - | |
10401 | entry->vme_start)); | |
10402 | ||
10403 | entry->object.vm_object->shadowed = TRUE; | |
10404 | entry->needs_copy = FALSE; | |
10405 | vm_map_lock_write_to_read(map); | |
10406 | } | |
10407 | else { | |
10408 | /* | |
10409 | * We're attempting to read a copy-on-write | |
10410 | * page -- don't allow writes. | |
10411 | */ | |
10412 | ||
10413 | prot &= (~VM_PROT_WRITE); | |
10414 | } | |
10415 | } | |
10416 | ||
10417 | /* | |
10418 | * Create an object if necessary. | |
10419 | */ | |
10420 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
10421 | ||
10422 | if (vm_map_lock_read_to_write(map)) { | |
10423 | vm_map_lock_read(map); | |
10424 | goto RetryLookup; | |
10425 | } | |
10426 | ||
10427 | entry->object.vm_object = vm_object_allocate( | |
10428 | (vm_map_size_t)(entry->vme_end - entry->vme_start)); | |
10429 | entry->offset = 0; | |
10430 | vm_map_lock_write_to_read(map); | |
10431 | } | |
10432 | ||
10433 | /* | |
10434 | * Return the object/offset from this entry. If the entry | |
10435 | * was copy-on-write or empty, it has been fixed up. Also | |
10436 | * return the protection. | |
10437 | */ | |
10438 | ||
10439 | *offset = (vaddr - entry->vme_start) + entry->offset; | |
10440 | *object = entry->object.vm_object; | |
10441 | *out_prot = prot; | |
10442 | ||
10443 | if (fault_info) { | |
10444 | fault_info->interruptible = THREAD_UNINT; /* for now... */ | |
10445 | /* ... the caller will change "interruptible" if needed */ | |
10446 | fault_info->cluster_size = 0; | |
10447 | fault_info->user_tag = entry->alias; | |
10448 | fault_info->pmap_options = 0; | |
10449 | if (entry->iokit_acct || | |
10450 | (!entry->is_sub_map && !entry->use_pmap)) { | |
10451 | fault_info->pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
10452 | } | |
10453 | fault_info->behavior = entry->behavior; | |
10454 | fault_info->lo_offset = entry->offset; | |
10455 | fault_info->hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; | |
10456 | fault_info->no_cache = entry->no_cache; | |
10457 | fault_info->stealth = FALSE; | |
10458 | fault_info->io_sync = FALSE; | |
10459 | fault_info->cs_bypass = (entry->used_for_jit)? TRUE : FALSE; | |
10460 | fault_info->mark_zf_absent = FALSE; | |
10461 | fault_info->batch_pmap_op = FALSE; | |
10462 | } | |
10463 | ||
10464 | /* | |
10465 | * Lock the object to prevent it from disappearing | |
10466 | */ | |
10467 | if (object_lock_type == OBJECT_LOCK_EXCLUSIVE) | |
10468 | vm_object_lock(*object); | |
10469 | else | |
10470 | vm_object_lock_shared(*object); | |
10471 | ||
10472 | /* | |
10473 | * Save the version number | |
10474 | */ | |
10475 | ||
10476 | out_version->main_timestamp = map->timestamp; | |
10477 | ||
10478 | return KERN_SUCCESS; | |
10479 | } | |
10480 | ||
10481 | ||
10482 | /* | |
10483 | * vm_map_verify: | |
10484 | * | |
10485 | * Verifies that the map in question has not changed | |
10486 | * since the given version. If successful, the map | |
10487 | * will not change until vm_map_verify_done() is called. | |
10488 | */ | |
10489 | boolean_t | |
10490 | vm_map_verify( | |
10491 | register vm_map_t map, | |
10492 | register vm_map_version_t *version) /* REF */ | |
10493 | { | |
10494 | boolean_t result; | |
10495 | ||
10496 | vm_map_lock_read(map); | |
10497 | result = (map->timestamp == version->main_timestamp); | |
10498 | ||
10499 | if (!result) | |
10500 | vm_map_unlock_read(map); | |
10501 | ||
10502 | return(result); | |
10503 | } | |
10504 | ||
10505 | /* | |
10506 | * vm_map_verify_done: | |
10507 | * | |
10508 | * Releases locks acquired by a vm_map_verify. | |
10509 | * | |
10510 | * This is now a macro in vm/vm_map.h. It does a | |
10511 | * vm_map_unlock_read on the map. | |
10512 | */ | |
10513 | ||
10514 | ||
10515 | /* | |
10516 | * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY | |
10517 | * Goes away after regular vm_region_recurse function migrates to | |
10518 | * 64 bits | |
10519 | * vm_region_recurse: A form of vm_region which follows the | |
10520 | * submaps in a target map | |
10521 | * | |
10522 | */ | |
10523 | ||
10524 | kern_return_t | |
10525 | vm_map_region_recurse_64( | |
10526 | vm_map_t map, | |
10527 | vm_map_offset_t *address, /* IN/OUT */ | |
10528 | vm_map_size_t *size, /* OUT */ | |
10529 | natural_t *nesting_depth, /* IN/OUT */ | |
10530 | vm_region_submap_info_64_t submap_info, /* IN/OUT */ | |
10531 | mach_msg_type_number_t *count) /* IN/OUT */ | |
10532 | { | |
10533 | mach_msg_type_number_t original_count; | |
10534 | vm_region_extended_info_data_t extended; | |
10535 | vm_map_entry_t tmp_entry; | |
10536 | vm_map_offset_t user_address; | |
10537 | unsigned int user_max_depth; | |
10538 | ||
10539 | /* | |
10540 | * "curr_entry" is the VM map entry preceding or including the | |
10541 | * address we're looking for. | |
10542 | * "curr_map" is the map or sub-map containing "curr_entry". | |
10543 | * "curr_address" is the equivalent of the top map's "user_address" | |
10544 | * in the current map. | |
10545 | * "curr_offset" is the cumulated offset of "curr_map" in the | |
10546 | * target task's address space. | |
10547 | * "curr_depth" is the depth of "curr_map" in the chain of | |
10548 | * sub-maps. | |
10549 | * | |
10550 | * "curr_max_below" and "curr_max_above" limit the range (around | |
10551 | * "curr_address") we should take into account in the current (sub)map. | |
10552 | * They limit the range to what's visible through the map entries | |
10553 | * we've traversed from the top map to the current map. | |
10554 | ||
10555 | */ | |
10556 | vm_map_entry_t curr_entry; | |
10557 | vm_map_address_t curr_address; | |
10558 | vm_map_offset_t curr_offset; | |
10559 | vm_map_t curr_map; | |
10560 | unsigned int curr_depth; | |
10561 | vm_map_offset_t curr_max_below, curr_max_above; | |
10562 | vm_map_offset_t curr_skip; | |
10563 | ||
10564 | /* | |
10565 | * "next_" is the same as "curr_" but for the VM region immediately | |
10566 | * after the address we're looking for. We need to keep track of this | |
10567 | * too because we want to return info about that region if the | |
10568 | * address we're looking for is not mapped. | |
10569 | */ | |
10570 | vm_map_entry_t next_entry; | |
10571 | vm_map_offset_t next_offset; | |
10572 | vm_map_offset_t next_address; | |
10573 | vm_map_t next_map; | |
10574 | unsigned int next_depth; | |
10575 | vm_map_offset_t next_max_below, next_max_above; | |
10576 | vm_map_offset_t next_skip; | |
10577 | ||
10578 | boolean_t look_for_pages; | |
10579 | vm_region_submap_short_info_64_t short_info; | |
10580 | ||
10581 | if (map == VM_MAP_NULL) { | |
10582 | /* no address space to work on */ | |
10583 | return KERN_INVALID_ARGUMENT; | |
10584 | } | |
10585 | ||
10586 | ||
10587 | if (*count < VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) { | |
10588 | /* | |
10589 | * "info" structure is not big enough and | |
10590 | * would overflow | |
10591 | */ | |
10592 | return KERN_INVALID_ARGUMENT; | |
10593 | } | |
10594 | ||
10595 | original_count = *count; | |
10596 | ||
10597 | if (original_count < VM_REGION_SUBMAP_INFO_V0_COUNT_64) { | |
10598 | *count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
10599 | look_for_pages = FALSE; | |
10600 | short_info = (vm_region_submap_short_info_64_t) submap_info; | |
10601 | submap_info = NULL; | |
10602 | } else { | |
10603 | look_for_pages = TRUE; | |
10604 | *count = VM_REGION_SUBMAP_INFO_V0_COUNT_64; | |
10605 | short_info = NULL; | |
10606 | ||
10607 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { | |
10608 | *count = VM_REGION_SUBMAP_INFO_V1_COUNT_64; | |
10609 | } | |
10610 | } | |
10611 | ||
10612 | user_address = *address; | |
10613 | user_max_depth = *nesting_depth; | |
10614 | ||
10615 | curr_entry = NULL; | |
10616 | curr_map = map; | |
10617 | curr_address = user_address; | |
10618 | curr_offset = 0; | |
10619 | curr_skip = 0; | |
10620 | curr_depth = 0; | |
10621 | curr_max_above = ((vm_map_offset_t) -1) - curr_address; | |
10622 | curr_max_below = curr_address; | |
10623 | ||
10624 | next_entry = NULL; | |
10625 | next_map = NULL; | |
10626 | next_address = 0; | |
10627 | next_offset = 0; | |
10628 | next_skip = 0; | |
10629 | next_depth = 0; | |
10630 | next_max_above = (vm_map_offset_t) -1; | |
10631 | next_max_below = (vm_map_offset_t) -1; | |
10632 | ||
10633 | if (not_in_kdp) { | |
10634 | vm_map_lock_read(curr_map); | |
10635 | } | |
10636 | ||
10637 | for (;;) { | |
10638 | if (vm_map_lookup_entry(curr_map, | |
10639 | curr_address, | |
10640 | &tmp_entry)) { | |
10641 | /* tmp_entry contains the address we're looking for */ | |
10642 | curr_entry = tmp_entry; | |
10643 | } else { | |
10644 | vm_map_offset_t skip; | |
10645 | /* | |
10646 | * The address is not mapped. "tmp_entry" is the | |
10647 | * map entry preceding the address. We want the next | |
10648 | * one, if it exists. | |
10649 | */ | |
10650 | curr_entry = tmp_entry->vme_next; | |
10651 | ||
10652 | if (curr_entry == vm_map_to_entry(curr_map) || | |
10653 | (curr_entry->vme_start >= | |
10654 | curr_address + curr_max_above)) { | |
10655 | /* no next entry at this level: stop looking */ | |
10656 | if (not_in_kdp) { | |
10657 | vm_map_unlock_read(curr_map); | |
10658 | } | |
10659 | curr_entry = NULL; | |
10660 | curr_map = NULL; | |
10661 | curr_offset = 0; | |
10662 | curr_depth = 0; | |
10663 | curr_max_above = 0; | |
10664 | curr_max_below = 0; | |
10665 | break; | |
10666 | } | |
10667 | ||
10668 | /* adjust current address and offset */ | |
10669 | skip = curr_entry->vme_start - curr_address; | |
10670 | curr_address = curr_entry->vme_start; | |
10671 | curr_skip = skip; | |
10672 | curr_offset += skip; | |
10673 | curr_max_above -= skip; | |
10674 | curr_max_below = 0; | |
10675 | } | |
10676 | ||
10677 | /* | |
10678 | * Is the next entry at this level closer to the address (or | |
10679 | * deeper in the submap chain) than the one we had | |
10680 | * so far ? | |
10681 | */ | |
10682 | tmp_entry = curr_entry->vme_next; | |
10683 | if (tmp_entry == vm_map_to_entry(curr_map)) { | |
10684 | /* no next entry at this level */ | |
10685 | } else if (tmp_entry->vme_start >= | |
10686 | curr_address + curr_max_above) { | |
10687 | /* | |
10688 | * tmp_entry is beyond the scope of what we mapped of | |
10689 | * this submap in the upper level: ignore it. | |
10690 | */ | |
10691 | } else if ((next_entry == NULL) || | |
10692 | (tmp_entry->vme_start + curr_offset <= | |
10693 | next_entry->vme_start + next_offset)) { | |
10694 | /* | |
10695 | * We didn't have a "next_entry" or this one is | |
10696 | * closer to the address we're looking for: | |
10697 | * use this "tmp_entry" as the new "next_entry". | |
10698 | */ | |
10699 | if (next_entry != NULL) { | |
10700 | /* unlock the last "next_map" */ | |
10701 | if (next_map != curr_map && not_in_kdp) { | |
10702 | vm_map_unlock_read(next_map); | |
10703 | } | |
10704 | } | |
10705 | next_entry = tmp_entry; | |
10706 | next_map = curr_map; | |
10707 | next_depth = curr_depth; | |
10708 | next_address = next_entry->vme_start; | |
10709 | next_skip = curr_skip; | |
10710 | next_offset = curr_offset; | |
10711 | next_offset += (next_address - curr_address); | |
10712 | next_max_above = MIN(next_max_above, curr_max_above); | |
10713 | next_max_above = MIN(next_max_above, | |
10714 | next_entry->vme_end - next_address); | |
10715 | next_max_below = MIN(next_max_below, curr_max_below); | |
10716 | next_max_below = MIN(next_max_below, | |
10717 | next_address - next_entry->vme_start); | |
10718 | } | |
10719 | ||
10720 | /* | |
10721 | * "curr_max_{above,below}" allow us to keep track of the | |
10722 | * portion of the submap that is actually mapped at this level: | |
10723 | * the rest of that submap is irrelevant to us, since it's not | |
10724 | * mapped here. | |
10725 | * The relevant portion of the map starts at | |
10726 | * "curr_entry->offset" up to the size of "curr_entry". | |
10727 | */ | |
10728 | curr_max_above = MIN(curr_max_above, | |
10729 | curr_entry->vme_end - curr_address); | |
10730 | curr_max_below = MIN(curr_max_below, | |
10731 | curr_address - curr_entry->vme_start); | |
10732 | ||
10733 | if (!curr_entry->is_sub_map || | |
10734 | curr_depth >= user_max_depth) { | |
10735 | /* | |
10736 | * We hit a leaf map or we reached the maximum depth | |
10737 | * we could, so stop looking. Keep the current map | |
10738 | * locked. | |
10739 | */ | |
10740 | break; | |
10741 | } | |
10742 | ||
10743 | /* | |
10744 | * Get down to the next submap level. | |
10745 | */ | |
10746 | ||
10747 | /* | |
10748 | * Lock the next level and unlock the current level, | |
10749 | * unless we need to keep it locked to access the "next_entry" | |
10750 | * later. | |
10751 | */ | |
10752 | if (not_in_kdp) { | |
10753 | vm_map_lock_read(curr_entry->object.sub_map); | |
10754 | } | |
10755 | if (curr_map == next_map) { | |
10756 | /* keep "next_map" locked in case we need it */ | |
10757 | } else { | |
10758 | /* release this map */ | |
10759 | if (not_in_kdp) | |
10760 | vm_map_unlock_read(curr_map); | |
10761 | } | |
10762 | ||
10763 | /* | |
10764 | * Adjust the offset. "curr_entry" maps the submap | |
10765 | * at relative address "curr_entry->vme_start" in the | |
10766 | * curr_map but skips the first "curr_entry->offset" | |
10767 | * bytes of the submap. | |
10768 | * "curr_offset" always represents the offset of a virtual | |
10769 | * address in the curr_map relative to the absolute address | |
10770 | * space (i.e. the top-level VM map). | |
10771 | */ | |
10772 | curr_offset += | |
10773 | (curr_entry->offset - curr_entry->vme_start); | |
10774 | curr_address = user_address + curr_offset; | |
10775 | /* switch to the submap */ | |
10776 | curr_map = curr_entry->object.sub_map; | |
10777 | curr_depth++; | |
10778 | curr_entry = NULL; | |
10779 | } | |
10780 | ||
10781 | if (curr_entry == NULL) { | |
10782 | /* no VM region contains the address... */ | |
10783 | if (next_entry == NULL) { | |
10784 | /* ... and no VM region follows it either */ | |
10785 | return KERN_INVALID_ADDRESS; | |
10786 | } | |
10787 | /* ... gather info about the next VM region */ | |
10788 | curr_entry = next_entry; | |
10789 | curr_map = next_map; /* still locked ... */ | |
10790 | curr_address = next_address; | |
10791 | curr_skip = next_skip; | |
10792 | curr_offset = next_offset; | |
10793 | curr_depth = next_depth; | |
10794 | curr_max_above = next_max_above; | |
10795 | curr_max_below = next_max_below; | |
10796 | if (curr_map == map) { | |
10797 | user_address = curr_address; | |
10798 | } | |
10799 | } else { | |
10800 | /* we won't need "next_entry" after all */ | |
10801 | if (next_entry != NULL) { | |
10802 | /* release "next_map" */ | |
10803 | if (next_map != curr_map && not_in_kdp) { | |
10804 | vm_map_unlock_read(next_map); | |
10805 | } | |
10806 | } | |
10807 | } | |
10808 | next_entry = NULL; | |
10809 | next_map = NULL; | |
10810 | next_offset = 0; | |
10811 | next_skip = 0; | |
10812 | next_depth = 0; | |
10813 | next_max_below = -1; | |
10814 | next_max_above = -1; | |
10815 | ||
10816 | *nesting_depth = curr_depth; | |
10817 | *size = curr_max_above + curr_max_below; | |
10818 | *address = user_address + curr_skip - curr_max_below; | |
10819 | ||
10820 | // LP64todo: all the current tools are 32bit, obviously never worked for 64b | |
10821 | // so probably should be a real 32b ID vs. ptr. | |
10822 | // Current users just check for equality | |
10823 | #define INFO_MAKE_OBJECT_ID(p) ((uint32_t)(uintptr_t)VM_KERNEL_ADDRPERM(p)) | |
10824 | ||
10825 | if (look_for_pages) { | |
10826 | submap_info->user_tag = curr_entry->alias; | |
10827 | submap_info->offset = curr_entry->offset; | |
10828 | submap_info->protection = curr_entry->protection; | |
10829 | submap_info->inheritance = curr_entry->inheritance; | |
10830 | submap_info->max_protection = curr_entry->max_protection; | |
10831 | submap_info->behavior = curr_entry->behavior; | |
10832 | submap_info->user_wired_count = curr_entry->user_wired_count; | |
10833 | submap_info->is_submap = curr_entry->is_sub_map; | |
10834 | submap_info->object_id = INFO_MAKE_OBJECT_ID(curr_entry->object.vm_object); | |
10835 | } else { | |
10836 | short_info->user_tag = curr_entry->alias; | |
10837 | short_info->offset = curr_entry->offset; | |
10838 | short_info->protection = curr_entry->protection; | |
10839 | short_info->inheritance = curr_entry->inheritance; | |
10840 | short_info->max_protection = curr_entry->max_protection; | |
10841 | short_info->behavior = curr_entry->behavior; | |
10842 | short_info->user_wired_count = curr_entry->user_wired_count; | |
10843 | short_info->is_submap = curr_entry->is_sub_map; | |
10844 | short_info->object_id = INFO_MAKE_OBJECT_ID(curr_entry->object.vm_object); | |
10845 | } | |
10846 | ||
10847 | extended.pages_resident = 0; | |
10848 | extended.pages_swapped_out = 0; | |
10849 | extended.pages_shared_now_private = 0; | |
10850 | extended.pages_dirtied = 0; | |
10851 | extended.pages_reusable = 0; | |
10852 | extended.external_pager = 0; | |
10853 | extended.shadow_depth = 0; | |
10854 | ||
10855 | if (not_in_kdp) { | |
10856 | if (!curr_entry->is_sub_map) { | |
10857 | vm_map_offset_t range_start, range_end; | |
10858 | range_start = MAX((curr_address - curr_max_below), | |
10859 | curr_entry->vme_start); | |
10860 | range_end = MIN((curr_address + curr_max_above), | |
10861 | curr_entry->vme_end); | |
10862 | vm_map_region_walk(curr_map, | |
10863 | range_start, | |
10864 | curr_entry, | |
10865 | (curr_entry->offset + | |
10866 | (range_start - | |
10867 | curr_entry->vme_start)), | |
10868 | range_end - range_start, | |
10869 | &extended, | |
10870 | look_for_pages, VM_REGION_EXTENDED_INFO_COUNT); | |
10871 | if (extended.external_pager && | |
10872 | extended.ref_count == 2 && | |
10873 | extended.share_mode == SM_SHARED) { | |
10874 | extended.share_mode = SM_PRIVATE; | |
10875 | } | |
10876 | } else { | |
10877 | if (curr_entry->use_pmap) { | |
10878 | extended.share_mode = SM_TRUESHARED; | |
10879 | } else { | |
10880 | extended.share_mode = SM_PRIVATE; | |
10881 | } | |
10882 | extended.ref_count = | |
10883 | curr_entry->object.sub_map->ref_count; | |
10884 | } | |
10885 | } | |
10886 | ||
10887 | if (look_for_pages) { | |
10888 | submap_info->pages_resident = extended.pages_resident; | |
10889 | submap_info->pages_swapped_out = extended.pages_swapped_out; | |
10890 | submap_info->pages_shared_now_private = | |
10891 | extended.pages_shared_now_private; | |
10892 | submap_info->pages_dirtied = extended.pages_dirtied; | |
10893 | submap_info->external_pager = extended.external_pager; | |
10894 | submap_info->shadow_depth = extended.shadow_depth; | |
10895 | submap_info->share_mode = extended.share_mode; | |
10896 | submap_info->ref_count = extended.ref_count; | |
10897 | ||
10898 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { | |
10899 | submap_info->pages_reusable = extended.pages_reusable; | |
10900 | } | |
10901 | } else { | |
10902 | short_info->external_pager = extended.external_pager; | |
10903 | short_info->shadow_depth = extended.shadow_depth; | |
10904 | short_info->share_mode = extended.share_mode; | |
10905 | short_info->ref_count = extended.ref_count; | |
10906 | } | |
10907 | ||
10908 | if (not_in_kdp) { | |
10909 | vm_map_unlock_read(curr_map); | |
10910 | } | |
10911 | ||
10912 | return KERN_SUCCESS; | |
10913 | } | |
10914 | ||
10915 | /* | |
10916 | * vm_region: | |
10917 | * | |
10918 | * User call to obtain information about a region in | |
10919 | * a task's address map. Currently, only one flavor is | |
10920 | * supported. | |
10921 | * | |
10922 | * XXX The reserved and behavior fields cannot be filled | |
10923 | * in until the vm merge from the IK is completed, and | |
10924 | * vm_reserve is implemented. | |
10925 | */ | |
10926 | ||
10927 | kern_return_t | |
10928 | vm_map_region( | |
10929 | vm_map_t map, | |
10930 | vm_map_offset_t *address, /* IN/OUT */ | |
10931 | vm_map_size_t *size, /* OUT */ | |
10932 | vm_region_flavor_t flavor, /* IN */ | |
10933 | vm_region_info_t info, /* OUT */ | |
10934 | mach_msg_type_number_t *count, /* IN/OUT */ | |
10935 | mach_port_t *object_name) /* OUT */ | |
10936 | { | |
10937 | vm_map_entry_t tmp_entry; | |
10938 | vm_map_entry_t entry; | |
10939 | vm_map_offset_t start; | |
10940 | ||
10941 | if (map == VM_MAP_NULL) | |
10942 | return(KERN_INVALID_ARGUMENT); | |
10943 | ||
10944 | switch (flavor) { | |
10945 | ||
10946 | case VM_REGION_BASIC_INFO: | |
10947 | /* legacy for old 32-bit objects info */ | |
10948 | { | |
10949 | vm_region_basic_info_t basic; | |
10950 | ||
10951 | if (*count < VM_REGION_BASIC_INFO_COUNT) | |
10952 | return(KERN_INVALID_ARGUMENT); | |
10953 | ||
10954 | basic = (vm_region_basic_info_t) info; | |
10955 | *count = VM_REGION_BASIC_INFO_COUNT; | |
10956 | ||
10957 | vm_map_lock_read(map); | |
10958 | ||
10959 | start = *address; | |
10960 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
10961 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
10962 | vm_map_unlock_read(map); | |
10963 | return(KERN_INVALID_ADDRESS); | |
10964 | } | |
10965 | } else { | |
10966 | entry = tmp_entry; | |
10967 | } | |
10968 | ||
10969 | start = entry->vme_start; | |
10970 | ||
10971 | basic->offset = (uint32_t)entry->offset; | |
10972 | basic->protection = entry->protection; | |
10973 | basic->inheritance = entry->inheritance; | |
10974 | basic->max_protection = entry->max_protection; | |
10975 | basic->behavior = entry->behavior; | |
10976 | basic->user_wired_count = entry->user_wired_count; | |
10977 | basic->reserved = entry->is_sub_map; | |
10978 | *address = start; | |
10979 | *size = (entry->vme_end - start); | |
10980 | ||
10981 | if (object_name) *object_name = IP_NULL; | |
10982 | if (entry->is_sub_map) { | |
10983 | basic->shared = FALSE; | |
10984 | } else { | |
10985 | basic->shared = entry->is_shared; | |
10986 | } | |
10987 | ||
10988 | vm_map_unlock_read(map); | |
10989 | return(KERN_SUCCESS); | |
10990 | } | |
10991 | ||
10992 | case VM_REGION_BASIC_INFO_64: | |
10993 | { | |
10994 | vm_region_basic_info_64_t basic; | |
10995 | ||
10996 | if (*count < VM_REGION_BASIC_INFO_COUNT_64) | |
10997 | return(KERN_INVALID_ARGUMENT); | |
10998 | ||
10999 | basic = (vm_region_basic_info_64_t) info; | |
11000 | *count = VM_REGION_BASIC_INFO_COUNT_64; | |
11001 | ||
11002 | vm_map_lock_read(map); | |
11003 | ||
11004 | start = *address; | |
11005 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
11006 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
11007 | vm_map_unlock_read(map); | |
11008 | return(KERN_INVALID_ADDRESS); | |
11009 | } | |
11010 | } else { | |
11011 | entry = tmp_entry; | |
11012 | } | |
11013 | ||
11014 | start = entry->vme_start; | |
11015 | ||
11016 | basic->offset = entry->offset; | |
11017 | basic->protection = entry->protection; | |
11018 | basic->inheritance = entry->inheritance; | |
11019 | basic->max_protection = entry->max_protection; | |
11020 | basic->behavior = entry->behavior; | |
11021 | basic->user_wired_count = entry->user_wired_count; | |
11022 | basic->reserved = entry->is_sub_map; | |
11023 | *address = start; | |
11024 | *size = (entry->vme_end - start); | |
11025 | ||
11026 | if (object_name) *object_name = IP_NULL; | |
11027 | if (entry->is_sub_map) { | |
11028 | basic->shared = FALSE; | |
11029 | } else { | |
11030 | basic->shared = entry->is_shared; | |
11031 | } | |
11032 | ||
11033 | vm_map_unlock_read(map); | |
11034 | return(KERN_SUCCESS); | |
11035 | } | |
11036 | case VM_REGION_EXTENDED_INFO: | |
11037 | if (*count < VM_REGION_EXTENDED_INFO_COUNT) | |
11038 | return(KERN_INVALID_ARGUMENT); | |
11039 | /*fallthru*/ | |
11040 | case VM_REGION_EXTENDED_INFO__legacy: | |
11041 | if (*count < VM_REGION_EXTENDED_INFO_COUNT__legacy) | |
11042 | return KERN_INVALID_ARGUMENT; | |
11043 | ||
11044 | { | |
11045 | vm_region_extended_info_t extended; | |
11046 | mach_msg_type_number_t original_count; | |
11047 | ||
11048 | extended = (vm_region_extended_info_t) info; | |
11049 | ||
11050 | vm_map_lock_read(map); | |
11051 | ||
11052 | start = *address; | |
11053 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
11054 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
11055 | vm_map_unlock_read(map); | |
11056 | return(KERN_INVALID_ADDRESS); | |
11057 | } | |
11058 | } else { | |
11059 | entry = tmp_entry; | |
11060 | } | |
11061 | start = entry->vme_start; | |
11062 | ||
11063 | extended->protection = entry->protection; | |
11064 | extended->user_tag = entry->alias; | |
11065 | extended->pages_resident = 0; | |
11066 | extended->pages_swapped_out = 0; | |
11067 | extended->pages_shared_now_private = 0; | |
11068 | extended->pages_dirtied = 0; | |
11069 | extended->external_pager = 0; | |
11070 | extended->shadow_depth = 0; | |
11071 | ||
11072 | original_count = *count; | |
11073 | if (flavor == VM_REGION_EXTENDED_INFO__legacy) { | |
11074 | *count = VM_REGION_EXTENDED_INFO_COUNT__legacy; | |
11075 | } else { | |
11076 | extended->pages_reusable = 0; | |
11077 | *count = VM_REGION_EXTENDED_INFO_COUNT; | |
11078 | } | |
11079 | ||
11080 | vm_map_region_walk(map, start, entry, entry->offset, entry->vme_end - start, extended, TRUE, *count); | |
11081 | ||
11082 | if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED) | |
11083 | extended->share_mode = SM_PRIVATE; | |
11084 | ||
11085 | if (object_name) | |
11086 | *object_name = IP_NULL; | |
11087 | *address = start; | |
11088 | *size = (entry->vme_end - start); | |
11089 | ||
11090 | vm_map_unlock_read(map); | |
11091 | return(KERN_SUCCESS); | |
11092 | } | |
11093 | case VM_REGION_TOP_INFO: | |
11094 | { | |
11095 | vm_region_top_info_t top; | |
11096 | ||
11097 | if (*count < VM_REGION_TOP_INFO_COUNT) | |
11098 | return(KERN_INVALID_ARGUMENT); | |
11099 | ||
11100 | top = (vm_region_top_info_t) info; | |
11101 | *count = VM_REGION_TOP_INFO_COUNT; | |
11102 | ||
11103 | vm_map_lock_read(map); | |
11104 | ||
11105 | start = *address; | |
11106 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
11107 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
11108 | vm_map_unlock_read(map); | |
11109 | return(KERN_INVALID_ADDRESS); | |
11110 | } | |
11111 | } else { | |
11112 | entry = tmp_entry; | |
11113 | ||
11114 | } | |
11115 | start = entry->vme_start; | |
11116 | ||
11117 | top->private_pages_resident = 0; | |
11118 | top->shared_pages_resident = 0; | |
11119 | ||
11120 | vm_map_region_top_walk(entry, top); | |
11121 | ||
11122 | if (object_name) | |
11123 | *object_name = IP_NULL; | |
11124 | *address = start; | |
11125 | *size = (entry->vme_end - start); | |
11126 | ||
11127 | vm_map_unlock_read(map); | |
11128 | return(KERN_SUCCESS); | |
11129 | } | |
11130 | default: | |
11131 | return(KERN_INVALID_ARGUMENT); | |
11132 | } | |
11133 | } | |
11134 | ||
11135 | #define OBJ_RESIDENT_COUNT(obj, entry_size) \ | |
11136 | MIN((entry_size), \ | |
11137 | ((obj)->all_reusable ? \ | |
11138 | (obj)->wired_page_count : \ | |
11139 | (obj)->resident_page_count - (obj)->reusable_page_count)) | |
11140 | ||
11141 | void | |
11142 | vm_map_region_top_walk( | |
11143 | vm_map_entry_t entry, | |
11144 | vm_region_top_info_t top) | |
11145 | { | |
11146 | ||
11147 | if (entry->object.vm_object == 0 || entry->is_sub_map) { | |
11148 | top->share_mode = SM_EMPTY; | |
11149 | top->ref_count = 0; | |
11150 | top->obj_id = 0; | |
11151 | return; | |
11152 | } | |
11153 | ||
11154 | { | |
11155 | struct vm_object *obj, *tmp_obj; | |
11156 | int ref_count; | |
11157 | uint32_t entry_size; | |
11158 | ||
11159 | entry_size = (uint32_t) ((entry->vme_end - entry->vme_start) / PAGE_SIZE_64); | |
11160 | ||
11161 | obj = entry->object.vm_object; | |
11162 | ||
11163 | vm_object_lock(obj); | |
11164 | ||
11165 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
11166 | ref_count--; | |
11167 | ||
11168 | assert(obj->reusable_page_count <= obj->resident_page_count); | |
11169 | if (obj->shadow) { | |
11170 | if (ref_count == 1) | |
11171 | top->private_pages_resident = | |
11172 | OBJ_RESIDENT_COUNT(obj, entry_size); | |
11173 | else | |
11174 | top->shared_pages_resident = | |
11175 | OBJ_RESIDENT_COUNT(obj, entry_size); | |
11176 | top->ref_count = ref_count; | |
11177 | top->share_mode = SM_COW; | |
11178 | ||
11179 | while ((tmp_obj = obj->shadow)) { | |
11180 | vm_object_lock(tmp_obj); | |
11181 | vm_object_unlock(obj); | |
11182 | obj = tmp_obj; | |
11183 | ||
11184 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
11185 | ref_count--; | |
11186 | ||
11187 | assert(obj->reusable_page_count <= obj->resident_page_count); | |
11188 | top->shared_pages_resident += | |
11189 | OBJ_RESIDENT_COUNT(obj, entry_size); | |
11190 | top->ref_count += ref_count - 1; | |
11191 | } | |
11192 | } else { | |
11193 | if (entry->superpage_size) { | |
11194 | top->share_mode = SM_LARGE_PAGE; | |
11195 | top->shared_pages_resident = 0; | |
11196 | top->private_pages_resident = entry_size; | |
11197 | } else if (entry->needs_copy) { | |
11198 | top->share_mode = SM_COW; | |
11199 | top->shared_pages_resident = | |
11200 | OBJ_RESIDENT_COUNT(obj, entry_size); | |
11201 | } else { | |
11202 | if (ref_count == 1 || | |
11203 | (ref_count == 2 && !(obj->pager_trusted) && !(obj->internal))) { | |
11204 | top->share_mode = SM_PRIVATE; | |
11205 | top->private_pages_resident = | |
11206 | OBJ_RESIDENT_COUNT(obj, | |
11207 | entry_size); | |
11208 | } else { | |
11209 | top->share_mode = SM_SHARED; | |
11210 | top->shared_pages_resident = | |
11211 | OBJ_RESIDENT_COUNT(obj, | |
11212 | entry_size); | |
11213 | } | |
11214 | } | |
11215 | top->ref_count = ref_count; | |
11216 | } | |
11217 | /* XXX K64: obj_id will be truncated */ | |
11218 | top->obj_id = (unsigned int) (uintptr_t)VM_KERNEL_ADDRPERM(obj); | |
11219 | ||
11220 | vm_object_unlock(obj); | |
11221 | } | |
11222 | } | |
11223 | ||
11224 | void | |
11225 | vm_map_region_walk( | |
11226 | vm_map_t map, | |
11227 | vm_map_offset_t va, | |
11228 | vm_map_entry_t entry, | |
11229 | vm_object_offset_t offset, | |
11230 | vm_object_size_t range, | |
11231 | vm_region_extended_info_t extended, | |
11232 | boolean_t look_for_pages, | |
11233 | mach_msg_type_number_t count) | |
11234 | { | |
11235 | register struct vm_object *obj, *tmp_obj; | |
11236 | register vm_map_offset_t last_offset; | |
11237 | register int i; | |
11238 | register int ref_count; | |
11239 | struct vm_object *shadow_object; | |
11240 | int shadow_depth; | |
11241 | ||
11242 | if ((entry->object.vm_object == 0) || | |
11243 | (entry->is_sub_map) || | |
11244 | (entry->object.vm_object->phys_contiguous && | |
11245 | !entry->superpage_size)) { | |
11246 | extended->share_mode = SM_EMPTY; | |
11247 | extended->ref_count = 0; | |
11248 | return; | |
11249 | } | |
11250 | ||
11251 | if (entry->superpage_size) { | |
11252 | extended->shadow_depth = 0; | |
11253 | extended->share_mode = SM_LARGE_PAGE; | |
11254 | extended->ref_count = 1; | |
11255 | extended->external_pager = 0; | |
11256 | extended->pages_resident = (unsigned int)(range >> PAGE_SHIFT); | |
11257 | extended->shadow_depth = 0; | |
11258 | return; | |
11259 | } | |
11260 | ||
11261 | { | |
11262 | obj = entry->object.vm_object; | |
11263 | ||
11264 | vm_object_lock(obj); | |
11265 | ||
11266 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
11267 | ref_count--; | |
11268 | ||
11269 | if (look_for_pages) { | |
11270 | for (last_offset = offset + range; | |
11271 | offset < last_offset; | |
11272 | offset += PAGE_SIZE_64, va += PAGE_SIZE) { | |
11273 | vm_map_region_look_for_page(map, va, obj, | |
11274 | offset, ref_count, | |
11275 | 0, extended, count); | |
11276 | } | |
11277 | } else { | |
11278 | shadow_object = obj->shadow; | |
11279 | shadow_depth = 0; | |
11280 | ||
11281 | if ( !(obj->pager_trusted) && !(obj->internal)) | |
11282 | extended->external_pager = 1; | |
11283 | ||
11284 | if (shadow_object != VM_OBJECT_NULL) { | |
11285 | vm_object_lock(shadow_object); | |
11286 | for (; | |
11287 | shadow_object != VM_OBJECT_NULL; | |
11288 | shadow_depth++) { | |
11289 | vm_object_t next_shadow; | |
11290 | ||
11291 | if ( !(shadow_object->pager_trusted) && | |
11292 | !(shadow_object->internal)) | |
11293 | extended->external_pager = 1; | |
11294 | ||
11295 | next_shadow = shadow_object->shadow; | |
11296 | if (next_shadow) { | |
11297 | vm_object_lock(next_shadow); | |
11298 | } | |
11299 | vm_object_unlock(shadow_object); | |
11300 | shadow_object = next_shadow; | |
11301 | } | |
11302 | } | |
11303 | extended->shadow_depth = shadow_depth; | |
11304 | } | |
11305 | ||
11306 | if (extended->shadow_depth || entry->needs_copy) | |
11307 | extended->share_mode = SM_COW; | |
11308 | else { | |
11309 | if (ref_count == 1) | |
11310 | extended->share_mode = SM_PRIVATE; | |
11311 | else { | |
11312 | if (obj->true_share) | |
11313 | extended->share_mode = SM_TRUESHARED; | |
11314 | else | |
11315 | extended->share_mode = SM_SHARED; | |
11316 | } | |
11317 | } | |
11318 | extended->ref_count = ref_count - extended->shadow_depth; | |
11319 | ||
11320 | for (i = 0; i < extended->shadow_depth; i++) { | |
11321 | if ((tmp_obj = obj->shadow) == 0) | |
11322 | break; | |
11323 | vm_object_lock(tmp_obj); | |
11324 | vm_object_unlock(obj); | |
11325 | ||
11326 | if ((ref_count = tmp_obj->ref_count) > 1 && tmp_obj->paging_in_progress) | |
11327 | ref_count--; | |
11328 | ||
11329 | extended->ref_count += ref_count; | |
11330 | obj = tmp_obj; | |
11331 | } | |
11332 | vm_object_unlock(obj); | |
11333 | ||
11334 | if (extended->share_mode == SM_SHARED) { | |
11335 | register vm_map_entry_t cur; | |
11336 | register vm_map_entry_t last; | |
11337 | int my_refs; | |
11338 | ||
11339 | obj = entry->object.vm_object; | |
11340 | last = vm_map_to_entry(map); | |
11341 | my_refs = 0; | |
11342 | ||
11343 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
11344 | ref_count--; | |
11345 | for (cur = vm_map_first_entry(map); cur != last; cur = cur->vme_next) | |
11346 | my_refs += vm_map_region_count_obj_refs(cur, obj); | |
11347 | ||
11348 | if (my_refs == ref_count) | |
11349 | extended->share_mode = SM_PRIVATE_ALIASED; | |
11350 | else if (my_refs > 1) | |
11351 | extended->share_mode = SM_SHARED_ALIASED; | |
11352 | } | |
11353 | } | |
11354 | } | |
11355 | ||
11356 | ||
11357 | /* object is locked on entry and locked on return */ | |
11358 | ||
11359 | ||
11360 | static void | |
11361 | vm_map_region_look_for_page( | |
11362 | __unused vm_map_t map, | |
11363 | __unused vm_map_offset_t va, | |
11364 | vm_object_t object, | |
11365 | vm_object_offset_t offset, | |
11366 | int max_refcnt, | |
11367 | int depth, | |
11368 | vm_region_extended_info_t extended, | |
11369 | mach_msg_type_number_t count) | |
11370 | { | |
11371 | register vm_page_t p; | |
11372 | register vm_object_t shadow; | |
11373 | register int ref_count; | |
11374 | vm_object_t caller_object; | |
11375 | kern_return_t kr; | |
11376 | shadow = object->shadow; | |
11377 | caller_object = object; | |
11378 | ||
11379 | ||
11380 | while (TRUE) { | |
11381 | ||
11382 | if ( !(object->pager_trusted) && !(object->internal)) | |
11383 | extended->external_pager = 1; | |
11384 | ||
11385 | if ((p = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
11386 | if (shadow && (max_refcnt == 1)) | |
11387 | extended->pages_shared_now_private++; | |
11388 | ||
11389 | if (!p->fictitious && | |
11390 | (p->dirty || pmap_is_modified(p->phys_page))) | |
11391 | extended->pages_dirtied++; | |
11392 | else if (count >= VM_REGION_EXTENDED_INFO_COUNT) { | |
11393 | if (p->reusable || p->object->all_reusable) { | |
11394 | extended->pages_reusable++; | |
11395 | } | |
11396 | } | |
11397 | ||
11398 | extended->pages_resident++; | |
11399 | ||
11400 | if(object != caller_object) | |
11401 | vm_object_unlock(object); | |
11402 | ||
11403 | return; | |
11404 | } | |
11405 | #if MACH_PAGEMAP | |
11406 | if (object->existence_map) { | |
11407 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_EXISTS) { | |
11408 | ||
11409 | extended->pages_swapped_out++; | |
11410 | ||
11411 | if(object != caller_object) | |
11412 | vm_object_unlock(object); | |
11413 | ||
11414 | return; | |
11415 | } | |
11416 | } else | |
11417 | #endif /* MACH_PAGEMAP */ | |
11418 | if (object->internal && | |
11419 | object->alive && | |
11420 | !object->terminating && | |
11421 | object->pager_ready) { | |
11422 | ||
11423 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
11424 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, | |
11425 | offset) | |
11426 | == VM_EXTERNAL_STATE_EXISTS) { | |
11427 | /* the pager has that page */ | |
11428 | extended->pages_swapped_out++; | |
11429 | if (object != caller_object) | |
11430 | vm_object_unlock(object); | |
11431 | return; | |
11432 | } | |
11433 | } else { | |
11434 | memory_object_t pager; | |
11435 | ||
11436 | vm_object_paging_begin(object); | |
11437 | pager = object->pager; | |
11438 | vm_object_unlock(object); | |
11439 | ||
11440 | kr = memory_object_data_request( | |
11441 | pager, | |
11442 | offset + object->paging_offset, | |
11443 | 0, /* just poke the pager */ | |
11444 | VM_PROT_READ, | |
11445 | NULL); | |
11446 | ||
11447 | vm_object_lock(object); | |
11448 | vm_object_paging_end(object); | |
11449 | ||
11450 | if (kr == KERN_SUCCESS) { | |
11451 | /* the pager has that page */ | |
11452 | extended->pages_swapped_out++; | |
11453 | if (object != caller_object) | |
11454 | vm_object_unlock(object); | |
11455 | return; | |
11456 | } | |
11457 | } | |
11458 | } | |
11459 | ||
11460 | if (shadow) { | |
11461 | vm_object_lock(shadow); | |
11462 | ||
11463 | if ((ref_count = shadow->ref_count) > 1 && shadow->paging_in_progress) | |
11464 | ref_count--; | |
11465 | ||
11466 | if (++depth > extended->shadow_depth) | |
11467 | extended->shadow_depth = depth; | |
11468 | ||
11469 | if (ref_count > max_refcnt) | |
11470 | max_refcnt = ref_count; | |
11471 | ||
11472 | if(object != caller_object) | |
11473 | vm_object_unlock(object); | |
11474 | ||
11475 | offset = offset + object->vo_shadow_offset; | |
11476 | object = shadow; | |
11477 | shadow = object->shadow; | |
11478 | continue; | |
11479 | } | |
11480 | if(object != caller_object) | |
11481 | vm_object_unlock(object); | |
11482 | break; | |
11483 | } | |
11484 | } | |
11485 | ||
11486 | static int | |
11487 | vm_map_region_count_obj_refs( | |
11488 | vm_map_entry_t entry, | |
11489 | vm_object_t object) | |
11490 | { | |
11491 | register int ref_count; | |
11492 | register vm_object_t chk_obj; | |
11493 | register vm_object_t tmp_obj; | |
11494 | ||
11495 | if (entry->object.vm_object == 0) | |
11496 | return(0); | |
11497 | ||
11498 | if (entry->is_sub_map) | |
11499 | return(0); | |
11500 | else { | |
11501 | ref_count = 0; | |
11502 | ||
11503 | chk_obj = entry->object.vm_object; | |
11504 | vm_object_lock(chk_obj); | |
11505 | ||
11506 | while (chk_obj) { | |
11507 | if (chk_obj == object) | |
11508 | ref_count++; | |
11509 | tmp_obj = chk_obj->shadow; | |
11510 | if (tmp_obj) | |
11511 | vm_object_lock(tmp_obj); | |
11512 | vm_object_unlock(chk_obj); | |
11513 | ||
11514 | chk_obj = tmp_obj; | |
11515 | } | |
11516 | } | |
11517 | return(ref_count); | |
11518 | } | |
11519 | ||
11520 | ||
11521 | /* | |
11522 | * Routine: vm_map_simplify | |
11523 | * | |
11524 | * Description: | |
11525 | * Attempt to simplify the map representation in | |
11526 | * the vicinity of the given starting address. | |
11527 | * Note: | |
11528 | * This routine is intended primarily to keep the | |
11529 | * kernel maps more compact -- they generally don't | |
11530 | * benefit from the "expand a map entry" technology | |
11531 | * at allocation time because the adjacent entry | |
11532 | * is often wired down. | |
11533 | */ | |
11534 | void | |
11535 | vm_map_simplify_entry( | |
11536 | vm_map_t map, | |
11537 | vm_map_entry_t this_entry) | |
11538 | { | |
11539 | vm_map_entry_t prev_entry; | |
11540 | ||
11541 | counter(c_vm_map_simplify_entry_called++); | |
11542 | ||
11543 | prev_entry = this_entry->vme_prev; | |
11544 | ||
11545 | if ((this_entry != vm_map_to_entry(map)) && | |
11546 | (prev_entry != vm_map_to_entry(map)) && | |
11547 | ||
11548 | (prev_entry->vme_end == this_entry->vme_start) && | |
11549 | ||
11550 | (prev_entry->is_sub_map == this_entry->is_sub_map) && | |
11551 | (prev_entry->object.vm_object == this_entry->object.vm_object) && | |
11552 | ((prev_entry->offset + (prev_entry->vme_end - | |
11553 | prev_entry->vme_start)) | |
11554 | == this_entry->offset) && | |
11555 | ||
11556 | (prev_entry->behavior == this_entry->behavior) && | |
11557 | (prev_entry->needs_copy == this_entry->needs_copy) && | |
11558 | (prev_entry->protection == this_entry->protection) && | |
11559 | (prev_entry->max_protection == this_entry->max_protection) && | |
11560 | (prev_entry->inheritance == this_entry->inheritance) && | |
11561 | (prev_entry->use_pmap == this_entry->use_pmap) && | |
11562 | (prev_entry->alias == this_entry->alias) && | |
11563 | (prev_entry->no_cache == this_entry->no_cache) && | |
11564 | (prev_entry->permanent == this_entry->permanent) && | |
11565 | (prev_entry->map_aligned == this_entry->map_aligned) && | |
11566 | (prev_entry->zero_wired_pages == this_entry->zero_wired_pages) && | |
11567 | (prev_entry->used_for_jit == this_entry->used_for_jit) && | |
11568 | /* from_reserved_zone: OK if that field doesn't match */ | |
11569 | (prev_entry->iokit_acct == this_entry->iokit_acct) && | |
11570 | ||
11571 | (prev_entry->wired_count == this_entry->wired_count) && | |
11572 | (prev_entry->user_wired_count == this_entry->user_wired_count) && | |
11573 | ||
11574 | (prev_entry->in_transition == FALSE) && | |
11575 | (this_entry->in_transition == FALSE) && | |
11576 | (prev_entry->needs_wakeup == FALSE) && | |
11577 | (this_entry->needs_wakeup == FALSE) && | |
11578 | (prev_entry->is_shared == FALSE) && | |
11579 | (this_entry->is_shared == FALSE) && | |
11580 | (prev_entry->superpage_size == FALSE) && | |
11581 | (this_entry->superpage_size == FALSE) | |
11582 | ) { | |
11583 | vm_map_store_entry_unlink(map, prev_entry); | |
11584 | assert(prev_entry->vme_start < this_entry->vme_end); | |
11585 | if (prev_entry->map_aligned) | |
11586 | assert(VM_MAP_PAGE_ALIGNED(prev_entry->vme_start, | |
11587 | VM_MAP_PAGE_MASK(map))); | |
11588 | this_entry->vme_start = prev_entry->vme_start; | |
11589 | this_entry->offset = prev_entry->offset; | |
11590 | if (prev_entry->is_sub_map) { | |
11591 | vm_map_deallocate(prev_entry->object.sub_map); | |
11592 | } else { | |
11593 | vm_object_deallocate(prev_entry->object.vm_object); | |
11594 | } | |
11595 | vm_map_entry_dispose(map, prev_entry); | |
11596 | SAVE_HINT_MAP_WRITE(map, this_entry); | |
11597 | counter(c_vm_map_simplified++); | |
11598 | } | |
11599 | } | |
11600 | ||
11601 | void | |
11602 | vm_map_simplify( | |
11603 | vm_map_t map, | |
11604 | vm_map_offset_t start) | |
11605 | { | |
11606 | vm_map_entry_t this_entry; | |
11607 | ||
11608 | vm_map_lock(map); | |
11609 | if (vm_map_lookup_entry(map, start, &this_entry)) { | |
11610 | vm_map_simplify_entry(map, this_entry); | |
11611 | vm_map_simplify_entry(map, this_entry->vme_next); | |
11612 | } | |
11613 | counter(c_vm_map_simplify_called++); | |
11614 | vm_map_unlock(map); | |
11615 | } | |
11616 | ||
11617 | static void | |
11618 | vm_map_simplify_range( | |
11619 | vm_map_t map, | |
11620 | vm_map_offset_t start, | |
11621 | vm_map_offset_t end) | |
11622 | { | |
11623 | vm_map_entry_t entry; | |
11624 | ||
11625 | /* | |
11626 | * The map should be locked (for "write") by the caller. | |
11627 | */ | |
11628 | ||
11629 | if (start >= end) { | |
11630 | /* invalid address range */ | |
11631 | return; | |
11632 | } | |
11633 | ||
11634 | start = vm_map_trunc_page(start, | |
11635 | VM_MAP_PAGE_MASK(map)); | |
11636 | end = vm_map_round_page(end, | |
11637 | VM_MAP_PAGE_MASK(map)); | |
11638 | ||
11639 | if (!vm_map_lookup_entry(map, start, &entry)) { | |
11640 | /* "start" is not mapped and "entry" ends before "start" */ | |
11641 | if (entry == vm_map_to_entry(map)) { | |
11642 | /* start with first entry in the map */ | |
11643 | entry = vm_map_first_entry(map); | |
11644 | } else { | |
11645 | /* start with next entry */ | |
11646 | entry = entry->vme_next; | |
11647 | } | |
11648 | } | |
11649 | ||
11650 | while (entry != vm_map_to_entry(map) && | |
11651 | entry->vme_start <= end) { | |
11652 | /* try and coalesce "entry" with its previous entry */ | |
11653 | vm_map_simplify_entry(map, entry); | |
11654 | entry = entry->vme_next; | |
11655 | } | |
11656 | } | |
11657 | ||
11658 | ||
11659 | /* | |
11660 | * Routine: vm_map_machine_attribute | |
11661 | * Purpose: | |
11662 | * Provide machine-specific attributes to mappings, | |
11663 | * such as cachability etc. for machines that provide | |
11664 | * them. NUMA architectures and machines with big/strange | |
11665 | * caches will use this. | |
11666 | * Note: | |
11667 | * Responsibilities for locking and checking are handled here, | |
11668 | * everything else in the pmap module. If any non-volatile | |
11669 | * information must be kept, the pmap module should handle | |
11670 | * it itself. [This assumes that attributes do not | |
11671 | * need to be inherited, which seems ok to me] | |
11672 | */ | |
11673 | kern_return_t | |
11674 | vm_map_machine_attribute( | |
11675 | vm_map_t map, | |
11676 | vm_map_offset_t start, | |
11677 | vm_map_offset_t end, | |
11678 | vm_machine_attribute_t attribute, | |
11679 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
11680 | { | |
11681 | kern_return_t ret; | |
11682 | vm_map_size_t sync_size; | |
11683 | vm_map_entry_t entry; | |
11684 | ||
11685 | if (start < vm_map_min(map) || end > vm_map_max(map)) | |
11686 | return KERN_INVALID_ADDRESS; | |
11687 | ||
11688 | /* Figure how much memory we need to flush (in page increments) */ | |
11689 | sync_size = end - start; | |
11690 | ||
11691 | vm_map_lock(map); | |
11692 | ||
11693 | if (attribute != MATTR_CACHE) { | |
11694 | /* If we don't have to find physical addresses, we */ | |
11695 | /* don't have to do an explicit traversal here. */ | |
11696 | ret = pmap_attribute(map->pmap, start, end-start, | |
11697 | attribute, value); | |
11698 | vm_map_unlock(map); | |
11699 | return ret; | |
11700 | } | |
11701 | ||
11702 | ret = KERN_SUCCESS; /* Assume it all worked */ | |
11703 | ||
11704 | while(sync_size) { | |
11705 | if (vm_map_lookup_entry(map, start, &entry)) { | |
11706 | vm_map_size_t sub_size; | |
11707 | if((entry->vme_end - start) > sync_size) { | |
11708 | sub_size = sync_size; | |
11709 | sync_size = 0; | |
11710 | } else { | |
11711 | sub_size = entry->vme_end - start; | |
11712 | sync_size -= sub_size; | |
11713 | } | |
11714 | if(entry->is_sub_map) { | |
11715 | vm_map_offset_t sub_start; | |
11716 | vm_map_offset_t sub_end; | |
11717 | ||
11718 | sub_start = (start - entry->vme_start) | |
11719 | + entry->offset; | |
11720 | sub_end = sub_start + sub_size; | |
11721 | vm_map_machine_attribute( | |
11722 | entry->object.sub_map, | |
11723 | sub_start, | |
11724 | sub_end, | |
11725 | attribute, value); | |
11726 | } else { | |
11727 | if(entry->object.vm_object) { | |
11728 | vm_page_t m; | |
11729 | vm_object_t object; | |
11730 | vm_object_t base_object; | |
11731 | vm_object_t last_object; | |
11732 | vm_object_offset_t offset; | |
11733 | vm_object_offset_t base_offset; | |
11734 | vm_map_size_t range; | |
11735 | range = sub_size; | |
11736 | offset = (start - entry->vme_start) | |
11737 | + entry->offset; | |
11738 | base_offset = offset; | |
11739 | object = entry->object.vm_object; | |
11740 | base_object = object; | |
11741 | last_object = NULL; | |
11742 | ||
11743 | vm_object_lock(object); | |
11744 | ||
11745 | while (range) { | |
11746 | m = vm_page_lookup( | |
11747 | object, offset); | |
11748 | ||
11749 | if (m && !m->fictitious) { | |
11750 | ret = | |
11751 | pmap_attribute_cache_sync( | |
11752 | m->phys_page, | |
11753 | PAGE_SIZE, | |
11754 | attribute, value); | |
11755 | ||
11756 | } else if (object->shadow) { | |
11757 | offset = offset + object->vo_shadow_offset; | |
11758 | last_object = object; | |
11759 | object = object->shadow; | |
11760 | vm_object_lock(last_object->shadow); | |
11761 | vm_object_unlock(last_object); | |
11762 | continue; | |
11763 | } | |
11764 | range -= PAGE_SIZE; | |
11765 | ||
11766 | if (base_object != object) { | |
11767 | vm_object_unlock(object); | |
11768 | vm_object_lock(base_object); | |
11769 | object = base_object; | |
11770 | } | |
11771 | /* Bump to the next page */ | |
11772 | base_offset += PAGE_SIZE; | |
11773 | offset = base_offset; | |
11774 | } | |
11775 | vm_object_unlock(object); | |
11776 | } | |
11777 | } | |
11778 | start += sub_size; | |
11779 | } else { | |
11780 | vm_map_unlock(map); | |
11781 | return KERN_FAILURE; | |
11782 | } | |
11783 | ||
11784 | } | |
11785 | ||
11786 | vm_map_unlock(map); | |
11787 | ||
11788 | return ret; | |
11789 | } | |
11790 | ||
11791 | /* | |
11792 | * vm_map_behavior_set: | |
11793 | * | |
11794 | * Sets the paging reference behavior of the specified address | |
11795 | * range in the target map. Paging reference behavior affects | |
11796 | * how pagein operations resulting from faults on the map will be | |
11797 | * clustered. | |
11798 | */ | |
11799 | kern_return_t | |
11800 | vm_map_behavior_set( | |
11801 | vm_map_t map, | |
11802 | vm_map_offset_t start, | |
11803 | vm_map_offset_t end, | |
11804 | vm_behavior_t new_behavior) | |
11805 | { | |
11806 | register vm_map_entry_t entry; | |
11807 | vm_map_entry_t temp_entry; | |
11808 | ||
11809 | XPR(XPR_VM_MAP, | |
11810 | "vm_map_behavior_set, 0x%X start 0x%X end 0x%X behavior %d", | |
11811 | map, start, end, new_behavior, 0); | |
11812 | ||
11813 | if (start > end || | |
11814 | start < vm_map_min(map) || | |
11815 | end > vm_map_max(map)) { | |
11816 | return KERN_NO_SPACE; | |
11817 | } | |
11818 | ||
11819 | switch (new_behavior) { | |
11820 | ||
11821 | /* | |
11822 | * This first block of behaviors all set a persistent state on the specified | |
11823 | * memory range. All we have to do here is to record the desired behavior | |
11824 | * in the vm_map_entry_t's. | |
11825 | */ | |
11826 | ||
11827 | case VM_BEHAVIOR_DEFAULT: | |
11828 | case VM_BEHAVIOR_RANDOM: | |
11829 | case VM_BEHAVIOR_SEQUENTIAL: | |
11830 | case VM_BEHAVIOR_RSEQNTL: | |
11831 | case VM_BEHAVIOR_ZERO_WIRED_PAGES: | |
11832 | vm_map_lock(map); | |
11833 | ||
11834 | /* | |
11835 | * The entire address range must be valid for the map. | |
11836 | * Note that vm_map_range_check() does a | |
11837 | * vm_map_lookup_entry() internally and returns the | |
11838 | * entry containing the start of the address range if | |
11839 | * the entire range is valid. | |
11840 | */ | |
11841 | if (vm_map_range_check(map, start, end, &temp_entry)) { | |
11842 | entry = temp_entry; | |
11843 | vm_map_clip_start(map, entry, start); | |
11844 | } | |
11845 | else { | |
11846 | vm_map_unlock(map); | |
11847 | return(KERN_INVALID_ADDRESS); | |
11848 | } | |
11849 | ||
11850 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
11851 | vm_map_clip_end(map, entry, end); | |
11852 | if (entry->is_sub_map) { | |
11853 | assert(!entry->use_pmap); | |
11854 | } | |
11855 | ||
11856 | if( new_behavior == VM_BEHAVIOR_ZERO_WIRED_PAGES ) { | |
11857 | entry->zero_wired_pages = TRUE; | |
11858 | } else { | |
11859 | entry->behavior = new_behavior; | |
11860 | } | |
11861 | entry = entry->vme_next; | |
11862 | } | |
11863 | ||
11864 | vm_map_unlock(map); | |
11865 | break; | |
11866 | ||
11867 | /* | |
11868 | * The rest of these are different from the above in that they cause | |
11869 | * an immediate action to take place as opposed to setting a behavior that | |
11870 | * affects future actions. | |
11871 | */ | |
11872 | ||
11873 | case VM_BEHAVIOR_WILLNEED: | |
11874 | return vm_map_willneed(map, start, end); | |
11875 | ||
11876 | case VM_BEHAVIOR_DONTNEED: | |
11877 | return vm_map_msync(map, start, end - start, VM_SYNC_DEACTIVATE | VM_SYNC_CONTIGUOUS); | |
11878 | ||
11879 | case VM_BEHAVIOR_FREE: | |
11880 | return vm_map_msync(map, start, end - start, VM_SYNC_KILLPAGES | VM_SYNC_CONTIGUOUS); | |
11881 | ||
11882 | case VM_BEHAVIOR_REUSABLE: | |
11883 | return vm_map_reusable_pages(map, start, end); | |
11884 | ||
11885 | case VM_BEHAVIOR_REUSE: | |
11886 | return vm_map_reuse_pages(map, start, end); | |
11887 | ||
11888 | case VM_BEHAVIOR_CAN_REUSE: | |
11889 | return vm_map_can_reuse(map, start, end); | |
11890 | ||
11891 | default: | |
11892 | return(KERN_INVALID_ARGUMENT); | |
11893 | } | |
11894 | ||
11895 | return(KERN_SUCCESS); | |
11896 | } | |
11897 | ||
11898 | ||
11899 | /* | |
11900 | * Internals for madvise(MADV_WILLNEED) system call. | |
11901 | * | |
11902 | * The present implementation is to do a read-ahead if the mapping corresponds | |
11903 | * to a mapped regular file. If it's an anonymous mapping, then we do nothing | |
11904 | * and basically ignore the "advice" (which we are always free to do). | |
11905 | */ | |
11906 | ||
11907 | ||
11908 | static kern_return_t | |
11909 | vm_map_willneed( | |
11910 | vm_map_t map, | |
11911 | vm_map_offset_t start, | |
11912 | vm_map_offset_t end | |
11913 | ) | |
11914 | { | |
11915 | vm_map_entry_t entry; | |
11916 | vm_object_t object; | |
11917 | memory_object_t pager; | |
11918 | struct vm_object_fault_info fault_info; | |
11919 | kern_return_t kr; | |
11920 | vm_object_size_t len; | |
11921 | vm_object_offset_t offset; | |
11922 | ||
11923 | /* | |
11924 | * Fill in static values in fault_info. Several fields get ignored by the code | |
11925 | * we call, but we'll fill them in anyway since uninitialized fields are bad | |
11926 | * when it comes to future backwards compatibility. | |
11927 | */ | |
11928 | ||
11929 | fault_info.interruptible = THREAD_UNINT; /* ignored value */ | |
11930 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
11931 | fault_info.no_cache = FALSE; /* ignored value */ | |
11932 | fault_info.stealth = TRUE; | |
11933 | fault_info.io_sync = FALSE; | |
11934 | fault_info.cs_bypass = FALSE; | |
11935 | fault_info.mark_zf_absent = FALSE; | |
11936 | fault_info.batch_pmap_op = FALSE; | |
11937 | ||
11938 | /* | |
11939 | * The MADV_WILLNEED operation doesn't require any changes to the | |
11940 | * vm_map_entry_t's, so the read lock is sufficient. | |
11941 | */ | |
11942 | ||
11943 | vm_map_lock_read(map); | |
11944 | ||
11945 | /* | |
11946 | * The madvise semantics require that the address range be fully | |
11947 | * allocated with no holes. Otherwise, we're required to return | |
11948 | * an error. | |
11949 | */ | |
11950 | ||
11951 | if (! vm_map_range_check(map, start, end, &entry)) { | |
11952 | vm_map_unlock_read(map); | |
11953 | return KERN_INVALID_ADDRESS; | |
11954 | } | |
11955 | ||
11956 | /* | |
11957 | * Examine each vm_map_entry_t in the range. | |
11958 | */ | |
11959 | for (; entry != vm_map_to_entry(map) && start < end; ) { | |
11960 | ||
11961 | /* | |
11962 | * The first time through, the start address could be anywhere | |
11963 | * within the vm_map_entry we found. So adjust the offset to | |
11964 | * correspond. After that, the offset will always be zero to | |
11965 | * correspond to the beginning of the current vm_map_entry. | |
11966 | */ | |
11967 | offset = (start - entry->vme_start) + entry->offset; | |
11968 | ||
11969 | /* | |
11970 | * Set the length so we don't go beyond the end of the | |
11971 | * map_entry or beyond the end of the range we were given. | |
11972 | * This range could span also multiple map entries all of which | |
11973 | * map different files, so make sure we only do the right amount | |
11974 | * of I/O for each object. Note that it's possible for there | |
11975 | * to be multiple map entries all referring to the same object | |
11976 | * but with different page permissions, but it's not worth | |
11977 | * trying to optimize that case. | |
11978 | */ | |
11979 | len = MIN(entry->vme_end - start, end - start); | |
11980 | ||
11981 | if ((vm_size_t) len != len) { | |
11982 | /* 32-bit overflow */ | |
11983 | len = (vm_size_t) (0 - PAGE_SIZE); | |
11984 | } | |
11985 | fault_info.cluster_size = (vm_size_t) len; | |
11986 | fault_info.lo_offset = offset; | |
11987 | fault_info.hi_offset = offset + len; | |
11988 | fault_info.user_tag = entry->alias; | |
11989 | fault_info.pmap_options = 0; | |
11990 | if (entry->iokit_acct || | |
11991 | (!entry->is_sub_map && !entry->use_pmap)) { | |
11992 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
11993 | } | |
11994 | ||
11995 | /* | |
11996 | * If there's no read permission to this mapping, then just | |
11997 | * skip it. | |
11998 | */ | |
11999 | if ((entry->protection & VM_PROT_READ) == 0) { | |
12000 | entry = entry->vme_next; | |
12001 | start = entry->vme_start; | |
12002 | continue; | |
12003 | } | |
12004 | ||
12005 | /* | |
12006 | * Find the file object backing this map entry. If there is | |
12007 | * none, then we simply ignore the "will need" advice for this | |
12008 | * entry and go on to the next one. | |
12009 | */ | |
12010 | if ((object = find_vnode_object(entry)) == VM_OBJECT_NULL) { | |
12011 | entry = entry->vme_next; | |
12012 | start = entry->vme_start; | |
12013 | continue; | |
12014 | } | |
12015 | ||
12016 | /* | |
12017 | * The data_request() could take a long time, so let's | |
12018 | * release the map lock to avoid blocking other threads. | |
12019 | */ | |
12020 | vm_map_unlock_read(map); | |
12021 | ||
12022 | vm_object_paging_begin(object); | |
12023 | pager = object->pager; | |
12024 | vm_object_unlock(object); | |
12025 | ||
12026 | /* | |
12027 | * Get the data from the object asynchronously. | |
12028 | * | |
12029 | * Note that memory_object_data_request() places limits on the | |
12030 | * amount of I/O it will do. Regardless of the len we | |
12031 | * specified, it won't do more than MAX_UPL_TRANSFER_BYTES and it | |
12032 | * silently truncates the len to that size. This isn't | |
12033 | * necessarily bad since madvise shouldn't really be used to | |
12034 | * page in unlimited amounts of data. Other Unix variants | |
12035 | * limit the willneed case as well. If this turns out to be an | |
12036 | * issue for developers, then we can always adjust the policy | |
12037 | * here and still be backwards compatible since this is all | |
12038 | * just "advice". | |
12039 | */ | |
12040 | kr = memory_object_data_request( | |
12041 | pager, | |
12042 | offset + object->paging_offset, | |
12043 | 0, /* ignored */ | |
12044 | VM_PROT_READ, | |
12045 | (memory_object_fault_info_t)&fault_info); | |
12046 | ||
12047 | vm_object_lock(object); | |
12048 | vm_object_paging_end(object); | |
12049 | vm_object_unlock(object); | |
12050 | ||
12051 | /* | |
12052 | * If we couldn't do the I/O for some reason, just give up on | |
12053 | * the madvise. We still return success to the user since | |
12054 | * madvise isn't supposed to fail when the advice can't be | |
12055 | * taken. | |
12056 | */ | |
12057 | if (kr != KERN_SUCCESS) { | |
12058 | return KERN_SUCCESS; | |
12059 | } | |
12060 | ||
12061 | start += len; | |
12062 | if (start >= end) { | |
12063 | /* done */ | |
12064 | return KERN_SUCCESS; | |
12065 | } | |
12066 | ||
12067 | /* look up next entry */ | |
12068 | vm_map_lock_read(map); | |
12069 | if (! vm_map_lookup_entry(map, start, &entry)) { | |
12070 | /* | |
12071 | * There's a new hole in the address range. | |
12072 | */ | |
12073 | vm_map_unlock_read(map); | |
12074 | return KERN_INVALID_ADDRESS; | |
12075 | } | |
12076 | } | |
12077 | ||
12078 | vm_map_unlock_read(map); | |
12079 | return KERN_SUCCESS; | |
12080 | } | |
12081 | ||
12082 | static boolean_t | |
12083 | vm_map_entry_is_reusable( | |
12084 | vm_map_entry_t entry) | |
12085 | { | |
12086 | vm_object_t object; | |
12087 | ||
12088 | switch (entry->alias) { | |
12089 | case VM_MEMORY_MALLOC: | |
12090 | case VM_MEMORY_MALLOC_SMALL: | |
12091 | case VM_MEMORY_MALLOC_LARGE: | |
12092 | case VM_MEMORY_REALLOC: | |
12093 | case VM_MEMORY_MALLOC_TINY: | |
12094 | case VM_MEMORY_MALLOC_LARGE_REUSABLE: | |
12095 | case VM_MEMORY_MALLOC_LARGE_REUSED: | |
12096 | /* | |
12097 | * This is a malloc() memory region: check if it's still | |
12098 | * in its original state and can be re-used for more | |
12099 | * malloc() allocations. | |
12100 | */ | |
12101 | break; | |
12102 | default: | |
12103 | /* | |
12104 | * Not a malloc() memory region: let the caller decide if | |
12105 | * it's re-usable. | |
12106 | */ | |
12107 | return TRUE; | |
12108 | } | |
12109 | ||
12110 | if (entry->is_shared || | |
12111 | entry->is_sub_map || | |
12112 | entry->in_transition || | |
12113 | entry->protection != VM_PROT_DEFAULT || | |
12114 | entry->max_protection != VM_PROT_ALL || | |
12115 | entry->inheritance != VM_INHERIT_DEFAULT || | |
12116 | entry->no_cache || | |
12117 | entry->permanent || | |
12118 | entry->superpage_size != FALSE || | |
12119 | entry->zero_wired_pages || | |
12120 | entry->wired_count != 0 || | |
12121 | entry->user_wired_count != 0) { | |
12122 | return FALSE; | |
12123 | } | |
12124 | ||
12125 | object = entry->object.vm_object; | |
12126 | if (object == VM_OBJECT_NULL) { | |
12127 | return TRUE; | |
12128 | } | |
12129 | if ( | |
12130 | #if 0 | |
12131 | /* | |
12132 | * Let's proceed even if the VM object is potentially | |
12133 | * shared. | |
12134 | * We check for this later when processing the actual | |
12135 | * VM pages, so the contents will be safe if shared. | |
12136 | * | |
12137 | * But we can still mark this memory region as "reusable" to | |
12138 | * acknowledge that the caller did let us know that the memory | |
12139 | * could be re-used and should not be penalized for holding | |
12140 | * on to it. This allows its "resident size" to not include | |
12141 | * the reusable range. | |
12142 | */ | |
12143 | object->ref_count == 1 && | |
12144 | #endif | |
12145 | object->wired_page_count == 0 && | |
12146 | object->copy == VM_OBJECT_NULL && | |
12147 | object->shadow == VM_OBJECT_NULL && | |
12148 | object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && | |
12149 | object->internal && | |
12150 | !object->true_share && | |
12151 | object->wimg_bits == VM_WIMG_USE_DEFAULT && | |
12152 | !object->code_signed) { | |
12153 | return TRUE; | |
12154 | } | |
12155 | return FALSE; | |
12156 | ||
12157 | ||
12158 | } | |
12159 | ||
12160 | static kern_return_t | |
12161 | vm_map_reuse_pages( | |
12162 | vm_map_t map, | |
12163 | vm_map_offset_t start, | |
12164 | vm_map_offset_t end) | |
12165 | { | |
12166 | vm_map_entry_t entry; | |
12167 | vm_object_t object; | |
12168 | vm_object_offset_t start_offset, end_offset; | |
12169 | ||
12170 | /* | |
12171 | * The MADV_REUSE operation doesn't require any changes to the | |
12172 | * vm_map_entry_t's, so the read lock is sufficient. | |
12173 | */ | |
12174 | ||
12175 | vm_map_lock_read(map); | |
12176 | ||
12177 | /* | |
12178 | * The madvise semantics require that the address range be fully | |
12179 | * allocated with no holes. Otherwise, we're required to return | |
12180 | * an error. | |
12181 | */ | |
12182 | ||
12183 | if (!vm_map_range_check(map, start, end, &entry)) { | |
12184 | vm_map_unlock_read(map); | |
12185 | vm_page_stats_reusable.reuse_pages_failure++; | |
12186 | return KERN_INVALID_ADDRESS; | |
12187 | } | |
12188 | ||
12189 | /* | |
12190 | * Examine each vm_map_entry_t in the range. | |
12191 | */ | |
12192 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; | |
12193 | entry = entry->vme_next) { | |
12194 | /* | |
12195 | * Sanity check on the VM map entry. | |
12196 | */ | |
12197 | if (! vm_map_entry_is_reusable(entry)) { | |
12198 | vm_map_unlock_read(map); | |
12199 | vm_page_stats_reusable.reuse_pages_failure++; | |
12200 | return KERN_INVALID_ADDRESS; | |
12201 | } | |
12202 | ||
12203 | /* | |
12204 | * The first time through, the start address could be anywhere | |
12205 | * within the vm_map_entry we found. So adjust the offset to | |
12206 | * correspond. | |
12207 | */ | |
12208 | if (entry->vme_start < start) { | |
12209 | start_offset = start - entry->vme_start; | |
12210 | } else { | |
12211 | start_offset = 0; | |
12212 | } | |
12213 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; | |
12214 | start_offset += entry->offset; | |
12215 | end_offset += entry->offset; | |
12216 | ||
12217 | object = entry->object.vm_object; | |
12218 | if (object != VM_OBJECT_NULL) { | |
12219 | vm_object_lock(object); | |
12220 | vm_object_reuse_pages(object, start_offset, end_offset, | |
12221 | TRUE); | |
12222 | vm_object_unlock(object); | |
12223 | } | |
12224 | ||
12225 | if (entry->alias == VM_MEMORY_MALLOC_LARGE_REUSABLE) { | |
12226 | /* | |
12227 | * XXX | |
12228 | * We do not hold the VM map exclusively here. | |
12229 | * The "alias" field is not that critical, so it's | |
12230 | * safe to update it here, as long as it is the only | |
12231 | * one that can be modified while holding the VM map | |
12232 | * "shared". | |
12233 | */ | |
12234 | entry->alias = VM_MEMORY_MALLOC_LARGE_REUSED; | |
12235 | } | |
12236 | } | |
12237 | ||
12238 | vm_map_unlock_read(map); | |
12239 | vm_page_stats_reusable.reuse_pages_success++; | |
12240 | return KERN_SUCCESS; | |
12241 | } | |
12242 | ||
12243 | ||
12244 | static kern_return_t | |
12245 | vm_map_reusable_pages( | |
12246 | vm_map_t map, | |
12247 | vm_map_offset_t start, | |
12248 | vm_map_offset_t end) | |
12249 | { | |
12250 | vm_map_entry_t entry; | |
12251 | vm_object_t object; | |
12252 | vm_object_offset_t start_offset, end_offset; | |
12253 | ||
12254 | /* | |
12255 | * The MADV_REUSABLE operation doesn't require any changes to the | |
12256 | * vm_map_entry_t's, so the read lock is sufficient. | |
12257 | */ | |
12258 | ||
12259 | vm_map_lock_read(map); | |
12260 | ||
12261 | /* | |
12262 | * The madvise semantics require that the address range be fully | |
12263 | * allocated with no holes. Otherwise, we're required to return | |
12264 | * an error. | |
12265 | */ | |
12266 | ||
12267 | if (!vm_map_range_check(map, start, end, &entry)) { | |
12268 | vm_map_unlock_read(map); | |
12269 | vm_page_stats_reusable.reusable_pages_failure++; | |
12270 | return KERN_INVALID_ADDRESS; | |
12271 | } | |
12272 | ||
12273 | /* | |
12274 | * Examine each vm_map_entry_t in the range. | |
12275 | */ | |
12276 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; | |
12277 | entry = entry->vme_next) { | |
12278 | int kill_pages = 0; | |
12279 | ||
12280 | /* | |
12281 | * Sanity check on the VM map entry. | |
12282 | */ | |
12283 | if (! vm_map_entry_is_reusable(entry)) { | |
12284 | vm_map_unlock_read(map); | |
12285 | vm_page_stats_reusable.reusable_pages_failure++; | |
12286 | return KERN_INVALID_ADDRESS; | |
12287 | } | |
12288 | ||
12289 | /* | |
12290 | * The first time through, the start address could be anywhere | |
12291 | * within the vm_map_entry we found. So adjust the offset to | |
12292 | * correspond. | |
12293 | */ | |
12294 | if (entry->vme_start < start) { | |
12295 | start_offset = start - entry->vme_start; | |
12296 | } else { | |
12297 | start_offset = 0; | |
12298 | } | |
12299 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; | |
12300 | start_offset += entry->offset; | |
12301 | end_offset += entry->offset; | |
12302 | ||
12303 | object = entry->object.vm_object; | |
12304 | if (object == VM_OBJECT_NULL) | |
12305 | continue; | |
12306 | ||
12307 | ||
12308 | vm_object_lock(object); | |
12309 | if (object->ref_count == 1 && | |
12310 | !object->shadow && | |
12311 | /* | |
12312 | * "iokit_acct" entries are billed for their virtual size | |
12313 | * (rather than for their resident pages only), so they | |
12314 | * wouldn't benefit from making pages reusable, and it | |
12315 | * would be hard to keep track of pages that are both | |
12316 | * "iokit_acct" and "reusable" in the pmap stats and ledgers. | |
12317 | */ | |
12318 | !(entry->iokit_acct || | |
12319 | (!entry->is_sub_map && !entry->use_pmap))) | |
12320 | kill_pages = 1; | |
12321 | else | |
12322 | kill_pages = -1; | |
12323 | if (kill_pages != -1) { | |
12324 | vm_object_deactivate_pages(object, | |
12325 | start_offset, | |
12326 | end_offset - start_offset, | |
12327 | kill_pages, | |
12328 | TRUE /*reusable_pages*/); | |
12329 | } else { | |
12330 | vm_page_stats_reusable.reusable_pages_shared++; | |
12331 | } | |
12332 | vm_object_unlock(object); | |
12333 | ||
12334 | if (entry->alias == VM_MEMORY_MALLOC_LARGE || | |
12335 | entry->alias == VM_MEMORY_MALLOC_LARGE_REUSED) { | |
12336 | /* | |
12337 | * XXX | |
12338 | * We do not hold the VM map exclusively here. | |
12339 | * The "alias" field is not that critical, so it's | |
12340 | * safe to update it here, as long as it is the only | |
12341 | * one that can be modified while holding the VM map | |
12342 | * "shared". | |
12343 | */ | |
12344 | entry->alias = VM_MEMORY_MALLOC_LARGE_REUSABLE; | |
12345 | } | |
12346 | } | |
12347 | ||
12348 | vm_map_unlock_read(map); | |
12349 | vm_page_stats_reusable.reusable_pages_success++; | |
12350 | return KERN_SUCCESS; | |
12351 | } | |
12352 | ||
12353 | ||
12354 | static kern_return_t | |
12355 | vm_map_can_reuse( | |
12356 | vm_map_t map, | |
12357 | vm_map_offset_t start, | |
12358 | vm_map_offset_t end) | |
12359 | { | |
12360 | vm_map_entry_t entry; | |
12361 | ||
12362 | /* | |
12363 | * The MADV_REUSABLE operation doesn't require any changes to the | |
12364 | * vm_map_entry_t's, so the read lock is sufficient. | |
12365 | */ | |
12366 | ||
12367 | vm_map_lock_read(map); | |
12368 | ||
12369 | /* | |
12370 | * The madvise semantics require that the address range be fully | |
12371 | * allocated with no holes. Otherwise, we're required to return | |
12372 | * an error. | |
12373 | */ | |
12374 | ||
12375 | if (!vm_map_range_check(map, start, end, &entry)) { | |
12376 | vm_map_unlock_read(map); | |
12377 | vm_page_stats_reusable.can_reuse_failure++; | |
12378 | return KERN_INVALID_ADDRESS; | |
12379 | } | |
12380 | ||
12381 | /* | |
12382 | * Examine each vm_map_entry_t in the range. | |
12383 | */ | |
12384 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; | |
12385 | entry = entry->vme_next) { | |
12386 | /* | |
12387 | * Sanity check on the VM map entry. | |
12388 | */ | |
12389 | if (! vm_map_entry_is_reusable(entry)) { | |
12390 | vm_map_unlock_read(map); | |
12391 | vm_page_stats_reusable.can_reuse_failure++; | |
12392 | return KERN_INVALID_ADDRESS; | |
12393 | } | |
12394 | } | |
12395 | ||
12396 | vm_map_unlock_read(map); | |
12397 | vm_page_stats_reusable.can_reuse_success++; | |
12398 | return KERN_SUCCESS; | |
12399 | } | |
12400 | ||
12401 | ||
12402 | /* | |
12403 | * Routine: vm_map_entry_insert | |
12404 | * | |
12405 | * Descritpion: This routine inserts a new vm_entry in a locked map. | |
12406 | */ | |
12407 | vm_map_entry_t | |
12408 | vm_map_entry_insert( | |
12409 | vm_map_t map, | |
12410 | vm_map_entry_t insp_entry, | |
12411 | vm_map_offset_t start, | |
12412 | vm_map_offset_t end, | |
12413 | vm_object_t object, | |
12414 | vm_object_offset_t offset, | |
12415 | boolean_t needs_copy, | |
12416 | boolean_t is_shared, | |
12417 | boolean_t in_transition, | |
12418 | vm_prot_t cur_protection, | |
12419 | vm_prot_t max_protection, | |
12420 | vm_behavior_t behavior, | |
12421 | vm_inherit_t inheritance, | |
12422 | unsigned wired_count, | |
12423 | boolean_t no_cache, | |
12424 | boolean_t permanent, | |
12425 | unsigned int superpage_size, | |
12426 | boolean_t clear_map_aligned, | |
12427 | boolean_t is_submap) | |
12428 | { | |
12429 | vm_map_entry_t new_entry; | |
12430 | ||
12431 | assert(insp_entry != (vm_map_entry_t)0); | |
12432 | ||
12433 | new_entry = vm_map_entry_create(map, !map->hdr.entries_pageable); | |
12434 | ||
12435 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { | |
12436 | new_entry->map_aligned = TRUE; | |
12437 | } else { | |
12438 | new_entry->map_aligned = FALSE; | |
12439 | } | |
12440 | if (clear_map_aligned && | |
12441 | (! VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)) || | |
12442 | ! VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)))) { | |
12443 | new_entry->map_aligned = FALSE; | |
12444 | } | |
12445 | ||
12446 | new_entry->vme_start = start; | |
12447 | new_entry->vme_end = end; | |
12448 | assert(page_aligned(new_entry->vme_start)); | |
12449 | assert(page_aligned(new_entry->vme_end)); | |
12450 | if (new_entry->map_aligned) { | |
12451 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start, | |
12452 | VM_MAP_PAGE_MASK(map))); | |
12453 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end, | |
12454 | VM_MAP_PAGE_MASK(map))); | |
12455 | } | |
12456 | assert(new_entry->vme_start < new_entry->vme_end); | |
12457 | ||
12458 | new_entry->object.vm_object = object; | |
12459 | new_entry->offset = offset; | |
12460 | new_entry->is_shared = is_shared; | |
12461 | new_entry->is_sub_map = is_submap; | |
12462 | new_entry->needs_copy = needs_copy; | |
12463 | new_entry->in_transition = in_transition; | |
12464 | new_entry->needs_wakeup = FALSE; | |
12465 | new_entry->inheritance = inheritance; | |
12466 | new_entry->protection = cur_protection; | |
12467 | new_entry->max_protection = max_protection; | |
12468 | new_entry->behavior = behavior; | |
12469 | new_entry->wired_count = wired_count; | |
12470 | new_entry->user_wired_count = 0; | |
12471 | if (is_submap) { | |
12472 | /* | |
12473 | * submap: "use_pmap" means "nested". | |
12474 | * default: false. | |
12475 | */ | |
12476 | new_entry->use_pmap = FALSE; | |
12477 | } else { | |
12478 | /* | |
12479 | * object: "use_pmap" means "use pmap accounting" for footprint. | |
12480 | * default: true. | |
12481 | */ | |
12482 | new_entry->use_pmap = TRUE; | |
12483 | } | |
12484 | new_entry->alias = 0; | |
12485 | new_entry->zero_wired_pages = FALSE; | |
12486 | new_entry->no_cache = no_cache; | |
12487 | new_entry->permanent = permanent; | |
12488 | if (superpage_size) | |
12489 | new_entry->superpage_size = TRUE; | |
12490 | else | |
12491 | new_entry->superpage_size = FALSE; | |
12492 | new_entry->used_for_jit = FALSE; | |
12493 | new_entry->iokit_acct = FALSE; | |
12494 | ||
12495 | /* | |
12496 | * Insert the new entry into the list. | |
12497 | */ | |
12498 | ||
12499 | vm_map_store_entry_link(map, insp_entry, new_entry); | |
12500 | map->size += end - start; | |
12501 | ||
12502 | /* | |
12503 | * Update the free space hint and the lookup hint. | |
12504 | */ | |
12505 | ||
12506 | SAVE_HINT_MAP_WRITE(map, new_entry); | |
12507 | return new_entry; | |
12508 | } | |
12509 | ||
12510 | /* | |
12511 | * Routine: vm_map_remap_extract | |
12512 | * | |
12513 | * Descritpion: This routine returns a vm_entry list from a map. | |
12514 | */ | |
12515 | static kern_return_t | |
12516 | vm_map_remap_extract( | |
12517 | vm_map_t map, | |
12518 | vm_map_offset_t addr, | |
12519 | vm_map_size_t size, | |
12520 | boolean_t copy, | |
12521 | struct vm_map_header *map_header, | |
12522 | vm_prot_t *cur_protection, | |
12523 | vm_prot_t *max_protection, | |
12524 | /* What, no behavior? */ | |
12525 | vm_inherit_t inheritance, | |
12526 | boolean_t pageable) | |
12527 | { | |
12528 | kern_return_t result; | |
12529 | vm_map_size_t mapped_size; | |
12530 | vm_map_size_t tmp_size; | |
12531 | vm_map_entry_t src_entry; /* result of last map lookup */ | |
12532 | vm_map_entry_t new_entry; | |
12533 | vm_object_offset_t offset; | |
12534 | vm_map_offset_t map_address; | |
12535 | vm_map_offset_t src_start; /* start of entry to map */ | |
12536 | vm_map_offset_t src_end; /* end of region to be mapped */ | |
12537 | vm_object_t object; | |
12538 | vm_map_version_t version; | |
12539 | boolean_t src_needs_copy; | |
12540 | boolean_t new_entry_needs_copy; | |
12541 | ||
12542 | assert(map != VM_MAP_NULL); | |
12543 | assert(size != 0); | |
12544 | assert(size == vm_map_round_page(size, PAGE_MASK)); | |
12545 | assert(inheritance == VM_INHERIT_NONE || | |
12546 | inheritance == VM_INHERIT_COPY || | |
12547 | inheritance == VM_INHERIT_SHARE); | |
12548 | ||
12549 | /* | |
12550 | * Compute start and end of region. | |
12551 | */ | |
12552 | src_start = vm_map_trunc_page(addr, PAGE_MASK); | |
12553 | src_end = vm_map_round_page(src_start + size, PAGE_MASK); | |
12554 | ||
12555 | ||
12556 | /* | |
12557 | * Initialize map_header. | |
12558 | */ | |
12559 | map_header->links.next = (struct vm_map_entry *)&map_header->links; | |
12560 | map_header->links.prev = (struct vm_map_entry *)&map_header->links; | |
12561 | map_header->nentries = 0; | |
12562 | map_header->entries_pageable = pageable; | |
12563 | map_header->page_shift = PAGE_SHIFT; | |
12564 | ||
12565 | vm_map_store_init( map_header ); | |
12566 | ||
12567 | *cur_protection = VM_PROT_ALL; | |
12568 | *max_protection = VM_PROT_ALL; | |
12569 | ||
12570 | map_address = 0; | |
12571 | mapped_size = 0; | |
12572 | result = KERN_SUCCESS; | |
12573 | ||
12574 | /* | |
12575 | * The specified source virtual space might correspond to | |
12576 | * multiple map entries, need to loop on them. | |
12577 | */ | |
12578 | vm_map_lock(map); | |
12579 | while (mapped_size != size) { | |
12580 | vm_map_size_t entry_size; | |
12581 | ||
12582 | /* | |
12583 | * Find the beginning of the region. | |
12584 | */ | |
12585 | if (! vm_map_lookup_entry(map, src_start, &src_entry)) { | |
12586 | result = KERN_INVALID_ADDRESS; | |
12587 | break; | |
12588 | } | |
12589 | ||
12590 | if (src_start < src_entry->vme_start || | |
12591 | (mapped_size && src_start != src_entry->vme_start)) { | |
12592 | result = KERN_INVALID_ADDRESS; | |
12593 | break; | |
12594 | } | |
12595 | ||
12596 | tmp_size = size - mapped_size; | |
12597 | if (src_end > src_entry->vme_end) | |
12598 | tmp_size -= (src_end - src_entry->vme_end); | |
12599 | ||
12600 | entry_size = (vm_map_size_t)(src_entry->vme_end - | |
12601 | src_entry->vme_start); | |
12602 | ||
12603 | if(src_entry->is_sub_map) { | |
12604 | vm_map_reference(src_entry->object.sub_map); | |
12605 | object = VM_OBJECT_NULL; | |
12606 | } else { | |
12607 | object = src_entry->object.vm_object; | |
12608 | if (src_entry->iokit_acct) { | |
12609 | /* | |
12610 | * This entry uses "IOKit accounting". | |
12611 | */ | |
12612 | } else if (object != VM_OBJECT_NULL && | |
12613 | object->purgable != VM_PURGABLE_DENY) { | |
12614 | /* | |
12615 | * Purgeable objects have their own accounting: | |
12616 | * no pmap accounting for them. | |
12617 | */ | |
12618 | assert(!src_entry->use_pmap); | |
12619 | } else { | |
12620 | /* | |
12621 | * Not IOKit or purgeable: | |
12622 | * must be accounted by pmap stats. | |
12623 | */ | |
12624 | assert(src_entry->use_pmap); | |
12625 | } | |
12626 | ||
12627 | if (object == VM_OBJECT_NULL) { | |
12628 | object = vm_object_allocate(entry_size); | |
12629 | src_entry->offset = 0; | |
12630 | src_entry->object.vm_object = object; | |
12631 | } else if (object->copy_strategy != | |
12632 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
12633 | /* | |
12634 | * We are already using an asymmetric | |
12635 | * copy, and therefore we already have | |
12636 | * the right object. | |
12637 | */ | |
12638 | assert(!src_entry->needs_copy); | |
12639 | } else if (src_entry->needs_copy || object->shadowed || | |
12640 | (object->internal && !object->true_share && | |
12641 | !src_entry->is_shared && | |
12642 | object->vo_size > entry_size)) { | |
12643 | ||
12644 | vm_object_shadow(&src_entry->object.vm_object, | |
12645 | &src_entry->offset, | |
12646 | entry_size); | |
12647 | ||
12648 | if (!src_entry->needs_copy && | |
12649 | (src_entry->protection & VM_PROT_WRITE)) { | |
12650 | vm_prot_t prot; | |
12651 | ||
12652 | prot = src_entry->protection & ~VM_PROT_WRITE; | |
12653 | ||
12654 | if (override_nx(map, src_entry->alias) && prot) | |
12655 | prot |= VM_PROT_EXECUTE; | |
12656 | ||
12657 | if(map->mapped_in_other_pmaps) { | |
12658 | vm_object_pmap_protect( | |
12659 | src_entry->object.vm_object, | |
12660 | src_entry->offset, | |
12661 | entry_size, | |
12662 | PMAP_NULL, | |
12663 | src_entry->vme_start, | |
12664 | prot); | |
12665 | } else { | |
12666 | pmap_protect(vm_map_pmap(map), | |
12667 | src_entry->vme_start, | |
12668 | src_entry->vme_end, | |
12669 | prot); | |
12670 | } | |
12671 | } | |
12672 | ||
12673 | object = src_entry->object.vm_object; | |
12674 | src_entry->needs_copy = FALSE; | |
12675 | } | |
12676 | ||
12677 | ||
12678 | vm_object_lock(object); | |
12679 | vm_object_reference_locked(object); /* object ref. for new entry */ | |
12680 | if (object->copy_strategy == | |
12681 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
12682 | object->copy_strategy = | |
12683 | MEMORY_OBJECT_COPY_DELAY; | |
12684 | } | |
12685 | vm_object_unlock(object); | |
12686 | } | |
12687 | ||
12688 | offset = src_entry->offset + (src_start - src_entry->vme_start); | |
12689 | ||
12690 | new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable); | |
12691 | vm_map_entry_copy(new_entry, src_entry); | |
12692 | if (new_entry->is_sub_map) { | |
12693 | /* clr address space specifics */ | |
12694 | new_entry->use_pmap = FALSE; | |
12695 | } | |
12696 | ||
12697 | new_entry->map_aligned = FALSE; | |
12698 | ||
12699 | new_entry->vme_start = map_address; | |
12700 | new_entry->vme_end = map_address + tmp_size; | |
12701 | assert(new_entry->vme_start < new_entry->vme_end); | |
12702 | new_entry->inheritance = inheritance; | |
12703 | new_entry->offset = offset; | |
12704 | ||
12705 | /* | |
12706 | * The new region has to be copied now if required. | |
12707 | */ | |
12708 | RestartCopy: | |
12709 | if (!copy) { | |
12710 | /* | |
12711 | * Cannot allow an entry describing a JIT | |
12712 | * region to be shared across address spaces. | |
12713 | */ | |
12714 | if (src_entry->used_for_jit == TRUE) { | |
12715 | result = KERN_INVALID_ARGUMENT; | |
12716 | break; | |
12717 | } | |
12718 | src_entry->is_shared = TRUE; | |
12719 | new_entry->is_shared = TRUE; | |
12720 | if (!(new_entry->is_sub_map)) | |
12721 | new_entry->needs_copy = FALSE; | |
12722 | ||
12723 | } else if (src_entry->is_sub_map) { | |
12724 | /* make this a COW sub_map if not already */ | |
12725 | new_entry->needs_copy = TRUE; | |
12726 | object = VM_OBJECT_NULL; | |
12727 | } else if (src_entry->wired_count == 0 && | |
12728 | vm_object_copy_quickly(&new_entry->object.vm_object, | |
12729 | new_entry->offset, | |
12730 | (new_entry->vme_end - | |
12731 | new_entry->vme_start), | |
12732 | &src_needs_copy, | |
12733 | &new_entry_needs_copy)) { | |
12734 | ||
12735 | new_entry->needs_copy = new_entry_needs_copy; | |
12736 | new_entry->is_shared = FALSE; | |
12737 | ||
12738 | /* | |
12739 | * Handle copy_on_write semantics. | |
12740 | */ | |
12741 | if (src_needs_copy && !src_entry->needs_copy) { | |
12742 | vm_prot_t prot; | |
12743 | ||
12744 | prot = src_entry->protection & ~VM_PROT_WRITE; | |
12745 | ||
12746 | if (override_nx(map, src_entry->alias) && prot) | |
12747 | prot |= VM_PROT_EXECUTE; | |
12748 | ||
12749 | vm_object_pmap_protect(object, | |
12750 | offset, | |
12751 | entry_size, | |
12752 | ((src_entry->is_shared | |
12753 | || map->mapped_in_other_pmaps) ? | |
12754 | PMAP_NULL : map->pmap), | |
12755 | src_entry->vme_start, | |
12756 | prot); | |
12757 | ||
12758 | src_entry->needs_copy = TRUE; | |
12759 | } | |
12760 | /* | |
12761 | * Throw away the old object reference of the new entry. | |
12762 | */ | |
12763 | vm_object_deallocate(object); | |
12764 | ||
12765 | } else { | |
12766 | new_entry->is_shared = FALSE; | |
12767 | ||
12768 | /* | |
12769 | * The map can be safely unlocked since we | |
12770 | * already hold a reference on the object. | |
12771 | * | |
12772 | * Record the timestamp of the map for later | |
12773 | * verification, and unlock the map. | |
12774 | */ | |
12775 | version.main_timestamp = map->timestamp; | |
12776 | vm_map_unlock(map); /* Increments timestamp once! */ | |
12777 | ||
12778 | /* | |
12779 | * Perform the copy. | |
12780 | */ | |
12781 | if (src_entry->wired_count > 0) { | |
12782 | vm_object_lock(object); | |
12783 | result = vm_object_copy_slowly( | |
12784 | object, | |
12785 | offset, | |
12786 | entry_size, | |
12787 | THREAD_UNINT, | |
12788 | &new_entry->object.vm_object); | |
12789 | ||
12790 | new_entry->offset = 0; | |
12791 | new_entry->needs_copy = FALSE; | |
12792 | } else { | |
12793 | result = vm_object_copy_strategically( | |
12794 | object, | |
12795 | offset, | |
12796 | entry_size, | |
12797 | &new_entry->object.vm_object, | |
12798 | &new_entry->offset, | |
12799 | &new_entry_needs_copy); | |
12800 | ||
12801 | new_entry->needs_copy = new_entry_needs_copy; | |
12802 | } | |
12803 | ||
12804 | /* | |
12805 | * Throw away the old object reference of the new entry. | |
12806 | */ | |
12807 | vm_object_deallocate(object); | |
12808 | ||
12809 | if (result != KERN_SUCCESS && | |
12810 | result != KERN_MEMORY_RESTART_COPY) { | |
12811 | _vm_map_entry_dispose(map_header, new_entry); | |
12812 | break; | |
12813 | } | |
12814 | ||
12815 | /* | |
12816 | * Verify that the map has not substantially | |
12817 | * changed while the copy was being made. | |
12818 | */ | |
12819 | ||
12820 | vm_map_lock(map); | |
12821 | if (version.main_timestamp + 1 != map->timestamp) { | |
12822 | /* | |
12823 | * Simple version comparison failed. | |
12824 | * | |
12825 | * Retry the lookup and verify that the | |
12826 | * same object/offset are still present. | |
12827 | */ | |
12828 | vm_object_deallocate(new_entry-> | |
12829 | object.vm_object); | |
12830 | _vm_map_entry_dispose(map_header, new_entry); | |
12831 | if (result == KERN_MEMORY_RESTART_COPY) | |
12832 | result = KERN_SUCCESS; | |
12833 | continue; | |
12834 | } | |
12835 | ||
12836 | if (result == KERN_MEMORY_RESTART_COPY) { | |
12837 | vm_object_reference(object); | |
12838 | goto RestartCopy; | |
12839 | } | |
12840 | } | |
12841 | ||
12842 | _vm_map_store_entry_link(map_header, | |
12843 | map_header->links.prev, new_entry); | |
12844 | ||
12845 | /*Protections for submap mapping are irrelevant here*/ | |
12846 | if( !src_entry->is_sub_map ) { | |
12847 | *cur_protection &= src_entry->protection; | |
12848 | *max_protection &= src_entry->max_protection; | |
12849 | } | |
12850 | map_address += tmp_size; | |
12851 | mapped_size += tmp_size; | |
12852 | src_start += tmp_size; | |
12853 | ||
12854 | } /* end while */ | |
12855 | ||
12856 | vm_map_unlock(map); | |
12857 | if (result != KERN_SUCCESS) { | |
12858 | /* | |
12859 | * Free all allocated elements. | |
12860 | */ | |
12861 | for (src_entry = map_header->links.next; | |
12862 | src_entry != (struct vm_map_entry *)&map_header->links; | |
12863 | src_entry = new_entry) { | |
12864 | new_entry = src_entry->vme_next; | |
12865 | _vm_map_store_entry_unlink(map_header, src_entry); | |
12866 | if (src_entry->is_sub_map) { | |
12867 | vm_map_deallocate(src_entry->object.sub_map); | |
12868 | } else { | |
12869 | vm_object_deallocate(src_entry->object.vm_object); | |
12870 | } | |
12871 | _vm_map_entry_dispose(map_header, src_entry); | |
12872 | } | |
12873 | } | |
12874 | return result; | |
12875 | } | |
12876 | ||
12877 | /* | |
12878 | * Routine: vm_remap | |
12879 | * | |
12880 | * Map portion of a task's address space. | |
12881 | * Mapped region must not overlap more than | |
12882 | * one vm memory object. Protections and | |
12883 | * inheritance attributes remain the same | |
12884 | * as in the original task and are out parameters. | |
12885 | * Source and Target task can be identical | |
12886 | * Other attributes are identical as for vm_map() | |
12887 | */ | |
12888 | kern_return_t | |
12889 | vm_map_remap( | |
12890 | vm_map_t target_map, | |
12891 | vm_map_address_t *address, | |
12892 | vm_map_size_t size, | |
12893 | vm_map_offset_t mask, | |
12894 | int flags, | |
12895 | vm_map_t src_map, | |
12896 | vm_map_offset_t memory_address, | |
12897 | boolean_t copy, | |
12898 | vm_prot_t *cur_protection, | |
12899 | vm_prot_t *max_protection, | |
12900 | vm_inherit_t inheritance) | |
12901 | { | |
12902 | kern_return_t result; | |
12903 | vm_map_entry_t entry; | |
12904 | vm_map_entry_t insp_entry = VM_MAP_ENTRY_NULL; | |
12905 | vm_map_entry_t new_entry; | |
12906 | struct vm_map_header map_header; | |
12907 | vm_map_offset_t offset_in_mapping; | |
12908 | ||
12909 | if (target_map == VM_MAP_NULL) | |
12910 | return KERN_INVALID_ARGUMENT; | |
12911 | ||
12912 | switch (inheritance) { | |
12913 | case VM_INHERIT_NONE: | |
12914 | case VM_INHERIT_COPY: | |
12915 | case VM_INHERIT_SHARE: | |
12916 | if (size != 0 && src_map != VM_MAP_NULL) | |
12917 | break; | |
12918 | /*FALL THRU*/ | |
12919 | default: | |
12920 | return KERN_INVALID_ARGUMENT; | |
12921 | } | |
12922 | ||
12923 | /* | |
12924 | * If the user is requesting that we return the address of the | |
12925 | * first byte of the data (rather than the base of the page), | |
12926 | * then we use different rounding semantics: specifically, | |
12927 | * we assume that (memory_address, size) describes a region | |
12928 | * all of whose pages we must cover, rather than a base to be truncated | |
12929 | * down and a size to be added to that base. So we figure out | |
12930 | * the highest page that the requested region includes and make | |
12931 | * sure that the size will cover it. | |
12932 | * | |
12933 | * The key example we're worried about it is of the form: | |
12934 | * | |
12935 | * memory_address = 0x1ff0, size = 0x20 | |
12936 | * | |
12937 | * With the old semantics, we round down the memory_address to 0x1000 | |
12938 | * and round up the size to 0x1000, resulting in our covering *only* | |
12939 | * page 0x1000. With the new semantics, we'd realize that the region covers | |
12940 | * 0x1ff0-0x2010, and compute a size of 0x2000. Thus, we cover both page | |
12941 | * 0x1000 and page 0x2000 in the region we remap. | |
12942 | */ | |
12943 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
12944 | offset_in_mapping = memory_address - vm_map_trunc_page(memory_address, PAGE_MASK); | |
12945 | size = vm_map_round_page(memory_address + size - vm_map_trunc_page(memory_address, PAGE_MASK), PAGE_MASK); | |
12946 | } else { | |
12947 | size = vm_map_round_page(size, PAGE_MASK); | |
12948 | } | |
12949 | ||
12950 | result = vm_map_remap_extract(src_map, memory_address, | |
12951 | size, copy, &map_header, | |
12952 | cur_protection, | |
12953 | max_protection, | |
12954 | inheritance, | |
12955 | target_map->hdr.entries_pageable); | |
12956 | ||
12957 | if (result != KERN_SUCCESS) { | |
12958 | return result; | |
12959 | } | |
12960 | ||
12961 | /* | |
12962 | * Allocate/check a range of free virtual address | |
12963 | * space for the target | |
12964 | */ | |
12965 | *address = vm_map_trunc_page(*address, | |
12966 | VM_MAP_PAGE_MASK(target_map)); | |
12967 | vm_map_lock(target_map); | |
12968 | result = vm_map_remap_range_allocate(target_map, address, size, | |
12969 | mask, flags, &insp_entry); | |
12970 | ||
12971 | for (entry = map_header.links.next; | |
12972 | entry != (struct vm_map_entry *)&map_header.links; | |
12973 | entry = new_entry) { | |
12974 | new_entry = entry->vme_next; | |
12975 | _vm_map_store_entry_unlink(&map_header, entry); | |
12976 | if (result == KERN_SUCCESS) { | |
12977 | entry->vme_start += *address; | |
12978 | entry->vme_end += *address; | |
12979 | assert(!entry->map_aligned); | |
12980 | vm_map_store_entry_link(target_map, insp_entry, entry); | |
12981 | insp_entry = entry; | |
12982 | } else { | |
12983 | if (!entry->is_sub_map) { | |
12984 | vm_object_deallocate(entry->object.vm_object); | |
12985 | } else { | |
12986 | vm_map_deallocate(entry->object.sub_map); | |
12987 | } | |
12988 | _vm_map_entry_dispose(&map_header, entry); | |
12989 | } | |
12990 | } | |
12991 | ||
12992 | if( target_map->disable_vmentry_reuse == TRUE) { | |
12993 | if( target_map->highest_entry_end < insp_entry->vme_end ){ | |
12994 | target_map->highest_entry_end = insp_entry->vme_end; | |
12995 | } | |
12996 | } | |
12997 | ||
12998 | if (result == KERN_SUCCESS) { | |
12999 | target_map->size += size; | |
13000 | SAVE_HINT_MAP_WRITE(target_map, insp_entry); | |
13001 | } | |
13002 | vm_map_unlock(target_map); | |
13003 | ||
13004 | if (result == KERN_SUCCESS && target_map->wiring_required) | |
13005 | result = vm_map_wire(target_map, *address, | |
13006 | *address + size, *cur_protection, TRUE); | |
13007 | ||
13008 | /* | |
13009 | * If requested, return the address of the data pointed to by the | |
13010 | * request, rather than the base of the resulting page. | |
13011 | */ | |
13012 | if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) { | |
13013 | *address += offset_in_mapping; | |
13014 | } | |
13015 | ||
13016 | return result; | |
13017 | } | |
13018 | ||
13019 | /* | |
13020 | * Routine: vm_map_remap_range_allocate | |
13021 | * | |
13022 | * Description: | |
13023 | * Allocate a range in the specified virtual address map. | |
13024 | * returns the address and the map entry just before the allocated | |
13025 | * range | |
13026 | * | |
13027 | * Map must be locked. | |
13028 | */ | |
13029 | ||
13030 | static kern_return_t | |
13031 | vm_map_remap_range_allocate( | |
13032 | vm_map_t map, | |
13033 | vm_map_address_t *address, /* IN/OUT */ | |
13034 | vm_map_size_t size, | |
13035 | vm_map_offset_t mask, | |
13036 | int flags, | |
13037 | vm_map_entry_t *map_entry) /* OUT */ | |
13038 | { | |
13039 | vm_map_entry_t entry; | |
13040 | vm_map_offset_t start; | |
13041 | vm_map_offset_t end; | |
13042 | kern_return_t kr; | |
13043 | ||
13044 | StartAgain: ; | |
13045 | ||
13046 | start = *address; | |
13047 | ||
13048 | if (flags & VM_FLAGS_ANYWHERE) | |
13049 | { | |
13050 | /* | |
13051 | * Calculate the first possible address. | |
13052 | */ | |
13053 | ||
13054 | if (start < map->min_offset) | |
13055 | start = map->min_offset; | |
13056 | if (start > map->max_offset) | |
13057 | return(KERN_NO_SPACE); | |
13058 | ||
13059 | /* | |
13060 | * Look for the first possible address; | |
13061 | * if there's already something at this | |
13062 | * address, we have to start after it. | |
13063 | */ | |
13064 | ||
13065 | if( map->disable_vmentry_reuse == TRUE) { | |
13066 | VM_MAP_HIGHEST_ENTRY(map, entry, start); | |
13067 | } else { | |
13068 | assert(first_free_is_valid(map)); | |
13069 | if (start == map->min_offset) { | |
13070 | if ((entry = map->first_free) != vm_map_to_entry(map)) | |
13071 | start = entry->vme_end; | |
13072 | } else { | |
13073 | vm_map_entry_t tmp_entry; | |
13074 | if (vm_map_lookup_entry(map, start, &tmp_entry)) | |
13075 | start = tmp_entry->vme_end; | |
13076 | entry = tmp_entry; | |
13077 | } | |
13078 | start = vm_map_round_page(start, | |
13079 | VM_MAP_PAGE_MASK(map)); | |
13080 | } | |
13081 | ||
13082 | /* | |
13083 | * In any case, the "entry" always precedes | |
13084 | * the proposed new region throughout the | |
13085 | * loop: | |
13086 | */ | |
13087 | ||
13088 | while (TRUE) { | |
13089 | register vm_map_entry_t next; | |
13090 | ||
13091 | /* | |
13092 | * Find the end of the proposed new region. | |
13093 | * Be sure we didn't go beyond the end, or | |
13094 | * wrap around the address. | |
13095 | */ | |
13096 | ||
13097 | end = ((start + mask) & ~mask); | |
13098 | end = vm_map_round_page(end, | |
13099 | VM_MAP_PAGE_MASK(map)); | |
13100 | if (end < start) | |
13101 | return(KERN_NO_SPACE); | |
13102 | start = end; | |
13103 | end += size; | |
13104 | ||
13105 | if ((end > map->max_offset) || (end < start)) { | |
13106 | if (map->wait_for_space) { | |
13107 | if (size <= (map->max_offset - | |
13108 | map->min_offset)) { | |
13109 | assert_wait((event_t) map, THREAD_INTERRUPTIBLE); | |
13110 | vm_map_unlock(map); | |
13111 | thread_block(THREAD_CONTINUE_NULL); | |
13112 | vm_map_lock(map); | |
13113 | goto StartAgain; | |
13114 | } | |
13115 | } | |
13116 | ||
13117 | return(KERN_NO_SPACE); | |
13118 | } | |
13119 | ||
13120 | /* | |
13121 | * If there are no more entries, we must win. | |
13122 | */ | |
13123 | ||
13124 | next = entry->vme_next; | |
13125 | if (next == vm_map_to_entry(map)) | |
13126 | break; | |
13127 | ||
13128 | /* | |
13129 | * If there is another entry, it must be | |
13130 | * after the end of the potential new region. | |
13131 | */ | |
13132 | ||
13133 | if (next->vme_start >= end) | |
13134 | break; | |
13135 | ||
13136 | /* | |
13137 | * Didn't fit -- move to the next entry. | |
13138 | */ | |
13139 | ||
13140 | entry = next; | |
13141 | start = entry->vme_end; | |
13142 | } | |
13143 | *address = start; | |
13144 | } else { | |
13145 | vm_map_entry_t temp_entry; | |
13146 | ||
13147 | /* | |
13148 | * Verify that: | |
13149 | * the address doesn't itself violate | |
13150 | * the mask requirement. | |
13151 | */ | |
13152 | ||
13153 | if ((start & mask) != 0) | |
13154 | return(KERN_NO_SPACE); | |
13155 | ||
13156 | ||
13157 | /* | |
13158 | * ... the address is within bounds | |
13159 | */ | |
13160 | ||
13161 | end = start + size; | |
13162 | ||
13163 | if ((start < map->min_offset) || | |
13164 | (end > map->max_offset) || | |
13165 | (start >= end)) { | |
13166 | return(KERN_INVALID_ADDRESS); | |
13167 | } | |
13168 | ||
13169 | /* | |
13170 | * If we're asked to overwrite whatever was mapped in that | |
13171 | * range, first deallocate that range. | |
13172 | */ | |
13173 | if (flags & VM_FLAGS_OVERWRITE) { | |
13174 | vm_map_t zap_map; | |
13175 | ||
13176 | /* | |
13177 | * We use a "zap_map" to avoid having to unlock | |
13178 | * the "map" in vm_map_delete(), which would compromise | |
13179 | * the atomicity of the "deallocate" and then "remap" | |
13180 | * combination. | |
13181 | */ | |
13182 | zap_map = vm_map_create(PMAP_NULL, | |
13183 | start, | |
13184 | end, | |
13185 | map->hdr.entries_pageable); | |
13186 | if (zap_map == VM_MAP_NULL) { | |
13187 | return KERN_RESOURCE_SHORTAGE; | |
13188 | } | |
13189 | vm_map_set_page_shift(zap_map, VM_MAP_PAGE_SHIFT(map)); | |
13190 | ||
13191 | kr = vm_map_delete(map, start, end, | |
13192 | (VM_MAP_REMOVE_SAVE_ENTRIES | | |
13193 | VM_MAP_REMOVE_NO_MAP_ALIGN), | |
13194 | zap_map); | |
13195 | if (kr == KERN_SUCCESS) { | |
13196 | vm_map_destroy(zap_map, | |
13197 | VM_MAP_REMOVE_NO_PMAP_CLEANUP); | |
13198 | zap_map = VM_MAP_NULL; | |
13199 | } | |
13200 | } | |
13201 | ||
13202 | /* | |
13203 | * ... the starting address isn't allocated | |
13204 | */ | |
13205 | ||
13206 | if (vm_map_lookup_entry(map, start, &temp_entry)) | |
13207 | return(KERN_NO_SPACE); | |
13208 | ||
13209 | entry = temp_entry; | |
13210 | ||
13211 | /* | |
13212 | * ... the next region doesn't overlap the | |
13213 | * end point. | |
13214 | */ | |
13215 | ||
13216 | if ((entry->vme_next != vm_map_to_entry(map)) && | |
13217 | (entry->vme_next->vme_start < end)) | |
13218 | return(KERN_NO_SPACE); | |
13219 | } | |
13220 | *map_entry = entry; | |
13221 | return(KERN_SUCCESS); | |
13222 | } | |
13223 | ||
13224 | /* | |
13225 | * vm_map_switch: | |
13226 | * | |
13227 | * Set the address map for the current thread to the specified map | |
13228 | */ | |
13229 | ||
13230 | vm_map_t | |
13231 | vm_map_switch( | |
13232 | vm_map_t map) | |
13233 | { | |
13234 | int mycpu; | |
13235 | thread_t thread = current_thread(); | |
13236 | vm_map_t oldmap = thread->map; | |
13237 | ||
13238 | mp_disable_preemption(); | |
13239 | mycpu = cpu_number(); | |
13240 | ||
13241 | /* | |
13242 | * Deactivate the current map and activate the requested map | |
13243 | */ | |
13244 | PMAP_SWITCH_USER(thread, map, mycpu); | |
13245 | ||
13246 | mp_enable_preemption(); | |
13247 | return(oldmap); | |
13248 | } | |
13249 | ||
13250 | ||
13251 | /* | |
13252 | * Routine: vm_map_write_user | |
13253 | * | |
13254 | * Description: | |
13255 | * Copy out data from a kernel space into space in the | |
13256 | * destination map. The space must already exist in the | |
13257 | * destination map. | |
13258 | * NOTE: This routine should only be called by threads | |
13259 | * which can block on a page fault. i.e. kernel mode user | |
13260 | * threads. | |
13261 | * | |
13262 | */ | |
13263 | kern_return_t | |
13264 | vm_map_write_user( | |
13265 | vm_map_t map, | |
13266 | void *src_p, | |
13267 | vm_map_address_t dst_addr, | |
13268 | vm_size_t size) | |
13269 | { | |
13270 | kern_return_t kr = KERN_SUCCESS; | |
13271 | ||
13272 | if(current_map() == map) { | |
13273 | if (copyout(src_p, dst_addr, size)) { | |
13274 | kr = KERN_INVALID_ADDRESS; | |
13275 | } | |
13276 | } else { | |
13277 | vm_map_t oldmap; | |
13278 | ||
13279 | /* take on the identity of the target map while doing */ | |
13280 | /* the transfer */ | |
13281 | ||
13282 | vm_map_reference(map); | |
13283 | oldmap = vm_map_switch(map); | |
13284 | if (copyout(src_p, dst_addr, size)) { | |
13285 | kr = KERN_INVALID_ADDRESS; | |
13286 | } | |
13287 | vm_map_switch(oldmap); | |
13288 | vm_map_deallocate(map); | |
13289 | } | |
13290 | return kr; | |
13291 | } | |
13292 | ||
13293 | /* | |
13294 | * Routine: vm_map_read_user | |
13295 | * | |
13296 | * Description: | |
13297 | * Copy in data from a user space source map into the | |
13298 | * kernel map. The space must already exist in the | |
13299 | * kernel map. | |
13300 | * NOTE: This routine should only be called by threads | |
13301 | * which can block on a page fault. i.e. kernel mode user | |
13302 | * threads. | |
13303 | * | |
13304 | */ | |
13305 | kern_return_t | |
13306 | vm_map_read_user( | |
13307 | vm_map_t map, | |
13308 | vm_map_address_t src_addr, | |
13309 | void *dst_p, | |
13310 | vm_size_t size) | |
13311 | { | |
13312 | kern_return_t kr = KERN_SUCCESS; | |
13313 | ||
13314 | if(current_map() == map) { | |
13315 | if (copyin(src_addr, dst_p, size)) { | |
13316 | kr = KERN_INVALID_ADDRESS; | |
13317 | } | |
13318 | } else { | |
13319 | vm_map_t oldmap; | |
13320 | ||
13321 | /* take on the identity of the target map while doing */ | |
13322 | /* the transfer */ | |
13323 | ||
13324 | vm_map_reference(map); | |
13325 | oldmap = vm_map_switch(map); | |
13326 | if (copyin(src_addr, dst_p, size)) { | |
13327 | kr = KERN_INVALID_ADDRESS; | |
13328 | } | |
13329 | vm_map_switch(oldmap); | |
13330 | vm_map_deallocate(map); | |
13331 | } | |
13332 | return kr; | |
13333 | } | |
13334 | ||
13335 | ||
13336 | /* | |
13337 | * vm_map_check_protection: | |
13338 | * | |
13339 | * Assert that the target map allows the specified | |
13340 | * privilege on the entire address region given. | |
13341 | * The entire region must be allocated. | |
13342 | */ | |
13343 | boolean_t | |
13344 | vm_map_check_protection(vm_map_t map, vm_map_offset_t start, | |
13345 | vm_map_offset_t end, vm_prot_t protection) | |
13346 | { | |
13347 | vm_map_entry_t entry; | |
13348 | vm_map_entry_t tmp_entry; | |
13349 | ||
13350 | vm_map_lock(map); | |
13351 | ||
13352 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) | |
13353 | { | |
13354 | vm_map_unlock(map); | |
13355 | return (FALSE); | |
13356 | } | |
13357 | ||
13358 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
13359 | vm_map_unlock(map); | |
13360 | return(FALSE); | |
13361 | } | |
13362 | ||
13363 | entry = tmp_entry; | |
13364 | ||
13365 | while (start < end) { | |
13366 | if (entry == vm_map_to_entry(map)) { | |
13367 | vm_map_unlock(map); | |
13368 | return(FALSE); | |
13369 | } | |
13370 | ||
13371 | /* | |
13372 | * No holes allowed! | |
13373 | */ | |
13374 | ||
13375 | if (start < entry->vme_start) { | |
13376 | vm_map_unlock(map); | |
13377 | return(FALSE); | |
13378 | } | |
13379 | ||
13380 | /* | |
13381 | * Check protection associated with entry. | |
13382 | */ | |
13383 | ||
13384 | if ((entry->protection & protection) != protection) { | |
13385 | vm_map_unlock(map); | |
13386 | return(FALSE); | |
13387 | } | |
13388 | ||
13389 | /* go to next entry */ | |
13390 | ||
13391 | start = entry->vme_end; | |
13392 | entry = entry->vme_next; | |
13393 | } | |
13394 | vm_map_unlock(map); | |
13395 | return(TRUE); | |
13396 | } | |
13397 | ||
13398 | kern_return_t | |
13399 | vm_map_purgable_control( | |
13400 | vm_map_t map, | |
13401 | vm_map_offset_t address, | |
13402 | vm_purgable_t control, | |
13403 | int *state) | |
13404 | { | |
13405 | vm_map_entry_t entry; | |
13406 | vm_object_t object; | |
13407 | kern_return_t kr; | |
13408 | boolean_t was_nonvolatile; | |
13409 | ||
13410 | /* | |
13411 | * Vet all the input parameters and current type and state of the | |
13412 | * underlaying object. Return with an error if anything is amiss. | |
13413 | */ | |
13414 | if (map == VM_MAP_NULL) | |
13415 | return(KERN_INVALID_ARGUMENT); | |
13416 | ||
13417 | if (control != VM_PURGABLE_SET_STATE && | |
13418 | control != VM_PURGABLE_GET_STATE && | |
13419 | control != VM_PURGABLE_PURGE_ALL) | |
13420 | return(KERN_INVALID_ARGUMENT); | |
13421 | ||
13422 | if (control == VM_PURGABLE_PURGE_ALL) { | |
13423 | vm_purgeable_object_purge_all(); | |
13424 | return KERN_SUCCESS; | |
13425 | } | |
13426 | ||
13427 | if (control == VM_PURGABLE_SET_STATE && | |
13428 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || | |
13429 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) | |
13430 | return(KERN_INVALID_ARGUMENT); | |
13431 | ||
13432 | vm_map_lock_read(map); | |
13433 | ||
13434 | if (!vm_map_lookup_entry(map, address, &entry) || entry->is_sub_map) { | |
13435 | ||
13436 | /* | |
13437 | * Must pass a valid non-submap address. | |
13438 | */ | |
13439 | vm_map_unlock_read(map); | |
13440 | return(KERN_INVALID_ADDRESS); | |
13441 | } | |
13442 | ||
13443 | if ((entry->protection & VM_PROT_WRITE) == 0) { | |
13444 | /* | |
13445 | * Can't apply purgable controls to something you can't write. | |
13446 | */ | |
13447 | vm_map_unlock_read(map); | |
13448 | return(KERN_PROTECTION_FAILURE); | |
13449 | } | |
13450 | ||
13451 | object = entry->object.vm_object; | |
13452 | if (object == VM_OBJECT_NULL || | |
13453 | object->purgable == VM_PURGABLE_DENY) { | |
13454 | /* | |
13455 | * Object must already be present and be purgeable. | |
13456 | */ | |
13457 | vm_map_unlock_read(map); | |
13458 | return KERN_INVALID_ARGUMENT; | |
13459 | } | |
13460 | ||
13461 | vm_object_lock(object); | |
13462 | ||
13463 | #if 00 | |
13464 | if (entry->offset != 0 || | |
13465 | entry->vme_end - entry->vme_start != object->vo_size) { | |
13466 | /* | |
13467 | * Can only apply purgable controls to the whole (existing) | |
13468 | * object at once. | |
13469 | */ | |
13470 | vm_map_unlock_read(map); | |
13471 | vm_object_unlock(object); | |
13472 | return KERN_INVALID_ARGUMENT; | |
13473 | } | |
13474 | #endif | |
13475 | ||
13476 | assert(!entry->is_sub_map); | |
13477 | assert(!entry->use_pmap); /* purgeable has its own accounting */ | |
13478 | ||
13479 | vm_map_unlock_read(map); | |
13480 | ||
13481 | was_nonvolatile = (object->purgable == VM_PURGABLE_NONVOLATILE); | |
13482 | ||
13483 | kr = vm_object_purgable_control(object, control, state); | |
13484 | ||
13485 | if (was_nonvolatile && | |
13486 | object->purgable != VM_PURGABLE_NONVOLATILE && | |
13487 | map->pmap == kernel_pmap) { | |
13488 | #if DEBUG | |
13489 | object->vo_purgeable_volatilizer = kernel_task; | |
13490 | #endif /* DEBUG */ | |
13491 | } | |
13492 | ||
13493 | vm_object_unlock(object); | |
13494 | ||
13495 | return kr; | |
13496 | } | |
13497 | ||
13498 | kern_return_t | |
13499 | vm_map_page_query_internal( | |
13500 | vm_map_t target_map, | |
13501 | vm_map_offset_t offset, | |
13502 | int *disposition, | |
13503 | int *ref_count) | |
13504 | { | |
13505 | kern_return_t kr; | |
13506 | vm_page_info_basic_data_t info; | |
13507 | mach_msg_type_number_t count; | |
13508 | ||
13509 | count = VM_PAGE_INFO_BASIC_COUNT; | |
13510 | kr = vm_map_page_info(target_map, | |
13511 | offset, | |
13512 | VM_PAGE_INFO_BASIC, | |
13513 | (vm_page_info_t) &info, | |
13514 | &count); | |
13515 | if (kr == KERN_SUCCESS) { | |
13516 | *disposition = info.disposition; | |
13517 | *ref_count = info.ref_count; | |
13518 | } else { | |
13519 | *disposition = 0; | |
13520 | *ref_count = 0; | |
13521 | } | |
13522 | ||
13523 | return kr; | |
13524 | } | |
13525 | ||
13526 | kern_return_t | |
13527 | vm_map_page_info( | |
13528 | vm_map_t map, | |
13529 | vm_map_offset_t offset, | |
13530 | vm_page_info_flavor_t flavor, | |
13531 | vm_page_info_t info, | |
13532 | mach_msg_type_number_t *count) | |
13533 | { | |
13534 | vm_map_entry_t map_entry; | |
13535 | vm_object_t object; | |
13536 | vm_page_t m; | |
13537 | kern_return_t kr; | |
13538 | kern_return_t retval = KERN_SUCCESS; | |
13539 | boolean_t top_object; | |
13540 | int disposition; | |
13541 | int ref_count; | |
13542 | vm_page_info_basic_t basic_info; | |
13543 | int depth; | |
13544 | vm_map_offset_t offset_in_page; | |
13545 | ||
13546 | switch (flavor) { | |
13547 | case VM_PAGE_INFO_BASIC: | |
13548 | if (*count != VM_PAGE_INFO_BASIC_COUNT) { | |
13549 | /* | |
13550 | * The "vm_page_info_basic_data" structure was not | |
13551 | * properly padded, so allow the size to be off by | |
13552 | * one to maintain backwards binary compatibility... | |
13553 | */ | |
13554 | if (*count != VM_PAGE_INFO_BASIC_COUNT - 1) | |
13555 | return KERN_INVALID_ARGUMENT; | |
13556 | } | |
13557 | break; | |
13558 | default: | |
13559 | return KERN_INVALID_ARGUMENT; | |
13560 | } | |
13561 | ||
13562 | disposition = 0; | |
13563 | ref_count = 0; | |
13564 | top_object = TRUE; | |
13565 | depth = 0; | |
13566 | ||
13567 | retval = KERN_SUCCESS; | |
13568 | offset_in_page = offset & PAGE_MASK; | |
13569 | offset = vm_map_trunc_page(offset, PAGE_MASK); | |
13570 | ||
13571 | vm_map_lock_read(map); | |
13572 | ||
13573 | /* | |
13574 | * First, find the map entry covering "offset", going down | |
13575 | * submaps if necessary. | |
13576 | */ | |
13577 | for (;;) { | |
13578 | if (!vm_map_lookup_entry(map, offset, &map_entry)) { | |
13579 | vm_map_unlock_read(map); | |
13580 | return KERN_INVALID_ADDRESS; | |
13581 | } | |
13582 | /* compute offset from this map entry's start */ | |
13583 | offset -= map_entry->vme_start; | |
13584 | /* compute offset into this map entry's object (or submap) */ | |
13585 | offset += map_entry->offset; | |
13586 | ||
13587 | if (map_entry->is_sub_map) { | |
13588 | vm_map_t sub_map; | |
13589 | ||
13590 | sub_map = map_entry->object.sub_map; | |
13591 | vm_map_lock_read(sub_map); | |
13592 | vm_map_unlock_read(map); | |
13593 | ||
13594 | map = sub_map; | |
13595 | ||
13596 | ref_count = MAX(ref_count, map->ref_count); | |
13597 | continue; | |
13598 | } | |
13599 | break; | |
13600 | } | |
13601 | ||
13602 | object = map_entry->object.vm_object; | |
13603 | if (object == VM_OBJECT_NULL) { | |
13604 | /* no object -> no page */ | |
13605 | vm_map_unlock_read(map); | |
13606 | goto done; | |
13607 | } | |
13608 | ||
13609 | vm_object_lock(object); | |
13610 | vm_map_unlock_read(map); | |
13611 | ||
13612 | /* | |
13613 | * Go down the VM object shadow chain until we find the page | |
13614 | * we're looking for. | |
13615 | */ | |
13616 | for (;;) { | |
13617 | ref_count = MAX(ref_count, object->ref_count); | |
13618 | ||
13619 | m = vm_page_lookup(object, offset); | |
13620 | ||
13621 | if (m != VM_PAGE_NULL) { | |
13622 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; | |
13623 | break; | |
13624 | } else { | |
13625 | #if MACH_PAGEMAP | |
13626 | if (object->existence_map) { | |
13627 | if (vm_external_state_get(object->existence_map, | |
13628 | offset) == | |
13629 | VM_EXTERNAL_STATE_EXISTS) { | |
13630 | /* | |
13631 | * this page has been paged out | |
13632 | */ | |
13633 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; | |
13634 | break; | |
13635 | } | |
13636 | } else | |
13637 | #endif | |
13638 | if (object->internal && | |
13639 | object->alive && | |
13640 | !object->terminating && | |
13641 | object->pager_ready) { | |
13642 | ||
13643 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
13644 | if (VM_COMPRESSOR_PAGER_STATE_GET( | |
13645 | object, | |
13646 | offset) | |
13647 | == VM_EXTERNAL_STATE_EXISTS) { | |
13648 | /* the pager has that page */ | |
13649 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; | |
13650 | break; | |
13651 | } | |
13652 | } else { | |
13653 | memory_object_t pager; | |
13654 | ||
13655 | vm_object_paging_begin(object); | |
13656 | pager = object->pager; | |
13657 | vm_object_unlock(object); | |
13658 | ||
13659 | /* | |
13660 | * Ask the default pager if | |
13661 | * it has this page. | |
13662 | */ | |
13663 | kr = memory_object_data_request( | |
13664 | pager, | |
13665 | offset + object->paging_offset, | |
13666 | 0, /* just poke the pager */ | |
13667 | VM_PROT_READ, | |
13668 | NULL); | |
13669 | ||
13670 | vm_object_lock(object); | |
13671 | vm_object_paging_end(object); | |
13672 | ||
13673 | if (kr == KERN_SUCCESS) { | |
13674 | /* the default pager has it */ | |
13675 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; | |
13676 | break; | |
13677 | } | |
13678 | } | |
13679 | } | |
13680 | ||
13681 | if (object->shadow != VM_OBJECT_NULL) { | |
13682 | vm_object_t shadow; | |
13683 | ||
13684 | offset += object->vo_shadow_offset; | |
13685 | shadow = object->shadow; | |
13686 | ||
13687 | vm_object_lock(shadow); | |
13688 | vm_object_unlock(object); | |
13689 | ||
13690 | object = shadow; | |
13691 | top_object = FALSE; | |
13692 | depth++; | |
13693 | } else { | |
13694 | // if (!object->internal) | |
13695 | // break; | |
13696 | // retval = KERN_FAILURE; | |
13697 | // goto done_with_object; | |
13698 | break; | |
13699 | } | |
13700 | } | |
13701 | } | |
13702 | /* The ref_count is not strictly accurate, it measures the number */ | |
13703 | /* of entities holding a ref on the object, they may not be mapping */ | |
13704 | /* the object or may not be mapping the section holding the */ | |
13705 | /* target page but its still a ball park number and though an over- */ | |
13706 | /* count, it picks up the copy-on-write cases */ | |
13707 | ||
13708 | /* We could also get a picture of page sharing from pmap_attributes */ | |
13709 | /* but this would under count as only faulted-in mappings would */ | |
13710 | /* show up. */ | |
13711 | ||
13712 | if (top_object == TRUE && object->shadow) | |
13713 | disposition |= VM_PAGE_QUERY_PAGE_COPIED; | |
13714 | ||
13715 | if (! object->internal) | |
13716 | disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL; | |
13717 | ||
13718 | if (m == VM_PAGE_NULL) | |
13719 | goto done_with_object; | |
13720 | ||
13721 | if (m->fictitious) { | |
13722 | disposition |= VM_PAGE_QUERY_PAGE_FICTITIOUS; | |
13723 | goto done_with_object; | |
13724 | } | |
13725 | if (m->dirty || pmap_is_modified(m->phys_page)) | |
13726 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; | |
13727 | ||
13728 | if (m->reference || pmap_is_referenced(m->phys_page)) | |
13729 | disposition |= VM_PAGE_QUERY_PAGE_REF; | |
13730 | ||
13731 | if (m->speculative) | |
13732 | disposition |= VM_PAGE_QUERY_PAGE_SPECULATIVE; | |
13733 | ||
13734 | if (m->cs_validated) | |
13735 | disposition |= VM_PAGE_QUERY_PAGE_CS_VALIDATED; | |
13736 | if (m->cs_tainted) | |
13737 | disposition |= VM_PAGE_QUERY_PAGE_CS_TAINTED; | |
13738 | if (m->cs_nx) | |
13739 | disposition |= VM_PAGE_QUERY_PAGE_CS_NX; | |
13740 | ||
13741 | done_with_object: | |
13742 | vm_object_unlock(object); | |
13743 | done: | |
13744 | ||
13745 | switch (flavor) { | |
13746 | case VM_PAGE_INFO_BASIC: | |
13747 | basic_info = (vm_page_info_basic_t) info; | |
13748 | basic_info->disposition = disposition; | |
13749 | basic_info->ref_count = ref_count; | |
13750 | basic_info->object_id = (vm_object_id_t) (uintptr_t) | |
13751 | VM_KERNEL_ADDRPERM(object); | |
13752 | basic_info->offset = | |
13753 | (memory_object_offset_t) offset + offset_in_page; | |
13754 | basic_info->depth = depth; | |
13755 | break; | |
13756 | } | |
13757 | ||
13758 | return retval; | |
13759 | } | |
13760 | ||
13761 | /* | |
13762 | * vm_map_msync | |
13763 | * | |
13764 | * Synchronises the memory range specified with its backing store | |
13765 | * image by either flushing or cleaning the contents to the appropriate | |
13766 | * memory manager engaging in a memory object synchronize dialog with | |
13767 | * the manager. The client doesn't return until the manager issues | |
13768 | * m_o_s_completed message. MIG Magically converts user task parameter | |
13769 | * to the task's address map. | |
13770 | * | |
13771 | * interpretation of sync_flags | |
13772 | * VM_SYNC_INVALIDATE - discard pages, only return precious | |
13773 | * pages to manager. | |
13774 | * | |
13775 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) | |
13776 | * - discard pages, write dirty or precious | |
13777 | * pages back to memory manager. | |
13778 | * | |
13779 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS | |
13780 | * - write dirty or precious pages back to | |
13781 | * the memory manager. | |
13782 | * | |
13783 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there | |
13784 | * is a hole in the region, and we would | |
13785 | * have returned KERN_SUCCESS, return | |
13786 | * KERN_INVALID_ADDRESS instead. | |
13787 | * | |
13788 | * NOTE | |
13789 | * The memory object attributes have not yet been implemented, this | |
13790 | * function will have to deal with the invalidate attribute | |
13791 | * | |
13792 | * RETURNS | |
13793 | * KERN_INVALID_TASK Bad task parameter | |
13794 | * KERN_INVALID_ARGUMENT both sync and async were specified. | |
13795 | * KERN_SUCCESS The usual. | |
13796 | * KERN_INVALID_ADDRESS There was a hole in the region. | |
13797 | */ | |
13798 | ||
13799 | kern_return_t | |
13800 | vm_map_msync( | |
13801 | vm_map_t map, | |
13802 | vm_map_address_t address, | |
13803 | vm_map_size_t size, | |
13804 | vm_sync_t sync_flags) | |
13805 | { | |
13806 | msync_req_t msr; | |
13807 | msync_req_t new_msr; | |
13808 | queue_chain_t req_q; /* queue of requests for this msync */ | |
13809 | vm_map_entry_t entry; | |
13810 | vm_map_size_t amount_left; | |
13811 | vm_object_offset_t offset; | |
13812 | boolean_t do_sync_req; | |
13813 | boolean_t had_hole = FALSE; | |
13814 | memory_object_t pager; | |
13815 | ||
13816 | if ((sync_flags & VM_SYNC_ASYNCHRONOUS) && | |
13817 | (sync_flags & VM_SYNC_SYNCHRONOUS)) | |
13818 | return(KERN_INVALID_ARGUMENT); | |
13819 | ||
13820 | /* | |
13821 | * align address and size on page boundaries | |
13822 | */ | |
13823 | size = (vm_map_round_page(address + size, | |
13824 | VM_MAP_PAGE_MASK(map)) - | |
13825 | vm_map_trunc_page(address, | |
13826 | VM_MAP_PAGE_MASK(map))); | |
13827 | address = vm_map_trunc_page(address, | |
13828 | VM_MAP_PAGE_MASK(map)); | |
13829 | ||
13830 | if (map == VM_MAP_NULL) | |
13831 | return(KERN_INVALID_TASK); | |
13832 | ||
13833 | if (size == 0) | |
13834 | return(KERN_SUCCESS); | |
13835 | ||
13836 | queue_init(&req_q); | |
13837 | amount_left = size; | |
13838 | ||
13839 | while (amount_left > 0) { | |
13840 | vm_object_size_t flush_size; | |
13841 | vm_object_t object; | |
13842 | ||
13843 | vm_map_lock(map); | |
13844 | if (!vm_map_lookup_entry(map, | |
13845 | vm_map_trunc_page( | |
13846 | address, | |
13847 | VM_MAP_PAGE_MASK(map)), | |
13848 | &entry)) { | |
13849 | ||
13850 | vm_map_size_t skip; | |
13851 | ||
13852 | /* | |
13853 | * hole in the address map. | |
13854 | */ | |
13855 | had_hole = TRUE; | |
13856 | ||
13857 | /* | |
13858 | * Check for empty map. | |
13859 | */ | |
13860 | if (entry == vm_map_to_entry(map) && | |
13861 | entry->vme_next == entry) { | |
13862 | vm_map_unlock(map); | |
13863 | break; | |
13864 | } | |
13865 | /* | |
13866 | * Check that we don't wrap and that | |
13867 | * we have at least one real map entry. | |
13868 | */ | |
13869 | if ((map->hdr.nentries == 0) || | |
13870 | (entry->vme_next->vme_start < address)) { | |
13871 | vm_map_unlock(map); | |
13872 | break; | |
13873 | } | |
13874 | /* | |
13875 | * Move up to the next entry if needed | |
13876 | */ | |
13877 | skip = (entry->vme_next->vme_start - address); | |
13878 | if (skip >= amount_left) | |
13879 | amount_left = 0; | |
13880 | else | |
13881 | amount_left -= skip; | |
13882 | address = entry->vme_next->vme_start; | |
13883 | vm_map_unlock(map); | |
13884 | continue; | |
13885 | } | |
13886 | ||
13887 | offset = address - entry->vme_start; | |
13888 | ||
13889 | /* | |
13890 | * do we have more to flush than is contained in this | |
13891 | * entry ? | |
13892 | */ | |
13893 | if (amount_left + entry->vme_start + offset > entry->vme_end) { | |
13894 | flush_size = entry->vme_end - | |
13895 | (entry->vme_start + offset); | |
13896 | } else { | |
13897 | flush_size = amount_left; | |
13898 | } | |
13899 | amount_left -= flush_size; | |
13900 | address += flush_size; | |
13901 | ||
13902 | if (entry->is_sub_map == TRUE) { | |
13903 | vm_map_t local_map; | |
13904 | vm_map_offset_t local_offset; | |
13905 | ||
13906 | local_map = entry->object.sub_map; | |
13907 | local_offset = entry->offset; | |
13908 | vm_map_unlock(map); | |
13909 | if (vm_map_msync( | |
13910 | local_map, | |
13911 | local_offset, | |
13912 | flush_size, | |
13913 | sync_flags) == KERN_INVALID_ADDRESS) { | |
13914 | had_hole = TRUE; | |
13915 | } | |
13916 | continue; | |
13917 | } | |
13918 | object = entry->object.vm_object; | |
13919 | ||
13920 | /* | |
13921 | * We can't sync this object if the object has not been | |
13922 | * created yet | |
13923 | */ | |
13924 | if (object == VM_OBJECT_NULL) { | |
13925 | vm_map_unlock(map); | |
13926 | continue; | |
13927 | } | |
13928 | offset += entry->offset; | |
13929 | ||
13930 | vm_object_lock(object); | |
13931 | ||
13932 | if (sync_flags & (VM_SYNC_KILLPAGES | VM_SYNC_DEACTIVATE)) { | |
13933 | int kill_pages = 0; | |
13934 | boolean_t reusable_pages = FALSE; | |
13935 | ||
13936 | if (sync_flags & VM_SYNC_KILLPAGES) { | |
13937 | if (object->ref_count == 1 && !object->shadow) | |
13938 | kill_pages = 1; | |
13939 | else | |
13940 | kill_pages = -1; | |
13941 | } | |
13942 | if (kill_pages != -1) | |
13943 | vm_object_deactivate_pages(object, offset, | |
13944 | (vm_object_size_t)flush_size, kill_pages, reusable_pages); | |
13945 | vm_object_unlock(object); | |
13946 | vm_map_unlock(map); | |
13947 | continue; | |
13948 | } | |
13949 | /* | |
13950 | * We can't sync this object if there isn't a pager. | |
13951 | * Don't bother to sync internal objects, since there can't | |
13952 | * be any "permanent" storage for these objects anyway. | |
13953 | */ | |
13954 | if ((object->pager == MEMORY_OBJECT_NULL) || | |
13955 | (object->internal) || (object->private)) { | |
13956 | vm_object_unlock(object); | |
13957 | vm_map_unlock(map); | |
13958 | continue; | |
13959 | } | |
13960 | /* | |
13961 | * keep reference on the object until syncing is done | |
13962 | */ | |
13963 | vm_object_reference_locked(object); | |
13964 | vm_object_unlock(object); | |
13965 | ||
13966 | vm_map_unlock(map); | |
13967 | ||
13968 | do_sync_req = vm_object_sync(object, | |
13969 | offset, | |
13970 | flush_size, | |
13971 | sync_flags & VM_SYNC_INVALIDATE, | |
13972 | ((sync_flags & VM_SYNC_SYNCHRONOUS) || | |
13973 | (sync_flags & VM_SYNC_ASYNCHRONOUS)), | |
13974 | sync_flags & VM_SYNC_SYNCHRONOUS); | |
13975 | /* | |
13976 | * only send a m_o_s if we returned pages or if the entry | |
13977 | * is writable (ie dirty pages may have already been sent back) | |
13978 | */ | |
13979 | if (!do_sync_req) { | |
13980 | if ((sync_flags & VM_SYNC_INVALIDATE) && object->resident_page_count == 0) { | |
13981 | /* | |
13982 | * clear out the clustering and read-ahead hints | |
13983 | */ | |
13984 | vm_object_lock(object); | |
13985 | ||
13986 | object->pages_created = 0; | |
13987 | object->pages_used = 0; | |
13988 | object->sequential = 0; | |
13989 | object->last_alloc = 0; | |
13990 | ||
13991 | vm_object_unlock(object); | |
13992 | } | |
13993 | vm_object_deallocate(object); | |
13994 | continue; | |
13995 | } | |
13996 | msync_req_alloc(new_msr); | |
13997 | ||
13998 | vm_object_lock(object); | |
13999 | offset += object->paging_offset; | |
14000 | ||
14001 | new_msr->offset = offset; | |
14002 | new_msr->length = flush_size; | |
14003 | new_msr->object = object; | |
14004 | new_msr->flag = VM_MSYNC_SYNCHRONIZING; | |
14005 | re_iterate: | |
14006 | ||
14007 | /* | |
14008 | * We can't sync this object if there isn't a pager. The | |
14009 | * pager can disappear anytime we're not holding the object | |
14010 | * lock. So this has to be checked anytime we goto re_iterate. | |
14011 | */ | |
14012 | ||
14013 | pager = object->pager; | |
14014 | ||
14015 | if (pager == MEMORY_OBJECT_NULL) { | |
14016 | vm_object_unlock(object); | |
14017 | vm_object_deallocate(object); | |
14018 | msync_req_free(new_msr); | |
14019 | new_msr = NULL; | |
14020 | continue; | |
14021 | } | |
14022 | ||
14023 | queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) { | |
14024 | /* | |
14025 | * need to check for overlapping entry, if found, wait | |
14026 | * on overlapping msr to be done, then reiterate | |
14027 | */ | |
14028 | msr_lock(msr); | |
14029 | if (msr->flag == VM_MSYNC_SYNCHRONIZING && | |
14030 | ((offset >= msr->offset && | |
14031 | offset < (msr->offset + msr->length)) || | |
14032 | (msr->offset >= offset && | |
14033 | msr->offset < (offset + flush_size)))) | |
14034 | { | |
14035 | assert_wait((event_t) msr,THREAD_INTERRUPTIBLE); | |
14036 | msr_unlock(msr); | |
14037 | vm_object_unlock(object); | |
14038 | thread_block(THREAD_CONTINUE_NULL); | |
14039 | vm_object_lock(object); | |
14040 | goto re_iterate; | |
14041 | } | |
14042 | msr_unlock(msr); | |
14043 | }/* queue_iterate */ | |
14044 | ||
14045 | queue_enter(&object->msr_q, new_msr, msync_req_t, msr_q); | |
14046 | ||
14047 | vm_object_paging_begin(object); | |
14048 | vm_object_unlock(object); | |
14049 | ||
14050 | queue_enter(&req_q, new_msr, msync_req_t, req_q); | |
14051 | ||
14052 | (void) memory_object_synchronize( | |
14053 | pager, | |
14054 | offset, | |
14055 | flush_size, | |
14056 | sync_flags & ~VM_SYNC_CONTIGUOUS); | |
14057 | ||
14058 | vm_object_lock(object); | |
14059 | vm_object_paging_end(object); | |
14060 | vm_object_unlock(object); | |
14061 | }/* while */ | |
14062 | ||
14063 | /* | |
14064 | * wait for memory_object_sychronize_completed messages from pager(s) | |
14065 | */ | |
14066 | ||
14067 | while (!queue_empty(&req_q)) { | |
14068 | msr = (msync_req_t)queue_first(&req_q); | |
14069 | msr_lock(msr); | |
14070 | while(msr->flag != VM_MSYNC_DONE) { | |
14071 | assert_wait((event_t) msr, THREAD_INTERRUPTIBLE); | |
14072 | msr_unlock(msr); | |
14073 | thread_block(THREAD_CONTINUE_NULL); | |
14074 | msr_lock(msr); | |
14075 | }/* while */ | |
14076 | queue_remove(&req_q, msr, msync_req_t, req_q); | |
14077 | msr_unlock(msr); | |
14078 | vm_object_deallocate(msr->object); | |
14079 | msync_req_free(msr); | |
14080 | }/* queue_iterate */ | |
14081 | ||
14082 | /* for proper msync() behaviour */ | |
14083 | if (had_hole == TRUE && (sync_flags & VM_SYNC_CONTIGUOUS)) | |
14084 | return(KERN_INVALID_ADDRESS); | |
14085 | ||
14086 | return(KERN_SUCCESS); | |
14087 | }/* vm_msync */ | |
14088 | ||
14089 | /* | |
14090 | * Routine: convert_port_entry_to_map | |
14091 | * Purpose: | |
14092 | * Convert from a port specifying an entry or a task | |
14093 | * to a map. Doesn't consume the port ref; produces a map ref, | |
14094 | * which may be null. Unlike convert_port_to_map, the | |
14095 | * port may be task or a named entry backed. | |
14096 | * Conditions: | |
14097 | * Nothing locked. | |
14098 | */ | |
14099 | ||
14100 | ||
14101 | vm_map_t | |
14102 | convert_port_entry_to_map( | |
14103 | ipc_port_t port) | |
14104 | { | |
14105 | vm_map_t map; | |
14106 | vm_named_entry_t named_entry; | |
14107 | uint32_t try_failed_count = 0; | |
14108 | ||
14109 | if(IP_VALID(port) && (ip_kotype(port) == IKOT_NAMED_ENTRY)) { | |
14110 | while(TRUE) { | |
14111 | ip_lock(port); | |
14112 | if(ip_active(port) && (ip_kotype(port) | |
14113 | == IKOT_NAMED_ENTRY)) { | |
14114 | named_entry = | |
14115 | (vm_named_entry_t)port->ip_kobject; | |
14116 | if (!(lck_mtx_try_lock(&(named_entry)->Lock))) { | |
14117 | ip_unlock(port); | |
14118 | ||
14119 | try_failed_count++; | |
14120 | mutex_pause(try_failed_count); | |
14121 | continue; | |
14122 | } | |
14123 | named_entry->ref_count++; | |
14124 | lck_mtx_unlock(&(named_entry)->Lock); | |
14125 | ip_unlock(port); | |
14126 | if ((named_entry->is_sub_map) && | |
14127 | (named_entry->protection | |
14128 | & VM_PROT_WRITE)) { | |
14129 | map = named_entry->backing.map; | |
14130 | } else { | |
14131 | mach_destroy_memory_entry(port); | |
14132 | return VM_MAP_NULL; | |
14133 | } | |
14134 | vm_map_reference_swap(map); | |
14135 | mach_destroy_memory_entry(port); | |
14136 | break; | |
14137 | } | |
14138 | else | |
14139 | return VM_MAP_NULL; | |
14140 | } | |
14141 | } | |
14142 | else | |
14143 | map = convert_port_to_map(port); | |
14144 | ||
14145 | return map; | |
14146 | } | |
14147 | ||
14148 | /* | |
14149 | * Routine: convert_port_entry_to_object | |
14150 | * Purpose: | |
14151 | * Convert from a port specifying a named entry to an | |
14152 | * object. Doesn't consume the port ref; produces a map ref, | |
14153 | * which may be null. | |
14154 | * Conditions: | |
14155 | * Nothing locked. | |
14156 | */ | |
14157 | ||
14158 | ||
14159 | vm_object_t | |
14160 | convert_port_entry_to_object( | |
14161 | ipc_port_t port) | |
14162 | { | |
14163 | vm_object_t object = VM_OBJECT_NULL; | |
14164 | vm_named_entry_t named_entry; | |
14165 | uint32_t try_failed_count = 0; | |
14166 | ||
14167 | if (IP_VALID(port) && | |
14168 | (ip_kotype(port) == IKOT_NAMED_ENTRY)) { | |
14169 | try_again: | |
14170 | ip_lock(port); | |
14171 | if (ip_active(port) && | |
14172 | (ip_kotype(port) == IKOT_NAMED_ENTRY)) { | |
14173 | named_entry = (vm_named_entry_t)port->ip_kobject; | |
14174 | if (!(lck_mtx_try_lock(&(named_entry)->Lock))) { | |
14175 | ip_unlock(port); | |
14176 | try_failed_count++; | |
14177 | mutex_pause(try_failed_count); | |
14178 | goto try_again; | |
14179 | } | |
14180 | named_entry->ref_count++; | |
14181 | lck_mtx_unlock(&(named_entry)->Lock); | |
14182 | ip_unlock(port); | |
14183 | if (!(named_entry->is_sub_map) && | |
14184 | !(named_entry->is_pager) && | |
14185 | !(named_entry->is_copy) && | |
14186 | (named_entry->protection & VM_PROT_WRITE)) { | |
14187 | object = named_entry->backing.object; | |
14188 | vm_object_reference(object); | |
14189 | } | |
14190 | mach_destroy_memory_entry(port); | |
14191 | } | |
14192 | } | |
14193 | ||
14194 | return object; | |
14195 | } | |
14196 | ||
14197 | /* | |
14198 | * Export routines to other components for the things we access locally through | |
14199 | * macros. | |
14200 | */ | |
14201 | #undef current_map | |
14202 | vm_map_t | |
14203 | current_map(void) | |
14204 | { | |
14205 | return (current_map_fast()); | |
14206 | } | |
14207 | ||
14208 | /* | |
14209 | * vm_map_reference: | |
14210 | * | |
14211 | * Most code internal to the osfmk will go through a | |
14212 | * macro defining this. This is always here for the | |
14213 | * use of other kernel components. | |
14214 | */ | |
14215 | #undef vm_map_reference | |
14216 | void | |
14217 | vm_map_reference( | |
14218 | register vm_map_t map) | |
14219 | { | |
14220 | if (map == VM_MAP_NULL) | |
14221 | return; | |
14222 | ||
14223 | lck_mtx_lock(&map->s_lock); | |
14224 | #if TASK_SWAPPER | |
14225 | assert(map->res_count > 0); | |
14226 | assert(map->ref_count >= map->res_count); | |
14227 | map->res_count++; | |
14228 | #endif | |
14229 | map->ref_count++; | |
14230 | lck_mtx_unlock(&map->s_lock); | |
14231 | } | |
14232 | ||
14233 | /* | |
14234 | * vm_map_deallocate: | |
14235 | * | |
14236 | * Removes a reference from the specified map, | |
14237 | * destroying it if no references remain. | |
14238 | * The map should not be locked. | |
14239 | */ | |
14240 | void | |
14241 | vm_map_deallocate( | |
14242 | register vm_map_t map) | |
14243 | { | |
14244 | unsigned int ref; | |
14245 | ||
14246 | if (map == VM_MAP_NULL) | |
14247 | return; | |
14248 | ||
14249 | lck_mtx_lock(&map->s_lock); | |
14250 | ref = --map->ref_count; | |
14251 | if (ref > 0) { | |
14252 | vm_map_res_deallocate(map); | |
14253 | lck_mtx_unlock(&map->s_lock); | |
14254 | return; | |
14255 | } | |
14256 | assert(map->ref_count == 0); | |
14257 | lck_mtx_unlock(&map->s_lock); | |
14258 | ||
14259 | #if TASK_SWAPPER | |
14260 | /* | |
14261 | * The map residence count isn't decremented here because | |
14262 | * the vm_map_delete below will traverse the entire map, | |
14263 | * deleting entries, and the residence counts on objects | |
14264 | * and sharing maps will go away then. | |
14265 | */ | |
14266 | #endif | |
14267 | ||
14268 | vm_map_destroy(map, VM_MAP_NO_FLAGS); | |
14269 | } | |
14270 | ||
14271 | ||
14272 | void | |
14273 | vm_map_disable_NX(vm_map_t map) | |
14274 | { | |
14275 | if (map == NULL) | |
14276 | return; | |
14277 | if (map->pmap == NULL) | |
14278 | return; | |
14279 | ||
14280 | pmap_disable_NX(map->pmap); | |
14281 | } | |
14282 | ||
14283 | void | |
14284 | vm_map_disallow_data_exec(vm_map_t map) | |
14285 | { | |
14286 | if (map == NULL) | |
14287 | return; | |
14288 | ||
14289 | map->map_disallow_data_exec = TRUE; | |
14290 | } | |
14291 | ||
14292 | /* XXX Consider making these constants (VM_MAX_ADDRESS and MACH_VM_MAX_ADDRESS) | |
14293 | * more descriptive. | |
14294 | */ | |
14295 | void | |
14296 | vm_map_set_32bit(vm_map_t map) | |
14297 | { | |
14298 | map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS; | |
14299 | } | |
14300 | ||
14301 | ||
14302 | void | |
14303 | vm_map_set_64bit(vm_map_t map) | |
14304 | { | |
14305 | map->max_offset = (vm_map_offset_t)MACH_VM_MAX_ADDRESS; | |
14306 | } | |
14307 | ||
14308 | vm_map_offset_t | |
14309 | vm_compute_max_offset(unsigned is64) | |
14310 | { | |
14311 | return (is64 ? (vm_map_offset_t)MACH_VM_MAX_ADDRESS : (vm_map_offset_t)VM_MAX_ADDRESS); | |
14312 | } | |
14313 | ||
14314 | uint64_t | |
14315 | vm_map_get_max_aslr_slide_pages(vm_map_t map) | |
14316 | { | |
14317 | return (1 << (vm_map_is_64bit(map) ? 16 : 8)); | |
14318 | } | |
14319 | ||
14320 | boolean_t | |
14321 | vm_map_is_64bit( | |
14322 | vm_map_t map) | |
14323 | { | |
14324 | return map->max_offset > ((vm_map_offset_t)VM_MAX_ADDRESS); | |
14325 | } | |
14326 | ||
14327 | boolean_t | |
14328 | vm_map_has_hard_pagezero( | |
14329 | vm_map_t map, | |
14330 | vm_map_offset_t pagezero_size) | |
14331 | { | |
14332 | /* | |
14333 | * XXX FBDP | |
14334 | * We should lock the VM map (for read) here but we can get away | |
14335 | * with it for now because there can't really be any race condition: | |
14336 | * the VM map's min_offset is changed only when the VM map is created | |
14337 | * and when the zero page is established (when the binary gets loaded), | |
14338 | * and this routine gets called only when the task terminates and the | |
14339 | * VM map is being torn down, and when a new map is created via | |
14340 | * load_machfile()/execve(). | |
14341 | */ | |
14342 | return (map->min_offset >= pagezero_size); | |
14343 | } | |
14344 | ||
14345 | /* | |
14346 | * Raise a VM map's maximun offset. | |
14347 | */ | |
14348 | kern_return_t | |
14349 | vm_map_raise_max_offset( | |
14350 | vm_map_t map, | |
14351 | vm_map_offset_t new_max_offset) | |
14352 | { | |
14353 | kern_return_t ret; | |
14354 | ||
14355 | vm_map_lock(map); | |
14356 | ret = KERN_INVALID_ADDRESS; | |
14357 | ||
14358 | if (new_max_offset >= map->max_offset) { | |
14359 | if (!vm_map_is_64bit(map)) { | |
14360 | if (new_max_offset <= (vm_map_offset_t)VM_MAX_ADDRESS) { | |
14361 | map->max_offset = new_max_offset; | |
14362 | ret = KERN_SUCCESS; | |
14363 | } | |
14364 | } else { | |
14365 | if (new_max_offset <= (vm_map_offset_t)MACH_VM_MAX_ADDRESS) { | |
14366 | map->max_offset = new_max_offset; | |
14367 | ret = KERN_SUCCESS; | |
14368 | } | |
14369 | } | |
14370 | } | |
14371 | ||
14372 | vm_map_unlock(map); | |
14373 | return ret; | |
14374 | } | |
14375 | ||
14376 | ||
14377 | /* | |
14378 | * Raise a VM map's minimum offset. | |
14379 | * To strictly enforce "page zero" reservation. | |
14380 | */ | |
14381 | kern_return_t | |
14382 | vm_map_raise_min_offset( | |
14383 | vm_map_t map, | |
14384 | vm_map_offset_t new_min_offset) | |
14385 | { | |
14386 | vm_map_entry_t first_entry; | |
14387 | ||
14388 | new_min_offset = vm_map_round_page(new_min_offset, | |
14389 | VM_MAP_PAGE_MASK(map)); | |
14390 | ||
14391 | vm_map_lock(map); | |
14392 | ||
14393 | if (new_min_offset < map->min_offset) { | |
14394 | /* | |
14395 | * Can't move min_offset backwards, as that would expose | |
14396 | * a part of the address space that was previously, and for | |
14397 | * possibly good reasons, inaccessible. | |
14398 | */ | |
14399 | vm_map_unlock(map); | |
14400 | return KERN_INVALID_ADDRESS; | |
14401 | } | |
14402 | ||
14403 | first_entry = vm_map_first_entry(map); | |
14404 | if (first_entry != vm_map_to_entry(map) && | |
14405 | first_entry->vme_start < new_min_offset) { | |
14406 | /* | |
14407 | * Some memory was already allocated below the new | |
14408 | * minimun offset. It's too late to change it now... | |
14409 | */ | |
14410 | vm_map_unlock(map); | |
14411 | return KERN_NO_SPACE; | |
14412 | } | |
14413 | ||
14414 | map->min_offset = new_min_offset; | |
14415 | ||
14416 | vm_map_unlock(map); | |
14417 | ||
14418 | return KERN_SUCCESS; | |
14419 | } | |
14420 | ||
14421 | /* | |
14422 | * Set the limit on the maximum amount of user wired memory allowed for this map. | |
14423 | * This is basically a copy of the MEMLOCK rlimit value maintained by the BSD side of | |
14424 | * the kernel. The limits are checked in the mach VM side, so we keep a copy so we | |
14425 | * don't have to reach over to the BSD data structures. | |
14426 | */ | |
14427 | ||
14428 | void | |
14429 | vm_map_set_user_wire_limit(vm_map_t map, | |
14430 | vm_size_t limit) | |
14431 | { | |
14432 | map->user_wire_limit = limit; | |
14433 | } | |
14434 | ||
14435 | ||
14436 | void vm_map_switch_protect(vm_map_t map, | |
14437 | boolean_t val) | |
14438 | { | |
14439 | vm_map_lock(map); | |
14440 | map->switch_protect=val; | |
14441 | vm_map_unlock(map); | |
14442 | } | |
14443 | ||
14444 | /* | |
14445 | * IOKit has mapped a region into this map; adjust the pmap's ledgers appropriately. | |
14446 | * phys_footprint is a composite limit consisting of iokit + physmem, so we need to | |
14447 | * bump both counters. | |
14448 | */ | |
14449 | void | |
14450 | vm_map_iokit_mapped_region(vm_map_t map, vm_size_t bytes) | |
14451 | { | |
14452 | pmap_t pmap = vm_map_pmap(map); | |
14453 | ||
14454 | ledger_credit(pmap->ledger, task_ledgers.iokit_mapped, bytes); | |
14455 | ledger_credit(pmap->ledger, task_ledgers.phys_footprint, bytes); | |
14456 | } | |
14457 | ||
14458 | void | |
14459 | vm_map_iokit_unmapped_region(vm_map_t map, vm_size_t bytes) | |
14460 | { | |
14461 | pmap_t pmap = vm_map_pmap(map); | |
14462 | ||
14463 | ledger_debit(pmap->ledger, task_ledgers.iokit_mapped, bytes); | |
14464 | ledger_debit(pmap->ledger, task_ledgers.phys_footprint, bytes); | |
14465 | } | |
14466 | ||
14467 | /* Add (generate) code signature for memory range */ | |
14468 | #if CONFIG_DYNAMIC_CODE_SIGNING | |
14469 | kern_return_t vm_map_sign(vm_map_t map, | |
14470 | vm_map_offset_t start, | |
14471 | vm_map_offset_t end) | |
14472 | { | |
14473 | vm_map_entry_t entry; | |
14474 | vm_page_t m; | |
14475 | vm_object_t object; | |
14476 | ||
14477 | /* | |
14478 | * Vet all the input parameters and current type and state of the | |
14479 | * underlaying object. Return with an error if anything is amiss. | |
14480 | */ | |
14481 | if (map == VM_MAP_NULL) | |
14482 | return(KERN_INVALID_ARGUMENT); | |
14483 | ||
14484 | vm_map_lock_read(map); | |
14485 | ||
14486 | if (!vm_map_lookup_entry(map, start, &entry) || entry->is_sub_map) { | |
14487 | /* | |
14488 | * Must pass a valid non-submap address. | |
14489 | */ | |
14490 | vm_map_unlock_read(map); | |
14491 | return(KERN_INVALID_ADDRESS); | |
14492 | } | |
14493 | ||
14494 | if((entry->vme_start > start) || (entry->vme_end < end)) { | |
14495 | /* | |
14496 | * Map entry doesn't cover the requested range. Not handling | |
14497 | * this situation currently. | |
14498 | */ | |
14499 | vm_map_unlock_read(map); | |
14500 | return(KERN_INVALID_ARGUMENT); | |
14501 | } | |
14502 | ||
14503 | object = entry->object.vm_object; | |
14504 | if (object == VM_OBJECT_NULL) { | |
14505 | /* | |
14506 | * Object must already be present or we can't sign. | |
14507 | */ | |
14508 | vm_map_unlock_read(map); | |
14509 | return KERN_INVALID_ARGUMENT; | |
14510 | } | |
14511 | ||
14512 | vm_object_lock(object); | |
14513 | vm_map_unlock_read(map); | |
14514 | ||
14515 | while(start < end) { | |
14516 | uint32_t refmod; | |
14517 | ||
14518 | m = vm_page_lookup(object, start - entry->vme_start + entry->offset ); | |
14519 | if (m==VM_PAGE_NULL) { | |
14520 | /* shoud we try to fault a page here? we can probably | |
14521 | * demand it exists and is locked for this request */ | |
14522 | vm_object_unlock(object); | |
14523 | return KERN_FAILURE; | |
14524 | } | |
14525 | /* deal with special page status */ | |
14526 | if (m->busy || | |
14527 | (m->unusual && (m->error || m->restart || m->private || m->absent))) { | |
14528 | vm_object_unlock(object); | |
14529 | return KERN_FAILURE; | |
14530 | } | |
14531 | ||
14532 | /* Page is OK... now "validate" it */ | |
14533 | /* This is the place where we'll call out to create a code | |
14534 | * directory, later */ | |
14535 | m->cs_validated = TRUE; | |
14536 | ||
14537 | /* The page is now "clean" for codesigning purposes. That means | |
14538 | * we don't consider it as modified (wpmapped) anymore. But | |
14539 | * we'll disconnect the page so we note any future modification | |
14540 | * attempts. */ | |
14541 | m->wpmapped = FALSE; | |
14542 | refmod = pmap_disconnect(m->phys_page); | |
14543 | ||
14544 | /* Pull the dirty status from the pmap, since we cleared the | |
14545 | * wpmapped bit */ | |
14546 | if ((refmod & VM_MEM_MODIFIED) && !m->dirty) { | |
14547 | SET_PAGE_DIRTY(m, FALSE); | |
14548 | } | |
14549 | ||
14550 | /* On to the next page */ | |
14551 | start += PAGE_SIZE; | |
14552 | } | |
14553 | vm_object_unlock(object); | |
14554 | ||
14555 | return KERN_SUCCESS; | |
14556 | } | |
14557 | #endif | |
14558 | ||
14559 | kern_return_t vm_map_partial_reap(vm_map_t map, unsigned int *reclaimed_resident, unsigned int *reclaimed_compressed) | |
14560 | { | |
14561 | vm_map_entry_t entry = VM_MAP_ENTRY_NULL; | |
14562 | vm_map_entry_t next_entry; | |
14563 | kern_return_t kr = KERN_SUCCESS; | |
14564 | vm_map_t zap_map; | |
14565 | ||
14566 | vm_map_lock(map); | |
14567 | ||
14568 | /* | |
14569 | * We use a "zap_map" to avoid having to unlock | |
14570 | * the "map" in vm_map_delete(). | |
14571 | */ | |
14572 | zap_map = vm_map_create(PMAP_NULL, | |
14573 | map->min_offset, | |
14574 | map->max_offset, | |
14575 | map->hdr.entries_pageable); | |
14576 | ||
14577 | if (zap_map == VM_MAP_NULL) { | |
14578 | return KERN_RESOURCE_SHORTAGE; | |
14579 | } | |
14580 | ||
14581 | vm_map_set_page_shift(zap_map, | |
14582 | VM_MAP_PAGE_SHIFT(map)); | |
14583 | ||
14584 | for (entry = vm_map_first_entry(map); | |
14585 | entry != vm_map_to_entry(map); | |
14586 | entry = next_entry) { | |
14587 | next_entry = entry->vme_next; | |
14588 | ||
14589 | if (entry->object.vm_object && !entry->is_sub_map && (entry->object.vm_object->internal == TRUE) | |
14590 | && (entry->object.vm_object->ref_count == 1)) { | |
14591 | ||
14592 | *reclaimed_resident += entry->object.vm_object->resident_page_count; | |
14593 | *reclaimed_compressed += vm_compressor_pager_get_count(entry->object.vm_object->pager); | |
14594 | ||
14595 | (void)vm_map_delete(map, | |
14596 | entry->vme_start, | |
14597 | entry->vme_end, | |
14598 | VM_MAP_REMOVE_SAVE_ENTRIES, | |
14599 | zap_map); | |
14600 | } | |
14601 | } | |
14602 | ||
14603 | vm_map_unlock(map); | |
14604 | ||
14605 | /* | |
14606 | * Get rid of the "zap_maps" and all the map entries that | |
14607 | * they may still contain. | |
14608 | */ | |
14609 | if (zap_map != VM_MAP_NULL) { | |
14610 | vm_map_destroy(zap_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP); | |
14611 | zap_map = VM_MAP_NULL; | |
14612 | } | |
14613 | ||
14614 | return kr; | |
14615 | } | |
14616 | ||
14617 | #if CONFIG_FREEZE | |
14618 | ||
14619 | kern_return_t vm_map_freeze_walk( | |
14620 | vm_map_t map, | |
14621 | unsigned int *purgeable_count, | |
14622 | unsigned int *wired_count, | |
14623 | unsigned int *clean_count, | |
14624 | unsigned int *dirty_count, | |
14625 | unsigned int dirty_budget, | |
14626 | boolean_t *has_shared) | |
14627 | { | |
14628 | vm_map_entry_t entry; | |
14629 | ||
14630 | vm_map_lock_read(map); | |
14631 | ||
14632 | *purgeable_count = *wired_count = *clean_count = *dirty_count = 0; | |
14633 | *has_shared = FALSE; | |
14634 | ||
14635 | for (entry = vm_map_first_entry(map); | |
14636 | entry != vm_map_to_entry(map); | |
14637 | entry = entry->vme_next) { | |
14638 | unsigned int purgeable, clean, dirty, wired; | |
14639 | boolean_t shared; | |
14640 | ||
14641 | if ((entry->object.vm_object == 0) || | |
14642 | (entry->is_sub_map) || | |
14643 | (entry->object.vm_object->phys_contiguous)) { | |
14644 | continue; | |
14645 | } | |
14646 | ||
14647 | default_freezer_pack(&purgeable, &wired, &clean, &dirty, dirty_budget, &shared, entry->object.vm_object, NULL); | |
14648 | ||
14649 | *purgeable_count += purgeable; | |
14650 | *wired_count += wired; | |
14651 | *clean_count += clean; | |
14652 | *dirty_count += dirty; | |
14653 | ||
14654 | if (shared) { | |
14655 | *has_shared = TRUE; | |
14656 | } | |
14657 | ||
14658 | /* Adjust pageout budget and finish up if reached */ | |
14659 | if (dirty_budget) { | |
14660 | dirty_budget -= dirty; | |
14661 | if (dirty_budget == 0) { | |
14662 | break; | |
14663 | } | |
14664 | } | |
14665 | } | |
14666 | ||
14667 | vm_map_unlock_read(map); | |
14668 | ||
14669 | return KERN_SUCCESS; | |
14670 | } | |
14671 | ||
14672 | kern_return_t vm_map_freeze( | |
14673 | vm_map_t map, | |
14674 | unsigned int *purgeable_count, | |
14675 | unsigned int *wired_count, | |
14676 | unsigned int *clean_count, | |
14677 | unsigned int *dirty_count, | |
14678 | unsigned int dirty_budget, | |
14679 | boolean_t *has_shared) | |
14680 | { | |
14681 | vm_map_entry_t entry2 = VM_MAP_ENTRY_NULL; | |
14682 | kern_return_t kr = KERN_SUCCESS; | |
14683 | boolean_t default_freezer_active = TRUE; | |
14684 | ||
14685 | *purgeable_count = *wired_count = *clean_count = *dirty_count = 0; | |
14686 | *has_shared = FALSE; | |
14687 | ||
14688 | /* | |
14689 | * We need the exclusive lock here so that we can | |
14690 | * block any page faults or lookups while we are | |
14691 | * in the middle of freezing this vm map. | |
14692 | */ | |
14693 | vm_map_lock(map); | |
14694 | ||
14695 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
14696 | default_freezer_active = FALSE; | |
14697 | } | |
14698 | ||
14699 | if (default_freezer_active) { | |
14700 | if (map->default_freezer_handle == NULL) { | |
14701 | map->default_freezer_handle = default_freezer_handle_allocate(); | |
14702 | } | |
14703 | ||
14704 | if ((kr = default_freezer_handle_init(map->default_freezer_handle)) != KERN_SUCCESS) { | |
14705 | /* | |
14706 | * Can happen if default_freezer_handle passed in is NULL | |
14707 | * Or, a table has already been allocated and associated | |
14708 | * with this handle, i.e. the map is already frozen. | |
14709 | */ | |
14710 | goto done; | |
14711 | } | |
14712 | } | |
14713 | ||
14714 | for (entry2 = vm_map_first_entry(map); | |
14715 | entry2 != vm_map_to_entry(map); | |
14716 | entry2 = entry2->vme_next) { | |
14717 | ||
14718 | vm_object_t src_object = entry2->object.vm_object; | |
14719 | ||
14720 | if (entry2->object.vm_object && !entry2->is_sub_map && !entry2->object.vm_object->phys_contiguous) { | |
14721 | /* If eligible, scan the entry, moving eligible pages over to our parent object */ | |
14722 | if (default_freezer_active) { | |
14723 | unsigned int purgeable, clean, dirty, wired; | |
14724 | boolean_t shared; | |
14725 | ||
14726 | default_freezer_pack(&purgeable, &wired, &clean, &dirty, dirty_budget, &shared, | |
14727 | src_object, map->default_freezer_handle); | |
14728 | ||
14729 | *purgeable_count += purgeable; | |
14730 | *wired_count += wired; | |
14731 | *clean_count += clean; | |
14732 | *dirty_count += dirty; | |
14733 | ||
14734 | /* Adjust pageout budget and finish up if reached */ | |
14735 | if (dirty_budget) { | |
14736 | dirty_budget -= dirty; | |
14737 | if (dirty_budget == 0) { | |
14738 | break; | |
14739 | } | |
14740 | } | |
14741 | ||
14742 | if (shared) { | |
14743 | *has_shared = TRUE; | |
14744 | } | |
14745 | } else { | |
14746 | /* | |
14747 | * To the compressor. | |
14748 | */ | |
14749 | if (entry2->object.vm_object->internal == TRUE) { | |
14750 | vm_object_pageout(entry2->object.vm_object); | |
14751 | } | |
14752 | } | |
14753 | } | |
14754 | } | |
14755 | ||
14756 | if (default_freezer_active) { | |
14757 | /* Finally, throw out the pages to swap */ | |
14758 | default_freezer_pageout(map->default_freezer_handle); | |
14759 | } | |
14760 | ||
14761 | done: | |
14762 | vm_map_unlock(map); | |
14763 | ||
14764 | return kr; | |
14765 | } | |
14766 | ||
14767 | kern_return_t | |
14768 | vm_map_thaw( | |
14769 | vm_map_t map) | |
14770 | { | |
14771 | kern_return_t kr = KERN_SUCCESS; | |
14772 | ||
14773 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
14774 | /* | |
14775 | * We will on-demand thaw in the presence of the compressed pager. | |
14776 | */ | |
14777 | return kr; | |
14778 | } | |
14779 | ||
14780 | vm_map_lock(map); | |
14781 | ||
14782 | if (map->default_freezer_handle == NULL) { | |
14783 | /* | |
14784 | * This map is not in a frozen state. | |
14785 | */ | |
14786 | kr = KERN_FAILURE; | |
14787 | goto out; | |
14788 | } | |
14789 | ||
14790 | kr = default_freezer_unpack(map->default_freezer_handle); | |
14791 | out: | |
14792 | vm_map_unlock(map); | |
14793 | ||
14794 | return kr; | |
14795 | } | |
14796 | #endif | |
14797 | ||
14798 | /* | |
14799 | * vm_map_entry_should_cow_for_true_share: | |
14800 | * | |
14801 | * Determines if the map entry should be clipped and setup for copy-on-write | |
14802 | * to avoid applying "true_share" to a large VM object when only a subset is | |
14803 | * targeted. | |
14804 | * | |
14805 | * For now, we target only the map entries created for the Objective C | |
14806 | * Garbage Collector, which initially have the following properties: | |
14807 | * - alias == VM_MEMORY_MALLOC | |
14808 | * - wired_count == 0 | |
14809 | * - !needs_copy | |
14810 | * and a VM object with: | |
14811 | * - internal | |
14812 | * - copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC | |
14813 | * - !true_share | |
14814 | * - vo_size == ANON_CHUNK_SIZE | |
14815 | */ | |
14816 | boolean_t | |
14817 | vm_map_entry_should_cow_for_true_share( | |
14818 | vm_map_entry_t entry) | |
14819 | { | |
14820 | vm_object_t object; | |
14821 | ||
14822 | if (entry->is_sub_map) { | |
14823 | /* entry does not point at a VM object */ | |
14824 | return FALSE; | |
14825 | } | |
14826 | ||
14827 | if (entry->needs_copy) { | |
14828 | /* already set for copy_on_write: done! */ | |
14829 | return FALSE; | |
14830 | } | |
14831 | ||
14832 | if (entry->alias != VM_MEMORY_MALLOC && | |
14833 | entry->alias != VM_MEMORY_MALLOC_SMALL) { | |
14834 | /* not a malloc heap or Obj-C Garbage Collector heap */ | |
14835 | return FALSE; | |
14836 | } | |
14837 | ||
14838 | if (entry->wired_count) { | |
14839 | /* wired: can't change the map entry... */ | |
14840 | vm_counters.should_cow_but_wired++; | |
14841 | return FALSE; | |
14842 | } | |
14843 | ||
14844 | object = entry->object.vm_object; | |
14845 | ||
14846 | if (object == VM_OBJECT_NULL) { | |
14847 | /* no object yet... */ | |
14848 | return FALSE; | |
14849 | } | |
14850 | ||
14851 | if (!object->internal) { | |
14852 | /* not an internal object */ | |
14853 | return FALSE; | |
14854 | } | |
14855 | ||
14856 | if (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { | |
14857 | /* not the default copy strategy */ | |
14858 | return FALSE; | |
14859 | } | |
14860 | ||
14861 | if (object->true_share) { | |
14862 | /* already true_share: too late to avoid it */ | |
14863 | return FALSE; | |
14864 | } | |
14865 | ||
14866 | if (entry->alias == VM_MEMORY_MALLOC && | |
14867 | object->vo_size != ANON_CHUNK_SIZE) { | |
14868 | /* ... not an object created for the ObjC Garbage Collector */ | |
14869 | return FALSE; | |
14870 | } | |
14871 | ||
14872 | if (entry->alias == VM_MEMORY_MALLOC_SMALL && | |
14873 | object->vo_size != 2048 * 4096) { | |
14874 | /* ... not a "MALLOC_SMALL" heap */ | |
14875 | return FALSE; | |
14876 | } | |
14877 | ||
14878 | /* | |
14879 | * All the criteria match: we have a large object being targeted for "true_share". | |
14880 | * To limit the adverse side-effects linked with "true_share", tell the caller to | |
14881 | * try and avoid setting up the entire object for "true_share" by clipping the | |
14882 | * targeted range and setting it up for copy-on-write. | |
14883 | */ | |
14884 | return TRUE; | |
14885 | } | |
14886 | ||
14887 | vm_map_offset_t | |
14888 | vm_map_round_page_mask( | |
14889 | vm_map_offset_t offset, | |
14890 | vm_map_offset_t mask) | |
14891 | { | |
14892 | return VM_MAP_ROUND_PAGE(offset, mask); | |
14893 | } | |
14894 | ||
14895 | vm_map_offset_t | |
14896 | vm_map_trunc_page_mask( | |
14897 | vm_map_offset_t offset, | |
14898 | vm_map_offset_t mask) | |
14899 | { | |
14900 | return VM_MAP_TRUNC_PAGE(offset, mask); | |
14901 | } | |
14902 | ||
14903 | int | |
14904 | vm_map_page_shift( | |
14905 | vm_map_t map) | |
14906 | { | |
14907 | return VM_MAP_PAGE_SHIFT(map); | |
14908 | } | |
14909 | ||
14910 | int | |
14911 | vm_map_page_size( | |
14912 | vm_map_t map) | |
14913 | { | |
14914 | return VM_MAP_PAGE_SIZE(map); | |
14915 | } | |
14916 | ||
14917 | int | |
14918 | vm_map_page_mask( | |
14919 | vm_map_t map) | |
14920 | { | |
14921 | return VM_MAP_PAGE_MASK(map); | |
14922 | } | |
14923 | ||
14924 | kern_return_t | |
14925 | vm_map_set_page_shift( | |
14926 | vm_map_t map, | |
14927 | int pageshift) | |
14928 | { | |
14929 | if (map->hdr.nentries != 0) { | |
14930 | /* too late to change page size */ | |
14931 | return KERN_FAILURE; | |
14932 | } | |
14933 | ||
14934 | map->hdr.page_shift = pageshift; | |
14935 | ||
14936 | return KERN_SUCCESS; | |
14937 | } | |
14938 | ||
14939 | int | |
14940 | vm_map_purge( | |
14941 | vm_map_t map) | |
14942 | { | |
14943 | int num_object_purged; | |
14944 | vm_map_entry_t entry; | |
14945 | vm_map_offset_t next_address; | |
14946 | vm_object_t object; | |
14947 | int state; | |
14948 | kern_return_t kr; | |
14949 | ||
14950 | num_object_purged = 0; | |
14951 | ||
14952 | vm_map_lock_read(map); | |
14953 | entry = vm_map_first_entry(map); | |
14954 | while (entry != vm_map_to_entry(map)) { | |
14955 | if (entry->is_sub_map) { | |
14956 | goto next; | |
14957 | } | |
14958 | if (! (entry->protection & VM_PROT_WRITE)) { | |
14959 | goto next; | |
14960 | } | |
14961 | object = entry->object.vm_object; | |
14962 | if (object == VM_OBJECT_NULL) { | |
14963 | goto next; | |
14964 | } | |
14965 | if (object->purgable != VM_PURGABLE_VOLATILE) { | |
14966 | goto next; | |
14967 | } | |
14968 | ||
14969 | vm_object_lock(object); | |
14970 | #if 00 | |
14971 | if (entry->offset != 0 || | |
14972 | (entry->vme_end - entry->vme_start) != object->vo_size) { | |
14973 | vm_object_unlock(object); | |
14974 | goto next; | |
14975 | } | |
14976 | #endif | |
14977 | next_address = entry->vme_end; | |
14978 | vm_map_unlock_read(map); | |
14979 | state = VM_PURGABLE_EMPTY; | |
14980 | kr = vm_object_purgable_control(object, | |
14981 | VM_PURGABLE_SET_STATE, | |
14982 | &state); | |
14983 | if (kr == KERN_SUCCESS) { | |
14984 | num_object_purged++; | |
14985 | } | |
14986 | vm_object_unlock(object); | |
14987 | ||
14988 | vm_map_lock_read(map); | |
14989 | if (vm_map_lookup_entry(map, next_address, &entry)) { | |
14990 | continue; | |
14991 | } | |
14992 | next: | |
14993 | entry = entry->vme_next; | |
14994 | } | |
14995 | vm_map_unlock_read(map); | |
14996 | ||
14997 | return num_object_purged; | |
14998 | } | |
14999 | ||
15000 | kern_return_t | |
15001 | vm_map_query_volatile( | |
15002 | vm_map_t map, | |
15003 | mach_vm_size_t *volatile_virtual_size_p, | |
15004 | mach_vm_size_t *volatile_resident_size_p, | |
15005 | mach_vm_size_t *volatile_pmap_size_p) | |
15006 | { | |
15007 | mach_vm_size_t volatile_virtual_size; | |
15008 | mach_vm_size_t volatile_resident_count; | |
15009 | mach_vm_size_t volatile_pmap_count; | |
15010 | mach_vm_size_t resident_count; | |
15011 | vm_map_entry_t entry; | |
15012 | vm_object_t object; | |
15013 | ||
15014 | /* map should be locked by caller */ | |
15015 | ||
15016 | volatile_virtual_size = 0; | |
15017 | volatile_resident_count = 0; | |
15018 | volatile_pmap_count = 0; | |
15019 | ||
15020 | for (entry = vm_map_first_entry(map); | |
15021 | entry != vm_map_to_entry(map); | |
15022 | entry = entry->vme_next) { | |
15023 | if (entry->is_sub_map) { | |
15024 | continue; | |
15025 | } | |
15026 | if (! (entry->protection & VM_PROT_WRITE)) { | |
15027 | continue; | |
15028 | } | |
15029 | object = entry->object.vm_object; | |
15030 | if (object == VM_OBJECT_NULL) { | |
15031 | continue; | |
15032 | } | |
15033 | if (object->purgable != VM_PURGABLE_VOLATILE) { | |
15034 | continue; | |
15035 | } | |
15036 | if (entry->offset != 0) { | |
15037 | /* | |
15038 | * If the map entry has been split and the object now | |
15039 | * appears several times in the VM map, we don't want | |
15040 | * to count the object's resident_page_count more than | |
15041 | * once. We count it only for the first one, starting | |
15042 | * at offset 0 and ignore the other VM map entries. | |
15043 | */ | |
15044 | continue; | |
15045 | } | |
15046 | resident_count = object->resident_page_count; | |
15047 | if ((entry->offset / PAGE_SIZE) >= resident_count) { | |
15048 | resident_count = 0; | |
15049 | } else { | |
15050 | resident_count -= (entry->offset / PAGE_SIZE); | |
15051 | } | |
15052 | ||
15053 | volatile_virtual_size += entry->vme_end - entry->vme_start; | |
15054 | volatile_resident_count += resident_count; | |
15055 | volatile_pmap_count += pmap_query_resident(map->pmap, | |
15056 | entry->vme_start, | |
15057 | entry->vme_end); | |
15058 | } | |
15059 | ||
15060 | /* map is still locked on return */ | |
15061 | ||
15062 | *volatile_virtual_size_p = volatile_virtual_size; | |
15063 | *volatile_resident_size_p = volatile_resident_count * PAGE_SIZE; | |
15064 | *volatile_pmap_size_p = volatile_pmap_count * PAGE_SIZE; | |
15065 | ||
15066 | return KERN_SUCCESS; | |
15067 | } | |
15068 | ||
15069 | #if VM_SCAN_FOR_SHADOW_CHAIN | |
15070 | int vm_map_shadow_max(vm_map_t map); | |
15071 | int vm_map_shadow_max( | |
15072 | vm_map_t map) | |
15073 | { | |
15074 | int shadows, shadows_max; | |
15075 | vm_map_entry_t entry; | |
15076 | vm_object_t object, next_object; | |
15077 | ||
15078 | if (map == NULL) | |
15079 | return 0; | |
15080 | ||
15081 | shadows_max = 0; | |
15082 | ||
15083 | vm_map_lock_read(map); | |
15084 | ||
15085 | for (entry = vm_map_first_entry(map); | |
15086 | entry != vm_map_to_entry(map); | |
15087 | entry = entry->vme_next) { | |
15088 | if (entry->is_sub_map) { | |
15089 | continue; | |
15090 | } | |
15091 | object = entry->object.vm_object; | |
15092 | if (object == NULL) { | |
15093 | continue; | |
15094 | } | |
15095 | vm_object_lock_shared(object); | |
15096 | for (shadows = 0; | |
15097 | object->shadow != NULL; | |
15098 | shadows++, object = next_object) { | |
15099 | next_object = object->shadow; | |
15100 | vm_object_lock_shared(next_object); | |
15101 | vm_object_unlock(object); | |
15102 | } | |
15103 | vm_object_unlock(object); | |
15104 | if (shadows > shadows_max) { | |
15105 | shadows_max = shadows; | |
15106 | } | |
15107 | } | |
15108 | ||
15109 | vm_map_unlock_read(map); | |
15110 | ||
15111 | return shadows_max; | |
15112 | } | |
15113 | #endif /* VM_SCAN_FOR_SHADOW_CHAIN */ |