]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet/ip_output.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / bsd / netinet / ip_output.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62/*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69#define _IP_VHL
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/protosw.h>
77#include <sys/socket.h>
78#include <sys/socketvar.h>
79#include <kern/locks.h>
80#include <sys/sysctl.h>
81#include <sys/mcache.h>
82#include <sys/kdebug.h>
83
84#include <machine/endian.h>
85#include <pexpert/pexpert.h>
86#include <mach/sdt.h>
87
88#include <libkern/OSAtomic.h>
89#include <libkern/OSByteOrder.h>
90
91#include <net/if.h>
92#include <net/if_dl.h>
93#include <net/if_types.h>
94#include <net/route.h>
95#include <net/ntstat.h>
96#include <net/net_osdep.h>
97#include <net/dlil.h>
98
99#include <netinet/in.h>
100#include <netinet/in_systm.h>
101#include <netinet/ip.h>
102#include <netinet/in_pcb.h>
103#include <netinet/in_var.h>
104#include <netinet/ip_var.h>
105#include <netinet/kpi_ipfilter_var.h>
106
107#if CONFIG_MACF_NET
108#include <security/mac_framework.h>
109#endif /* CONFIG_MACF_NET */
110
111#define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
112#define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
113#define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
114#define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
115
116#if IPSEC
117#include <netinet6/ipsec.h>
118#include <netkey/key.h>
119#if IPSEC_DEBUG
120#include <netkey/key_debug.h>
121#else
122#define KEYDEBUG(lev, arg)
123#endif
124#endif /* IPSEC */
125
126#if NECP
127#include <net/necp.h>
128#endif /* NECP */
129
130#if IPFIREWALL
131#include <netinet/ip_fw.h>
132#if IPDIVERT
133#include <netinet/ip_divert.h>
134#endif /* IPDIVERT */
135#endif /* IPFIREWALL */
136
137#if DUMMYNET
138#include <netinet/ip_dummynet.h>
139#endif
140
141#if PF
142#include <net/pfvar.h>
143#endif /* PF */
144
145#if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
146#define print_ip(a) \
147 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
148 (ntohl(a.s_addr) >> 16) & 0xFF, \
149 (ntohl(a.s_addr) >> 8) & 0xFF, \
150 (ntohl(a.s_addr)) & 0xFF);
151#endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
152
153u_short ip_id;
154
155static void ip_out_cksum_stats(int, u_int32_t);
156static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157static int ip_optcopy(struct ip *, struct ip *);
158static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
159static void imo_trace(struct ip_moptions *, int);
160static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *,
161 struct sockaddr_in *, int);
162static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int);
163
164extern struct ip_linklocal_stat ip_linklocal_stat;
165
166/* temporary: for testing */
167#if IPSEC
168extern int ipsec_bypass;
169#endif
170
171static int ip_maxchainsent = 0;
172SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent,
173 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0,
174 "use dlil_output_list");
175#if DEBUG
176static int forge_ce = 0;
177SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce,
178 CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0,
179 "Forge ECN CE");
180#endif /* DEBUG */
181
182static int ip_select_srcif_debug = 0;
183SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug,
184 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0,
185 "log source interface selection debug info");
186
187#define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
188
189/* For gdb */
190__private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE;
191
192struct ip_moptions_dbg {
193 struct ip_moptions imo; /* ip_moptions */
194 u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */
195 u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */
196 /*
197 * Alloc and free callers.
198 */
199 ctrace_t imo_alloc;
200 ctrace_t imo_free;
201 /*
202 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
203 */
204 ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE];
205 ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE];
206};
207
208#if DEBUG
209static unsigned int imo_debug = 1; /* debugging (enabled) */
210#else
211static unsigned int imo_debug; /* debugging (disabled) */
212#endif /* !DEBUG */
213static unsigned int imo_size; /* size of zone element */
214static struct zone *imo_zone; /* zone for ip_moptions */
215
216#define IMO_ZONE_MAX 64 /* maximum elements in zone */
217#define IMO_ZONE_NAME "ip_moptions" /* zone name */
218
219/*
220 * IP output. The packet in mbuf chain m contains a skeletal IP
221 * header (with len, off, ttl, proto, tos, src, dst).
222 * The mbuf chain containing the packet will be freed.
223 * The mbuf opt, if present, will not be freed.
224 */
225int
226ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
227 struct ip_moptions *imo, struct ip_out_args *ipoa)
228{
229 return (ip_output_list(m0, 0, opt, ro, flags, imo, ipoa));
230}
231
232/*
233 * IP output. The packet in mbuf chain m contains a skeletal IP
234 * header (with len, off, ttl, proto, tos, src, dst).
235 * The mbuf chain containing the packet will be freed.
236 * The mbuf opt, if present, will not be freed.
237 *
238 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
239 * skipped and ro->ro_rt would be used. Otherwise the result of route
240 * lookup is stored in ro->ro_rt.
241 *
242 * In the IP forwarding case, the packet will arrive with options already
243 * inserted, so must have a NULL opt pointer.
244 */
245int
246ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt,
247 struct route *ro, int flags, struct ip_moptions *imo,
248 struct ip_out_args *ipoa)
249{
250 struct ip *ip;
251 struct ifnet *ifp = NULL; /* not refcnt'd */
252 struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt;
253 int hlen = sizeof (struct ip);
254 int len = 0, error = 0;
255 struct sockaddr_in *dst = NULL;
256 struct in_ifaddr *ia = NULL, *src_ia = NULL;
257 struct in_addr pkt_dst;
258 struct ipf_pktopts *ippo = NULL;
259 ipfilter_t inject_filter_ref = NULL;
260 struct mbuf *packetlist;
261 uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0;
262 unsigned int ifscope = IFSCOPE_NONE;
263 struct flowadv *adv = NULL;
264#if IPSEC
265 struct socket *so = NULL;
266 struct secpolicy *sp = NULL;
267#endif /* IPSEC */
268#if NECP
269 necp_kernel_policy_result necp_result = 0;
270 necp_kernel_policy_result_parameter necp_result_parameter;
271 necp_kernel_policy_id necp_matched_policy_id = 0;
272#endif /* NECP */
273#if IPFIREWALL
274 int ipfwoff;
275 struct sockaddr_in *next_hop_from_ipfwd_tag = NULL;
276#endif /* IPFIREWALL */
277#if IPFIREWALL || DUMMYNET
278 struct m_tag *tag;
279#endif /* IPFIREWALL || DUMMYNET */
280#if DUMMYNET
281 struct ip_out_args saved_ipoa;
282 struct sockaddr_in dst_buf;
283#endif /* DUMMYNET */
284 struct {
285#if IPSEC
286 struct ipsec_output_state ipsec_state;
287#endif /* IPSEC */
288#if NECP
289 struct route necp_route;
290#endif /* NECP */
291#if IPFIREWALL || DUMMYNET
292 struct ip_fw_args args;
293#endif /* IPFIREWALL || DUMMYNET */
294#if IPFIREWALL_FORWARD
295 struct route sro_fwd;
296#endif /* IPFIREWALL_FORWARD */
297#if DUMMYNET
298 struct route saved_route;
299#endif /* DUMMYNET */
300 struct ipf_pktopts ipf_pktopts;
301 } ipobz;
302#define ipsec_state ipobz.ipsec_state
303#define necp_route ipobz.necp_route
304#define args ipobz.args
305#define sro_fwd ipobz.sro_fwd
306#define saved_route ipobz.saved_route
307#define ipf_pktopts ipobz.ipf_pktopts
308 union {
309 struct {
310 boolean_t select_srcif : 1; /* set once */
311 boolean_t srcbound : 1; /* set once */
312 boolean_t nocell : 1; /* set once */
313 boolean_t isbroadcast : 1;
314 boolean_t didfilter : 1;
315 boolean_t noexpensive : 1; /* set once */
316 boolean_t awdl_unrestricted : 1; /* set once */
317#if IPFIREWALL_FORWARD
318 boolean_t fwd_rewrite_src : 1;
319#endif /* IPFIREWALL_FORWARD */
320 };
321 uint32_t raw;
322 } ipobf = { .raw = 0 };
323
324#define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
325 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
326 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
327 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
328
329 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
330
331 VERIFY(m0->m_flags & M_PKTHDR);
332 packetlist = m0;
333
334 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
335 bzero(&ipobz, sizeof (ipobz));
336 ippo = &ipf_pktopts;
337
338#if IPFIREWALL || DUMMYNET
339 if (SLIST_EMPTY(&m0->m_pkthdr.tags))
340 goto ipfw_tags_done;
341
342 /* Grab info from mtags prepended to the chain */
343#if DUMMYNET
344 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
345 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
346 struct dn_pkt_tag *dn_tag;
347
348 dn_tag = (struct dn_pkt_tag *)(tag+1);
349 args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule;
350 args.fwa_pf_rule = dn_tag->dn_pf_rule;
351 opt = NULL;
352 saved_route = dn_tag->dn_ro;
353 ro = &saved_route;
354
355 imo = NULL;
356 bcopy(&dn_tag->dn_dst, &dst_buf, sizeof (dst_buf));
357 dst = &dst_buf;
358 ifp = dn_tag->dn_ifp;
359 flags = dn_tag->dn_flags;
360 if ((dn_tag->dn_flags & IP_OUTARGS)) {
361 saved_ipoa = dn_tag->dn_ipoa;
362 ipoa = &saved_ipoa;
363 }
364
365 m_tag_delete(m0, tag);
366 }
367#endif /* DUMMYNET */
368
369#if IPDIVERT
370 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
371 KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
372 struct divert_tag *div_tag;
373
374 div_tag = (struct divert_tag *)(tag+1);
375 args.fwa_divert_rule = div_tag->cookie;
376
377 m_tag_delete(m0, tag);
378 }
379#endif /* IPDIVERT */
380
381#if IPFIREWALL
382 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
383 KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
384 struct ip_fwd_tag *ipfwd_tag;
385
386 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
387 next_hop_from_ipfwd_tag = ipfwd_tag->next_hop;
388
389 m_tag_delete(m0, tag);
390 }
391#endif /* IPFIREWALL */
392
393ipfw_tags_done:
394#endif /* IPFIREWALL || DUMMYNET */
395
396 m = m0;
397 m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP|PKTF_IFAINFO);
398
399#if IPSEC
400 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
401 /* If packet is bound to an interface, check bound policies */
402 if ((flags & IP_OUTARGS) && (ipoa != NULL) &&
403 (ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
404 ipoa->ipoa_boundif != IFSCOPE_NONE) {
405 if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND,
406 &flags, ipoa, &sp) != 0)
407 goto bad;
408 }
409 }
410#endif /* IPSEC */
411
412 VERIFY(ro != NULL);
413
414 if (ip_doscopedroute && (flags & IP_OUTARGS)) {
415 /*
416 * In the forwarding case, only the ifscope value is used,
417 * as source interface selection doesn't take place.
418 */
419 if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) &&
420 (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) {
421 ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF;
422 }
423
424 if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
425 ipoa->ipoa_boundif != IFSCOPE_NONE) {
426 ifscope = ipoa->ipoa_boundif;
427 ipf_pktopts.ippo_flags |=
428 (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE));
429 }
430
431 /* double negation needed for bool bit field */
432 ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR);
433 if (ipobf.srcbound)
434 ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR;
435 } else {
436 ipobf.select_srcif = FALSE;
437 ipobf.srcbound = FALSE;
438 ifscope = IFSCOPE_NONE;
439 if (flags & IP_OUTARGS) {
440 ipoa->ipoa_boundif = IFSCOPE_NONE;
441 ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF |
442 IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR);
443 }
444 }
445
446 if (flags & IP_OUTARGS) {
447 if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) {
448 ipobf.nocell = TRUE;
449 ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR;
450 }
451 if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) {
452 ipobf.noexpensive = TRUE;
453 ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE;
454 }
455 if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED)
456 ipobf.awdl_unrestricted = TRUE;
457 adv = &ipoa->ipoa_flowadv;
458 adv->code = FADV_SUCCESS;
459 ipoa->ipoa_retflags = 0;
460 }
461
462#if IPSEC
463 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
464 so = ipsec_getsocket(m);
465 if (so != NULL) {
466 (void) ipsec_setsocket(m, NULL);
467 }
468 }
469#endif /* IPSEC */
470
471#if DUMMYNET
472 if (args.fwa_ipfw_rule != NULL || args.fwa_pf_rule != NULL) {
473 /* dummynet already saw us */
474 ip = mtod(m, struct ip *);
475 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
476 pkt_dst = ip->ip_dst;
477 if (ro->ro_rt != NULL) {
478 RT_LOCK_SPIN(ro->ro_rt);
479 ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa;
480 if (ia) {
481 /* Become a regular mutex */
482 RT_CONVERT_LOCK(ro->ro_rt);
483 IFA_ADDREF(&ia->ia_ifa);
484 }
485 RT_UNLOCK(ro->ro_rt);
486 }
487
488#if IPFIREWALL
489 if (args.fwa_ipfw_rule != NULL)
490 goto skip_ipsec;
491#endif /* IPFIREWALL */
492 if (args.fwa_pf_rule != NULL)
493 goto sendit;
494 }
495#endif /* DUMMYNET */
496
497loopit:
498 ipobf.isbroadcast = FALSE;
499 ipobf.didfilter = FALSE;
500#if IPFIREWALL_FORWARD
501 ipobf.fwd_rewrite_src = FALSE;
502#endif /* IPFIREWALL_FORWARD */
503
504 VERIFY(m->m_flags & M_PKTHDR);
505 /*
506 * No need to proccess packet twice if we've already seen it.
507 */
508 if (!SLIST_EMPTY(&m->m_pkthdr.tags))
509 inject_filter_ref = ipf_get_inject_filter(m);
510 else
511 inject_filter_ref = NULL;
512
513 if (opt) {
514 m = ip_insertoptions(m, opt, &len);
515 hlen = len;
516 /* Update the chain */
517 if (m != m0) {
518 if (m0 == packetlist)
519 packetlist = m;
520 m0 = m;
521 }
522 }
523 ip = mtod(m, struct ip *);
524
525#if IPFIREWALL
526 /*
527 * rdar://8542331
528 *
529 * When dealing with a packet chain, we need to reset "next_hop"
530 * because "dst" may have been changed to the gateway address below
531 * for the previous packet of the chain. This could cause the route
532 * to be inavertandly changed to the route to the gateway address
533 * (instead of the route to the destination).
534 */
535 args.fwa_next_hop = next_hop_from_ipfwd_tag;
536 pkt_dst = args.fwa_next_hop ? args.fwa_next_hop->sin_addr : ip->ip_dst;
537#else /* !IPFIREWALL */
538 pkt_dst = ip->ip_dst;
539#endif /* !IPFIREWALL */
540
541 /*
542 * We must not send if the packet is destined to network zero.
543 * RFC1122 3.2.1.3 (a) and (b).
544 */
545 if (IN_ZERONET(ntohl(pkt_dst.s_addr))) {
546 error = EHOSTUNREACH;
547 goto bad;
548 }
549
550 /*
551 * Fill in IP header.
552 */
553 if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
554 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
555 ip->ip_off &= IP_DF;
556 ip->ip_id = ip_randomid();
557 OSAddAtomic(1, &ipstat.ips_localout);
558 } else {
559 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
560 }
561
562#if DEBUG
563 /* For debugging, we let the stack forge congestion */
564 if (forge_ce != 0 &&
565 ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 ||
566 (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) {
567 ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE;
568 forge_ce--;
569 }
570#endif /* DEBUG */
571
572 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
573 ip->ip_p, ip->ip_off, ip->ip_len);
574
575 dst = SIN(&ro->ro_dst);
576
577 /*
578 * If there is a cached route,
579 * check that it is to the same destination
580 * and is still up. If not, free it and try again.
581 * The address family should also be checked in case of sharing the
582 * cache with IPv6.
583 */
584
585 if (ro->ro_rt != NULL) {
586 if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY &&
587 !(flags & (IP_ROUTETOIF | IP_FORWARDING))) {
588 src_ia = ifa_foraddr(ip->ip_src.s_addr);
589 if (src_ia == NULL) {
590 error = EADDRNOTAVAIL;
591 goto bad;
592 }
593 IFA_REMREF(&src_ia->ia_ifa);
594 src_ia = NULL;
595 }
596 /*
597 * Test rt_flags without holding rt_lock for performance
598 * reasons; if the route is down it will hopefully be
599 * caught by the layer below (since it uses this route
600 * as a hint) or during the next transmit.
601 */
602 if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET ||
603 dst->sin_addr.s_addr != pkt_dst.s_addr)
604 ROUTE_RELEASE(ro);
605
606 /*
607 * If we're doing source interface selection, we may not
608 * want to use this route; only synch up the generation
609 * count otherwise.
610 */
611 if (!ipobf.select_srcif && ro->ro_rt != NULL &&
612 RT_GENID_OUTOFSYNC(ro->ro_rt))
613 RT_GENID_SYNC(ro->ro_rt);
614 }
615 if (ro->ro_rt == NULL) {
616 bzero(dst, sizeof (*dst));
617 dst->sin_family = AF_INET;
618 dst->sin_len = sizeof (*dst);
619 dst->sin_addr = pkt_dst;
620 }
621 /*
622 * If routing to interface only,
623 * short circuit routing lookup.
624 */
625 if (flags & IP_ROUTETOIF) {
626 if (ia != NULL)
627 IFA_REMREF(&ia->ia_ifa);
628 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
629 ia = ifatoia(ifa_ifwithnet(sintosa(dst)));
630 if (ia == NULL) {
631 OSAddAtomic(1, &ipstat.ips_noroute);
632 error = ENETUNREACH;
633 goto bad;
634 }
635 }
636 ifp = ia->ia_ifp;
637 ip->ip_ttl = 1;
638 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
639 /*
640 * For consistency with other cases below. Loopback
641 * multicast case is handled separately by ip_mloopback().
642 */
643 if ((ifp->if_flags & IFF_LOOPBACK) &&
644 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
645 m->m_pkthdr.rcvif = ifp;
646 ip_setsrcifaddr_info(m, ifp->if_index, NULL);
647 ip_setdstifaddr_info(m, ifp->if_index, NULL);
648 }
649 } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
650 imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) {
651 /*
652 * Bypass the normal routing lookup for multicast
653 * packets if the interface is specified.
654 */
655 ipobf.isbroadcast = FALSE;
656 if (ia != NULL)
657 IFA_REMREF(&ia->ia_ifa);
658
659 /* Macro takes reference on ia */
660 IFP_TO_IA(ifp, ia);
661 } else {
662 struct ifaddr *ia0 = NULL;
663 boolean_t cloneok = FALSE;
664 /*
665 * Perform source interface selection; the source IP address
666 * must belong to one of the addresses of the interface used
667 * by the route. For performance reasons, do this only if
668 * there is no route, or if the routing table has changed,
669 * or if we haven't done source interface selection on this
670 * route (for this PCB instance) before.
671 */
672 if (ipobf.select_srcif &&
673 ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) ||
674 !(ro->ro_flags & ROF_SRCIF_SELECTED))) {
675 /* Find the source interface */
676 ia0 = in_selectsrcif(ip, ro, ifscope);
677
678 /*
679 * If the source address belongs to a restricted
680 * interface and the caller forbids our using
681 * interfaces of such type, pretend that there is no
682 * route.
683 */
684 if (ia0 != NULL &&
685 IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) {
686 IFA_REMREF(ia0);
687 ia0 = NULL;
688 error = EHOSTUNREACH;
689 if (flags & IP_OUTARGS)
690 ipoa->ipoa_retflags |= IPOARF_IFDENIED;
691 goto bad;
692 }
693
694 /*
695 * If the source address is spoofed (in the case of
696 * IP_RAWOUTPUT on an unbounded socket), or if this
697 * is destined for local/loopback, just let it go out
698 * using the interface of the route. Otherwise,
699 * there's no interface having such an address,
700 * so bail out.
701 */
702 if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) ||
703 ipobf.srcbound) && ifscope != lo_ifp->if_index) {
704 error = EADDRNOTAVAIL;
705 goto bad;
706 }
707
708 /*
709 * If the caller didn't explicitly specify the scope,
710 * pick it up from the source interface. If the cached
711 * route was wrong and was blown away as part of source
712 * interface selection, don't mask out RTF_PRCLONING
713 * since that route may have been allocated by the ULP,
714 * unless the IP header was created by the caller or
715 * the destination is IPv4 LLA. The check for the
716 * latter is needed because IPv4 LLAs are never scoped
717 * in the current implementation, and we don't want to
718 * replace the resolved IPv4 LLA route with one whose
719 * gateway points to that of the default gateway on
720 * the primary interface of the system.
721 */
722 if (ia0 != NULL) {
723 if (ifscope == IFSCOPE_NONE)
724 ifscope = ia0->ifa_ifp->if_index;
725 cloneok = (!(flags & IP_RAWOUTPUT) &&
726 !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))));
727 }
728 }
729
730 /*
731 * If this is the case, we probably don't want to allocate
732 * a protocol-cloned route since we didn't get one from the
733 * ULP. This lets TCP do its thing, while not burdening
734 * forwarding or ICMP with the overhead of cloning a route.
735 * Of course, we still want to do any cloning requested by
736 * the link layer, as this is probably required in all cases
737 * for correct operation (as it is for ARP).
738 */
739 if (ro->ro_rt == NULL) {
740 unsigned long ign = RTF_PRCLONING;
741 /*
742 * We make an exception here: if the destination
743 * address is INADDR_BROADCAST, allocate a protocol-
744 * cloned host route so that we end up with a route
745 * marked with the RTF_BROADCAST flag. Otherwise,
746 * we would end up referring to the default route,
747 * instead of creating a cloned host route entry.
748 * That would introduce inconsistencies between ULPs
749 * that allocate a route and those that don't. The
750 * RTF_BROADCAST route is important since we'd want
751 * to send out undirected IP broadcast packets using
752 * link-level broadcast address. Another exception
753 * is for ULP-created routes that got blown away by
754 * source interface selection (see above).
755 *
756 * These exceptions will no longer be necessary when
757 * the RTF_PRCLONING scheme is no longer present.
758 */
759 if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST)
760 ign &= ~RTF_PRCLONING;
761
762 /*
763 * Loosen the route lookup criteria if the ifscope
764 * corresponds to the loopback interface; this is
765 * needed to support Application Layer Gateways
766 * listening on loopback, in conjunction with packet
767 * filter redirection rules. The final source IP
768 * address will be rewritten by the packet filter
769 * prior to the RFC1122 loopback check below.
770 */
771 if (ifscope == lo_ifp->if_index)
772 rtalloc_ign(ro, ign);
773 else
774 rtalloc_scoped_ign(ro, ign, ifscope);
775
776 /*
777 * If the route points to a cellular/expensive interface
778 * and the caller forbids our using interfaces of such type,
779 * pretend that there is no route.
780 */
781 if (ro->ro_rt != NULL) {
782 RT_LOCK_SPIN(ro->ro_rt);
783 if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp,
784 ipobf)) {
785 RT_UNLOCK(ro->ro_rt);
786 ROUTE_RELEASE(ro);
787 if (flags & IP_OUTARGS) {
788 ipoa->ipoa_retflags |=
789 IPOARF_IFDENIED;
790 }
791 } else {
792 RT_UNLOCK(ro->ro_rt);
793 }
794 }
795 }
796
797 if (ro->ro_rt == NULL) {
798 OSAddAtomic(1, &ipstat.ips_noroute);
799 error = EHOSTUNREACH;
800 if (ia0 != NULL) {
801 IFA_REMREF(ia0);
802 ia0 = NULL;
803 }
804 goto bad;
805 }
806
807 if (ia != NULL)
808 IFA_REMREF(&ia->ia_ifa);
809 RT_LOCK_SPIN(ro->ro_rt);
810 ia = ifatoia(ro->ro_rt->rt_ifa);
811 if (ia != NULL) {
812 /* Become a regular mutex */
813 RT_CONVERT_LOCK(ro->ro_rt);
814 IFA_ADDREF(&ia->ia_ifa);
815 }
816 /*
817 * Note: ia_ifp may not be the same as rt_ifp; the latter
818 * is what we use for determining outbound i/f, mtu, etc.
819 */
820 ifp = ro->ro_rt->rt_ifp;
821 ro->ro_rt->rt_use++;
822 if (ro->ro_rt->rt_flags & RTF_GATEWAY) {
823 dst = SIN(ro->ro_rt->rt_gateway);
824 }
825 if (ro->ro_rt->rt_flags & RTF_HOST) {
826 /* double negation needed for bool bit field */
827 ipobf.isbroadcast =
828 !!(ro->ro_rt->rt_flags & RTF_BROADCAST);
829 } else {
830 /* Become a regular mutex */
831 RT_CONVERT_LOCK(ro->ro_rt);
832 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
833 }
834 /*
835 * For consistency with IPv6, as well as to ensure that
836 * IP_RECVIF is set correctly for packets that are sent
837 * to one of the local addresses. ia (rt_ifa) would have
838 * been fixed up by rt_setif for local routes. This
839 * would make it appear as if the packet arrives on the
840 * interface which owns the local address. Loopback
841 * multicast case is handled separately by ip_mloopback().
842 */
843 if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) &&
844 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
845 uint32_t srcidx;
846
847 m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp;
848
849 if (ia0 != NULL)
850 srcidx = ia0->ifa_ifp->if_index;
851 else if ((ro->ro_flags & ROF_SRCIF_SELECTED) &&
852 ro->ro_srcia != NULL)
853 srcidx = ro->ro_srcia->ifa_ifp->if_index;
854 else
855 srcidx = 0;
856
857 ip_setsrcifaddr_info(m, srcidx, NULL);
858 ip_setdstifaddr_info(m, 0, ia);
859 }
860 RT_UNLOCK(ro->ro_rt);
861 if (ia0 != NULL) {
862 IFA_REMREF(ia0);
863 ia0 = NULL;
864 }
865 }
866
867 if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
868 struct ifnet *srcifp = NULL;
869 struct in_multi *inm;
870 u_int32_t vif;
871 u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL;
872 u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP;
873
874 m->m_flags |= M_MCAST;
875 /*
876 * IP destination address is multicast. Make sure "dst"
877 * still points to the address in "ro". (It may have been
878 * changed to point to a gateway address, above.)
879 */
880 dst = SIN(&ro->ro_dst);
881 /*
882 * See if the caller provided any multicast options
883 */
884 if (imo != NULL) {
885 IMO_LOCK(imo);
886 vif = imo->imo_multicast_vif;
887 ttl = imo->imo_multicast_ttl;
888 loop = imo->imo_multicast_loop;
889 if (!(flags & IP_RAWOUTPUT))
890 ip->ip_ttl = ttl;
891 if (imo->imo_multicast_ifp != NULL)
892 ifp = imo->imo_multicast_ifp;
893 IMO_UNLOCK(imo);
894 } else if (!(flags & IP_RAWOUTPUT)) {
895 vif = -1;
896 ip->ip_ttl = ttl;
897 }
898 /*
899 * Confirm that the outgoing interface supports multicast.
900 */
901 if (imo == NULL || vif == -1) {
902 if (!(ifp->if_flags & IFF_MULTICAST)) {
903 OSAddAtomic(1, &ipstat.ips_noroute);
904 error = ENETUNREACH;
905 goto bad;
906 }
907 }
908 /*
909 * If source address not specified yet, use address
910 * of outgoing interface.
911 */
912 if (ip->ip_src.s_addr == INADDR_ANY) {
913 struct in_ifaddr *ia1;
914 lck_rw_lock_shared(in_ifaddr_rwlock);
915 TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) {
916 IFA_LOCK_SPIN(&ia1->ia_ifa);
917 if (ia1->ia_ifp == ifp) {
918 ip->ip_src = IA_SIN(ia1)->sin_addr;
919 srcifp = ifp;
920 IFA_UNLOCK(&ia1->ia_ifa);
921 break;
922 }
923 IFA_UNLOCK(&ia1->ia_ifa);
924 }
925 lck_rw_done(in_ifaddr_rwlock);
926 if (ip->ip_src.s_addr == INADDR_ANY) {
927 error = ENETUNREACH;
928 goto bad;
929 }
930 }
931
932 in_multihead_lock_shared();
933 IN_LOOKUP_MULTI(&pkt_dst, ifp, inm);
934 in_multihead_lock_done();
935 if (inm != NULL && (imo == NULL || loop)) {
936 /*
937 * If we belong to the destination multicast group
938 * on the outgoing interface, and the caller did not
939 * forbid loopback, loop back a copy.
940 */
941 if (!TAILQ_EMPTY(&ipv4_filters)) {
942 struct ipfilter *filter;
943 int seen = (inject_filter_ref == NULL);
944
945 if (imo != NULL) {
946 ipf_pktopts.ippo_flags |=
947 IPPOF_MCAST_OPTS;
948 ipf_pktopts.ippo_mcast_ifnet = ifp;
949 ipf_pktopts.ippo_mcast_ttl = ttl;
950 ipf_pktopts.ippo_mcast_loop = loop;
951 }
952
953 ipf_ref();
954
955 /*
956 * 4135317 - always pass network byte
957 * order to filter
958 */
959#if BYTE_ORDER != BIG_ENDIAN
960 HTONS(ip->ip_len);
961 HTONS(ip->ip_off);
962#endif
963 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
964 if (seen == 0) {
965 if ((struct ipfilter *)
966 inject_filter_ref == filter)
967 seen = 1;
968 } else if (filter->ipf_filter.
969 ipf_output != NULL) {
970 errno_t result;
971 result = filter->ipf_filter.
972 ipf_output(filter->
973 ipf_filter.cookie,
974 (mbuf_t *)&m, ippo);
975 if (result == EJUSTRETURN) {
976 ipf_unref();
977 INM_REMREF(inm);
978 goto done;
979 }
980 if (result != 0) {
981 ipf_unref();
982 INM_REMREF(inm);
983 goto bad;
984 }
985 }
986 }
987
988 /* set back to host byte order */
989 ip = mtod(m, struct ip *);
990#if BYTE_ORDER != BIG_ENDIAN
991 NTOHS(ip->ip_len);
992 NTOHS(ip->ip_off);
993#endif
994 ipf_unref();
995 ipobf.didfilter = TRUE;
996 }
997 ip_mloopback(srcifp, ifp, m, dst, hlen);
998 }
999 if (inm != NULL)
1000 INM_REMREF(inm);
1001 /*
1002 * Multicasts with a time-to-live of zero may be looped-
1003 * back, above, but must not be transmitted on a network.
1004 * Also, multicasts addressed to the loopback interface
1005 * are not sent -- the above call to ip_mloopback() will
1006 * loop back a copy if this host actually belongs to the
1007 * destination group on the loopback interface.
1008 */
1009 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
1010 m_freem(m);
1011 goto done;
1012 }
1013
1014 goto sendit;
1015 }
1016 /*
1017 * If source address not specified yet, use address
1018 * of outgoing interface.
1019 */
1020 if (ip->ip_src.s_addr == INADDR_ANY) {
1021 IFA_LOCK_SPIN(&ia->ia_ifa);
1022 ip->ip_src = IA_SIN(ia)->sin_addr;
1023 IFA_UNLOCK(&ia->ia_ifa);
1024#if IPFIREWALL_FORWARD
1025 /*
1026 * Keep note that we did this - if the firewall changes
1027 * the next-hop, our interface may change, changing the
1028 * default source IP. It's a shame so much effort happens
1029 * twice. Oh well.
1030 */
1031 ipobf.fwd_rewrite_src = TRUE;
1032#endif /* IPFIREWALL_FORWARD */
1033 }
1034
1035 /*
1036 * Look for broadcast address and
1037 * and verify user is allowed to send
1038 * such a packet.
1039 */
1040 if (ipobf.isbroadcast) {
1041 if (!(ifp->if_flags & IFF_BROADCAST)) {
1042 error = EADDRNOTAVAIL;
1043 goto bad;
1044 }
1045 if (!(flags & IP_ALLOWBROADCAST)) {
1046 error = EACCES;
1047 goto bad;
1048 }
1049 /* don't allow broadcast messages to be fragmented */
1050 if ((u_short)ip->ip_len > ifp->if_mtu) {
1051 error = EMSGSIZE;
1052 goto bad;
1053 }
1054 m->m_flags |= M_BCAST;
1055 } else {
1056 m->m_flags &= ~M_BCAST;
1057 }
1058
1059sendit:
1060#if PF
1061 /* Invoke outbound packet filter */
1062 if (PF_IS_ENABLED) {
1063 int rc;
1064
1065 m0 = m; /* Save for later */
1066#if DUMMYNET
1067 args.fwa_m = m;
1068 args.fwa_next_hop = dst;
1069 args.fwa_oif = ifp;
1070 args.fwa_ro = ro;
1071 args.fwa_dst = dst;
1072 args.fwa_oflags = flags;
1073 if (flags & IP_OUTARGS)
1074 args.fwa_ipoa = ipoa;
1075 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, &args);
1076#else /* DUMMYNET */
1077 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL);
1078#endif /* DUMMYNET */
1079 if (rc != 0 || m == NULL) {
1080 /* Move to the next packet */
1081 m = *mppn;
1082
1083 /* Skip ahead if first packet in list got dropped */
1084 if (packetlist == m0)
1085 packetlist = m;
1086
1087 if (m != NULL) {
1088 m0 = m;
1089 /* Next packet in the chain */
1090 goto loopit;
1091 } else if (packetlist != NULL) {
1092 /* No more packet; send down the chain */
1093 goto sendchain;
1094 }
1095 /* Nothing left; we're done */
1096 goto done;
1097 }
1098 m0 = m;
1099 ip = mtod(m, struct ip *);
1100 pkt_dst = ip->ip_dst;
1101 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1102 }
1103#endif /* PF */
1104 /*
1105 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1106 */
1107 if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) ||
1108 IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
1109 ip_linklocal_stat.iplls_out_total++;
1110 if (ip->ip_ttl != MAXTTL) {
1111 ip_linklocal_stat.iplls_out_badttl++;
1112 ip->ip_ttl = MAXTTL;
1113 }
1114 }
1115
1116 if (!ipobf.didfilter && !TAILQ_EMPTY(&ipv4_filters)) {
1117 struct ipfilter *filter;
1118 int seen = (inject_filter_ref == NULL);
1119 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1120
1121 /*
1122 * Check that a TSO frame isn't passed to a filter.
1123 * This could happen if a filter is inserted while
1124 * TCP is sending the TSO packet.
1125 */
1126 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1127 error = EMSGSIZE;
1128 goto bad;
1129 }
1130
1131 ipf_ref();
1132
1133 /* 4135317 - always pass network byte order to filter */
1134#if BYTE_ORDER != BIG_ENDIAN
1135 HTONS(ip->ip_len);
1136 HTONS(ip->ip_off);
1137#endif
1138 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1139 if (seen == 0) {
1140 if ((struct ipfilter *)inject_filter_ref ==
1141 filter)
1142 seen = 1;
1143 } else if (filter->ipf_filter.ipf_output) {
1144 errno_t result;
1145 result = filter->ipf_filter.
1146 ipf_output(filter->ipf_filter.cookie,
1147 (mbuf_t *)&m, ippo);
1148 if (result == EJUSTRETURN) {
1149 ipf_unref();
1150 goto done;
1151 }
1152 if (result != 0) {
1153 ipf_unref();
1154 goto bad;
1155 }
1156 }
1157 }
1158 /* set back to host byte order */
1159 ip = mtod(m, struct ip *);
1160#if BYTE_ORDER != BIG_ENDIAN
1161 NTOHS(ip->ip_len);
1162 NTOHS(ip->ip_off);
1163#endif
1164 ipf_unref();
1165 }
1166
1167#if NECP
1168 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1169 necp_matched_policy_id = necp_ip_output_find_policy_match (m,
1170 flags, (flags & IP_OUTARGS) ? ipoa : NULL, &necp_result, &necp_result_parameter);
1171 if (necp_matched_policy_id) {
1172 necp_mark_packet_from_ip(m, necp_matched_policy_id);
1173 switch (necp_result) {
1174 case NECP_KERNEL_POLICY_RESULT_PASS:
1175 goto skip_ipsec;
1176 case NECP_KERNEL_POLICY_RESULT_DROP:
1177 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT:
1178 /* Flow divert packets should be blocked at the IP layer */
1179 error = EHOSTUNREACH;
1180 goto bad;
1181 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: {
1182 /* Verify that the packet is being routed to the tunnel */
1183 struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(&necp_result_parameter);
1184 if (policy_ifp == ifp) {
1185 goto skip_ipsec;
1186 } else {
1187 if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, &necp_route, AF_INET)) {
1188 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1189 ifp = policy_ifp;
1190 ro = &necp_route;
1191 goto skip_ipsec;
1192 } else {
1193 error = ENETUNREACH;
1194 goto bad;
1195 }
1196 }
1197 break;
1198 }
1199 default:
1200 break;
1201 }
1202 }
1203#endif /* NECP */
1204
1205#if IPSEC
1206 if (ipsec_bypass != 0 || (flags & IP_NOIPSEC))
1207 goto skip_ipsec;
1208
1209 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
1210
1211 if (sp == NULL) {
1212 /* get SP for this packet */
1213 if (so != NULL) {
1214 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND,
1215 so, &error);
1216 } else {
1217 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
1218 flags, &error);
1219 }
1220 if (sp == NULL) {
1221 IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
1222 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1223 0, 0, 0, 0, 0);
1224 goto bad;
1225 }
1226 }
1227
1228 error = 0;
1229
1230 /* check policy */
1231 switch (sp->policy) {
1232 case IPSEC_POLICY_DISCARD:
1233 case IPSEC_POLICY_GENERATE:
1234 /*
1235 * This packet is just discarded.
1236 */
1237 IPSEC_STAT_INCREMENT(ipsecstat.out_polvio);
1238 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1239 1, 0, 0, 0, 0);
1240 goto bad;
1241
1242 case IPSEC_POLICY_BYPASS:
1243 case IPSEC_POLICY_NONE:
1244 /* no need to do IPsec. */
1245 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1246 2, 0, 0, 0, 0);
1247 goto skip_ipsec;
1248
1249 case IPSEC_POLICY_IPSEC:
1250 if (sp->req == NULL) {
1251 /* acquire a policy */
1252 error = key_spdacquire(sp);
1253 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1254 3, 0, 0, 0, 0);
1255 goto bad;
1256 }
1257 if (sp->ipsec_if) {
1258 /* Verify the redirect to ipsec interface */
1259 if (sp->ipsec_if == ifp) {
1260 goto skip_ipsec;
1261 }
1262 goto bad;
1263 }
1264 break;
1265
1266 case IPSEC_POLICY_ENTRUST:
1267 default:
1268 printf("ip_output: Invalid policy found. %d\n", sp->policy);
1269 }
1270 {
1271 ipsec_state.m = m;
1272 if (flags & IP_ROUTETOIF) {
1273 bzero(&ipsec_state.ro, sizeof (ipsec_state.ro));
1274 } else {
1275 route_copyout(&ipsec_state.ro, ro, sizeof (ipsec_state.ro));
1276 }
1277 ipsec_state.dst = SA(dst);
1278
1279 ip->ip_sum = 0;
1280
1281 /*
1282 * XXX
1283 * delayed checksums are not currently compatible with IPsec
1284 */
1285 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
1286 in_delayed_cksum(m);
1287
1288#if BYTE_ORDER != BIG_ENDIAN
1289 HTONS(ip->ip_len);
1290 HTONS(ip->ip_off);
1291#endif
1292
1293 DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
1294 struct ip *, ip, struct ifnet *, ifp,
1295 struct ip *, ip, struct ip6_hdr *, NULL);
1296
1297 error = ipsec4_output(&ipsec_state, sp, flags);
1298
1299 m0 = m = ipsec_state.m;
1300
1301#if DUMMYNET
1302 /*
1303 * If we're about to use the route in ipsec_state
1304 * and this came from dummynet, cleaup now.
1305 */
1306 if (ro == &saved_route &&
1307 (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled))
1308 ROUTE_RELEASE(ro);
1309#endif /* DUMMYNET */
1310
1311 if (flags & IP_ROUTETOIF) {
1312 /*
1313 * if we have tunnel mode SA, we may need to ignore
1314 * IP_ROUTETOIF.
1315 */
1316 if (ipsec_state.tunneled) {
1317 flags &= ~IP_ROUTETOIF;
1318 ro = &ipsec_state.ro;
1319 }
1320 } else {
1321 ro = &ipsec_state.ro;
1322 }
1323 dst = SIN(ipsec_state.dst);
1324 if (error) {
1325 /* mbuf is already reclaimed in ipsec4_output. */
1326 m0 = NULL;
1327 switch (error) {
1328 case EHOSTUNREACH:
1329 case ENETUNREACH:
1330 case EMSGSIZE:
1331 case ENOBUFS:
1332 case ENOMEM:
1333 break;
1334 default:
1335 printf("ip4_output (ipsec): error code %d\n", error);
1336 /* FALLTHRU */
1337 case ENOENT:
1338 /* don't show these error codes to the user */
1339 error = 0;
1340 break;
1341 }
1342 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1343 4, 0, 0, 0, 0);
1344 goto bad;
1345 }
1346 }
1347
1348 /* be sure to update variables that are affected by ipsec4_output() */
1349 ip = mtod(m, struct ip *);
1350
1351#ifdef _IP_VHL
1352 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1353#else /* !_IP_VHL */
1354 hlen = ip->ip_hl << 2;
1355#endif /* !_IP_VHL */
1356 /* Check that there wasn't a route change and src is still valid */
1357 if (ROUTE_UNUSABLE(ro)) {
1358 ROUTE_RELEASE(ro);
1359 VERIFY(src_ia == NULL);
1360 if (ip->ip_src.s_addr != INADDR_ANY &&
1361 !(flags & (IP_ROUTETOIF | IP_FORWARDING)) &&
1362 (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) {
1363 error = EADDRNOTAVAIL;
1364 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1365 5, 0, 0, 0, 0);
1366 goto bad;
1367 }
1368 if (src_ia != NULL) {
1369 IFA_REMREF(&src_ia->ia_ifa);
1370 src_ia = NULL;
1371 }
1372 }
1373
1374 if (ro->ro_rt == NULL) {
1375 if (!(flags & IP_ROUTETOIF)) {
1376 printf("%s: can't update route after "
1377 "IPsec processing\n", __func__);
1378 error = EHOSTUNREACH; /* XXX */
1379 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1380 6, 0, 0, 0, 0);
1381 goto bad;
1382 }
1383 } else {
1384 if (ia != NULL)
1385 IFA_REMREF(&ia->ia_ifa);
1386 RT_LOCK_SPIN(ro->ro_rt);
1387 ia = ifatoia(ro->ro_rt->rt_ifa);
1388 if (ia != NULL) {
1389 /* Become a regular mutex */
1390 RT_CONVERT_LOCK(ro->ro_rt);
1391 IFA_ADDREF(&ia->ia_ifa);
1392 }
1393 ifp = ro->ro_rt->rt_ifp;
1394 RT_UNLOCK(ro->ro_rt);
1395 }
1396
1397 /* make it flipped, again. */
1398#if BYTE_ORDER != BIG_ENDIAN
1399 NTOHS(ip->ip_len);
1400 NTOHS(ip->ip_off);
1401#endif
1402 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1403 7, 0xff, 0xff, 0xff, 0xff);
1404
1405 /* Pass to filters again */
1406 if (!TAILQ_EMPTY(&ipv4_filters)) {
1407 struct ipfilter *filter;
1408
1409 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1410
1411 /*
1412 * Check that a TSO frame isn't passed to a filter.
1413 * This could happen if a filter is inserted while
1414 * TCP is sending the TSO packet.
1415 */
1416 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1417 error = EMSGSIZE;
1418 goto bad;
1419 }
1420
1421 ipf_ref();
1422
1423 /* 4135317 - always pass network byte order to filter */
1424#if BYTE_ORDER != BIG_ENDIAN
1425 HTONS(ip->ip_len);
1426 HTONS(ip->ip_off);
1427#endif
1428 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1429 if (filter->ipf_filter.ipf_output) {
1430 errno_t result;
1431 result = filter->ipf_filter.
1432 ipf_output(filter->ipf_filter.cookie,
1433 (mbuf_t *)&m, ippo);
1434 if (result == EJUSTRETURN) {
1435 ipf_unref();
1436 goto done;
1437 }
1438 if (result != 0) {
1439 ipf_unref();
1440 goto bad;
1441 }
1442 }
1443 }
1444 /* set back to host byte order */
1445 ip = mtod(m, struct ip *);
1446#if BYTE_ORDER != BIG_ENDIAN
1447 NTOHS(ip->ip_len);
1448 NTOHS(ip->ip_off);
1449#endif
1450 ipf_unref();
1451 }
1452skip_ipsec:
1453#endif /* IPSEC */
1454
1455#if IPFIREWALL
1456 /*
1457 * Check with the firewall...
1458 * but not if we are already being fwd'd from a firewall.
1459 */
1460 if (fw_enable && IPFW_LOADED && !args.fwa_next_hop) {
1461 struct sockaddr_in *old = dst;
1462
1463 args.fwa_m = m;
1464 args.fwa_next_hop = dst;
1465 args.fwa_oif = ifp;
1466 ipfwoff = ip_fw_chk_ptr(&args);
1467 m = args.fwa_m;
1468 dst = args.fwa_next_hop;
1469
1470 /*
1471 * On return we must do the following:
1472 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1473 * 1<=off<= 0xffff -> DIVERT
1474 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1475 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1476 * dst != old -> IPFIREWALL_FORWARD
1477 * off==0, dst==old -> accept
1478 * If some of the above modules is not compiled in, then
1479 * we should't have to check the corresponding condition
1480 * (because the ipfw control socket should not accept
1481 * unsupported rules), but better play safe and drop
1482 * packets in case of doubt.
1483 */
1484 m0 = m;
1485 if ((ipfwoff & IP_FW_PORT_DENY_FLAG) || m == NULL) {
1486 if (m)
1487 m_freem(m);
1488 error = EACCES;
1489 goto done;
1490 }
1491 ip = mtod(m, struct ip *);
1492
1493 if (ipfwoff == 0 && dst == old) { /* common case */
1494 goto pass;
1495 }
1496#if DUMMYNET
1497 if (DUMMYNET_LOADED && (ipfwoff & IP_FW_PORT_DYNT_FLAG) != 0) {
1498 /*
1499 * pass the pkt to dummynet. Need to include
1500 * pipe number, m, ifp, ro, dst because these are
1501 * not recomputed in the next pass.
1502 * All other parameters have been already used and
1503 * so they are not needed anymore.
1504 * XXX note: if the ifp or ro entry are deleted
1505 * while a pkt is in dummynet, we are in trouble!
1506 */
1507 args.fwa_ro = ro;
1508 args.fwa_dst = dst;
1509 args.fwa_oflags = flags;
1510 if (flags & IP_OUTARGS)
1511 args.fwa_ipoa = ipoa;
1512
1513 error = ip_dn_io_ptr(m, ipfwoff & 0xffff, DN_TO_IP_OUT,
1514 &args, DN_CLIENT_IPFW);
1515 goto done;
1516 }
1517#endif /* DUMMYNET */
1518#if IPDIVERT
1519 if (ipfwoff != 0 && (ipfwoff & IP_FW_PORT_DYNT_FLAG) == 0) {
1520 struct mbuf *clone = NULL;
1521
1522 /* Clone packet if we're doing a 'tee' */
1523 if ((ipfwoff & IP_FW_PORT_TEE_FLAG) != 0)
1524 clone = m_dup(m, M_DONTWAIT);
1525 /*
1526 * XXX
1527 * delayed checksums are not currently compatible
1528 * with divert sockets.
1529 */
1530 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
1531 in_delayed_cksum(m);
1532
1533 /* Restore packet header fields to original values */
1534
1535#if BYTE_ORDER != BIG_ENDIAN
1536 HTONS(ip->ip_len);
1537 HTONS(ip->ip_off);
1538#endif
1539
1540 /* Deliver packet to divert input routine */
1541 divert_packet(m, 0, ipfwoff & 0xffff,
1542 args.fwa_divert_rule);
1543
1544 /* If 'tee', continue with original packet */
1545 if (clone != NULL) {
1546 m0 = m = clone;
1547 ip = mtod(m, struct ip *);
1548 goto pass;
1549 }
1550 goto done;
1551 }
1552#endif /* IPDIVERT */
1553#if IPFIREWALL_FORWARD
1554 /*
1555 * Here we check dst to make sure it's directly reachable on
1556 * the interface we previously thought it was.
1557 * If it isn't (which may be likely in some situations) we have
1558 * to re-route it (ie, find a route for the next-hop and the
1559 * associated interface) and set them here. This is nested
1560 * forwarding which in most cases is undesirable, except where
1561 * such control is nigh impossible. So we do it here.
1562 * And I'm babbling.
1563 */
1564 if (ipfwoff == 0 && old != dst) {
1565 struct in_ifaddr *ia_fw;
1566 struct route *ro_fwd = &sro_fwd;
1567
1568#if IPFIREWALL_FORWARD_DEBUG
1569 printf("IPFIREWALL_FORWARD: New dst ip: ");
1570 print_ip(dst->sin_addr);
1571 printf("\n");
1572#endif /* IPFIREWALL_FORWARD_DEBUG */
1573 /*
1574 * We need to figure out if we have been forwarded
1575 * to a local socket. If so then we should somehow
1576 * "loop back" to ip_input, and get directed to the
1577 * PCB as if we had received this packet. This is
1578 * because it may be dificult to identify the packets
1579 * you want to forward until they are being output
1580 * and have selected an interface. (e.g. locally
1581 * initiated packets) If we used the loopback inteface,
1582 * we would not be able to control what happens
1583 * as the packet runs through ip_input() as
1584 * it is done through a ISR.
1585 */
1586 lck_rw_lock_shared(in_ifaddr_rwlock);
1587 TAILQ_FOREACH(ia_fw, &in_ifaddrhead, ia_link) {
1588 /*
1589 * If the addr to forward to is one
1590 * of ours, we pretend to
1591 * be the destination for this packet.
1592 */
1593 IFA_LOCK_SPIN(&ia_fw->ia_ifa);
1594 if (IA_SIN(ia_fw)->sin_addr.s_addr ==
1595 dst->sin_addr.s_addr) {
1596 IFA_UNLOCK(&ia_fw->ia_ifa);
1597 break;
1598 }
1599 IFA_UNLOCK(&ia_fw->ia_ifa);
1600 }
1601 lck_rw_done(in_ifaddr_rwlock);
1602 if (ia_fw) {
1603 /* tell ip_input "dont filter" */
1604 struct m_tag *fwd_tag;
1605 struct ip_fwd_tag *ipfwd_tag;
1606
1607 fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1608 KERNEL_TAG_TYPE_IPFORWARD,
1609 sizeof (*ipfwd_tag), M_NOWAIT, m);
1610 if (fwd_tag == NULL) {
1611 error = ENOBUFS;
1612 goto bad;
1613 }
1614
1615 ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1616 ipfwd_tag->next_hop = args.fwa_next_hop;
1617
1618 m_tag_prepend(m, fwd_tag);
1619
1620 if (m->m_pkthdr.rcvif == NULL)
1621 m->m_pkthdr.rcvif = lo_ifp;
1622
1623#if BYTE_ORDER != BIG_ENDIAN
1624 HTONS(ip->ip_len);
1625 HTONS(ip->ip_off);
1626#endif
1627 mbuf_outbound_finalize(m, PF_INET, 0);
1628
1629 /*
1630 * we need to call dlil_output to run filters
1631 * and resync to avoid recursion loops.
1632 */
1633 if (lo_ifp) {
1634 dlil_output(lo_ifp, PF_INET, m, NULL,
1635 SA(dst), 0, adv);
1636 } else {
1637 printf("%s: no loopback ifp for "
1638 "forwarding!!!\n", __func__);
1639 }
1640 goto done;
1641 }
1642 /*
1643 * Some of the logic for this was nicked from above.
1644 *
1645 * This rewrites the cached route in a local PCB.
1646 * Is this what we want to do?
1647 */
1648 ROUTE_RELEASE(ro_fwd);
1649 bcopy(dst, &ro_fwd->ro_dst, sizeof (*dst));
1650
1651 rtalloc_ign(ro_fwd, RTF_PRCLONING);
1652
1653 if (ro_fwd->ro_rt == NULL) {
1654 OSAddAtomic(1, &ipstat.ips_noroute);
1655 error = EHOSTUNREACH;
1656 goto bad;
1657 }
1658
1659 RT_LOCK_SPIN(ro_fwd->ro_rt);
1660 ia_fw = ifatoia(ro_fwd->ro_rt->rt_ifa);
1661 if (ia_fw != NULL) {
1662 /* Become a regular mutex */
1663 RT_CONVERT_LOCK(ro_fwd->ro_rt);
1664 IFA_ADDREF(&ia_fw->ia_ifa);
1665 }
1666 ifp = ro_fwd->ro_rt->rt_ifp;
1667 ro_fwd->ro_rt->rt_use++;
1668 if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
1669 dst = SIN(ro_fwd->ro_rt->rt_gateway);
1670 if (ro_fwd->ro_rt->rt_flags & RTF_HOST) {
1671 /* double negation needed for bool bit field */
1672 ipobf.isbroadcast =
1673 !!(ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
1674 } else {
1675 /* Become a regular mutex */
1676 RT_CONVERT_LOCK(ro_fwd->ro_rt);
1677 ipobf.isbroadcast =
1678 in_broadcast(dst->sin_addr, ifp);
1679 }
1680 RT_UNLOCK(ro_fwd->ro_rt);
1681 ROUTE_RELEASE(ro);
1682 ro->ro_rt = ro_fwd->ro_rt;
1683 ro_fwd->ro_rt = NULL;
1684 dst = SIN(&ro_fwd->ro_dst);
1685
1686 /*
1687 * If we added a default src ip earlier,
1688 * which would have been gotten from the-then
1689 * interface, do it again, from the new one.
1690 */
1691 if (ia_fw != NULL) {
1692 if (ipobf.fwd_rewrite_src) {
1693 IFA_LOCK_SPIN(&ia_fw->ia_ifa);
1694 ip->ip_src = IA_SIN(ia_fw)->sin_addr;
1695 IFA_UNLOCK(&ia_fw->ia_ifa);
1696 }
1697 IFA_REMREF(&ia_fw->ia_ifa);
1698 }
1699 goto pass;
1700 }
1701#endif /* IPFIREWALL_FORWARD */
1702 /*
1703 * if we get here, none of the above matches, and
1704 * we have to drop the pkt
1705 */
1706 m_freem(m);
1707 error = EACCES; /* not sure this is the right error msg */
1708 goto done;
1709 }
1710
1711pass:
1712#endif /* IPFIREWALL */
1713
1714 /* 127/8 must not appear on wire - RFC1122 */
1715 if (!(ifp->if_flags & IFF_LOOPBACK) &&
1716 ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1717 (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
1718 OSAddAtomic(1, &ipstat.ips_badaddr);
1719 error = EADDRNOTAVAIL;
1720 goto bad;
1721 }
1722
1723 ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2),
1724 ip->ip_len, &sw_csum);
1725
1726 /*
1727 * If small enough for interface, or the interface will take
1728 * care of the fragmentation for us, can just send directly.
1729 */
1730 if ((u_short)ip->ip_len <= ifp->if_mtu || TSO_IPV4_OK(ifp, m) ||
1731 (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) {
1732#if BYTE_ORDER != BIG_ENDIAN
1733 HTONS(ip->ip_len);
1734 HTONS(ip->ip_off);
1735#endif
1736
1737 ip->ip_sum = 0;
1738 if (sw_csum & CSUM_DELAY_IP) {
1739 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
1740 sw_csum &= ~CSUM_DELAY_IP;
1741 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1742 }
1743
1744#if IPSEC
1745 /* clean ipsec history once it goes out of the node */
1746 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC))
1747 ipsec_delaux(m);
1748#endif /* IPSEC */
1749 if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) &&
1750 (m->m_pkthdr.tso_segsz > 0))
1751 scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
1752 else
1753 scnt++;
1754
1755 if (packetchain == 0) {
1756 if (ro->ro_rt != NULL && nstat_collect)
1757 nstat_route_tx(ro->ro_rt, scnt,
1758 m->m_pkthdr.len, 0);
1759
1760 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1761 SA(dst), 0, adv);
1762 if (dlil_verbose && error) {
1763 printf("dlil_output error on interface %s: %d\n",
1764 ifp->if_xname, error);
1765 }
1766 scnt = 0;
1767 goto done;
1768 } else {
1769 /*
1770 * packet chaining allows us to reuse the
1771 * route for all packets
1772 */
1773 bytecnt += m->m_pkthdr.len;
1774 mppn = &m->m_nextpkt;
1775 m = m->m_nextpkt;
1776 if (m == NULL) {
1777#if PF
1778sendchain:
1779#endif /* PF */
1780 if (pktcnt > ip_maxchainsent)
1781 ip_maxchainsent = pktcnt;
1782 if (ro->ro_rt != NULL && nstat_collect)
1783 nstat_route_tx(ro->ro_rt, scnt,
1784 bytecnt, 0);
1785
1786 error = dlil_output(ifp, PF_INET, packetlist,
1787 ro->ro_rt, SA(dst), 0, adv);
1788 if (dlil_verbose && error) {
1789 printf("dlil_output error on interface %s: %d\n",
1790 ifp->if_xname, error);
1791 }
1792 pktcnt = 0;
1793 scnt = 0;
1794 bytecnt = 0;
1795 goto done;
1796
1797 }
1798 m0 = m;
1799 pktcnt++;
1800 goto loopit;
1801 }
1802 }
1803 /*
1804 * Too large for interface; fragment if possible.
1805 * Must be able to put at least 8 bytes per fragment.
1806 * Balk when DF bit is set or the interface didn't support TSO.
1807 */
1808 if ((ip->ip_off & IP_DF) || pktcnt > 0 ||
1809 (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) {
1810 error = EMSGSIZE;
1811 /*
1812 * This case can happen if the user changed the MTU
1813 * of an interface after enabling IP on it. Because
1814 * most netifs don't keep track of routes pointing to
1815 * them, there is no way for one to update all its
1816 * routes when the MTU is changed.
1817 */
1818 if (ro->ro_rt) {
1819 RT_LOCK_SPIN(ro->ro_rt);
1820 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1821 !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1822 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1823 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1824 }
1825 RT_UNLOCK(ro->ro_rt);
1826 }
1827 if (pktcnt > 0) {
1828 m0 = packetlist;
1829 }
1830 OSAddAtomic(1, &ipstat.ips_cantfrag);
1831 goto bad;
1832 }
1833
1834 error = ip_fragment(m, ifp, ifp->if_mtu, sw_csum);
1835 if (error != 0) {
1836 m0 = m = NULL;
1837 goto bad;
1838 }
1839
1840 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1841 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1842
1843 for (m = m0; m; m = m0) {
1844 m0 = m->m_nextpkt;
1845 m->m_nextpkt = 0;
1846#if IPSEC
1847 /* clean ipsec history once it goes out of the node */
1848 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC))
1849 ipsec_delaux(m);
1850#endif /* IPSEC */
1851 if (error == 0) {
1852 if ((packetchain != 0) && (pktcnt > 0)) {
1853 panic("%s: mix of packet in packetlist is "
1854 "wrong=%p", __func__, packetlist);
1855 /* NOTREACHED */
1856 }
1857 if (ro->ro_rt != NULL && nstat_collect) {
1858 nstat_route_tx(ro->ro_rt, 1,
1859 m->m_pkthdr.len, 0);
1860 }
1861 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1862 SA(dst), 0, adv);
1863 if (dlil_verbose && error) {
1864 printf("dlil_output error on interface %s: %d\n",
1865 ifp->if_xname, error);
1866 }
1867 } else {
1868 m_freem(m);
1869 }
1870 }
1871
1872 if (error == 0)
1873 OSAddAtomic(1, &ipstat.ips_fragmented);
1874
1875done:
1876 if (ia != NULL) {
1877 IFA_REMREF(&ia->ia_ifa);
1878 ia = NULL;
1879 }
1880#if IPSEC
1881 ROUTE_RELEASE(&ipsec_state.ro);
1882 if (sp != NULL) {
1883 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1884 printf("DP ip_output call free SP:%x\n", sp));
1885 key_freesp(sp, KEY_SADB_UNLOCKED);
1886 }
1887#endif /* IPSEC */
1888#if NECP
1889 ROUTE_RELEASE(&necp_route);
1890#endif /* NECP */
1891#if DUMMYNET
1892 ROUTE_RELEASE(&saved_route);
1893#endif /* DUMMYNET */
1894#if IPFIREWALL_FORWARD
1895 ROUTE_RELEASE(&sro_fwd);
1896#endif /* IPFIREWALL_FORWARD */
1897
1898 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
1899 return (error);
1900bad:
1901 if (pktcnt > 0)
1902 m0 = packetlist;
1903 m_freem_list(m0);
1904 goto done;
1905
1906#undef ipsec_state
1907#undef args
1908#undef sro_fwd
1909#undef saved_route
1910#undef ipf_pktopts
1911#undef IP_CHECK_RESTRICTIONS
1912}
1913
1914int
1915ip_fragment(struct mbuf *m, struct ifnet *ifp, unsigned long mtu, int sw_csum)
1916{
1917 struct ip *ip, *mhip;
1918 int len, hlen, mhlen, firstlen, off, error = 0;
1919 struct mbuf **mnext = &m->m_nextpkt, *m0;
1920 int nfrags = 1;
1921
1922 ip = mtod(m, struct ip *);
1923#ifdef _IP_VHL
1924 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1925#else /* !_IP_VHL */
1926 hlen = ip->ip_hl << 2;
1927#endif /* !_IP_VHL */
1928
1929 firstlen = len = (mtu - hlen) &~ 7;
1930 if (len < 8) {
1931 m_freem(m);
1932 return (EMSGSIZE);
1933 }
1934
1935 /*
1936 * if the interface will not calculate checksums on
1937 * fragmented packets, then do it here.
1938 */
1939 if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1940 !(ifp->if_hwassist & CSUM_IP_FRAGS))
1941 in_delayed_cksum(m);
1942
1943 /*
1944 * Loop through length of segment after first fragment,
1945 * make new header and copy data of each part and link onto chain.
1946 */
1947 m0 = m;
1948 mhlen = sizeof (struct ip);
1949 for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
1950 MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */
1951 if (m == NULL) {
1952 error = ENOBUFS;
1953 OSAddAtomic(1, &ipstat.ips_odropped);
1954 goto sendorfree;
1955 }
1956 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1957 m->m_data += max_linkhdr;
1958 mhip = mtod(m, struct ip *);
1959 *mhip = *ip;
1960 if (hlen > sizeof (struct ip)) {
1961 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1962 mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1963 }
1964 m->m_len = mhlen;
1965 mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
1966 if (ip->ip_off & IP_MF)
1967 mhip->ip_off |= IP_MF;
1968 if (off + len >= (u_short)ip->ip_len)
1969 len = (u_short)ip->ip_len - off;
1970 else
1971 mhip->ip_off |= IP_MF;
1972 mhip->ip_len = htons((u_short)(len + mhlen));
1973 m->m_next = m_copy(m0, off, len);
1974 if (m->m_next == NULL) {
1975 (void) m_free(m);
1976 error = ENOBUFS; /* ??? */
1977 OSAddAtomic(1, &ipstat.ips_odropped);
1978 goto sendorfree;
1979 }
1980 m->m_pkthdr.len = mhlen + len;
1981 m->m_pkthdr.rcvif = NULL;
1982 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1983
1984 M_COPY_CLASSIFIER(m, m0);
1985 M_COPY_PFTAG(m, m0);
1986
1987#if CONFIG_MACF_NET
1988 mac_netinet_fragment(m0, m);
1989#endif /* CONFIG_MACF_NET */
1990
1991#if BYTE_ORDER != BIG_ENDIAN
1992 HTONS(mhip->ip_off);
1993#endif
1994
1995 mhip->ip_sum = 0;
1996 if (sw_csum & CSUM_DELAY_IP) {
1997 mhip->ip_sum = ip_cksum_hdr_out(m, mhlen);
1998 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1999 }
2000 *mnext = m;
2001 mnext = &m->m_nextpkt;
2002 nfrags++;
2003 }
2004 OSAddAtomic(nfrags, &ipstat.ips_ofragments);
2005
2006 /* set first/last markers for fragment chain */
2007 m->m_flags |= M_LASTFRAG;
2008 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2009 m0->m_pkthdr.csum_data = nfrags;
2010
2011 /*
2012 * Update first fragment by trimming what's been copied out
2013 * and updating header, then send each fragment (in order).
2014 */
2015 m = m0;
2016 m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
2017 m->m_pkthdr.len = hlen + firstlen;
2018 ip->ip_len = htons((u_short)m->m_pkthdr.len);
2019 ip->ip_off |= IP_MF;
2020
2021#if BYTE_ORDER != BIG_ENDIAN
2022 HTONS(ip->ip_off);
2023#endif
2024
2025 ip->ip_sum = 0;
2026 if (sw_csum & CSUM_DELAY_IP) {
2027 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
2028 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
2029 }
2030sendorfree:
2031 if (error)
2032 m_freem_list(m0);
2033
2034 return (error);
2035}
2036
2037static void
2038ip_out_cksum_stats(int proto, u_int32_t len)
2039{
2040 switch (proto) {
2041 case IPPROTO_TCP:
2042 tcp_out_cksum_stats(len);
2043 break;
2044 case IPPROTO_UDP:
2045 udp_out_cksum_stats(len);
2046 break;
2047 default:
2048 /* keep only TCP or UDP stats for now */
2049 break;
2050 }
2051}
2052
2053/*
2054 * Process a delayed payload checksum calculation (outbound path.)
2055 *
2056 * hoff is the number of bytes beyond the mbuf data pointer which
2057 * points to the IP header.
2058 *
2059 * Returns a bitmask representing all the work done in software.
2060 */
2061uint32_t
2062in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags)
2063{
2064 unsigned char buf[15 << 2] __attribute__((aligned(8)));
2065 struct ip *ip;
2066 uint32_t offset, _hlen, mlen, hlen, len, sw_csum;
2067 uint16_t csum, ip_len;
2068
2069 _CASSERT(sizeof (csum) == sizeof (uint16_t));
2070 VERIFY(m->m_flags & M_PKTHDR);
2071
2072 sw_csum = (csum_flags & m->m_pkthdr.csum_flags);
2073
2074 if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0)
2075 goto done;
2076
2077 mlen = m->m_pkthdr.len; /* total mbuf len */
2078
2079 /* sanity check (need at least simple IP header) */
2080 if (mlen < (hoff + sizeof (*ip))) {
2081 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2082 "(%u+%u)\n", __func__, m, mlen, hoff,
2083 (uint32_t)sizeof (*ip));
2084 /* NOTREACHED */
2085 }
2086
2087 /*
2088 * In case the IP header is not contiguous, or not 32-bit aligned,
2089 * or if we're computing the IP header checksum, copy it to a local
2090 * buffer. Copy only the simple IP header here (IP options case
2091 * is handled below.)
2092 */
2093 if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof (*ip)) > m->m_len ||
2094 !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) {
2095 m_copydata(m, hoff, sizeof (*ip), (caddr_t)buf);
2096 ip = (struct ip *)(void *)buf;
2097 _hlen = sizeof (*ip);
2098 } else {
2099 ip = (struct ip *)(void *)(m->m_data + hoff);
2100 _hlen = 0;
2101 }
2102
2103 hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */
2104
2105 /* sanity check */
2106 if (mlen < (hoff + hlen)) {
2107 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2108 "hoff %u", __func__, m, mlen, hlen, hoff);
2109 /* NOTREACHED */
2110 }
2111
2112 /*
2113 * We could be in the context of an IP or interface filter; in the
2114 * former case, ip_len would be in host (correct) order while for
2115 * the latter it would be in network order. Because of this, we
2116 * attempt to interpret the length field by comparing it against
2117 * the actual packet length. If the comparison fails, byte swap
2118 * the length and check again. If it still fails, use the actual
2119 * packet length. This also covers the trailing bytes case.
2120 */
2121 ip_len = ip->ip_len;
2122 if (ip_len != (mlen - hoff)) {
2123 ip_len = OSSwapInt16(ip_len);
2124 if (ip_len != (mlen - hoff)) {
2125 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2126 "[swapped %d (%x)] doesn't match actual packet "
2127 "length; %d is used instead\n", __func__,
2128 (uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p,
2129 ip->ip_len, ip->ip_len, ip_len, ip_len,
2130 (mlen - hoff));
2131 ip_len = mlen - hoff;
2132 }
2133 }
2134
2135 len = ip_len - hlen; /* csum span */
2136
2137 if (sw_csum & CSUM_DELAY_DATA) {
2138 uint16_t ulpoff;
2139
2140 /*
2141 * offset is added to the lower 16-bit value of csum_data,
2142 * which is expected to contain the ULP offset; therefore
2143 * CSUM_PARTIAL offset adjustment must be undone.
2144 */
2145 if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL|CSUM_DATA_VALID)) ==
2146 (CSUM_PARTIAL|CSUM_DATA_VALID)) {
2147 /*
2148 * Get back the original ULP offset (this will
2149 * undo the CSUM_PARTIAL logic in ip_output.)
2150 */
2151 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff -
2152 m->m_pkthdr.csum_tx_start);
2153 }
2154
2155 ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */
2156 offset = hoff + hlen; /* ULP header */
2157
2158 if (mlen < (ulpoff + sizeof (csum))) {
2159 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2160 "cksum offset (%u) cksum flags 0x%x\n", __func__,
2161 m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags);
2162 /* NOTREACHED */
2163 }
2164
2165 csum = inet_cksum(m, 0, offset, len);
2166
2167 /* Update stats */
2168 ip_out_cksum_stats(ip->ip_p, len);
2169
2170 /* RFC1122 4.1.3.4 */
2171 if (csum == 0 && (m->m_pkthdr.csum_flags & CSUM_UDP))
2172 csum = 0xffff;
2173
2174 /* Insert the checksum in the ULP csum field */
2175 offset += ulpoff;
2176 if (offset + sizeof (csum) > m->m_len) {
2177 m_copyback(m, offset, sizeof (csum), &csum);
2178 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2179 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2180 } else {
2181 bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum));
2182 }
2183 m->m_pkthdr.csum_flags &=
2184 ~(CSUM_DELAY_DATA | CSUM_DATA_VALID | CSUM_PARTIAL);
2185 }
2186
2187 if (sw_csum & CSUM_DELAY_IP) {
2188 /* IP header must be in the local buffer */
2189 VERIFY(_hlen == sizeof (*ip));
2190 if (_hlen != hlen) {
2191 VERIFY(hlen <= sizeof (buf));
2192 m_copydata(m, hoff, hlen, (caddr_t)buf);
2193 ip = (struct ip *)(void *)buf;
2194 _hlen = hlen;
2195 }
2196
2197 /*
2198 * Compute the IP header checksum as if the IP length
2199 * is the length which we believe is "correct"; see
2200 * how ip_len gets calculated above. Note that this
2201 * is done on the local copy and not on the real one.
2202 */
2203 ip->ip_len = htons(ip_len);
2204 ip->ip_sum = 0;
2205 csum = in_cksum_hdr_opt(ip);
2206
2207 /* Update stats */
2208 ipstat.ips_snd_swcsum++;
2209 ipstat.ips_snd_swcsum_bytes += hlen;
2210
2211 /*
2212 * Insert only the checksum in the existing IP header
2213 * csum field; all other fields are left unchanged.
2214 */
2215 offset = hoff + offsetof(struct ip, ip_sum);
2216 if (offset + sizeof (csum) > m->m_len) {
2217 m_copyback(m, offset, sizeof (csum), &csum);
2218 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2219 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2220 } else {
2221 bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum));
2222 }
2223 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
2224 }
2225
2226done:
2227 return (sw_csum);
2228}
2229
2230/*
2231 * Insert IP options into preformed packet.
2232 * Adjust IP destination as required for IP source routing,
2233 * as indicated by a non-zero in_addr at the start of the options.
2234 *
2235 * XXX This routine assumes that the packet has no options in place.
2236 */
2237static struct mbuf *
2238ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
2239{
2240 struct ipoption *p = mtod(opt, struct ipoption *);
2241 struct mbuf *n;
2242 struct ip *ip = mtod(m, struct ip *);
2243 unsigned optlen;
2244
2245 optlen = opt->m_len - sizeof (p->ipopt_dst);
2246 if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
2247 return (m); /* XXX should fail */
2248 if (p->ipopt_dst.s_addr)
2249 ip->ip_dst = p->ipopt_dst;
2250 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
2251 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
2252 if (n == NULL)
2253 return (m);
2254 n->m_pkthdr.rcvif = 0;
2255#if CONFIG_MACF_NET
2256 mac_mbuf_label_copy(m, n);
2257#endif /* CONFIG_MACF_NET */
2258 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
2259 m->m_len -= sizeof (struct ip);
2260 m->m_data += sizeof (struct ip);
2261 n->m_next = m;
2262 m = n;
2263 m->m_len = optlen + sizeof (struct ip);
2264 m->m_data += max_linkhdr;
2265 (void) memcpy(mtod(m, void *), ip, sizeof (struct ip));
2266 } else {
2267 m->m_data -= optlen;
2268 m->m_len += optlen;
2269 m->m_pkthdr.len += optlen;
2270 ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof (struct ip));
2271 }
2272 ip = mtod(m, struct ip *);
2273 bcopy(p->ipopt_list, ip + 1, optlen);
2274 *phlen = sizeof (struct ip) + optlen;
2275 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
2276 ip->ip_len += optlen;
2277 return (m);
2278}
2279
2280/*
2281 * Copy options from ip to jp,
2282 * omitting those not copied during fragmentation.
2283 */
2284static int
2285ip_optcopy(struct ip *ip, struct ip *jp)
2286{
2287 u_char *cp, *dp;
2288 int opt, optlen, cnt;
2289
2290 cp = (u_char *)(ip + 1);
2291 dp = (u_char *)(jp + 1);
2292 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2293 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2294 opt = cp[0];
2295 if (opt == IPOPT_EOL)
2296 break;
2297 if (opt == IPOPT_NOP) {
2298 /* Preserve for IP mcast tunnel's LSRR alignment. */
2299 *dp++ = IPOPT_NOP;
2300 optlen = 1;
2301 continue;
2302 }
2303#if DIAGNOSTIC
2304 if (cnt < IPOPT_OLEN + sizeof (*cp)) {
2305 panic("malformed IPv4 option passed to ip_optcopy");
2306 /* NOTREACHED */
2307 }
2308#endif
2309 optlen = cp[IPOPT_OLEN];
2310#if DIAGNOSTIC
2311 if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) {
2312 panic("malformed IPv4 option passed to ip_optcopy");
2313 /* NOTREACHED */
2314 }
2315#endif
2316 /* bogus lengths should have been caught by ip_dooptions */
2317 if (optlen > cnt)
2318 optlen = cnt;
2319 if (IPOPT_COPIED(opt)) {
2320 bcopy(cp, dp, optlen);
2321 dp += optlen;
2322 }
2323 }
2324 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
2325 *dp++ = IPOPT_EOL;
2326 return (optlen);
2327}
2328
2329/*
2330 * IP socket option processing.
2331 */
2332int
2333ip_ctloutput(struct socket *so, struct sockopt *sopt)
2334{
2335 struct inpcb *inp = sotoinpcb(so);
2336 int error, optval;
2337
2338 error = optval = 0;
2339 if (sopt->sopt_level != IPPROTO_IP)
2340 return (EINVAL);
2341
2342 switch (sopt->sopt_dir) {
2343 case SOPT_SET:
2344 switch (sopt->sopt_name) {
2345#ifdef notyet
2346 case IP_RETOPTS:
2347#endif
2348 case IP_OPTIONS: {
2349 struct mbuf *m;
2350
2351 if (sopt->sopt_valsize > MLEN) {
2352 error = EMSGSIZE;
2353 break;
2354 }
2355 MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT,
2356 MT_HEADER);
2357 if (m == NULL) {
2358 error = ENOBUFS;
2359 break;
2360 }
2361 m->m_len = sopt->sopt_valsize;
2362 error = sooptcopyin(sopt, mtod(m, char *),
2363 m->m_len, m->m_len);
2364 if (error)
2365 break;
2366
2367 return (ip_pcbopts(sopt->sopt_name,
2368 &inp->inp_options, m));
2369 }
2370
2371 case IP_TOS:
2372 case IP_TTL:
2373 case IP_RECVOPTS:
2374 case IP_RECVRETOPTS:
2375 case IP_RECVDSTADDR:
2376 case IP_RECVIF:
2377 case IP_RECVTTL:
2378 case IP_RECVPKTINFO:
2379 error = sooptcopyin(sopt, &optval, sizeof (optval),
2380 sizeof (optval));
2381 if (error)
2382 break;
2383
2384 switch (sopt->sopt_name) {
2385 case IP_TOS:
2386 inp->inp_ip_tos = optval;
2387 break;
2388
2389 case IP_TTL:
2390 inp->inp_ip_ttl = optval;
2391 break;
2392#define OPTSET(bit) \
2393 if (optval) \
2394 inp->inp_flags |= bit; \
2395 else \
2396 inp->inp_flags &= ~bit;
2397
2398 case IP_RECVOPTS:
2399 OPTSET(INP_RECVOPTS);
2400 break;
2401
2402 case IP_RECVRETOPTS:
2403 OPTSET(INP_RECVRETOPTS);
2404 break;
2405
2406 case IP_RECVDSTADDR:
2407 OPTSET(INP_RECVDSTADDR);
2408 break;
2409
2410 case IP_RECVIF:
2411 OPTSET(INP_RECVIF);
2412 break;
2413
2414 case IP_RECVTTL:
2415 OPTSET(INP_RECVTTL);
2416 break;
2417
2418 case IP_RECVPKTINFO:
2419 OPTSET(INP_PKTINFO);
2420 break;
2421 }
2422 break;
2423#undef OPTSET
2424
2425#if CONFIG_FORCE_OUT_IFP
2426 /*
2427 * Apple private interface, similar to IP_BOUND_IF, except
2428 * that the parameter is a NULL-terminated string containing
2429 * the name of the network interface; an emptry string means
2430 * unbind. Applications are encouraged to use IP_BOUND_IF
2431 * instead, as that is the current "official" API.
2432 */
2433 case IP_FORCE_OUT_IFP: {
2434 char ifname[IFNAMSIZ];
2435 unsigned int ifscope;
2436
2437 /* This option is settable only for IPv4 */
2438 if (!(inp->inp_vflag & INP_IPV4)) {
2439 error = EINVAL;
2440 break;
2441 }
2442
2443 /* Verify interface name parameter is sane */
2444 if (sopt->sopt_valsize > sizeof (ifname)) {
2445 error = EINVAL;
2446 break;
2447 }
2448
2449 /* Copy the interface name */
2450 if (sopt->sopt_valsize != 0) {
2451 error = sooptcopyin(sopt, ifname,
2452 sizeof (ifname), sopt->sopt_valsize);
2453 if (error)
2454 break;
2455 }
2456
2457 if (sopt->sopt_valsize == 0 || ifname[0] == '\0') {
2458 /* Unbind this socket from any interface */
2459 ifscope = IFSCOPE_NONE;
2460 } else {
2461 ifnet_t ifp;
2462
2463 /* Verify name is NULL terminated */
2464 if (ifname[sopt->sopt_valsize - 1] != '\0') {
2465 error = EINVAL;
2466 break;
2467 }
2468
2469 /* Bail out if given bogus interface name */
2470 if (ifnet_find_by_name(ifname, &ifp) != 0) {
2471 error = ENXIO;
2472 break;
2473 }
2474
2475 /* Bind this socket to this interface */
2476 ifscope = ifp->if_index;
2477
2478 /*
2479 * Won't actually free; since we don't release
2480 * this later, we should do it now.
2481 */
2482 ifnet_release(ifp);
2483 }
2484 error = inp_bindif(inp, ifscope, NULL);
2485 }
2486 break;
2487#endif /* CONFIG_FORCE_OUT_IFP */
2488 /*
2489 * Multicast socket options are processed by the in_mcast
2490 * module.
2491 */
2492 case IP_MULTICAST_IF:
2493 case IP_MULTICAST_IFINDEX:
2494 case IP_MULTICAST_VIF:
2495 case IP_MULTICAST_TTL:
2496 case IP_MULTICAST_LOOP:
2497 case IP_ADD_MEMBERSHIP:
2498 case IP_DROP_MEMBERSHIP:
2499 case IP_ADD_SOURCE_MEMBERSHIP:
2500 case IP_DROP_SOURCE_MEMBERSHIP:
2501 case IP_BLOCK_SOURCE:
2502 case IP_UNBLOCK_SOURCE:
2503 case IP_MSFILTER:
2504 case MCAST_JOIN_GROUP:
2505 case MCAST_LEAVE_GROUP:
2506 case MCAST_JOIN_SOURCE_GROUP:
2507 case MCAST_LEAVE_SOURCE_GROUP:
2508 case MCAST_BLOCK_SOURCE:
2509 case MCAST_UNBLOCK_SOURCE:
2510 error = inp_setmoptions(inp, sopt);
2511 break;
2512
2513 case IP_PORTRANGE:
2514 error = sooptcopyin(sopt, &optval, sizeof (optval),
2515 sizeof (optval));
2516 if (error)
2517 break;
2518
2519 switch (optval) {
2520 case IP_PORTRANGE_DEFAULT:
2521 inp->inp_flags &= ~(INP_LOWPORT);
2522 inp->inp_flags &= ~(INP_HIGHPORT);
2523 break;
2524
2525 case IP_PORTRANGE_HIGH:
2526 inp->inp_flags &= ~(INP_LOWPORT);
2527 inp->inp_flags |= INP_HIGHPORT;
2528 break;
2529
2530 case IP_PORTRANGE_LOW:
2531 inp->inp_flags &= ~(INP_HIGHPORT);
2532 inp->inp_flags |= INP_LOWPORT;
2533 break;
2534
2535 default:
2536 error = EINVAL;
2537 break;
2538 }
2539 break;
2540
2541#if IPSEC
2542 case IP_IPSEC_POLICY: {
2543 caddr_t req = NULL;
2544 size_t len = 0;
2545 int priv;
2546 struct mbuf *m;
2547 int optname;
2548
2549 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
2550 break;
2551 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
2552 break;
2553 priv = (proc_suser(sopt->sopt_p) == 0);
2554 if (m) {
2555 req = mtod(m, caddr_t);
2556 len = m->m_len;
2557 }
2558 optname = sopt->sopt_name;
2559 error = ipsec4_set_policy(inp, optname, req, len, priv);
2560 m_freem(m);
2561 break;
2562 }
2563#endif /* IPSEC */
2564
2565#if TRAFFIC_MGT
2566 case IP_TRAFFIC_MGT_BACKGROUND: {
2567 unsigned background = 0;
2568
2569 error = sooptcopyin(sopt, &background,
2570 sizeof (background), sizeof (background));
2571 if (error)
2572 break;
2573
2574 if (background) {
2575 socket_set_traffic_mgt_flags_locked(so,
2576 TRAFFIC_MGT_SO_BACKGROUND);
2577 } else {
2578 socket_clear_traffic_mgt_flags_locked(so,
2579 TRAFFIC_MGT_SO_BACKGROUND);
2580 }
2581
2582 break;
2583 }
2584#endif /* TRAFFIC_MGT */
2585
2586 /*
2587 * On a multihomed system, scoped routing can be used to
2588 * restrict the source interface used for sending packets.
2589 * The socket option IP_BOUND_IF binds a particular AF_INET
2590 * socket to an interface such that data sent on the socket
2591 * is restricted to that interface. This is unlike the
2592 * SO_DONTROUTE option where the routing table is bypassed;
2593 * therefore it allows for a greater flexibility and control
2594 * over the system behavior, and does not place any restriction
2595 * on the destination address type (e.g. unicast, multicast,
2596 * or broadcast if applicable) or whether or not the host is
2597 * directly reachable. Note that in the multicast transmit
2598 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2599 * IP_BOUND_IF, since the former practically bypasses the
2600 * routing table; in this case, IP_BOUND_IF sets the default
2601 * interface used for sending multicast packets in the absence
2602 * of an explicit multicast transmit interface.
2603 */
2604 case IP_BOUND_IF:
2605 /* This option is settable only for IPv4 */
2606 if (!(inp->inp_vflag & INP_IPV4)) {
2607 error = EINVAL;
2608 break;
2609 }
2610
2611 error = sooptcopyin(sopt, &optval, sizeof (optval),
2612 sizeof (optval));
2613
2614 if (error)
2615 break;
2616
2617 error = inp_bindif(inp, optval, NULL);
2618 break;
2619
2620 case IP_NO_IFT_CELLULAR:
2621 /* This option is settable only for IPv4 */
2622 if (!(inp->inp_vflag & INP_IPV4)) {
2623 error = EINVAL;
2624 break;
2625 }
2626
2627 error = sooptcopyin(sopt, &optval, sizeof (optval),
2628 sizeof (optval));
2629
2630 if (error)
2631 break;
2632
2633 /* once set, it cannot be unset */
2634 if (!optval && INP_NO_CELLULAR(inp)) {
2635 error = EINVAL;
2636 break;
2637 }
2638
2639 error = so_set_restrictions(so,
2640 SO_RESTRICT_DENY_CELLULAR);
2641 break;
2642
2643 case IP_OUT_IF:
2644 /* This option is not settable */
2645 error = EINVAL;
2646 break;
2647
2648 default:
2649 error = ENOPROTOOPT;
2650 break;
2651 }
2652 break;
2653
2654 case SOPT_GET:
2655 switch (sopt->sopt_name) {
2656 case IP_OPTIONS:
2657 case IP_RETOPTS:
2658 if (inp->inp_options) {
2659 error = sooptcopyout(sopt,
2660 mtod(inp->inp_options, char *),
2661 inp->inp_options->m_len);
2662 } else {
2663 sopt->sopt_valsize = 0;
2664 }
2665 break;
2666
2667 case IP_TOS:
2668 case IP_TTL:
2669 case IP_RECVOPTS:
2670 case IP_RECVRETOPTS:
2671 case IP_RECVDSTADDR:
2672 case IP_RECVIF:
2673 case IP_RECVTTL:
2674 case IP_PORTRANGE:
2675 case IP_RECVPKTINFO:
2676 switch (sopt->sopt_name) {
2677
2678 case IP_TOS:
2679 optval = inp->inp_ip_tos;
2680 break;
2681
2682 case IP_TTL:
2683 optval = inp->inp_ip_ttl;
2684 break;
2685
2686#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2687
2688 case IP_RECVOPTS:
2689 optval = OPTBIT(INP_RECVOPTS);
2690 break;
2691
2692 case IP_RECVRETOPTS:
2693 optval = OPTBIT(INP_RECVRETOPTS);
2694 break;
2695
2696 case IP_RECVDSTADDR:
2697 optval = OPTBIT(INP_RECVDSTADDR);
2698 break;
2699
2700 case IP_RECVIF:
2701 optval = OPTBIT(INP_RECVIF);
2702 break;
2703
2704 case IP_RECVTTL:
2705 optval = OPTBIT(INP_RECVTTL);
2706 break;
2707
2708 case IP_PORTRANGE:
2709 if (inp->inp_flags & INP_HIGHPORT)
2710 optval = IP_PORTRANGE_HIGH;
2711 else if (inp->inp_flags & INP_LOWPORT)
2712 optval = IP_PORTRANGE_LOW;
2713 else
2714 optval = 0;
2715 break;
2716
2717 case IP_RECVPKTINFO:
2718 optval = OPTBIT(INP_PKTINFO);
2719 break;
2720 }
2721 error = sooptcopyout(sopt, &optval, sizeof (optval));
2722 break;
2723
2724 case IP_MULTICAST_IF:
2725 case IP_MULTICAST_IFINDEX:
2726 case IP_MULTICAST_VIF:
2727 case IP_MULTICAST_TTL:
2728 case IP_MULTICAST_LOOP:
2729 case IP_MSFILTER:
2730 error = inp_getmoptions(inp, sopt);
2731 break;
2732
2733#if IPSEC
2734 case IP_IPSEC_POLICY: {
2735 error = 0; /* This option is no longer supported */
2736 break;
2737 }
2738#endif /* IPSEC */
2739
2740#if TRAFFIC_MGT
2741 case IP_TRAFFIC_MGT_BACKGROUND: {
2742 unsigned background = (so->so_traffic_mgt_flags &
2743 TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0;
2744 return (sooptcopyout(sopt, &background,
2745 sizeof (background)));
2746 break;
2747 }
2748#endif /* TRAFFIC_MGT */
2749
2750 case IP_BOUND_IF:
2751 if (inp->inp_flags & INP_BOUND_IF)
2752 optval = inp->inp_boundifp->if_index;
2753 error = sooptcopyout(sopt, &optval, sizeof (optval));
2754 break;
2755
2756 case IP_NO_IFT_CELLULAR:
2757 optval = INP_NO_CELLULAR(inp) ? 1 : 0;
2758 error = sooptcopyout(sopt, &optval, sizeof (optval));
2759 break;
2760
2761 case IP_OUT_IF:
2762 optval = (inp->inp_last_outifp != NULL) ?
2763 inp->inp_last_outifp->if_index : 0;
2764 error = sooptcopyout(sopt, &optval, sizeof (optval));
2765 break;
2766
2767 default:
2768 error = ENOPROTOOPT;
2769 break;
2770 }
2771 break;
2772 }
2773 return (error);
2774}
2775
2776/*
2777 * Set up IP options in pcb for insertion in output packets.
2778 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2779 * with destination address if source routed.
2780 */
2781static int
2782ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
2783{
2784#pragma unused(optname)
2785 int cnt, optlen;
2786 u_char *cp;
2787 u_char opt;
2788
2789 /* turn off any old options */
2790 if (*pcbopt)
2791 (void) m_free(*pcbopt);
2792 *pcbopt = 0;
2793 if (m == (struct mbuf *)0 || m->m_len == 0) {
2794 /*
2795 * Only turning off any previous options.
2796 */
2797 if (m)
2798 (void) m_free(m);
2799 return (0);
2800 }
2801
2802 if (m->m_len % sizeof (int32_t))
2803 goto bad;
2804
2805 /*
2806 * IP first-hop destination address will be stored before
2807 * actual options; move other options back
2808 * and clear it when none present.
2809 */
2810 if (m->m_data + m->m_len + sizeof (struct in_addr) >= &m->m_dat[MLEN])
2811 goto bad;
2812 cnt = m->m_len;
2813 m->m_len += sizeof (struct in_addr);
2814 cp = mtod(m, u_char *) + sizeof (struct in_addr);
2815 ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
2816 bzero(mtod(m, caddr_t), sizeof (struct in_addr));
2817
2818 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2819 opt = cp[IPOPT_OPTVAL];
2820 if (opt == IPOPT_EOL)
2821 break;
2822 if (opt == IPOPT_NOP)
2823 optlen = 1;
2824 else {
2825 if (cnt < IPOPT_OLEN + sizeof (*cp))
2826 goto bad;
2827 optlen = cp[IPOPT_OLEN];
2828 if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt)
2829 goto bad;
2830 }
2831 switch (opt) {
2832
2833 default:
2834 break;
2835
2836 case IPOPT_LSRR:
2837 case IPOPT_SSRR:
2838 /*
2839 * user process specifies route as:
2840 * ->A->B->C->D
2841 * D must be our final destination (but we can't
2842 * check that since we may not have connected yet).
2843 * A is first hop destination, which doesn't appear in
2844 * actual IP option, but is stored before the options.
2845 */
2846 if (optlen < IPOPT_MINOFF - 1 + sizeof (struct in_addr))
2847 goto bad;
2848 m->m_len -= sizeof (struct in_addr);
2849 cnt -= sizeof (struct in_addr);
2850 optlen -= sizeof (struct in_addr);
2851 cp[IPOPT_OLEN] = optlen;
2852 /*
2853 * Move first hop before start of options.
2854 */
2855 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
2856 sizeof (struct in_addr));
2857 /*
2858 * Then copy rest of options back
2859 * to close up the deleted entry.
2860 */
2861 ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
2862 sizeof (struct in_addr)),
2863 (caddr_t)&cp[IPOPT_OFFSET+1],
2864 (unsigned)cnt + sizeof (struct in_addr));
2865 break;
2866 }
2867 }
2868 if (m->m_len > MAX_IPOPTLEN + sizeof (struct in_addr))
2869 goto bad;
2870 *pcbopt = m;
2871 return (0);
2872
2873bad:
2874 (void) m_free(m);
2875 return (EINVAL);
2876}
2877
2878void
2879ip_moptions_init(void)
2880{
2881 PE_parse_boot_argn("ifa_debug", &imo_debug, sizeof (imo_debug));
2882
2883 imo_size = (imo_debug == 0) ? sizeof (struct ip_moptions) :
2884 sizeof (struct ip_moptions_dbg);
2885
2886 imo_zone = zinit(imo_size, IMO_ZONE_MAX * imo_size, 0,
2887 IMO_ZONE_NAME);
2888 if (imo_zone == NULL) {
2889 panic("%s: failed allocating %s", __func__, IMO_ZONE_NAME);
2890 /* NOTREACHED */
2891 }
2892 zone_change(imo_zone, Z_EXPAND, TRUE);
2893}
2894
2895void
2896imo_addref(struct ip_moptions *imo, int locked)
2897{
2898 if (!locked)
2899 IMO_LOCK(imo);
2900 else
2901 IMO_LOCK_ASSERT_HELD(imo);
2902
2903 if (++imo->imo_refcnt == 0) {
2904 panic("%s: imo %p wraparound refcnt\n", __func__, imo);
2905 /* NOTREACHED */
2906 } else if (imo->imo_trace != NULL) {
2907 (*imo->imo_trace)(imo, TRUE);
2908 }
2909
2910 if (!locked)
2911 IMO_UNLOCK(imo);
2912}
2913
2914void
2915imo_remref(struct ip_moptions *imo)
2916{
2917 int i;
2918
2919 IMO_LOCK(imo);
2920 if (imo->imo_refcnt == 0) {
2921 panic("%s: imo %p negative refcnt", __func__, imo);
2922 /* NOTREACHED */
2923 } else if (imo->imo_trace != NULL) {
2924 (*imo->imo_trace)(imo, FALSE);
2925 }
2926
2927 --imo->imo_refcnt;
2928 if (imo->imo_refcnt > 0) {
2929 IMO_UNLOCK(imo);
2930 return;
2931 }
2932
2933 for (i = 0; i < imo->imo_num_memberships; ++i) {
2934 struct in_mfilter *imf;
2935
2936 imf = imo->imo_mfilters ? &imo->imo_mfilters[i] : NULL;
2937 if (imf != NULL)
2938 imf_leave(imf);
2939
2940 (void) in_leavegroup(imo->imo_membership[i], imf);
2941
2942 if (imf != NULL)
2943 imf_purge(imf);
2944
2945 INM_REMREF(imo->imo_membership[i]);
2946 imo->imo_membership[i] = NULL;
2947 }
2948 imo->imo_num_memberships = 0;
2949 if (imo->imo_mfilters != NULL) {
2950 FREE(imo->imo_mfilters, M_INMFILTER);
2951 imo->imo_mfilters = NULL;
2952 }
2953 if (imo->imo_membership != NULL) {
2954 FREE(imo->imo_membership, M_IPMOPTS);
2955 imo->imo_membership = NULL;
2956 }
2957 IMO_UNLOCK(imo);
2958
2959 lck_mtx_destroy(&imo->imo_lock, ifa_mtx_grp);
2960
2961 if (!(imo->imo_debug & IFD_ALLOC)) {
2962 panic("%s: imo %p cannot be freed", __func__, imo);
2963 /* NOTREACHED */
2964 }
2965 zfree(imo_zone, imo);
2966}
2967
2968static void
2969imo_trace(struct ip_moptions *imo, int refhold)
2970{
2971 struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo;
2972 ctrace_t *tr;
2973 u_int32_t idx;
2974 u_int16_t *cnt;
2975
2976 if (!(imo->imo_debug & IFD_DEBUG)) {
2977 panic("%s: imo %p has no debug structure", __func__, imo);
2978 /* NOTREACHED */
2979 }
2980 if (refhold) {
2981 cnt = &imo_dbg->imo_refhold_cnt;
2982 tr = imo_dbg->imo_refhold;
2983 } else {
2984 cnt = &imo_dbg->imo_refrele_cnt;
2985 tr = imo_dbg->imo_refrele;
2986 }
2987
2988 idx = atomic_add_16_ov(cnt, 1) % IMO_TRACE_HIST_SIZE;
2989 ctrace_record(&tr[idx]);
2990}
2991
2992struct ip_moptions *
2993ip_allocmoptions(int how)
2994{
2995 struct ip_moptions *imo;
2996
2997 imo = (how == M_WAITOK) ? zalloc(imo_zone) : zalloc_noblock(imo_zone);
2998 if (imo != NULL) {
2999 bzero(imo, imo_size);
3000 lck_mtx_init(&imo->imo_lock, ifa_mtx_grp, ifa_mtx_attr);
3001 imo->imo_debug |= IFD_ALLOC;
3002 if (imo_debug != 0) {
3003 imo->imo_debug |= IFD_DEBUG;
3004 imo->imo_trace = imo_trace;
3005 }
3006 IMO_ADDREF(imo);
3007 }
3008
3009 return (imo);
3010}
3011
3012/*
3013 * Routine called from ip_output() to loop back a copy of an IP multicast
3014 * packet to the input queue of a specified interface. Note that this
3015 * calls the output routine of the loopback "driver", but with an interface
3016 * pointer that might NOT be a loopback interface -- evil, but easier than
3017 * replicating that code here.
3018 */
3019static void
3020ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m,
3021 struct sockaddr_in *dst, int hlen)
3022{
3023 struct mbuf *copym;
3024 struct ip *ip;
3025
3026 if (lo_ifp == NULL)
3027 return;
3028
3029 /*
3030 * Copy the packet header as it's needed for the checksum
3031 * Make sure to deep-copy IP header portion in case the data
3032 * is in an mbuf cluster, so that we can safely override the IP
3033 * header portion later.
3034 */
3035 copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, M_COPYM_COPY_HDR);
3036 if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen))
3037 copym = m_pullup(copym, hlen);
3038
3039 if (copym == NULL)
3040 return;
3041
3042 /*
3043 * We don't bother to fragment if the IP length is greater
3044 * than the interface's MTU. Can this possibly matter?
3045 */
3046 ip = mtod(copym, struct ip *);
3047#if BYTE_ORDER != BIG_ENDIAN
3048 HTONS(ip->ip_len);
3049 HTONS(ip->ip_off);
3050#endif
3051 ip->ip_sum = 0;
3052 ip->ip_sum = ip_cksum_hdr_out(copym, hlen);
3053
3054 /*
3055 * Mark checksum as valid unless receive checksum offload is
3056 * disabled; if so, compute checksum in software. If the
3057 * interface itself is lo0, this will be overridden by if_loop.
3058 */
3059 if (hwcksum_rx) {
3060 copym->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
3061 copym->m_pkthdr.csum_flags |=
3062 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3063 copym->m_pkthdr.csum_data = 0xffff;
3064 } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3065#if BYTE_ORDER != BIG_ENDIAN
3066 NTOHS(ip->ip_len);
3067#endif
3068 in_delayed_cksum(copym);
3069#if BYTE_ORDER != BIG_ENDIAN
3070 HTONS(ip->ip_len);
3071#endif
3072 }
3073
3074 /*
3075 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3076 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3077 * to make the loopback driver compliant with the data link
3078 * requirements.
3079 */
3080 copym->m_pkthdr.rcvif = origifp;
3081
3082 /*
3083 * Also record the source interface (which owns the source address).
3084 * This is basically a stripped down version of ifa_foraddr().
3085 */
3086 if (srcifp == NULL) {
3087 struct in_ifaddr *ia;
3088
3089 lck_rw_lock_shared(in_ifaddr_rwlock);
3090 TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) {
3091 IFA_LOCK_SPIN(&ia->ia_ifa);
3092 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) {
3093 srcifp = ia->ia_ifp;
3094 IFA_UNLOCK(&ia->ia_ifa);
3095 break;
3096 }
3097 IFA_UNLOCK(&ia->ia_ifa);
3098 }
3099 lck_rw_done(in_ifaddr_rwlock);
3100 }
3101 if (srcifp != NULL)
3102 ip_setsrcifaddr_info(copym, srcifp->if_index, NULL);
3103 ip_setdstifaddr_info(copym, origifp->if_index, NULL);
3104
3105 dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL);
3106}
3107
3108/*
3109 * Given a source IP address (and route, if available), determine the best
3110 * interface to send the packet from. Checking for (and updating) the
3111 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3112 * without any locks based on the assumption that ip_output() is single-
3113 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3114 * performing output at the IP layer.
3115 *
3116 * This routine is analogous to in6_selectroute() for IPv6.
3117 */
3118static struct ifaddr *
3119in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope)
3120{
3121 struct ifaddr *ifa = NULL;
3122 struct in_addr src = ip->ip_src;
3123 struct in_addr dst = ip->ip_dst;
3124 struct ifnet *rt_ifp;
3125 char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN];
3126
3127 VERIFY(src.s_addr != INADDR_ANY);
3128
3129 if (ip_select_srcif_debug) {
3130 (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof (s_src));
3131 (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof (s_dst));
3132 }
3133
3134 if (ro->ro_rt != NULL)
3135 RT_LOCK(ro->ro_rt);
3136
3137 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
3138
3139 /*
3140 * Given the source IP address, find a suitable source interface
3141 * to use for transmission; if the caller has specified a scope,
3142 * optimize the search by looking at the addresses only for that
3143 * interface. This is still suboptimal, however, as we need to
3144 * traverse the per-interface list.
3145 */
3146 if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) {
3147 unsigned int scope = ifscope;
3148
3149 /*
3150 * If no scope is specified and the route is stale (pointing
3151 * to a defunct interface) use the current primary interface;
3152 * this happens when switching between interfaces configured
3153 * with the same IP address. Otherwise pick up the scope
3154 * information from the route; the ULP may have looked up a
3155 * correct route and we just need to verify it here and mark
3156 * it with the ROF_SRCIF_SELECTED flag below.
3157 */
3158 if (scope == IFSCOPE_NONE) {
3159 scope = rt_ifp->if_index;
3160 if (scope != get_primary_ifscope(AF_INET) &&
3161 ROUTE_UNUSABLE(ro))
3162 scope = get_primary_ifscope(AF_INET);
3163 }
3164
3165 ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope);
3166
3167 if (ifa == NULL && ip->ip_p != IPPROTO_UDP &&
3168 ip->ip_p != IPPROTO_TCP && ipforwarding) {
3169 /*
3170 * If forwarding is enabled, and if the packet isn't
3171 * TCP or UDP, check if the source address belongs
3172 * to one of our own interfaces; if so, demote the
3173 * interface scope and do a route lookup right below.
3174 */
3175 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3176 if (ifa != NULL) {
3177 IFA_REMREF(ifa);
3178 ifa = NULL;
3179 ifscope = IFSCOPE_NONE;
3180 }
3181 }
3182
3183 if (ip_select_srcif_debug && ifa != NULL) {
3184 if (ro->ro_rt != NULL) {
3185 printf("%s->%s ifscope %d->%d ifa_if %s "
3186 "ro_if %s\n", s_src, s_dst, ifscope,
3187 scope, if_name(ifa->ifa_ifp),
3188 if_name(rt_ifp));
3189 } else {
3190 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3191 s_src, s_dst, ifscope, scope,
3192 if_name(ifa->ifa_ifp));
3193 }
3194 }
3195 }
3196
3197 /*
3198 * Slow path; search for an interface having the corresponding source
3199 * IP address if the scope was not specified by the caller, and:
3200 *
3201 * 1) There currently isn't any route, or,
3202 * 2) The interface used by the route does not own that source
3203 * IP address; in this case, the route will get blown away
3204 * and we'll do a more specific scoped search using the newly
3205 * found interface.
3206 */
3207 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
3208 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3209
3210 /*
3211 * If we have the IP address, but not the route, we don't
3212 * really know whether or not it belongs to the correct
3213 * interface (it could be shared across multiple interfaces.)
3214 * The only way to find out is to do a route lookup.
3215 */
3216 if (ifa != NULL && ro->ro_rt == NULL) {
3217 struct rtentry *rt;
3218 struct sockaddr_in sin;
3219 struct ifaddr *oifa = NULL;
3220
3221 bzero(&sin, sizeof (sin));
3222 sin.sin_family = AF_INET;
3223 sin.sin_len = sizeof (sin);
3224 sin.sin_addr = dst;
3225
3226 lck_mtx_lock(rnh_lock);
3227 if ((rt = rt_lookup(TRUE, SA(&sin), NULL,
3228 rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) {
3229 RT_LOCK(rt);
3230 /*
3231 * If the route uses a different interface,
3232 * use that one instead. The IP address of
3233 * the ifaddr that we pick up here is not
3234 * relevant.
3235 */
3236 if (ifa->ifa_ifp != rt->rt_ifp) {
3237 oifa = ifa;
3238 ifa = rt->rt_ifa;
3239 IFA_ADDREF(ifa);
3240 RT_UNLOCK(rt);
3241 } else {
3242 RT_UNLOCK(rt);
3243 }
3244 rtfree_locked(rt);
3245 }
3246 lck_mtx_unlock(rnh_lock);
3247
3248 if (oifa != NULL) {
3249 struct ifaddr *iifa;
3250
3251 /*
3252 * See if the interface pointed to by the
3253 * route is configured with the source IP
3254 * address of the packet.
3255 */
3256 iifa = (struct ifaddr *)ifa_foraddr_scoped(
3257 src.s_addr, ifa->ifa_ifp->if_index);
3258
3259 if (iifa != NULL) {
3260 /*
3261 * Found it; drop the original one
3262 * as well as the route interface
3263 * address, and use this instead.
3264 */
3265 IFA_REMREF(oifa);
3266 IFA_REMREF(ifa);
3267 ifa = iifa;
3268 } else if (!ipforwarding ||
3269 (rt->rt_flags & RTF_GATEWAY)) {
3270 /*
3271 * This interface doesn't have that
3272 * source IP address; drop the route
3273 * interface address and just use the
3274 * original one, and let the caller
3275 * do a scoped route lookup.
3276 */
3277 IFA_REMREF(ifa);
3278 ifa = oifa;
3279 } else {
3280 /*
3281 * Forwarding is enabled and the source
3282 * address belongs to one of our own
3283 * interfaces which isn't the outgoing
3284 * interface, and we have a route, and
3285 * the destination is on a network that
3286 * is directly attached (onlink); drop
3287 * the original one and use the route
3288 * interface address instead.
3289 */
3290 IFA_REMREF(oifa);
3291 }
3292 }
3293 } else if (ifa != NULL && ro->ro_rt != NULL &&
3294 !(ro->ro_rt->rt_flags & RTF_GATEWAY) &&
3295 ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) {
3296 /*
3297 * Forwarding is enabled and the source address belongs
3298 * to one of our own interfaces which isn't the same
3299 * as the interface used by the known route; drop the
3300 * original one and use the route interface address.
3301 */
3302 IFA_REMREF(ifa);
3303 ifa = ro->ro_rt->rt_ifa;
3304 IFA_ADDREF(ifa);
3305 }
3306
3307 if (ip_select_srcif_debug && ifa != NULL) {
3308 printf("%s->%s ifscope %d ifa_if %s\n",
3309 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
3310 }
3311 }
3312
3313 if (ro->ro_rt != NULL)
3314 RT_LOCK_ASSERT_HELD(ro->ro_rt);
3315 /*
3316 * If there is a non-loopback route with the wrong interface, or if
3317 * there is no interface configured with such an address, blow it
3318 * away. Except for local/loopback, we look for one with a matching
3319 * interface scope/index.
3320 */
3321 if (ro->ro_rt != NULL &&
3322 (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) ||
3323 !(ro->ro_rt->rt_flags & RTF_UP))) {
3324 if (ip_select_srcif_debug) {
3325 if (ifa != NULL) {
3326 printf("%s->%s ifscope %d ro_if %s != "
3327 "ifa_if %s (cached route cleared)\n",
3328 s_src, s_dst, ifscope, if_name(rt_ifp),
3329 if_name(ifa->ifa_ifp));
3330 } else {
3331 printf("%s->%s ifscope %d ro_if %s "
3332 "(no ifa_if found)\n",
3333 s_src, s_dst, ifscope, if_name(rt_ifp));
3334 }
3335 }
3336
3337 RT_UNLOCK(ro->ro_rt);
3338 ROUTE_RELEASE(ro);
3339
3340 /*
3341 * If the destination is IPv4 LLA and the route's interface
3342 * doesn't match the source interface, then the source IP
3343 * address is wrong; it most likely belongs to the primary
3344 * interface associated with the IPv4 LL subnet. Drop the
3345 * packet rather than letting it go out and return an error
3346 * to the ULP. This actually applies not only to IPv4 LL
3347 * but other shared subnets; for now we explicitly test only
3348 * for the former case and save the latter for future.
3349 */
3350 if (IN_LINKLOCAL(ntohl(dst.s_addr)) &&
3351 !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) {
3352 IFA_REMREF(ifa);
3353 ifa = NULL;
3354 }
3355 }
3356
3357 if (ip_select_srcif_debug && ifa == NULL) {
3358 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3359 s_src, s_dst, ifscope);
3360 }
3361
3362 /*
3363 * If there is a route, mark it accordingly. If there isn't one,
3364 * we'll get here again during the next transmit (possibly with a
3365 * route) and the flag will get set at that point. For IPv4 LLA
3366 * destination, mark it only if the route has been fully resolved;
3367 * otherwise we want to come back here again when the route points
3368 * to the interface over which the ARP reply arrives on.
3369 */
3370 if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) ||
3371 (ro->ro_rt->rt_gateway->sa_family == AF_LINK &&
3372 SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) {
3373 if (ifa != NULL)
3374 IFA_ADDREF(ifa); /* for route */
3375 if (ro->ro_srcia != NULL)
3376 IFA_REMREF(ro->ro_srcia);
3377 ro->ro_srcia = ifa;
3378 ro->ro_flags |= ROF_SRCIF_SELECTED;
3379 RT_GENID_SYNC(ro->ro_rt);
3380 }
3381
3382 if (ro->ro_rt != NULL)
3383 RT_UNLOCK(ro->ro_rt);
3384
3385 return (ifa);
3386}
3387
3388void
3389ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len,
3390 uint32_t *sw_csum)
3391{
3392 int tso = TSO_IPV4_OK(ifp, m);
3393 uint32_t hwcap = ifp->if_hwassist;
3394
3395 m->m_pkthdr.csum_flags |= CSUM_IP;
3396
3397 if (!hwcksum_tx) {
3398 /* do all in software; hardware checksum offload is disabled */
3399 *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3400 m->m_pkthdr.csum_flags;
3401 } else {
3402 /* do in software what the hardware cannot */
3403 *sw_csum = m->m_pkthdr.csum_flags &
3404 ~IF_HWASSIST_CSUM_FLAGS(hwcap);
3405 }
3406
3407 if (hlen != sizeof (struct ip)) {
3408 *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3409 m->m_pkthdr.csum_flags);
3410 } else if (!(*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) {
3411 /*
3412 * Partial checksum offload, if non-IP fragment, and TCP only
3413 * (no UDP support, as the hardware may not be able to convert
3414 * +0 to -0 (0xffff) per RFC1122 4.1.3.4.)
3415 */
3416 if (hwcksum_tx && !tso &&
3417 (m->m_pkthdr.csum_flags & CSUM_TCP) &&
3418 ip_len <= ifp->if_mtu) {
3419 uint16_t start = sizeof (struct ip);
3420 uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff;
3421 m->m_pkthdr.csum_flags |=
3422 (CSUM_DATA_VALID | CSUM_PARTIAL);
3423 m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
3424 m->m_pkthdr.csum_tx_start = start;
3425 /* do IP hdr chksum in software */
3426 *sw_csum = CSUM_DELAY_IP;
3427 } else {
3428 *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags);
3429 }
3430 }
3431
3432 if (*sw_csum & CSUM_DELAY_DATA) {
3433 in_delayed_cksum(m);
3434 *sw_csum &= ~CSUM_DELAY_DATA;
3435 }
3436
3437 if (hwcksum_tx) {
3438 /*
3439 * Drop off bits that aren't supported by hardware;
3440 * also make sure to preserve non-checksum related bits.
3441 */
3442 m->m_pkthdr.csum_flags =
3443 ((m->m_pkthdr.csum_flags &
3444 (IF_HWASSIST_CSUM_FLAGS(hwcap) | CSUM_DATA_VALID)) |
3445 (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK));
3446 } else {
3447 /* drop all bits; hardware checksum offload is disabled */
3448 m->m_pkthdr.csum_flags = 0;
3449 }
3450}
3451
3452/*
3453 * GRE protocol output for PPP/PPTP
3454 */
3455int
3456ip_gre_output(struct mbuf *m)
3457{
3458 struct route ro;
3459 int error;
3460
3461 bzero(&ro, sizeof (ro));
3462
3463 error = ip_output(m, NULL, &ro, 0, NULL, NULL);
3464
3465 ROUTE_RELEASE(&ro);
3466
3467 return (error);
3468}