]>
Commit | Line | Data |
---|---|---|
1 | /* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */ | |
2 | /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ | |
3 | ||
4 | /* | |
5 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. | |
6 | * All rights reserved. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. Neither the name of the project nor the names of its contributors | |
17 | * may be used to endorse or promote products derived from this software | |
18 | * without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND | |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE | |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 | * SUCH DAMAGE. | |
31 | */ | |
32 | ||
33 | /* | |
34 | * This code is referd to RFC 2367 | |
35 | */ | |
36 | ||
37 | #include <sys/types.h> | |
38 | #include <sys/param.h> | |
39 | #include <sys/systm.h> | |
40 | #include <sys/kernel.h> | |
41 | #include <sys/mbuf.h> | |
42 | #include <sys/domain.h> | |
43 | #include <sys/protosw.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/socket.h> | |
46 | #include <sys/socketvar.h> | |
47 | #include <sys/sysctl.h> | |
48 | #include <sys/errno.h> | |
49 | #include <sys/proc.h> | |
50 | #include <sys/queue.h> | |
51 | #include <sys/syslog.h> | |
52 | ||
53 | #include <kern/locks.h> | |
54 | ||
55 | #include <net/if.h> | |
56 | #include <net/route.h> | |
57 | #include <net/raw_cb.h> | |
58 | ||
59 | #include <netinet/in.h> | |
60 | #include <netinet/in_systm.h> | |
61 | #include <netinet/ip.h> | |
62 | #include <netinet/in_var.h> | |
63 | ||
64 | #if INET6 | |
65 | #include <netinet/ip6.h> | |
66 | #include <netinet6/in6_var.h> | |
67 | #include <netinet6/ip6_var.h> | |
68 | #endif /* INET6 */ | |
69 | ||
70 | #if INET | |
71 | #include <netinet/in_pcb.h> | |
72 | #endif | |
73 | #if INET6 | |
74 | #include <netinet6/in6_pcb.h> | |
75 | #endif /* INET6 */ | |
76 | ||
77 | #include <net/pfkeyv2.h> | |
78 | #include <netkey/keydb.h> | |
79 | #include <netkey/key.h> | |
80 | #include <netkey/keysock.h> | |
81 | #include <netkey/key_debug.h> | |
82 | #include <stdarg.h> | |
83 | ||
84 | ||
85 | #include <netinet6/ipsec.h> | |
86 | #if INET6 | |
87 | #include <netinet6/ipsec6.h> | |
88 | #endif | |
89 | #include <netinet6/ah.h> | |
90 | #if INET6 | |
91 | #include <netinet6/ah6.h> | |
92 | #endif | |
93 | #if IPSEC_ESP | |
94 | #include <netinet6/esp.h> | |
95 | #if INET6 | |
96 | #include <netinet6/esp6.h> | |
97 | #endif | |
98 | #endif | |
99 | #include <netinet6/ipcomp.h> | |
100 | #if INET6 | |
101 | #include <netinet6/ipcomp6.h> | |
102 | #endif | |
103 | ||
104 | ||
105 | /* randomness */ | |
106 | #include <sys/random.h> | |
107 | ||
108 | #include <net/net_osdep.h> | |
109 | ||
110 | #ifndef satosin | |
111 | #define satosin(s) ((struct sockaddr_in *)s) | |
112 | #endif | |
113 | ||
114 | #define FULLMASK 0xff | |
115 | ||
116 | lck_grp_t *sadb_mutex_grp; | |
117 | lck_grp_attr_t *sadb_mutex_grp_attr; | |
118 | lck_attr_t *sadb_mutex_attr; | |
119 | lck_mtx_t *sadb_mutex; | |
120 | extern lck_mtx_t *nd6_mutex; | |
121 | ||
122 | /* | |
123 | * Note on SA reference counting: | |
124 | * - SAs that are not in DEAD state will have (total external reference + 1) | |
125 | * following value in reference count field. they cannot be freed and are | |
126 | * referenced from SA header. | |
127 | * - SAs that are in DEAD state will have (total external reference) | |
128 | * in reference count field. they are ready to be freed. reference from | |
129 | * SA header will be removed in key_delsav(), when the reference count | |
130 | * field hits 0 (= no external reference other than from SA header. | |
131 | */ | |
132 | ||
133 | u_int32_t key_debug_level = 0; //### our sysctl is not dynamic | |
134 | static u_int key_spi_trycnt = 1000; | |
135 | static u_int32_t key_spi_minval = 0x100; | |
136 | static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ | |
137 | static u_int32_t policy_id = 0; | |
138 | static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ | |
139 | static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ | |
140 | static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ | |
141 | static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ | |
142 | static int key_preferred_oldsa = 0; /* preferred old sa rather than new sa.*/ | |
143 | static int natt_keepalive_interval = 20; /* interval between natt keepalives.*/ | |
144 | ||
145 | static u_int32_t acq_seq = 0; | |
146 | static int key_tick_init_random = 0; | |
147 | __private_extern__ u_int32_t natt_now = 0; | |
148 | ||
149 | static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ | |
150 | static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ | |
151 | static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; | |
152 | /* registed list */ | |
153 | ||
154 | #define SPIHASHSIZE 128 | |
155 | #define SPIHASH(x) (((x) ^ ((x) >> 16)) % SPIHASHSIZE) | |
156 | static LIST_HEAD(_spihash, secasvar) spihash[SPIHASHSIZE]; | |
157 | ||
158 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
159 | static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ | |
160 | #endif | |
161 | static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ | |
162 | ||
163 | struct key_cb key_cb; | |
164 | ||
165 | /* search order for SAs */ | |
166 | static const u_int saorder_state_valid_prefer_old[] = { | |
167 | SADB_SASTATE_DYING, SADB_SASTATE_MATURE, | |
168 | }; | |
169 | static const u_int saorder_state_valid_prefer_new[] = { | |
170 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, | |
171 | }; | |
172 | static const u_int saorder_state_alive[] = { | |
173 | /* except DEAD */ | |
174 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL | |
175 | }; | |
176 | static const u_int saorder_state_any[] = { | |
177 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, | |
178 | SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD | |
179 | }; | |
180 | ||
181 | static const int minsize[] = { | |
182 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ | |
183 | sizeof(struct sadb_sa), /* SADB_EXT_SA */ | |
184 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ | |
185 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ | |
186 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ | |
187 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ | |
188 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ | |
189 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ | |
190 | sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ | |
191 | sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ | |
192 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ | |
193 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ | |
194 | sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ | |
195 | sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ | |
196 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ | |
197 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ | |
198 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ | |
199 | 0, /* SADB_X_EXT_KMPRIVATE */ | |
200 | sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ | |
201 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ | |
202 | }; | |
203 | static const int maxsize[] = { | |
204 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ | |
205 | sizeof(struct sadb_sa_2), /* SADB_EXT_SA */ | |
206 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ | |
207 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ | |
208 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ | |
209 | 0, /* SADB_EXT_ADDRESS_SRC */ | |
210 | 0, /* SADB_EXT_ADDRESS_DST */ | |
211 | 0, /* SADB_EXT_ADDRESS_PROXY */ | |
212 | 0, /* SADB_EXT_KEY_AUTH */ | |
213 | 0, /* SADB_EXT_KEY_ENCRYPT */ | |
214 | 0, /* SADB_EXT_IDENTITY_SRC */ | |
215 | 0, /* SADB_EXT_IDENTITY_DST */ | |
216 | 0, /* SADB_EXT_SENSITIVITY */ | |
217 | 0, /* SADB_EXT_PROPOSAL */ | |
218 | 0, /* SADB_EXT_SUPPORTED_AUTH */ | |
219 | 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ | |
220 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ | |
221 | 0, /* SADB_X_EXT_KMPRIVATE */ | |
222 | 0, /* SADB_X_EXT_POLICY */ | |
223 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ | |
224 | }; | |
225 | ||
226 | static int ipsec_esp_keymin = 256; | |
227 | static int ipsec_esp_auth = 0; | |
228 | static int ipsec_ah_keymin = 128; | |
229 | ||
230 | SYSCTL_DECL(_net_key); | |
231 | ||
232 | SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ | |
233 | &key_debug_level, 0, ""); | |
234 | ||
235 | ||
236 | /* max count of trial for the decision of spi value */ | |
237 | SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ | |
238 | &key_spi_trycnt, 0, ""); | |
239 | ||
240 | /* minimum spi value to allocate automatically. */ | |
241 | SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ | |
242 | &key_spi_minval, 0, ""); | |
243 | ||
244 | /* maximun spi value to allocate automatically. */ | |
245 | SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ | |
246 | &key_spi_maxval, 0, ""); | |
247 | ||
248 | /* interval to initialize randseed */ | |
249 | SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ | |
250 | &key_int_random, 0, ""); | |
251 | ||
252 | /* lifetime for larval SA */ | |
253 | SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ | |
254 | &key_larval_lifetime, 0, ""); | |
255 | ||
256 | /* counter for blocking to send SADB_ACQUIRE to IKEd */ | |
257 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ | |
258 | &key_blockacq_count, 0, ""); | |
259 | ||
260 | /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ | |
261 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ | |
262 | &key_blockacq_lifetime, 0, ""); | |
263 | ||
264 | /* ESP auth */ | |
265 | SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ | |
266 | &ipsec_esp_auth, 0, ""); | |
267 | ||
268 | /* minimum ESP key length */ | |
269 | SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ | |
270 | &ipsec_esp_keymin, 0, ""); | |
271 | ||
272 | /* minimum AH key length */ | |
273 | SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ | |
274 | &ipsec_ah_keymin, 0, ""); | |
275 | ||
276 | /* perfered old SA rather than new SA */ | |
277 | SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ | |
278 | &key_preferred_oldsa, 0, ""); | |
279 | ||
280 | /* time between NATT keepalives in seconds, 0 disabled */ | |
281 | SYSCTL_INT(_net_key, KEYCTL_NATT_KEEPALIVE_INTERVAL, natt_keepalive_interval, CTLFLAG_RW,\ | |
282 | &natt_keepalive_interval, 0, ""); | |
283 | ||
284 | /* PF_KEY statistics */ | |
285 | SYSCTL_STRUCT(_net_key, KEYCTL_PFKEYSTAT, pfkeystat, CTLFLAG_RD,\ | |
286 | &pfkeystat, pfkeystat, ""); | |
287 | ||
288 | #ifndef LIST_FOREACH | |
289 | #define LIST_FOREACH(elm, head, field) \ | |
290 | for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) | |
291 | #endif | |
292 | #define __LIST_CHAINED(elm) \ | |
293 | (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) | |
294 | #define LIST_INSERT_TAIL(head, elm, type, field) \ | |
295 | do {\ | |
296 | struct type *curelm = LIST_FIRST(head); \ | |
297 | if (curelm == NULL) {\ | |
298 | LIST_INSERT_HEAD(head, elm, field); \ | |
299 | } else { \ | |
300 | while (LIST_NEXT(curelm, field)) \ | |
301 | curelm = LIST_NEXT(curelm, field);\ | |
302 | LIST_INSERT_AFTER(curelm, elm, field);\ | |
303 | }\ | |
304 | } while (0) | |
305 | ||
306 | #define KEY_CHKSASTATE(head, sav, name) \ | |
307 | do { \ | |
308 | if ((head) != (sav)) { \ | |
309 | ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ | |
310 | (name), (head), (sav))); \ | |
311 | continue; \ | |
312 | } \ | |
313 | } while (0) | |
314 | ||
315 | #define KEY_CHKSPDIR(head, sp, name) \ | |
316 | do { \ | |
317 | if ((head) != (sp)) { \ | |
318 | ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ | |
319 | "anyway continue.\n", \ | |
320 | (name), (head), (sp))); \ | |
321 | } \ | |
322 | } while (0) | |
323 | ||
324 | #if 1 | |
325 | #define KMALLOC(p, t, n) \ | |
326 | ((p) = (t) _MALLOC((unsigned long)(n), M_SECA, M_NOWAIT)) | |
327 | #define KFREE(p) \ | |
328 | _FREE((caddr_t)(p), M_SECA); | |
329 | #else | |
330 | #define KMALLOC(p, t, n) \ | |
331 | do { \ | |
332 | ((p) = (t)_MALLOC((unsigned long)(n), M_SECA, M_NOWAIT)); \ | |
333 | printf("%s %d: %p <- KMALLOC(%s, %d)\n", \ | |
334 | __FILE__, __LINE__, (p), #t, n); \ | |
335 | } while (0) | |
336 | ||
337 | #define KFREE(p) \ | |
338 | do { \ | |
339 | printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \ | |
340 | _FREE((caddr_t)(p), M_SECA); \ | |
341 | } while (0) | |
342 | #endif | |
343 | ||
344 | /* | |
345 | * set parameters into secpolicyindex buffer. | |
346 | * Must allocate secpolicyindex buffer passed to this function. | |
347 | */ | |
348 | #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ | |
349 | do { \ | |
350 | bzero((idx), sizeof(struct secpolicyindex)); \ | |
351 | (idx)->dir = (_dir); \ | |
352 | (idx)->prefs = (ps); \ | |
353 | (idx)->prefd = (pd); \ | |
354 | (idx)->ul_proto = (ulp); \ | |
355 | bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \ | |
356 | bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \ | |
357 | } while (0) | |
358 | ||
359 | /* | |
360 | * set parameters into secasindex buffer. | |
361 | * Must allocate secasindex buffer before calling this function. | |
362 | */ | |
363 | #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ | |
364 | do { \ | |
365 | bzero((idx), sizeof(struct secasindex)); \ | |
366 | (idx)->proto = (p); \ | |
367 | (idx)->mode = (m); \ | |
368 | (idx)->reqid = (r); \ | |
369 | bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \ | |
370 | bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \ | |
371 | } while (0) | |
372 | ||
373 | /* key statistics */ | |
374 | struct _keystat { | |
375 | u_long getspi_count; /* the avarage of count to try to get new SPI */ | |
376 | } keystat; | |
377 | ||
378 | struct sadb_msghdr { | |
379 | struct sadb_msg *msg; | |
380 | struct sadb_ext *ext[SADB_EXT_MAX + 1]; | |
381 | int extoff[SADB_EXT_MAX + 1]; | |
382 | int extlen[SADB_EXT_MAX + 1]; | |
383 | }; | |
384 | ||
385 | static struct secasvar *key_allocsa_policy(struct secasindex *); | |
386 | static void key_freesp_so(struct secpolicy **); | |
387 | static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); | |
388 | static void key_delsp(struct secpolicy *); | |
389 | static struct secpolicy *key_getsp(struct secpolicyindex *); | |
390 | static struct secpolicy *key_getspbyid(u_int32_t); | |
391 | static u_int32_t key_newreqid(void); | |
392 | static struct mbuf *key_gather_mbuf(struct mbuf *, | |
393 | const struct sadb_msghdr *, int, int, int *); | |
394 | static int key_spdadd(struct socket *, struct mbuf *, | |
395 | const struct sadb_msghdr *); | |
396 | static u_int32_t key_getnewspid(void); | |
397 | static int key_spddelete(struct socket *, struct mbuf *, | |
398 | const struct sadb_msghdr *); | |
399 | static int key_spddelete2(struct socket *, struct mbuf *, | |
400 | const struct sadb_msghdr *); | |
401 | static int key_spdget(struct socket *, struct mbuf *, | |
402 | const struct sadb_msghdr *); | |
403 | static int key_spdflush(struct socket *, struct mbuf *, | |
404 | const struct sadb_msghdr *); | |
405 | static int key_spddump(struct socket *, struct mbuf *, | |
406 | const struct sadb_msghdr *); | |
407 | static struct mbuf *key_setdumpsp(struct secpolicy *, | |
408 | u_int8_t, u_int32_t, u_int32_t); | |
409 | static u_int key_getspreqmsglen(struct secpolicy *); | |
410 | static int key_spdexpire(struct secpolicy *); | |
411 | static struct secashead *key_newsah(struct secasindex *); | |
412 | static void key_delsah(struct secashead *); | |
413 | static struct secasvar *key_newsav(struct mbuf *, | |
414 | const struct sadb_msghdr *, struct secashead *, int *); | |
415 | static void key_delsav(struct secasvar *); | |
416 | static struct secashead *key_getsah(struct secasindex *); | |
417 | static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); | |
418 | static void key_setspi __P((struct secasvar *, u_int32_t)); | |
419 | static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); | |
420 | static int key_setsaval(struct secasvar *, struct mbuf *, | |
421 | const struct sadb_msghdr *); | |
422 | static int key_mature(struct secasvar *); | |
423 | static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, | |
424 | u_int8_t, u_int32_t, u_int32_t); | |
425 | static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, | |
426 | u_int32_t, pid_t, u_int16_t); | |
427 | static struct mbuf *key_setsadbsa(struct secasvar *); | |
428 | static struct mbuf *key_setsadbaddr(u_int16_t, | |
429 | struct sockaddr *, u_int8_t, u_int16_t); | |
430 | #if 0 | |
431 | static struct mbuf *key_setsadbident(u_int16_t, u_int16_t, caddr_t, | |
432 | int, u_int64_t); | |
433 | #endif | |
434 | static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); | |
435 | static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, | |
436 | u_int32_t); | |
437 | static void *key_newbuf(const void *, u_int); | |
438 | #if INET6 | |
439 | static int key_ismyaddr6(struct sockaddr_in6 *); | |
440 | #endif | |
441 | ||
442 | /* flags for key_cmpsaidx() */ | |
443 | #define CMP_HEAD 1 /* protocol, addresses. */ | |
444 | #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ | |
445 | #define CMP_REQID 3 /* additionally HEAD, reaid. */ | |
446 | #define CMP_EXACTLY 4 /* all elements. */ | |
447 | static int key_cmpsaidx(struct secasindex *, struct secasindex *, int); | |
448 | ||
449 | static int key_cmpspidx_exactly(struct secpolicyindex *, | |
450 | struct secpolicyindex *); | |
451 | static int key_cmpspidx_withmask(struct secpolicyindex *, | |
452 | struct secpolicyindex *); | |
453 | static int key_sockaddrcmp(struct sockaddr *, struct sockaddr *, int); | |
454 | static int key_bbcmp(caddr_t, caddr_t, u_int); | |
455 | static void key_srandom(void); | |
456 | static u_int16_t key_satype2proto(u_int8_t); | |
457 | static u_int8_t key_proto2satype(u_int16_t); | |
458 | ||
459 | static int key_getspi(struct socket *, struct mbuf *, | |
460 | const struct sadb_msghdr *); | |
461 | static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); | |
462 | static int key_update(struct socket *, struct mbuf *, | |
463 | const struct sadb_msghdr *); | |
464 | #if IPSEC_DOSEQCHECK | |
465 | static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); | |
466 | #endif | |
467 | static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); | |
468 | static int key_setident(struct secashead *, struct mbuf *, | |
469 | const struct sadb_msghdr *); | |
470 | static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); | |
471 | static int key_delete(struct socket *, struct mbuf *, | |
472 | const struct sadb_msghdr *); | |
473 | static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); | |
474 | ||
475 | static void key_getcomb_setlifetime(struct sadb_comb *); | |
476 | #if IPSEC_ESP | |
477 | static struct mbuf *key_getcomb_esp(void); | |
478 | #endif | |
479 | static struct mbuf *key_getcomb_ah(void); | |
480 | static struct mbuf *key_getcomb_ipcomp(void); | |
481 | static struct mbuf *key_getprop(const struct secasindex *); | |
482 | ||
483 | static int key_acquire(struct secasindex *, struct secpolicy *); | |
484 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
485 | static struct secacq *key_newacq(struct secasindex *); | |
486 | static struct secacq *key_getacq(struct secasindex *); | |
487 | static struct secacq *key_getacqbyseq(u_int32_t); | |
488 | #endif | |
489 | static struct secspacq *key_newspacq(struct secpolicyindex *); | |
490 | static struct secspacq *key_getspacq(struct secpolicyindex *); | |
491 | static int key_acquire2(struct socket *, struct mbuf *, | |
492 | const struct sadb_msghdr *); | |
493 | static int key_register(struct socket *, struct mbuf *, | |
494 | const struct sadb_msghdr *); | |
495 | static int key_expire(struct secasvar *); | |
496 | static int key_flush(struct socket *, struct mbuf *, | |
497 | const struct sadb_msghdr *); | |
498 | static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); | |
499 | static int key_promisc(struct socket *, struct mbuf *, | |
500 | const struct sadb_msghdr *); | |
501 | static int key_senderror(struct socket *, struct mbuf *, int); | |
502 | static int key_validate_ext(const struct sadb_ext *, int); | |
503 | static int key_align(struct mbuf *, struct sadb_msghdr *); | |
504 | #if 0 | |
505 | static const char *key_getfqdn(void); | |
506 | static const char *key_getuserfqdn(void); | |
507 | #endif | |
508 | static void key_sa_chgstate(struct secasvar *, u_int8_t); | |
509 | static struct mbuf *key_alloc_mbuf(int); | |
510 | ||
511 | extern int ipsec_bypass; | |
512 | void ipsec_send_natt_keepalive(struct secasvar *sav); | |
513 | ||
514 | ||
515 | /* | |
516 | * PF_KEY init | |
517 | * setup locks and call raw_init() | |
518 | * | |
519 | */ | |
520 | void | |
521 | key_init(void) | |
522 | { | |
523 | ||
524 | int i; | |
525 | ||
526 | sadb_mutex_grp_attr = lck_grp_attr_alloc_init(); | |
527 | sadb_mutex_grp = lck_grp_alloc_init("sadb", sadb_mutex_grp_attr); | |
528 | sadb_mutex_attr = lck_attr_alloc_init(); | |
529 | ||
530 | if ((sadb_mutex = lck_mtx_alloc_init(sadb_mutex_grp, sadb_mutex_attr)) == NULL) { | |
531 | printf("key_init: can't alloc sadb_mutex\n"); | |
532 | return; | |
533 | } | |
534 | ||
535 | for (i = 0; i < SPIHASHSIZE; i++) | |
536 | LIST_INIT(&spihash[i]); | |
537 | ||
538 | raw_init(); | |
539 | } | |
540 | ||
541 | ||
542 | /* %%% IPsec policy management */ | |
543 | /* | |
544 | * allocating a SP for OUTBOUND or INBOUND packet. | |
545 | * Must call key_freesp() later. | |
546 | * OUT: NULL: not found | |
547 | * others: found and return the pointer. | |
548 | */ | |
549 | struct secpolicy * | |
550 | key_allocsp(spidx, dir) | |
551 | struct secpolicyindex *spidx; | |
552 | u_int dir; | |
553 | { | |
554 | struct secpolicy *sp; | |
555 | struct timeval tv; | |
556 | int s; | |
557 | ||
558 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
559 | /* sanity check */ | |
560 | if (spidx == NULL) | |
561 | panic("key_allocsp: NULL pointer is passed.\n"); | |
562 | ||
563 | /* check direction */ | |
564 | switch (dir) { | |
565 | case IPSEC_DIR_INBOUND: | |
566 | case IPSEC_DIR_OUTBOUND: | |
567 | break; | |
568 | default: | |
569 | panic("key_allocsp: Invalid direction is passed.\n"); | |
570 | } | |
571 | ||
572 | /* get a SP entry */ | |
573 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, | |
574 | printf("*** objects\n"); | |
575 | kdebug_secpolicyindex(spidx)); | |
576 | ||
577 | LIST_FOREACH(sp, &sptree[dir], chain) { | |
578 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, | |
579 | printf("*** in SPD\n"); | |
580 | kdebug_secpolicyindex(&sp->spidx)); | |
581 | ||
582 | if (sp->state == IPSEC_SPSTATE_DEAD) | |
583 | continue; | |
584 | if (key_cmpspidx_withmask(&sp->spidx, spidx)) | |
585 | goto found; | |
586 | } | |
587 | ||
588 | return NULL; | |
589 | ||
590 | found: | |
591 | /* sanity check */ | |
592 | KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp"); | |
593 | ||
594 | /* found a SPD entry */ | |
595 | microtime(&tv); | |
596 | sp->lastused = tv.tv_sec; | |
597 | sp->refcnt++; | |
598 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
599 | printf("DP key_allocsp cause refcnt++:%d SP:%p\n", | |
600 | sp->refcnt, sp)); | |
601 | ||
602 | return sp; | |
603 | } | |
604 | ||
605 | /* | |
606 | * return a policy that matches this particular inbound packet. | |
607 | * XXX slow | |
608 | */ | |
609 | struct secpolicy * | |
610 | key_gettunnel(osrc, odst, isrc, idst) | |
611 | struct sockaddr *osrc, *odst, *isrc, *idst; | |
612 | { | |
613 | struct secpolicy *sp; | |
614 | const int dir = IPSEC_DIR_INBOUND; | |
615 | struct timeval tv; | |
616 | int s; | |
617 | struct ipsecrequest *r1, *r2, *p; | |
618 | struct sockaddr *os, *od, *is, *id; | |
619 | struct secpolicyindex spidx; | |
620 | ||
621 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
622 | ||
623 | if (isrc->sa_family != idst->sa_family) { | |
624 | ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.", | |
625 | isrc->sa_family, idst->sa_family)); | |
626 | return NULL; | |
627 | } | |
628 | ||
629 | LIST_FOREACH(sp, &sptree[dir], chain) { | |
630 | if (sp->state == IPSEC_SPSTATE_DEAD) | |
631 | continue; | |
632 | ||
633 | r1 = r2 = NULL; | |
634 | for (p = sp->req; p; p = p->next) { | |
635 | if (p->saidx.mode != IPSEC_MODE_TUNNEL) | |
636 | continue; | |
637 | ||
638 | r1 = r2; | |
639 | r2 = p; | |
640 | ||
641 | if (!r1) { | |
642 | /* here we look at address matches only */ | |
643 | spidx = sp->spidx; | |
644 | if (isrc->sa_len > sizeof(spidx.src) || | |
645 | idst->sa_len > sizeof(spidx.dst)) | |
646 | continue; | |
647 | bcopy(isrc, &spidx.src, isrc->sa_len); | |
648 | bcopy(idst, &spidx.dst, idst->sa_len); | |
649 | if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) | |
650 | continue; | |
651 | } else { | |
652 | is = (struct sockaddr *)&r1->saidx.src; | |
653 | id = (struct sockaddr *)&r1->saidx.dst; | |
654 | if (key_sockaddrcmp(is, isrc, 0) || | |
655 | key_sockaddrcmp(id, idst, 0)) | |
656 | continue; | |
657 | } | |
658 | ||
659 | os = (struct sockaddr *)&r2->saidx.src; | |
660 | od = (struct sockaddr *)&r2->saidx.dst; | |
661 | if (key_sockaddrcmp(os, osrc, 0) || | |
662 | key_sockaddrcmp(od, odst, 0)) | |
663 | continue; | |
664 | ||
665 | goto found; | |
666 | } | |
667 | } | |
668 | ||
669 | return NULL; | |
670 | ||
671 | found: | |
672 | microtime(&tv); | |
673 | sp->lastused = tv.tv_sec; | |
674 | sp->refcnt++; | |
675 | return sp; | |
676 | } | |
677 | ||
678 | /* | |
679 | * allocating an SA entry for an *OUTBOUND* packet. | |
680 | * checking each request entries in SP, and acquire an SA if need. | |
681 | * OUT: 0: there are valid requests. | |
682 | * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. | |
683 | */ | |
684 | int | |
685 | key_checkrequest(isr, saidx) | |
686 | struct ipsecrequest *isr; | |
687 | struct secasindex *saidx; | |
688 | { | |
689 | u_int level; | |
690 | int error; | |
691 | ||
692 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
693 | ||
694 | /* sanity check */ | |
695 | if (isr == NULL || saidx == NULL) | |
696 | panic("key_checkrequest: NULL pointer is passed.\n"); | |
697 | ||
698 | /* check mode */ | |
699 | switch (saidx->mode) { | |
700 | case IPSEC_MODE_TRANSPORT: | |
701 | case IPSEC_MODE_TUNNEL: | |
702 | break; | |
703 | case IPSEC_MODE_ANY: | |
704 | default: | |
705 | panic("key_checkrequest: Invalid policy defined.\n"); | |
706 | } | |
707 | ||
708 | /* get current level */ | |
709 | level = ipsec_get_reqlevel(isr); | |
710 | ||
711 | #if 0 | |
712 | /* | |
713 | * We do allocate new SA only if the state of SA in the holder is | |
714 | * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. | |
715 | */ | |
716 | if (isr->sav != NULL) { | |
717 | if (isr->sav->sah == NULL) | |
718 | panic("key_checkrequest: sah is null.\n"); | |
719 | if (isr->sav == (struct secasvar *)LIST_FIRST( | |
720 | &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { | |
721 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
722 | printf("DP checkrequest calls free SA:%p\n", | |
723 | isr->sav)); | |
724 | key_freesav(isr->sav); | |
725 | isr->sav = NULL; | |
726 | } | |
727 | } | |
728 | #else | |
729 | /* | |
730 | * we free any SA stashed in the IPsec request because a different | |
731 | * SA may be involved each time this request is checked, either | |
732 | * because new SAs are being configured, or this request is | |
733 | * associated with an unconnected datagram socket, or this request | |
734 | * is associated with a system default policy. | |
735 | * | |
736 | * The operation may have negative impact to performance. We may | |
737 | * want to check cached SA carefully, rather than picking new SA | |
738 | * every time. | |
739 | */ | |
740 | if (isr->sav != NULL) { | |
741 | key_freesav(isr->sav); | |
742 | isr->sav = NULL; | |
743 | } | |
744 | #endif | |
745 | ||
746 | /* | |
747 | * new SA allocation if no SA found. | |
748 | * key_allocsa_policy should allocate the oldest SA available. | |
749 | * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. | |
750 | */ | |
751 | if (isr->sav == NULL) | |
752 | isr->sav = key_allocsa_policy(saidx); | |
753 | ||
754 | /* When there is SA. */ | |
755 | if (isr->sav != NULL) | |
756 | return 0; | |
757 | ||
758 | /* there is no SA */ | |
759 | if ((error = key_acquire(saidx, isr->sp)) != 0) { | |
760 | /* XXX What should I do ? */ | |
761 | ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " | |
762 | "from key_acquire.\n", error)); | |
763 | return error; | |
764 | } | |
765 | ||
766 | return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0; | |
767 | } | |
768 | ||
769 | /* | |
770 | * allocating a SA for policy entry from SAD. | |
771 | * NOTE: searching SAD of aliving state. | |
772 | * OUT: NULL: not found. | |
773 | * others: found and return the pointer. | |
774 | */ | |
775 | static struct secasvar * | |
776 | key_allocsa_policy(saidx) | |
777 | struct secasindex *saidx; | |
778 | { | |
779 | struct secashead *sah; | |
780 | struct secasvar *sav; | |
781 | u_int stateidx, state; | |
782 | const u_int *saorder_state_valid; | |
783 | int arraysize; | |
784 | ||
785 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
786 | ||
787 | LIST_FOREACH(sah, &sahtree, chain) { | |
788 | if (sah->state == SADB_SASTATE_DEAD) | |
789 | continue; | |
790 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) | |
791 | goto found; | |
792 | } | |
793 | ||
794 | return NULL; | |
795 | ||
796 | found: | |
797 | ||
798 | /* | |
799 | * search a valid state list for outbound packet. | |
800 | * This search order is important. | |
801 | */ | |
802 | if (key_preferred_oldsa) { | |
803 | saorder_state_valid = saorder_state_valid_prefer_old; | |
804 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); | |
805 | } else { | |
806 | saorder_state_valid = saorder_state_valid_prefer_new; | |
807 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); | |
808 | } | |
809 | ||
810 | for (stateidx = 0; stateidx < arraysize; stateidx++) { | |
811 | ||
812 | state = saorder_state_valid[stateidx]; | |
813 | ||
814 | sav = key_do_allocsa_policy(sah, state); | |
815 | if (sav != NULL) | |
816 | return sav; | |
817 | } | |
818 | ||
819 | return NULL; | |
820 | } | |
821 | ||
822 | /* | |
823 | * searching SAD with direction, protocol, mode and state. | |
824 | * called by key_allocsa_policy(). | |
825 | * OUT: | |
826 | * NULL : not found | |
827 | * others : found, pointer to a SA. | |
828 | */ | |
829 | static struct secasvar * | |
830 | key_do_allocsa_policy(sah, state) | |
831 | struct secashead *sah; | |
832 | u_int state; | |
833 | { | |
834 | struct secasvar *sav, *nextsav, *candidate, *d; | |
835 | ||
836 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
837 | ||
838 | /* initilize */ | |
839 | candidate = NULL; | |
840 | ||
841 | for (sav = LIST_FIRST(&sah->savtree[state]); | |
842 | sav != NULL; | |
843 | sav = nextsav) { | |
844 | ||
845 | nextsav = LIST_NEXT(sav, chain); | |
846 | ||
847 | /* sanity check */ | |
848 | KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy"); | |
849 | ||
850 | /* initialize */ | |
851 | if (candidate == NULL) { | |
852 | candidate = sav; | |
853 | continue; | |
854 | } | |
855 | ||
856 | /* Which SA is the better ? */ | |
857 | ||
858 | /* sanity check 2 */ | |
859 | if (candidate->lft_c == NULL || sav->lft_c == NULL) | |
860 | panic("key_do_allocsa_policy: " | |
861 | "lifetime_current is NULL.\n"); | |
862 | ||
863 | /* What the best method is to compare ? */ | |
864 | if (key_preferred_oldsa) { | |
865 | if (candidate->lft_c->sadb_lifetime_addtime > | |
866 | sav->lft_c->sadb_lifetime_addtime) { | |
867 | candidate = sav; | |
868 | } | |
869 | continue; | |
870 | /*NOTREACHED*/ | |
871 | } | |
872 | ||
873 | /* prefered new sa rather than old sa */ | |
874 | if (candidate->lft_c->sadb_lifetime_addtime < | |
875 | sav->lft_c->sadb_lifetime_addtime) { | |
876 | d = candidate; | |
877 | candidate = sav; | |
878 | } else | |
879 | d = sav; | |
880 | ||
881 | /* | |
882 | * prepared to delete the SA when there is more | |
883 | * suitable candidate and the lifetime of the SA is not | |
884 | * permanent. | |
885 | */ | |
886 | if (d->lft_c->sadb_lifetime_addtime != 0) { | |
887 | struct mbuf *m, *result; | |
888 | ||
889 | key_sa_chgstate(d, SADB_SASTATE_DEAD); | |
890 | ||
891 | m = key_setsadbmsg(SADB_DELETE, 0, | |
892 | d->sah->saidx.proto, 0, 0, d->refcnt - 1); | |
893 | if (!m) | |
894 | goto msgfail; | |
895 | result = m; | |
896 | ||
897 | /* set sadb_address for saidx's. */ | |
898 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
899 | (struct sockaddr *)&d->sah->saidx.src, | |
900 | d->sah->saidx.src.ss_len << 3, | |
901 | IPSEC_ULPROTO_ANY); | |
902 | if (!m) | |
903 | goto msgfail; | |
904 | m_cat(result, m); | |
905 | ||
906 | /* set sadb_address for saidx's. */ | |
907 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
908 | (struct sockaddr *)&d->sah->saidx.src, | |
909 | d->sah->saidx.src.ss_len << 3, | |
910 | IPSEC_ULPROTO_ANY); | |
911 | if (!m) | |
912 | goto msgfail; | |
913 | m_cat(result, m); | |
914 | ||
915 | /* create SA extension */ | |
916 | m = key_setsadbsa(d); | |
917 | if (!m) | |
918 | goto msgfail; | |
919 | m_cat(result, m); | |
920 | ||
921 | if (result->m_len < sizeof(struct sadb_msg)) { | |
922 | result = m_pullup(result, | |
923 | sizeof(struct sadb_msg)); | |
924 | if (result == NULL) | |
925 | goto msgfail; | |
926 | } | |
927 | ||
928 | result->m_pkthdr.len = 0; | |
929 | for (m = result; m; m = m->m_next) | |
930 | result->m_pkthdr.len += m->m_len; | |
931 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
932 | PFKEY_UNIT64(result->m_pkthdr.len); | |
933 | ||
934 | if (key_sendup_mbuf(NULL, result, | |
935 | KEY_SENDUP_REGISTERED)) | |
936 | goto msgfail; | |
937 | msgfail: | |
938 | key_freesav(d); | |
939 | } | |
940 | } | |
941 | ||
942 | if (candidate) { | |
943 | candidate->refcnt++; | |
944 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
945 | printf("DP allocsa_policy cause " | |
946 | "refcnt++:%d SA:%p\n", | |
947 | candidate->refcnt, candidate)); | |
948 | } | |
949 | return candidate; | |
950 | } | |
951 | ||
952 | /* | |
953 | * allocating a SA entry for a *INBOUND* packet. | |
954 | * Must call key_freesav() later. | |
955 | * OUT: positive: pointer to a sav. | |
956 | * NULL: not found, or error occurred. | |
957 | * | |
958 | * In the comparison, source address will be ignored for RFC2401 conformance. | |
959 | * To quote, from section 4.1: | |
960 | * A security association is uniquely identified by a triple consisting | |
961 | * of a Security Parameter Index (SPI), an IP Destination Address, and a | |
962 | * security protocol (AH or ESP) identifier. | |
963 | * Note that, however, we do need to keep source address in IPsec SA. | |
964 | * IKE specification and PF_KEY specification do assume that we | |
965 | * keep source address in IPsec SA. We see a tricky situation here. | |
966 | */ | |
967 | struct secasvar * | |
968 | key_allocsa(family, src, dst, proto, spi) | |
969 | u_int family, proto; | |
970 | caddr_t src, dst; | |
971 | u_int32_t spi; | |
972 | { | |
973 | struct secasvar *sav, *match; | |
974 | u_int stateidx, state, tmpidx, matchidx; | |
975 | struct sockaddr_in sin; | |
976 | struct sockaddr_in6 sin6; | |
977 | int s; | |
978 | const u_int *saorder_state_valid; | |
979 | int arraysize; | |
980 | ||
981 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
982 | ||
983 | /* sanity check */ | |
984 | if (src == NULL || dst == NULL) | |
985 | panic("key_allocsa: NULL pointer is passed.\n"); | |
986 | ||
987 | /* | |
988 | * when both systems employ similar strategy to use a SA. | |
989 | * the search order is important even in the inbound case. | |
990 | */ | |
991 | if (key_preferred_oldsa) { | |
992 | saorder_state_valid = saorder_state_valid_prefer_old; | |
993 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); | |
994 | } else { | |
995 | saorder_state_valid = saorder_state_valid_prefer_new; | |
996 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); | |
997 | } | |
998 | ||
999 | /* | |
1000 | * searching SAD. | |
1001 | * XXX: to be checked internal IP header somewhere. Also when | |
1002 | * IPsec tunnel packet is received. But ESP tunnel mode is | |
1003 | * encrypted so we can't check internal IP header. | |
1004 | */ | |
1005 | /* | |
1006 | * search a valid state list for inbound packet. | |
1007 | * the search order is not important. | |
1008 | */ | |
1009 | match = NULL; | |
1010 | matchidx = arraysize; | |
1011 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { | |
1012 | if (sav->spi != spi) | |
1013 | continue; | |
1014 | if (proto != sav->sah->saidx.proto) | |
1015 | continue; | |
1016 | if (family != sav->sah->saidx.src.ss_family || | |
1017 | family != sav->sah->saidx.dst.ss_family) | |
1018 | continue; | |
1019 | tmpidx = arraysize; | |
1020 | for (stateidx = 0; stateidx < matchidx; stateidx++) { | |
1021 | state = saorder_state_valid[stateidx]; | |
1022 | if (sav->state == state) { | |
1023 | tmpidx = stateidx; | |
1024 | break; | |
1025 | } | |
1026 | } | |
1027 | if (tmpidx >= matchidx) | |
1028 | continue; | |
1029 | ||
1030 | #if 0 /* don't check src */ | |
1031 | /* check src address */ | |
1032 | switch (family) { | |
1033 | case AF_INET: | |
1034 | bzero(&sin, sizeof(sin)); | |
1035 | sin.sin_family = AF_INET; | |
1036 | sin.sin_len = sizeof(sin); | |
1037 | bcopy(src, &sin.sin_addr, | |
1038 | sizeof(sin.sin_addr)); | |
1039 | if (key_sockaddrcmp((struct sockaddr*)&sin, | |
1040 | (struct sockaddr *)&sav->sah->saidx.src, 0) != 0) | |
1041 | continue; | |
1042 | break; | |
1043 | case AF_INET6: | |
1044 | bzero(&sin6, sizeof(sin6)); | |
1045 | sin6.sin6_family = AF_INET6; | |
1046 | sin6.sin6_len = sizeof(sin6); | |
1047 | bcopy(src, &sin6.sin6_addr, | |
1048 | sizeof(sin6.sin6_addr)); | |
1049 | if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) { | |
1050 | /* kame fake scopeid */ | |
1051 | sin6.sin6_scope_id = | |
1052 | ntohs(sin6.sin6_addr.s6_addr16[1]); | |
1053 | sin6.sin6_addr.s6_addr16[1] = 0; | |
1054 | } | |
1055 | if (key_sockaddrcmp((struct sockaddr*)&sin6, | |
1056 | (struct sockaddr *)&sav->sah->saidx.src, 0) != 0) | |
1057 | continue; | |
1058 | break; | |
1059 | default: | |
1060 | ipseclog((LOG_DEBUG, "key_allocsa: " | |
1061 | "unknown address family=%d.\n", | |
1062 | family)); | |
1063 | continue; | |
1064 | } | |
1065 | ||
1066 | #endif | |
1067 | /* check dst address */ | |
1068 | switch (family) { | |
1069 | case AF_INET: | |
1070 | bzero(&sin, sizeof(sin)); | |
1071 | sin.sin_family = AF_INET; | |
1072 | sin.sin_len = sizeof(sin); | |
1073 | bcopy(dst, &sin.sin_addr, | |
1074 | sizeof(sin.sin_addr)); | |
1075 | if (key_sockaddrcmp((struct sockaddr*)&sin, | |
1076 | (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0) | |
1077 | continue; | |
1078 | ||
1079 | break; | |
1080 | case AF_INET6: | |
1081 | bzero(&sin6, sizeof(sin6)); | |
1082 | sin6.sin6_family = AF_INET6; | |
1083 | sin6.sin6_len = sizeof(sin6); | |
1084 | bcopy(dst, &sin6.sin6_addr, | |
1085 | sizeof(sin6.sin6_addr)); | |
1086 | if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) { | |
1087 | /* kame fake scopeid */ | |
1088 | sin6.sin6_scope_id = | |
1089 | ntohs(sin6.sin6_addr.s6_addr16[1]); | |
1090 | sin6.sin6_addr.s6_addr16[1] = 0; | |
1091 | } | |
1092 | if (key_sockaddrcmp((struct sockaddr*)&sin6, | |
1093 | (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0) | |
1094 | continue; | |
1095 | break; | |
1096 | default: | |
1097 | ipseclog((LOG_DEBUG, "key_allocsa: " | |
1098 | "unknown address family=%d.\n", family)); | |
1099 | continue; | |
1100 | } | |
1101 | ||
1102 | match = sav; | |
1103 | matchidx = tmpidx; | |
1104 | } | |
1105 | if (match) | |
1106 | goto found; | |
1107 | ||
1108 | /* not found */ | |
1109 | return NULL; | |
1110 | ||
1111 | found: | |
1112 | match->refcnt++; | |
1113 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
1114 | printf("DP allocsa cause refcnt++:%d SA:%p\n", | |
1115 | match->refcnt, match)); | |
1116 | return match; | |
1117 | } | |
1118 | ||
1119 | /* | |
1120 | * Must be called after calling key_allocsp(). | |
1121 | * For both the packet without socket and key_freeso(). | |
1122 | */ | |
1123 | void | |
1124 | key_freesp(sp) | |
1125 | struct secpolicy *sp; | |
1126 | { | |
1127 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1128 | ||
1129 | /* sanity check */ | |
1130 | if (sp == NULL) | |
1131 | panic("key_freesp: NULL pointer is passed.\n"); | |
1132 | ||
1133 | sp->refcnt--; | |
1134 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
1135 | printf("DP freesp cause refcnt--:%d SP:%p\n", | |
1136 | sp->refcnt, sp)); | |
1137 | ||
1138 | if (sp->refcnt == 0) | |
1139 | key_delsp(sp); | |
1140 | ||
1141 | return; | |
1142 | } | |
1143 | ||
1144 | #if 0 | |
1145 | /* | |
1146 | * Must be called after calling key_allocsp(). | |
1147 | * For the packet with socket. | |
1148 | */ | |
1149 | void | |
1150 | key_freeso(so) | |
1151 | struct socket *so; | |
1152 | { | |
1153 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1154 | ||
1155 | /* sanity check */ | |
1156 | if (so == NULL) | |
1157 | panic("key_freeso: NULL pointer is passed.\n"); | |
1158 | ||
1159 | switch (so->so_proto->pr_domain->dom_family) { | |
1160 | #if INET | |
1161 | case PF_INET: | |
1162 | { | |
1163 | struct inpcb *pcb = sotoinpcb(so); | |
1164 | ||
1165 | /* Does it have a PCB ? */ | |
1166 | if (pcb == NULL || pcb->inp_sp == NULL) | |
1167 | return; | |
1168 | key_freesp_so(&pcb->inp_sp->sp_in); | |
1169 | key_freesp_so(&pcb->inp_sp->sp_out); | |
1170 | } | |
1171 | break; | |
1172 | #endif | |
1173 | #if INET6 | |
1174 | case PF_INET6: | |
1175 | { | |
1176 | #if HAVE_NRL_INPCB | |
1177 | struct inpcb *pcb = sotoinpcb(so); | |
1178 | ||
1179 | /* Does it have a PCB ? */ | |
1180 | if (pcb == NULL || pcb->inp_sp == NULL) | |
1181 | return; | |
1182 | key_freesp_so(&pcb->inp_sp->sp_in); | |
1183 | key_freesp_so(&pcb->inp_sp->sp_out); | |
1184 | #else | |
1185 | struct in6pcb *pcb = sotoin6pcb(so); | |
1186 | ||
1187 | /* Does it have a PCB ? */ | |
1188 | if (pcb == NULL || pcb->in6p_sp == NULL) | |
1189 | return; | |
1190 | key_freesp_so(&pcb->in6p_sp->sp_in); | |
1191 | key_freesp_so(&pcb->in6p_sp->sp_out); | |
1192 | #endif | |
1193 | } | |
1194 | break; | |
1195 | #endif /* INET6 */ | |
1196 | default: | |
1197 | ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n", | |
1198 | so->so_proto->pr_domain->dom_family)); | |
1199 | return; | |
1200 | } | |
1201 | ||
1202 | return; | |
1203 | } | |
1204 | #endif | |
1205 | ||
1206 | static void | |
1207 | key_freesp_so(sp) | |
1208 | struct secpolicy **sp; | |
1209 | { | |
1210 | ||
1211 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1212 | ||
1213 | /* sanity check */ | |
1214 | if (sp == NULL || *sp == NULL) | |
1215 | panic("key_freesp_so: sp == NULL\n"); | |
1216 | ||
1217 | switch ((*sp)->policy) { | |
1218 | case IPSEC_POLICY_IPSEC: | |
1219 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
1220 | printf("DP freeso calls free SP:%p\n", *sp)); | |
1221 | key_freesp(*sp); | |
1222 | *sp = NULL; | |
1223 | break; | |
1224 | case IPSEC_POLICY_ENTRUST: | |
1225 | case IPSEC_POLICY_BYPASS: | |
1226 | return; | |
1227 | default: | |
1228 | panic("key_freesp_so: Invalid policy found %d", (*sp)->policy); | |
1229 | } | |
1230 | ||
1231 | return; | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * Must be called after calling key_allocsa(). | |
1236 | * This function is called by key_freesp() to free some SA allocated | |
1237 | * for a policy. | |
1238 | */ | |
1239 | void | |
1240 | key_freesav(sav) | |
1241 | struct secasvar *sav; | |
1242 | { | |
1243 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1244 | ||
1245 | /* sanity check */ | |
1246 | if (sav == NULL) | |
1247 | panic("key_freesav: NULL pointer is passed.\n"); | |
1248 | ||
1249 | sav->refcnt--; | |
1250 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
1251 | printf("DP freesav cause refcnt--:%d SA:%p SPI %u\n", | |
1252 | sav->refcnt, sav, (u_int32_t)ntohl(sav->spi))); | |
1253 | ||
1254 | if (sav->refcnt == 0) | |
1255 | key_delsav(sav); | |
1256 | ||
1257 | return; | |
1258 | } | |
1259 | ||
1260 | /* %%% SPD management */ | |
1261 | /* | |
1262 | * free security policy entry. | |
1263 | */ | |
1264 | static void | |
1265 | key_delsp(sp) | |
1266 | struct secpolicy *sp; | |
1267 | { | |
1268 | int s; | |
1269 | ||
1270 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1271 | ||
1272 | /* sanity check */ | |
1273 | if (sp == NULL) | |
1274 | panic("key_delsp: NULL pointer is passed.\n"); | |
1275 | ||
1276 | sp->state = IPSEC_SPSTATE_DEAD; | |
1277 | ||
1278 | if (sp->refcnt > 0) | |
1279 | return; /* can't free */ | |
1280 | ||
1281 | s = splnet(); /*called from softclock()*/ | |
1282 | /* remove from SP index */ | |
1283 | if (__LIST_CHAINED(sp)) | |
1284 | LIST_REMOVE(sp, chain); | |
1285 | ||
1286 | { | |
1287 | struct ipsecrequest *isr = sp->req, *nextisr; | |
1288 | ||
1289 | while (isr != NULL) { | |
1290 | if (isr->sav != NULL) { | |
1291 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
1292 | printf("DP delsp calls free SA:%p\n", | |
1293 | isr->sav)); | |
1294 | key_freesav(isr->sav); | |
1295 | isr->sav = NULL; | |
1296 | } | |
1297 | ||
1298 | nextisr = isr->next; | |
1299 | KFREE(isr); | |
1300 | isr = nextisr; | |
1301 | } | |
1302 | } | |
1303 | ||
1304 | keydb_delsecpolicy(sp); | |
1305 | ||
1306 | splx(s); | |
1307 | ||
1308 | return; | |
1309 | } | |
1310 | ||
1311 | /* | |
1312 | * search SPD | |
1313 | * OUT: NULL : not found | |
1314 | * others : found, pointer to a SP. | |
1315 | */ | |
1316 | static struct secpolicy * | |
1317 | key_getsp(spidx) | |
1318 | struct secpolicyindex *spidx; | |
1319 | { | |
1320 | struct secpolicy *sp; | |
1321 | ||
1322 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1323 | ||
1324 | /* sanity check */ | |
1325 | if (spidx == NULL) | |
1326 | panic("key_getsp: NULL pointer is passed.\n"); | |
1327 | ||
1328 | LIST_FOREACH(sp, &sptree[spidx->dir], chain) { | |
1329 | if (sp->state == IPSEC_SPSTATE_DEAD) | |
1330 | continue; | |
1331 | if (key_cmpspidx_exactly(spidx, &sp->spidx)) { | |
1332 | sp->refcnt++; | |
1333 | return sp; | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | return NULL; | |
1338 | } | |
1339 | ||
1340 | /* | |
1341 | * get SP by index. | |
1342 | * OUT: NULL : not found | |
1343 | * others : found, pointer to a SP. | |
1344 | */ | |
1345 | static struct secpolicy * | |
1346 | key_getspbyid(id) | |
1347 | u_int32_t id; | |
1348 | { | |
1349 | struct secpolicy *sp; | |
1350 | ||
1351 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1352 | ||
1353 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { | |
1354 | if (sp->state == IPSEC_SPSTATE_DEAD) | |
1355 | continue; | |
1356 | if (sp->id == id) { | |
1357 | sp->refcnt++; | |
1358 | return sp; | |
1359 | } | |
1360 | } | |
1361 | ||
1362 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { | |
1363 | if (sp->state == IPSEC_SPSTATE_DEAD) | |
1364 | continue; | |
1365 | if (sp->id == id) { | |
1366 | sp->refcnt++; | |
1367 | return sp; | |
1368 | } | |
1369 | } | |
1370 | ||
1371 | return NULL; | |
1372 | } | |
1373 | ||
1374 | struct secpolicy * | |
1375 | key_newsp() | |
1376 | { | |
1377 | struct secpolicy *newsp = NULL; | |
1378 | ||
1379 | newsp = keydb_newsecpolicy(); | |
1380 | if (!newsp) | |
1381 | return newsp; | |
1382 | ||
1383 | newsp->refcnt = 1; | |
1384 | newsp->req = NULL; | |
1385 | ||
1386 | return newsp; | |
1387 | } | |
1388 | ||
1389 | /* | |
1390 | * create secpolicy structure from sadb_x_policy structure. | |
1391 | * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, | |
1392 | * so must be set properly later. | |
1393 | */ | |
1394 | struct secpolicy * | |
1395 | key_msg2sp(xpl0, len, error) | |
1396 | struct sadb_x_policy *xpl0; | |
1397 | size_t len; | |
1398 | int *error; | |
1399 | { | |
1400 | struct secpolicy *newsp; | |
1401 | ||
1402 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1403 | ||
1404 | /* sanity check */ | |
1405 | if (xpl0 == NULL) | |
1406 | panic("key_msg2sp: NULL pointer was passed.\n"); | |
1407 | if (len < sizeof(*xpl0)) | |
1408 | panic("key_msg2sp: invalid length.\n"); | |
1409 | if (len != PFKEY_EXTLEN(xpl0)) { | |
1410 | ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); | |
1411 | *error = EINVAL; | |
1412 | return NULL; | |
1413 | } | |
1414 | ||
1415 | if ((newsp = key_newsp()) == NULL) { | |
1416 | *error = ENOBUFS; | |
1417 | return NULL; | |
1418 | } | |
1419 | ||
1420 | newsp->spidx.dir = xpl0->sadb_x_policy_dir; | |
1421 | newsp->policy = xpl0->sadb_x_policy_type; | |
1422 | ||
1423 | /* check policy */ | |
1424 | switch (xpl0->sadb_x_policy_type) { | |
1425 | case IPSEC_POLICY_DISCARD: | |
1426 | case IPSEC_POLICY_NONE: | |
1427 | case IPSEC_POLICY_ENTRUST: | |
1428 | case IPSEC_POLICY_BYPASS: | |
1429 | newsp->req = NULL; | |
1430 | break; | |
1431 | ||
1432 | case IPSEC_POLICY_IPSEC: | |
1433 | { | |
1434 | int tlen; | |
1435 | struct sadb_x_ipsecrequest *xisr; | |
1436 | struct ipsecrequest **p_isr = &newsp->req; | |
1437 | ||
1438 | /* validity check */ | |
1439 | if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { | |
1440 | ipseclog((LOG_DEBUG, | |
1441 | "key_msg2sp: Invalid msg length.\n")); | |
1442 | key_freesp(newsp); | |
1443 | *error = EINVAL; | |
1444 | return NULL; | |
1445 | } | |
1446 | ||
1447 | tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); | |
1448 | xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); | |
1449 | ||
1450 | while (tlen > 0) { | |
1451 | ||
1452 | /* length check */ | |
1453 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { | |
1454 | ipseclog((LOG_DEBUG, "key_msg2sp: " | |
1455 | "invalid ipsecrequest length.\n")); | |
1456 | key_freesp(newsp); | |
1457 | *error = EINVAL; | |
1458 | return NULL; | |
1459 | } | |
1460 | ||
1461 | /* allocate request buffer */ | |
1462 | KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr)); | |
1463 | if ((*p_isr) == NULL) { | |
1464 | ipseclog((LOG_DEBUG, | |
1465 | "key_msg2sp: No more memory.\n")); | |
1466 | key_freesp(newsp); | |
1467 | *error = ENOBUFS; | |
1468 | return NULL; | |
1469 | } | |
1470 | bzero(*p_isr, sizeof(**p_isr)); | |
1471 | ||
1472 | /* set values */ | |
1473 | (*p_isr)->next = NULL; | |
1474 | ||
1475 | switch (xisr->sadb_x_ipsecrequest_proto) { | |
1476 | case IPPROTO_ESP: | |
1477 | case IPPROTO_AH: | |
1478 | case IPPROTO_IPCOMP: | |
1479 | break; | |
1480 | default: | |
1481 | ipseclog((LOG_DEBUG, | |
1482 | "key_msg2sp: invalid proto type=%u\n", | |
1483 | xisr->sadb_x_ipsecrequest_proto)); | |
1484 | key_freesp(newsp); | |
1485 | *error = EPROTONOSUPPORT; | |
1486 | return NULL; | |
1487 | } | |
1488 | (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; | |
1489 | ||
1490 | switch (xisr->sadb_x_ipsecrequest_mode) { | |
1491 | case IPSEC_MODE_TRANSPORT: | |
1492 | case IPSEC_MODE_TUNNEL: | |
1493 | break; | |
1494 | case IPSEC_MODE_ANY: | |
1495 | default: | |
1496 | ipseclog((LOG_DEBUG, | |
1497 | "key_msg2sp: invalid mode=%u\n", | |
1498 | xisr->sadb_x_ipsecrequest_mode)); | |
1499 | key_freesp(newsp); | |
1500 | *error = EINVAL; | |
1501 | return NULL; | |
1502 | } | |
1503 | (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; | |
1504 | ||
1505 | switch (xisr->sadb_x_ipsecrequest_level) { | |
1506 | case IPSEC_LEVEL_DEFAULT: | |
1507 | case IPSEC_LEVEL_USE: | |
1508 | case IPSEC_LEVEL_REQUIRE: | |
1509 | break; | |
1510 | case IPSEC_LEVEL_UNIQUE: | |
1511 | /* validity check */ | |
1512 | /* | |
1513 | * If range violation of reqid, kernel will | |
1514 | * update it, don't refuse it. | |
1515 | */ | |
1516 | if (xisr->sadb_x_ipsecrequest_reqid | |
1517 | > IPSEC_MANUAL_REQID_MAX) { | |
1518 | ipseclog((LOG_DEBUG, | |
1519 | "key_msg2sp: reqid=%d range " | |
1520 | "violation, updated by kernel.\n", | |
1521 | xisr->sadb_x_ipsecrequest_reqid)); | |
1522 | xisr->sadb_x_ipsecrequest_reqid = 0; | |
1523 | } | |
1524 | ||
1525 | /* allocate new reqid id if reqid is zero. */ | |
1526 | if (xisr->sadb_x_ipsecrequest_reqid == 0) { | |
1527 | u_int32_t reqid; | |
1528 | if ((reqid = key_newreqid()) == 0) { | |
1529 | key_freesp(newsp); | |
1530 | *error = ENOBUFS; | |
1531 | return NULL; | |
1532 | } | |
1533 | (*p_isr)->saidx.reqid = reqid; | |
1534 | xisr->sadb_x_ipsecrequest_reqid = reqid; | |
1535 | } else { | |
1536 | /* set it for manual keying. */ | |
1537 | (*p_isr)->saidx.reqid = | |
1538 | xisr->sadb_x_ipsecrequest_reqid; | |
1539 | } | |
1540 | break; | |
1541 | ||
1542 | default: | |
1543 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n", | |
1544 | xisr->sadb_x_ipsecrequest_level)); | |
1545 | key_freesp(newsp); | |
1546 | *error = EINVAL; | |
1547 | return NULL; | |
1548 | } | |
1549 | (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; | |
1550 | ||
1551 | /* set IP addresses if there */ | |
1552 | if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { | |
1553 | struct sockaddr *paddr; | |
1554 | ||
1555 | paddr = (struct sockaddr *)(xisr + 1); | |
1556 | ||
1557 | /* validity check */ | |
1558 | if (paddr->sa_len | |
1559 | > sizeof((*p_isr)->saidx.src)) { | |
1560 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " | |
1561 | "address length.\n")); | |
1562 | key_freesp(newsp); | |
1563 | *error = EINVAL; | |
1564 | return NULL; | |
1565 | } | |
1566 | bcopy(paddr, &(*p_isr)->saidx.src, | |
1567 | paddr->sa_len); | |
1568 | ||
1569 | paddr = (struct sockaddr *)((caddr_t)paddr | |
1570 | + paddr->sa_len); | |
1571 | ||
1572 | /* validity check */ | |
1573 | if (paddr->sa_len | |
1574 | > sizeof((*p_isr)->saidx.dst)) { | |
1575 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " | |
1576 | "address length.\n")); | |
1577 | key_freesp(newsp); | |
1578 | *error = EINVAL; | |
1579 | return NULL; | |
1580 | } | |
1581 | bcopy(paddr, &(*p_isr)->saidx.dst, | |
1582 | paddr->sa_len); | |
1583 | } | |
1584 | ||
1585 | (*p_isr)->sav = NULL; | |
1586 | (*p_isr)->sp = newsp; | |
1587 | ||
1588 | /* initialization for the next. */ | |
1589 | p_isr = &(*p_isr)->next; | |
1590 | tlen -= xisr->sadb_x_ipsecrequest_len; | |
1591 | ||
1592 | /* validity check */ | |
1593 | if (tlen < 0) { | |
1594 | ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n")); | |
1595 | key_freesp(newsp); | |
1596 | *error = EINVAL; | |
1597 | return NULL; | |
1598 | } | |
1599 | ||
1600 | xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr | |
1601 | + xisr->sadb_x_ipsecrequest_len); | |
1602 | } | |
1603 | } | |
1604 | break; | |
1605 | default: | |
1606 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n")); | |
1607 | key_freesp(newsp); | |
1608 | *error = EINVAL; | |
1609 | return NULL; | |
1610 | } | |
1611 | ||
1612 | *error = 0; | |
1613 | return newsp; | |
1614 | } | |
1615 | ||
1616 | static u_int32_t | |
1617 | key_newreqid() | |
1618 | { | |
1619 | static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; | |
1620 | ||
1621 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1622 | ||
1623 | auto_reqid = (auto_reqid == ~0 | |
1624 | ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); | |
1625 | ||
1626 | /* XXX should be unique check */ | |
1627 | ||
1628 | return auto_reqid; | |
1629 | } | |
1630 | ||
1631 | /* | |
1632 | * copy secpolicy struct to sadb_x_policy structure indicated. | |
1633 | */ | |
1634 | struct mbuf * | |
1635 | key_sp2msg(sp) | |
1636 | struct secpolicy *sp; | |
1637 | { | |
1638 | struct sadb_x_policy *xpl; | |
1639 | int tlen; | |
1640 | caddr_t p; | |
1641 | struct mbuf *m; | |
1642 | ||
1643 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1644 | ||
1645 | /* sanity check. */ | |
1646 | if (sp == NULL) | |
1647 | panic("key_sp2msg: NULL pointer was passed.\n"); | |
1648 | ||
1649 | tlen = key_getspreqmsglen(sp); | |
1650 | ||
1651 | m = key_alloc_mbuf(tlen); | |
1652 | if (!m || m->m_next) { /*XXX*/ | |
1653 | if (m) | |
1654 | m_freem(m); | |
1655 | return NULL; | |
1656 | } | |
1657 | ||
1658 | m->m_len = tlen; | |
1659 | m->m_next = NULL; | |
1660 | xpl = mtod(m, struct sadb_x_policy *); | |
1661 | bzero(xpl, tlen); | |
1662 | ||
1663 | xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); | |
1664 | xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; | |
1665 | xpl->sadb_x_policy_type = sp->policy; | |
1666 | xpl->sadb_x_policy_dir = sp->spidx.dir; | |
1667 | xpl->sadb_x_policy_id = sp->id; | |
1668 | p = (caddr_t)xpl + sizeof(*xpl); | |
1669 | ||
1670 | /* if is the policy for ipsec ? */ | |
1671 | if (sp->policy == IPSEC_POLICY_IPSEC) { | |
1672 | struct sadb_x_ipsecrequest *xisr; | |
1673 | struct ipsecrequest *isr; | |
1674 | ||
1675 | for (isr = sp->req; isr != NULL; isr = isr->next) { | |
1676 | ||
1677 | xisr = (struct sadb_x_ipsecrequest *)p; | |
1678 | ||
1679 | xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; | |
1680 | xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; | |
1681 | xisr->sadb_x_ipsecrequest_level = isr->level; | |
1682 | xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; | |
1683 | ||
1684 | p += sizeof(*xisr); | |
1685 | bcopy(&isr->saidx.src, p, isr->saidx.src.ss_len); | |
1686 | p += isr->saidx.src.ss_len; | |
1687 | bcopy(&isr->saidx.dst, p, isr->saidx.dst.ss_len); | |
1688 | p += isr->saidx.src.ss_len; | |
1689 | ||
1690 | xisr->sadb_x_ipsecrequest_len = | |
1691 | PFKEY_ALIGN8(sizeof(*xisr) | |
1692 | + isr->saidx.src.ss_len | |
1693 | + isr->saidx.dst.ss_len); | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | return m; | |
1698 | } | |
1699 | ||
1700 | /* m will not be freed nor modified */ | |
1701 | static struct mbuf * | |
1702 | key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, | |
1703 | int ndeep, int nitem, int *items) | |
1704 | { | |
1705 | int idx; | |
1706 | int i; | |
1707 | struct mbuf *result = NULL, *n; | |
1708 | int len; | |
1709 | ||
1710 | if (m == NULL || mhp == NULL) | |
1711 | panic("null pointer passed to key_gather"); | |
1712 | ||
1713 | for (i = 0; i < nitem; i++) { | |
1714 | idx = items[i]; | |
1715 | if (idx < 0 || idx > SADB_EXT_MAX) | |
1716 | goto fail; | |
1717 | /* don't attempt to pull empty extension */ | |
1718 | if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) | |
1719 | continue; | |
1720 | if (idx != SADB_EXT_RESERVED && | |
1721 | (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) | |
1722 | continue; | |
1723 | ||
1724 | if (idx == SADB_EXT_RESERVED) { | |
1725 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
1726 | #if DIAGNOSTIC | |
1727 | if (len > MHLEN) | |
1728 | panic("assumption failed"); | |
1729 | #endif | |
1730 | MGETHDR(n, M_DONTWAIT, MT_DATA); | |
1731 | if (!n) | |
1732 | goto fail; | |
1733 | n->m_len = len; | |
1734 | n->m_next = NULL; | |
1735 | m_copydata(m, 0, sizeof(struct sadb_msg), | |
1736 | mtod(n, caddr_t)); | |
1737 | } else if (i < ndeep) { | |
1738 | len = mhp->extlen[idx]; | |
1739 | n = key_alloc_mbuf(len); | |
1740 | if (!n || n->m_next) { /*XXX*/ | |
1741 | if (n) | |
1742 | m_freem(n); | |
1743 | goto fail; | |
1744 | } | |
1745 | m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], | |
1746 | mtod(n, caddr_t)); | |
1747 | } else { | |
1748 | n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], | |
1749 | M_DONTWAIT); | |
1750 | } | |
1751 | if (n == NULL) | |
1752 | goto fail; | |
1753 | ||
1754 | if (result) | |
1755 | m_cat(result, n); | |
1756 | else | |
1757 | result = n; | |
1758 | } | |
1759 | ||
1760 | if ((result->m_flags & M_PKTHDR) != 0) { | |
1761 | result->m_pkthdr.len = 0; | |
1762 | for (n = result; n; n = n->m_next) | |
1763 | result->m_pkthdr.len += n->m_len; | |
1764 | } | |
1765 | ||
1766 | return result; | |
1767 | ||
1768 | fail: | |
1769 | m_freem(result); | |
1770 | return NULL; | |
1771 | } | |
1772 | ||
1773 | /* | |
1774 | * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing | |
1775 | * add a entry to SP database, when received | |
1776 | * <base, address(SD), (lifetime(H),) policy> | |
1777 | * from the user(?). | |
1778 | * Adding to SP database, | |
1779 | * and send | |
1780 | * <base, address(SD), (lifetime(H),) policy> | |
1781 | * to the socket which was send. | |
1782 | * | |
1783 | * SPDADD set a unique policy entry. | |
1784 | * SPDSETIDX like SPDADD without a part of policy requests. | |
1785 | * SPDUPDATE replace a unique policy entry. | |
1786 | * | |
1787 | * m will always be freed. | |
1788 | */ | |
1789 | static int | |
1790 | key_spdadd(so, m, mhp) | |
1791 | struct socket *so; | |
1792 | struct mbuf *m; | |
1793 | const struct sadb_msghdr *mhp; | |
1794 | { | |
1795 | struct sadb_address *src0, *dst0; | |
1796 | struct sadb_x_policy *xpl0, *xpl; | |
1797 | struct sadb_lifetime *lft = NULL; | |
1798 | struct secpolicyindex spidx; | |
1799 | struct secpolicy *newsp; | |
1800 | struct timeval tv; | |
1801 | int error; | |
1802 | ||
1803 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
1804 | ||
1805 | /* sanity check */ | |
1806 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
1807 | panic("key_spdadd: NULL pointer is passed.\n"); | |
1808 | ||
1809 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
1810 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || | |
1811 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { | |
1812 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); | |
1813 | return key_senderror(so, m, EINVAL); | |
1814 | } | |
1815 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
1816 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || | |
1817 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { | |
1818 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); | |
1819 | return key_senderror(so, m, EINVAL); | |
1820 | } | |
1821 | if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { | |
1822 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] | |
1823 | < sizeof(struct sadb_lifetime)) { | |
1824 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); | |
1825 | return key_senderror(so, m, EINVAL); | |
1826 | } | |
1827 | lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; | |
1828 | } | |
1829 | ||
1830 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; | |
1831 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; | |
1832 | xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; | |
1833 | ||
1834 | /* make secindex */ | |
1835 | /* XXX boundary check against sa_len */ | |
1836 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, | |
1837 | src0 + 1, | |
1838 | dst0 + 1, | |
1839 | src0->sadb_address_prefixlen, | |
1840 | dst0->sadb_address_prefixlen, | |
1841 | src0->sadb_address_proto, | |
1842 | &spidx); | |
1843 | ||
1844 | /* checking the direciton. */ | |
1845 | switch (xpl0->sadb_x_policy_dir) { | |
1846 | case IPSEC_DIR_INBOUND: | |
1847 | case IPSEC_DIR_OUTBOUND: | |
1848 | break; | |
1849 | default: | |
1850 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n")); | |
1851 | mhp->msg->sadb_msg_errno = EINVAL; | |
1852 | return 0; | |
1853 | } | |
1854 | ||
1855 | /* check policy */ | |
1856 | /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ | |
1857 | if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST | |
1858 | || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { | |
1859 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n")); | |
1860 | return key_senderror(so, m, EINVAL); | |
1861 | } | |
1862 | ||
1863 | /* policy requests are mandatory when action is ipsec. */ | |
1864 | if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX | |
1865 | && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC | |
1866 | && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { | |
1867 | ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n")); | |
1868 | return key_senderror(so, m, EINVAL); | |
1869 | } | |
1870 | ||
1871 | /* | |
1872 | * checking there is SP already or not. | |
1873 | * SPDUPDATE doesn't depend on whether there is a SP or not. | |
1874 | * If the type is either SPDADD or SPDSETIDX AND a SP is found, | |
1875 | * then error. | |
1876 | */ | |
1877 | newsp = key_getsp(&spidx); | |
1878 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { | |
1879 | if (newsp) { | |
1880 | newsp->state = IPSEC_SPSTATE_DEAD; | |
1881 | key_freesp(newsp); | |
1882 | } | |
1883 | } else { | |
1884 | if (newsp != NULL) { | |
1885 | key_freesp(newsp); | |
1886 | ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n")); | |
1887 | return key_senderror(so, m, EEXIST); | |
1888 | } | |
1889 | } | |
1890 | ||
1891 | /* allocation new SP entry */ | |
1892 | if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { | |
1893 | return key_senderror(so, m, error); | |
1894 | } | |
1895 | ||
1896 | if ((newsp->id = key_getnewspid()) == 0) { | |
1897 | keydb_delsecpolicy(newsp); | |
1898 | return key_senderror(so, m, ENOBUFS); | |
1899 | } | |
1900 | ||
1901 | /* XXX boundary check against sa_len */ | |
1902 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, | |
1903 | src0 + 1, | |
1904 | dst0 + 1, | |
1905 | src0->sadb_address_prefixlen, | |
1906 | dst0->sadb_address_prefixlen, | |
1907 | src0->sadb_address_proto, | |
1908 | &newsp->spidx); | |
1909 | ||
1910 | /* sanity check on addr pair */ | |
1911 | if (((struct sockaddr *)(src0 + 1))->sa_family != | |
1912 | ((struct sockaddr *)(dst0+ 1))->sa_family) { | |
1913 | keydb_delsecpolicy(newsp); | |
1914 | return key_senderror(so, m, EINVAL); | |
1915 | } | |
1916 | if (((struct sockaddr *)(src0 + 1))->sa_len != | |
1917 | ((struct sockaddr *)(dst0+ 1))->sa_len) { | |
1918 | keydb_delsecpolicy(newsp); | |
1919 | return key_senderror(so, m, EINVAL); | |
1920 | } | |
1921 | #if 1 | |
1922 | if (newsp->req && newsp->req->saidx.src.ss_family) { | |
1923 | struct sockaddr *sa; | |
1924 | sa = (struct sockaddr *)(src0 + 1); | |
1925 | if (sa->sa_family != newsp->req->saidx.src.ss_family) { | |
1926 | keydb_delsecpolicy(newsp); | |
1927 | return key_senderror(so, m, EINVAL); | |
1928 | } | |
1929 | } | |
1930 | if (newsp->req && newsp->req->saidx.dst.ss_family) { | |
1931 | struct sockaddr *sa; | |
1932 | sa = (struct sockaddr *)(dst0 + 1); | |
1933 | if (sa->sa_family != newsp->req->saidx.dst.ss_family) { | |
1934 | keydb_delsecpolicy(newsp); | |
1935 | return key_senderror(so, m, EINVAL); | |
1936 | } | |
1937 | } | |
1938 | #endif | |
1939 | ||
1940 | microtime(&tv); | |
1941 | newsp->created = tv.tv_sec; | |
1942 | newsp->lastused = tv.tv_sec; | |
1943 | newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; | |
1944 | newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; | |
1945 | ||
1946 | newsp->refcnt = 1; /* do not reclaim until I say I do */ | |
1947 | newsp->state = IPSEC_SPSTATE_ALIVE; | |
1948 | LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); | |
1949 | ||
1950 | /* Turn off the ipsec bypass */ | |
1951 | if (ipsec_bypass != 0) | |
1952 | ipsec_bypass = 0; | |
1953 | ||
1954 | /* delete the entry in spacqtree */ | |
1955 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { | |
1956 | struct secspacq *spacq; | |
1957 | if ((spacq = key_getspacq(&spidx)) != NULL) { | |
1958 | /* reset counter in order to deletion by timehandler. */ | |
1959 | microtime(&tv); | |
1960 | spacq->created = tv.tv_sec; | |
1961 | spacq->count = 0; | |
1962 | } | |
1963 | } | |
1964 | ||
1965 | { | |
1966 | struct mbuf *n, *mpolicy; | |
1967 | struct sadb_msg *newmsg; | |
1968 | int off; | |
1969 | ||
1970 | /* create new sadb_msg to reply. */ | |
1971 | if (lft) { | |
1972 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, | |
1973 | SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, | |
1974 | SADB_EXT_ADDRESS_DST}; | |
1975 | n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems)/sizeof(int), mbufItems); | |
1976 | } else { | |
1977 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, | |
1978 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; | |
1979 | n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems)/sizeof(int), mbufItems); | |
1980 | } | |
1981 | if (!n) | |
1982 | return key_senderror(so, m, ENOBUFS); | |
1983 | ||
1984 | if (n->m_len < sizeof(*newmsg)) { | |
1985 | n = m_pullup(n, sizeof(*newmsg)); | |
1986 | if (!n) | |
1987 | return key_senderror(so, m, ENOBUFS); | |
1988 | } | |
1989 | newmsg = mtod(n, struct sadb_msg *); | |
1990 | newmsg->sadb_msg_errno = 0; | |
1991 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
1992 | ||
1993 | off = 0; | |
1994 | mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), | |
1995 | sizeof(*xpl), &off); | |
1996 | if (mpolicy == NULL) { | |
1997 | /* n is already freed */ | |
1998 | return key_senderror(so, m, ENOBUFS); | |
1999 | } | |
2000 | xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); | |
2001 | if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { | |
2002 | m_freem(n); | |
2003 | return key_senderror(so, m, EINVAL); | |
2004 | } | |
2005 | xpl->sadb_x_policy_id = newsp->id; | |
2006 | ||
2007 | m_freem(m); | |
2008 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | /* | |
2013 | * get new policy id. | |
2014 | * OUT: | |
2015 | * 0: failure. | |
2016 | * others: success. | |
2017 | */ | |
2018 | static u_int32_t | |
2019 | key_getnewspid() | |
2020 | { | |
2021 | u_int32_t newid = 0; | |
2022 | int count = key_spi_trycnt; /* XXX */ | |
2023 | struct secpolicy *sp; | |
2024 | ||
2025 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2026 | ||
2027 | /* when requesting to allocate spi ranged */ | |
2028 | while (count--) { | |
2029 | newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); | |
2030 | ||
2031 | if ((sp = key_getspbyid(newid)) == NULL) | |
2032 | break; | |
2033 | ||
2034 | key_freesp(sp); | |
2035 | } | |
2036 | ||
2037 | if (count == 0 || newid == 0) { | |
2038 | ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n")); | |
2039 | return 0; | |
2040 | } | |
2041 | ||
2042 | return newid; | |
2043 | } | |
2044 | ||
2045 | /* | |
2046 | * SADB_SPDDELETE processing | |
2047 | * receive | |
2048 | * <base, address(SD), policy(*)> | |
2049 | * from the user(?), and set SADB_SASTATE_DEAD, | |
2050 | * and send, | |
2051 | * <base, address(SD), policy(*)> | |
2052 | * to the ikmpd. | |
2053 | * policy(*) including direction of policy. | |
2054 | * | |
2055 | * m will always be freed. | |
2056 | */ | |
2057 | static int | |
2058 | key_spddelete(so, m, mhp) | |
2059 | struct socket *so; | |
2060 | struct mbuf *m; | |
2061 | const struct sadb_msghdr *mhp; | |
2062 | { | |
2063 | struct sadb_address *src0, *dst0; | |
2064 | struct sadb_x_policy *xpl0; | |
2065 | struct secpolicyindex spidx; | |
2066 | struct secpolicy *sp; | |
2067 | ||
2068 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2069 | ||
2070 | /* sanity check */ | |
2071 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
2072 | panic("key_spddelete: NULL pointer is passed.\n"); | |
2073 | ||
2074 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
2075 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || | |
2076 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { | |
2077 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); | |
2078 | return key_senderror(so, m, EINVAL); | |
2079 | } | |
2080 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
2081 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || | |
2082 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { | |
2083 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); | |
2084 | return key_senderror(so, m, EINVAL); | |
2085 | } | |
2086 | ||
2087 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; | |
2088 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; | |
2089 | xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; | |
2090 | ||
2091 | /* make secindex */ | |
2092 | /* XXX boundary check against sa_len */ | |
2093 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, | |
2094 | src0 + 1, | |
2095 | dst0 + 1, | |
2096 | src0->sadb_address_prefixlen, | |
2097 | dst0->sadb_address_prefixlen, | |
2098 | src0->sadb_address_proto, | |
2099 | &spidx); | |
2100 | ||
2101 | /* checking the direciton. */ | |
2102 | switch (xpl0->sadb_x_policy_dir) { | |
2103 | case IPSEC_DIR_INBOUND: | |
2104 | case IPSEC_DIR_OUTBOUND: | |
2105 | break; | |
2106 | default: | |
2107 | ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n")); | |
2108 | return key_senderror(so, m, EINVAL); | |
2109 | } | |
2110 | ||
2111 | /* Is there SP in SPD ? */ | |
2112 | if ((sp = key_getsp(&spidx)) == NULL) { | |
2113 | ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n")); | |
2114 | return key_senderror(so, m, EINVAL); | |
2115 | } | |
2116 | ||
2117 | /* save policy id to buffer to be returned. */ | |
2118 | xpl0->sadb_x_policy_id = sp->id; | |
2119 | ||
2120 | sp->state = IPSEC_SPSTATE_DEAD; | |
2121 | key_freesp(sp); | |
2122 | ||
2123 | { | |
2124 | struct mbuf *n; | |
2125 | struct sadb_msg *newmsg; | |
2126 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, | |
2127 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; | |
2128 | ||
2129 | /* create new sadb_msg to reply. */ | |
2130 | n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems)/sizeof(int), mbufItems); | |
2131 | if (!n) | |
2132 | return key_senderror(so, m, ENOBUFS); | |
2133 | ||
2134 | newmsg = mtod(n, struct sadb_msg *); | |
2135 | newmsg->sadb_msg_errno = 0; | |
2136 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
2137 | ||
2138 | m_freem(m); | |
2139 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
2140 | } | |
2141 | } | |
2142 | ||
2143 | /* | |
2144 | * SADB_SPDDELETE2 processing | |
2145 | * receive | |
2146 | * <base, policy(*)> | |
2147 | * from the user(?), and set SADB_SASTATE_DEAD, | |
2148 | * and send, | |
2149 | * <base, policy(*)> | |
2150 | * to the ikmpd. | |
2151 | * policy(*) including direction of policy. | |
2152 | * | |
2153 | * m will always be freed. | |
2154 | */ | |
2155 | static int | |
2156 | key_spddelete2(so, m, mhp) | |
2157 | struct socket *so; | |
2158 | struct mbuf *m; | |
2159 | const struct sadb_msghdr *mhp; | |
2160 | { | |
2161 | u_int32_t id; | |
2162 | struct secpolicy *sp; | |
2163 | ||
2164 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2165 | ||
2166 | /* sanity check */ | |
2167 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
2168 | panic("key_spddelete2: NULL pointer is passed.\n"); | |
2169 | ||
2170 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || | |
2171 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { | |
2172 | ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n")); | |
2173 | key_senderror(so, m, EINVAL); | |
2174 | return 0; | |
2175 | } | |
2176 | ||
2177 | id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; | |
2178 | ||
2179 | /* Is there SP in SPD ? */ | |
2180 | if ((sp = key_getspbyid(id)) == NULL) { | |
2181 | ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id)); | |
2182 | key_senderror(so, m, EINVAL); | |
2183 | } | |
2184 | ||
2185 | sp->state = IPSEC_SPSTATE_DEAD; | |
2186 | key_freesp(sp); | |
2187 | ||
2188 | { | |
2189 | struct mbuf *n, *nn; | |
2190 | struct sadb_msg *newmsg; | |
2191 | int off, len; | |
2192 | ||
2193 | /* create new sadb_msg to reply. */ | |
2194 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
2195 | ||
2196 | if (len > MCLBYTES) | |
2197 | return key_senderror(so, m, ENOBUFS); | |
2198 | MGETHDR(n, M_DONTWAIT, MT_DATA); | |
2199 | if (n && len > MHLEN) { | |
2200 | MCLGET(n, M_DONTWAIT); | |
2201 | if ((n->m_flags & M_EXT) == 0) { | |
2202 | m_freem(n); | |
2203 | n = NULL; | |
2204 | } | |
2205 | } | |
2206 | if (!n) | |
2207 | return key_senderror(so, m, ENOBUFS); | |
2208 | ||
2209 | n->m_len = len; | |
2210 | n->m_next = NULL; | |
2211 | off = 0; | |
2212 | ||
2213 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); | |
2214 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
2215 | ||
2216 | #if DIAGNOSTIC | |
2217 | if (off != len) | |
2218 | panic("length inconsistency in key_spddelete2"); | |
2219 | #endif | |
2220 | ||
2221 | n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], | |
2222 | mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); | |
2223 | if (!n->m_next) { | |
2224 | m_freem(n); | |
2225 | return key_senderror(so, m, ENOBUFS); | |
2226 | } | |
2227 | ||
2228 | n->m_pkthdr.len = 0; | |
2229 | for (nn = n; nn; nn = nn->m_next) | |
2230 | n->m_pkthdr.len += nn->m_len; | |
2231 | ||
2232 | newmsg = mtod(n, struct sadb_msg *); | |
2233 | newmsg->sadb_msg_errno = 0; | |
2234 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
2235 | ||
2236 | m_freem(m); | |
2237 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
2238 | } | |
2239 | } | |
2240 | ||
2241 | /* | |
2242 | * SADB_X_GET processing | |
2243 | * receive | |
2244 | * <base, policy(*)> | |
2245 | * from the user(?), | |
2246 | * and send, | |
2247 | * <base, address(SD), policy> | |
2248 | * to the ikmpd. | |
2249 | * policy(*) including direction of policy. | |
2250 | * | |
2251 | * m will always be freed. | |
2252 | */ | |
2253 | static int | |
2254 | key_spdget(so, m, mhp) | |
2255 | struct socket *so; | |
2256 | struct mbuf *m; | |
2257 | const struct sadb_msghdr *mhp; | |
2258 | { | |
2259 | u_int32_t id; | |
2260 | struct secpolicy *sp; | |
2261 | struct mbuf *n; | |
2262 | ||
2263 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2264 | ||
2265 | /* sanity check */ | |
2266 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
2267 | panic("key_spdget: NULL pointer is passed.\n"); | |
2268 | ||
2269 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || | |
2270 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { | |
2271 | ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n")); | |
2272 | return key_senderror(so, m, EINVAL); | |
2273 | } | |
2274 | ||
2275 | id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; | |
2276 | ||
2277 | /* Is there SP in SPD ? */ | |
2278 | if ((sp = key_getspbyid(id)) == NULL) { | |
2279 | ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id)); | |
2280 | return key_senderror(so, m, ENOENT); | |
2281 | } | |
2282 | ||
2283 | n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); | |
2284 | if (n != NULL) { | |
2285 | m_freem(m); | |
2286 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); | |
2287 | } else | |
2288 | return key_senderror(so, m, ENOBUFS); | |
2289 | } | |
2290 | ||
2291 | /* | |
2292 | * SADB_X_SPDACQUIRE processing. | |
2293 | * Acquire policy and SA(s) for a *OUTBOUND* packet. | |
2294 | * send | |
2295 | * <base, policy(*)> | |
2296 | * to KMD, and expect to receive | |
2297 | * <base> with SADB_X_SPDACQUIRE if error occurred, | |
2298 | * or | |
2299 | * <base, policy> | |
2300 | * with SADB_X_SPDUPDATE from KMD by PF_KEY. | |
2301 | * policy(*) is without policy requests. | |
2302 | * | |
2303 | * 0 : succeed | |
2304 | * others: error number | |
2305 | */ | |
2306 | int | |
2307 | key_spdacquire(sp) | |
2308 | struct secpolicy *sp; | |
2309 | { | |
2310 | struct mbuf *result = NULL, *m; | |
2311 | struct secspacq *newspacq; | |
2312 | int error; | |
2313 | ||
2314 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2315 | ||
2316 | /* sanity check */ | |
2317 | if (sp == NULL) | |
2318 | panic("key_spdacquire: NULL pointer is passed.\n"); | |
2319 | if (sp->req != NULL) | |
2320 | panic("key_spdacquire: called but there is request.\n"); | |
2321 | if (sp->policy != IPSEC_POLICY_IPSEC) | |
2322 | panic("key_spdacquire: policy mismathed. IPsec is expected.\n"); | |
2323 | ||
2324 | /* get a entry to check whether sent message or not. */ | |
2325 | if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { | |
2326 | if (key_blockacq_count < newspacq->count) { | |
2327 | /* reset counter and do send message. */ | |
2328 | newspacq->count = 0; | |
2329 | } else { | |
2330 | /* increment counter and do nothing. */ | |
2331 | newspacq->count++; | |
2332 | return 0; | |
2333 | } | |
2334 | } else { | |
2335 | /* make new entry for blocking to send SADB_ACQUIRE. */ | |
2336 | if ((newspacq = key_newspacq(&sp->spidx)) == NULL) | |
2337 | return ENOBUFS; | |
2338 | ||
2339 | /* add to acqtree */ | |
2340 | LIST_INSERT_HEAD(&spacqtree, newspacq, chain); | |
2341 | } | |
2342 | ||
2343 | /* create new sadb_msg to reply. */ | |
2344 | m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); | |
2345 | if (!m) { | |
2346 | error = ENOBUFS; | |
2347 | goto fail; | |
2348 | } | |
2349 | result = m; | |
2350 | ||
2351 | result->m_pkthdr.len = 0; | |
2352 | for (m = result; m; m = m->m_next) | |
2353 | result->m_pkthdr.len += m->m_len; | |
2354 | ||
2355 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
2356 | PFKEY_UNIT64(result->m_pkthdr.len); | |
2357 | ||
2358 | return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); | |
2359 | ||
2360 | fail: | |
2361 | if (result) | |
2362 | m_freem(result); | |
2363 | return error; | |
2364 | } | |
2365 | ||
2366 | /* | |
2367 | * SADB_SPDFLUSH processing | |
2368 | * receive | |
2369 | * <base> | |
2370 | * from the user, and free all entries in secpctree. | |
2371 | * and send, | |
2372 | * <base> | |
2373 | * to the user. | |
2374 | * NOTE: what to do is only marking SADB_SASTATE_DEAD. | |
2375 | * | |
2376 | * m will always be freed. | |
2377 | */ | |
2378 | static int | |
2379 | key_spdflush(so, m, mhp) | |
2380 | struct socket *so; | |
2381 | struct mbuf *m; | |
2382 | const struct sadb_msghdr *mhp; | |
2383 | { | |
2384 | struct sadb_msg *newmsg; | |
2385 | struct secpolicy *sp; | |
2386 | u_int dir; | |
2387 | ||
2388 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2389 | ||
2390 | /* sanity check */ | |
2391 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
2392 | panic("key_spdflush: NULL pointer is passed.\n"); | |
2393 | ||
2394 | if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) | |
2395 | return key_senderror(so, m, EINVAL); | |
2396 | ||
2397 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { | |
2398 | LIST_FOREACH(sp, &sptree[dir], chain) { | |
2399 | sp->state = IPSEC_SPSTATE_DEAD; | |
2400 | } | |
2401 | } | |
2402 | ||
2403 | if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { | |
2404 | ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n")); | |
2405 | return key_senderror(so, m, ENOBUFS); | |
2406 | } | |
2407 | ||
2408 | if (m->m_next) | |
2409 | m_freem(m->m_next); | |
2410 | m->m_next = NULL; | |
2411 | m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
2412 | newmsg = mtod(m, struct sadb_msg *); | |
2413 | newmsg->sadb_msg_errno = 0; | |
2414 | newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); | |
2415 | ||
2416 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); | |
2417 | } | |
2418 | ||
2419 | /* | |
2420 | * SADB_SPDDUMP processing | |
2421 | * receive | |
2422 | * <base> | |
2423 | * from the user, and dump all SP leaves | |
2424 | * and send, | |
2425 | * <base> ..... | |
2426 | * to the ikmpd. | |
2427 | * | |
2428 | * m will always be freed. | |
2429 | */ | |
2430 | static int | |
2431 | key_spddump(so, m, mhp) | |
2432 | struct socket *so; | |
2433 | struct mbuf *m; | |
2434 | const struct sadb_msghdr *mhp; | |
2435 | { | |
2436 | struct secpolicy *sp; | |
2437 | int cnt; | |
2438 | u_int dir; | |
2439 | struct mbuf *n; | |
2440 | ||
2441 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2442 | ||
2443 | /* sanity check */ | |
2444 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
2445 | panic("key_spddump: NULL pointer is passed.\n"); | |
2446 | ||
2447 | /* search SPD entry and get buffer size. */ | |
2448 | cnt = 0; | |
2449 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { | |
2450 | LIST_FOREACH(sp, &sptree[dir], chain) { | |
2451 | cnt++; | |
2452 | } | |
2453 | } | |
2454 | ||
2455 | if (cnt == 0) | |
2456 | return key_senderror(so, m, ENOENT); | |
2457 | ||
2458 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { | |
2459 | LIST_FOREACH(sp, &sptree[dir], chain) { | |
2460 | --cnt; | |
2461 | n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, | |
2462 | mhp->msg->sadb_msg_pid); | |
2463 | ||
2464 | if (n) | |
2465 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); | |
2466 | } | |
2467 | } | |
2468 | ||
2469 | m_freem(m); | |
2470 | return 0; | |
2471 | } | |
2472 | ||
2473 | static struct mbuf * | |
2474 | key_setdumpsp(sp, type, seq, pid) | |
2475 | struct secpolicy *sp; | |
2476 | u_int8_t type; | |
2477 | u_int32_t seq, pid; | |
2478 | { | |
2479 | struct mbuf *result = NULL, *m; | |
2480 | ||
2481 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2482 | ||
2483 | m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); | |
2484 | if (!m) | |
2485 | goto fail; | |
2486 | result = m; | |
2487 | ||
2488 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
2489 | (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, | |
2490 | sp->spidx.ul_proto); | |
2491 | if (!m) | |
2492 | goto fail; | |
2493 | m_cat(result, m); | |
2494 | ||
2495 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
2496 | (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, | |
2497 | sp->spidx.ul_proto); | |
2498 | if (!m) | |
2499 | goto fail; | |
2500 | m_cat(result, m); | |
2501 | ||
2502 | m = key_sp2msg(sp); | |
2503 | if (!m) | |
2504 | goto fail; | |
2505 | m_cat(result, m); | |
2506 | ||
2507 | if ((result->m_flags & M_PKTHDR) == 0) | |
2508 | goto fail; | |
2509 | ||
2510 | if (result->m_len < sizeof(struct sadb_msg)) { | |
2511 | result = m_pullup(result, sizeof(struct sadb_msg)); | |
2512 | if (result == NULL) | |
2513 | goto fail; | |
2514 | } | |
2515 | ||
2516 | result->m_pkthdr.len = 0; | |
2517 | for (m = result; m; m = m->m_next) | |
2518 | result->m_pkthdr.len += m->m_len; | |
2519 | ||
2520 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
2521 | PFKEY_UNIT64(result->m_pkthdr.len); | |
2522 | ||
2523 | return result; | |
2524 | ||
2525 | fail: | |
2526 | m_freem(result); | |
2527 | return NULL; | |
2528 | } | |
2529 | ||
2530 | /* | |
2531 | * get PFKEY message length for security policy and request. | |
2532 | */ | |
2533 | static u_int | |
2534 | key_getspreqmsglen(sp) | |
2535 | struct secpolicy *sp; | |
2536 | { | |
2537 | u_int tlen; | |
2538 | ||
2539 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2540 | ||
2541 | tlen = sizeof(struct sadb_x_policy); | |
2542 | ||
2543 | /* if is the policy for ipsec ? */ | |
2544 | if (sp->policy != IPSEC_POLICY_IPSEC) | |
2545 | return tlen; | |
2546 | ||
2547 | /* get length of ipsec requests */ | |
2548 | { | |
2549 | struct ipsecrequest *isr; | |
2550 | int len; | |
2551 | ||
2552 | for (isr = sp->req; isr != NULL; isr = isr->next) { | |
2553 | len = sizeof(struct sadb_x_ipsecrequest) | |
2554 | + isr->saidx.src.ss_len | |
2555 | + isr->saidx.dst.ss_len; | |
2556 | ||
2557 | tlen += PFKEY_ALIGN8(len); | |
2558 | } | |
2559 | } | |
2560 | ||
2561 | return tlen; | |
2562 | } | |
2563 | ||
2564 | /* | |
2565 | * SADB_SPDEXPIRE processing | |
2566 | * send | |
2567 | * <base, address(SD), lifetime(CH), policy> | |
2568 | * to KMD by PF_KEY. | |
2569 | * | |
2570 | * OUT: 0 : succeed | |
2571 | * others : error number | |
2572 | */ | |
2573 | static int | |
2574 | key_spdexpire(sp) | |
2575 | struct secpolicy *sp; | |
2576 | { | |
2577 | int s; | |
2578 | struct mbuf *result = NULL, *m; | |
2579 | int len; | |
2580 | int error = -1; | |
2581 | struct sadb_lifetime *lt; | |
2582 | ||
2583 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2584 | ||
2585 | /* sanity check */ | |
2586 | if (sp == NULL) | |
2587 | panic("key_spdexpire: NULL pointer is passed.\n"); | |
2588 | ||
2589 | /* set msg header */ | |
2590 | m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); | |
2591 | if (!m) { | |
2592 | error = ENOBUFS; | |
2593 | goto fail; | |
2594 | } | |
2595 | result = m; | |
2596 | ||
2597 | /* create lifetime extension (current and hard) */ | |
2598 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; | |
2599 | m = key_alloc_mbuf(len); | |
2600 | if (!m || m->m_next) { /*XXX*/ | |
2601 | if (m) | |
2602 | m_freem(m); | |
2603 | error = ENOBUFS; | |
2604 | goto fail; | |
2605 | } | |
2606 | bzero(mtod(m, caddr_t), len); | |
2607 | lt = mtod(m, struct sadb_lifetime *); | |
2608 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); | |
2609 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; | |
2610 | lt->sadb_lifetime_allocations = 0; | |
2611 | lt->sadb_lifetime_bytes = 0; | |
2612 | lt->sadb_lifetime_addtime = sp->created; | |
2613 | lt->sadb_lifetime_usetime = sp->lastused; | |
2614 | lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); | |
2615 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); | |
2616 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; | |
2617 | lt->sadb_lifetime_allocations = 0; | |
2618 | lt->sadb_lifetime_bytes = 0; | |
2619 | lt->sadb_lifetime_addtime = sp->lifetime; | |
2620 | lt->sadb_lifetime_usetime = sp->validtime; | |
2621 | m_cat(result, m); | |
2622 | ||
2623 | /* set sadb_address for source */ | |
2624 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
2625 | (struct sockaddr *)&sp->spidx.src, | |
2626 | sp->spidx.prefs, sp->spidx.ul_proto); | |
2627 | if (!m) { | |
2628 | error = ENOBUFS; | |
2629 | goto fail; | |
2630 | } | |
2631 | m_cat(result, m); | |
2632 | ||
2633 | /* set sadb_address for destination */ | |
2634 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
2635 | (struct sockaddr *)&sp->spidx.dst, | |
2636 | sp->spidx.prefd, sp->spidx.ul_proto); | |
2637 | if (!m) { | |
2638 | error = ENOBUFS; | |
2639 | goto fail; | |
2640 | } | |
2641 | m_cat(result, m); | |
2642 | ||
2643 | /* set secpolicy */ | |
2644 | m = key_sp2msg(sp); | |
2645 | if (!m) { | |
2646 | error = ENOBUFS; | |
2647 | goto fail; | |
2648 | } | |
2649 | m_cat(result, m); | |
2650 | ||
2651 | if ((result->m_flags & M_PKTHDR) == 0) { | |
2652 | error = EINVAL; | |
2653 | goto fail; | |
2654 | } | |
2655 | ||
2656 | if (result->m_len < sizeof(struct sadb_msg)) { | |
2657 | result = m_pullup(result, sizeof(struct sadb_msg)); | |
2658 | if (result == NULL) { | |
2659 | error = ENOBUFS; | |
2660 | goto fail; | |
2661 | } | |
2662 | } | |
2663 | ||
2664 | result->m_pkthdr.len = 0; | |
2665 | for (m = result; m; m = m->m_next) | |
2666 | result->m_pkthdr.len += m->m_len; | |
2667 | ||
2668 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
2669 | PFKEY_UNIT64(result->m_pkthdr.len); | |
2670 | ||
2671 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); | |
2672 | ||
2673 | fail: | |
2674 | if (result) | |
2675 | m_freem(result); | |
2676 | return error; | |
2677 | } | |
2678 | ||
2679 | /* %%% SAD management */ | |
2680 | /* | |
2681 | * allocating a memory for new SA head, and copy from the values of mhp. | |
2682 | * OUT: NULL : failure due to the lack of memory. | |
2683 | * others : pointer to new SA head. | |
2684 | */ | |
2685 | static struct secashead * | |
2686 | key_newsah(saidx) | |
2687 | struct secasindex *saidx; | |
2688 | { | |
2689 | struct secashead *newsah; | |
2690 | ||
2691 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2692 | ||
2693 | /* sanity check */ | |
2694 | if (saidx == NULL) | |
2695 | panic("key_newsaidx: NULL pointer is passed.\n"); | |
2696 | ||
2697 | newsah = keydb_newsecashead(); | |
2698 | if (newsah == NULL) | |
2699 | return NULL; | |
2700 | ||
2701 | bcopy(saidx, &newsah->saidx, sizeof(newsah->saidx)); | |
2702 | ||
2703 | /* add to saidxtree */ | |
2704 | newsah->state = SADB_SASTATE_MATURE; | |
2705 | LIST_INSERT_HEAD(&sahtree, newsah, chain); | |
2706 | ||
2707 | return(newsah); | |
2708 | } | |
2709 | ||
2710 | /* | |
2711 | * delete SA index and all SA registerd. | |
2712 | */ | |
2713 | static void | |
2714 | key_delsah(sah) | |
2715 | struct secashead *sah; | |
2716 | { | |
2717 | struct secasvar *sav, *nextsav; | |
2718 | u_int stateidx, state; | |
2719 | int s; | |
2720 | int zombie = 0; | |
2721 | ||
2722 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2723 | ||
2724 | /* sanity check */ | |
2725 | if (sah == NULL) | |
2726 | panic("key_delsah: NULL pointer is passed.\n"); | |
2727 | ||
2728 | s = splnet(); /*called from softclock()*/ | |
2729 | ||
2730 | /* searching all SA registerd in the secindex. */ | |
2731 | for (stateidx = 0; | |
2732 | stateidx < _ARRAYLEN(saorder_state_any); | |
2733 | stateidx++) { | |
2734 | ||
2735 | state = saorder_state_any[stateidx]; | |
2736 | for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); | |
2737 | sav != NULL; | |
2738 | sav = nextsav) { | |
2739 | ||
2740 | nextsav = LIST_NEXT(sav, chain); | |
2741 | ||
2742 | if (sav->refcnt > 0) { | |
2743 | /* give up to delete this sa */ | |
2744 | zombie++; | |
2745 | continue; | |
2746 | } | |
2747 | ||
2748 | /* sanity check */ | |
2749 | KEY_CHKSASTATE(state, sav->state, "key_delsah"); | |
2750 | ||
2751 | key_freesav(sav); | |
2752 | ||
2753 | /* remove back pointer */ | |
2754 | sav->sah = NULL; | |
2755 | sav = NULL; | |
2756 | } | |
2757 | } | |
2758 | ||
2759 | /* don't delete sah only if there are savs. */ | |
2760 | if (zombie) { | |
2761 | splx(s); | |
2762 | return; | |
2763 | } | |
2764 | ||
2765 | if (sah->sa_route.ro_rt) { | |
2766 | rtfree(sah->sa_route.ro_rt); | |
2767 | sah->sa_route.ro_rt = (struct rtentry *)NULL; | |
2768 | } | |
2769 | ||
2770 | /* remove from tree of SA index */ | |
2771 | if (__LIST_CHAINED(sah)) | |
2772 | LIST_REMOVE(sah, chain); | |
2773 | ||
2774 | KFREE(sah); | |
2775 | ||
2776 | splx(s); | |
2777 | return; | |
2778 | } | |
2779 | ||
2780 | /* | |
2781 | * allocating a new SA with LARVAL state. key_add() and key_getspi() call, | |
2782 | * and copy the values of mhp into new buffer. | |
2783 | * When SAD message type is GETSPI: | |
2784 | * to set sequence number from acq_seq++, | |
2785 | * to set zero to SPI. | |
2786 | * not to call key_setsava(). | |
2787 | * OUT: NULL : fail | |
2788 | * others : pointer to new secasvar. | |
2789 | * | |
2790 | * does not modify mbuf. does not free mbuf on error. | |
2791 | */ | |
2792 | static struct secasvar * | |
2793 | key_newsav(m, mhp, sah, errp) | |
2794 | struct mbuf *m; | |
2795 | const struct sadb_msghdr *mhp; | |
2796 | struct secashead *sah; | |
2797 | int *errp; | |
2798 | { | |
2799 | struct secasvar *newsav; | |
2800 | const struct sadb_sa *xsa; | |
2801 | ||
2802 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2803 | ||
2804 | /* sanity check */ | |
2805 | if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) | |
2806 | panic("key_newsa: NULL pointer is passed.\n"); | |
2807 | ||
2808 | KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar)); | |
2809 | if (newsav == NULL) { | |
2810 | ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n")); | |
2811 | *errp = ENOBUFS; | |
2812 | return NULL; | |
2813 | } | |
2814 | bzero((caddr_t)newsav, sizeof(struct secasvar)); | |
2815 | ||
2816 | switch (mhp->msg->sadb_msg_type) { | |
2817 | case SADB_GETSPI: | |
2818 | key_setspi(newsav, 0); | |
2819 | ||
2820 | #if IPSEC_DOSEQCHECK | |
2821 | /* sync sequence number */ | |
2822 | if (mhp->msg->sadb_msg_seq == 0) | |
2823 | newsav->seq = | |
2824 | (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); | |
2825 | else | |
2826 | #endif | |
2827 | newsav->seq = mhp->msg->sadb_msg_seq; | |
2828 | break; | |
2829 | ||
2830 | case SADB_ADD: | |
2831 | /* sanity check */ | |
2832 | if (mhp->ext[SADB_EXT_SA] == NULL) { | |
2833 | KFREE(newsav); | |
2834 | ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n")); | |
2835 | *errp = EINVAL; | |
2836 | return NULL; | |
2837 | } | |
2838 | xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
2839 | key_setspi(newsav, xsa->sadb_sa_spi); | |
2840 | newsav->seq = mhp->msg->sadb_msg_seq; | |
2841 | break; | |
2842 | default: | |
2843 | KFREE(newsav); | |
2844 | *errp = EINVAL; | |
2845 | return NULL; | |
2846 | } | |
2847 | ||
2848 | /* copy sav values */ | |
2849 | if (mhp->msg->sadb_msg_type != SADB_GETSPI) { | |
2850 | *errp = key_setsaval(newsav, m, mhp); | |
2851 | if (*errp) { | |
2852 | if (newsav->spihash.le_prev || newsav->spihash.le_next) | |
2853 | LIST_REMOVE(newsav, spihash); | |
2854 | KFREE(newsav); | |
2855 | return NULL; | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | /* reset created */ | |
2860 | { | |
2861 | struct timeval tv; | |
2862 | microtime(&tv); | |
2863 | newsav->created = tv.tv_sec; | |
2864 | } | |
2865 | ||
2866 | newsav->pid = mhp->msg->sadb_msg_pid; | |
2867 | ||
2868 | /* add to satree */ | |
2869 | newsav->sah = sah; | |
2870 | newsav->refcnt = 1; | |
2871 | newsav->state = SADB_SASTATE_LARVAL; | |
2872 | LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, | |
2873 | secasvar, chain); | |
2874 | ||
2875 | return newsav; | |
2876 | } | |
2877 | ||
2878 | /* | |
2879 | * free() SA variable entry. | |
2880 | */ | |
2881 | static void | |
2882 | key_delsav(sav) | |
2883 | struct secasvar *sav; | |
2884 | { | |
2885 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2886 | ||
2887 | /* sanity check */ | |
2888 | if (sav == NULL) | |
2889 | panic("key_delsav: NULL pointer is passed.\n"); | |
2890 | ||
2891 | if (sav->refcnt > 0) | |
2892 | return; /* can't free */ | |
2893 | ||
2894 | /* remove from SA header */ | |
2895 | if (__LIST_CHAINED(sav)) | |
2896 | LIST_REMOVE(sav, chain); | |
2897 | ||
2898 | if (sav->spihash.le_prev || sav->spihash.le_next) | |
2899 | LIST_REMOVE(sav, spihash); | |
2900 | ||
2901 | if (sav->key_auth != NULL) { | |
2902 | bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); | |
2903 | KFREE(sav->key_auth); | |
2904 | sav->key_auth = NULL; | |
2905 | } | |
2906 | if (sav->key_enc != NULL) { | |
2907 | bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); | |
2908 | KFREE(sav->key_enc); | |
2909 | sav->key_enc = NULL; | |
2910 | } | |
2911 | if (sav->sched) { | |
2912 | bzero(sav->sched, sav->schedlen); | |
2913 | KFREE(sav->sched); | |
2914 | sav->sched = NULL; | |
2915 | } | |
2916 | if (sav->replay != NULL) { | |
2917 | keydb_delsecreplay(sav->replay); | |
2918 | sav->replay = NULL; | |
2919 | } | |
2920 | if (sav->lft_c != NULL) { | |
2921 | KFREE(sav->lft_c); | |
2922 | sav->lft_c = NULL; | |
2923 | } | |
2924 | if (sav->lft_h != NULL) { | |
2925 | KFREE(sav->lft_h); | |
2926 | sav->lft_h = NULL; | |
2927 | } | |
2928 | if (sav->lft_s != NULL) { | |
2929 | KFREE(sav->lft_s); | |
2930 | sav->lft_s = NULL; | |
2931 | } | |
2932 | if (sav->iv != NULL) { | |
2933 | KFREE(sav->iv); | |
2934 | sav->iv = NULL; | |
2935 | } | |
2936 | ||
2937 | KFREE(sav); | |
2938 | ||
2939 | return; | |
2940 | } | |
2941 | ||
2942 | /* | |
2943 | * search SAD. | |
2944 | * OUT: | |
2945 | * NULL : not found | |
2946 | * others : found, pointer to a SA. | |
2947 | */ | |
2948 | static struct secashead * | |
2949 | key_getsah(saidx) | |
2950 | struct secasindex *saidx; | |
2951 | { | |
2952 | struct secashead *sah; | |
2953 | ||
2954 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2955 | ||
2956 | LIST_FOREACH(sah, &sahtree, chain) { | |
2957 | if (sah->state == SADB_SASTATE_DEAD) | |
2958 | continue; | |
2959 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) | |
2960 | return sah; | |
2961 | } | |
2962 | ||
2963 | return NULL; | |
2964 | } | |
2965 | ||
2966 | /* | |
2967 | * check not to be duplicated SPI. | |
2968 | * NOTE: this function is too slow due to searching all SAD. | |
2969 | * OUT: | |
2970 | * NULL : not found | |
2971 | * others : found, pointer to a SA. | |
2972 | */ | |
2973 | static struct secasvar * | |
2974 | key_checkspidup(saidx, spi) | |
2975 | struct secasindex *saidx; | |
2976 | u_int32_t spi; | |
2977 | { | |
2978 | struct secasvar *sav; | |
2979 | u_int stateidx, state; | |
2980 | ||
2981 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
2982 | ||
2983 | /* check address family */ | |
2984 | if (saidx->src.ss_family != saidx->dst.ss_family) { | |
2985 | ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n")); | |
2986 | return NULL; | |
2987 | } | |
2988 | ||
2989 | /* check all SAD */ | |
2990 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { | |
2991 | if (sav->spi != spi) | |
2992 | continue; | |
2993 | for (stateidx = 0; | |
2994 | stateidx < _ARRAYLEN(saorder_state_alive); | |
2995 | stateidx++) { | |
2996 | state = saorder_state_alive[stateidx]; | |
2997 | if (sav->state == state && | |
2998 | key_ismyaddr((struct sockaddr *)&sav->sah->saidx.dst)) | |
2999 | return sav; | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | return NULL; | |
3004 | } | |
3005 | ||
3006 | static void | |
3007 | key_setspi(sav, spi) | |
3008 | struct secasvar *sav; | |
3009 | u_int32_t spi; | |
3010 | { | |
3011 | ||
3012 | sav->spi = spi; | |
3013 | if (sav->spihash.le_prev || sav->spihash.le_next) | |
3014 | LIST_REMOVE(sav, spihash); | |
3015 | LIST_INSERT_HEAD(&spihash[SPIHASH(spi)], sav, spihash); | |
3016 | } | |
3017 | ||
3018 | ||
3019 | /* | |
3020 | * search SAD litmited alive SA, protocol, SPI. | |
3021 | * OUT: | |
3022 | * NULL : not found | |
3023 | * others : found, pointer to a SA. | |
3024 | */ | |
3025 | static struct secasvar * | |
3026 | key_getsavbyspi(sah, spi) | |
3027 | struct secashead *sah; | |
3028 | u_int32_t spi; | |
3029 | { | |
3030 | struct secasvar *sav, *match; | |
3031 | u_int stateidx, state, matchidx; | |
3032 | ||
3033 | match = NULL; | |
3034 | matchidx = _ARRAYLEN(saorder_state_alive); | |
3035 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { | |
3036 | if (sav->spi != spi) | |
3037 | continue; | |
3038 | if (sav->sah != sah) | |
3039 | continue; | |
3040 | for (stateidx = 0; stateidx < matchidx; stateidx++) { | |
3041 | state = saorder_state_alive[stateidx]; | |
3042 | if (sav->state == state) { | |
3043 | match = sav; | |
3044 | matchidx = stateidx; | |
3045 | break; | |
3046 | } | |
3047 | } | |
3048 | } | |
3049 | ||
3050 | return match; | |
3051 | } | |
3052 | ||
3053 | /* | |
3054 | * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. | |
3055 | * You must update these if need. | |
3056 | * OUT: 0: success. | |
3057 | * !0: failure. | |
3058 | * | |
3059 | * does not modify mbuf. does not free mbuf on error. | |
3060 | */ | |
3061 | static int | |
3062 | key_setsaval(sav, m, mhp) | |
3063 | struct secasvar *sav; | |
3064 | struct mbuf *m; | |
3065 | const struct sadb_msghdr *mhp; | |
3066 | { | |
3067 | #if IPSEC_ESP | |
3068 | const struct esp_algorithm *algo; | |
3069 | #endif | |
3070 | int error = 0; | |
3071 | struct timeval tv; | |
3072 | ||
3073 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
3074 | ||
3075 | /* sanity check */ | |
3076 | if (m == NULL || mhp == NULL || mhp->msg == NULL) | |
3077 | panic("key_setsaval: NULL pointer is passed.\n"); | |
3078 | ||
3079 | /* initialization */ | |
3080 | sav->replay = NULL; | |
3081 | sav->key_auth = NULL; | |
3082 | sav->key_enc = NULL; | |
3083 | sav->sched = NULL; | |
3084 | sav->schedlen = 0; | |
3085 | sav->iv = NULL; | |
3086 | sav->lft_c = NULL; | |
3087 | sav->lft_h = NULL; | |
3088 | sav->lft_s = NULL; | |
3089 | sav->remote_ike_port = 0; | |
3090 | sav->natt_last_activity = natt_now; | |
3091 | ||
3092 | /* SA */ | |
3093 | if (mhp->ext[SADB_EXT_SA] != NULL) { | |
3094 | const struct sadb_sa *sa0; | |
3095 | ||
3096 | sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
3097 | if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { | |
3098 | ipseclog((LOG_DEBUG, "key_setsaval: invalid message size.\n")); | |
3099 | error = EINVAL; | |
3100 | goto fail; | |
3101 | } | |
3102 | ||
3103 | sav->alg_auth = sa0->sadb_sa_auth; | |
3104 | sav->alg_enc = sa0->sadb_sa_encrypt; | |
3105 | sav->flags = sa0->sadb_sa_flags; | |
3106 | ||
3107 | /* | |
3108 | * Verify that a nat-traversal port was specified if | |
3109 | * the nat-traversal flag is set. | |
3110 | */ | |
3111 | if ((sav->flags & SADB_X_EXT_NATT) != 0) { | |
3112 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa_2) || | |
3113 | ((struct sadb_sa_2*)(sa0))->sadb_sa_natt_port == 0) { | |
3114 | ipseclog((LOG_DEBUG, "key_setsaval: natt port not set.\n")); | |
3115 | error = EINVAL; | |
3116 | goto fail; | |
3117 | } | |
3118 | sav->remote_ike_port = ((struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; | |
3119 | } | |
3120 | ||
3121 | /* replay window */ | |
3122 | if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { | |
3123 | sav->replay = keydb_newsecreplay(sa0->sadb_sa_replay); | |
3124 | if (sav->replay == NULL) { | |
3125 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3126 | error = ENOBUFS; | |
3127 | goto fail; | |
3128 | } | |
3129 | } | |
3130 | } | |
3131 | ||
3132 | /* Authentication keys */ | |
3133 | if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { | |
3134 | const struct sadb_key *key0; | |
3135 | int len; | |
3136 | ||
3137 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; | |
3138 | len = mhp->extlen[SADB_EXT_KEY_AUTH]; | |
3139 | ||
3140 | error = 0; | |
3141 | if (len < sizeof(*key0)) { | |
3142 | ipseclog((LOG_DEBUG, "key_setsaval: invalid auth key ext len. len = %d\n", len)); | |
3143 | error = EINVAL; | |
3144 | goto fail; | |
3145 | } | |
3146 | switch (mhp->msg->sadb_msg_satype) { | |
3147 | case SADB_SATYPE_AH: | |
3148 | case SADB_SATYPE_ESP: | |
3149 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && | |
3150 | sav->alg_auth != SADB_X_AALG_NULL) | |
3151 | error = EINVAL; | |
3152 | break; | |
3153 | case SADB_X_SATYPE_IPCOMP: | |
3154 | default: | |
3155 | error = EINVAL; | |
3156 | break; | |
3157 | } | |
3158 | if (error) { | |
3159 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n")); | |
3160 | goto fail; | |
3161 | } | |
3162 | ||
3163 | sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); | |
3164 | if (sav->key_auth == NULL) { | |
3165 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3166 | error = ENOBUFS; | |
3167 | goto fail; | |
3168 | } | |
3169 | } | |
3170 | ||
3171 | /* Encryption key */ | |
3172 | if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { | |
3173 | const struct sadb_key *key0; | |
3174 | int len; | |
3175 | ||
3176 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; | |
3177 | len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; | |
3178 | ||
3179 | error = 0; | |
3180 | if (len < sizeof(*key0)) { | |
3181 | ipseclog((LOG_DEBUG, "key_setsaval: invalid encryption key ext len. len = %d\n", len)); | |
3182 | error = EINVAL; | |
3183 | goto fail; | |
3184 | } | |
3185 | switch (mhp->msg->sadb_msg_satype) { | |
3186 | case SADB_SATYPE_ESP: | |
3187 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && | |
3188 | sav->alg_enc != SADB_EALG_NULL) { | |
3189 | ipseclog((LOG_DEBUG, "key_setsaval: invalid ESP algorithm.\n")); | |
3190 | error = EINVAL; | |
3191 | break; | |
3192 | } | |
3193 | sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); | |
3194 | if (sav->key_enc == NULL) { | |
3195 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3196 | error = ENOBUFS; | |
3197 | goto fail; | |
3198 | } | |
3199 | break; | |
3200 | case SADB_X_SATYPE_IPCOMP: | |
3201 | if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) | |
3202 | error = EINVAL; | |
3203 | sav->key_enc = NULL; /*just in case*/ | |
3204 | break; | |
3205 | case SADB_SATYPE_AH: | |
3206 | default: | |
3207 | error = EINVAL; | |
3208 | break; | |
3209 | } | |
3210 | if (error) { | |
3211 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_enc value.\n")); | |
3212 | goto fail; | |
3213 | } | |
3214 | } | |
3215 | ||
3216 | /* set iv */ | |
3217 | sav->ivlen = 0; | |
3218 | ||
3219 | switch (mhp->msg->sadb_msg_satype) { | |
3220 | case SADB_SATYPE_ESP: | |
3221 | #if IPSEC_ESP | |
3222 | algo = esp_algorithm_lookup(sav->alg_enc); | |
3223 | if (algo && algo->ivlen) | |
3224 | sav->ivlen = (*algo->ivlen)(algo, sav); | |
3225 | if (sav->ivlen == 0) | |
3226 | break; | |
3227 | KMALLOC(sav->iv, caddr_t, sav->ivlen); | |
3228 | if (sav->iv == 0) { | |
3229 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3230 | error = ENOBUFS; | |
3231 | goto fail; | |
3232 | } | |
3233 | ||
3234 | /* initialize */ | |
3235 | key_randomfill(sav->iv, sav->ivlen); | |
3236 | #endif | |
3237 | break; | |
3238 | case SADB_SATYPE_AH: | |
3239 | case SADB_X_SATYPE_IPCOMP: | |
3240 | break; | |
3241 | default: | |
3242 | ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n")); | |
3243 | error = EINVAL; | |
3244 | goto fail; | |
3245 | } | |
3246 | ||
3247 | /* reset created */ | |
3248 | microtime(&tv); | |
3249 | sav->created = tv.tv_sec; | |
3250 | ||
3251 | /* make lifetime for CURRENT */ | |
3252 | KMALLOC(sav->lft_c, struct sadb_lifetime *, | |
3253 | sizeof(struct sadb_lifetime)); | |
3254 | if (sav->lft_c == NULL) { | |
3255 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3256 | error = ENOBUFS; | |
3257 | goto fail; | |
3258 | } | |
3259 | ||
3260 | microtime(&tv); | |
3261 | ||
3262 | sav->lft_c->sadb_lifetime_len = | |
3263 | PFKEY_UNIT64(sizeof(struct sadb_lifetime)); | |
3264 | sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; | |
3265 | sav->lft_c->sadb_lifetime_allocations = 0; | |
3266 | sav->lft_c->sadb_lifetime_bytes = 0; | |
3267 | sav->lft_c->sadb_lifetime_addtime = tv.tv_sec; | |
3268 | sav->lft_c->sadb_lifetime_usetime = 0; | |
3269 | ||
3270 | /* lifetimes for HARD and SOFT */ | |
3271 | { | |
3272 | const struct sadb_lifetime *lft0; | |
3273 | ||
3274 | lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; | |
3275 | if (lft0 != NULL) { | |
3276 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { | |
3277 | ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime ext len.\n")); | |
3278 | error = EINVAL; | |
3279 | goto fail; | |
3280 | } | |
3281 | sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, | |
3282 | sizeof(*lft0)); | |
3283 | if (sav->lft_h == NULL) { | |
3284 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3285 | error = ENOBUFS; | |
3286 | goto fail; | |
3287 | } | |
3288 | /* to be initialize ? */ | |
3289 | } | |
3290 | ||
3291 | lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; | |
3292 | if (lft0 != NULL) { | |
3293 | if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { | |
3294 | ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime ext len.\n")); | |
3295 | error = EINVAL; | |
3296 | goto fail; | |
3297 | } | |
3298 | sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, | |
3299 | sizeof(*lft0)); | |
3300 | if (sav->lft_s == NULL) { | |
3301 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); | |
3302 | error = ENOBUFS; | |
3303 | goto fail; | |
3304 | } | |
3305 | /* to be initialize ? */ | |
3306 | } | |
3307 | } | |
3308 | ||
3309 | return 0; | |
3310 | ||
3311 | fail: | |
3312 | /* initialization */ | |
3313 | if (sav->replay != NULL) { | |
3314 | keydb_delsecreplay(sav->replay); | |
3315 | sav->replay = NULL; | |
3316 | } | |
3317 | if (sav->key_auth != NULL) { | |
3318 | bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); | |
3319 | KFREE(sav->key_auth); | |
3320 | sav->key_auth = NULL; | |
3321 | } | |
3322 | if (sav->key_enc != NULL) { | |
3323 | bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); | |
3324 | KFREE(sav->key_enc); | |
3325 | sav->key_enc = NULL; | |
3326 | } | |
3327 | if (sav->sched) { | |
3328 | bzero(sav->sched, sav->schedlen); | |
3329 | KFREE(sav->sched); | |
3330 | sav->sched = NULL; | |
3331 | } | |
3332 | if (sav->iv != NULL) { | |
3333 | KFREE(sav->iv); | |
3334 | sav->iv = NULL; | |
3335 | } | |
3336 | if (sav->lft_c != NULL) { | |
3337 | KFREE(sav->lft_c); | |
3338 | sav->lft_c = NULL; | |
3339 | } | |
3340 | if (sav->lft_h != NULL) { | |
3341 | KFREE(sav->lft_h); | |
3342 | sav->lft_h = NULL; | |
3343 | } | |
3344 | if (sav->lft_s != NULL) { | |
3345 | KFREE(sav->lft_s); | |
3346 | sav->lft_s = NULL; | |
3347 | } | |
3348 | ||
3349 | return error; | |
3350 | } | |
3351 | ||
3352 | /* | |
3353 | * validation with a secasvar entry, and set SADB_SATYPE_MATURE. | |
3354 | * OUT: 0: valid | |
3355 | * other: errno | |
3356 | */ | |
3357 | static int | |
3358 | key_mature(sav) | |
3359 | struct secasvar *sav; | |
3360 | { | |
3361 | int mature; | |
3362 | int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ | |
3363 | int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ | |
3364 | ||
3365 | mature = 0; | |
3366 | ||
3367 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
3368 | ||
3369 | /* check SPI value */ | |
3370 | switch (sav->sah->saidx.proto) { | |
3371 | case IPPROTO_ESP: | |
3372 | case IPPROTO_AH: | |
3373 | if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) { | |
3374 | ipseclog((LOG_DEBUG, | |
3375 | "key_mature: illegal range of SPI %u.\n", | |
3376 | (u_int32_t)ntohl(sav->spi))); | |
3377 | return EINVAL; | |
3378 | } | |
3379 | break; | |
3380 | } | |
3381 | ||
3382 | /* check satype */ | |
3383 | switch (sav->sah->saidx.proto) { | |
3384 | case IPPROTO_ESP: | |
3385 | /* check flags */ | |
3386 | if ((sav->flags & SADB_X_EXT_OLD) | |
3387 | && (sav->flags & SADB_X_EXT_DERIV)) { | |
3388 | ipseclog((LOG_DEBUG, "key_mature: " | |
3389 | "invalid flag (derived) given to old-esp.\n")); | |
3390 | return EINVAL; | |
3391 | } | |
3392 | if (sav->alg_auth == SADB_AALG_NONE) | |
3393 | checkmask = 1; | |
3394 | else | |
3395 | checkmask = 3; | |
3396 | mustmask = 1; | |
3397 | break; | |
3398 | case IPPROTO_AH: | |
3399 | /* check flags */ | |
3400 | if (sav->flags & SADB_X_EXT_DERIV) { | |
3401 | ipseclog((LOG_DEBUG, "key_mature: " | |
3402 | "invalid flag (derived) given to AH SA.\n")); | |
3403 | return EINVAL; | |
3404 | } | |
3405 | if (sav->alg_enc != SADB_EALG_NONE) { | |
3406 | ipseclog((LOG_DEBUG, "key_mature: " | |
3407 | "protocol and algorithm mismated.\n")); | |
3408 | return(EINVAL); | |
3409 | } | |
3410 | checkmask = 2; | |
3411 | mustmask = 2; | |
3412 | break; | |
3413 | case IPPROTO_IPCOMP: | |
3414 | if (sav->alg_auth != SADB_AALG_NONE) { | |
3415 | ipseclog((LOG_DEBUG, "key_mature: " | |
3416 | "protocol and algorithm mismated.\n")); | |
3417 | return(EINVAL); | |
3418 | } | |
3419 | if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 | |
3420 | && ntohl(sav->spi) >= 0x10000) { | |
3421 | ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n")); | |
3422 | return(EINVAL); | |
3423 | } | |
3424 | checkmask = 4; | |
3425 | mustmask = 4; | |
3426 | break; | |
3427 | default: | |
3428 | ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n")); | |
3429 | return EPROTONOSUPPORT; | |
3430 | } | |
3431 | ||
3432 | /* check authentication algorithm */ | |
3433 | if ((checkmask & 2) != 0) { | |
3434 | const struct ah_algorithm *algo; | |
3435 | int keylen; | |
3436 | ||
3437 | algo = ah_algorithm_lookup(sav->alg_auth); | |
3438 | if (!algo) { | |
3439 | ipseclog((LOG_DEBUG,"key_mature: " | |
3440 | "unknown authentication algorithm.\n")); | |
3441 | return EINVAL; | |
3442 | } | |
3443 | ||
3444 | /* algorithm-dependent check */ | |
3445 | if (sav->key_auth) | |
3446 | keylen = sav->key_auth->sadb_key_bits; | |
3447 | else | |
3448 | keylen = 0; | |
3449 | if (keylen < algo->keymin || algo->keymax < keylen) { | |
3450 | ipseclog((LOG_DEBUG, | |
3451 | "key_mature: invalid AH key length %d " | |
3452 | "(%d-%d allowed)\n", | |
3453 | keylen, algo->keymin, algo->keymax)); | |
3454 | return EINVAL; | |
3455 | } | |
3456 | ||
3457 | if (algo->mature) { | |
3458 | if ((*algo->mature)(sav)) { | |
3459 | /* message generated in per-algorithm function*/ | |
3460 | return EINVAL; | |
3461 | } else | |
3462 | mature = SADB_SATYPE_AH; | |
3463 | } | |
3464 | ||
3465 | if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) { | |
3466 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n")); | |
3467 | return EINVAL; | |
3468 | } | |
3469 | } | |
3470 | ||
3471 | /* check encryption algorithm */ | |
3472 | if ((checkmask & 1) != 0) { | |
3473 | #if IPSEC_ESP | |
3474 | const struct esp_algorithm *algo; | |
3475 | int keylen; | |
3476 | ||
3477 | algo = esp_algorithm_lookup(sav->alg_enc); | |
3478 | if (!algo) { | |
3479 | ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n")); | |
3480 | return EINVAL; | |
3481 | } | |
3482 | ||
3483 | /* algorithm-dependent check */ | |
3484 | if (sav->key_enc) | |
3485 | keylen = sav->key_enc->sadb_key_bits; | |
3486 | else | |
3487 | keylen = 0; | |
3488 | if (keylen < algo->keymin || algo->keymax < keylen) { | |
3489 | ipseclog((LOG_DEBUG, | |
3490 | "key_mature: invalid ESP key length %d " | |
3491 | "(%d-%d allowed)\n", | |
3492 | keylen, algo->keymin, algo->keymax)); | |
3493 | return EINVAL; | |
3494 | } | |
3495 | ||
3496 | if (algo->mature) { | |
3497 | if ((*algo->mature)(sav)) { | |
3498 | /* message generated in per-algorithm function*/ | |
3499 | return EINVAL; | |
3500 | } else | |
3501 | mature = SADB_SATYPE_ESP; | |
3502 | } | |
3503 | ||
3504 | if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) { | |
3505 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n")); | |
3506 | return EINVAL; | |
3507 | } | |
3508 | #else /*IPSEC_ESP*/ | |
3509 | ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n")); | |
3510 | return EINVAL; | |
3511 | #endif | |
3512 | } | |
3513 | ||
3514 | /* check compression algorithm */ | |
3515 | if ((checkmask & 4) != 0) { | |
3516 | const struct ipcomp_algorithm *algo; | |
3517 | ||
3518 | /* algorithm-dependent check */ | |
3519 | algo = ipcomp_algorithm_lookup(sav->alg_enc); | |
3520 | if (!algo) { | |
3521 | ipseclog((LOG_DEBUG, "key_mature: unknown compression algorithm.\n")); | |
3522 | return EINVAL; | |
3523 | } | |
3524 | } | |
3525 | ||
3526 | key_sa_chgstate(sav, SADB_SASTATE_MATURE); | |
3527 | ||
3528 | return 0; | |
3529 | } | |
3530 | ||
3531 | /* | |
3532 | * subroutine for SADB_GET and SADB_DUMP. | |
3533 | */ | |
3534 | static struct mbuf * | |
3535 | key_setdumpsa(sav, type, satype, seq, pid) | |
3536 | struct secasvar *sav; | |
3537 | u_int8_t type, satype; | |
3538 | u_int32_t seq, pid; | |
3539 | { | |
3540 | struct mbuf *result = NULL, *tres = NULL, *m; | |
3541 | int l = 0; | |
3542 | int i; | |
3543 | void *p; | |
3544 | int dumporder[] = { | |
3545 | SADB_EXT_SA, SADB_X_EXT_SA2, | |
3546 | SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, | |
3547 | SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, | |
3548 | SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, | |
3549 | SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, | |
3550 | SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, | |
3551 | }; | |
3552 | ||
3553 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
3554 | ||
3555 | m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); | |
3556 | if (m == NULL) | |
3557 | goto fail; | |
3558 | result = m; | |
3559 | ||
3560 | for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { | |
3561 | m = NULL; | |
3562 | p = NULL; | |
3563 | switch (dumporder[i]) { | |
3564 | case SADB_EXT_SA: | |
3565 | m = key_setsadbsa(sav); | |
3566 | if (!m) | |
3567 | goto fail; | |
3568 | break; | |
3569 | ||
3570 | case SADB_X_EXT_SA2: | |
3571 | m = key_setsadbxsa2(sav->sah->saidx.mode, | |
3572 | sav->replay ? sav->replay->count : 0, | |
3573 | sav->sah->saidx.reqid); | |
3574 | if (!m) | |
3575 | goto fail; | |
3576 | break; | |
3577 | ||
3578 | case SADB_EXT_ADDRESS_SRC: | |
3579 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
3580 | (struct sockaddr *)&sav->sah->saidx.src, | |
3581 | FULLMASK, IPSEC_ULPROTO_ANY); | |
3582 | if (!m) | |
3583 | goto fail; | |
3584 | break; | |
3585 | ||
3586 | case SADB_EXT_ADDRESS_DST: | |
3587 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
3588 | (struct sockaddr *)&sav->sah->saidx.dst, | |
3589 | FULLMASK, IPSEC_ULPROTO_ANY); | |
3590 | if (!m) | |
3591 | goto fail; | |
3592 | break; | |
3593 | ||
3594 | case SADB_EXT_KEY_AUTH: | |
3595 | if (!sav->key_auth) | |
3596 | continue; | |
3597 | l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); | |
3598 | p = sav->key_auth; | |
3599 | break; | |
3600 | ||
3601 | case SADB_EXT_KEY_ENCRYPT: | |
3602 | if (!sav->key_enc) | |
3603 | continue; | |
3604 | l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); | |
3605 | p = sav->key_enc; | |
3606 | break; | |
3607 | ||
3608 | case SADB_EXT_LIFETIME_CURRENT: | |
3609 | if (!sav->lft_c) | |
3610 | continue; | |
3611 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); | |
3612 | p = sav->lft_c; | |
3613 | break; | |
3614 | ||
3615 | case SADB_EXT_LIFETIME_HARD: | |
3616 | if (!sav->lft_h) | |
3617 | continue; | |
3618 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); | |
3619 | p = sav->lft_h; | |
3620 | break; | |
3621 | ||
3622 | case SADB_EXT_LIFETIME_SOFT: | |
3623 | if (!sav->lft_s) | |
3624 | continue; | |
3625 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); | |
3626 | p = sav->lft_s; | |
3627 | break; | |
3628 | ||
3629 | case SADB_EXT_ADDRESS_PROXY: | |
3630 | case SADB_EXT_IDENTITY_SRC: | |
3631 | case SADB_EXT_IDENTITY_DST: | |
3632 | /* XXX: should we brought from SPD ? */ | |
3633 | case SADB_EXT_SENSITIVITY: | |
3634 | default: | |
3635 | continue; | |
3636 | } | |
3637 | ||
3638 | if ((!m && !p) || (m && p)) | |
3639 | goto fail; | |
3640 | if (p && tres) { | |
3641 | M_PREPEND(tres, l, M_DONTWAIT); | |
3642 | if (!tres) | |
3643 | goto fail; | |
3644 | bcopy(p, mtod(tres, caddr_t), l); | |
3645 | continue; | |
3646 | } | |
3647 | if (p) { | |
3648 | m = key_alloc_mbuf(l); | |
3649 | if (!m) | |
3650 | goto fail; | |
3651 | m_copyback(m, 0, l, p); | |
3652 | } | |
3653 | ||
3654 | if (tres) | |
3655 | m_cat(m, tres); | |
3656 | tres = m; | |
3657 | } | |
3658 | ||
3659 | m_cat(result, tres); | |
3660 | ||
3661 | if (result->m_len < sizeof(struct sadb_msg)) { | |
3662 | result = m_pullup(result, sizeof(struct sadb_msg)); | |
3663 | if (result == NULL) | |
3664 | goto fail; | |
3665 | } | |
3666 | ||
3667 | result->m_pkthdr.len = 0; | |
3668 | for (m = result; m; m = m->m_next) | |
3669 | result->m_pkthdr.len += m->m_len; | |
3670 | ||
3671 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
3672 | PFKEY_UNIT64(result->m_pkthdr.len); | |
3673 | ||
3674 | return result; | |
3675 | ||
3676 | fail: | |
3677 | m_freem(result); | |
3678 | m_freem(tres); | |
3679 | return NULL; | |
3680 | } | |
3681 | ||
3682 | /* | |
3683 | * set data into sadb_msg. | |
3684 | */ | |
3685 | static struct mbuf * | |
3686 | key_setsadbmsg(type, tlen, satype, seq, pid, reserved) | |
3687 | u_int8_t type, satype; | |
3688 | u_int16_t tlen; | |
3689 | u_int32_t seq; | |
3690 | pid_t pid; | |
3691 | u_int16_t reserved; | |
3692 | { | |
3693 | struct mbuf *m; | |
3694 | struct sadb_msg *p; | |
3695 | int len; | |
3696 | ||
3697 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
3698 | if (len > MCLBYTES) | |
3699 | return NULL; | |
3700 | MGETHDR(m, M_DONTWAIT, MT_DATA); | |
3701 | if (m && len > MHLEN) { | |
3702 | MCLGET(m, M_DONTWAIT); | |
3703 | if ((m->m_flags & M_EXT) == 0) { | |
3704 | m_freem(m); | |
3705 | m = NULL; | |
3706 | } | |
3707 | } | |
3708 | if (!m) | |
3709 | return NULL; | |
3710 | m->m_pkthdr.len = m->m_len = len; | |
3711 | m->m_next = NULL; | |
3712 | ||
3713 | p = mtod(m, struct sadb_msg *); | |
3714 | ||
3715 | bzero(p, len); | |
3716 | p->sadb_msg_version = PF_KEY_V2; | |
3717 | p->sadb_msg_type = type; | |
3718 | p->sadb_msg_errno = 0; | |
3719 | p->sadb_msg_satype = satype; | |
3720 | p->sadb_msg_len = PFKEY_UNIT64(tlen); | |
3721 | p->sadb_msg_reserved = reserved; | |
3722 | p->sadb_msg_seq = seq; | |
3723 | p->sadb_msg_pid = (u_int32_t)pid; | |
3724 | ||
3725 | return m; | |
3726 | } | |
3727 | ||
3728 | /* | |
3729 | * copy secasvar data into sadb_address. | |
3730 | */ | |
3731 | static struct mbuf * | |
3732 | key_setsadbsa(sav) | |
3733 | struct secasvar *sav; | |
3734 | { | |
3735 | struct mbuf *m; | |
3736 | struct sadb_sa *p; | |
3737 | int len; | |
3738 | ||
3739 | len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); | |
3740 | m = key_alloc_mbuf(len); | |
3741 | if (!m || m->m_next) { /*XXX*/ | |
3742 | if (m) | |
3743 | m_freem(m); | |
3744 | return NULL; | |
3745 | } | |
3746 | ||
3747 | p = mtod(m, struct sadb_sa *); | |
3748 | ||
3749 | bzero(p, len); | |
3750 | p->sadb_sa_len = PFKEY_UNIT64(len); | |
3751 | p->sadb_sa_exttype = SADB_EXT_SA; | |
3752 | p->sadb_sa_spi = sav->spi; | |
3753 | p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); | |
3754 | p->sadb_sa_state = sav->state; | |
3755 | p->sadb_sa_auth = sav->alg_auth; | |
3756 | p->sadb_sa_encrypt = sav->alg_enc; | |
3757 | p->sadb_sa_flags = sav->flags; | |
3758 | ||
3759 | return m; | |
3760 | } | |
3761 | ||
3762 | /* | |
3763 | * set data into sadb_address. | |
3764 | */ | |
3765 | static struct mbuf * | |
3766 | key_setsadbaddr(exttype, saddr, prefixlen, ul_proto) | |
3767 | u_int16_t exttype; | |
3768 | struct sockaddr *saddr; | |
3769 | u_int8_t prefixlen; | |
3770 | u_int16_t ul_proto; | |
3771 | { | |
3772 | struct mbuf *m; | |
3773 | struct sadb_address *p; | |
3774 | size_t len; | |
3775 | ||
3776 | len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + | |
3777 | PFKEY_ALIGN8(saddr->sa_len); | |
3778 | m = key_alloc_mbuf(len); | |
3779 | if (!m || m->m_next) { /*XXX*/ | |
3780 | if (m) | |
3781 | m_freem(m); | |
3782 | return NULL; | |
3783 | } | |
3784 | ||
3785 | p = mtod(m, struct sadb_address *); | |
3786 | ||
3787 | bzero(p, len); | |
3788 | p->sadb_address_len = PFKEY_UNIT64(len); | |
3789 | p->sadb_address_exttype = exttype; | |
3790 | p->sadb_address_proto = ul_proto; | |
3791 | if (prefixlen == FULLMASK) { | |
3792 | switch (saddr->sa_family) { | |
3793 | case AF_INET: | |
3794 | prefixlen = sizeof(struct in_addr) << 3; | |
3795 | break; | |
3796 | case AF_INET6: | |
3797 | prefixlen = sizeof(struct in6_addr) << 3; | |
3798 | break; | |
3799 | default: | |
3800 | ; /*XXX*/ | |
3801 | } | |
3802 | } | |
3803 | p->sadb_address_prefixlen = prefixlen; | |
3804 | p->sadb_address_reserved = 0; | |
3805 | ||
3806 | bcopy(saddr, | |
3807 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), | |
3808 | saddr->sa_len); | |
3809 | ||
3810 | return m; | |
3811 | } | |
3812 | ||
3813 | #if 0 | |
3814 | /* | |
3815 | * set data into sadb_ident. | |
3816 | */ | |
3817 | static struct mbuf * | |
3818 | key_setsadbident(exttype, idtype, string, stringlen, id) | |
3819 | u_int16_t exttype, idtype; | |
3820 | caddr_t string; | |
3821 | int stringlen; | |
3822 | u_int64_t id; | |
3823 | { | |
3824 | struct mbuf *m; | |
3825 | struct sadb_ident *p; | |
3826 | size_t len; | |
3827 | ||
3828 | len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); | |
3829 | m = key_alloc_mbuf(len); | |
3830 | if (!m || m->m_next) { /*XXX*/ | |
3831 | if (m) | |
3832 | m_freem(m); | |
3833 | return NULL; | |
3834 | } | |
3835 | ||
3836 | p = mtod(m, struct sadb_ident *); | |
3837 | ||
3838 | bzero(p, len); | |
3839 | p->sadb_ident_len = PFKEY_UNIT64(len); | |
3840 | p->sadb_ident_exttype = exttype; | |
3841 | p->sadb_ident_type = idtype; | |
3842 | p->sadb_ident_reserved = 0; | |
3843 | p->sadb_ident_id = id; | |
3844 | ||
3845 | bcopy(string, | |
3846 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), | |
3847 | stringlen); | |
3848 | ||
3849 | return m; | |
3850 | } | |
3851 | #endif | |
3852 | ||
3853 | /* | |
3854 | * set data into sadb_x_sa2. | |
3855 | */ | |
3856 | static struct mbuf * | |
3857 | key_setsadbxsa2(mode, seq, reqid) | |
3858 | u_int8_t mode; | |
3859 | u_int32_t seq, reqid; | |
3860 | { | |
3861 | struct mbuf *m; | |
3862 | struct sadb_x_sa2 *p; | |
3863 | size_t len; | |
3864 | ||
3865 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); | |
3866 | m = key_alloc_mbuf(len); | |
3867 | if (!m || m->m_next) { /*XXX*/ | |
3868 | if (m) | |
3869 | m_freem(m); | |
3870 | return NULL; | |
3871 | } | |
3872 | ||
3873 | p = mtod(m, struct sadb_x_sa2 *); | |
3874 | ||
3875 | bzero(p, len); | |
3876 | p->sadb_x_sa2_len = PFKEY_UNIT64(len); | |
3877 | p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; | |
3878 | p->sadb_x_sa2_mode = mode; | |
3879 | p->sadb_x_sa2_reserved1 = 0; | |
3880 | p->sadb_x_sa2_reserved2 = 0; | |
3881 | p->sadb_x_sa2_sequence = seq; | |
3882 | p->sadb_x_sa2_reqid = reqid; | |
3883 | ||
3884 | return m; | |
3885 | } | |
3886 | ||
3887 | /* | |
3888 | * set data into sadb_x_policy | |
3889 | */ | |
3890 | static struct mbuf * | |
3891 | key_setsadbxpolicy(type, dir, id) | |
3892 | u_int16_t type; | |
3893 | u_int8_t dir; | |
3894 | u_int32_t id; | |
3895 | { | |
3896 | struct mbuf *m; | |
3897 | struct sadb_x_policy *p; | |
3898 | size_t len; | |
3899 | ||
3900 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); | |
3901 | m = key_alloc_mbuf(len); | |
3902 | if (!m || m->m_next) { /*XXX*/ | |
3903 | if (m) | |
3904 | m_freem(m); | |
3905 | return NULL; | |
3906 | } | |
3907 | ||
3908 | p = mtod(m, struct sadb_x_policy *); | |
3909 | ||
3910 | bzero(p, len); | |
3911 | p->sadb_x_policy_len = PFKEY_UNIT64(len); | |
3912 | p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; | |
3913 | p->sadb_x_policy_type = type; | |
3914 | p->sadb_x_policy_dir = dir; | |
3915 | p->sadb_x_policy_id = id; | |
3916 | ||
3917 | return m; | |
3918 | } | |
3919 | ||
3920 | /* %%% utilities */ | |
3921 | /* | |
3922 | * copy a buffer into the new buffer allocated. | |
3923 | */ | |
3924 | static void * | |
3925 | key_newbuf(src, len) | |
3926 | const void *src; | |
3927 | u_int len; | |
3928 | { | |
3929 | caddr_t new; | |
3930 | ||
3931 | KMALLOC(new, caddr_t, len); | |
3932 | if (new == NULL) { | |
3933 | ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n")); | |
3934 | return NULL; | |
3935 | } | |
3936 | bcopy(src, new, len); | |
3937 | ||
3938 | return new; | |
3939 | } | |
3940 | ||
3941 | /* compare my own address | |
3942 | * OUT: 1: true, i.e. my address. | |
3943 | * 0: false | |
3944 | */ | |
3945 | int | |
3946 | key_ismyaddr(sa) | |
3947 | struct sockaddr *sa; | |
3948 | { | |
3949 | #if INET | |
3950 | struct sockaddr_in *sin; | |
3951 | struct in_ifaddr *ia; | |
3952 | #endif | |
3953 | ||
3954 | /* sanity check */ | |
3955 | if (sa == NULL) | |
3956 | panic("key_ismyaddr: NULL pointer is passed.\n"); | |
3957 | ||
3958 | switch (sa->sa_family) { | |
3959 | #if INET | |
3960 | case AF_INET: | |
3961 | lck_mtx_lock(rt_mtx); | |
3962 | sin = (struct sockaddr_in *)sa; | |
3963 | for (ia = in_ifaddrhead.tqh_first; ia; | |
3964 | ia = ia->ia_link.tqe_next) | |
3965 | { | |
3966 | if (sin->sin_family == ia->ia_addr.sin_family && | |
3967 | sin->sin_len == ia->ia_addr.sin_len && | |
3968 | sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) | |
3969 | { | |
3970 | lck_mtx_unlock(rt_mtx); | |
3971 | return 1; | |
3972 | } | |
3973 | } | |
3974 | lck_mtx_unlock(rt_mtx); | |
3975 | break; | |
3976 | #endif | |
3977 | #if INET6 | |
3978 | case AF_INET6: | |
3979 | return key_ismyaddr6((struct sockaddr_in6 *)sa); | |
3980 | #endif | |
3981 | } | |
3982 | ||
3983 | return 0; | |
3984 | } | |
3985 | ||
3986 | #if INET6 | |
3987 | /* | |
3988 | * compare my own address for IPv6. | |
3989 | * 1: ours | |
3990 | * 0: other | |
3991 | * NOTE: derived ip6_input() in KAME. This is necessary to modify more. | |
3992 | */ | |
3993 | #include <netinet6/in6_var.h> | |
3994 | ||
3995 | static int | |
3996 | key_ismyaddr6(sin6) | |
3997 | struct sockaddr_in6 *sin6; | |
3998 | { | |
3999 | struct in6_ifaddr *ia; | |
4000 | struct in6_multi *in6m; | |
4001 | ||
4002 | lck_mtx_lock(nd6_mutex); | |
4003 | for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { | |
4004 | if (key_sockaddrcmp((struct sockaddr *)&sin6, | |
4005 | (struct sockaddr *)&ia->ia_addr, 0) == 0) { | |
4006 | lck_mtx_unlock(nd6_mutex); | |
4007 | return 1; | |
4008 | } | |
4009 | ||
4010 | /* | |
4011 | * XXX Multicast | |
4012 | * XXX why do we care about multlicast here while we don't care | |
4013 | * about IPv4 multicast?? | |
4014 | * XXX scope | |
4015 | */ | |
4016 | in6m = NULL; | |
4017 | IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); | |
4018 | if (in6m) { | |
4019 | lck_mtx_unlock(nd6_mutex); | |
4020 | return 1; | |
4021 | } | |
4022 | } | |
4023 | lck_mtx_unlock(nd6_mutex); | |
4024 | ||
4025 | /* loopback, just for safety */ | |
4026 | if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) | |
4027 | return 1; | |
4028 | ||
4029 | return 0; | |
4030 | } | |
4031 | #endif /*INET6*/ | |
4032 | ||
4033 | /* | |
4034 | * compare two secasindex structure. | |
4035 | * flag can specify to compare 2 saidxes. | |
4036 | * compare two secasindex structure without both mode and reqid. | |
4037 | * don't compare port. | |
4038 | * IN: | |
4039 | * saidx0: source, it can be in SAD. | |
4040 | * saidx1: object. | |
4041 | * OUT: | |
4042 | * 1 : equal | |
4043 | * 0 : not equal | |
4044 | */ | |
4045 | static int | |
4046 | key_cmpsaidx(saidx0, saidx1, flag) | |
4047 | struct secasindex *saidx0, *saidx1; | |
4048 | int flag; | |
4049 | { | |
4050 | /* sanity */ | |
4051 | if (saidx0 == NULL && saidx1 == NULL) | |
4052 | return 1; | |
4053 | ||
4054 | if (saidx0 == NULL || saidx1 == NULL) | |
4055 | return 0; | |
4056 | ||
4057 | if (saidx0->proto != saidx1->proto) | |
4058 | return 0; | |
4059 | ||
4060 | if (flag == CMP_EXACTLY) { | |
4061 | if (saidx0->mode != saidx1->mode) | |
4062 | return 0; | |
4063 | if (saidx0->reqid != saidx1->reqid) | |
4064 | return 0; | |
4065 | if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.ss_len) != 0 || | |
4066 | bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.ss_len) != 0) | |
4067 | return 0; | |
4068 | } else { | |
4069 | ||
4070 | /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ | |
4071 | if (flag == CMP_MODE_REQID | |
4072 | ||flag == CMP_REQID) { | |
4073 | /* | |
4074 | * If reqid of SPD is non-zero, unique SA is required. | |
4075 | * The result must be of same reqid in this case. | |
4076 | */ | |
4077 | if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) | |
4078 | return 0; | |
4079 | } | |
4080 | ||
4081 | if (flag == CMP_MODE_REQID) { | |
4082 | if (saidx0->mode != IPSEC_MODE_ANY | |
4083 | && saidx0->mode != saidx1->mode) | |
4084 | return 0; | |
4085 | } | |
4086 | ||
4087 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->src, | |
4088 | (struct sockaddr *)&saidx1->src, 0) != 0) { | |
4089 | return 0; | |
4090 | } | |
4091 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst, | |
4092 | (struct sockaddr *)&saidx1->dst, 0) != 0) { | |
4093 | return 0; | |
4094 | } | |
4095 | } | |
4096 | ||
4097 | return 1; | |
4098 | } | |
4099 | ||
4100 | /* | |
4101 | * compare two secindex structure exactly. | |
4102 | * IN: | |
4103 | * spidx0: source, it is often in SPD. | |
4104 | * spidx1: object, it is often from PFKEY message. | |
4105 | * OUT: | |
4106 | * 1 : equal | |
4107 | * 0 : not equal | |
4108 | */ | |
4109 | static int | |
4110 | key_cmpspidx_exactly(spidx0, spidx1) | |
4111 | struct secpolicyindex *spidx0, *spidx1; | |
4112 | { | |
4113 | /* sanity */ | |
4114 | if (spidx0 == NULL && spidx1 == NULL) | |
4115 | return 1; | |
4116 | ||
4117 | if (spidx0 == NULL || spidx1 == NULL) | |
4118 | return 0; | |
4119 | ||
4120 | if (spidx0->prefs != spidx1->prefs | |
4121 | || spidx0->prefd != spidx1->prefd | |
4122 | || spidx0->ul_proto != spidx1->ul_proto) | |
4123 | return 0; | |
4124 | ||
4125 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src, | |
4126 | (struct sockaddr *)&spidx1->src, 1) != 0) { | |
4127 | return 0; | |
4128 | } | |
4129 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst, | |
4130 | (struct sockaddr *)&spidx1->dst, 1) != 0) { | |
4131 | return 0; | |
4132 | } | |
4133 | ||
4134 | return 1; | |
4135 | } | |
4136 | ||
4137 | /* | |
4138 | * compare two secindex structure with mask. | |
4139 | * IN: | |
4140 | * spidx0: source, it is often in SPD. | |
4141 | * spidx1: object, it is often from IP header. | |
4142 | * OUT: | |
4143 | * 1 : equal | |
4144 | * 0 : not equal | |
4145 | */ | |
4146 | static int | |
4147 | key_cmpspidx_withmask(spidx0, spidx1) | |
4148 | struct secpolicyindex *spidx0, *spidx1; | |
4149 | { | |
4150 | /* sanity */ | |
4151 | if (spidx0 == NULL && spidx1 == NULL) | |
4152 | return 1; | |
4153 | ||
4154 | if (spidx0 == NULL || spidx1 == NULL) | |
4155 | return 0; | |
4156 | ||
4157 | if (spidx0->src.ss_family != spidx1->src.ss_family || | |
4158 | spidx0->dst.ss_family != spidx1->dst.ss_family || | |
4159 | spidx0->src.ss_len != spidx1->src.ss_len || | |
4160 | spidx0->dst.ss_len != spidx1->dst.ss_len) | |
4161 | return 0; | |
4162 | ||
4163 | /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ | |
4164 | if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY | |
4165 | && spidx0->ul_proto != spidx1->ul_proto) | |
4166 | return 0; | |
4167 | ||
4168 | switch (spidx0->src.ss_family) { | |
4169 | case AF_INET: | |
4170 | if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY | |
4171 | && satosin(&spidx0->src)->sin_port != | |
4172 | satosin(&spidx1->src)->sin_port) | |
4173 | return 0; | |
4174 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr, | |
4175 | (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs)) | |
4176 | return 0; | |
4177 | break; | |
4178 | case AF_INET6: | |
4179 | if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY | |
4180 | && satosin6(&spidx0->src)->sin6_port != | |
4181 | satosin6(&spidx1->src)->sin6_port) | |
4182 | return 0; | |
4183 | /* | |
4184 | * scope_id check. if sin6_scope_id is 0, we regard it | |
4185 | * as a wildcard scope, which matches any scope zone ID. | |
4186 | */ | |
4187 | if (satosin6(&spidx0->src)->sin6_scope_id && | |
4188 | satosin6(&spidx1->src)->sin6_scope_id && | |
4189 | satosin6(&spidx0->src)->sin6_scope_id != | |
4190 | satosin6(&spidx1->src)->sin6_scope_id) | |
4191 | return 0; | |
4192 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr, | |
4193 | (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs)) | |
4194 | return 0; | |
4195 | break; | |
4196 | default: | |
4197 | /* XXX */ | |
4198 | if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.ss_len) != 0) | |
4199 | return 0; | |
4200 | break; | |
4201 | } | |
4202 | ||
4203 | switch (spidx0->dst.ss_family) { | |
4204 | case AF_INET: | |
4205 | if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY | |
4206 | && satosin(&spidx0->dst)->sin_port != | |
4207 | satosin(&spidx1->dst)->sin_port) | |
4208 | return 0; | |
4209 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr, | |
4210 | (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd)) | |
4211 | return 0; | |
4212 | break; | |
4213 | case AF_INET6: | |
4214 | if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY | |
4215 | && satosin6(&spidx0->dst)->sin6_port != | |
4216 | satosin6(&spidx1->dst)->sin6_port) | |
4217 | return 0; | |
4218 | /* | |
4219 | * scope_id check. if sin6_scope_id is 0, we regard it | |
4220 | * as a wildcard scope, which matches any scope zone ID. | |
4221 | */ | |
4222 | if (satosin6(&spidx0->src)->sin6_scope_id && | |
4223 | satosin6(&spidx1->src)->sin6_scope_id && | |
4224 | satosin6(&spidx0->dst)->sin6_scope_id != | |
4225 | satosin6(&spidx1->dst)->sin6_scope_id) | |
4226 | return 0; | |
4227 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr, | |
4228 | (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd)) | |
4229 | return 0; | |
4230 | break; | |
4231 | default: | |
4232 | /* XXX */ | |
4233 | if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.ss_len) != 0) | |
4234 | return 0; | |
4235 | break; | |
4236 | } | |
4237 | ||
4238 | /* XXX Do we check other field ? e.g. flowinfo */ | |
4239 | ||
4240 | return 1; | |
4241 | } | |
4242 | ||
4243 | /* returns 0 on match */ | |
4244 | static int | |
4245 | key_sockaddrcmp(sa1, sa2, port) | |
4246 | struct sockaddr *sa1; | |
4247 | struct sockaddr *sa2; | |
4248 | int port; | |
4249 | { | |
4250 | if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) | |
4251 | return 1; | |
4252 | ||
4253 | switch (sa1->sa_family) { | |
4254 | case AF_INET: | |
4255 | if (sa1->sa_len != sizeof(struct sockaddr_in)) | |
4256 | return 1; | |
4257 | if (satosin(sa1)->sin_addr.s_addr != | |
4258 | satosin(sa2)->sin_addr.s_addr) { | |
4259 | return 1; | |
4260 | } | |
4261 | if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) | |
4262 | return 1; | |
4263 | break; | |
4264 | case AF_INET6: | |
4265 | if (sa1->sa_len != sizeof(struct sockaddr_in6)) | |
4266 | return 1; /*EINVAL*/ | |
4267 | if (satosin6(sa1)->sin6_scope_id != | |
4268 | satosin6(sa2)->sin6_scope_id) { | |
4269 | return 1; | |
4270 | } | |
4271 | if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, | |
4272 | &satosin6(sa2)->sin6_addr)) { | |
4273 | return 1; | |
4274 | } | |
4275 | if (port && | |
4276 | satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { | |
4277 | return 1; | |
4278 | } | |
4279 | default: | |
4280 | if (bcmp(sa1, sa2, sa1->sa_len) != 0) | |
4281 | return 1; | |
4282 | break; | |
4283 | } | |
4284 | ||
4285 | return 0; | |
4286 | } | |
4287 | ||
4288 | /* | |
4289 | * compare two buffers with mask. | |
4290 | * IN: | |
4291 | * addr1: source | |
4292 | * addr2: object | |
4293 | * bits: Number of bits to compare | |
4294 | * OUT: | |
4295 | * 1 : equal | |
4296 | * 0 : not equal | |
4297 | */ | |
4298 | static int | |
4299 | key_bbcmp(p1, p2, bits) | |
4300 | caddr_t p1, p2; | |
4301 | u_int bits; | |
4302 | { | |
4303 | u_int8_t mask; | |
4304 | ||
4305 | /* XXX: This could be considerably faster if we compare a word | |
4306 | * at a time, but it is complicated on LSB Endian machines */ | |
4307 | ||
4308 | /* Handle null pointers */ | |
4309 | if (p1 == NULL || p2 == NULL) | |
4310 | return (p1 == p2); | |
4311 | ||
4312 | while (bits >= 8) { | |
4313 | if (*p1++ != *p2++) | |
4314 | return 0; | |
4315 | bits -= 8; | |
4316 | } | |
4317 | ||
4318 | if (bits > 0) { | |
4319 | mask = ~((1<<(8-bits))-1); | |
4320 | if ((*p1 & mask) != (*p2 & mask)) | |
4321 | return 0; | |
4322 | } | |
4323 | return 1; /* Match! */ | |
4324 | } | |
4325 | ||
4326 | /* | |
4327 | * time handler. | |
4328 | * scanning SPD and SAD to check status for each entries, | |
4329 | * and do to remove or to expire. | |
4330 | * XXX: year 2038 problem may remain. | |
4331 | */ | |
4332 | ||
4333 | void | |
4334 | key_timehandler(void) | |
4335 | { | |
4336 | u_int dir; | |
4337 | int s; | |
4338 | struct timeval tv; | |
4339 | ||
4340 | microtime(&tv); | |
4341 | ||
4342 | lck_mtx_lock(sadb_mutex); | |
4343 | /* SPD */ | |
4344 | { | |
4345 | struct secpolicy *sp, *nextsp; | |
4346 | ||
4347 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { | |
4348 | for (sp = LIST_FIRST(&sptree[dir]); | |
4349 | sp != NULL; | |
4350 | sp = nextsp) { | |
4351 | ||
4352 | nextsp = LIST_NEXT(sp, chain); | |
4353 | ||
4354 | if (sp->state == IPSEC_SPSTATE_DEAD) { | |
4355 | key_freesp(sp); | |
4356 | continue; | |
4357 | } | |
4358 | ||
4359 | if (sp->lifetime == 0 && sp->validtime == 0) | |
4360 | continue; | |
4361 | ||
4362 | /* the deletion will occur next time */ | |
4363 | if ((sp->lifetime | |
4364 | && tv.tv_sec - sp->created > sp->lifetime) | |
4365 | || (sp->validtime | |
4366 | && tv.tv_sec - sp->lastused > sp->validtime)) { | |
4367 | sp->state = IPSEC_SPSTATE_DEAD; | |
4368 | key_spdexpire(sp); | |
4369 | continue; | |
4370 | } | |
4371 | } | |
4372 | } | |
4373 | } | |
4374 | ||
4375 | /* SAD */ | |
4376 | { | |
4377 | struct secashead *sah, *nextsah; | |
4378 | struct secasvar *sav, *nextsav; | |
4379 | ||
4380 | for (sah = LIST_FIRST(&sahtree); | |
4381 | sah != NULL; | |
4382 | sah = nextsah) { | |
4383 | ||
4384 | nextsah = LIST_NEXT(sah, chain); | |
4385 | ||
4386 | /* if sah has been dead, then delete it and process next sah. */ | |
4387 | if (sah->state == SADB_SASTATE_DEAD) { | |
4388 | key_delsah(sah); | |
4389 | continue; | |
4390 | } | |
4391 | ||
4392 | /* if LARVAL entry doesn't become MATURE, delete it. */ | |
4393 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); | |
4394 | sav != NULL; | |
4395 | sav = nextsav) { | |
4396 | ||
4397 | nextsav = LIST_NEXT(sav, chain); | |
4398 | ||
4399 | if (tv.tv_sec - sav->created > key_larval_lifetime) { | |
4400 | key_freesav(sav); | |
4401 | } | |
4402 | } | |
4403 | ||
4404 | /* | |
4405 | * If this is a NAT traversal SA with no activity, | |
4406 | * we need to send a keep alive. | |
4407 | * | |
4408 | * Performed outside of the loop before so we will | |
4409 | * only ever send one keepalive. The first SA on | |
4410 | * the list is the one that will be used for sending | |
4411 | * traffic, so this is the one we use for determining | |
4412 | * when to send the keepalive. | |
4413 | */ | |
4414 | sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); | |
4415 | if (natt_keepalive_interval && sav && (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0 && | |
4416 | (natt_now - sav->natt_last_activity) >= natt_keepalive_interval) { | |
4417 | ipsec_send_natt_keepalive(sav); | |
4418 | } | |
4419 | ||
4420 | /* | |
4421 | * check MATURE entry to start to send expire message | |
4422 | * whether or not. | |
4423 | */ | |
4424 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); | |
4425 | sav != NULL; | |
4426 | sav = nextsav) { | |
4427 | ||
4428 | nextsav = LIST_NEXT(sav, chain); | |
4429 | ||
4430 | /* we don't need to check. */ | |
4431 | if (sav->lft_s == NULL) | |
4432 | continue; | |
4433 | ||
4434 | /* sanity check */ | |
4435 | if (sav->lft_c == NULL) { | |
4436 | ipseclog((LOG_DEBUG,"key_timehandler: " | |
4437 | "There is no CURRENT time, why?\n")); | |
4438 | continue; | |
4439 | } | |
4440 | ||
4441 | /* check SOFT lifetime */ | |
4442 | if (sav->lft_s->sadb_lifetime_addtime != 0 | |
4443 | && tv.tv_sec - sav->created > sav->lft_s->sadb_lifetime_addtime) { | |
4444 | /* | |
4445 | * check the SA if it has been used. | |
4446 | * when it hasn't been used, delete it. | |
4447 | * i don't think such SA will be used. | |
4448 | */ | |
4449 | if (sav->lft_c->sadb_lifetime_usetime == 0) { | |
4450 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
4451 | key_freesav(sav); | |
4452 | sav = NULL; | |
4453 | } else { | |
4454 | key_sa_chgstate(sav, SADB_SASTATE_DYING); | |
4455 | /* | |
4456 | * XXX If we keep to send expire | |
4457 | * message in the status of | |
4458 | * DYING. Do remove below code. | |
4459 | */ | |
4460 | key_expire(sav); | |
4461 | } | |
4462 | } | |
4463 | ||
4464 | /* check SOFT lifetime by bytes */ | |
4465 | /* | |
4466 | * XXX I don't know the way to delete this SA | |
4467 | * when new SA is installed. Caution when it's | |
4468 | * installed too big lifetime by time. | |
4469 | */ | |
4470 | else if (sav->lft_s->sadb_lifetime_bytes != 0 | |
4471 | && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { | |
4472 | ||
4473 | key_sa_chgstate(sav, SADB_SASTATE_DYING); | |
4474 | /* | |
4475 | * XXX If we keep to send expire | |
4476 | * message in the status of | |
4477 | * DYING. Do remove below code. | |
4478 | */ | |
4479 | key_expire(sav); | |
4480 | } | |
4481 | } | |
4482 | ||
4483 | /* check DYING entry to change status to DEAD. */ | |
4484 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); | |
4485 | sav != NULL; | |
4486 | sav = nextsav) { | |
4487 | ||
4488 | nextsav = LIST_NEXT(sav, chain); | |
4489 | ||
4490 | /* we don't need to check. */ | |
4491 | if (sav->lft_h == NULL) | |
4492 | continue; | |
4493 | ||
4494 | /* sanity check */ | |
4495 | if (sav->lft_c == NULL) { | |
4496 | ipseclog((LOG_DEBUG, "key_timehandler: " | |
4497 | "There is no CURRENT time, why?\n")); | |
4498 | continue; | |
4499 | } | |
4500 | ||
4501 | if (sav->lft_h->sadb_lifetime_addtime != 0 | |
4502 | && tv.tv_sec - sav->created > sav->lft_h->sadb_lifetime_addtime) { | |
4503 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
4504 | key_freesav(sav); | |
4505 | sav = NULL; | |
4506 | } | |
4507 | #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ | |
4508 | else if (sav->lft_s != NULL | |
4509 | && sav->lft_s->sadb_lifetime_addtime != 0 | |
4510 | && tv.tv_sec - sav->created > sav->lft_s->sadb_lifetime_addtime) { | |
4511 | /* | |
4512 | * XXX: should be checked to be | |
4513 | * installed the valid SA. | |
4514 | */ | |
4515 | ||
4516 | /* | |
4517 | * If there is no SA then sending | |
4518 | * expire message. | |
4519 | */ | |
4520 | key_expire(sav); | |
4521 | } | |
4522 | #endif | |
4523 | /* check HARD lifetime by bytes */ | |
4524 | else if (sav->lft_h->sadb_lifetime_bytes != 0 | |
4525 | && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { | |
4526 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
4527 | key_freesav(sav); | |
4528 | sav = NULL; | |
4529 | } | |
4530 | } | |
4531 | ||
4532 | /* delete entry in DEAD */ | |
4533 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); | |
4534 | sav != NULL; | |
4535 | sav = nextsav) { | |
4536 | ||
4537 | nextsav = LIST_NEXT(sav, chain); | |
4538 | ||
4539 | /* sanity check */ | |
4540 | if (sav->state != SADB_SASTATE_DEAD) { | |
4541 | ipseclog((LOG_DEBUG, "key_timehandler: " | |
4542 | "invalid sav->state " | |
4543 | "(queue: %d SA: %d): " | |
4544 | "kill it anyway\n", | |
4545 | SADB_SASTATE_DEAD, sav->state)); | |
4546 | } | |
4547 | ||
4548 | /* | |
4549 | * do not call key_freesav() here. | |
4550 | * sav should already be freed, and sav->refcnt | |
4551 | * shows other references to sav | |
4552 | * (such as from SPD). | |
4553 | */ | |
4554 | } | |
4555 | } | |
4556 | } | |
4557 | ||
4558 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
4559 | /* ACQ tree */ | |
4560 | { | |
4561 | struct secacq *acq, *nextacq; | |
4562 | ||
4563 | for (acq = LIST_FIRST(&acqtree); | |
4564 | acq != NULL; | |
4565 | acq = nextacq) { | |
4566 | ||
4567 | nextacq = LIST_NEXT(acq, chain); | |
4568 | ||
4569 | if (tv.tv_sec - acq->created > key_blockacq_lifetime | |
4570 | && __LIST_CHAINED(acq)) { | |
4571 | LIST_REMOVE(acq, chain); | |
4572 | KFREE(acq); | |
4573 | } | |
4574 | } | |
4575 | } | |
4576 | #endif | |
4577 | ||
4578 | /* SP ACQ tree */ | |
4579 | { | |
4580 | struct secspacq *acq, *nextacq; | |
4581 | ||
4582 | for (acq = LIST_FIRST(&spacqtree); | |
4583 | acq != NULL; | |
4584 | acq = nextacq) { | |
4585 | ||
4586 | nextacq = LIST_NEXT(acq, chain); | |
4587 | ||
4588 | if (tv.tv_sec - acq->created > key_blockacq_lifetime | |
4589 | && __LIST_CHAINED(acq)) { | |
4590 | LIST_REMOVE(acq, chain); | |
4591 | KFREE(acq); | |
4592 | } | |
4593 | } | |
4594 | } | |
4595 | ||
4596 | /* initialize random seed */ | |
4597 | if (key_tick_init_random++ > key_int_random) { | |
4598 | key_tick_init_random = 0; | |
4599 | key_srandom(); | |
4600 | } | |
4601 | ||
4602 | natt_now++; | |
4603 | ||
4604 | lck_mtx_unlock(sadb_mutex); | |
4605 | #ifndef IPSEC_DEBUG2 | |
4606 | /* do exchange to tick time !! */ | |
4607 | (void)timeout((void *)key_timehandler, (void *)0, hz); | |
4608 | #endif /* IPSEC_DEBUG2 */ | |
4609 | ||
4610 | return; | |
4611 | } | |
4612 | ||
4613 | /* | |
4614 | * to initialize a seed for random() | |
4615 | */ | |
4616 | static void | |
4617 | key_srandom() | |
4618 | { | |
4619 | #ifdef __APPLE__ | |
4620 | /* Our PRNG is based on Yarrow and doesn't need to be seeded */ | |
4621 | random(); | |
4622 | #else | |
4623 | struct timeval tv; | |
4624 | ||
4625 | microtime(&tv); | |
4626 | ||
4627 | srandom(tv.tv_usec); | |
4628 | #endif | |
4629 | ||
4630 | return; | |
4631 | } | |
4632 | ||
4633 | u_long | |
4634 | key_random() | |
4635 | { | |
4636 | u_long value; | |
4637 | ||
4638 | key_randomfill(&value, sizeof(value)); | |
4639 | return value; | |
4640 | } | |
4641 | ||
4642 | void | |
4643 | key_randomfill(p, l) | |
4644 | void *p; | |
4645 | size_t l; | |
4646 | { | |
4647 | size_t n; | |
4648 | u_long v; | |
4649 | static int warn = 1; | |
4650 | #ifdef __APPLE__ | |
4651 | ||
4652 | read_random(p, (u_int)l); | |
4653 | #else | |
4654 | n = 0; | |
4655 | n = (size_t)read_random(p, (u_int)l); | |
4656 | /* last resort */ | |
4657 | while (n < l) { | |
4658 | v = random(); | |
4659 | bcopy(&v, (u_int8_t *)p + n, | |
4660 | l - n < sizeof(v) ? l - n : sizeof(v)); | |
4661 | n += sizeof(v); | |
4662 | ||
4663 | if (warn) { | |
4664 | printf("WARNING: pseudo-random number generator " | |
4665 | "used for IPsec processing\n"); | |
4666 | warn = 0; | |
4667 | } | |
4668 | } | |
4669 | #endif | |
4670 | } | |
4671 | ||
4672 | /* | |
4673 | * map SADB_SATYPE_* to IPPROTO_*. | |
4674 | * if satype == SADB_SATYPE then satype is mapped to ~0. | |
4675 | * OUT: | |
4676 | * 0: invalid satype. | |
4677 | */ | |
4678 | static u_int16_t | |
4679 | key_satype2proto(satype) | |
4680 | u_int8_t satype; | |
4681 | { | |
4682 | switch (satype) { | |
4683 | case SADB_SATYPE_UNSPEC: | |
4684 | return IPSEC_PROTO_ANY; | |
4685 | case SADB_SATYPE_AH: | |
4686 | return IPPROTO_AH; | |
4687 | case SADB_SATYPE_ESP: | |
4688 | return IPPROTO_ESP; | |
4689 | case SADB_X_SATYPE_IPCOMP: | |
4690 | return IPPROTO_IPCOMP; | |
4691 | break; | |
4692 | default: | |
4693 | return 0; | |
4694 | } | |
4695 | /* NOTREACHED */ | |
4696 | } | |
4697 | ||
4698 | /* | |
4699 | * map IPPROTO_* to SADB_SATYPE_* | |
4700 | * OUT: | |
4701 | * 0: invalid protocol type. | |
4702 | */ | |
4703 | static u_int8_t | |
4704 | key_proto2satype(proto) | |
4705 | u_int16_t proto; | |
4706 | { | |
4707 | switch (proto) { | |
4708 | case IPPROTO_AH: | |
4709 | return SADB_SATYPE_AH; | |
4710 | case IPPROTO_ESP: | |
4711 | return SADB_SATYPE_ESP; | |
4712 | case IPPROTO_IPCOMP: | |
4713 | return SADB_X_SATYPE_IPCOMP; | |
4714 | break; | |
4715 | default: | |
4716 | return 0; | |
4717 | } | |
4718 | /* NOTREACHED */ | |
4719 | } | |
4720 | ||
4721 | /* %%% PF_KEY */ | |
4722 | /* | |
4723 | * SADB_GETSPI processing is to receive | |
4724 | * <base, (SA2), src address, dst address, (SPI range)> | |
4725 | * from the IKMPd, to assign a unique spi value, to hang on the INBOUND | |
4726 | * tree with the status of LARVAL, and send | |
4727 | * <base, SA(*), address(SD)> | |
4728 | * to the IKMPd. | |
4729 | * | |
4730 | * IN: mhp: pointer to the pointer to each header. | |
4731 | * OUT: NULL if fail. | |
4732 | * other if success, return pointer to the message to send. | |
4733 | */ | |
4734 | static int | |
4735 | key_getspi(so, m, mhp) | |
4736 | struct socket *so; | |
4737 | struct mbuf *m; | |
4738 | const struct sadb_msghdr *mhp; | |
4739 | { | |
4740 | struct sadb_address *src0, *dst0; | |
4741 | struct secasindex saidx; | |
4742 | struct secashead *newsah; | |
4743 | struct secasvar *newsav; | |
4744 | u_int8_t proto; | |
4745 | u_int32_t spi; | |
4746 | u_int8_t mode; | |
4747 | u_int32_t reqid; | |
4748 | int error; | |
4749 | ||
4750 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
4751 | ||
4752 | /* sanity check */ | |
4753 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
4754 | panic("key_getspi: NULL pointer is passed.\n"); | |
4755 | ||
4756 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
4757 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { | |
4758 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); | |
4759 | return key_senderror(so, m, EINVAL); | |
4760 | } | |
4761 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
4762 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { | |
4763 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); | |
4764 | return key_senderror(so, m, EINVAL); | |
4765 | } | |
4766 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { | |
4767 | mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; | |
4768 | reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; | |
4769 | } else { | |
4770 | mode = IPSEC_MODE_ANY; | |
4771 | reqid = 0; | |
4772 | } | |
4773 | ||
4774 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); | |
4775 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); | |
4776 | ||
4777 | /* map satype to proto */ | |
4778 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
4779 | ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n")); | |
4780 | return key_senderror(so, m, EINVAL); | |
4781 | } | |
4782 | ||
4783 | /* make sure if port number is zero. */ | |
4784 | switch (((struct sockaddr *)(src0 + 1))->sa_family) { | |
4785 | case AF_INET: | |
4786 | if (((struct sockaddr *)(src0 + 1))->sa_len != | |
4787 | sizeof(struct sockaddr_in)) | |
4788 | return key_senderror(so, m, EINVAL); | |
4789 | ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; | |
4790 | break; | |
4791 | case AF_INET6: | |
4792 | if (((struct sockaddr *)(src0 + 1))->sa_len != | |
4793 | sizeof(struct sockaddr_in6)) | |
4794 | return key_senderror(so, m, EINVAL); | |
4795 | ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; | |
4796 | break; | |
4797 | default: | |
4798 | ; /*???*/ | |
4799 | } | |
4800 | switch (((struct sockaddr *)(dst0 + 1))->sa_family) { | |
4801 | case AF_INET: | |
4802 | if (((struct sockaddr *)(dst0 + 1))->sa_len != | |
4803 | sizeof(struct sockaddr_in)) | |
4804 | return key_senderror(so, m, EINVAL); | |
4805 | ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; | |
4806 | break; | |
4807 | case AF_INET6: | |
4808 | if (((struct sockaddr *)(dst0 + 1))->sa_len != | |
4809 | sizeof(struct sockaddr_in6)) | |
4810 | return key_senderror(so, m, EINVAL); | |
4811 | ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; | |
4812 | break; | |
4813 | default: | |
4814 | ; /*???*/ | |
4815 | } | |
4816 | ||
4817 | /* XXX boundary check against sa_len */ | |
4818 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); | |
4819 | ||
4820 | /* SPI allocation */ | |
4821 | spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], | |
4822 | &saidx); | |
4823 | if (spi == 0) | |
4824 | return key_senderror(so, m, EINVAL); | |
4825 | ||
4826 | /* get a SA index */ | |
4827 | if ((newsah = key_getsah(&saidx)) == NULL) { | |
4828 | /* create a new SA index */ | |
4829 | if ((newsah = key_newsah(&saidx)) == NULL) { | |
4830 | ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n")); | |
4831 | return key_senderror(so, m, ENOBUFS); | |
4832 | } | |
4833 | } | |
4834 | ||
4835 | /* get a new SA */ | |
4836 | /* XXX rewrite */ | |
4837 | newsav = key_newsav(m, mhp, newsah, &error); | |
4838 | if (newsav == NULL) { | |
4839 | /* XXX don't free new SA index allocated in above. */ | |
4840 | return key_senderror(so, m, error); | |
4841 | } | |
4842 | ||
4843 | /* set spi */ | |
4844 | key_setspi(newsav, htonl(spi)); | |
4845 | ||
4846 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
4847 | /* delete the entry in acqtree */ | |
4848 | if (mhp->msg->sadb_msg_seq != 0) { | |
4849 | struct secacq *acq; | |
4850 | if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { | |
4851 | /* reset counter in order to deletion by timehandler. */ | |
4852 | struct timeval tv; | |
4853 | microtime(&tv); | |
4854 | acq->created = tv.tv_sec; | |
4855 | acq->count = 0; | |
4856 | } | |
4857 | } | |
4858 | #endif | |
4859 | ||
4860 | { | |
4861 | struct mbuf *n, *nn; | |
4862 | struct sadb_sa *m_sa; | |
4863 | struct sadb_msg *newmsg; | |
4864 | int off, len; | |
4865 | ||
4866 | /* create new sadb_msg to reply. */ | |
4867 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + | |
4868 | PFKEY_ALIGN8(sizeof(struct sadb_sa)); | |
4869 | if (len > MCLBYTES) | |
4870 | return key_senderror(so, m, ENOBUFS); | |
4871 | ||
4872 | MGETHDR(n, M_DONTWAIT, MT_DATA); | |
4873 | if (len > MHLEN) { | |
4874 | MCLGET(n, M_DONTWAIT); | |
4875 | if ((n->m_flags & M_EXT) == 0) { | |
4876 | m_freem(n); | |
4877 | n = NULL; | |
4878 | } | |
4879 | } | |
4880 | if (!n) | |
4881 | return key_senderror(so, m, ENOBUFS); | |
4882 | ||
4883 | n->m_len = len; | |
4884 | n->m_next = NULL; | |
4885 | off = 0; | |
4886 | ||
4887 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); | |
4888 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
4889 | ||
4890 | m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); | |
4891 | m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); | |
4892 | m_sa->sadb_sa_exttype = SADB_EXT_SA; | |
4893 | m_sa->sadb_sa_spi = htonl(spi); | |
4894 | off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); | |
4895 | ||
4896 | #if DIAGNOSTIC | |
4897 | if (off != len) | |
4898 | panic("length inconsistency in key_getspi"); | |
4899 | #endif | |
4900 | { | |
4901 | int mbufItems[] = {SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; | |
4902 | n->m_next = key_gather_mbuf(m, mhp, 0, sizeof(mbufItems)/sizeof(int), mbufItems); | |
4903 | if (!n->m_next) { | |
4904 | m_freem(n); | |
4905 | return key_senderror(so, m, ENOBUFS); | |
4906 | } | |
4907 | } | |
4908 | ||
4909 | if (n->m_len < sizeof(struct sadb_msg)) { | |
4910 | n = m_pullup(n, sizeof(struct sadb_msg)); | |
4911 | if (n == NULL) | |
4912 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); | |
4913 | } | |
4914 | ||
4915 | n->m_pkthdr.len = 0; | |
4916 | for (nn = n; nn; nn = nn->m_next) | |
4917 | n->m_pkthdr.len += nn->m_len; | |
4918 | ||
4919 | newmsg = mtod(n, struct sadb_msg *); | |
4920 | newmsg->sadb_msg_seq = newsav->seq; | |
4921 | newmsg->sadb_msg_errno = 0; | |
4922 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
4923 | ||
4924 | m_freem(m); | |
4925 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); | |
4926 | } | |
4927 | } | |
4928 | ||
4929 | /* | |
4930 | * allocating new SPI | |
4931 | * called by key_getspi(). | |
4932 | * OUT: | |
4933 | * 0: failure. | |
4934 | * others: success. | |
4935 | */ | |
4936 | static u_int32_t | |
4937 | key_do_getnewspi(spirange, saidx) | |
4938 | struct sadb_spirange *spirange; | |
4939 | struct secasindex *saidx; | |
4940 | { | |
4941 | u_int32_t newspi; | |
4942 | u_int32_t min, max; | |
4943 | int count = key_spi_trycnt; | |
4944 | ||
4945 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
4946 | ||
4947 | /* set spi range to allocate */ | |
4948 | if (spirange != NULL) { | |
4949 | min = spirange->sadb_spirange_min; | |
4950 | max = spirange->sadb_spirange_max; | |
4951 | } else { | |
4952 | min = key_spi_minval; | |
4953 | max = key_spi_maxval; | |
4954 | } | |
4955 | /* IPCOMP needs 2-byte SPI */ | |
4956 | if (saidx->proto == IPPROTO_IPCOMP) { | |
4957 | u_int32_t t; | |
4958 | if (min >= 0x10000) | |
4959 | min = 0xffff; | |
4960 | if (max >= 0x10000) | |
4961 | max = 0xffff; | |
4962 | if (min > max) { | |
4963 | t = min; min = max; max = t; | |
4964 | } | |
4965 | } | |
4966 | ||
4967 | if (min == max) { | |
4968 | if (key_checkspidup(saidx, min) != NULL) { | |
4969 | ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", min)); | |
4970 | return 0; | |
4971 | } | |
4972 | ||
4973 | count--; /* taking one cost. */ | |
4974 | newspi = min; | |
4975 | ||
4976 | } else { | |
4977 | ||
4978 | /* init SPI */ | |
4979 | newspi = 0; | |
4980 | ||
4981 | /* when requesting to allocate spi ranged */ | |
4982 | while (count--) { | |
4983 | /* generate pseudo-random SPI value ranged. */ | |
4984 | newspi = min + (key_random() % (max - min + 1)); | |
4985 | ||
4986 | if (key_checkspidup(saidx, newspi) == NULL) | |
4987 | break; | |
4988 | } | |
4989 | ||
4990 | if (count == 0 || newspi == 0) { | |
4991 | ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n")); | |
4992 | return 0; | |
4993 | } | |
4994 | } | |
4995 | ||
4996 | /* statistics */ | |
4997 | keystat.getspi_count = | |
4998 | (keystat.getspi_count + key_spi_trycnt - count) / 2; | |
4999 | ||
5000 | return newspi; | |
5001 | } | |
5002 | ||
5003 | /* | |
5004 | * SADB_UPDATE processing | |
5005 | * receive | |
5006 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) | |
5007 | * key(AE), (identity(SD),) (sensitivity)> | |
5008 | * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. | |
5009 | * and send | |
5010 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) | |
5011 | * (identity(SD),) (sensitivity)> | |
5012 | * to the ikmpd. | |
5013 | * | |
5014 | * m will always be freed. | |
5015 | */ | |
5016 | static int | |
5017 | key_update(so, m, mhp) | |
5018 | struct socket *so; | |
5019 | struct mbuf *m; | |
5020 | const struct sadb_msghdr *mhp; | |
5021 | { | |
5022 | struct sadb_sa *sa0; | |
5023 | struct sadb_address *src0, *dst0; | |
5024 | struct secasindex saidx; | |
5025 | struct secashead *sah; | |
5026 | struct secasvar *sav; | |
5027 | u_int16_t proto; | |
5028 | u_int8_t mode; | |
5029 | u_int32_t reqid; | |
5030 | int error; | |
5031 | ||
5032 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5033 | ||
5034 | /* sanity check */ | |
5035 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
5036 | panic("key_update: NULL pointer is passed.\n"); | |
5037 | ||
5038 | /* map satype to proto */ | |
5039 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
5040 | ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n")); | |
5041 | return key_senderror(so, m, EINVAL); | |
5042 | } | |
5043 | ||
5044 | if (mhp->ext[SADB_EXT_SA] == NULL || | |
5045 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
5046 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || | |
5047 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && | |
5048 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || | |
5049 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && | |
5050 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || | |
5051 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && | |
5052 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || | |
5053 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && | |
5054 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { | |
5055 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); | |
5056 | return key_senderror(so, m, EINVAL); | |
5057 | } | |
5058 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || | |
5059 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
5060 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { | |
5061 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); | |
5062 | return key_senderror(so, m, EINVAL); | |
5063 | } | |
5064 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { | |
5065 | mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; | |
5066 | reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; | |
5067 | } else { | |
5068 | mode = IPSEC_MODE_ANY; | |
5069 | reqid = 0; | |
5070 | } | |
5071 | /* XXX boundary checking for other extensions */ | |
5072 | ||
5073 | sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
5074 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); | |
5075 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); | |
5076 | ||
5077 | /* XXX boundary check against sa_len */ | |
5078 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); | |
5079 | ||
5080 | /* get a SA header */ | |
5081 | if ((sah = key_getsah(&saidx)) == NULL) { | |
5082 | ipseclog((LOG_DEBUG, "key_update: no SA index found.\n")); | |
5083 | return key_senderror(so, m, ENOENT); | |
5084 | } | |
5085 | ||
5086 | /* set spidx if there */ | |
5087 | /* XXX rewrite */ | |
5088 | error = key_setident(sah, m, mhp); | |
5089 | if (error) | |
5090 | return key_senderror(so, m, error); | |
5091 | ||
5092 | /* find a SA with sequence number. */ | |
5093 | #if IPSEC_DOSEQCHECK | |
5094 | if (mhp->msg->sadb_msg_seq != 0 | |
5095 | && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { | |
5096 | ipseclog((LOG_DEBUG, | |
5097 | "key_update: no larval SA with sequence %u exists.\n", | |
5098 | mhp->msg->sadb_msg_seq)); | |
5099 | return key_senderror(so, m, ENOENT); | |
5100 | } | |
5101 | #else | |
5102 | if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) { | |
5103 | ipseclog((LOG_DEBUG, | |
5104 | "key_update: no such a SA found (spi:%u)\n", | |
5105 | (u_int32_t)ntohl(sa0->sadb_sa_spi))); | |
5106 | return key_senderror(so, m, EINVAL); | |
5107 | } | |
5108 | #endif | |
5109 | ||
5110 | /* validity check */ | |
5111 | if (sav->sah->saidx.proto != proto) { | |
5112 | ipseclog((LOG_DEBUG, | |
5113 | "key_update: protocol mismatched (DB=%u param=%u)\n", | |
5114 | sav->sah->saidx.proto, proto)); | |
5115 | return key_senderror(so, m, EINVAL); | |
5116 | } | |
5117 | #if IPSEC_DOSEQCHECK | |
5118 | if (sav->spi != sa0->sadb_sa_spi) { | |
5119 | ipseclog((LOG_DEBUG, | |
5120 | "key_update: SPI mismatched (DB:%u param:%u)\n", | |
5121 | (u_int32_t)ntohl(sav->spi), | |
5122 | (u_int32_t)ntohl(sa0->sadb_sa_spi))); | |
5123 | return key_senderror(so, m, EINVAL); | |
5124 | } | |
5125 | #endif | |
5126 | if (sav->pid != mhp->msg->sadb_msg_pid) { | |
5127 | ipseclog((LOG_DEBUG, | |
5128 | "key_update: pid mismatched (DB:%u param:%u)\n", | |
5129 | sav->pid, mhp->msg->sadb_msg_pid)); | |
5130 | return key_senderror(so, m, EINVAL); | |
5131 | } | |
5132 | ||
5133 | /* copy sav values */ | |
5134 | error = key_setsaval(sav, m, mhp); | |
5135 | if (error) { | |
5136 | key_freesav(sav); | |
5137 | return key_senderror(so, m, error); | |
5138 | } | |
5139 | ||
5140 | /* check SA values to be mature. */ | |
5141 | if ((error = key_mature(sav)) != 0) { | |
5142 | key_freesav(sav); | |
5143 | return key_senderror(so, m, error); | |
5144 | } | |
5145 | ||
5146 | { | |
5147 | struct mbuf *n; | |
5148 | ||
5149 | /* set msg buf from mhp */ | |
5150 | n = key_getmsgbuf_x1(m, mhp); | |
5151 | if (n == NULL) { | |
5152 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); | |
5153 | return key_senderror(so, m, ENOBUFS); | |
5154 | } | |
5155 | ||
5156 | m_freem(m); | |
5157 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
5158 | } | |
5159 | } | |
5160 | ||
5161 | /* | |
5162 | * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. | |
5163 | * only called by key_update(). | |
5164 | * OUT: | |
5165 | * NULL : not found | |
5166 | * others : found, pointer to a SA. | |
5167 | */ | |
5168 | #if IPSEC_DOSEQCHECK | |
5169 | static struct secasvar * | |
5170 | key_getsavbyseq(sah, seq) | |
5171 | struct secashead *sah; | |
5172 | u_int32_t seq; | |
5173 | { | |
5174 | struct secasvar *sav; | |
5175 | u_int state; | |
5176 | ||
5177 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5178 | ||
5179 | state = SADB_SASTATE_LARVAL; | |
5180 | ||
5181 | /* search SAD with sequence number ? */ | |
5182 | LIST_FOREACH(sav, &sah->savtree[state], chain) { | |
5183 | ||
5184 | KEY_CHKSASTATE(state, sav->state, "key_getsabyseq"); | |
5185 | ||
5186 | if (sav->seq == seq) { | |
5187 | sav->refcnt++; | |
5188 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
5189 | printf("DP key_getsavbyseq cause " | |
5190 | "refcnt++:%d SA:%p\n", | |
5191 | sav->refcnt, sav)); | |
5192 | return sav; | |
5193 | } | |
5194 | } | |
5195 | ||
5196 | return NULL; | |
5197 | } | |
5198 | #endif | |
5199 | ||
5200 | /* | |
5201 | * SADB_ADD processing | |
5202 | * add a entry to SA database, when received | |
5203 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) | |
5204 | * key(AE), (identity(SD),) (sensitivity)> | |
5205 | * from the ikmpd, | |
5206 | * and send | |
5207 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) | |
5208 | * (identity(SD),) (sensitivity)> | |
5209 | * to the ikmpd. | |
5210 | * | |
5211 | * IGNORE identity and sensitivity messages. | |
5212 | * | |
5213 | * m will always be freed. | |
5214 | */ | |
5215 | static int | |
5216 | key_add(so, m, mhp) | |
5217 | struct socket *so; | |
5218 | struct mbuf *m; | |
5219 | const struct sadb_msghdr *mhp; | |
5220 | { | |
5221 | struct sadb_sa *sa0; | |
5222 | struct sadb_address *src0, *dst0; | |
5223 | struct secasindex saidx; | |
5224 | struct secashead *newsah; | |
5225 | struct secasvar *newsav; | |
5226 | u_int16_t proto; | |
5227 | u_int8_t mode; | |
5228 | u_int32_t reqid; | |
5229 | int error; | |
5230 | ||
5231 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5232 | ||
5233 | /* sanity check */ | |
5234 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
5235 | panic("key_add: NULL pointer is passed.\n"); | |
5236 | ||
5237 | /* map satype to proto */ | |
5238 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
5239 | ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n")); | |
5240 | return key_senderror(so, m, EINVAL); | |
5241 | } | |
5242 | ||
5243 | if (mhp->ext[SADB_EXT_SA] == NULL || | |
5244 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
5245 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || | |
5246 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && | |
5247 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || | |
5248 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && | |
5249 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || | |
5250 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && | |
5251 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || | |
5252 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && | |
5253 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { | |
5254 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); | |
5255 | return key_senderror(so, m, EINVAL); | |
5256 | } | |
5257 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || | |
5258 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
5259 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { | |
5260 | /* XXX need more */ | |
5261 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); | |
5262 | return key_senderror(so, m, EINVAL); | |
5263 | } | |
5264 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { | |
5265 | mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; | |
5266 | reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; | |
5267 | } else { | |
5268 | mode = IPSEC_MODE_ANY; | |
5269 | reqid = 0; | |
5270 | } | |
5271 | ||
5272 | sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
5273 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; | |
5274 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; | |
5275 | ||
5276 | /* XXX boundary check against sa_len */ | |
5277 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); | |
5278 | ||
5279 | /* get a SA header */ | |
5280 | if ((newsah = key_getsah(&saidx)) == NULL) { | |
5281 | /* create a new SA header */ | |
5282 | if ((newsah = key_newsah(&saidx)) == NULL) { | |
5283 | ipseclog((LOG_DEBUG, "key_add: No more memory.\n")); | |
5284 | return key_senderror(so, m, ENOBUFS); | |
5285 | } | |
5286 | } | |
5287 | ||
5288 | /* set spidx if there */ | |
5289 | /* XXX rewrite */ | |
5290 | error = key_setident(newsah, m, mhp); | |
5291 | if (error) { | |
5292 | return key_senderror(so, m, error); | |
5293 | } | |
5294 | ||
5295 | /* create new SA entry. */ | |
5296 | /* We can create new SA only if SPI is differenct. */ | |
5297 | if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) { | |
5298 | ipseclog((LOG_DEBUG, "key_add: SA already exists.\n")); | |
5299 | return key_senderror(so, m, EEXIST); | |
5300 | } | |
5301 | newsav = key_newsav(m, mhp, newsah, &error); | |
5302 | if (newsav == NULL) { | |
5303 | return key_senderror(so, m, error); | |
5304 | } | |
5305 | ||
5306 | /* check SA values to be mature. */ | |
5307 | if ((error = key_mature(newsav)) != 0) { | |
5308 | key_freesav(newsav); | |
5309 | return key_senderror(so, m, error); | |
5310 | } | |
5311 | ||
5312 | /* | |
5313 | * don't call key_freesav() here, as we would like to keep the SA | |
5314 | * in the database on success. | |
5315 | */ | |
5316 | ||
5317 | { | |
5318 | struct mbuf *n; | |
5319 | ||
5320 | /* set msg buf from mhp */ | |
5321 | n = key_getmsgbuf_x1(m, mhp); | |
5322 | if (n == NULL) { | |
5323 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); | |
5324 | return key_senderror(so, m, ENOBUFS); | |
5325 | } | |
5326 | ||
5327 | m_freem(m); | |
5328 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
5329 | } | |
5330 | } | |
5331 | ||
5332 | /* m is retained */ | |
5333 | static int | |
5334 | key_setident(sah, m, mhp) | |
5335 | struct secashead *sah; | |
5336 | struct mbuf *m; | |
5337 | const struct sadb_msghdr *mhp; | |
5338 | { | |
5339 | const struct sadb_ident *idsrc, *iddst; | |
5340 | int idsrclen, iddstlen; | |
5341 | ||
5342 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5343 | ||
5344 | /* sanity check */ | |
5345 | if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
5346 | panic("key_setident: NULL pointer is passed.\n"); | |
5347 | ||
5348 | /* don't make buffer if not there */ | |
5349 | if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && | |
5350 | mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { | |
5351 | sah->idents = NULL; | |
5352 | sah->identd = NULL; | |
5353 | return 0; | |
5354 | } | |
5355 | ||
5356 | if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || | |
5357 | mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { | |
5358 | ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n")); | |
5359 | return EINVAL; | |
5360 | } | |
5361 | ||
5362 | idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; | |
5363 | iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; | |
5364 | idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; | |
5365 | iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; | |
5366 | ||
5367 | /* validity check */ | |
5368 | if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { | |
5369 | ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n")); | |
5370 | return EINVAL; | |
5371 | } | |
5372 | ||
5373 | switch (idsrc->sadb_ident_type) { | |
5374 | case SADB_IDENTTYPE_PREFIX: | |
5375 | case SADB_IDENTTYPE_FQDN: | |
5376 | case SADB_IDENTTYPE_USERFQDN: | |
5377 | default: | |
5378 | /* XXX do nothing */ | |
5379 | sah->idents = NULL; | |
5380 | sah->identd = NULL; | |
5381 | return 0; | |
5382 | } | |
5383 | ||
5384 | /* make structure */ | |
5385 | KMALLOC(sah->idents, struct sadb_ident *, idsrclen); | |
5386 | if (sah->idents == NULL) { | |
5387 | ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); | |
5388 | return ENOBUFS; | |
5389 | } | |
5390 | KMALLOC(sah->identd, struct sadb_ident *, iddstlen); | |
5391 | if (sah->identd == NULL) { | |
5392 | KFREE(sah->idents); | |
5393 | sah->idents = NULL; | |
5394 | ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); | |
5395 | return ENOBUFS; | |
5396 | } | |
5397 | bcopy(idsrc, sah->idents, idsrclen); | |
5398 | bcopy(iddst, sah->identd, iddstlen); | |
5399 | ||
5400 | return 0; | |
5401 | } | |
5402 | ||
5403 | /* | |
5404 | * m will not be freed on return. | |
5405 | * it is caller's responsibility to free the result. | |
5406 | */ | |
5407 | static struct mbuf * | |
5408 | key_getmsgbuf_x1(m, mhp) | |
5409 | struct mbuf *m; | |
5410 | const struct sadb_msghdr *mhp; | |
5411 | { | |
5412 | struct mbuf *n; | |
5413 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, | |
5414 | SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, | |
5415 | SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, | |
5416 | SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, | |
5417 | SADB_EXT_IDENTITY_DST}; | |
5418 | ||
5419 | /* sanity check */ | |
5420 | if (m == NULL || mhp == NULL || mhp->msg == NULL) | |
5421 | panic("key_getmsgbuf_x1: NULL pointer is passed.\n"); | |
5422 | ||
5423 | /* create new sadb_msg to reply. */ | |
5424 | n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems)/sizeof(int), mbufItems); | |
5425 | if (!n) | |
5426 | return NULL; | |
5427 | ||
5428 | if (n->m_len < sizeof(struct sadb_msg)) { | |
5429 | n = m_pullup(n, sizeof(struct sadb_msg)); | |
5430 | if (n == NULL) | |
5431 | return NULL; | |
5432 | } | |
5433 | mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; | |
5434 | mtod(n, struct sadb_msg *)->sadb_msg_len = | |
5435 | PFKEY_UNIT64(n->m_pkthdr.len); | |
5436 | ||
5437 | return n; | |
5438 | } | |
5439 | ||
5440 | static int key_delete_all(struct socket *, struct mbuf *, | |
5441 | const struct sadb_msghdr *, u_int16_t); | |
5442 | ||
5443 | /* | |
5444 | * SADB_DELETE processing | |
5445 | * receive | |
5446 | * <base, SA(*), address(SD)> | |
5447 | * from the ikmpd, and set SADB_SASTATE_DEAD, | |
5448 | * and send, | |
5449 | * <base, SA(*), address(SD)> | |
5450 | * to the ikmpd. | |
5451 | * | |
5452 | * m will always be freed. | |
5453 | */ | |
5454 | static int | |
5455 | key_delete(so, m, mhp) | |
5456 | struct socket *so; | |
5457 | struct mbuf *m; | |
5458 | const struct sadb_msghdr *mhp; | |
5459 | { | |
5460 | struct sadb_sa *sa0; | |
5461 | struct sadb_address *src0, *dst0; | |
5462 | struct secasindex saidx; | |
5463 | struct secashead *sah; | |
5464 | struct secasvar *sav = NULL; | |
5465 | u_int16_t proto; | |
5466 | ||
5467 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5468 | ||
5469 | /* sanity check */ | |
5470 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
5471 | panic("key_delete: NULL pointer is passed.\n"); | |
5472 | ||
5473 | /* map satype to proto */ | |
5474 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
5475 | ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n")); | |
5476 | return key_senderror(so, m, EINVAL); | |
5477 | } | |
5478 | ||
5479 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
5480 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { | |
5481 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); | |
5482 | return key_senderror(so, m, EINVAL); | |
5483 | } | |
5484 | ||
5485 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
5486 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { | |
5487 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); | |
5488 | return key_senderror(so, m, EINVAL); | |
5489 | } | |
5490 | ||
5491 | if (mhp->ext[SADB_EXT_SA] == NULL) { | |
5492 | /* | |
5493 | * Caller wants us to delete all non-LARVAL SAs | |
5494 | * that match the src/dst. This is used during | |
5495 | * IKE INITIAL-CONTACT. | |
5496 | */ | |
5497 | ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n")); | |
5498 | return key_delete_all(so, m, mhp, proto); | |
5499 | } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { | |
5500 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); | |
5501 | return key_senderror(so, m, EINVAL); | |
5502 | } | |
5503 | ||
5504 | sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
5505 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); | |
5506 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); | |
5507 | ||
5508 | /* XXX boundary check against sa_len */ | |
5509 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); | |
5510 | ||
5511 | /* get a SA header */ | |
5512 | LIST_FOREACH(sah, &sahtree, chain) { | |
5513 | if (sah->state == SADB_SASTATE_DEAD) | |
5514 | continue; | |
5515 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) | |
5516 | continue; | |
5517 | ||
5518 | /* get a SA with SPI. */ | |
5519 | sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); | |
5520 | if (sav) | |
5521 | break; | |
5522 | } | |
5523 | if (sah == NULL) { | |
5524 | ipseclog((LOG_DEBUG, "key_delete: no SA found.\n")); | |
5525 | return key_senderror(so, m, ENOENT); | |
5526 | } | |
5527 | ||
5528 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
5529 | key_freesav(sav); | |
5530 | sav = NULL; | |
5531 | ||
5532 | { | |
5533 | struct mbuf *n; | |
5534 | struct sadb_msg *newmsg; | |
5535 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, | |
5536 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; | |
5537 | ||
5538 | /* create new sadb_msg to reply. */ | |
5539 | n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems)/sizeof(int), mbufItems); | |
5540 | if (!n) | |
5541 | return key_senderror(so, m, ENOBUFS); | |
5542 | ||
5543 | if (n->m_len < sizeof(struct sadb_msg)) { | |
5544 | n = m_pullup(n, sizeof(struct sadb_msg)); | |
5545 | if (n == NULL) | |
5546 | return key_senderror(so, m, ENOBUFS); | |
5547 | } | |
5548 | newmsg = mtod(n, struct sadb_msg *); | |
5549 | newmsg->sadb_msg_errno = 0; | |
5550 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
5551 | ||
5552 | m_freem(m); | |
5553 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
5554 | } | |
5555 | } | |
5556 | ||
5557 | /* | |
5558 | * delete all SAs for src/dst. Called from key_delete(). | |
5559 | */ | |
5560 | static int | |
5561 | key_delete_all(so, m, mhp, proto) | |
5562 | struct socket *so; | |
5563 | struct mbuf *m; | |
5564 | const struct sadb_msghdr *mhp; | |
5565 | u_int16_t proto; | |
5566 | { | |
5567 | struct sadb_address *src0, *dst0; | |
5568 | struct secasindex saidx; | |
5569 | struct secashead *sah; | |
5570 | struct secasvar *sav, *nextsav; | |
5571 | u_int stateidx, state; | |
5572 | ||
5573 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5574 | ||
5575 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); | |
5576 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); | |
5577 | ||
5578 | /* XXX boundary check against sa_len */ | |
5579 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); | |
5580 | ||
5581 | LIST_FOREACH(sah, &sahtree, chain) { | |
5582 | if (sah->state == SADB_SASTATE_DEAD) | |
5583 | continue; | |
5584 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) | |
5585 | continue; | |
5586 | ||
5587 | /* Delete all non-LARVAL SAs. */ | |
5588 | for (stateidx = 0; | |
5589 | stateidx < _ARRAYLEN(saorder_state_alive); | |
5590 | stateidx++) { | |
5591 | state = saorder_state_alive[stateidx]; | |
5592 | if (state == SADB_SASTATE_LARVAL) | |
5593 | continue; | |
5594 | for (sav = LIST_FIRST(&sah->savtree[state]); | |
5595 | sav != NULL; sav = nextsav) { | |
5596 | nextsav = LIST_NEXT(sav, chain); | |
5597 | /* sanity check */ | |
5598 | if (sav->state != state) { | |
5599 | ipseclog((LOG_DEBUG, "key_delete_all: " | |
5600 | "invalid sav->state " | |
5601 | "(queue: %d SA: %d)\n", | |
5602 | state, sav->state)); | |
5603 | continue; | |
5604 | } | |
5605 | ||
5606 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
5607 | key_freesav(sav); | |
5608 | } | |
5609 | } | |
5610 | } | |
5611 | { | |
5612 | struct mbuf *n; | |
5613 | struct sadb_msg *newmsg; | |
5614 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, | |
5615 | SADB_EXT_ADDRESS_DST}; | |
5616 | ||
5617 | /* create new sadb_msg to reply. */ | |
5618 | n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems)/sizeof(int), mbufItems); | |
5619 | if (!n) | |
5620 | return key_senderror(so, m, ENOBUFS); | |
5621 | ||
5622 | if (n->m_len < sizeof(struct sadb_msg)) { | |
5623 | n = m_pullup(n, sizeof(struct sadb_msg)); | |
5624 | if (n == NULL) | |
5625 | return key_senderror(so, m, ENOBUFS); | |
5626 | } | |
5627 | newmsg = mtod(n, struct sadb_msg *); | |
5628 | newmsg->sadb_msg_errno = 0; | |
5629 | newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); | |
5630 | ||
5631 | m_freem(m); | |
5632 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); | |
5633 | } | |
5634 | } | |
5635 | ||
5636 | /* | |
5637 | * SADB_GET processing | |
5638 | * receive | |
5639 | * <base, SA(*), address(SD)> | |
5640 | * from the ikmpd, and get a SP and a SA to respond, | |
5641 | * and send, | |
5642 | * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), | |
5643 | * (identity(SD),) (sensitivity)> | |
5644 | * to the ikmpd. | |
5645 | * | |
5646 | * m will always be freed. | |
5647 | */ | |
5648 | static int | |
5649 | key_get(so, m, mhp) | |
5650 | struct socket *so; | |
5651 | struct mbuf *m; | |
5652 | const struct sadb_msghdr *mhp; | |
5653 | { | |
5654 | struct sadb_sa *sa0; | |
5655 | struct sadb_address *src0, *dst0; | |
5656 | struct secasindex saidx; | |
5657 | struct secashead *sah; | |
5658 | struct secasvar *sav = NULL; | |
5659 | u_int16_t proto; | |
5660 | ||
5661 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
5662 | ||
5663 | /* sanity check */ | |
5664 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
5665 | panic("key_get: NULL pointer is passed.\n"); | |
5666 | ||
5667 | /* map satype to proto */ | |
5668 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
5669 | ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n")); | |
5670 | return key_senderror(so, m, EINVAL); | |
5671 | } | |
5672 | ||
5673 | if (mhp->ext[SADB_EXT_SA] == NULL || | |
5674 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
5675 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { | |
5676 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); | |
5677 | return key_senderror(so, m, EINVAL); | |
5678 | } | |
5679 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || | |
5680 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
5681 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { | |
5682 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); | |
5683 | return key_senderror(so, m, EINVAL); | |
5684 | } | |
5685 | ||
5686 | sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; | |
5687 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; | |
5688 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; | |
5689 | ||
5690 | /* XXX boundary check against sa_len */ | |
5691 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); | |
5692 | ||
5693 | /* get a SA header */ | |
5694 | LIST_FOREACH(sah, &sahtree, chain) { | |
5695 | if (sah->state == SADB_SASTATE_DEAD) | |
5696 | continue; | |
5697 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) | |
5698 | continue; | |
5699 | ||
5700 | /* get a SA with SPI. */ | |
5701 | sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); | |
5702 | if (sav) | |
5703 | break; | |
5704 | } | |
5705 | if (sah == NULL) { | |
5706 | ipseclog((LOG_DEBUG, "key_get: no SA found.\n")); | |
5707 | return key_senderror(so, m, ENOENT); | |
5708 | } | |
5709 | ||
5710 | { | |
5711 | struct mbuf *n; | |
5712 | u_int8_t satype; | |
5713 | ||
5714 | /* map proto to satype */ | |
5715 | if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { | |
5716 | ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n")); | |
5717 | return key_senderror(so, m, EINVAL); | |
5718 | } | |
5719 | ||
5720 | /* create new sadb_msg to reply. */ | |
5721 | n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, | |
5722 | mhp->msg->sadb_msg_pid); | |
5723 | if (!n) | |
5724 | return key_senderror(so, m, ENOBUFS); | |
5725 | ||
5726 | m_freem(m); | |
5727 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); | |
5728 | } | |
5729 | } | |
5730 | ||
5731 | /* XXX make it sysctl-configurable? */ | |
5732 | static void | |
5733 | key_getcomb_setlifetime(comb) | |
5734 | struct sadb_comb *comb; | |
5735 | { | |
5736 | ||
5737 | comb->sadb_comb_soft_allocations = 1; | |
5738 | comb->sadb_comb_hard_allocations = 1; | |
5739 | comb->sadb_comb_soft_bytes = 0; | |
5740 | comb->sadb_comb_hard_bytes = 0; | |
5741 | comb->sadb_comb_hard_addtime = 86400; /* 1 day */ | |
5742 | comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; | |
5743 | comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ | |
5744 | comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; | |
5745 | } | |
5746 | ||
5747 | #if IPSEC_ESP | |
5748 | /* | |
5749 | * XXX reorder combinations by preference | |
5750 | * XXX no idea if the user wants ESP authentication or not | |
5751 | */ | |
5752 | static struct mbuf * | |
5753 | key_getcomb_esp() | |
5754 | { | |
5755 | struct sadb_comb *comb; | |
5756 | const struct esp_algorithm *algo; | |
5757 | struct mbuf *result = NULL, *m, *n; | |
5758 | int encmin; | |
5759 | int i, off, o; | |
5760 | int totlen; | |
5761 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); | |
5762 | ||
5763 | m = NULL; | |
5764 | for (i = 1; i <= SADB_EALG_MAX; i++) { | |
5765 | algo = esp_algorithm_lookup(i); | |
5766 | if (!algo) | |
5767 | continue; | |
5768 | ||
5769 | if (algo->keymax < ipsec_esp_keymin) | |
5770 | continue; | |
5771 | if (algo->keymin < ipsec_esp_keymin) | |
5772 | encmin = ipsec_esp_keymin; | |
5773 | else | |
5774 | encmin = algo->keymin; | |
5775 | ||
5776 | if (ipsec_esp_auth) | |
5777 | m = key_getcomb_ah(); | |
5778 | else { | |
5779 | #if DIAGNOSTIC | |
5780 | if (l > MLEN) | |
5781 | panic("assumption failed in key_getcomb_esp"); | |
5782 | #endif | |
5783 | MGET(m, M_DONTWAIT, MT_DATA); | |
5784 | if (m) { | |
5785 | M_ALIGN(m, l); | |
5786 | m->m_len = l; | |
5787 | m->m_next = NULL; | |
5788 | bzero(mtod(m, caddr_t), m->m_len); | |
5789 | } | |
5790 | } | |
5791 | if (!m) | |
5792 | goto fail; | |
5793 | ||
5794 | totlen = 0; | |
5795 | for (n = m; n; n = n->m_next) | |
5796 | totlen += n->m_len; | |
5797 | #if DIAGNOSTIC | |
5798 | if (totlen % l) | |
5799 | panic("assumption failed in key_getcomb_esp"); | |
5800 | #endif | |
5801 | ||
5802 | for (off = 0; off < totlen; off += l) { | |
5803 | n = m_pulldown(m, off, l, &o); | |
5804 | if (!n) { | |
5805 | /* m is already freed */ | |
5806 | goto fail; | |
5807 | } | |
5808 | comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); | |
5809 | bzero(comb, sizeof(*comb)); | |
5810 | key_getcomb_setlifetime(comb); | |
5811 | comb->sadb_comb_encrypt = i; | |
5812 | comb->sadb_comb_encrypt_minbits = encmin; | |
5813 | comb->sadb_comb_encrypt_maxbits = algo->keymax; | |
5814 | } | |
5815 | ||
5816 | if (!result) | |
5817 | result = m; | |
5818 | else | |
5819 | m_cat(result, m); | |
5820 | } | |
5821 | ||
5822 | return result; | |
5823 | ||
5824 | fail: | |
5825 | if (result) | |
5826 | m_freem(result); | |
5827 | return NULL; | |
5828 | } | |
5829 | #endif | |
5830 | ||
5831 | /* | |
5832 | * XXX reorder combinations by preference | |
5833 | */ | |
5834 | static struct mbuf * | |
5835 | key_getcomb_ah() | |
5836 | { | |
5837 | struct sadb_comb *comb; | |
5838 | const struct ah_algorithm *algo; | |
5839 | struct mbuf *m; | |
5840 | int min; | |
5841 | int i; | |
5842 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); | |
5843 | ||
5844 | m = NULL; | |
5845 | for (i = 1; i <= SADB_AALG_MAX; i++) { | |
5846 | #if 1 | |
5847 | /* we prefer HMAC algorithms, not old algorithms */ | |
5848 | if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) | |
5849 | continue; | |
5850 | #endif | |
5851 | algo = ah_algorithm_lookup(i); | |
5852 | if (!algo) | |
5853 | continue; | |
5854 | ||
5855 | if (algo->keymax < ipsec_ah_keymin) | |
5856 | continue; | |
5857 | if (algo->keymin < ipsec_ah_keymin) | |
5858 | min = ipsec_ah_keymin; | |
5859 | else | |
5860 | min = algo->keymin; | |
5861 | ||
5862 | if (!m) { | |
5863 | #if DIAGNOSTIC | |
5864 | if (l > MLEN) | |
5865 | panic("assumption failed in key_getcomb_ah"); | |
5866 | #endif | |
5867 | MGET(m, M_DONTWAIT, MT_DATA); | |
5868 | if (m) { | |
5869 | M_ALIGN(m, l); | |
5870 | m->m_len = l; | |
5871 | m->m_next = NULL; | |
5872 | } | |
5873 | } else | |
5874 | M_PREPEND(m, l, M_DONTWAIT); | |
5875 | if (!m) | |
5876 | return NULL; | |
5877 | ||
5878 | comb = mtod(m, struct sadb_comb *); | |
5879 | bzero(comb, sizeof(*comb)); | |
5880 | key_getcomb_setlifetime(comb); | |
5881 | comb->sadb_comb_auth = i; | |
5882 | comb->sadb_comb_auth_minbits = min; | |
5883 | comb->sadb_comb_auth_maxbits = algo->keymax; | |
5884 | } | |
5885 | ||
5886 | return m; | |
5887 | } | |
5888 | ||
5889 | /* | |
5890 | * not really an official behavior. discussed in pf_key@inner.net in Sep2000. | |
5891 | * XXX reorder combinations by preference | |
5892 | */ | |
5893 | static struct mbuf * | |
5894 | key_getcomb_ipcomp() | |
5895 | { | |
5896 | struct sadb_comb *comb; | |
5897 | const struct ipcomp_algorithm *algo; | |
5898 | struct mbuf *m; | |
5899 | int i; | |
5900 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); | |
5901 | ||
5902 | m = NULL; | |
5903 | for (i = 1; i <= SADB_X_CALG_MAX; i++) { | |
5904 | algo = ipcomp_algorithm_lookup(i); | |
5905 | if (!algo) | |
5906 | continue; | |
5907 | ||
5908 | if (!m) { | |
5909 | #if DIAGNOSTIC | |
5910 | if (l > MLEN) | |
5911 | panic("assumption failed in key_getcomb_ipcomp"); | |
5912 | #endif | |
5913 | MGET(m, M_DONTWAIT, MT_DATA); | |
5914 | if (m) { | |
5915 | M_ALIGN(m, l); | |
5916 | m->m_len = l; | |
5917 | m->m_next = NULL; | |
5918 | } | |
5919 | } else | |
5920 | M_PREPEND(m, l, M_DONTWAIT); | |
5921 | if (!m) | |
5922 | return NULL; | |
5923 | ||
5924 | comb = mtod(m, struct sadb_comb *); | |
5925 | bzero(comb, sizeof(*comb)); | |
5926 | key_getcomb_setlifetime(comb); | |
5927 | comb->sadb_comb_encrypt = i; | |
5928 | /* what should we set into sadb_comb_*_{min,max}bits? */ | |
5929 | } | |
5930 | ||
5931 | return m; | |
5932 | } | |
5933 | ||
5934 | /* | |
5935 | * XXX no way to pass mode (transport/tunnel) to userland | |
5936 | * XXX replay checking? | |
5937 | * XXX sysctl interface to ipsec_{ah,esp}_keymin | |
5938 | */ | |
5939 | static struct mbuf * | |
5940 | key_getprop(saidx) | |
5941 | const struct secasindex *saidx; | |
5942 | { | |
5943 | struct sadb_prop *prop; | |
5944 | struct mbuf *m, *n; | |
5945 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); | |
5946 | int totlen; | |
5947 | ||
5948 | switch (saidx->proto) { | |
5949 | #if IPSEC_ESP | |
5950 | case IPPROTO_ESP: | |
5951 | m = key_getcomb_esp(); | |
5952 | break; | |
5953 | #endif | |
5954 | case IPPROTO_AH: | |
5955 | m = key_getcomb_ah(); | |
5956 | break; | |
5957 | case IPPROTO_IPCOMP: | |
5958 | m = key_getcomb_ipcomp(); | |
5959 | break; | |
5960 | default: | |
5961 | return NULL; | |
5962 | } | |
5963 | ||
5964 | if (!m) | |
5965 | return NULL; | |
5966 | M_PREPEND(m, l, M_DONTWAIT); | |
5967 | if (!m) | |
5968 | return NULL; | |
5969 | ||
5970 | totlen = 0; | |
5971 | for (n = m; n; n = n->m_next) | |
5972 | totlen += n->m_len; | |
5973 | ||
5974 | prop = mtod(m, struct sadb_prop *); | |
5975 | bzero(prop, sizeof(*prop)); | |
5976 | prop->sadb_prop_len = PFKEY_UNIT64(totlen); | |
5977 | prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; | |
5978 | prop->sadb_prop_replay = 32; /* XXX */ | |
5979 | ||
5980 | return m; | |
5981 | } | |
5982 | ||
5983 | /* | |
5984 | * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). | |
5985 | * send | |
5986 | * <base, SA, address(SD), (address(P)), x_policy, | |
5987 | * (identity(SD),) (sensitivity,) proposal> | |
5988 | * to KMD, and expect to receive | |
5989 | * <base> with SADB_ACQUIRE if error occurred, | |
5990 | * or | |
5991 | * <base, src address, dst address, (SPI range)> with SADB_GETSPI | |
5992 | * from KMD by PF_KEY. | |
5993 | * | |
5994 | * XXX x_policy is outside of RFC2367 (KAME extension). | |
5995 | * XXX sensitivity is not supported. | |
5996 | * XXX for ipcomp, RFC2367 does not define how to fill in proposal. | |
5997 | * see comment for key_getcomb_ipcomp(). | |
5998 | * | |
5999 | * OUT: | |
6000 | * 0 : succeed | |
6001 | * others: error number | |
6002 | */ | |
6003 | static int | |
6004 | key_acquire(saidx, sp) | |
6005 | struct secasindex *saidx; | |
6006 | struct secpolicy *sp; | |
6007 | { | |
6008 | struct mbuf *result = NULL, *m; | |
6009 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
6010 | struct secacq *newacq; | |
6011 | #endif | |
6012 | u_int8_t satype; | |
6013 | int error = -1; | |
6014 | u_int32_t seq; | |
6015 | ||
6016 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6017 | ||
6018 | /* sanity check */ | |
6019 | if (saidx == NULL) | |
6020 | panic("key_acquire: NULL pointer is passed.\n"); | |
6021 | if ((satype = key_proto2satype(saidx->proto)) == 0) | |
6022 | panic("key_acquire: invalid proto is passed.\n"); | |
6023 | ||
6024 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
6025 | /* | |
6026 | * We never do anything about acquirng SA. There is anather | |
6027 | * solution that kernel blocks to send SADB_ACQUIRE message until | |
6028 | * getting something message from IKEd. In later case, to be | |
6029 | * managed with ACQUIRING list. | |
6030 | */ | |
6031 | /* get a entry to check whether sending message or not. */ | |
6032 | if ((newacq = key_getacq(saidx)) != NULL) { | |
6033 | if (key_blockacq_count < newacq->count) { | |
6034 | /* reset counter and do send message. */ | |
6035 | newacq->count = 0; | |
6036 | } else { | |
6037 | /* increment counter and do nothing. */ | |
6038 | newacq->count++; | |
6039 | return 0; | |
6040 | } | |
6041 | } else { | |
6042 | /* make new entry for blocking to send SADB_ACQUIRE. */ | |
6043 | if ((newacq = key_newacq(saidx)) == NULL) | |
6044 | return ENOBUFS; | |
6045 | ||
6046 | /* add to acqtree */ | |
6047 | LIST_INSERT_HEAD(&acqtree, newacq, chain); | |
6048 | } | |
6049 | #endif | |
6050 | ||
6051 | ||
6052 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
6053 | seq = newacq->seq; | |
6054 | #else | |
6055 | seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); | |
6056 | #endif | |
6057 | m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); | |
6058 | if (!m) { | |
6059 | error = ENOBUFS; | |
6060 | goto fail; | |
6061 | } | |
6062 | result = m; | |
6063 | ||
6064 | /* set sadb_address for saidx's. */ | |
6065 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
6066 | (struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY); | |
6067 | if (!m) { | |
6068 | error = ENOBUFS; | |
6069 | goto fail; | |
6070 | } | |
6071 | m_cat(result, m); | |
6072 | ||
6073 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
6074 | (struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY); | |
6075 | if (!m) { | |
6076 | error = ENOBUFS; | |
6077 | goto fail; | |
6078 | } | |
6079 | m_cat(result, m); | |
6080 | ||
6081 | /* XXX proxy address (optional) */ | |
6082 | ||
6083 | /* set sadb_x_policy */ | |
6084 | if (sp) { | |
6085 | m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); | |
6086 | if (!m) { | |
6087 | error = ENOBUFS; | |
6088 | goto fail; | |
6089 | } | |
6090 | m_cat(result, m); | |
6091 | } | |
6092 | ||
6093 | /* XXX identity (optional) */ | |
6094 | #if 0 | |
6095 | if (idexttype && fqdn) { | |
6096 | /* create identity extension (FQDN) */ | |
6097 | struct sadb_ident *id; | |
6098 | int fqdnlen; | |
6099 | ||
6100 | fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ | |
6101 | id = (struct sadb_ident *)p; | |
6102 | bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); | |
6103 | id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); | |
6104 | id->sadb_ident_exttype = idexttype; | |
6105 | id->sadb_ident_type = SADB_IDENTTYPE_FQDN; | |
6106 | bcopy(fqdn, id + 1, fqdnlen); | |
6107 | p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); | |
6108 | } | |
6109 | ||
6110 | if (idexttype) { | |
6111 | /* create identity extension (USERFQDN) */ | |
6112 | struct sadb_ident *id; | |
6113 | int userfqdnlen; | |
6114 | ||
6115 | if (userfqdn) { | |
6116 | /* +1 for terminating-NUL */ | |
6117 | userfqdnlen = strlen(userfqdn) + 1; | |
6118 | } else | |
6119 | userfqdnlen = 0; | |
6120 | id = (struct sadb_ident *)p; | |
6121 | bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); | |
6122 | id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); | |
6123 | id->sadb_ident_exttype = idexttype; | |
6124 | id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; | |
6125 | /* XXX is it correct? */ | |
6126 | if (curproc && curproc->p_cred) | |
6127 | id->sadb_ident_id = curproc->p_cred->p_ruid; | |
6128 | if (userfqdn && userfqdnlen) | |
6129 | bcopy(userfqdn, id + 1, userfqdnlen); | |
6130 | p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); | |
6131 | } | |
6132 | #endif | |
6133 | ||
6134 | /* XXX sensitivity (optional) */ | |
6135 | ||
6136 | /* create proposal/combination extension */ | |
6137 | m = key_getprop(saidx); | |
6138 | #if 0 | |
6139 | /* | |
6140 | * spec conformant: always attach proposal/combination extension, | |
6141 | * the problem is that we have no way to attach it for ipcomp, | |
6142 | * due to the way sadb_comb is declared in RFC2367. | |
6143 | */ | |
6144 | if (!m) { | |
6145 | error = ENOBUFS; | |
6146 | goto fail; | |
6147 | } | |
6148 | m_cat(result, m); | |
6149 | #else | |
6150 | /* | |
6151 | * outside of spec; make proposal/combination extension optional. | |
6152 | */ | |
6153 | if (m) | |
6154 | m_cat(result, m); | |
6155 | #endif | |
6156 | ||
6157 | if ((result->m_flags & M_PKTHDR) == 0) { | |
6158 | error = EINVAL; | |
6159 | goto fail; | |
6160 | } | |
6161 | ||
6162 | if (result->m_len < sizeof(struct sadb_msg)) { | |
6163 | result = m_pullup(result, sizeof(struct sadb_msg)); | |
6164 | if (result == NULL) { | |
6165 | error = ENOBUFS; | |
6166 | goto fail; | |
6167 | } | |
6168 | } | |
6169 | ||
6170 | result->m_pkthdr.len = 0; | |
6171 | for (m = result; m; m = m->m_next) | |
6172 | result->m_pkthdr.len += m->m_len; | |
6173 | ||
6174 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
6175 | PFKEY_UNIT64(result->m_pkthdr.len); | |
6176 | ||
6177 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); | |
6178 | ||
6179 | fail: | |
6180 | if (result) | |
6181 | m_freem(result); | |
6182 | return error; | |
6183 | } | |
6184 | ||
6185 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
6186 | static struct secacq * | |
6187 | key_newacq(saidx) | |
6188 | struct secasindex *saidx; | |
6189 | { | |
6190 | struct secacq *newacq; | |
6191 | struct timeval tv; | |
6192 | ||
6193 | /* get new entry */ | |
6194 | KMALLOC(newacq, struct secacq *, sizeof(struct secacq)); | |
6195 | if (newacq == NULL) { | |
6196 | ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n")); | |
6197 | return NULL; | |
6198 | } | |
6199 | bzero(newacq, sizeof(*newacq)); | |
6200 | ||
6201 | /* copy secindex */ | |
6202 | bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); | |
6203 | newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); | |
6204 | microtime(&tv); | |
6205 | newacq->created = tv.tv_sec; | |
6206 | newacq->count = 0; | |
6207 | ||
6208 | return newacq; | |
6209 | } | |
6210 | ||
6211 | static struct secacq * | |
6212 | key_getacq(saidx) | |
6213 | struct secasindex *saidx; | |
6214 | { | |
6215 | struct secacq *acq; | |
6216 | ||
6217 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6218 | ||
6219 | LIST_FOREACH(acq, &acqtree, chain) { | |
6220 | if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) | |
6221 | return acq; | |
6222 | } | |
6223 | ||
6224 | return NULL; | |
6225 | } | |
6226 | ||
6227 | static struct secacq * | |
6228 | key_getacqbyseq(seq) | |
6229 | u_int32_t seq; | |
6230 | { | |
6231 | struct secacq *acq; | |
6232 | ||
6233 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6234 | ||
6235 | LIST_FOREACH(acq, &acqtree, chain) { | |
6236 | if (acq->seq == seq) | |
6237 | return acq; | |
6238 | } | |
6239 | ||
6240 | return NULL; | |
6241 | } | |
6242 | #endif | |
6243 | ||
6244 | static struct secspacq * | |
6245 | key_newspacq(spidx) | |
6246 | struct secpolicyindex *spidx; | |
6247 | { | |
6248 | struct secspacq *acq; | |
6249 | struct timeval tv; | |
6250 | ||
6251 | /* get new entry */ | |
6252 | KMALLOC(acq, struct secspacq *, sizeof(struct secspacq)); | |
6253 | if (acq == NULL) { | |
6254 | ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n")); | |
6255 | return NULL; | |
6256 | } | |
6257 | bzero(acq, sizeof(*acq)); | |
6258 | ||
6259 | /* copy secindex */ | |
6260 | bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); | |
6261 | microtime(&tv); | |
6262 | acq->created = tv.tv_sec; | |
6263 | acq->count = 0; | |
6264 | ||
6265 | return acq; | |
6266 | } | |
6267 | ||
6268 | static struct secspacq * | |
6269 | key_getspacq(spidx) | |
6270 | struct secpolicyindex *spidx; | |
6271 | { | |
6272 | struct secspacq *acq; | |
6273 | ||
6274 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6275 | ||
6276 | LIST_FOREACH(acq, &spacqtree, chain) { | |
6277 | if (key_cmpspidx_exactly(spidx, &acq->spidx)) | |
6278 | return acq; | |
6279 | } | |
6280 | ||
6281 | return NULL; | |
6282 | } | |
6283 | ||
6284 | /* | |
6285 | * SADB_ACQUIRE processing, | |
6286 | * in first situation, is receiving | |
6287 | * <base> | |
6288 | * from the ikmpd, and clear sequence of its secasvar entry. | |
6289 | * | |
6290 | * In second situation, is receiving | |
6291 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> | |
6292 | * from a user land process, and return | |
6293 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> | |
6294 | * to the socket. | |
6295 | * | |
6296 | * m will always be freed. | |
6297 | */ | |
6298 | static int | |
6299 | key_acquire2(so, m, mhp) | |
6300 | struct socket *so; | |
6301 | struct mbuf *m; | |
6302 | const struct sadb_msghdr *mhp; | |
6303 | { | |
6304 | const struct sadb_address *src0, *dst0; | |
6305 | struct secasindex saidx; | |
6306 | struct secashead *sah; | |
6307 | u_int16_t proto; | |
6308 | int error; | |
6309 | ||
6310 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6311 | ||
6312 | /* sanity check */ | |
6313 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
6314 | panic("key_acquire2: NULL pointer is passed.\n"); | |
6315 | ||
6316 | /* | |
6317 | * Error message from KMd. | |
6318 | * We assume that if error was occurred in IKEd, the length of PFKEY | |
6319 | * message is equal to the size of sadb_msg structure. | |
6320 | * We do not raise error even if error occurred in this function. | |
6321 | */ | |
6322 | if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { | |
6323 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
6324 | struct secacq *acq; | |
6325 | struct timeval tv; | |
6326 | ||
6327 | /* check sequence number */ | |
6328 | if (mhp->msg->sadb_msg_seq == 0) { | |
6329 | ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n")); | |
6330 | m_freem(m); | |
6331 | return 0; | |
6332 | } | |
6333 | ||
6334 | if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { | |
6335 | /* | |
6336 | * the specified larval SA is already gone, or we got | |
6337 | * a bogus sequence number. we can silently ignore it. | |
6338 | */ | |
6339 | m_freem(m); | |
6340 | return 0; | |
6341 | } | |
6342 | ||
6343 | /* reset acq counter in order to deletion by timehander. */ | |
6344 | microtime(&tv); | |
6345 | acq->created = tv.tv_sec; | |
6346 | acq->count = 0; | |
6347 | #endif | |
6348 | m_freem(m); | |
6349 | return 0; | |
6350 | } | |
6351 | ||
6352 | /* | |
6353 | * This message is from user land. | |
6354 | */ | |
6355 | ||
6356 | /* map satype to proto */ | |
6357 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
6358 | ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n")); | |
6359 | return key_senderror(so, m, EINVAL); | |
6360 | } | |
6361 | ||
6362 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || | |
6363 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || | |
6364 | mhp->ext[SADB_EXT_PROPOSAL] == NULL) { | |
6365 | /* error */ | |
6366 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); | |
6367 | return key_senderror(so, m, EINVAL); | |
6368 | } | |
6369 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || | |
6370 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || | |
6371 | mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { | |
6372 | /* error */ | |
6373 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); | |
6374 | return key_senderror(so, m, EINVAL); | |
6375 | } | |
6376 | ||
6377 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; | |
6378 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; | |
6379 | ||
6380 | /* XXX boundary check against sa_len */ | |
6381 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); | |
6382 | ||
6383 | /* get a SA index */ | |
6384 | LIST_FOREACH(sah, &sahtree, chain) { | |
6385 | if (sah->state == SADB_SASTATE_DEAD) | |
6386 | continue; | |
6387 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) | |
6388 | break; | |
6389 | } | |
6390 | if (sah != NULL) { | |
6391 | ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n")); | |
6392 | return key_senderror(so, m, EEXIST); | |
6393 | } | |
6394 | ||
6395 | error = key_acquire(&saidx, NULL); | |
6396 | if (error != 0) { | |
6397 | ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " | |
6398 | "from key_acquire.\n", mhp->msg->sadb_msg_errno)); | |
6399 | return key_senderror(so, m, error); | |
6400 | } | |
6401 | ||
6402 | return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); | |
6403 | } | |
6404 | ||
6405 | /* | |
6406 | * SADB_REGISTER processing. | |
6407 | * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. | |
6408 | * receive | |
6409 | * <base> | |
6410 | * from the ikmpd, and register a socket to send PF_KEY messages, | |
6411 | * and send | |
6412 | * <base, supported> | |
6413 | * to KMD by PF_KEY. | |
6414 | * If socket is detached, must free from regnode. | |
6415 | * | |
6416 | * m will always be freed. | |
6417 | */ | |
6418 | static int | |
6419 | key_register(so, m, mhp) | |
6420 | struct socket *so; | |
6421 | struct mbuf *m; | |
6422 | const struct sadb_msghdr *mhp; | |
6423 | { | |
6424 | struct secreg *reg, *newreg = 0; | |
6425 | ||
6426 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6427 | ||
6428 | /* sanity check */ | |
6429 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
6430 | panic("key_register: NULL pointer is passed.\n"); | |
6431 | ||
6432 | /* check for invalid register message */ | |
6433 | if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) | |
6434 | return key_senderror(so, m, EINVAL); | |
6435 | ||
6436 | /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ | |
6437 | if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) | |
6438 | goto setmsg; | |
6439 | ||
6440 | /* check whether existing or not */ | |
6441 | LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { | |
6442 | if (reg->so == so) { | |
6443 | ipseclog((LOG_DEBUG, "key_register: socket exists already.\n")); | |
6444 | return key_senderror(so, m, EEXIST); | |
6445 | } | |
6446 | } | |
6447 | ||
6448 | /* create regnode */ | |
6449 | KMALLOC(newreg, struct secreg *, sizeof(*newreg)); | |
6450 | if (newreg == NULL) { | |
6451 | ipseclog((LOG_DEBUG, "key_register: No more memory.\n")); | |
6452 | return key_senderror(so, m, ENOBUFS); | |
6453 | } | |
6454 | bzero((caddr_t)newreg, sizeof(*newreg)); | |
6455 | ||
6456 | socket_lock(so, 1); | |
6457 | newreg->so = so; | |
6458 | ((struct keycb *)sotorawcb(so))->kp_registered++; | |
6459 | socket_unlock(so, 1); | |
6460 | ||
6461 | /* add regnode to regtree. */ | |
6462 | LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); | |
6463 | ||
6464 | setmsg: | |
6465 | { | |
6466 | struct mbuf *n; | |
6467 | struct sadb_msg *newmsg; | |
6468 | struct sadb_supported *sup; | |
6469 | u_int len, alen, elen; | |
6470 | int off; | |
6471 | int i; | |
6472 | struct sadb_alg *alg; | |
6473 | ||
6474 | /* create new sadb_msg to reply. */ | |
6475 | alen = 0; | |
6476 | for (i = 1; i <= SADB_AALG_MAX; i++) { | |
6477 | if (ah_algorithm_lookup(i)) | |
6478 | alen += sizeof(struct sadb_alg); | |
6479 | } | |
6480 | if (alen) | |
6481 | alen += sizeof(struct sadb_supported); | |
6482 | elen = 0; | |
6483 | #if IPSEC_ESP | |
6484 | for (i = 1; i <= SADB_EALG_MAX; i++) { | |
6485 | if (esp_algorithm_lookup(i)) | |
6486 | elen += sizeof(struct sadb_alg); | |
6487 | } | |
6488 | if (elen) | |
6489 | elen += sizeof(struct sadb_supported); | |
6490 | #endif | |
6491 | ||
6492 | len = sizeof(struct sadb_msg) + alen + elen; | |
6493 | ||
6494 | if (len > MCLBYTES) | |
6495 | return key_senderror(so, m, ENOBUFS); | |
6496 | ||
6497 | MGETHDR(n, M_DONTWAIT, MT_DATA); | |
6498 | if (len > MHLEN) { | |
6499 | MCLGET(n, M_DONTWAIT); | |
6500 | if ((n->m_flags & M_EXT) == 0) { | |
6501 | m_freem(n); | |
6502 | n = NULL; | |
6503 | } | |
6504 | } | |
6505 | if (!n) | |
6506 | return key_senderror(so, m, ENOBUFS); | |
6507 | ||
6508 | n->m_pkthdr.len = n->m_len = len; | |
6509 | n->m_next = NULL; | |
6510 | off = 0; | |
6511 | ||
6512 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); | |
6513 | newmsg = mtod(n, struct sadb_msg *); | |
6514 | newmsg->sadb_msg_errno = 0; | |
6515 | newmsg->sadb_msg_len = PFKEY_UNIT64(len); | |
6516 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); | |
6517 | ||
6518 | /* for authentication algorithm */ | |
6519 | if (alen) { | |
6520 | sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); | |
6521 | sup->sadb_supported_len = PFKEY_UNIT64(alen); | |
6522 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; | |
6523 | off += PFKEY_ALIGN8(sizeof(*sup)); | |
6524 | ||
6525 | for (i = 1; i <= SADB_AALG_MAX; i++) { | |
6526 | const struct ah_algorithm *aalgo; | |
6527 | ||
6528 | aalgo = ah_algorithm_lookup(i); | |
6529 | if (!aalgo) | |
6530 | continue; | |
6531 | alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); | |
6532 | alg->sadb_alg_id = i; | |
6533 | alg->sadb_alg_ivlen = 0; | |
6534 | alg->sadb_alg_minbits = aalgo->keymin; | |
6535 | alg->sadb_alg_maxbits = aalgo->keymax; | |
6536 | off += PFKEY_ALIGN8(sizeof(*alg)); | |
6537 | } | |
6538 | } | |
6539 | ||
6540 | #if IPSEC_ESP | |
6541 | /* for encryption algorithm */ | |
6542 | if (elen) { | |
6543 | sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); | |
6544 | sup->sadb_supported_len = PFKEY_UNIT64(elen); | |
6545 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; | |
6546 | off += PFKEY_ALIGN8(sizeof(*sup)); | |
6547 | ||
6548 | for (i = 1; i <= SADB_EALG_MAX; i++) { | |
6549 | const struct esp_algorithm *ealgo; | |
6550 | ||
6551 | ealgo = esp_algorithm_lookup(i); | |
6552 | if (!ealgo) | |
6553 | continue; | |
6554 | alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); | |
6555 | alg->sadb_alg_id = i; | |
6556 | if (ealgo && ealgo->ivlen) { | |
6557 | /* | |
6558 | * give NULL to get the value preferred by | |
6559 | * algorithm XXX SADB_X_EXT_DERIV ? | |
6560 | */ | |
6561 | alg->sadb_alg_ivlen = | |
6562 | (*ealgo->ivlen)(ealgo, NULL); | |
6563 | } else | |
6564 | alg->sadb_alg_ivlen = 0; | |
6565 | alg->sadb_alg_minbits = ealgo->keymin; | |
6566 | alg->sadb_alg_maxbits = ealgo->keymax; | |
6567 | off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); | |
6568 | } | |
6569 | } | |
6570 | #endif | |
6571 | ||
6572 | #if DIGAGNOSTIC | |
6573 | if (off != len) | |
6574 | panic("length assumption failed in key_register"); | |
6575 | #endif | |
6576 | ||
6577 | m_freem(m); | |
6578 | return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); | |
6579 | } | |
6580 | } | |
6581 | ||
6582 | /* | |
6583 | * free secreg entry registered. | |
6584 | * XXX: I want to do free a socket marked done SADB_RESIGER to socket. | |
6585 | */ | |
6586 | void | |
6587 | key_freereg(so) | |
6588 | struct socket *so; | |
6589 | { | |
6590 | struct secreg *reg; | |
6591 | int i; | |
6592 | ||
6593 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6594 | ||
6595 | /* sanity check */ | |
6596 | if (so == NULL) | |
6597 | panic("key_freereg: NULL pointer is passed.\n"); | |
6598 | ||
6599 | /* | |
6600 | * check whether existing or not. | |
6601 | * check all type of SA, because there is a potential that | |
6602 | * one socket is registered to multiple type of SA. | |
6603 | */ | |
6604 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { | |
6605 | LIST_FOREACH(reg, ®tree[i], chain) { | |
6606 | if (reg->so == so | |
6607 | && __LIST_CHAINED(reg)) { | |
6608 | LIST_REMOVE(reg, chain); | |
6609 | KFREE(reg); | |
6610 | break; | |
6611 | } | |
6612 | } | |
6613 | } | |
6614 | ||
6615 | return; | |
6616 | } | |
6617 | ||
6618 | /* | |
6619 | * SADB_EXPIRE processing | |
6620 | * send | |
6621 | * <base, SA, SA2, lifetime(C and one of HS), address(SD)> | |
6622 | * to KMD by PF_KEY. | |
6623 | * NOTE: We send only soft lifetime extension. | |
6624 | * | |
6625 | * OUT: 0 : succeed | |
6626 | * others : error number | |
6627 | */ | |
6628 | static int | |
6629 | key_expire(sav) | |
6630 | struct secasvar *sav; | |
6631 | { | |
6632 | int s; | |
6633 | int satype; | |
6634 | struct mbuf *result = NULL, *m; | |
6635 | int len; | |
6636 | int error = -1; | |
6637 | struct sadb_lifetime *lt; | |
6638 | ||
6639 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6640 | ||
6641 | /* sanity check */ | |
6642 | if (sav == NULL) | |
6643 | panic("key_expire: NULL pointer is passed.\n"); | |
6644 | if (sav->sah == NULL) | |
6645 | panic("key_expire: Why was SA index in SA NULL.\n"); | |
6646 | if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) | |
6647 | panic("key_expire: invalid proto is passed.\n"); | |
6648 | ||
6649 | /* set msg header */ | |
6650 | m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); | |
6651 | if (!m) { | |
6652 | error = ENOBUFS; | |
6653 | goto fail; | |
6654 | } | |
6655 | result = m; | |
6656 | ||
6657 | /* create SA extension */ | |
6658 | m = key_setsadbsa(sav); | |
6659 | if (!m) { | |
6660 | error = ENOBUFS; | |
6661 | goto fail; | |
6662 | } | |
6663 | m_cat(result, m); | |
6664 | ||
6665 | /* create SA extension */ | |
6666 | m = key_setsadbxsa2(sav->sah->saidx.mode, | |
6667 | sav->replay ? sav->replay->count : 0, | |
6668 | sav->sah->saidx.reqid); | |
6669 | if (!m) { | |
6670 | error = ENOBUFS; | |
6671 | goto fail; | |
6672 | } | |
6673 | m_cat(result, m); | |
6674 | ||
6675 | /* create lifetime extension (current and soft) */ | |
6676 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; | |
6677 | m = key_alloc_mbuf(len); | |
6678 | if (!m || m->m_next) { /*XXX*/ | |
6679 | if (m) | |
6680 | m_freem(m); | |
6681 | error = ENOBUFS; | |
6682 | goto fail; | |
6683 | } | |
6684 | bzero(mtod(m, caddr_t), len); | |
6685 | lt = mtod(m, struct sadb_lifetime *); | |
6686 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); | |
6687 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; | |
6688 | lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; | |
6689 | lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; | |
6690 | lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime; | |
6691 | lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime; | |
6692 | lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); | |
6693 | bcopy(sav->lft_s, lt, sizeof(*lt)); | |
6694 | m_cat(result, m); | |
6695 | ||
6696 | /* set sadb_address for source */ | |
6697 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, | |
6698 | (struct sockaddr *)&sav->sah->saidx.src, | |
6699 | FULLMASK, IPSEC_ULPROTO_ANY); | |
6700 | if (!m) { | |
6701 | error = ENOBUFS; | |
6702 | goto fail; | |
6703 | } | |
6704 | m_cat(result, m); | |
6705 | ||
6706 | /* set sadb_address for destination */ | |
6707 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, | |
6708 | (struct sockaddr *)&sav->sah->saidx.dst, | |
6709 | FULLMASK, IPSEC_ULPROTO_ANY); | |
6710 | if (!m) { | |
6711 | error = ENOBUFS; | |
6712 | goto fail; | |
6713 | } | |
6714 | m_cat(result, m); | |
6715 | ||
6716 | if ((result->m_flags & M_PKTHDR) == 0) { | |
6717 | error = EINVAL; | |
6718 | goto fail; | |
6719 | } | |
6720 | ||
6721 | if (result->m_len < sizeof(struct sadb_msg)) { | |
6722 | result = m_pullup(result, sizeof(struct sadb_msg)); | |
6723 | if (result == NULL) { | |
6724 | error = ENOBUFS; | |
6725 | goto fail; | |
6726 | } | |
6727 | } | |
6728 | ||
6729 | result->m_pkthdr.len = 0; | |
6730 | for (m = result; m; m = m->m_next) | |
6731 | result->m_pkthdr.len += m->m_len; | |
6732 | ||
6733 | mtod(result, struct sadb_msg *)->sadb_msg_len = | |
6734 | PFKEY_UNIT64(result->m_pkthdr.len); | |
6735 | ||
6736 | splx(s); | |
6737 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); | |
6738 | ||
6739 | fail: | |
6740 | if (result) | |
6741 | m_freem(result); | |
6742 | splx(s); | |
6743 | return error; | |
6744 | } | |
6745 | ||
6746 | /* | |
6747 | * SADB_FLUSH processing | |
6748 | * receive | |
6749 | * <base> | |
6750 | * from the ikmpd, and free all entries in secastree. | |
6751 | * and send, | |
6752 | * <base> | |
6753 | * to the ikmpd. | |
6754 | * NOTE: to do is only marking SADB_SASTATE_DEAD. | |
6755 | * | |
6756 | * m will always be freed. | |
6757 | */ | |
6758 | static int | |
6759 | key_flush(so, m, mhp) | |
6760 | struct socket *so; | |
6761 | struct mbuf *m; | |
6762 | const struct sadb_msghdr *mhp; | |
6763 | { | |
6764 | struct sadb_msg *newmsg; | |
6765 | struct secashead *sah, *nextsah; | |
6766 | struct secasvar *sav, *nextsav; | |
6767 | u_int16_t proto; | |
6768 | u_int8_t state; | |
6769 | u_int stateidx; | |
6770 | ||
6771 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6772 | ||
6773 | /* sanity check */ | |
6774 | if (so == NULL || mhp == NULL || mhp->msg == NULL) | |
6775 | panic("key_flush: NULL pointer is passed.\n"); | |
6776 | ||
6777 | /* map satype to proto */ | |
6778 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
6779 | ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n")); | |
6780 | return key_senderror(so, m, EINVAL); | |
6781 | } | |
6782 | ||
6783 | /* no SATYPE specified, i.e. flushing all SA. */ | |
6784 | for (sah = LIST_FIRST(&sahtree); | |
6785 | sah != NULL; | |
6786 | sah = nextsah) { | |
6787 | nextsah = LIST_NEXT(sah, chain); | |
6788 | ||
6789 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC | |
6790 | && proto != sah->saidx.proto) | |
6791 | continue; | |
6792 | ||
6793 | for (stateidx = 0; | |
6794 | stateidx < _ARRAYLEN(saorder_state_alive); | |
6795 | stateidx++) { | |
6796 | state = saorder_state_any[stateidx]; | |
6797 | for (sav = LIST_FIRST(&sah->savtree[state]); | |
6798 | sav != NULL; | |
6799 | sav = nextsav) { | |
6800 | ||
6801 | nextsav = LIST_NEXT(sav, chain); | |
6802 | ||
6803 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); | |
6804 | key_freesav(sav); | |
6805 | } | |
6806 | } | |
6807 | ||
6808 | sah->state = SADB_SASTATE_DEAD; | |
6809 | } | |
6810 | ||
6811 | if (m->m_len < sizeof(struct sadb_msg) || | |
6812 | sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { | |
6813 | ipseclog((LOG_DEBUG, "key_flush: No more memory.\n")); | |
6814 | return key_senderror(so, m, ENOBUFS); | |
6815 | } | |
6816 | ||
6817 | if (m->m_next) | |
6818 | m_freem(m->m_next); | |
6819 | m->m_next = NULL; | |
6820 | m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); | |
6821 | newmsg = mtod(m, struct sadb_msg *); | |
6822 | newmsg->sadb_msg_errno = 0; | |
6823 | newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); | |
6824 | ||
6825 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); | |
6826 | } | |
6827 | ||
6828 | /* | |
6829 | * SADB_DUMP processing | |
6830 | * dump all entries including status of DEAD in SAD. | |
6831 | * receive | |
6832 | * <base> | |
6833 | * from the ikmpd, and dump all secasvar leaves | |
6834 | * and send, | |
6835 | * <base> ..... | |
6836 | * to the ikmpd. | |
6837 | * | |
6838 | * m will always be freed. | |
6839 | */ | |
6840 | static int | |
6841 | key_dump(so, m, mhp) | |
6842 | struct socket *so; | |
6843 | struct mbuf *m; | |
6844 | const struct sadb_msghdr *mhp; | |
6845 | { | |
6846 | struct secashead *sah; | |
6847 | struct secasvar *sav; | |
6848 | u_int16_t proto; | |
6849 | u_int stateidx; | |
6850 | u_int8_t satype; | |
6851 | u_int8_t state; | |
6852 | int cnt; | |
6853 | struct sadb_msg *newmsg; | |
6854 | struct mbuf *n; | |
6855 | ||
6856 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6857 | ||
6858 | /* sanity check */ | |
6859 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
6860 | panic("key_dump: NULL pointer is passed.\n"); | |
6861 | ||
6862 | /* map satype to proto */ | |
6863 | if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { | |
6864 | ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n")); | |
6865 | return key_senderror(so, m, EINVAL); | |
6866 | } | |
6867 | ||
6868 | /* count sav entries to be sent to the userland. */ | |
6869 | cnt = 0; | |
6870 | LIST_FOREACH(sah, &sahtree, chain) { | |
6871 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC | |
6872 | && proto != sah->saidx.proto) | |
6873 | continue; | |
6874 | ||
6875 | for (stateidx = 0; | |
6876 | stateidx < _ARRAYLEN(saorder_state_any); | |
6877 | stateidx++) { | |
6878 | state = saorder_state_any[stateidx]; | |
6879 | LIST_FOREACH(sav, &sah->savtree[state], chain) { | |
6880 | cnt++; | |
6881 | } | |
6882 | } | |
6883 | } | |
6884 | ||
6885 | if (cnt == 0) | |
6886 | return key_senderror(so, m, ENOENT); | |
6887 | ||
6888 | /* send this to the userland, one at a time. */ | |
6889 | newmsg = NULL; | |
6890 | LIST_FOREACH(sah, &sahtree, chain) { | |
6891 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC | |
6892 | && proto != sah->saidx.proto) | |
6893 | continue; | |
6894 | ||
6895 | /* map proto to satype */ | |
6896 | if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { | |
6897 | ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n")); | |
6898 | return key_senderror(so, m, EINVAL); | |
6899 | } | |
6900 | ||
6901 | for (stateidx = 0; | |
6902 | stateidx < _ARRAYLEN(saorder_state_any); | |
6903 | stateidx++) { | |
6904 | state = saorder_state_any[stateidx]; | |
6905 | LIST_FOREACH(sav, &sah->savtree[state], chain) { | |
6906 | n = key_setdumpsa(sav, SADB_DUMP, satype, | |
6907 | --cnt, mhp->msg->sadb_msg_pid); | |
6908 | if (!n) | |
6909 | return key_senderror(so, m, ENOBUFS); | |
6910 | ||
6911 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); | |
6912 | } | |
6913 | } | |
6914 | } | |
6915 | ||
6916 | m_freem(m); | |
6917 | return 0; | |
6918 | } | |
6919 | ||
6920 | /* | |
6921 | * SADB_X_PROMISC processing | |
6922 | * | |
6923 | * m will always be freed. | |
6924 | */ | |
6925 | static int | |
6926 | key_promisc(so, m, mhp) | |
6927 | struct socket *so; | |
6928 | struct mbuf *m; | |
6929 | const struct sadb_msghdr *mhp; | |
6930 | { | |
6931 | int olen; | |
6932 | ||
6933 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
6934 | ||
6935 | /* sanity check */ | |
6936 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) | |
6937 | panic("key_promisc: NULL pointer is passed.\n"); | |
6938 | ||
6939 | olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); | |
6940 | ||
6941 | if (olen < sizeof(struct sadb_msg)) { | |
6942 | #if 1 | |
6943 | return key_senderror(so, m, EINVAL); | |
6944 | #else | |
6945 | m_freem(m); | |
6946 | return 0; | |
6947 | #endif | |
6948 | } else if (olen == sizeof(struct sadb_msg)) { | |
6949 | /* enable/disable promisc mode */ | |
6950 | struct keycb *kp; | |
6951 | ||
6952 | socket_lock(so, 1); | |
6953 | if ((kp = (struct keycb *)sotorawcb(so)) == NULL) | |
6954 | return key_senderror(so, m, EINVAL); | |
6955 | mhp->msg->sadb_msg_errno = 0; | |
6956 | switch (mhp->msg->sadb_msg_satype) { | |
6957 | case 0: | |
6958 | case 1: | |
6959 | kp->kp_promisc = mhp->msg->sadb_msg_satype; | |
6960 | break; | |
6961 | default: | |
6962 | socket_unlock(so, 1); | |
6963 | return key_senderror(so, m, EINVAL); | |
6964 | } | |
6965 | socket_unlock(so, 1); | |
6966 | ||
6967 | /* send the original message back to everyone */ | |
6968 | mhp->msg->sadb_msg_errno = 0; | |
6969 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); | |
6970 | } else { | |
6971 | /* send packet as is */ | |
6972 | ||
6973 | m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); | |
6974 | ||
6975 | /* TODO: if sadb_msg_seq is specified, send to specific pid */ | |
6976 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); | |
6977 | } | |
6978 | } | |
6979 | ||
6980 | static int (*key_typesw[])(struct socket *, struct mbuf *, | |
6981 | const struct sadb_msghdr *) = { | |
6982 | NULL, /* SADB_RESERVED */ | |
6983 | key_getspi, /* SADB_GETSPI */ | |
6984 | key_update, /* SADB_UPDATE */ | |
6985 | key_add, /* SADB_ADD */ | |
6986 | key_delete, /* SADB_DELETE */ | |
6987 | key_get, /* SADB_GET */ | |
6988 | key_acquire2, /* SADB_ACQUIRE */ | |
6989 | key_register, /* SADB_REGISTER */ | |
6990 | NULL, /* SADB_EXPIRE */ | |
6991 | key_flush, /* SADB_FLUSH */ | |
6992 | key_dump, /* SADB_DUMP */ | |
6993 | key_promisc, /* SADB_X_PROMISC */ | |
6994 | NULL, /* SADB_X_PCHANGE */ | |
6995 | key_spdadd, /* SADB_X_SPDUPDATE */ | |
6996 | key_spdadd, /* SADB_X_SPDADD */ | |
6997 | key_spddelete, /* SADB_X_SPDDELETE */ | |
6998 | key_spdget, /* SADB_X_SPDGET */ | |
6999 | NULL, /* SADB_X_SPDACQUIRE */ | |
7000 | key_spddump, /* SADB_X_SPDDUMP */ | |
7001 | key_spdflush, /* SADB_X_SPDFLUSH */ | |
7002 | key_spdadd, /* SADB_X_SPDSETIDX */ | |
7003 | NULL, /* SADB_X_SPDEXPIRE */ | |
7004 | key_spddelete2, /* SADB_X_SPDDELETE2 */ | |
7005 | }; | |
7006 | ||
7007 | /* | |
7008 | * parse sadb_msg buffer to process PFKEYv2, | |
7009 | * and create a data to response if needed. | |
7010 | * I think to be dealed with mbuf directly. | |
7011 | * IN: | |
7012 | * msgp : pointer to pointer to a received buffer pulluped. | |
7013 | * This is rewrited to response. | |
7014 | * so : pointer to socket. | |
7015 | * OUT: | |
7016 | * length for buffer to send to user process. | |
7017 | */ | |
7018 | int | |
7019 | key_parse(m, so) | |
7020 | struct mbuf *m; | |
7021 | struct socket *so; | |
7022 | { | |
7023 | struct sadb_msg *msg; | |
7024 | struct sadb_msghdr mh; | |
7025 | u_int orglen; | |
7026 | int error; | |
7027 | int target; | |
7028 | ||
7029 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7030 | ||
7031 | /* sanity check */ | |
7032 | if (m == NULL || so == NULL) | |
7033 | panic("key_parse: NULL pointer is passed.\n"); | |
7034 | ||
7035 | #if 0 /*kdebug_sadb assumes msg in linear buffer*/ | |
7036 | KEYDEBUG(KEYDEBUG_KEY_DUMP, | |
7037 | ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n")); | |
7038 | kdebug_sadb(msg)); | |
7039 | #endif | |
7040 | ||
7041 | if (m->m_len < sizeof(struct sadb_msg)) { | |
7042 | m = m_pullup(m, sizeof(struct sadb_msg)); | |
7043 | if (!m) | |
7044 | return ENOBUFS; | |
7045 | } | |
7046 | msg = mtod(m, struct sadb_msg *); | |
7047 | orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); | |
7048 | target = KEY_SENDUP_ONE; | |
7049 | ||
7050 | if ((m->m_flags & M_PKTHDR) == 0 || | |
7051 | m->m_pkthdr.len != m->m_pkthdr.len) { | |
7052 | ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n")); | |
7053 | pfkeystat.out_invlen++; | |
7054 | error = EINVAL; | |
7055 | goto senderror; | |
7056 | } | |
7057 | ||
7058 | if (msg->sadb_msg_version != PF_KEY_V2) { | |
7059 | ipseclog((LOG_DEBUG, | |
7060 | "key_parse: PF_KEY version %u is mismatched.\n", | |
7061 | msg->sadb_msg_version)); | |
7062 | pfkeystat.out_invver++; | |
7063 | error = EINVAL; | |
7064 | goto senderror; | |
7065 | } | |
7066 | ||
7067 | if (msg->sadb_msg_type > SADB_MAX) { | |
7068 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", | |
7069 | msg->sadb_msg_type)); | |
7070 | pfkeystat.out_invmsgtype++; | |
7071 | error = EINVAL; | |
7072 | goto senderror; | |
7073 | } | |
7074 | ||
7075 | /* for old-fashioned code - should be nuked */ | |
7076 | if (m->m_pkthdr.len > MCLBYTES) { | |
7077 | m_freem(m); | |
7078 | return ENOBUFS; | |
7079 | } | |
7080 | if (m->m_next) { | |
7081 | struct mbuf *n; | |
7082 | ||
7083 | MGETHDR(n, M_DONTWAIT, MT_DATA); | |
7084 | if (n && m->m_pkthdr.len > MHLEN) { | |
7085 | MCLGET(n, M_DONTWAIT); | |
7086 | if ((n->m_flags & M_EXT) == 0) { | |
7087 | m_free(n); | |
7088 | n = NULL; | |
7089 | } | |
7090 | } | |
7091 | if (!n) { | |
7092 | m_freem(m); | |
7093 | return ENOBUFS; | |
7094 | } | |
7095 | m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); | |
7096 | n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; | |
7097 | n->m_next = NULL; | |
7098 | m_freem(m); | |
7099 | m = n; | |
7100 | } | |
7101 | ||
7102 | /* align the mbuf chain so that extensions are in contiguous region. */ | |
7103 | error = key_align(m, &mh); | |
7104 | if (error) | |
7105 | return error; | |
7106 | ||
7107 | if (m->m_next) { /*XXX*/ | |
7108 | m_freem(m); | |
7109 | return ENOBUFS; | |
7110 | } | |
7111 | ||
7112 | msg = mh.msg; | |
7113 | ||
7114 | /* check SA type */ | |
7115 | switch (msg->sadb_msg_satype) { | |
7116 | case SADB_SATYPE_UNSPEC: | |
7117 | switch (msg->sadb_msg_type) { | |
7118 | case SADB_GETSPI: | |
7119 | case SADB_UPDATE: | |
7120 | case SADB_ADD: | |
7121 | case SADB_DELETE: | |
7122 | case SADB_GET: | |
7123 | case SADB_ACQUIRE: | |
7124 | case SADB_EXPIRE: | |
7125 | ipseclog((LOG_DEBUG, "key_parse: must specify satype " | |
7126 | "when msg type=%u.\n", msg->sadb_msg_type)); | |
7127 | pfkeystat.out_invsatype++; | |
7128 | error = EINVAL; | |
7129 | goto senderror; | |
7130 | } | |
7131 | break; | |
7132 | case SADB_SATYPE_AH: | |
7133 | case SADB_SATYPE_ESP: | |
7134 | case SADB_X_SATYPE_IPCOMP: | |
7135 | switch (msg->sadb_msg_type) { | |
7136 | case SADB_X_SPDADD: | |
7137 | case SADB_X_SPDDELETE: | |
7138 | case SADB_X_SPDGET: | |
7139 | case SADB_X_SPDDUMP: | |
7140 | case SADB_X_SPDFLUSH: | |
7141 | case SADB_X_SPDSETIDX: | |
7142 | case SADB_X_SPDUPDATE: | |
7143 | case SADB_X_SPDDELETE2: | |
7144 | ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n", | |
7145 | msg->sadb_msg_type)); | |
7146 | pfkeystat.out_invsatype++; | |
7147 | error = EINVAL; | |
7148 | goto senderror; | |
7149 | } | |
7150 | break; | |
7151 | case SADB_SATYPE_RSVP: | |
7152 | case SADB_SATYPE_OSPFV2: | |
7153 | case SADB_SATYPE_RIPV2: | |
7154 | case SADB_SATYPE_MIP: | |
7155 | ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n", | |
7156 | msg->sadb_msg_satype)); | |
7157 | pfkeystat.out_invsatype++; | |
7158 | error = EOPNOTSUPP; | |
7159 | goto senderror; | |
7160 | case 1: /* XXX: What does it do? */ | |
7161 | if (msg->sadb_msg_type == SADB_X_PROMISC) | |
7162 | break; | |
7163 | /*FALLTHROUGH*/ | |
7164 | default: | |
7165 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", | |
7166 | msg->sadb_msg_satype)); | |
7167 | pfkeystat.out_invsatype++; | |
7168 | error = EINVAL; | |
7169 | goto senderror; | |
7170 | } | |
7171 | ||
7172 | /* check field of upper layer protocol and address family */ | |
7173 | if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL | |
7174 | && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { | |
7175 | struct sadb_address *src0, *dst0; | |
7176 | u_int plen; | |
7177 | ||
7178 | src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); | |
7179 | dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); | |
7180 | ||
7181 | /* check upper layer protocol */ | |
7182 | if (src0->sadb_address_proto != dst0->sadb_address_proto) { | |
7183 | ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n")); | |
7184 | pfkeystat.out_invaddr++; | |
7185 | error = EINVAL; | |
7186 | goto senderror; | |
7187 | } | |
7188 | ||
7189 | /* check family */ | |
7190 | if (PFKEY_ADDR_SADDR(src0)->sa_family != | |
7191 | PFKEY_ADDR_SADDR(dst0)->sa_family) { | |
7192 | ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n")); | |
7193 | pfkeystat.out_invaddr++; | |
7194 | error = EINVAL; | |
7195 | goto senderror; | |
7196 | } | |
7197 | if (PFKEY_ADDR_SADDR(src0)->sa_len != | |
7198 | PFKEY_ADDR_SADDR(dst0)->sa_len) { | |
7199 | ipseclog((LOG_DEBUG, | |
7200 | "key_parse: address struct size mismatched.\n")); | |
7201 | pfkeystat.out_invaddr++; | |
7202 | error = EINVAL; | |
7203 | goto senderror; | |
7204 | } | |
7205 | ||
7206 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { | |
7207 | case AF_INET: | |
7208 | if (PFKEY_ADDR_SADDR(src0)->sa_len != | |
7209 | sizeof(struct sockaddr_in)) { | |
7210 | pfkeystat.out_invaddr++; | |
7211 | error = EINVAL; | |
7212 | goto senderror; | |
7213 | } | |
7214 | break; | |
7215 | case AF_INET6: | |
7216 | if (PFKEY_ADDR_SADDR(src0)->sa_len != | |
7217 | sizeof(struct sockaddr_in6)) { | |
7218 | pfkeystat.out_invaddr++; | |
7219 | error = EINVAL; | |
7220 | goto senderror; | |
7221 | } | |
7222 | break; | |
7223 | default: | |
7224 | ipseclog((LOG_DEBUG, | |
7225 | "key_parse: unsupported address family.\n")); | |
7226 | pfkeystat.out_invaddr++; | |
7227 | error = EAFNOSUPPORT; | |
7228 | goto senderror; | |
7229 | } | |
7230 | ||
7231 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { | |
7232 | case AF_INET: | |
7233 | plen = sizeof(struct in_addr) << 3; | |
7234 | break; | |
7235 | case AF_INET6: | |
7236 | plen = sizeof(struct in6_addr) << 3; | |
7237 | break; | |
7238 | default: | |
7239 | plen = 0; /*fool gcc*/ | |
7240 | break; | |
7241 | } | |
7242 | ||
7243 | /* check max prefix length */ | |
7244 | if (src0->sadb_address_prefixlen > plen || | |
7245 | dst0->sadb_address_prefixlen > plen) { | |
7246 | ipseclog((LOG_DEBUG, | |
7247 | "key_parse: illegal prefixlen.\n")); | |
7248 | pfkeystat.out_invaddr++; | |
7249 | error = EINVAL; | |
7250 | goto senderror; | |
7251 | } | |
7252 | ||
7253 | /* | |
7254 | * prefixlen == 0 is valid because there can be a case when | |
7255 | * all addresses are matched. | |
7256 | */ | |
7257 | } | |
7258 | ||
7259 | if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || | |
7260 | key_typesw[msg->sadb_msg_type] == NULL) { | |
7261 | pfkeystat.out_invmsgtype++; | |
7262 | error = EINVAL; | |
7263 | goto senderror; | |
7264 | } | |
7265 | ||
7266 | return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); | |
7267 | ||
7268 | senderror: | |
7269 | msg->sadb_msg_errno = error; | |
7270 | return key_sendup_mbuf(so, m, target); | |
7271 | } | |
7272 | ||
7273 | static int | |
7274 | key_senderror(so, m, code) | |
7275 | struct socket *so; | |
7276 | struct mbuf *m; | |
7277 | int code; | |
7278 | { | |
7279 | struct sadb_msg *msg; | |
7280 | ||
7281 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7282 | ||
7283 | if (m->m_len < sizeof(struct sadb_msg)) | |
7284 | panic("invalid mbuf passed to key_senderror"); | |
7285 | ||
7286 | msg = mtod(m, struct sadb_msg *); | |
7287 | msg->sadb_msg_errno = code; | |
7288 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); | |
7289 | } | |
7290 | ||
7291 | /* | |
7292 | * set the pointer to each header into message buffer. | |
7293 | * m will be freed on error. | |
7294 | * XXX larger-than-MCLBYTES extension? | |
7295 | */ | |
7296 | static int | |
7297 | key_align(m, mhp) | |
7298 | struct mbuf *m; | |
7299 | struct sadb_msghdr *mhp; | |
7300 | { | |
7301 | struct mbuf *n; | |
7302 | struct sadb_ext *ext; | |
7303 | size_t off, end; | |
7304 | int extlen; | |
7305 | int toff; | |
7306 | ||
7307 | /* sanity check */ | |
7308 | if (m == NULL || mhp == NULL) | |
7309 | panic("key_align: NULL pointer is passed.\n"); | |
7310 | if (m->m_len < sizeof(struct sadb_msg)) | |
7311 | panic("invalid mbuf passed to key_align"); | |
7312 | ||
7313 | /* initialize */ | |
7314 | bzero(mhp, sizeof(*mhp)); | |
7315 | ||
7316 | mhp->msg = mtod(m, struct sadb_msg *); | |
7317 | mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ | |
7318 | ||
7319 | end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); | |
7320 | extlen = end; /*just in case extlen is not updated*/ | |
7321 | for (off = sizeof(struct sadb_msg); off < end; off += extlen) { | |
7322 | n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); | |
7323 | if (!n) { | |
7324 | /* m is already freed */ | |
7325 | return ENOBUFS; | |
7326 | } | |
7327 | ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); | |
7328 | ||
7329 | /* set pointer */ | |
7330 | switch (ext->sadb_ext_type) { | |
7331 | case SADB_EXT_SA: | |
7332 | case SADB_EXT_ADDRESS_SRC: | |
7333 | case SADB_EXT_ADDRESS_DST: | |
7334 | case SADB_EXT_ADDRESS_PROXY: | |
7335 | case SADB_EXT_LIFETIME_CURRENT: | |
7336 | case SADB_EXT_LIFETIME_HARD: | |
7337 | case SADB_EXT_LIFETIME_SOFT: | |
7338 | case SADB_EXT_KEY_AUTH: | |
7339 | case SADB_EXT_KEY_ENCRYPT: | |
7340 | case SADB_EXT_IDENTITY_SRC: | |
7341 | case SADB_EXT_IDENTITY_DST: | |
7342 | case SADB_EXT_SENSITIVITY: | |
7343 | case SADB_EXT_PROPOSAL: | |
7344 | case SADB_EXT_SUPPORTED_AUTH: | |
7345 | case SADB_EXT_SUPPORTED_ENCRYPT: | |
7346 | case SADB_EXT_SPIRANGE: | |
7347 | case SADB_X_EXT_POLICY: | |
7348 | case SADB_X_EXT_SA2: | |
7349 | /* duplicate check */ | |
7350 | /* | |
7351 | * XXX Are there duplication payloads of either | |
7352 | * KEY_AUTH or KEY_ENCRYPT ? | |
7353 | */ | |
7354 | if (mhp->ext[ext->sadb_ext_type] != NULL) { | |
7355 | ipseclog((LOG_DEBUG, | |
7356 | "key_align: duplicate ext_type %u " | |
7357 | "is passed.\n", ext->sadb_ext_type)); | |
7358 | m_freem(m); | |
7359 | pfkeystat.out_dupext++; | |
7360 | return EINVAL; | |
7361 | } | |
7362 | break; | |
7363 | default: | |
7364 | ipseclog((LOG_DEBUG, | |
7365 | "key_align: invalid ext_type %u is passed.\n", | |
7366 | ext->sadb_ext_type)); | |
7367 | m_freem(m); | |
7368 | pfkeystat.out_invexttype++; | |
7369 | return EINVAL; | |
7370 | } | |
7371 | ||
7372 | extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); | |
7373 | ||
7374 | if (key_validate_ext(ext, extlen)) { | |
7375 | m_freem(m); | |
7376 | pfkeystat.out_invlen++; | |
7377 | return EINVAL; | |
7378 | } | |
7379 | ||
7380 | n = m_pulldown(m, off, extlen, &toff); | |
7381 | if (!n) { | |
7382 | /* m is already freed */ | |
7383 | return ENOBUFS; | |
7384 | } | |
7385 | ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); | |
7386 | ||
7387 | mhp->ext[ext->sadb_ext_type] = ext; | |
7388 | mhp->extoff[ext->sadb_ext_type] = off; | |
7389 | mhp->extlen[ext->sadb_ext_type] = extlen; | |
7390 | } | |
7391 | ||
7392 | if (off != end) { | |
7393 | m_freem(m); | |
7394 | pfkeystat.out_invlen++; | |
7395 | return EINVAL; | |
7396 | } | |
7397 | ||
7398 | return 0; | |
7399 | } | |
7400 | ||
7401 | static int | |
7402 | key_validate_ext(ext, len) | |
7403 | const struct sadb_ext *ext; | |
7404 | int len; | |
7405 | { | |
7406 | struct sockaddr *sa; | |
7407 | enum { NONE, ADDR } checktype = NONE; | |
7408 | int baselen; | |
7409 | const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); | |
7410 | ||
7411 | if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) | |
7412 | return EINVAL; | |
7413 | ||
7414 | /* if it does not match minimum/maximum length, bail */ | |
7415 | if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || | |
7416 | ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) | |
7417 | return EINVAL; | |
7418 | if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) | |
7419 | return EINVAL; | |
7420 | if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) | |
7421 | return EINVAL; | |
7422 | ||
7423 | /* more checks based on sadb_ext_type XXX need more */ | |
7424 | switch (ext->sadb_ext_type) { | |
7425 | case SADB_EXT_ADDRESS_SRC: | |
7426 | case SADB_EXT_ADDRESS_DST: | |
7427 | case SADB_EXT_ADDRESS_PROXY: | |
7428 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); | |
7429 | checktype = ADDR; | |
7430 | break; | |
7431 | case SADB_EXT_IDENTITY_SRC: | |
7432 | case SADB_EXT_IDENTITY_DST: | |
7433 | if (((struct sadb_ident *)ext)->sadb_ident_type == | |
7434 | SADB_X_IDENTTYPE_ADDR) { | |
7435 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); | |
7436 | checktype = ADDR; | |
7437 | } else | |
7438 | checktype = NONE; | |
7439 | break; | |
7440 | default: | |
7441 | checktype = NONE; | |
7442 | break; | |
7443 | } | |
7444 | ||
7445 | switch (checktype) { | |
7446 | case NONE: | |
7447 | break; | |
7448 | case ADDR: | |
7449 | sa = (struct sockaddr *)((caddr_t)ext + baselen); | |
7450 | if (len < baselen + sal) | |
7451 | return EINVAL; | |
7452 | if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) | |
7453 | return EINVAL; | |
7454 | break; | |
7455 | } | |
7456 | ||
7457 | return 0; | |
7458 | } | |
7459 | ||
7460 | void | |
7461 | key_domain_init() | |
7462 | { | |
7463 | int i; | |
7464 | ||
7465 | bzero((caddr_t)&key_cb, sizeof(key_cb)); | |
7466 | ||
7467 | for (i = 0; i < IPSEC_DIR_MAX; i++) { | |
7468 | LIST_INIT(&sptree[i]); | |
7469 | } | |
7470 | ||
7471 | LIST_INIT(&sahtree); | |
7472 | ||
7473 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { | |
7474 | LIST_INIT(®tree[i]); | |
7475 | } | |
7476 | ||
7477 | #ifndef IPSEC_NONBLOCK_ACQUIRE | |
7478 | LIST_INIT(&acqtree); | |
7479 | #endif | |
7480 | LIST_INIT(&spacqtree); | |
7481 | ||
7482 | /* system default */ | |
7483 | #if INET | |
7484 | ip4_def_policy.policy = IPSEC_POLICY_NONE; | |
7485 | ip4_def_policy.refcnt++; /*never reclaim this*/ | |
7486 | #endif | |
7487 | #if INET6 | |
7488 | ip6_def_policy.policy = IPSEC_POLICY_NONE; | |
7489 | ip6_def_policy.refcnt++; /*never reclaim this*/ | |
7490 | #endif | |
7491 | ||
7492 | #ifndef IPSEC_DEBUG2 | |
7493 | timeout((void *)key_timehandler, (void *)0, hz); | |
7494 | #endif /*IPSEC_DEBUG2*/ | |
7495 | ||
7496 | /* initialize key statistics */ | |
7497 | keystat.getspi_count = 1; | |
7498 | ||
7499 | #ifndef __APPLE__ | |
7500 | printf("IPsec: Initialized Security Association Processing.\n"); | |
7501 | #endif | |
7502 | ||
7503 | return; | |
7504 | } | |
7505 | ||
7506 | /* | |
7507 | * XXX: maybe This function is called after INBOUND IPsec processing. | |
7508 | * | |
7509 | * Special check for tunnel-mode packets. | |
7510 | * We must make some checks for consistency between inner and outer IP header. | |
7511 | * | |
7512 | * xxx more checks to be provided | |
7513 | */ | |
7514 | int | |
7515 | key_checktunnelsanity(sav, family, src, dst) | |
7516 | struct secasvar *sav; | |
7517 | u_int family; | |
7518 | caddr_t src; | |
7519 | caddr_t dst; | |
7520 | { | |
7521 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7522 | ||
7523 | /* sanity check */ | |
7524 | if (sav->sah == NULL) | |
7525 | panic("sav->sah == NULL at key_checktunnelsanity"); | |
7526 | ||
7527 | /* XXX: check inner IP header */ | |
7528 | ||
7529 | return 1; | |
7530 | } | |
7531 | ||
7532 | #if 0 | |
7533 | #define hostnamelen strlen(hostname) | |
7534 | ||
7535 | /* | |
7536 | * Get FQDN for the host. | |
7537 | * If the administrator configured hostname (by hostname(1)) without | |
7538 | * domain name, returns nothing. | |
7539 | */ | |
7540 | static const char * | |
7541 | key_getfqdn() | |
7542 | { | |
7543 | int i; | |
7544 | int hasdot; | |
7545 | static char fqdn[MAXHOSTNAMELEN + 1]; | |
7546 | ||
7547 | if (!hostnamelen) | |
7548 | return NULL; | |
7549 | ||
7550 | /* check if it comes with domain name. */ | |
7551 | hasdot = 0; | |
7552 | for (i = 0; i < hostnamelen; i++) { | |
7553 | if (hostname[i] == '.') | |
7554 | hasdot++; | |
7555 | } | |
7556 | if (!hasdot) | |
7557 | return NULL; | |
7558 | ||
7559 | /* NOTE: hostname may not be NUL-terminated. */ | |
7560 | bzero(fqdn, sizeof(fqdn)); | |
7561 | bcopy(hostname, fqdn, hostnamelen); | |
7562 | fqdn[hostnamelen] = '\0'; | |
7563 | return fqdn; | |
7564 | } | |
7565 | ||
7566 | /* | |
7567 | * get username@FQDN for the host/user. | |
7568 | */ | |
7569 | static const char * | |
7570 | key_getuserfqdn() | |
7571 | { | |
7572 | const char *host; | |
7573 | static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; | |
7574 | struct proc *p = curproc; | |
7575 | char *q; | |
7576 | ||
7577 | if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) | |
7578 | return NULL; | |
7579 | if (!(host = key_getfqdn())) | |
7580 | return NULL; | |
7581 | ||
7582 | /* NOTE: s_login may not be-NUL terminated. */ | |
7583 | bzero(userfqdn, sizeof(userfqdn)); | |
7584 | bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME); | |
7585 | userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ | |
7586 | q = userfqdn + strlen(userfqdn); | |
7587 | *q++ = '@'; | |
7588 | bcopy(host, q, strlen(host)); | |
7589 | q += strlen(host); | |
7590 | *q++ = '\0'; | |
7591 | ||
7592 | return userfqdn; | |
7593 | } | |
7594 | #endif | |
7595 | ||
7596 | /* record data transfer on SA, and update timestamps */ | |
7597 | void | |
7598 | key_sa_recordxfer(sav, m) | |
7599 | struct secasvar *sav; | |
7600 | struct mbuf *m; | |
7601 | { | |
7602 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7603 | ||
7604 | if (!sav) | |
7605 | panic("key_sa_recordxfer called with sav == NULL"); | |
7606 | if (!m) | |
7607 | panic("key_sa_recordxfer called with m == NULL"); | |
7608 | if (!sav->lft_c) | |
7609 | return; | |
7610 | ||
7611 | /* | |
7612 | * XXX Currently, there is a difference of bytes size | |
7613 | * between inbound and outbound processing. | |
7614 | */ | |
7615 | sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; | |
7616 | /* to check bytes lifetime is done in key_timehandler(). */ | |
7617 | ||
7618 | /* | |
7619 | * We use the number of packets as the unit of | |
7620 | * sadb_lifetime_allocations. We increment the variable | |
7621 | * whenever {esp,ah}_{in,out}put is called. | |
7622 | */ | |
7623 | sav->lft_c->sadb_lifetime_allocations++; | |
7624 | /* XXX check for expires? */ | |
7625 | ||
7626 | /* | |
7627 | * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, | |
7628 | * in seconds. HARD and SOFT lifetime are measured by the time | |
7629 | * difference (again in seconds) from sadb_lifetime_usetime. | |
7630 | * | |
7631 | * usetime | |
7632 | * v expire expire | |
7633 | * -----+-----+--------+---> t | |
7634 | * <--------------> HARD | |
7635 | * <-----> SOFT | |
7636 | */ | |
7637 | { | |
7638 | struct timeval tv; | |
7639 | microtime(&tv); | |
7640 | sav->lft_c->sadb_lifetime_usetime = tv.tv_sec; | |
7641 | /* XXX check for expires? */ | |
7642 | } | |
7643 | ||
7644 | return; | |
7645 | } | |
7646 | ||
7647 | /* dumb version */ | |
7648 | void | |
7649 | key_sa_routechange(dst) | |
7650 | struct sockaddr *dst; | |
7651 | { | |
7652 | struct secashead *sah; | |
7653 | struct route *ro; | |
7654 | ||
7655 | lck_mtx_lock(sadb_mutex); | |
7656 | LIST_FOREACH(sah, &sahtree, chain) { | |
7657 | ro = &sah->sa_route; | |
7658 | if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len | |
7659 | && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { | |
7660 | rtfree(ro->ro_rt); | |
7661 | ro->ro_rt = (struct rtentry *)NULL; | |
7662 | } | |
7663 | } | |
7664 | lck_mtx_unlock(sadb_mutex); | |
7665 | ||
7666 | return; | |
7667 | } | |
7668 | ||
7669 | static void | |
7670 | key_sa_chgstate(sav, state) | |
7671 | struct secasvar *sav; | |
7672 | u_int8_t state; | |
7673 | { | |
7674 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7675 | ||
7676 | if (sav == NULL) | |
7677 | panic("key_sa_chgstate called with sav == NULL"); | |
7678 | ||
7679 | if (sav->state == state) | |
7680 | return; | |
7681 | ||
7682 | if (__LIST_CHAINED(sav)) | |
7683 | LIST_REMOVE(sav, chain); | |
7684 | ||
7685 | sav->state = state; | |
7686 | LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); | |
7687 | } | |
7688 | ||
7689 | void | |
7690 | key_sa_stir_iv(sav) | |
7691 | struct secasvar *sav; | |
7692 | { | |
7693 | ||
7694 | lck_mtx_assert(sadb_mutex, LCK_MTX_ASSERT_OWNED); | |
7695 | ||
7696 | if (!sav->iv) | |
7697 | panic("key_sa_stir_iv called with sav == NULL"); | |
7698 | key_randomfill(sav->iv, sav->ivlen); | |
7699 | } | |
7700 | ||
7701 | /* XXX too much? */ | |
7702 | static struct mbuf * | |
7703 | key_alloc_mbuf(l) | |
7704 | int l; | |
7705 | { | |
7706 | struct mbuf *m = NULL, *n; | |
7707 | int len, t; | |
7708 | ||
7709 | len = l; | |
7710 | while (len > 0) { | |
7711 | MGET(n, M_DONTWAIT, MT_DATA); | |
7712 | if (n && len > MLEN) | |
7713 | MCLGET(n, M_DONTWAIT); | |
7714 | if (!n) { | |
7715 | m_freem(m); | |
7716 | return NULL; | |
7717 | } | |
7718 | ||
7719 | n->m_next = NULL; | |
7720 | n->m_len = 0; | |
7721 | n->m_len = M_TRAILINGSPACE(n); | |
7722 | /* use the bottom of mbuf, hoping we can prepend afterwards */ | |
7723 | if (n->m_len > len) { | |
7724 | t = (n->m_len - len) & ~(sizeof(long) - 1); | |
7725 | n->m_data += t; | |
7726 | n->m_len = len; | |
7727 | } | |
7728 | ||
7729 | len -= n->m_len; | |
7730 | ||
7731 | if (m) | |
7732 | m_cat(m, n); | |
7733 | else | |
7734 | m = n; | |
7735 | } | |
7736 | ||
7737 | return m; | |
7738 | } |