]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2006-2014 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* | |
30 | * Memory allocator with per-CPU caching, derived from the kmem magazine | |
31 | * concept and implementation as described in the following paper: | |
32 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf | |
33 | * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights | |
34 | * reserved. Use is subject to license terms. | |
35 | * | |
36 | * There are several major differences between this and the original kmem | |
37 | * magazine: this derivative implementation allows for multiple objects to | |
38 | * be allocated and freed from/to the object cache in one call; in addition, | |
39 | * it provides for better flexibility where the user is allowed to define | |
40 | * its own slab allocator (instead of the default zone allocator). Finally, | |
41 | * no object construction/destruction takes place at the moment, although | |
42 | * this could be added in future to improve efficiency. | |
43 | */ | |
44 | ||
45 | #include <sys/param.h> | |
46 | #include <sys/types.h> | |
47 | #include <sys/malloc.h> | |
48 | #include <sys/mbuf.h> | |
49 | #include <sys/queue.h> | |
50 | #include <sys/kernel.h> | |
51 | #include <sys/systm.h> | |
52 | ||
53 | #include <kern/debug.h> | |
54 | #include <kern/zalloc.h> | |
55 | #include <kern/cpu_number.h> | |
56 | #include <kern/locks.h> | |
57 | #include <kern/thread_call.h> | |
58 | ||
59 | #include <libkern/libkern.h> | |
60 | #include <libkern/OSAtomic.h> | |
61 | #include <libkern/OSDebug.h> | |
62 | ||
63 | #include <mach/vm_param.h> | |
64 | #include <machine/limits.h> | |
65 | #include <machine/machine_routines.h> | |
66 | ||
67 | #include <string.h> | |
68 | ||
69 | #include <sys/mcache.h> | |
70 | ||
71 | #define MCACHE_SIZE(n) \ | |
72 | ((size_t)(&((mcache_t *)0)->mc_cpu[n])) | |
73 | ||
74 | /* Allocate extra in case we need to manually align the pointer */ | |
75 | #define MCACHE_ALLOC_SIZE \ | |
76 | (sizeof (void *) + MCACHE_SIZE(ncpu) + CPU_CACHE_LINE_SIZE) | |
77 | ||
78 | #define MCACHE_CPU(c) \ | |
79 | (mcache_cpu_t *)((void *)((char *)(c) + MCACHE_SIZE(cpu_number()))) | |
80 | ||
81 | /* | |
82 | * MCACHE_LIST_LOCK() and MCACHE_LIST_UNLOCK() are macros used | |
83 | * to serialize accesses to the global list of caches in the system. | |
84 | * They also record the thread currently running in the critical | |
85 | * section, so that we can avoid recursive requests to reap the | |
86 | * caches when memory runs low. | |
87 | */ | |
88 | #define MCACHE_LIST_LOCK() { \ | |
89 | lck_mtx_lock(mcache_llock); \ | |
90 | mcache_llock_owner = current_thread(); \ | |
91 | } | |
92 | ||
93 | #define MCACHE_LIST_UNLOCK() { \ | |
94 | mcache_llock_owner = NULL; \ | |
95 | lck_mtx_unlock(mcache_llock); \ | |
96 | } | |
97 | ||
98 | #define MCACHE_LOCK(l) lck_mtx_lock(l) | |
99 | #define MCACHE_UNLOCK(l) lck_mtx_unlock(l) | |
100 | #define MCACHE_LOCK_TRY(l) lck_mtx_try_lock(l) | |
101 | ||
102 | static int ncpu; | |
103 | static unsigned int cache_line_size; | |
104 | static lck_mtx_t *mcache_llock; | |
105 | static struct thread *mcache_llock_owner; | |
106 | static lck_attr_t *mcache_llock_attr; | |
107 | static lck_grp_t *mcache_llock_grp; | |
108 | static lck_grp_attr_t *mcache_llock_grp_attr; | |
109 | static struct zone *mcache_zone; | |
110 | static const uint32_t mcache_reap_interval = 15; | |
111 | static const uint32_t mcache_reap_interval_leeway = 2; | |
112 | static UInt32 mcache_reaping; | |
113 | static int mcache_ready; | |
114 | static int mcache_updating; | |
115 | ||
116 | static int mcache_bkt_contention = 3; | |
117 | #if DEBUG | |
118 | static unsigned int mcache_flags = MCF_DEBUG; | |
119 | #else | |
120 | static unsigned int mcache_flags = 0; | |
121 | #endif | |
122 | ||
123 | int mca_trn_max = MCA_TRN_MAX; | |
124 | ||
125 | #define DUMP_MCA_BUF_SIZE 512 | |
126 | static char *mca_dump_buf; | |
127 | ||
128 | static mcache_bkttype_t mcache_bkttype[] = { | |
129 | { 1, 4096, 32768, NULL }, | |
130 | { 3, 2048, 16384, NULL }, | |
131 | { 7, 1024, 12288, NULL }, | |
132 | { 15, 256, 8192, NULL }, | |
133 | { 31, 64, 4096, NULL }, | |
134 | { 47, 0, 2048, NULL }, | |
135 | { 63, 0, 1024, NULL }, | |
136 | { 95, 0, 512, NULL }, | |
137 | { 143, 0, 256, NULL }, | |
138 | { 165, 0, 0, NULL }, | |
139 | }; | |
140 | ||
141 | static mcache_t *mcache_create_common(const char *, size_t, size_t, | |
142 | mcache_allocfn_t, mcache_freefn_t, mcache_auditfn_t, mcache_logfn_t, | |
143 | mcache_notifyfn_t, void *, u_int32_t, int, int); | |
144 | static unsigned int mcache_slab_alloc(void *, mcache_obj_t ***, | |
145 | unsigned int, int); | |
146 | static void mcache_slab_free(void *, mcache_obj_t *, boolean_t); | |
147 | static void mcache_slab_audit(void *, mcache_obj_t *, boolean_t); | |
148 | static void mcache_cpu_refill(mcache_cpu_t *, mcache_bkt_t *, int); | |
149 | static mcache_bkt_t *mcache_bkt_alloc(mcache_t *, mcache_bktlist_t *, | |
150 | mcache_bkttype_t **); | |
151 | static void mcache_bkt_free(mcache_t *, mcache_bktlist_t *, mcache_bkt_t *); | |
152 | static void mcache_cache_bkt_enable(mcache_t *); | |
153 | static void mcache_bkt_purge(mcache_t *); | |
154 | static void mcache_bkt_destroy(mcache_t *, mcache_bkttype_t *, | |
155 | mcache_bkt_t *, int); | |
156 | static void mcache_bkt_ws_update(mcache_t *); | |
157 | static void mcache_bkt_ws_reap(mcache_t *); | |
158 | static void mcache_dispatch(void (*)(void *), void *); | |
159 | static void mcache_cache_reap(mcache_t *); | |
160 | static void mcache_cache_update(mcache_t *); | |
161 | static void mcache_cache_bkt_resize(void *); | |
162 | static void mcache_cache_enable(void *); | |
163 | static void mcache_update(thread_call_param_t __unused, thread_call_param_t __unused); | |
164 | static void mcache_update_timeout(void *); | |
165 | static void mcache_applyall(void (*)(mcache_t *)); | |
166 | static void mcache_reap_start(void *); | |
167 | static void mcache_reap_done(void *); | |
168 | static void mcache_reap_timeout(thread_call_param_t __unused, thread_call_param_t); | |
169 | static void mcache_notify(mcache_t *, u_int32_t); | |
170 | static void mcache_purge(void *); | |
171 | ||
172 | static LIST_HEAD(, mcache) mcache_head; | |
173 | mcache_t *mcache_audit_cache; | |
174 | ||
175 | static thread_call_t mcache_reap_tcall; | |
176 | static thread_call_t mcache_update_tcall; | |
177 | ||
178 | /* | |
179 | * Initialize the framework; this is currently called as part of BSD init. | |
180 | */ | |
181 | __private_extern__ void | |
182 | mcache_init(void) | |
183 | { | |
184 | mcache_bkttype_t *btp; | |
185 | unsigned int i; | |
186 | char name[32]; | |
187 | ||
188 | VERIFY(mca_trn_max >= 2); | |
189 | ||
190 | ncpu = ml_get_max_cpus(); | |
191 | (void) mcache_cache_line_size(); /* prime it */ | |
192 | ||
193 | mcache_llock_grp_attr = lck_grp_attr_alloc_init(); | |
194 | mcache_llock_grp = lck_grp_alloc_init("mcache.list", | |
195 | mcache_llock_grp_attr); | |
196 | mcache_llock_attr = lck_attr_alloc_init(); | |
197 | mcache_llock = lck_mtx_alloc_init(mcache_llock_grp, mcache_llock_attr); | |
198 | ||
199 | mcache_reap_tcall = thread_call_allocate(mcache_reap_timeout, NULL); | |
200 | mcache_update_tcall = thread_call_allocate(mcache_update, NULL); | |
201 | if (mcache_reap_tcall == NULL || mcache_update_tcall == NULL) | |
202 | panic("mcache_init: thread_call_allocate failed"); | |
203 | ||
204 | mcache_zone = zinit(MCACHE_ALLOC_SIZE, 256 * MCACHE_ALLOC_SIZE, | |
205 | PAGE_SIZE, "mcache"); | |
206 | if (mcache_zone == NULL) | |
207 | panic("mcache_init: failed to allocate mcache zone\n"); | |
208 | zone_change(mcache_zone, Z_CALLERACCT, FALSE); | |
209 | ||
210 | LIST_INIT(&mcache_head); | |
211 | ||
212 | for (i = 0; i < sizeof (mcache_bkttype) / sizeof (*btp); i++) { | |
213 | btp = &mcache_bkttype[i]; | |
214 | (void) snprintf(name, sizeof (name), "bkt_%d", | |
215 | btp->bt_bktsize); | |
216 | btp->bt_cache = mcache_create(name, | |
217 | (btp->bt_bktsize + 1) * sizeof (void *), 0, 0, MCR_SLEEP); | |
218 | } | |
219 | ||
220 | PE_parse_boot_argn("mcache_flags", &mcache_flags, sizeof(mcache_flags)); | |
221 | mcache_flags &= MCF_FLAGS_MASK; | |
222 | ||
223 | mcache_audit_cache = mcache_create("audit", sizeof (mcache_audit_t), | |
224 | 0, 0, MCR_SLEEP); | |
225 | ||
226 | mcache_applyall(mcache_cache_bkt_enable); | |
227 | mcache_ready = 1; | |
228 | ||
229 | printf("mcache: %d CPU(s), %d bytes CPU cache line size\n", | |
230 | ncpu, CPU_CACHE_LINE_SIZE); | |
231 | } | |
232 | ||
233 | /* | |
234 | * Return the global mcache flags. | |
235 | */ | |
236 | __private_extern__ unsigned int | |
237 | mcache_getflags(void) | |
238 | { | |
239 | return (mcache_flags); | |
240 | } | |
241 | ||
242 | /* | |
243 | * Return the CPU cache line size. | |
244 | */ | |
245 | __private_extern__ unsigned int | |
246 | mcache_cache_line_size(void) | |
247 | { | |
248 | if (cache_line_size == 0) { | |
249 | ml_cpu_info_t cpu_info; | |
250 | ml_cpu_get_info(&cpu_info); | |
251 | cache_line_size = cpu_info.cache_line_size; | |
252 | } | |
253 | return (cache_line_size); | |
254 | } | |
255 | ||
256 | /* | |
257 | * Create a cache using the zone allocator as the backend slab allocator. | |
258 | * The caller may specify any alignment for the object; if it specifies 0 | |
259 | * the default alignment (MCACHE_ALIGN) will be used. | |
260 | */ | |
261 | __private_extern__ mcache_t * | |
262 | mcache_create(const char *name, size_t bufsize, size_t align, | |
263 | u_int32_t flags, int wait) | |
264 | { | |
265 | return (mcache_create_common(name, bufsize, align, mcache_slab_alloc, | |
266 | mcache_slab_free, mcache_slab_audit, NULL, NULL, NULL, flags, 1, | |
267 | wait)); | |
268 | } | |
269 | ||
270 | /* | |
271 | * Create a cache using a custom backend slab allocator. Since the caller | |
272 | * is responsible for allocation, no alignment guarantee will be provided | |
273 | * by this framework. | |
274 | */ | |
275 | __private_extern__ mcache_t * | |
276 | mcache_create_ext(const char *name, size_t bufsize, | |
277 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, | |
278 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, | |
279 | u_int32_t flags, int wait) | |
280 | { | |
281 | return (mcache_create_common(name, bufsize, 0, allocfn, | |
282 | freefn, auditfn, logfn, notifyfn, arg, flags, 0, wait)); | |
283 | } | |
284 | ||
285 | /* | |
286 | * Common cache creation routine. | |
287 | */ | |
288 | static mcache_t * | |
289 | mcache_create_common(const char *name, size_t bufsize, size_t align, | |
290 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, | |
291 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, | |
292 | u_int32_t flags, int need_zone, int wait) | |
293 | { | |
294 | mcache_bkttype_t *btp; | |
295 | mcache_t *cp = NULL; | |
296 | size_t chunksize; | |
297 | void *buf, **pbuf; | |
298 | int c; | |
299 | char lck_name[64]; | |
300 | ||
301 | /* If auditing is on and print buffer is NULL, allocate it now */ | |
302 | if ((flags & MCF_DEBUG) && mca_dump_buf == NULL) { | |
303 | int malloc_wait = (wait & MCR_NOSLEEP) ? M_NOWAIT : M_WAITOK; | |
304 | MALLOC(mca_dump_buf, char *, DUMP_MCA_BUF_SIZE, M_TEMP, | |
305 | malloc_wait | M_ZERO); | |
306 | if (mca_dump_buf == NULL) | |
307 | return (NULL); | |
308 | } | |
309 | ||
310 | if (!(wait & MCR_NOSLEEP)) | |
311 | buf = zalloc(mcache_zone); | |
312 | else | |
313 | buf = zalloc_noblock(mcache_zone); | |
314 | ||
315 | if (buf == NULL) | |
316 | goto fail; | |
317 | ||
318 | bzero(buf, MCACHE_ALLOC_SIZE); | |
319 | ||
320 | /* | |
321 | * In case we didn't get a cache-aligned memory, round it up | |
322 | * accordingly. This is needed in order to get the rest of | |
323 | * structure members aligned properly. It also means that | |
324 | * the memory span gets shifted due to the round up, but it | |
325 | * is okay since we've allocated extra space for this. | |
326 | */ | |
327 | cp = (mcache_t *) | |
328 | P2ROUNDUP((intptr_t)buf + sizeof (void *), CPU_CACHE_LINE_SIZE); | |
329 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); | |
330 | *pbuf = buf; | |
331 | ||
332 | /* | |
333 | * Guaranteed alignment is valid only when we use the internal | |
334 | * slab allocator (currently set to use the zone allocator). | |
335 | */ | |
336 | if (!need_zone) | |
337 | align = 1; | |
338 | else if (align == 0) | |
339 | align = MCACHE_ALIGN; | |
340 | ||
341 | if ((align & (align - 1)) != 0) | |
342 | panic("mcache_create: bad alignment %lu", align); | |
343 | ||
344 | cp->mc_align = align; | |
345 | cp->mc_slab_alloc = allocfn; | |
346 | cp->mc_slab_free = freefn; | |
347 | cp->mc_slab_audit = auditfn; | |
348 | cp->mc_slab_log = logfn; | |
349 | cp->mc_slab_notify = notifyfn; | |
350 | cp->mc_private = need_zone ? cp : arg; | |
351 | cp->mc_bufsize = bufsize; | |
352 | cp->mc_flags = (flags & MCF_FLAGS_MASK) | mcache_flags; | |
353 | ||
354 | (void) snprintf(cp->mc_name, sizeof (cp->mc_name), "mcache.%s", name); | |
355 | ||
356 | (void) snprintf(lck_name, sizeof (lck_name), "%s.cpu", cp->mc_name); | |
357 | cp->mc_cpu_lock_grp_attr = lck_grp_attr_alloc_init(); | |
358 | cp->mc_cpu_lock_grp = lck_grp_alloc_init(lck_name, | |
359 | cp->mc_cpu_lock_grp_attr); | |
360 | cp->mc_cpu_lock_attr = lck_attr_alloc_init(); | |
361 | ||
362 | /* | |
363 | * Allocation chunk size is the object's size plus any extra size | |
364 | * needed to satisfy the object's alignment. It is enforced to be | |
365 | * at least the size of an LP64 pointer to simplify auditing and to | |
366 | * handle multiple-element allocation requests, where the elements | |
367 | * returned are linked together in a list. | |
368 | */ | |
369 | chunksize = MAX(bufsize, sizeof (u_int64_t)); | |
370 | if (need_zone) { | |
371 | /* Enforce 64-bit minimum alignment for zone-based buffers */ | |
372 | align = MAX(align, sizeof (u_int64_t)); | |
373 | chunksize += sizeof (void *) + align; | |
374 | chunksize = P2ROUNDUP(chunksize, align); | |
375 | if ((cp->mc_slab_zone = zinit(chunksize, 64 * 1024 * ncpu, | |
376 | PAGE_SIZE, cp->mc_name)) == NULL) | |
377 | goto fail; | |
378 | zone_change(cp->mc_slab_zone, Z_EXPAND, TRUE); | |
379 | } | |
380 | cp->mc_chunksize = chunksize; | |
381 | ||
382 | /* | |
383 | * Initialize the bucket layer. | |
384 | */ | |
385 | (void) snprintf(lck_name, sizeof (lck_name), "%s.bkt", cp->mc_name); | |
386 | cp->mc_bkt_lock_grp_attr = lck_grp_attr_alloc_init(); | |
387 | cp->mc_bkt_lock_grp = lck_grp_alloc_init(lck_name, | |
388 | cp->mc_bkt_lock_grp_attr); | |
389 | cp->mc_bkt_lock_attr = lck_attr_alloc_init(); | |
390 | lck_mtx_init(&cp->mc_bkt_lock, cp->mc_bkt_lock_grp, | |
391 | cp->mc_bkt_lock_attr); | |
392 | ||
393 | (void) snprintf(lck_name, sizeof (lck_name), "%s.sync", cp->mc_name); | |
394 | cp->mc_sync_lock_grp_attr = lck_grp_attr_alloc_init(); | |
395 | cp->mc_sync_lock_grp = lck_grp_alloc_init(lck_name, | |
396 | cp->mc_sync_lock_grp_attr); | |
397 | cp->mc_sync_lock_attr = lck_attr_alloc_init(); | |
398 | lck_mtx_init(&cp->mc_sync_lock, cp->mc_sync_lock_grp, | |
399 | cp->mc_sync_lock_attr); | |
400 | ||
401 | for (btp = mcache_bkttype; chunksize <= btp->bt_minbuf; btp++) | |
402 | continue; | |
403 | ||
404 | cp->cache_bkttype = btp; | |
405 | ||
406 | /* | |
407 | * Initialize the CPU layer. Each per-CPU structure is aligned | |
408 | * on the CPU cache line boundary to prevent false sharing. | |
409 | */ | |
410 | for (c = 0; c < ncpu; c++) { | |
411 | mcache_cpu_t *ccp = &cp->mc_cpu[c]; | |
412 | ||
413 | VERIFY(IS_P2ALIGNED(ccp, CPU_CACHE_LINE_SIZE)); | |
414 | lck_mtx_init(&ccp->cc_lock, cp->mc_cpu_lock_grp, | |
415 | cp->mc_cpu_lock_attr); | |
416 | ccp->cc_objs = -1; | |
417 | ccp->cc_pobjs = -1; | |
418 | } | |
419 | ||
420 | if (mcache_ready) | |
421 | mcache_cache_bkt_enable(cp); | |
422 | ||
423 | /* TODO: dynamically create sysctl for stats */ | |
424 | ||
425 | MCACHE_LIST_LOCK(); | |
426 | LIST_INSERT_HEAD(&mcache_head, cp, mc_list); | |
427 | MCACHE_LIST_UNLOCK(); | |
428 | ||
429 | /* | |
430 | * If cache buckets are enabled and this is the first cache | |
431 | * created, start the periodic cache update. | |
432 | */ | |
433 | if (!(mcache_flags & MCF_NOCPUCACHE) && !mcache_updating) { | |
434 | mcache_updating = 1; | |
435 | mcache_update_timeout(NULL); | |
436 | } | |
437 | if (cp->mc_flags & MCF_DEBUG) { | |
438 | printf("mcache_create: %s (%s) arg %p bufsize %lu align %lu " | |
439 | "chunksize %lu bktsize %d\n", name, need_zone ? "i" : "e", | |
440 | arg, bufsize, cp->mc_align, chunksize, btp->bt_bktsize); | |
441 | } | |
442 | return (cp); | |
443 | ||
444 | fail: | |
445 | if (buf != NULL) | |
446 | zfree(mcache_zone, buf); | |
447 | return (NULL); | |
448 | } | |
449 | ||
450 | /* | |
451 | * Allocate one or more objects from a cache. | |
452 | */ | |
453 | __private_extern__ unsigned int | |
454 | mcache_alloc_ext(mcache_t *cp, mcache_obj_t **list, unsigned int num, int wait) | |
455 | { | |
456 | mcache_cpu_t *ccp; | |
457 | mcache_obj_t **top = &(*list); | |
458 | mcache_bkt_t *bkt; | |
459 | unsigned int need = num; | |
460 | boolean_t nwretry = FALSE; | |
461 | ||
462 | /* MCR_NOSLEEP and MCR_FAILOK are mutually exclusive */ | |
463 | VERIFY((wait & (MCR_NOSLEEP|MCR_FAILOK)) != (MCR_NOSLEEP|MCR_FAILOK)); | |
464 | ||
465 | ASSERT(list != NULL); | |
466 | *list = NULL; | |
467 | ||
468 | if (num == 0) | |
469 | return (0); | |
470 | ||
471 | retry_alloc: | |
472 | /* We may not always be running in the same CPU in case of retries */ | |
473 | ccp = MCACHE_CPU(cp); | |
474 | ||
475 | MCACHE_LOCK(&ccp->cc_lock); | |
476 | for (;;) { | |
477 | /* | |
478 | * If we have an object in the current CPU's filled bucket, | |
479 | * chain the object to any previous objects and return if | |
480 | * we've satisfied the number of requested objects. | |
481 | */ | |
482 | if (ccp->cc_objs > 0) { | |
483 | mcache_obj_t *tail; | |
484 | int objs; | |
485 | ||
486 | /* | |
487 | * Objects in the bucket are already linked together | |
488 | * with the most recently freed object at the head of | |
489 | * the list; grab as many objects as we can. | |
490 | */ | |
491 | objs = MIN((unsigned int)ccp->cc_objs, need); | |
492 | *list = ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; | |
493 | ccp->cc_objs -= objs; | |
494 | ccp->cc_alloc += objs; | |
495 | ||
496 | tail = ccp->cc_filled->bkt_obj[ccp->cc_objs]; | |
497 | list = &tail->obj_next; | |
498 | *list = NULL; | |
499 | ||
500 | /* If we got them all, return to caller */ | |
501 | if ((need -= objs) == 0) { | |
502 | MCACHE_UNLOCK(&ccp->cc_lock); | |
503 | ||
504 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && | |
505 | cp->mc_slab_log != NULL) | |
506 | (*cp->mc_slab_log)(num, *top, TRUE); | |
507 | ||
508 | if (cp->mc_flags & MCF_DEBUG) | |
509 | goto debug_alloc; | |
510 | ||
511 | return (num); | |
512 | } | |
513 | } | |
514 | ||
515 | /* | |
516 | * The CPU's filled bucket is empty. If the previous filled | |
517 | * bucket was full, exchange and try again. | |
518 | */ | |
519 | if (ccp->cc_pobjs > 0) { | |
520 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); | |
521 | continue; | |
522 | } | |
523 | ||
524 | /* | |
525 | * If the bucket layer is disabled, allocate from slab. This | |
526 | * can happen either because MCF_NOCPUCACHE is set, or because | |
527 | * the bucket layer is currently being resized. | |
528 | */ | |
529 | if (ccp->cc_bktsize == 0) | |
530 | break; | |
531 | ||
532 | /* | |
533 | * Both of the CPU's buckets are empty; try to get a full | |
534 | * bucket from the bucket layer. Upon success, refill this | |
535 | * CPU and place any empty bucket into the empty list. | |
536 | */ | |
537 | bkt = mcache_bkt_alloc(cp, &cp->mc_full, NULL); | |
538 | if (bkt != NULL) { | |
539 | if (ccp->cc_pfilled != NULL) | |
540 | mcache_bkt_free(cp, &cp->mc_empty, | |
541 | ccp->cc_pfilled); | |
542 | mcache_cpu_refill(ccp, bkt, ccp->cc_bktsize); | |
543 | continue; | |
544 | } | |
545 | ||
546 | /* | |
547 | * The bucket layer has no full buckets; allocate the | |
548 | * object(s) directly from the slab layer. | |
549 | */ | |
550 | break; | |
551 | } | |
552 | MCACHE_UNLOCK(&ccp->cc_lock); | |
553 | ||
554 | need -= (*cp->mc_slab_alloc)(cp->mc_private, &list, need, wait); | |
555 | ||
556 | /* | |
557 | * If this is a blocking allocation, or if it is non-blocking and | |
558 | * the cache's full bucket is non-empty, then retry the allocation. | |
559 | */ | |
560 | if (need > 0) { | |
561 | if (!(wait & MCR_NONBLOCKING)) { | |
562 | atomic_add_32(&cp->mc_wretry_cnt, 1); | |
563 | goto retry_alloc; | |
564 | } else if ((wait & (MCR_NOSLEEP | MCR_TRYHARD)) && | |
565 | !mcache_bkt_isempty(cp)) { | |
566 | if (!nwretry) | |
567 | nwretry = TRUE; | |
568 | atomic_add_32(&cp->mc_nwretry_cnt, 1); | |
569 | goto retry_alloc; | |
570 | } else if (nwretry) { | |
571 | atomic_add_32(&cp->mc_nwfail_cnt, 1); | |
572 | } | |
573 | } | |
574 | ||
575 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) | |
576 | (*cp->mc_slab_log)((num - need), *top, TRUE); | |
577 | ||
578 | if (!(cp->mc_flags & MCF_DEBUG)) | |
579 | return (num - need); | |
580 | ||
581 | debug_alloc: | |
582 | if (cp->mc_flags & MCF_DEBUG) { | |
583 | mcache_obj_t **o = top; | |
584 | unsigned int n; | |
585 | ||
586 | n = 0; | |
587 | /* | |
588 | * Verify that the chain of objects have the same count as | |
589 | * what we are about to report to the caller. Any mismatch | |
590 | * here means that the object list is insanely broken and | |
591 | * therefore we must panic. | |
592 | */ | |
593 | while (*o != NULL) { | |
594 | o = &(*o)->obj_next; | |
595 | ++n; | |
596 | } | |
597 | if (n != (num - need)) { | |
598 | panic("mcache_alloc_ext: %s cp %p corrupted list " | |
599 | "(got %d actual %d)\n", cp->mc_name, | |
600 | (void *)cp, num - need, n); | |
601 | } | |
602 | } | |
603 | ||
604 | /* Invoke the slab layer audit callback if auditing is enabled */ | |
605 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) | |
606 | (*cp->mc_slab_audit)(cp->mc_private, *top, TRUE); | |
607 | ||
608 | return (num - need); | |
609 | } | |
610 | ||
611 | /* | |
612 | * Allocate a single object from a cache. | |
613 | */ | |
614 | __private_extern__ void * | |
615 | mcache_alloc(mcache_t *cp, int wait) | |
616 | { | |
617 | mcache_obj_t *buf; | |
618 | ||
619 | (void) mcache_alloc_ext(cp, &buf, 1, wait); | |
620 | return (buf); | |
621 | } | |
622 | ||
623 | __private_extern__ void | |
624 | mcache_waiter_inc(mcache_t *cp) | |
625 | { | |
626 | atomic_add_32(&cp->mc_waiter_cnt, 1); | |
627 | } | |
628 | ||
629 | __private_extern__ void | |
630 | mcache_waiter_dec(mcache_t *cp) | |
631 | { | |
632 | atomic_add_32(&cp->mc_waiter_cnt, -1); | |
633 | } | |
634 | ||
635 | __private_extern__ boolean_t | |
636 | mcache_bkt_isempty(mcache_t *cp) | |
637 | { | |
638 | /* | |
639 | * This isn't meant to accurately tell whether there are | |
640 | * any full buckets in the cache; it is simply a way to | |
641 | * obtain "hints" about the state of the cache. | |
642 | */ | |
643 | return (cp->mc_full.bl_total == 0); | |
644 | } | |
645 | ||
646 | /* | |
647 | * Notify the slab layer about an event. | |
648 | */ | |
649 | static void | |
650 | mcache_notify(mcache_t *cp, u_int32_t event) | |
651 | { | |
652 | if (cp->mc_slab_notify != NULL) | |
653 | (*cp->mc_slab_notify)(cp->mc_private, event); | |
654 | } | |
655 | ||
656 | /* | |
657 | * Purge the cache and disable its buckets. | |
658 | */ | |
659 | static void | |
660 | mcache_purge(void *arg) | |
661 | { | |
662 | mcache_t *cp = arg; | |
663 | ||
664 | mcache_bkt_purge(cp); | |
665 | /* | |
666 | * We cannot simply call mcache_cache_bkt_enable() from here as | |
667 | * a bucket resize may be in flight and we would cause the CPU | |
668 | * layers of the cache to point to different sizes. Therefore, | |
669 | * we simply increment the enable count so that during the next | |
670 | * periodic cache update the buckets can be reenabled. | |
671 | */ | |
672 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
673 | cp->mc_enable_cnt++; | |
674 | lck_mtx_unlock(&cp->mc_sync_lock); | |
675 | } | |
676 | ||
677 | __private_extern__ boolean_t | |
678 | mcache_purge_cache(mcache_t *cp, boolean_t async) | |
679 | { | |
680 | /* | |
681 | * Purging a cache that has no per-CPU caches or is already | |
682 | * in the process of being purged is rather pointless. | |
683 | */ | |
684 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
685 | return (FALSE); | |
686 | ||
687 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
688 | if (cp->mc_purge_cnt > 0) { | |
689 | lck_mtx_unlock(&cp->mc_sync_lock); | |
690 | return (FALSE); | |
691 | } | |
692 | cp->mc_purge_cnt++; | |
693 | lck_mtx_unlock(&cp->mc_sync_lock); | |
694 | ||
695 | if (async) | |
696 | mcache_dispatch(mcache_purge, cp); | |
697 | else | |
698 | mcache_purge(cp); | |
699 | ||
700 | return (TRUE); | |
701 | } | |
702 | ||
703 | /* | |
704 | * Free a single object to a cache. | |
705 | */ | |
706 | __private_extern__ void | |
707 | mcache_free(mcache_t *cp, void *buf) | |
708 | { | |
709 | ((mcache_obj_t *)buf)->obj_next = NULL; | |
710 | mcache_free_ext(cp, (mcache_obj_t *)buf); | |
711 | } | |
712 | ||
713 | /* | |
714 | * Free one or more objects to a cache. | |
715 | */ | |
716 | __private_extern__ void | |
717 | mcache_free_ext(mcache_t *cp, mcache_obj_t *list) | |
718 | { | |
719 | mcache_cpu_t *ccp = MCACHE_CPU(cp); | |
720 | mcache_bkttype_t *btp; | |
721 | mcache_obj_t *nlist; | |
722 | mcache_bkt_t *bkt; | |
723 | ||
724 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) | |
725 | (*cp->mc_slab_log)(0, list, FALSE); | |
726 | ||
727 | /* Invoke the slab layer audit callback if auditing is enabled */ | |
728 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) | |
729 | (*cp->mc_slab_audit)(cp->mc_private, list, FALSE); | |
730 | ||
731 | MCACHE_LOCK(&ccp->cc_lock); | |
732 | for (;;) { | |
733 | /* | |
734 | * If there is space in the current CPU's filled bucket, put | |
735 | * the object there and return once all objects are freed. | |
736 | * Note the cast to unsigned integer takes care of the case | |
737 | * where the bucket layer is disabled (when cc_objs is -1). | |
738 | */ | |
739 | if ((unsigned int)ccp->cc_objs < | |
740 | (unsigned int)ccp->cc_bktsize) { | |
741 | /* | |
742 | * Reverse the list while we place the object into the | |
743 | * bucket; this effectively causes the most recently | |
744 | * freed object(s) to be reused during allocation. | |
745 | */ | |
746 | nlist = list->obj_next; | |
747 | list->obj_next = (ccp->cc_objs == 0) ? NULL : | |
748 | ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; | |
749 | ccp->cc_filled->bkt_obj[ccp->cc_objs++] = list; | |
750 | ccp->cc_free++; | |
751 | ||
752 | if ((list = nlist) != NULL) | |
753 | continue; | |
754 | ||
755 | /* We are done; return to caller */ | |
756 | MCACHE_UNLOCK(&ccp->cc_lock); | |
757 | ||
758 | /* If there is a waiter below, notify it */ | |
759 | if (cp->mc_waiter_cnt > 0) | |
760 | mcache_notify(cp, MCN_RETRYALLOC); | |
761 | return; | |
762 | } | |
763 | ||
764 | /* | |
765 | * The CPU's filled bucket is full. If the previous filled | |
766 | * bucket was empty, exchange and try again. | |
767 | */ | |
768 | if (ccp->cc_pobjs == 0) { | |
769 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); | |
770 | continue; | |
771 | } | |
772 | ||
773 | /* | |
774 | * If the bucket layer is disabled, free to slab. This can | |
775 | * happen either because MCF_NOCPUCACHE is set, or because | |
776 | * the bucket layer is currently being resized. | |
777 | */ | |
778 | if (ccp->cc_bktsize == 0) | |
779 | break; | |
780 | ||
781 | /* | |
782 | * Both of the CPU's buckets are full; try to get an empty | |
783 | * bucket from the bucket layer. Upon success, empty this | |
784 | * CPU and place any full bucket into the full list. | |
785 | */ | |
786 | bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp); | |
787 | if (bkt != NULL) { | |
788 | if (ccp->cc_pfilled != NULL) | |
789 | mcache_bkt_free(cp, &cp->mc_full, | |
790 | ccp->cc_pfilled); | |
791 | mcache_cpu_refill(ccp, bkt, 0); | |
792 | continue; | |
793 | } | |
794 | ||
795 | /* | |
796 | * We need an empty bucket to put our freed objects into | |
797 | * but couldn't get an empty bucket from the bucket layer; | |
798 | * attempt to allocate one. We do not want to block for | |
799 | * allocation here, and if the bucket allocation fails | |
800 | * we will simply fall through to the slab layer. | |
801 | */ | |
802 | MCACHE_UNLOCK(&ccp->cc_lock); | |
803 | bkt = mcache_alloc(btp->bt_cache, MCR_NOSLEEP); | |
804 | MCACHE_LOCK(&ccp->cc_lock); | |
805 | ||
806 | if (bkt != NULL) { | |
807 | /* | |
808 | * We have an empty bucket, but since we drop the | |
809 | * CPU lock above, the cache's bucket size may have | |
810 | * changed. If so, free the bucket and try again. | |
811 | */ | |
812 | if (ccp->cc_bktsize != btp->bt_bktsize) { | |
813 | MCACHE_UNLOCK(&ccp->cc_lock); | |
814 | mcache_free(btp->bt_cache, bkt); | |
815 | MCACHE_LOCK(&ccp->cc_lock); | |
816 | continue; | |
817 | } | |
818 | ||
819 | /* | |
820 | * We have an empty bucket of the right size; | |
821 | * add it to the bucket layer and try again. | |
822 | */ | |
823 | mcache_bkt_free(cp, &cp->mc_empty, bkt); | |
824 | continue; | |
825 | } | |
826 | ||
827 | /* | |
828 | * The bucket layer has no empty buckets; free the | |
829 | * object(s) directly to the slab layer. | |
830 | */ | |
831 | break; | |
832 | } | |
833 | MCACHE_UNLOCK(&ccp->cc_lock); | |
834 | ||
835 | /* If there is a waiter below, notify it */ | |
836 | if (cp->mc_waiter_cnt > 0) | |
837 | mcache_notify(cp, MCN_RETRYALLOC); | |
838 | ||
839 | /* Advise the slab layer to purge the object(s) */ | |
840 | (*cp->mc_slab_free)(cp->mc_private, list, | |
841 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); | |
842 | } | |
843 | ||
844 | /* | |
845 | * Cache destruction routine. | |
846 | */ | |
847 | __private_extern__ void | |
848 | mcache_destroy(mcache_t *cp) | |
849 | { | |
850 | void **pbuf; | |
851 | ||
852 | MCACHE_LIST_LOCK(); | |
853 | LIST_REMOVE(cp, mc_list); | |
854 | MCACHE_LIST_UNLOCK(); | |
855 | ||
856 | mcache_bkt_purge(cp); | |
857 | ||
858 | /* | |
859 | * This cache is dead; there should be no further transaction. | |
860 | * If it's still invoked, make sure that it induces a fault. | |
861 | */ | |
862 | cp->mc_slab_alloc = NULL; | |
863 | cp->mc_slab_free = NULL; | |
864 | cp->mc_slab_audit = NULL; | |
865 | ||
866 | lck_attr_free(cp->mc_bkt_lock_attr); | |
867 | lck_grp_free(cp->mc_bkt_lock_grp); | |
868 | lck_grp_attr_free(cp->mc_bkt_lock_grp_attr); | |
869 | ||
870 | lck_attr_free(cp->mc_cpu_lock_attr); | |
871 | lck_grp_free(cp->mc_cpu_lock_grp); | |
872 | lck_grp_attr_free(cp->mc_cpu_lock_grp_attr); | |
873 | ||
874 | lck_attr_free(cp->mc_sync_lock_attr); | |
875 | lck_grp_free(cp->mc_sync_lock_grp); | |
876 | lck_grp_attr_free(cp->mc_sync_lock_grp_attr); | |
877 | ||
878 | /* | |
879 | * TODO: We need to destroy the zone here, but cannot do it | |
880 | * because there is no such way to achieve that. Until then | |
881 | * the memory allocated for the zone structure is leaked. | |
882 | * Once it is achievable, uncomment these lines: | |
883 | * | |
884 | * if (cp->mc_slab_zone != NULL) { | |
885 | * zdestroy(cp->mc_slab_zone); | |
886 | * cp->mc_slab_zone = NULL; | |
887 | * } | |
888 | */ | |
889 | ||
890 | /* Get the original address since we're about to free it */ | |
891 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); | |
892 | ||
893 | zfree(mcache_zone, *pbuf); | |
894 | } | |
895 | ||
896 | /* | |
897 | * Internal slab allocator used as a backend for simple caches. The current | |
898 | * implementation uses the zone allocator for simplicity reasons. | |
899 | */ | |
900 | static unsigned int | |
901 | mcache_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) | |
902 | { | |
903 | mcache_t *cp = arg; | |
904 | unsigned int need = num; | |
905 | size_t offset = 0; | |
906 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
907 | u_int32_t flags = cp->mc_flags; | |
908 | void *buf, *base, **pbuf; | |
909 | mcache_obj_t **list = *plist; | |
910 | ||
911 | *list = NULL; | |
912 | ||
913 | /* | |
914 | * The address of the object returned to the caller is an | |
915 | * offset from the 64-bit aligned base address only if the | |
916 | * cache's alignment requirement is neither 1 nor 8 bytes. | |
917 | */ | |
918 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
919 | offset = cp->mc_align; | |
920 | ||
921 | for (;;) { | |
922 | if (!(wait & MCR_NOSLEEP)) | |
923 | buf = zalloc(cp->mc_slab_zone); | |
924 | else | |
925 | buf = zalloc_noblock(cp->mc_slab_zone); | |
926 | ||
927 | if (buf == NULL) | |
928 | break; | |
929 | ||
930 | /* Get the 64-bit aligned base address for this object */ | |
931 | base = (void *)P2ROUNDUP((intptr_t)buf + sizeof (u_int64_t), | |
932 | sizeof (u_int64_t)); | |
933 | ||
934 | /* | |
935 | * Wind back a pointer size from the aligned base and | |
936 | * save the original address so we can free it later. | |
937 | */ | |
938 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
939 | *pbuf = buf; | |
940 | ||
941 | /* | |
942 | * If auditing is enabled, patternize the contents of | |
943 | * the buffer starting from the 64-bit aligned base to | |
944 | * the end of the buffer; the length is rounded up to | |
945 | * the nearest 64-bit multiply; this is because we use | |
946 | * 64-bit memory access to set/check the pattern. | |
947 | */ | |
948 | if (flags & MCF_DEBUG) { | |
949 | VERIFY(((intptr_t)base + rsize) <= | |
950 | ((intptr_t)buf + cp->mc_chunksize)); | |
951 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); | |
952 | } | |
953 | ||
954 | /* | |
955 | * Fix up the object's address to fulfill the cache's | |
956 | * alignment requirement (if needed) and return this | |
957 | * to the caller. | |
958 | */ | |
959 | VERIFY(((intptr_t)base + offset + cp->mc_bufsize) <= | |
960 | ((intptr_t)buf + cp->mc_chunksize)); | |
961 | *list = (mcache_obj_t *)((intptr_t)base + offset); | |
962 | ||
963 | (*list)->obj_next = NULL; | |
964 | list = *plist = &(*list)->obj_next; | |
965 | ||
966 | /* If we got them all, return to mcache */ | |
967 | if (--need == 0) | |
968 | break; | |
969 | } | |
970 | ||
971 | return (num - need); | |
972 | } | |
973 | ||
974 | /* | |
975 | * Internal slab deallocator used as a backend for simple caches. | |
976 | */ | |
977 | static void | |
978 | mcache_slab_free(void *arg, mcache_obj_t *list, __unused boolean_t purged) | |
979 | { | |
980 | mcache_t *cp = arg; | |
981 | mcache_obj_t *nlist; | |
982 | size_t offset = 0; | |
983 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
984 | u_int32_t flags = cp->mc_flags; | |
985 | void *base; | |
986 | void **pbuf; | |
987 | ||
988 | /* | |
989 | * The address of the object is an offset from a 64-bit | |
990 | * aligned base address only if the cache's alignment | |
991 | * requirement is neither 1 nor 8 bytes. | |
992 | */ | |
993 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
994 | offset = cp->mc_align; | |
995 | ||
996 | for (;;) { | |
997 | nlist = list->obj_next; | |
998 | list->obj_next = NULL; | |
999 | ||
1000 | /* Get the 64-bit aligned base address of this object */ | |
1001 | base = (void *)((intptr_t)list - offset); | |
1002 | VERIFY(IS_P2ALIGNED(base, sizeof (u_int64_t))); | |
1003 | ||
1004 | /* Get the original address since we're about to free it */ | |
1005 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
1006 | ||
1007 | if (flags & MCF_DEBUG) { | |
1008 | VERIFY(((intptr_t)base + rsize) <= | |
1009 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
1010 | mcache_audit_free_verify(NULL, base, offset, rsize); | |
1011 | } | |
1012 | ||
1013 | /* Free it to zone */ | |
1014 | VERIFY(((intptr_t)base + offset + cp->mc_bufsize) <= | |
1015 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
1016 | zfree(cp->mc_slab_zone, *pbuf); | |
1017 | ||
1018 | /* No more objects to free; return to mcache */ | |
1019 | if ((list = nlist) == NULL) | |
1020 | break; | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | /* | |
1025 | * Internal slab auditor for simple caches. | |
1026 | */ | |
1027 | static void | |
1028 | mcache_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
1029 | { | |
1030 | mcache_t *cp = arg; | |
1031 | size_t offset = 0; | |
1032 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
1033 | void *base, **pbuf; | |
1034 | ||
1035 | /* | |
1036 | * The address of the object returned to the caller is an | |
1037 | * offset from the 64-bit aligned base address only if the | |
1038 | * cache's alignment requirement is neither 1 nor 8 bytes. | |
1039 | */ | |
1040 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
1041 | offset = cp->mc_align; | |
1042 | ||
1043 | while (list != NULL) { | |
1044 | mcache_obj_t *next = list->obj_next; | |
1045 | ||
1046 | /* Get the 64-bit aligned base address of this object */ | |
1047 | base = (void *)((intptr_t)list - offset); | |
1048 | VERIFY(IS_P2ALIGNED(base, sizeof (u_int64_t))); | |
1049 | ||
1050 | /* Get the original address */ | |
1051 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
1052 | ||
1053 | VERIFY(((intptr_t)base + rsize) <= | |
1054 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
1055 | ||
1056 | if (!alloc) | |
1057 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); | |
1058 | else | |
1059 | mcache_audit_free_verify_set(NULL, base, offset, rsize); | |
1060 | ||
1061 | list = list->obj_next = next; | |
1062 | } | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * Refill the CPU's filled bucket with bkt and save the previous one. | |
1067 | */ | |
1068 | static void | |
1069 | mcache_cpu_refill(mcache_cpu_t *ccp, mcache_bkt_t *bkt, int objs) | |
1070 | { | |
1071 | ASSERT((ccp->cc_filled == NULL && ccp->cc_objs == -1) || | |
1072 | (ccp->cc_filled && ccp->cc_objs + objs == ccp->cc_bktsize)); | |
1073 | ASSERT(ccp->cc_bktsize > 0); | |
1074 | ||
1075 | ccp->cc_pfilled = ccp->cc_filled; | |
1076 | ccp->cc_pobjs = ccp->cc_objs; | |
1077 | ccp->cc_filled = bkt; | |
1078 | ccp->cc_objs = objs; | |
1079 | } | |
1080 | ||
1081 | /* | |
1082 | * Allocate a bucket from the bucket layer. | |
1083 | */ | |
1084 | static mcache_bkt_t * | |
1085 | mcache_bkt_alloc(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkttype_t **btp) | |
1086 | { | |
1087 | mcache_bkt_t *bkt; | |
1088 | ||
1089 | if (!MCACHE_LOCK_TRY(&cp->mc_bkt_lock)) { | |
1090 | /* | |
1091 | * The bucket layer lock is held by another CPU; increase | |
1092 | * the contention count so that we can later resize the | |
1093 | * bucket size accordingly. | |
1094 | */ | |
1095 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1096 | cp->mc_bkt_contention++; | |
1097 | } | |
1098 | ||
1099 | if ((bkt = blp->bl_list) != NULL) { | |
1100 | blp->bl_list = bkt->bkt_next; | |
1101 | if (--blp->bl_total < blp->bl_min) | |
1102 | blp->bl_min = blp->bl_total; | |
1103 | blp->bl_alloc++; | |
1104 | } | |
1105 | ||
1106 | if (btp != NULL) | |
1107 | *btp = cp->cache_bkttype; | |
1108 | ||
1109 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1110 | ||
1111 | return (bkt); | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * Free a bucket to the bucket layer. | |
1116 | */ | |
1117 | static void | |
1118 | mcache_bkt_free(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkt_t *bkt) | |
1119 | { | |
1120 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1121 | ||
1122 | bkt->bkt_next = blp->bl_list; | |
1123 | blp->bl_list = bkt; | |
1124 | blp->bl_total++; | |
1125 | ||
1126 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1127 | } | |
1128 | ||
1129 | /* | |
1130 | * Enable the bucket layer of a cache. | |
1131 | */ | |
1132 | static void | |
1133 | mcache_cache_bkt_enable(mcache_t *cp) | |
1134 | { | |
1135 | mcache_cpu_t *ccp; | |
1136 | int cpu; | |
1137 | ||
1138 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
1139 | return; | |
1140 | ||
1141 | for (cpu = 0; cpu < ncpu; cpu++) { | |
1142 | ccp = &cp->mc_cpu[cpu]; | |
1143 | MCACHE_LOCK(&ccp->cc_lock); | |
1144 | ccp->cc_bktsize = cp->cache_bkttype->bt_bktsize; | |
1145 | MCACHE_UNLOCK(&ccp->cc_lock); | |
1146 | } | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * Purge all buckets from a cache and disable its bucket layer. | |
1151 | */ | |
1152 | static void | |
1153 | mcache_bkt_purge(mcache_t *cp) | |
1154 | { | |
1155 | mcache_cpu_t *ccp; | |
1156 | mcache_bkt_t *bp, *pbp; | |
1157 | mcache_bkttype_t *btp; | |
1158 | int cpu, objs, pobjs; | |
1159 | ||
1160 | for (cpu = 0; cpu < ncpu; cpu++) { | |
1161 | ccp = &cp->mc_cpu[cpu]; | |
1162 | ||
1163 | MCACHE_LOCK(&ccp->cc_lock); | |
1164 | ||
1165 | btp = cp->cache_bkttype; | |
1166 | bp = ccp->cc_filled; | |
1167 | pbp = ccp->cc_pfilled; | |
1168 | objs = ccp->cc_objs; | |
1169 | pobjs = ccp->cc_pobjs; | |
1170 | ccp->cc_filled = NULL; | |
1171 | ccp->cc_pfilled = NULL; | |
1172 | ccp->cc_objs = -1; | |
1173 | ccp->cc_pobjs = -1; | |
1174 | ccp->cc_bktsize = 0; | |
1175 | ||
1176 | MCACHE_UNLOCK(&ccp->cc_lock); | |
1177 | ||
1178 | if (bp != NULL) | |
1179 | mcache_bkt_destroy(cp, btp, bp, objs); | |
1180 | if (pbp != NULL) | |
1181 | mcache_bkt_destroy(cp, btp, pbp, pobjs); | |
1182 | } | |
1183 | ||
1184 | /* | |
1185 | * Updating the working set back to back essentially sets | |
1186 | * the working set size to zero, so everything is reapable. | |
1187 | */ | |
1188 | mcache_bkt_ws_update(cp); | |
1189 | mcache_bkt_ws_update(cp); | |
1190 | ||
1191 | mcache_bkt_ws_reap(cp); | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | * Free one or more objects in the bucket to the slab layer, | |
1196 | * and also free the bucket itself. | |
1197 | */ | |
1198 | static void | |
1199 | mcache_bkt_destroy(mcache_t *cp, mcache_bkttype_t *btp, mcache_bkt_t *bkt, | |
1200 | int nobjs) | |
1201 | { | |
1202 | if (nobjs > 0) { | |
1203 | mcache_obj_t *top = bkt->bkt_obj[nobjs - 1]; | |
1204 | ||
1205 | if (cp->mc_flags & MCF_DEBUG) { | |
1206 | mcache_obj_t *o = top; | |
1207 | int cnt = 0; | |
1208 | ||
1209 | /* | |
1210 | * Verify that the chain of objects in the bucket is | |
1211 | * valid. Any mismatch here means a mistake when the | |
1212 | * object(s) were freed to the CPU layer, so we panic. | |
1213 | */ | |
1214 | while (o != NULL) { | |
1215 | o = o->obj_next; | |
1216 | ++cnt; | |
1217 | } | |
1218 | if (cnt != nobjs) { | |
1219 | panic("mcache_bkt_destroy: %s cp %p corrupted " | |
1220 | "list in bkt %p (nobjs %d actual %d)\n", | |
1221 | cp->mc_name, (void *)cp, (void *)bkt, | |
1222 | nobjs, cnt); | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | /* Advise the slab layer to purge the object(s) */ | |
1227 | (*cp->mc_slab_free)(cp->mc_private, top, | |
1228 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); | |
1229 | } | |
1230 | mcache_free(btp->bt_cache, bkt); | |
1231 | } | |
1232 | ||
1233 | /* | |
1234 | * Update the bucket layer working set statistics. | |
1235 | */ | |
1236 | static void | |
1237 | mcache_bkt_ws_update(mcache_t *cp) | |
1238 | { | |
1239 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1240 | ||
1241 | cp->mc_full.bl_reaplimit = cp->mc_full.bl_min; | |
1242 | cp->mc_full.bl_min = cp->mc_full.bl_total; | |
1243 | cp->mc_empty.bl_reaplimit = cp->mc_empty.bl_min; | |
1244 | cp->mc_empty.bl_min = cp->mc_empty.bl_total; | |
1245 | ||
1246 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1247 | } | |
1248 | ||
1249 | /* | |
1250 | * Reap all buckets that are beyond the working set. | |
1251 | */ | |
1252 | static void | |
1253 | mcache_bkt_ws_reap(mcache_t *cp) | |
1254 | { | |
1255 | long reap; | |
1256 | mcache_bkt_t *bkt; | |
1257 | mcache_bkttype_t *btp; | |
1258 | ||
1259 | reap = MIN(cp->mc_full.bl_reaplimit, cp->mc_full.bl_min); | |
1260 | while (reap-- && | |
1261 | (bkt = mcache_bkt_alloc(cp, &cp->mc_full, &btp)) != NULL) | |
1262 | mcache_bkt_destroy(cp, btp, bkt, btp->bt_bktsize); | |
1263 | ||
1264 | reap = MIN(cp->mc_empty.bl_reaplimit, cp->mc_empty.bl_min); | |
1265 | while (reap-- && | |
1266 | (bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp)) != NULL) | |
1267 | mcache_bkt_destroy(cp, btp, bkt, 0); | |
1268 | } | |
1269 | ||
1270 | static void | |
1271 | mcache_reap_timeout(thread_call_param_t dummy __unused, | |
1272 | thread_call_param_t arg) | |
1273 | { | |
1274 | volatile UInt32 *flag = arg; | |
1275 | ||
1276 | ASSERT(flag == &mcache_reaping); | |
1277 | ||
1278 | *flag = 0; | |
1279 | } | |
1280 | ||
1281 | static void | |
1282 | mcache_reap_done(void *flag) | |
1283 | { | |
1284 | uint64_t deadline, leeway; | |
1285 | ||
1286 | clock_interval_to_deadline(mcache_reap_interval, NSEC_PER_SEC, | |
1287 | &deadline); | |
1288 | clock_interval_to_absolutetime_interval(mcache_reap_interval_leeway, | |
1289 | NSEC_PER_SEC, &leeway); | |
1290 | thread_call_enter_delayed_with_leeway(mcache_reap_tcall, flag, | |
1291 | deadline, leeway, THREAD_CALL_DELAY_LEEWAY); | |
1292 | } | |
1293 | ||
1294 | static void | |
1295 | mcache_reap_start(void *arg) | |
1296 | { | |
1297 | UInt32 *flag = arg; | |
1298 | ||
1299 | ASSERT(flag == &mcache_reaping); | |
1300 | ||
1301 | mcache_applyall(mcache_cache_reap); | |
1302 | mcache_dispatch(mcache_reap_done, flag); | |
1303 | } | |
1304 | ||
1305 | __private_extern__ void | |
1306 | mcache_reap(void) | |
1307 | { | |
1308 | UInt32 *flag = &mcache_reaping; | |
1309 | ||
1310 | if (mcache_llock_owner == current_thread() || | |
1311 | !OSCompareAndSwap(0, 1, flag)) | |
1312 | return; | |
1313 | ||
1314 | mcache_dispatch(mcache_reap_start, flag); | |
1315 | } | |
1316 | ||
1317 | static void | |
1318 | mcache_cache_reap(mcache_t *cp) | |
1319 | { | |
1320 | mcache_bkt_ws_reap(cp); | |
1321 | } | |
1322 | ||
1323 | /* | |
1324 | * Performs period maintenance on a cache. | |
1325 | */ | |
1326 | static void | |
1327 | mcache_cache_update(mcache_t *cp) | |
1328 | { | |
1329 | int need_bkt_resize = 0; | |
1330 | int need_bkt_reenable = 0; | |
1331 | ||
1332 | lck_mtx_assert(mcache_llock, LCK_MTX_ASSERT_OWNED); | |
1333 | ||
1334 | mcache_bkt_ws_update(cp); | |
1335 | ||
1336 | /* | |
1337 | * Cache resize and post-purge reenable are mutually exclusive. | |
1338 | * If the cache was previously purged, there is no point of | |
1339 | * increasing the bucket size as there was an indication of | |
1340 | * memory pressure on the system. | |
1341 | */ | |
1342 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
1343 | if (!(cp->mc_flags & MCF_NOCPUCACHE) && cp->mc_enable_cnt) | |
1344 | need_bkt_reenable = 1; | |
1345 | lck_mtx_unlock(&cp->mc_sync_lock); | |
1346 | ||
1347 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1348 | /* | |
1349 | * If the contention count is greater than the threshold, and if | |
1350 | * we are not already at the maximum bucket size, increase it. | |
1351 | * Otherwise, if this cache was previously purged by the user | |
1352 | * then we simply reenable it. | |
1353 | */ | |
1354 | if ((unsigned int)cp->mc_chunksize < cp->cache_bkttype->bt_maxbuf && | |
1355 | (int)(cp->mc_bkt_contention - cp->mc_bkt_contention_prev) > | |
1356 | mcache_bkt_contention && !need_bkt_reenable) | |
1357 | need_bkt_resize = 1; | |
1358 | ||
1359 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention; | |
1360 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1361 | ||
1362 | if (need_bkt_resize) | |
1363 | mcache_dispatch(mcache_cache_bkt_resize, cp); | |
1364 | else if (need_bkt_reenable) | |
1365 | mcache_dispatch(mcache_cache_enable, cp); | |
1366 | } | |
1367 | ||
1368 | /* | |
1369 | * Recompute a cache's bucket size. This is an expensive operation | |
1370 | * and should not be done frequently; larger buckets provide for a | |
1371 | * higher transfer rate with the bucket while smaller buckets reduce | |
1372 | * the memory consumption. | |
1373 | */ | |
1374 | static void | |
1375 | mcache_cache_bkt_resize(void *arg) | |
1376 | { | |
1377 | mcache_t *cp = arg; | |
1378 | mcache_bkttype_t *btp = cp->cache_bkttype; | |
1379 | ||
1380 | if ((unsigned int)cp->mc_chunksize < btp->bt_maxbuf) { | |
1381 | mcache_bkt_purge(cp); | |
1382 | ||
1383 | /* | |
1384 | * Upgrade to the next bucket type with larger bucket size; | |
1385 | * temporarily set the previous contention snapshot to a | |
1386 | * negative number to prevent unnecessary resize request. | |
1387 | */ | |
1388 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1389 | cp->cache_bkttype = ++btp; | |
1390 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention + INT_MAX; | |
1391 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1392 | ||
1393 | mcache_cache_enable(cp); | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | /* | |
1398 | * Reenable a previously disabled cache due to purge. | |
1399 | */ | |
1400 | static void | |
1401 | mcache_cache_enable(void *arg) | |
1402 | { | |
1403 | mcache_t *cp = arg; | |
1404 | ||
1405 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
1406 | cp->mc_purge_cnt = 0; | |
1407 | cp->mc_enable_cnt = 0; | |
1408 | lck_mtx_unlock(&cp->mc_sync_lock); | |
1409 | ||
1410 | mcache_cache_bkt_enable(cp); | |
1411 | } | |
1412 | ||
1413 | static void | |
1414 | mcache_update_timeout(__unused void *arg) | |
1415 | { | |
1416 | uint64_t deadline, leeway; | |
1417 | ||
1418 | clock_interval_to_deadline(mcache_reap_interval, NSEC_PER_SEC, | |
1419 | &deadline); | |
1420 | clock_interval_to_absolutetime_interval(mcache_reap_interval_leeway, | |
1421 | NSEC_PER_SEC, &leeway); | |
1422 | thread_call_enter_delayed_with_leeway(mcache_update_tcall, NULL, | |
1423 | deadline, leeway, THREAD_CALL_DELAY_LEEWAY); | |
1424 | } | |
1425 | ||
1426 | static void | |
1427 | mcache_update(thread_call_param_t arg __unused, | |
1428 | thread_call_param_t dummy __unused) | |
1429 | { | |
1430 | mcache_applyall(mcache_cache_update); | |
1431 | mcache_update_timeout(NULL); | |
1432 | } | |
1433 | ||
1434 | static void | |
1435 | mcache_applyall(void (*func)(mcache_t *)) | |
1436 | { | |
1437 | mcache_t *cp; | |
1438 | ||
1439 | MCACHE_LIST_LOCK(); | |
1440 | LIST_FOREACH(cp, &mcache_head, mc_list) { | |
1441 | func(cp); | |
1442 | } | |
1443 | MCACHE_LIST_UNLOCK(); | |
1444 | } | |
1445 | ||
1446 | static void | |
1447 | mcache_dispatch(void (*func)(void *), void *arg) | |
1448 | { | |
1449 | ASSERT(func != NULL); | |
1450 | timeout(func, arg, hz/1000); | |
1451 | } | |
1452 | ||
1453 | __private_extern__ void | |
1454 | mcache_buffer_log(mcache_audit_t *mca, void *addr, mcache_t *cp, | |
1455 | struct timeval *base_ts) | |
1456 | { | |
1457 | struct timeval now, base = { 0, 0 }; | |
1458 | void *stack[MCACHE_STACK_DEPTH + 1]; | |
1459 | struct mca_trn *transaction; | |
1460 | ||
1461 | transaction = &mca->mca_trns[mca->mca_next_trn]; | |
1462 | ||
1463 | mca->mca_addr = addr; | |
1464 | mca->mca_cache = cp; | |
1465 | ||
1466 | transaction->mca_thread = current_thread(); | |
1467 | ||
1468 | bzero(stack, sizeof (stack)); | |
1469 | transaction->mca_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; | |
1470 | bcopy(&stack[1], transaction->mca_stack, | |
1471 | sizeof (transaction->mca_stack)); | |
1472 | ||
1473 | microuptime(&now); | |
1474 | if (base_ts != NULL) | |
1475 | base = *base_ts; | |
1476 | /* tstamp is in ms relative to base_ts */ | |
1477 | transaction->mca_tstamp = ((now.tv_usec - base.tv_usec) / 1000); | |
1478 | if ((now.tv_sec - base.tv_sec) > 0) | |
1479 | transaction->mca_tstamp += ((now.tv_sec - base.tv_sec) * 1000); | |
1480 | ||
1481 | mca->mca_next_trn = | |
1482 | (mca->mca_next_trn + 1) % mca_trn_max; | |
1483 | } | |
1484 | ||
1485 | __private_extern__ void | |
1486 | mcache_set_pattern(u_int64_t pattern, void *buf_arg, size_t size) | |
1487 | { | |
1488 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1489 | u_int64_t *buf = (u_int64_t *)buf_arg; | |
1490 | ||
1491 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1492 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1493 | ||
1494 | while (buf < buf_end) | |
1495 | *buf++ = pattern; | |
1496 | } | |
1497 | ||
1498 | __private_extern__ void * | |
1499 | mcache_verify_pattern(u_int64_t pattern, void *buf_arg, size_t size) | |
1500 | { | |
1501 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1502 | u_int64_t *buf; | |
1503 | ||
1504 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1505 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1506 | ||
1507 | for (buf = buf_arg; buf < buf_end; buf++) { | |
1508 | if (*buf != pattern) | |
1509 | return (buf); | |
1510 | } | |
1511 | return (NULL); | |
1512 | } | |
1513 | ||
1514 | __private_extern__ void * | |
1515 | mcache_verify_set_pattern(u_int64_t old, u_int64_t new, void *buf_arg, | |
1516 | size_t size) | |
1517 | { | |
1518 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1519 | u_int64_t *buf; | |
1520 | ||
1521 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1522 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1523 | ||
1524 | for (buf = buf_arg; buf < buf_end; buf++) { | |
1525 | if (*buf != old) { | |
1526 | mcache_set_pattern(old, buf_arg, | |
1527 | (uintptr_t)buf - (uintptr_t)buf_arg); | |
1528 | return (buf); | |
1529 | } | |
1530 | *buf = new; | |
1531 | } | |
1532 | return (NULL); | |
1533 | } | |
1534 | ||
1535 | __private_extern__ void | |
1536 | mcache_audit_free_verify(mcache_audit_t *mca, void *base, size_t offset, | |
1537 | size_t size) | |
1538 | { | |
1539 | void *addr; | |
1540 | u_int64_t *oaddr64; | |
1541 | mcache_obj_t *next; | |
1542 | ||
1543 | addr = (void *)((uintptr_t)base + offset); | |
1544 | next = ((mcache_obj_t *)addr)->obj_next; | |
1545 | ||
1546 | /* For the "obj_next" pointer in the buffer */ | |
1547 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); | |
1548 | *oaddr64 = MCACHE_FREE_PATTERN; | |
1549 | ||
1550 | if ((oaddr64 = mcache_verify_pattern(MCACHE_FREE_PATTERN, | |
1551 | (caddr_t)base, size)) != NULL) { | |
1552 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, | |
1553 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); | |
1554 | /* NOTREACHED */ | |
1555 | } | |
1556 | ((mcache_obj_t *)addr)->obj_next = next; | |
1557 | } | |
1558 | ||
1559 | __private_extern__ void | |
1560 | mcache_audit_free_verify_set(mcache_audit_t *mca, void *base, size_t offset, | |
1561 | size_t size) | |
1562 | { | |
1563 | void *addr; | |
1564 | u_int64_t *oaddr64; | |
1565 | mcache_obj_t *next; | |
1566 | ||
1567 | addr = (void *)((uintptr_t)base + offset); | |
1568 | next = ((mcache_obj_t *)addr)->obj_next; | |
1569 | ||
1570 | /* For the "obj_next" pointer in the buffer */ | |
1571 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); | |
1572 | *oaddr64 = MCACHE_FREE_PATTERN; | |
1573 | ||
1574 | if ((oaddr64 = mcache_verify_set_pattern(MCACHE_FREE_PATTERN, | |
1575 | MCACHE_UNINITIALIZED_PATTERN, (caddr_t)base, size)) != NULL) { | |
1576 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, | |
1577 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); | |
1578 | /* NOTREACHED */ | |
1579 | } | |
1580 | ((mcache_obj_t *)addr)->obj_next = next; | |
1581 | } | |
1582 | ||
1583 | #undef panic | |
1584 | ||
1585 | #define DUMP_TRN_FMT() \ | |
1586 | "%s transaction thread %p saved PC stack (%d deep):\n" \ | |
1587 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" \ | |
1588 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" | |
1589 | ||
1590 | #define DUMP_TRN_FIELDS(s, x) \ | |
1591 | s, \ | |
1592 | mca->mca_trns[x].mca_thread, mca->mca_trns[x].mca_depth, \ | |
1593 | mca->mca_trns[x].mca_stack[0], mca->mca_trns[x].mca_stack[1], \ | |
1594 | mca->mca_trns[x].mca_stack[2], mca->mca_trns[x].mca_stack[3], \ | |
1595 | mca->mca_trns[x].mca_stack[4], mca->mca_trns[x].mca_stack[5], \ | |
1596 | mca->mca_trns[x].mca_stack[6], mca->mca_trns[x].mca_stack[7], \ | |
1597 | mca->mca_trns[x].mca_stack[8], mca->mca_trns[x].mca_stack[9], \ | |
1598 | mca->mca_trns[x].mca_stack[10], mca->mca_trns[x].mca_stack[11], \ | |
1599 | mca->mca_trns[x].mca_stack[12], mca->mca_trns[x].mca_stack[13], \ | |
1600 | mca->mca_trns[x].mca_stack[14], mca->mca_trns[x].mca_stack[15] | |
1601 | ||
1602 | #define MCA_TRN_LAST ((mca->mca_next_trn + mca_trn_max) % mca_trn_max) | |
1603 | #define MCA_TRN_PREV ((mca->mca_next_trn + mca_trn_max - 1) % mca_trn_max) | |
1604 | ||
1605 | __private_extern__ char * | |
1606 | mcache_dump_mca(mcache_audit_t *mca) | |
1607 | { | |
1608 | if (mca_dump_buf == NULL) | |
1609 | return (NULL); | |
1610 | ||
1611 | snprintf(mca_dump_buf, DUMP_MCA_BUF_SIZE, | |
1612 | "mca %p: addr %p, cache %p (%s) nxttrn %d\n" | |
1613 | DUMP_TRN_FMT() | |
1614 | DUMP_TRN_FMT(), | |
1615 | ||
1616 | mca, mca->mca_addr, mca->mca_cache, | |
1617 | mca->mca_cache ? mca->mca_cache->mc_name : "?", | |
1618 | mca->mca_next_trn, | |
1619 | ||
1620 | DUMP_TRN_FIELDS("last", MCA_TRN_LAST), | |
1621 | DUMP_TRN_FIELDS("previous", MCA_TRN_PREV)); | |
1622 | ||
1623 | return (mca_dump_buf); | |
1624 | } | |
1625 | ||
1626 | __private_extern__ void | |
1627 | mcache_audit_panic(mcache_audit_t *mca, void *addr, size_t offset, | |
1628 | int64_t expected, int64_t got) | |
1629 | { | |
1630 | if (mca == NULL) { | |
1631 | panic("mcache_audit: buffer %p modified after free at " | |
1632 | "offset 0x%lx (0x%llx instead of 0x%llx)\n", addr, | |
1633 | offset, got, expected); | |
1634 | /* NOTREACHED */ | |
1635 | } | |
1636 | ||
1637 | panic("mcache_audit: buffer %p modified after free at offset 0x%lx " | |
1638 | "(0x%llx instead of 0x%llx)\n%s\n", | |
1639 | addr, offset, got, expected, mcache_dump_mca(mca)); | |
1640 | /* NOTREACHED */ | |
1641 | } | |
1642 | ||
1643 | __private_extern__ int | |
1644 | assfail(const char *a, const char *f, int l) | |
1645 | { | |
1646 | panic("assertion failed: %s, file: %s, line: %d", a, f, l); | |
1647 | return (0); | |
1648 | } |