]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <task_swapper.h> | |
68 | ||
69 | #include <mach/mach_types.h> | |
70 | #include <mach/memory_object.h> | |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
74 | ||
75 | #include <mach/sdt.h> | |
76 | ||
77 | #include <ipc/ipc_types.h> | |
78 | #include <ipc/ipc_port.h> | |
79 | ||
80 | #include <kern/kern_types.h> | |
81 | #include <kern/assert.h> | |
82 | #include <kern/lock.h> | |
83 | #include <kern/queue.h> | |
84 | #include <kern/xpr.h> | |
85 | #include <kern/kalloc.h> | |
86 | #include <kern/zalloc.h> | |
87 | #include <kern/host.h> | |
88 | #include <kern/host_statistics.h> | |
89 | #include <kern/processor.h> | |
90 | #include <kern/misc_protos.h> | |
91 | ||
92 | #include <vm/memory_object.h> | |
93 | #include <vm/vm_fault.h> | |
94 | #include <vm/vm_map.h> | |
95 | #include <vm/vm_object.h> | |
96 | #include <vm/vm_page.h> | |
97 | #include <vm/vm_pageout.h> | |
98 | #include <vm/vm_protos.h> | |
99 | #include <vm/vm_purgeable_internal.h> | |
100 | ||
101 | /* | |
102 | * Virtual memory objects maintain the actual data | |
103 | * associated with allocated virtual memory. A given | |
104 | * page of memory exists within exactly one object. | |
105 | * | |
106 | * An object is only deallocated when all "references" | |
107 | * are given up. | |
108 | * | |
109 | * Associated with each object is a list of all resident | |
110 | * memory pages belonging to that object; this list is | |
111 | * maintained by the "vm_page" module, but locked by the object's | |
112 | * lock. | |
113 | * | |
114 | * Each object also records the memory object reference | |
115 | * that is used by the kernel to request and write | |
116 | * back data (the memory object, field "pager"), etc... | |
117 | * | |
118 | * Virtual memory objects are allocated to provide | |
119 | * zero-filled memory (vm_allocate) or map a user-defined | |
120 | * memory object into a virtual address space (vm_map). | |
121 | * | |
122 | * Virtual memory objects that refer to a user-defined | |
123 | * memory object are called "permanent", because all changes | |
124 | * made in virtual memory are reflected back to the | |
125 | * memory manager, which may then store it permanently. | |
126 | * Other virtual memory objects are called "temporary", | |
127 | * meaning that changes need be written back only when | |
128 | * necessary to reclaim pages, and that storage associated | |
129 | * with the object can be discarded once it is no longer | |
130 | * mapped. | |
131 | * | |
132 | * A permanent memory object may be mapped into more | |
133 | * than one virtual address space. Moreover, two threads | |
134 | * may attempt to make the first mapping of a memory | |
135 | * object concurrently. Only one thread is allowed to | |
136 | * complete this mapping; all others wait for the | |
137 | * "pager_initialized" field is asserted, indicating | |
138 | * that the first thread has initialized all of the | |
139 | * necessary fields in the virtual memory object structure. | |
140 | * | |
141 | * The kernel relies on a *default memory manager* to | |
142 | * provide backing storage for the zero-filled virtual | |
143 | * memory objects. The pager memory objects associated | |
144 | * with these temporary virtual memory objects are only | |
145 | * requested from the default memory manager when it | |
146 | * becomes necessary. Virtual memory objects | |
147 | * that depend on the default memory manager are called | |
148 | * "internal". The "pager_created" field is provided to | |
149 | * indicate whether these ports have ever been allocated. | |
150 | * | |
151 | * The kernel may also create virtual memory objects to | |
152 | * hold changed pages after a copy-on-write operation. | |
153 | * In this case, the virtual memory object (and its | |
154 | * backing storage -- its memory object) only contain | |
155 | * those pages that have been changed. The "shadow" | |
156 | * field refers to the virtual memory object that contains | |
157 | * the remainder of the contents. The "shadow_offset" | |
158 | * field indicates where in the "shadow" these contents begin. | |
159 | * The "copy" field refers to a virtual memory object | |
160 | * to which changed pages must be copied before changing | |
161 | * this object, in order to implement another form | |
162 | * of copy-on-write optimization. | |
163 | * | |
164 | * The virtual memory object structure also records | |
165 | * the attributes associated with its memory object. | |
166 | * The "pager_ready", "can_persist" and "copy_strategy" | |
167 | * fields represent those attributes. The "cached_list" | |
168 | * field is used in the implementation of the persistence | |
169 | * attribute. | |
170 | * | |
171 | * ZZZ Continue this comment. | |
172 | */ | |
173 | ||
174 | /* Forward declarations for internal functions. */ | |
175 | static kern_return_t vm_object_terminate( | |
176 | vm_object_t object); | |
177 | ||
178 | extern void vm_object_remove( | |
179 | vm_object_t object); | |
180 | ||
181 | static kern_return_t vm_object_copy_call( | |
182 | vm_object_t src_object, | |
183 | vm_object_offset_t src_offset, | |
184 | vm_object_size_t size, | |
185 | vm_object_t *_result_object); | |
186 | ||
187 | static void vm_object_do_collapse( | |
188 | vm_object_t object, | |
189 | vm_object_t backing_object); | |
190 | ||
191 | static void vm_object_do_bypass( | |
192 | vm_object_t object, | |
193 | vm_object_t backing_object); | |
194 | ||
195 | static void vm_object_release_pager( | |
196 | memory_object_t pager, | |
197 | boolean_t hashed); | |
198 | ||
199 | static zone_t vm_object_zone; /* vm backing store zone */ | |
200 | ||
201 | /* | |
202 | * All wired-down kernel memory belongs to a single virtual | |
203 | * memory object (kernel_object) to avoid wasting data structures. | |
204 | */ | |
205 | static struct vm_object kernel_object_store; | |
206 | vm_object_t kernel_object; | |
207 | ||
208 | ||
209 | /* | |
210 | * The submap object is used as a placeholder for vm_map_submap | |
211 | * operations. The object is declared in vm_map.c because it | |
212 | * is exported by the vm_map module. The storage is declared | |
213 | * here because it must be initialized here. | |
214 | */ | |
215 | static struct vm_object vm_submap_object_store; | |
216 | ||
217 | /* | |
218 | * Virtual memory objects are initialized from | |
219 | * a template (see vm_object_allocate). | |
220 | * | |
221 | * When adding a new field to the virtual memory | |
222 | * object structure, be sure to add initialization | |
223 | * (see _vm_object_allocate()). | |
224 | */ | |
225 | static struct vm_object vm_object_template; | |
226 | ||
227 | unsigned int vm_page_purged_wired = 0; | |
228 | unsigned int vm_page_purged_busy = 0; | |
229 | unsigned int vm_page_purged_others = 0; | |
230 | ||
231 | #if VM_OBJECT_CACHE | |
232 | /* | |
233 | * Virtual memory objects that are not referenced by | |
234 | * any address maps, but that are allowed to persist | |
235 | * (an attribute specified by the associated memory manager), | |
236 | * are kept in a queue (vm_object_cached_list). | |
237 | * | |
238 | * When an object from this queue is referenced again, | |
239 | * for example to make another address space mapping, | |
240 | * it must be removed from the queue. That is, the | |
241 | * queue contains *only* objects with zero references. | |
242 | * | |
243 | * The kernel may choose to terminate objects from this | |
244 | * queue in order to reclaim storage. The current policy | |
245 | * is to permit a fixed maximum number of unreferenced | |
246 | * objects (vm_object_cached_max). | |
247 | * | |
248 | * A spin lock (accessed by routines | |
249 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
250 | * object cache. It must be held when objects are | |
251 | * added to or removed from the cache (in vm_object_terminate). | |
252 | * The routines that acquire a reference to a virtual | |
253 | * memory object based on one of the memory object ports | |
254 | * must also lock the cache. | |
255 | * | |
256 | * Ideally, the object cache should be more isolated | |
257 | * from the reference mechanism, so that the lock need | |
258 | * not be held to make simple references. | |
259 | */ | |
260 | static vm_object_t vm_object_cache_trim( | |
261 | boolean_t called_from_vm_object_deallocate); | |
262 | ||
263 | static void vm_object_deactivate_all_pages( | |
264 | vm_object_t object); | |
265 | ||
266 | static int vm_object_cached_high; /* highest # cached objects */ | |
267 | static int vm_object_cached_max = 512; /* may be patched*/ | |
268 | ||
269 | #define vm_object_cache_lock() \ | |
270 | lck_mtx_lock(&vm_object_cached_lock_data) | |
271 | #define vm_object_cache_lock_try() \ | |
272 | lck_mtx_try_lock(&vm_object_cached_lock_data) | |
273 | ||
274 | #endif /* VM_OBJECT_CACHE */ | |
275 | ||
276 | static queue_head_t vm_object_cached_list; | |
277 | static uint32_t vm_object_cache_pages_freed = 0; | |
278 | static uint32_t vm_object_cache_pages_moved = 0; | |
279 | static uint32_t vm_object_cache_pages_skipped = 0; | |
280 | static uint32_t vm_object_cache_adds = 0; | |
281 | static uint32_t vm_object_cached_count = 0; | |
282 | static lck_mtx_t vm_object_cached_lock_data; | |
283 | static lck_mtx_ext_t vm_object_cached_lock_data_ext; | |
284 | ||
285 | static uint32_t vm_object_page_grab_failed = 0; | |
286 | static uint32_t vm_object_page_grab_skipped = 0; | |
287 | static uint32_t vm_object_page_grab_returned = 0; | |
288 | static uint32_t vm_object_page_grab_pmapped = 0; | |
289 | static uint32_t vm_object_page_grab_reactivations = 0; | |
290 | ||
291 | #define vm_object_cache_lock_spin() \ | |
292 | lck_mtx_lock_spin(&vm_object_cached_lock_data) | |
293 | #define vm_object_cache_unlock() \ | |
294 | lck_mtx_unlock(&vm_object_cached_lock_data) | |
295 | ||
296 | static void vm_object_cache_remove_locked(vm_object_t); | |
297 | ||
298 | ||
299 | #define VM_OBJECT_HASH_COUNT 1024 | |
300 | #define VM_OBJECT_HASH_LOCK_COUNT 512 | |
301 | ||
302 | static lck_mtx_t vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT]; | |
303 | static lck_mtx_ext_t vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT]; | |
304 | ||
305 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; | |
306 | static struct zone *vm_object_hash_zone; | |
307 | ||
308 | struct vm_object_hash_entry { | |
309 | queue_chain_t hash_link; /* hash chain link */ | |
310 | memory_object_t pager; /* pager we represent */ | |
311 | vm_object_t object; /* corresponding object */ | |
312 | boolean_t waiting; /* someone waiting for | |
313 | * termination */ | |
314 | }; | |
315 | ||
316 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
317 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
318 | ||
319 | #define VM_OBJECT_HASH_SHIFT 5 | |
320 | #define vm_object_hash(pager) \ | |
321 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT)) | |
322 | ||
323 | #define vm_object_lock_hash(pager) \ | |
324 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT)) | |
325 | ||
326 | void vm_object_hash_entry_free( | |
327 | vm_object_hash_entry_t entry); | |
328 | ||
329 | static void vm_object_reap(vm_object_t object); | |
330 | static void vm_object_reap_async(vm_object_t object); | |
331 | static void vm_object_reaper_thread(void); | |
332 | ||
333 | static lck_mtx_t vm_object_reaper_lock_data; | |
334 | static lck_mtx_ext_t vm_object_reaper_lock_data_ext; | |
335 | ||
336 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */ | |
337 | unsigned int vm_object_reap_count = 0; | |
338 | unsigned int vm_object_reap_count_async = 0; | |
339 | ||
340 | #define vm_object_reaper_lock() \ | |
341 | lck_mtx_lock(&vm_object_reaper_lock_data) | |
342 | #define vm_object_reaper_lock_spin() \ | |
343 | lck_mtx_lock_spin(&vm_object_reaper_lock_data) | |
344 | #define vm_object_reaper_unlock() \ | |
345 | lck_mtx_unlock(&vm_object_reaper_lock_data) | |
346 | ||
347 | #if 0 | |
348 | #undef KERNEL_DEBUG | |
349 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
350 | #endif | |
351 | ||
352 | ||
353 | static lck_mtx_t * | |
354 | vm_object_hash_lock_spin( | |
355 | memory_object_t pager) | |
356 | { | |
357 | int index; | |
358 | ||
359 | index = vm_object_lock_hash(pager); | |
360 | ||
361 | lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]); | |
362 | ||
363 | return (&vm_object_hashed_lock_data[index]); | |
364 | } | |
365 | ||
366 | static void | |
367 | vm_object_hash_unlock(lck_mtx_t *lck) | |
368 | { | |
369 | lck_mtx_unlock(lck); | |
370 | } | |
371 | ||
372 | ||
373 | /* | |
374 | * vm_object_hash_lookup looks up a pager in the hashtable | |
375 | * and returns the corresponding entry, with optional removal. | |
376 | */ | |
377 | static vm_object_hash_entry_t | |
378 | vm_object_hash_lookup( | |
379 | memory_object_t pager, | |
380 | boolean_t remove_entry) | |
381 | { | |
382 | queue_t bucket; | |
383 | vm_object_hash_entry_t entry; | |
384 | ||
385 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
386 | ||
387 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
388 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
389 | if (entry->pager == pager) { | |
390 | if (remove_entry) { | |
391 | queue_remove(bucket, entry, | |
392 | vm_object_hash_entry_t, hash_link); | |
393 | } | |
394 | return(entry); | |
395 | } | |
396 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
397 | } | |
398 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
399 | } | |
400 | ||
401 | /* | |
402 | * vm_object_hash_enter enters the specified | |
403 | * pager / cache object association in the hashtable. | |
404 | */ | |
405 | ||
406 | static void | |
407 | vm_object_hash_insert( | |
408 | vm_object_hash_entry_t entry, | |
409 | vm_object_t object) | |
410 | { | |
411 | queue_t bucket; | |
412 | ||
413 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
414 | ||
415 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
416 | ||
417 | entry->object = object; | |
418 | object->hashed = TRUE; | |
419 | } | |
420 | ||
421 | static vm_object_hash_entry_t | |
422 | vm_object_hash_entry_alloc( | |
423 | memory_object_t pager) | |
424 | { | |
425 | vm_object_hash_entry_t entry; | |
426 | ||
427 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
428 | entry->pager = pager; | |
429 | entry->object = VM_OBJECT_NULL; | |
430 | entry->waiting = FALSE; | |
431 | ||
432 | return(entry); | |
433 | } | |
434 | ||
435 | void | |
436 | vm_object_hash_entry_free( | |
437 | vm_object_hash_entry_t entry) | |
438 | { | |
439 | zfree(vm_object_hash_zone, entry); | |
440 | } | |
441 | ||
442 | /* | |
443 | * vm_object_allocate: | |
444 | * | |
445 | * Returns a new object with the given size. | |
446 | */ | |
447 | ||
448 | __private_extern__ void | |
449 | _vm_object_allocate( | |
450 | vm_object_size_t size, | |
451 | vm_object_t object) | |
452 | { | |
453 | XPR(XPR_VM_OBJECT, | |
454 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
455 | object, size, 0,0,0); | |
456 | ||
457 | *object = vm_object_template; | |
458 | queue_init(&object->memq); | |
459 | queue_init(&object->msr_q); | |
460 | #if UPL_DEBUG | |
461 | queue_init(&object->uplq); | |
462 | #endif /* UPL_DEBUG */ | |
463 | vm_object_lock_init(object); | |
464 | object->vo_size = size; | |
465 | } | |
466 | ||
467 | __private_extern__ vm_object_t | |
468 | vm_object_allocate( | |
469 | vm_object_size_t size) | |
470 | { | |
471 | register vm_object_t object; | |
472 | ||
473 | object = (vm_object_t) zalloc(vm_object_zone); | |
474 | ||
475 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ | |
476 | ||
477 | if (object != VM_OBJECT_NULL) | |
478 | _vm_object_allocate(size, object); | |
479 | ||
480 | return object; | |
481 | } | |
482 | ||
483 | ||
484 | lck_grp_t vm_object_lck_grp; | |
485 | lck_grp_t vm_object_cache_lck_grp; | |
486 | lck_grp_attr_t vm_object_lck_grp_attr; | |
487 | lck_attr_t vm_object_lck_attr; | |
488 | lck_attr_t kernel_object_lck_attr; | |
489 | ||
490 | /* | |
491 | * vm_object_bootstrap: | |
492 | * | |
493 | * Initialize the VM objects module. | |
494 | */ | |
495 | __private_extern__ void | |
496 | vm_object_bootstrap(void) | |
497 | { | |
498 | register int i; | |
499 | ||
500 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
501 | round_page(512*1024), | |
502 | round_page(12*1024), | |
503 | "vm objects"); | |
504 | zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ | |
505 | zone_change(vm_object_zone, Z_NOENCRYPT, TRUE); | |
506 | ||
507 | vm_object_init_lck_grp(); | |
508 | ||
509 | queue_init(&vm_object_cached_list); | |
510 | ||
511 | lck_mtx_init_ext(&vm_object_cached_lock_data, | |
512 | &vm_object_cached_lock_data_ext, | |
513 | &vm_object_cache_lck_grp, | |
514 | &vm_object_lck_attr); | |
515 | ||
516 | queue_init(&vm_object_reaper_queue); | |
517 | ||
518 | for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) { | |
519 | lck_mtx_init_ext(&vm_object_hashed_lock_data[i], | |
520 | &vm_object_hashed_lock_data_ext[i], | |
521 | &vm_object_lck_grp, | |
522 | &vm_object_lck_attr); | |
523 | } | |
524 | lck_mtx_init_ext(&vm_object_reaper_lock_data, | |
525 | &vm_object_reaper_lock_data_ext, | |
526 | &vm_object_lck_grp, | |
527 | &vm_object_lck_attr); | |
528 | ||
529 | vm_object_hash_zone = | |
530 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
531 | round_page(512*1024), | |
532 | round_page(12*1024), | |
533 | "vm object hash entries"); | |
534 | zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE); | |
535 | zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE); | |
536 | ||
537 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
538 | queue_init(&vm_object_hashtable[i]); | |
539 | ||
540 | ||
541 | /* | |
542 | * Fill in a template object, for quick initialization | |
543 | */ | |
544 | ||
545 | /* memq; Lock; init after allocation */ | |
546 | vm_object_template.memq.prev = NULL; | |
547 | vm_object_template.memq.next = NULL; | |
548 | #if 0 | |
549 | /* | |
550 | * We can't call vm_object_lock_init() here because that will | |
551 | * allocate some memory and VM is not fully initialized yet. | |
552 | * The lock will be initialized for each allocated object in | |
553 | * _vm_object_allocate(), so we don't need to initialize it in | |
554 | * the vm_object_template. | |
555 | */ | |
556 | vm_object_lock_init(&vm_object_template); | |
557 | #endif | |
558 | vm_object_template.vo_size = 0; | |
559 | vm_object_template.memq_hint = VM_PAGE_NULL; | |
560 | vm_object_template.ref_count = 1; | |
561 | #if TASK_SWAPPER | |
562 | vm_object_template.res_count = 1; | |
563 | #endif /* TASK_SWAPPER */ | |
564 | vm_object_template.resident_page_count = 0; | |
565 | vm_object_template.wired_page_count = 0; | |
566 | vm_object_template.reusable_page_count = 0; | |
567 | vm_object_template.copy = VM_OBJECT_NULL; | |
568 | vm_object_template.shadow = VM_OBJECT_NULL; | |
569 | vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0; | |
570 | vm_object_template.pager = MEMORY_OBJECT_NULL; | |
571 | vm_object_template.paging_offset = 0; | |
572 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; | |
573 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; | |
574 | vm_object_template.paging_in_progress = 0; | |
575 | vm_object_template.activity_in_progress = 0; | |
576 | ||
577 | /* Begin bitfields */ | |
578 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
579 | vm_object_template.pager_created = FALSE; | |
580 | vm_object_template.pager_initialized = FALSE; | |
581 | vm_object_template.pager_ready = FALSE; | |
582 | vm_object_template.pager_trusted = FALSE; | |
583 | vm_object_template.can_persist = FALSE; | |
584 | vm_object_template.internal = TRUE; | |
585 | vm_object_template.temporary = TRUE; | |
586 | vm_object_template.private = FALSE; | |
587 | vm_object_template.pageout = FALSE; | |
588 | vm_object_template.alive = TRUE; | |
589 | vm_object_template.purgable = VM_PURGABLE_DENY; | |
590 | vm_object_template.shadowed = FALSE; | |
591 | vm_object_template.silent_overwrite = FALSE; | |
592 | vm_object_template.advisory_pageout = FALSE; | |
593 | vm_object_template.true_share = FALSE; | |
594 | vm_object_template.terminating = FALSE; | |
595 | vm_object_template.named = FALSE; | |
596 | vm_object_template.shadow_severed = FALSE; | |
597 | vm_object_template.phys_contiguous = FALSE; | |
598 | vm_object_template.nophyscache = FALSE; | |
599 | /* End bitfields */ | |
600 | ||
601 | vm_object_template.cached_list.prev = NULL; | |
602 | vm_object_template.cached_list.next = NULL; | |
603 | vm_object_template.msr_q.prev = NULL; | |
604 | vm_object_template.msr_q.next = NULL; | |
605 | ||
606 | vm_object_template.last_alloc = (vm_object_offset_t) 0; | |
607 | vm_object_template.sequential = (vm_object_offset_t) 0; | |
608 | vm_object_template.pages_created = 0; | |
609 | vm_object_template.pages_used = 0; | |
610 | vm_object_template.scan_collisions = 0; | |
611 | ||
612 | #if MACH_PAGEMAP | |
613 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
614 | #endif /* MACH_PAGEMAP */ | |
615 | vm_object_template.cow_hint = ~(vm_offset_t)0; | |
616 | #if MACH_ASSERT | |
617 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
618 | #endif /* MACH_ASSERT */ | |
619 | ||
620 | /* cache bitfields */ | |
621 | vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT; | |
622 | vm_object_template.set_cache_attr = FALSE; | |
623 | vm_object_template.code_signed = FALSE; | |
624 | vm_object_template.hashed = FALSE; | |
625 | vm_object_template.transposed = FALSE; | |
626 | vm_object_template.mapping_in_progress = FALSE; | |
627 | vm_object_template.volatile_empty = FALSE; | |
628 | vm_object_template.volatile_fault = FALSE; | |
629 | vm_object_template.all_reusable = FALSE; | |
630 | vm_object_template.blocked_access = FALSE; | |
631 | vm_object_template.__object2_unused_bits = 0; | |
632 | #if UPL_DEBUG | |
633 | vm_object_template.uplq.prev = NULL; | |
634 | vm_object_template.uplq.next = NULL; | |
635 | #endif /* UPL_DEBUG */ | |
636 | #ifdef VM_PIP_DEBUG | |
637 | bzero(&vm_object_template.pip_holders, | |
638 | sizeof (vm_object_template.pip_holders)); | |
639 | #endif /* VM_PIP_DEBUG */ | |
640 | ||
641 | vm_object_template.objq.next=NULL; | |
642 | vm_object_template.objq.prev=NULL; | |
643 | ||
644 | vm_object_template.vo_cache_ts = 0; | |
645 | ||
646 | /* | |
647 | * Initialize the "kernel object" | |
648 | */ | |
649 | ||
650 | kernel_object = &kernel_object_store; | |
651 | ||
652 | /* | |
653 | * Note that in the following size specifications, we need to add 1 because | |
654 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. | |
655 | */ | |
656 | ||
657 | #ifdef ppc | |
658 | _vm_object_allocate(vm_last_addr + 1, | |
659 | kernel_object); | |
660 | #else | |
661 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
662 | kernel_object); | |
663 | #endif | |
664 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
665 | ||
666 | /* | |
667 | * Initialize the "submap object". Make it as large as the | |
668 | * kernel object so that no limit is imposed on submap sizes. | |
669 | */ | |
670 | ||
671 | vm_submap_object = &vm_submap_object_store; | |
672 | #ifdef ppc | |
673 | _vm_object_allocate(vm_last_addr + 1, | |
674 | vm_submap_object); | |
675 | #else | |
676 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
677 | vm_submap_object); | |
678 | #endif | |
679 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
680 | ||
681 | /* | |
682 | * Create an "extra" reference to this object so that we never | |
683 | * try to deallocate it; zfree doesn't like to be called with | |
684 | * non-zone memory. | |
685 | */ | |
686 | vm_object_reference(vm_submap_object); | |
687 | ||
688 | #if MACH_PAGEMAP | |
689 | vm_external_module_initialize(); | |
690 | #endif /* MACH_PAGEMAP */ | |
691 | } | |
692 | ||
693 | void | |
694 | vm_object_reaper_init(void) | |
695 | { | |
696 | kern_return_t kr; | |
697 | thread_t thread; | |
698 | ||
699 | kr = kernel_thread_start_priority( | |
700 | (thread_continue_t) vm_object_reaper_thread, | |
701 | NULL, | |
702 | BASEPRI_PREEMPT - 1, | |
703 | &thread); | |
704 | if (kr != KERN_SUCCESS) { | |
705 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); | |
706 | } | |
707 | thread_deallocate(thread); | |
708 | } | |
709 | ||
710 | __private_extern__ void | |
711 | vm_object_init(void) | |
712 | { | |
713 | /* | |
714 | * Finish initializing the kernel object. | |
715 | */ | |
716 | } | |
717 | ||
718 | ||
719 | __private_extern__ void | |
720 | vm_object_init_lck_grp(void) | |
721 | { | |
722 | /* | |
723 | * initialze the vm_object lock world | |
724 | */ | |
725 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); | |
726 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); | |
727 | lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr); | |
728 | lck_attr_setdefault(&vm_object_lck_attr); | |
729 | lck_attr_setdefault(&kernel_object_lck_attr); | |
730 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
731 | } | |
732 | ||
733 | #if VM_OBJECT_CACHE | |
734 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
735 | #if MIGHT_NOT_CACHE_SHADOWS | |
736 | static int cache_shadows = TRUE; | |
737 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
738 | #endif | |
739 | ||
740 | /* | |
741 | * vm_object_deallocate: | |
742 | * | |
743 | * Release a reference to the specified object, | |
744 | * gained either through a vm_object_allocate | |
745 | * or a vm_object_reference call. When all references | |
746 | * are gone, storage associated with this object | |
747 | * may be relinquished. | |
748 | * | |
749 | * No object may be locked. | |
750 | */ | |
751 | unsigned long vm_object_deallocate_shared_successes = 0; | |
752 | unsigned long vm_object_deallocate_shared_failures = 0; | |
753 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
754 | __private_extern__ void | |
755 | vm_object_deallocate( | |
756 | register vm_object_t object) | |
757 | { | |
758 | #if VM_OBJECT_CACHE | |
759 | boolean_t retry_cache_trim = FALSE; | |
760 | uint32_t try_failed_count = 0; | |
761 | #endif | |
762 | vm_object_t shadow = VM_OBJECT_NULL; | |
763 | ||
764 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
765 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
766 | ||
767 | if (object == VM_OBJECT_NULL) | |
768 | return; | |
769 | ||
770 | if (object == kernel_object) { | |
771 | vm_object_lock_shared(object); | |
772 | ||
773 | OSAddAtomic(-1, &object->ref_count); | |
774 | ||
775 | if (object->ref_count == 0) { | |
776 | panic("vm_object_deallocate: losing kernel_object\n"); | |
777 | } | |
778 | vm_object_unlock(object); | |
779 | return; | |
780 | } | |
781 | ||
782 | if (object->ref_count > 2 || | |
783 | (!object->named && object->ref_count > 1)) { | |
784 | UInt32 original_ref_count; | |
785 | volatile UInt32 *ref_count_p; | |
786 | Boolean atomic_swap; | |
787 | ||
788 | /* | |
789 | * The object currently looks like it is not being | |
790 | * kept alive solely by the reference we're about to release. | |
791 | * Let's try and release our reference without taking | |
792 | * all the locks we would need if we had to terminate the | |
793 | * object (cache lock + exclusive object lock). | |
794 | * Lock the object "shared" to make sure we don't race with | |
795 | * anyone holding it "exclusive". | |
796 | */ | |
797 | vm_object_lock_shared(object); | |
798 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
799 | original_ref_count = object->ref_count; | |
800 | /* | |
801 | * Test again as "ref_count" could have changed. | |
802 | * "named" shouldn't change. | |
803 | */ | |
804 | if (original_ref_count > 2 || | |
805 | (!object->named && original_ref_count > 1)) { | |
806 | atomic_swap = OSCompareAndSwap( | |
807 | original_ref_count, | |
808 | original_ref_count - 1, | |
809 | (UInt32 *) &object->ref_count); | |
810 | if (atomic_swap == FALSE) { | |
811 | vm_object_deallocate_shared_swap_failures++; | |
812 | } | |
813 | ||
814 | } else { | |
815 | atomic_swap = FALSE; | |
816 | } | |
817 | vm_object_unlock(object); | |
818 | ||
819 | if (atomic_swap) { | |
820 | /* | |
821 | * ref_count was updated atomically ! | |
822 | */ | |
823 | vm_object_deallocate_shared_successes++; | |
824 | return; | |
825 | } | |
826 | ||
827 | /* | |
828 | * Someone else updated the ref_count at the same | |
829 | * time and we lost the race. Fall back to the usual | |
830 | * slow but safe path... | |
831 | */ | |
832 | vm_object_deallocate_shared_failures++; | |
833 | } | |
834 | ||
835 | while (object != VM_OBJECT_NULL) { | |
836 | ||
837 | vm_object_lock(object); | |
838 | ||
839 | assert(object->ref_count > 0); | |
840 | ||
841 | /* | |
842 | * If the object has a named reference, and only | |
843 | * that reference would remain, inform the pager | |
844 | * about the last "mapping" reference going away. | |
845 | */ | |
846 | if ((object->ref_count == 2) && (object->named)) { | |
847 | memory_object_t pager = object->pager; | |
848 | ||
849 | /* Notify the Pager that there are no */ | |
850 | /* more mappers for this object */ | |
851 | ||
852 | if (pager != MEMORY_OBJECT_NULL) { | |
853 | vm_object_mapping_wait(object, THREAD_UNINT); | |
854 | vm_object_mapping_begin(object); | |
855 | vm_object_unlock(object); | |
856 | ||
857 | memory_object_last_unmap(pager); | |
858 | ||
859 | vm_object_lock(object); | |
860 | vm_object_mapping_end(object); | |
861 | } | |
862 | assert(object->ref_count > 0); | |
863 | } | |
864 | ||
865 | /* | |
866 | * Lose the reference. If other references | |
867 | * remain, then we are done, unless we need | |
868 | * to retry a cache trim. | |
869 | * If it is the last reference, then keep it | |
870 | * until any pending initialization is completed. | |
871 | */ | |
872 | ||
873 | /* if the object is terminating, it cannot go into */ | |
874 | /* the cache and we obviously should not call */ | |
875 | /* terminate again. */ | |
876 | ||
877 | if ((object->ref_count > 1) || object->terminating) { | |
878 | vm_object_lock_assert_exclusive(object); | |
879 | object->ref_count--; | |
880 | vm_object_res_deallocate(object); | |
881 | ||
882 | if (object->ref_count == 1 && | |
883 | object->shadow != VM_OBJECT_NULL) { | |
884 | /* | |
885 | * There's only one reference left on this | |
886 | * VM object. We can't tell if it's a valid | |
887 | * one (from a mapping for example) or if this | |
888 | * object is just part of a possibly stale and | |
889 | * useless shadow chain. | |
890 | * We would like to try and collapse it into | |
891 | * its parent, but we don't have any pointers | |
892 | * back to this parent object. | |
893 | * But we can try and collapse this object with | |
894 | * its own shadows, in case these are useless | |
895 | * too... | |
896 | * We can't bypass this object though, since we | |
897 | * don't know if this last reference on it is | |
898 | * meaningful or not. | |
899 | */ | |
900 | vm_object_collapse(object, 0, FALSE); | |
901 | } | |
902 | vm_object_unlock(object); | |
903 | #if VM_OBJECT_CACHE | |
904 | if (retry_cache_trim && | |
905 | ((object = vm_object_cache_trim(TRUE)) != | |
906 | VM_OBJECT_NULL)) { | |
907 | continue; | |
908 | } | |
909 | #endif | |
910 | return; | |
911 | } | |
912 | ||
913 | /* | |
914 | * We have to wait for initialization | |
915 | * before destroying or caching the object. | |
916 | */ | |
917 | ||
918 | if (object->pager_created && ! object->pager_initialized) { | |
919 | assert(! object->can_persist); | |
920 | vm_object_assert_wait(object, | |
921 | VM_OBJECT_EVENT_INITIALIZED, | |
922 | THREAD_UNINT); | |
923 | vm_object_unlock(object); | |
924 | ||
925 | thread_block(THREAD_CONTINUE_NULL); | |
926 | continue; | |
927 | } | |
928 | ||
929 | #if VM_OBJECT_CACHE | |
930 | /* | |
931 | * If this object can persist, then enter it in | |
932 | * the cache. Otherwise, terminate it. | |
933 | * | |
934 | * NOTE: Only permanent objects are cached, and | |
935 | * permanent objects cannot have shadows. This | |
936 | * affects the residence counting logic in a minor | |
937 | * way (can do it in-line, mostly). | |
938 | */ | |
939 | ||
940 | if ((object->can_persist) && (object->alive)) { | |
941 | /* | |
942 | * Now it is safe to decrement reference count, | |
943 | * and to return if reference count is > 0. | |
944 | */ | |
945 | ||
946 | vm_object_lock_assert_exclusive(object); | |
947 | if (--object->ref_count > 0) { | |
948 | vm_object_res_deallocate(object); | |
949 | vm_object_unlock(object); | |
950 | ||
951 | if (retry_cache_trim && | |
952 | ((object = vm_object_cache_trim(TRUE)) != | |
953 | VM_OBJECT_NULL)) { | |
954 | continue; | |
955 | } | |
956 | return; | |
957 | } | |
958 | ||
959 | #if MIGHT_NOT_CACHE_SHADOWS | |
960 | /* | |
961 | * Remove shadow now if we don't | |
962 | * want to cache shadows. | |
963 | */ | |
964 | if (! cache_shadows) { | |
965 | shadow = object->shadow; | |
966 | object->shadow = VM_OBJECT_NULL; | |
967 | } | |
968 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
969 | ||
970 | /* | |
971 | * Enter the object onto the queue of | |
972 | * cached objects, and deactivate | |
973 | * all of its pages. | |
974 | */ | |
975 | assert(object->shadow == VM_OBJECT_NULL); | |
976 | VM_OBJ_RES_DECR(object); | |
977 | XPR(XPR_VM_OBJECT, | |
978 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
979 | object, | |
980 | vm_object_cached_list.next, | |
981 | vm_object_cached_list.prev,0,0); | |
982 | ||
983 | ||
984 | vm_object_unlock(object); | |
985 | ||
986 | try_failed_count = 0; | |
987 | for (;;) { | |
988 | vm_object_cache_lock(); | |
989 | ||
990 | /* | |
991 | * if we try to take a regular lock here | |
992 | * we risk deadlocking against someone | |
993 | * holding a lock on this object while | |
994 | * trying to vm_object_deallocate a different | |
995 | * object | |
996 | */ | |
997 | if (vm_object_lock_try(object)) | |
998 | break; | |
999 | vm_object_cache_unlock(); | |
1000 | try_failed_count++; | |
1001 | ||
1002 | mutex_pause(try_failed_count); /* wait a bit */ | |
1003 | } | |
1004 | vm_object_cached_count++; | |
1005 | if (vm_object_cached_count > vm_object_cached_high) | |
1006 | vm_object_cached_high = vm_object_cached_count; | |
1007 | queue_enter(&vm_object_cached_list, object, | |
1008 | vm_object_t, cached_list); | |
1009 | vm_object_cache_unlock(); | |
1010 | ||
1011 | vm_object_deactivate_all_pages(object); | |
1012 | vm_object_unlock(object); | |
1013 | ||
1014 | #if MIGHT_NOT_CACHE_SHADOWS | |
1015 | /* | |
1016 | * If we have a shadow that we need | |
1017 | * to deallocate, do so now, remembering | |
1018 | * to trim the cache later. | |
1019 | */ | |
1020 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
1021 | object = shadow; | |
1022 | retry_cache_trim = TRUE; | |
1023 | continue; | |
1024 | } | |
1025 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
1026 | ||
1027 | /* | |
1028 | * Trim the cache. If the cache trim | |
1029 | * returns with a shadow for us to deallocate, | |
1030 | * then remember to retry the cache trim | |
1031 | * when we are done deallocating the shadow. | |
1032 | * Otherwise, we are done. | |
1033 | */ | |
1034 | ||
1035 | object = vm_object_cache_trim(TRUE); | |
1036 | if (object == VM_OBJECT_NULL) { | |
1037 | return; | |
1038 | } | |
1039 | retry_cache_trim = TRUE; | |
1040 | } else | |
1041 | #endif /* VM_OBJECT_CACHE */ | |
1042 | { | |
1043 | /* | |
1044 | * This object is not cachable; terminate it. | |
1045 | */ | |
1046 | XPR(XPR_VM_OBJECT, | |
1047 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n", | |
1048 | object, object->resident_page_count, | |
1049 | object->paging_in_progress, | |
1050 | (void *)current_thread(),object->ref_count); | |
1051 | ||
1052 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
1053 | /* | |
1054 | * Terminate this object. If it had a shadow, | |
1055 | * then deallocate it; otherwise, if we need | |
1056 | * to retry a cache trim, do so now; otherwise, | |
1057 | * we are done. "pageout" objects have a shadow, | |
1058 | * but maintain a "paging reference" rather than | |
1059 | * a normal reference. | |
1060 | */ | |
1061 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1062 | ||
1063 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
1064 | return; | |
1065 | } | |
1066 | if (shadow != VM_OBJECT_NULL) { | |
1067 | object = shadow; | |
1068 | continue; | |
1069 | } | |
1070 | #if VM_OBJECT_CACHE | |
1071 | if (retry_cache_trim && | |
1072 | ((object = vm_object_cache_trim(TRUE)) != | |
1073 | VM_OBJECT_NULL)) { | |
1074 | continue; | |
1075 | } | |
1076 | #endif | |
1077 | return; | |
1078 | } | |
1079 | } | |
1080 | #if VM_OBJECT_CACHE | |
1081 | assert(! retry_cache_trim); | |
1082 | #endif | |
1083 | } | |
1084 | ||
1085 | ||
1086 | ||
1087 | vm_page_t | |
1088 | vm_object_page_grab( | |
1089 | vm_object_t object) | |
1090 | { | |
1091 | vm_page_t p, next_p; | |
1092 | int p_limit = 0; | |
1093 | int p_skipped = 0; | |
1094 | ||
1095 | vm_object_lock_assert_exclusive(object); | |
1096 | ||
1097 | next_p = (vm_page_t)queue_first(&object->memq); | |
1098 | p_limit = MIN(50, object->resident_page_count); | |
1099 | ||
1100 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) { | |
1101 | ||
1102 | p = next_p; | |
1103 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1104 | ||
1105 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious) | |
1106 | goto move_page_in_obj; | |
1107 | ||
1108 | if (p->pmapped || p->dirty || p->precious) { | |
1109 | vm_page_lockspin_queues(); | |
1110 | ||
1111 | if (p->pmapped) { | |
1112 | int refmod_state; | |
1113 | ||
1114 | vm_object_page_grab_pmapped++; | |
1115 | ||
1116 | if (p->reference == FALSE || p->dirty == FALSE) { | |
1117 | ||
1118 | refmod_state = pmap_get_refmod(p->phys_page); | |
1119 | ||
1120 | if (refmod_state & VM_MEM_REFERENCED) | |
1121 | p->reference = TRUE; | |
1122 | if (refmod_state & VM_MEM_MODIFIED) { | |
1123 | SET_PAGE_DIRTY(p, FALSE); | |
1124 | } | |
1125 | } | |
1126 | if (p->dirty == FALSE && p->precious == FALSE) { | |
1127 | ||
1128 | refmod_state = pmap_disconnect(p->phys_page); | |
1129 | ||
1130 | if (refmod_state & VM_MEM_REFERENCED) | |
1131 | p->reference = TRUE; | |
1132 | if (refmod_state & VM_MEM_MODIFIED) { | |
1133 | SET_PAGE_DIRTY(p, FALSE); | |
1134 | } | |
1135 | ||
1136 | if (p->dirty == FALSE) | |
1137 | goto take_page; | |
1138 | } | |
1139 | } | |
1140 | if (p->inactive && p->reference == TRUE) { | |
1141 | vm_page_activate(p); | |
1142 | ||
1143 | VM_STAT_INCR(reactivations); | |
1144 | vm_object_page_grab_reactivations++; | |
1145 | } | |
1146 | vm_page_unlock_queues(); | |
1147 | move_page_in_obj: | |
1148 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1149 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1150 | ||
1151 | p_skipped++; | |
1152 | continue; | |
1153 | } | |
1154 | vm_page_lockspin_queues(); | |
1155 | take_page: | |
1156 | vm_page_free_prepare_queues(p); | |
1157 | vm_object_page_grab_returned++; | |
1158 | vm_object_page_grab_skipped += p_skipped; | |
1159 | ||
1160 | vm_page_unlock_queues(); | |
1161 | ||
1162 | vm_page_free_prepare_object(p, TRUE); | |
1163 | ||
1164 | return (p); | |
1165 | } | |
1166 | vm_object_page_grab_skipped += p_skipped; | |
1167 | vm_object_page_grab_failed++; | |
1168 | ||
1169 | return (NULL); | |
1170 | } | |
1171 | ||
1172 | ||
1173 | ||
1174 | #define EVICT_PREPARE_LIMIT 64 | |
1175 | #define EVICT_AGE 10 | |
1176 | ||
1177 | static clock_sec_t vm_object_cache_aging_ts = 0; | |
1178 | ||
1179 | static void | |
1180 | vm_object_cache_remove_locked( | |
1181 | vm_object_t object) | |
1182 | { | |
1183 | queue_remove(&vm_object_cached_list, object, vm_object_t, objq); | |
1184 | object->objq.next = NULL; | |
1185 | object->objq.prev = NULL; | |
1186 | ||
1187 | vm_object_cached_count--; | |
1188 | } | |
1189 | ||
1190 | void | |
1191 | vm_object_cache_remove( | |
1192 | vm_object_t object) | |
1193 | { | |
1194 | vm_object_cache_lock_spin(); | |
1195 | ||
1196 | if (object->objq.next || object->objq.prev) | |
1197 | vm_object_cache_remove_locked(object); | |
1198 | ||
1199 | vm_object_cache_unlock(); | |
1200 | } | |
1201 | ||
1202 | void | |
1203 | vm_object_cache_add( | |
1204 | vm_object_t object) | |
1205 | { | |
1206 | clock_sec_t sec; | |
1207 | clock_nsec_t nsec; | |
1208 | ||
1209 | if (object->resident_page_count == 0) | |
1210 | return; | |
1211 | clock_get_system_nanotime(&sec, &nsec); | |
1212 | ||
1213 | vm_object_cache_lock_spin(); | |
1214 | ||
1215 | if (object->objq.next == NULL && object->objq.prev == NULL) { | |
1216 | queue_enter(&vm_object_cached_list, object, vm_object_t, objq); | |
1217 | object->vo_cache_ts = sec + EVICT_AGE; | |
1218 | object->vo_cache_pages_to_scan = object->resident_page_count; | |
1219 | ||
1220 | vm_object_cached_count++; | |
1221 | vm_object_cache_adds++; | |
1222 | } | |
1223 | vm_object_cache_unlock(); | |
1224 | } | |
1225 | ||
1226 | int | |
1227 | vm_object_cache_evict( | |
1228 | int num_to_evict, | |
1229 | int max_objects_to_examine) | |
1230 | { | |
1231 | vm_object_t object = VM_OBJECT_NULL; | |
1232 | vm_object_t next_obj = VM_OBJECT_NULL; | |
1233 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1234 | vm_page_t p; | |
1235 | vm_page_t next_p; | |
1236 | int object_cnt = 0; | |
1237 | vm_page_t ep_array[EVICT_PREPARE_LIMIT]; | |
1238 | int ep_count; | |
1239 | int ep_limit; | |
1240 | int ep_index; | |
1241 | int ep_freed = 0; | |
1242 | int ep_moved = 0; | |
1243 | uint32_t ep_skipped = 0; | |
1244 | clock_sec_t sec; | |
1245 | clock_nsec_t nsec; | |
1246 | ||
1247 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1248 | /* | |
1249 | * do a couple of quick checks to see if it's | |
1250 | * worthwhile grabbing the lock | |
1251 | */ | |
1252 | if (queue_empty(&vm_object_cached_list)) { | |
1253 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1254 | return (0); | |
1255 | } | |
1256 | clock_get_system_nanotime(&sec, &nsec); | |
1257 | ||
1258 | /* | |
1259 | * the object on the head of the queue has not | |
1260 | * yet sufficiently aged | |
1261 | */ | |
1262 | if (sec < vm_object_cache_aging_ts) { | |
1263 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1264 | return (0); | |
1265 | } | |
1266 | /* | |
1267 | * don't need the queue lock to find | |
1268 | * and lock an object on the cached list | |
1269 | */ | |
1270 | vm_page_unlock_queues(); | |
1271 | ||
1272 | vm_object_cache_lock_spin(); | |
1273 | ||
1274 | for (;;) { | |
1275 | next_obj = (vm_object_t)queue_first(&vm_object_cached_list); | |
1276 | ||
1277 | while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) { | |
1278 | ||
1279 | object = next_obj; | |
1280 | next_obj = (vm_object_t)queue_next(&next_obj->objq); | |
1281 | ||
1282 | if (sec < object->vo_cache_ts) { | |
1283 | KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0); | |
1284 | ||
1285 | vm_object_cache_aging_ts = object->vo_cache_ts; | |
1286 | object = VM_OBJECT_NULL; | |
1287 | break; | |
1288 | } | |
1289 | if (!vm_object_lock_try_scan(object)) { | |
1290 | /* | |
1291 | * just skip over this guy for now... if we find | |
1292 | * an object to steal pages from, we'll revist in a bit... | |
1293 | * hopefully, the lock will have cleared | |
1294 | */ | |
1295 | KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0); | |
1296 | ||
1297 | object = VM_OBJECT_NULL; | |
1298 | continue; | |
1299 | } | |
1300 | if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) { | |
1301 | /* | |
1302 | * this case really shouldn't happen, but it's not fatal | |
1303 | * so deal with it... if we don't remove the object from | |
1304 | * the list, we'll never move past it. | |
1305 | */ | |
1306 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1307 | ||
1308 | vm_object_cache_remove_locked(object); | |
1309 | vm_object_unlock(object); | |
1310 | object = VM_OBJECT_NULL; | |
1311 | continue; | |
1312 | } | |
1313 | /* | |
1314 | * we have a locked object with pages... | |
1315 | * time to start harvesting | |
1316 | */ | |
1317 | break; | |
1318 | } | |
1319 | vm_object_cache_unlock(); | |
1320 | ||
1321 | if (object == VM_OBJECT_NULL) | |
1322 | break; | |
1323 | ||
1324 | /* | |
1325 | * object is locked at this point and | |
1326 | * has resident pages | |
1327 | */ | |
1328 | next_p = (vm_page_t)queue_first(&object->memq); | |
1329 | ||
1330 | /* | |
1331 | * break the page scan into 2 pieces to minimize the time spent | |
1332 | * behind the page queue lock... | |
1333 | * the list of pages on these unused objects is likely to be cold | |
1334 | * w/r to the cpu cache which increases the time to scan the list | |
1335 | * tenfold... and we may have a 'run' of pages we can't utilize that | |
1336 | * needs to be skipped over... | |
1337 | */ | |
1338 | if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) | |
1339 | ep_limit = EVICT_PREPARE_LIMIT; | |
1340 | ep_count = 0; | |
1341 | ||
1342 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) { | |
1343 | ||
1344 | p = next_p; | |
1345 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1346 | ||
1347 | object->vo_cache_pages_to_scan--; | |
1348 | ||
1349 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) { | |
1350 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1351 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1352 | ||
1353 | ep_skipped++; | |
1354 | continue; | |
1355 | } | |
1356 | if (p->wpmapped || p->dirty || p->precious) { | |
1357 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1358 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1359 | ||
1360 | pmap_clear_reference(p->phys_page); | |
1361 | } | |
1362 | ep_array[ep_count++] = p; | |
1363 | } | |
1364 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1365 | ||
1366 | vm_page_lockspin_queues(); | |
1367 | ||
1368 | for (ep_index = 0; ep_index < ep_count; ep_index++) { | |
1369 | ||
1370 | p = ep_array[ep_index]; | |
1371 | ||
1372 | if (p->wpmapped || p->dirty || p->precious) { | |
1373 | p->reference = FALSE; | |
1374 | p->no_cache = FALSE; | |
1375 | ||
1376 | /* | |
1377 | * we've already filtered out pages that are in the laundry | |
1378 | * so if we get here, this page can't be on the pageout queue | |
1379 | */ | |
1380 | assert(!p->pageout_queue); | |
1381 | ||
1382 | VM_PAGE_QUEUES_REMOVE(p); | |
1383 | VM_PAGE_ENQUEUE_INACTIVE(p, TRUE); | |
1384 | ||
1385 | ep_moved++; | |
1386 | } else { | |
1387 | vm_page_free_prepare_queues(p); | |
1388 | ||
1389 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
1390 | /* | |
1391 | * Add this page to our list of reclaimed pages, | |
1392 | * to be freed later. | |
1393 | */ | |
1394 | p->pageq.next = (queue_entry_t) local_free_q; | |
1395 | local_free_q = p; | |
1396 | ||
1397 | ep_freed++; | |
1398 | } | |
1399 | } | |
1400 | vm_page_unlock_queues(); | |
1401 | ||
1402 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1403 | ||
1404 | if (local_free_q) { | |
1405 | vm_page_free_list(local_free_q, TRUE); | |
1406 | local_free_q = VM_PAGE_NULL; | |
1407 | } | |
1408 | if (object->vo_cache_pages_to_scan == 0) { | |
1409 | KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1410 | ||
1411 | vm_object_cache_remove(object); | |
1412 | ||
1413 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1414 | } | |
1415 | /* | |
1416 | * done with this object | |
1417 | */ | |
1418 | vm_object_unlock(object); | |
1419 | object = VM_OBJECT_NULL; | |
1420 | ||
1421 | /* | |
1422 | * at this point, we are not holding any locks | |
1423 | */ | |
1424 | if ((ep_freed + ep_moved) >= num_to_evict) { | |
1425 | /* | |
1426 | * we've reached our target for the | |
1427 | * number of pages to evict | |
1428 | */ | |
1429 | break; | |
1430 | } | |
1431 | vm_object_cache_lock_spin(); | |
1432 | } | |
1433 | /* | |
1434 | * put the page queues lock back to the caller's | |
1435 | * idea of it | |
1436 | */ | |
1437 | vm_page_lock_queues(); | |
1438 | ||
1439 | vm_object_cache_pages_freed += ep_freed; | |
1440 | vm_object_cache_pages_moved += ep_moved; | |
1441 | vm_object_cache_pages_skipped += ep_skipped; | |
1442 | ||
1443 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0); | |
1444 | return (ep_freed); | |
1445 | } | |
1446 | ||
1447 | ||
1448 | #if VM_OBJECT_CACHE | |
1449 | /* | |
1450 | * Check to see whether we really need to trim | |
1451 | * down the cache. If so, remove an object from | |
1452 | * the cache, terminate it, and repeat. | |
1453 | * | |
1454 | * Called with, and returns with, cache lock unlocked. | |
1455 | */ | |
1456 | vm_object_t | |
1457 | vm_object_cache_trim( | |
1458 | boolean_t called_from_vm_object_deallocate) | |
1459 | { | |
1460 | register vm_object_t object = VM_OBJECT_NULL; | |
1461 | vm_object_t shadow; | |
1462 | ||
1463 | for (;;) { | |
1464 | ||
1465 | /* | |
1466 | * If we no longer need to trim the cache, | |
1467 | * then we are done. | |
1468 | */ | |
1469 | if (vm_object_cached_count <= vm_object_cached_max) | |
1470 | return VM_OBJECT_NULL; | |
1471 | ||
1472 | vm_object_cache_lock(); | |
1473 | if (vm_object_cached_count <= vm_object_cached_max) { | |
1474 | vm_object_cache_unlock(); | |
1475 | return VM_OBJECT_NULL; | |
1476 | } | |
1477 | ||
1478 | /* | |
1479 | * We must trim down the cache, so remove | |
1480 | * the first object in the cache. | |
1481 | */ | |
1482 | XPR(XPR_VM_OBJECT, | |
1483 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
1484 | vm_object_cached_list.next, | |
1485 | vm_object_cached_list.prev, 0, 0, 0); | |
1486 | ||
1487 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
1488 | if(object == (vm_object_t) &vm_object_cached_list) { | |
1489 | /* something's wrong with the calling parameter or */ | |
1490 | /* the value of vm_object_cached_count, just fix */ | |
1491 | /* and return */ | |
1492 | if(vm_object_cached_max < 0) | |
1493 | vm_object_cached_max = 0; | |
1494 | vm_object_cached_count = 0; | |
1495 | vm_object_cache_unlock(); | |
1496 | return VM_OBJECT_NULL; | |
1497 | } | |
1498 | vm_object_lock(object); | |
1499 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
1500 | cached_list); | |
1501 | vm_object_cached_count--; | |
1502 | ||
1503 | vm_object_cache_unlock(); | |
1504 | /* | |
1505 | * Since this object is in the cache, we know | |
1506 | * that it is initialized and has no references. | |
1507 | * Take a reference to avoid recursive deallocations. | |
1508 | */ | |
1509 | ||
1510 | assert(object->pager_initialized); | |
1511 | assert(object->ref_count == 0); | |
1512 | vm_object_lock_assert_exclusive(object); | |
1513 | object->ref_count++; | |
1514 | ||
1515 | /* | |
1516 | * Terminate the object. | |
1517 | * If the object had a shadow, we let vm_object_deallocate | |
1518 | * deallocate it. "pageout" objects have a shadow, but | |
1519 | * maintain a "paging reference" rather than a normal | |
1520 | * reference. | |
1521 | * (We are careful here to limit recursion.) | |
1522 | */ | |
1523 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1524 | ||
1525 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
1526 | continue; | |
1527 | ||
1528 | if (shadow != VM_OBJECT_NULL) { | |
1529 | if (called_from_vm_object_deallocate) { | |
1530 | return shadow; | |
1531 | } else { | |
1532 | vm_object_deallocate(shadow); | |
1533 | } | |
1534 | } | |
1535 | } | |
1536 | } | |
1537 | #endif | |
1538 | ||
1539 | ||
1540 | /* | |
1541 | * Routine: vm_object_terminate | |
1542 | * Purpose: | |
1543 | * Free all resources associated with a vm_object. | |
1544 | * In/out conditions: | |
1545 | * Upon entry, the object must be locked, | |
1546 | * and the object must have exactly one reference. | |
1547 | * | |
1548 | * The shadow object reference is left alone. | |
1549 | * | |
1550 | * The object must be unlocked if its found that pages | |
1551 | * must be flushed to a backing object. If someone | |
1552 | * manages to map the object while it is being flushed | |
1553 | * the object is returned unlocked and unchanged. Otherwise, | |
1554 | * upon exit, the cache will be unlocked, and the | |
1555 | * object will cease to exist. | |
1556 | */ | |
1557 | static kern_return_t | |
1558 | vm_object_terminate( | |
1559 | vm_object_t object) | |
1560 | { | |
1561 | vm_object_t shadow_object; | |
1562 | ||
1563 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
1564 | object, object->ref_count, 0, 0, 0); | |
1565 | ||
1566 | if (!object->pageout && (!object->temporary || object->can_persist) && | |
1567 | (object->pager != NULL || object->shadow_severed)) { | |
1568 | /* | |
1569 | * Clear pager_trusted bit so that the pages get yanked | |
1570 | * out of the object instead of cleaned in place. This | |
1571 | * prevents a deadlock in XMM and makes more sense anyway. | |
1572 | */ | |
1573 | object->pager_trusted = FALSE; | |
1574 | ||
1575 | vm_object_reap_pages(object, REAP_TERMINATE); | |
1576 | } | |
1577 | /* | |
1578 | * Make sure the object isn't already being terminated | |
1579 | */ | |
1580 | if (object->terminating) { | |
1581 | vm_object_lock_assert_exclusive(object); | |
1582 | object->ref_count--; | |
1583 | assert(object->ref_count > 0); | |
1584 | vm_object_unlock(object); | |
1585 | return KERN_FAILURE; | |
1586 | } | |
1587 | ||
1588 | /* | |
1589 | * Did somebody get a reference to the object while we were | |
1590 | * cleaning it? | |
1591 | */ | |
1592 | if (object->ref_count != 1) { | |
1593 | vm_object_lock_assert_exclusive(object); | |
1594 | object->ref_count--; | |
1595 | assert(object->ref_count > 0); | |
1596 | vm_object_res_deallocate(object); | |
1597 | vm_object_unlock(object); | |
1598 | return KERN_FAILURE; | |
1599 | } | |
1600 | ||
1601 | /* | |
1602 | * Make sure no one can look us up now. | |
1603 | */ | |
1604 | ||
1605 | object->terminating = TRUE; | |
1606 | object->alive = FALSE; | |
1607 | ||
1608 | if ( !object->internal && (object->objq.next || object->objq.prev)) | |
1609 | vm_object_cache_remove(object); | |
1610 | ||
1611 | if (object->hashed) { | |
1612 | lck_mtx_t *lck; | |
1613 | ||
1614 | lck = vm_object_hash_lock_spin(object->pager); | |
1615 | vm_object_remove(object); | |
1616 | vm_object_hash_unlock(lck); | |
1617 | } | |
1618 | /* | |
1619 | * Detach the object from its shadow if we are the shadow's | |
1620 | * copy. The reference we hold on the shadow must be dropped | |
1621 | * by our caller. | |
1622 | */ | |
1623 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1624 | !(object->pageout)) { | |
1625 | vm_object_lock(shadow_object); | |
1626 | if (shadow_object->copy == object) | |
1627 | shadow_object->copy = VM_OBJECT_NULL; | |
1628 | vm_object_unlock(shadow_object); | |
1629 | } | |
1630 | ||
1631 | if (object->paging_in_progress != 0 || | |
1632 | object->activity_in_progress != 0) { | |
1633 | /* | |
1634 | * There are still some paging_in_progress references | |
1635 | * on this object, meaning that there are some paging | |
1636 | * or other I/O operations in progress for this VM object. | |
1637 | * Such operations take some paging_in_progress references | |
1638 | * up front to ensure that the object doesn't go away, but | |
1639 | * they may also need to acquire a reference on the VM object, | |
1640 | * to map it in kernel space, for example. That means that | |
1641 | * they may end up releasing the last reference on the VM | |
1642 | * object, triggering its termination, while still holding | |
1643 | * paging_in_progress references. Waiting for these | |
1644 | * pending paging_in_progress references to go away here would | |
1645 | * deadlock. | |
1646 | * | |
1647 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1648 | * complete the VM object termination if it still holds | |
1649 | * paging_in_progress references at this point. | |
1650 | * | |
1651 | * No new paging_in_progress should appear now that the | |
1652 | * VM object is "terminating" and not "alive". | |
1653 | */ | |
1654 | vm_object_reap_async(object); | |
1655 | vm_object_unlock(object); | |
1656 | /* | |
1657 | * Return KERN_FAILURE to let the caller know that we | |
1658 | * haven't completed the termination and it can't drop this | |
1659 | * object's reference on its shadow object yet. | |
1660 | * The reaper thread will take care of that once it has | |
1661 | * completed this object's termination. | |
1662 | */ | |
1663 | return KERN_FAILURE; | |
1664 | } | |
1665 | /* | |
1666 | * complete the VM object termination | |
1667 | */ | |
1668 | vm_object_reap(object); | |
1669 | object = VM_OBJECT_NULL; | |
1670 | ||
1671 | /* | |
1672 | * the object lock was released by vm_object_reap() | |
1673 | * | |
1674 | * KERN_SUCCESS means that this object has been terminated | |
1675 | * and no longer needs its shadow object but still holds a | |
1676 | * reference on it. | |
1677 | * The caller is responsible for dropping that reference. | |
1678 | * We can't call vm_object_deallocate() here because that | |
1679 | * would create a recursion. | |
1680 | */ | |
1681 | return KERN_SUCCESS; | |
1682 | } | |
1683 | ||
1684 | ||
1685 | /* | |
1686 | * vm_object_reap(): | |
1687 | * | |
1688 | * Complete the termination of a VM object after it's been marked | |
1689 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1690 | * | |
1691 | * The VM object must be locked by caller. | |
1692 | * The lock will be released on return and the VM object is no longer valid. | |
1693 | */ | |
1694 | void | |
1695 | vm_object_reap( | |
1696 | vm_object_t object) | |
1697 | { | |
1698 | memory_object_t pager; | |
1699 | ||
1700 | vm_object_lock_assert_exclusive(object); | |
1701 | assert(object->paging_in_progress == 0); | |
1702 | assert(object->activity_in_progress == 0); | |
1703 | ||
1704 | vm_object_reap_count++; | |
1705 | ||
1706 | pager = object->pager; | |
1707 | object->pager = MEMORY_OBJECT_NULL; | |
1708 | ||
1709 | if (pager != MEMORY_OBJECT_NULL) | |
1710 | memory_object_control_disable(object->pager_control); | |
1711 | ||
1712 | object->ref_count--; | |
1713 | #if TASK_SWAPPER | |
1714 | assert(object->res_count == 0); | |
1715 | #endif /* TASK_SWAPPER */ | |
1716 | ||
1717 | assert (object->ref_count == 0); | |
1718 | ||
1719 | /* | |
1720 | * remove from purgeable queue if it's on | |
1721 | */ | |
1722 | if (object->internal && (object->objq.next || object->objq.prev)) { | |
1723 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
1724 | assert(queue); | |
1725 | ||
1726 | /* Must take page lock for this - using it to protect token queue */ | |
1727 | vm_page_lock_queues(); | |
1728 | vm_purgeable_token_delete_first(queue); | |
1729 | ||
1730 | assert(queue->debug_count_objects>=0); | |
1731 | vm_page_unlock_queues(); | |
1732 | } | |
1733 | ||
1734 | /* | |
1735 | * Clean or free the pages, as appropriate. | |
1736 | * It is possible for us to find busy/absent pages, | |
1737 | * if some faults on this object were aborted. | |
1738 | */ | |
1739 | if (object->pageout) { | |
1740 | assert(object->shadow != VM_OBJECT_NULL); | |
1741 | ||
1742 | vm_pageout_object_terminate(object); | |
1743 | ||
1744 | } else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) { | |
1745 | ||
1746 | vm_object_reap_pages(object, REAP_REAP); | |
1747 | } | |
1748 | assert(queue_empty(&object->memq)); | |
1749 | assert(object->paging_in_progress == 0); | |
1750 | assert(object->activity_in_progress == 0); | |
1751 | assert(object->ref_count == 0); | |
1752 | ||
1753 | /* | |
1754 | * If the pager has not already been released by | |
1755 | * vm_object_destroy, we need to terminate it and | |
1756 | * release our reference to it here. | |
1757 | */ | |
1758 | if (pager != MEMORY_OBJECT_NULL) { | |
1759 | vm_object_unlock(object); | |
1760 | vm_object_release_pager(pager, object->hashed); | |
1761 | vm_object_lock(object); | |
1762 | } | |
1763 | ||
1764 | /* kick off anyone waiting on terminating */ | |
1765 | object->terminating = FALSE; | |
1766 | vm_object_paging_begin(object); | |
1767 | vm_object_paging_end(object); | |
1768 | vm_object_unlock(object); | |
1769 | ||
1770 | #if MACH_PAGEMAP | |
1771 | vm_external_destroy(object->existence_map, object->vo_size); | |
1772 | #endif /* MACH_PAGEMAP */ | |
1773 | ||
1774 | object->shadow = VM_OBJECT_NULL; | |
1775 | ||
1776 | vm_object_lock_destroy(object); | |
1777 | /* | |
1778 | * Free the space for the object. | |
1779 | */ | |
1780 | zfree(vm_object_zone, object); | |
1781 | object = VM_OBJECT_NULL; | |
1782 | } | |
1783 | ||
1784 | ||
1785 | unsigned int vm_max_batch = 256; | |
1786 | ||
1787 | #define V_O_R_MAX_BATCH 128 | |
1788 | ||
1789 | #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch) | |
1790 | ||
1791 | ||
1792 | #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \ | |
1793 | MACRO_BEGIN \ | |
1794 | if (_local_free_q) { \ | |
1795 | if (do_disconnect) { \ | |
1796 | vm_page_t m; \ | |
1797 | for (m = _local_free_q; \ | |
1798 | m != VM_PAGE_NULL; \ | |
1799 | m = (vm_page_t) m->pageq.next) { \ | |
1800 | if (m->pmapped) { \ | |
1801 | pmap_disconnect(m->phys_page); \ | |
1802 | } \ | |
1803 | } \ | |
1804 | } \ | |
1805 | vm_page_free_list(_local_free_q, TRUE); \ | |
1806 | _local_free_q = VM_PAGE_NULL; \ | |
1807 | } \ | |
1808 | MACRO_END | |
1809 | ||
1810 | ||
1811 | void | |
1812 | vm_object_reap_pages( | |
1813 | vm_object_t object, | |
1814 | int reap_type) | |
1815 | { | |
1816 | vm_page_t p; | |
1817 | vm_page_t next; | |
1818 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1819 | int loop_count; | |
1820 | boolean_t disconnect_on_release; | |
1821 | ||
1822 | if (reap_type == REAP_DATA_FLUSH) { | |
1823 | /* | |
1824 | * We need to disconnect pages from all pmaps before | |
1825 | * releasing them to the free list | |
1826 | */ | |
1827 | disconnect_on_release = TRUE; | |
1828 | } else { | |
1829 | /* | |
1830 | * Either the caller has already disconnected the pages | |
1831 | * from all pmaps, or we disconnect them here as we add | |
1832 | * them to out local list of pages to be released. | |
1833 | * No need to re-disconnect them when we release the pages | |
1834 | * to the free list. | |
1835 | */ | |
1836 | disconnect_on_release = FALSE; | |
1837 | } | |
1838 | ||
1839 | restart_after_sleep: | |
1840 | if (queue_empty(&object->memq)) | |
1841 | return; | |
1842 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); | |
1843 | ||
1844 | vm_page_lockspin_queues(); | |
1845 | ||
1846 | next = (vm_page_t)queue_first(&object->memq); | |
1847 | ||
1848 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
1849 | ||
1850 | p = next; | |
1851 | next = (vm_page_t)queue_next(&next->listq); | |
1852 | ||
1853 | if (--loop_count == 0) { | |
1854 | ||
1855 | vm_page_unlock_queues(); | |
1856 | ||
1857 | if (local_free_q) { | |
1858 | /* | |
1859 | * Free the pages we reclaimed so far | |
1860 | * and take a little break to avoid | |
1861 | * hogging the page queue lock too long | |
1862 | */ | |
1863 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1864 | disconnect_on_release); | |
1865 | } else | |
1866 | mutex_pause(0); | |
1867 | ||
1868 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); | |
1869 | ||
1870 | vm_page_lockspin_queues(); | |
1871 | } | |
1872 | if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) { | |
1873 | ||
1874 | if (p->busy || p->cleaning) { | |
1875 | ||
1876 | vm_page_unlock_queues(); | |
1877 | /* | |
1878 | * free the pages reclaimed so far | |
1879 | */ | |
1880 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1881 | disconnect_on_release); | |
1882 | ||
1883 | PAGE_SLEEP(object, p, THREAD_UNINT); | |
1884 | ||
1885 | goto restart_after_sleep; | |
1886 | } | |
1887 | if (p->laundry) { | |
1888 | p->pageout = FALSE; | |
1889 | ||
1890 | vm_pageout_steal_laundry(p, TRUE); | |
1891 | } | |
1892 | } | |
1893 | switch (reap_type) { | |
1894 | ||
1895 | case REAP_DATA_FLUSH: | |
1896 | if (VM_PAGE_WIRED(p)) { | |
1897 | /* | |
1898 | * this is an odd case... perhaps we should | |
1899 | * zero-fill this page since we're conceptually | |
1900 | * tossing its data at this point, but leaving | |
1901 | * it on the object to honor the 'wire' contract | |
1902 | */ | |
1903 | continue; | |
1904 | } | |
1905 | break; | |
1906 | ||
1907 | case REAP_PURGEABLE: | |
1908 | if (VM_PAGE_WIRED(p)) { | |
1909 | /* | |
1910 | * can't purge a wired page | |
1911 | */ | |
1912 | vm_page_purged_wired++; | |
1913 | continue; | |
1914 | } | |
1915 | if (p->laundry && !p->busy && !p->cleaning) { | |
1916 | p->pageout = FALSE; | |
1917 | ||
1918 | vm_pageout_steal_laundry(p, TRUE); | |
1919 | } | |
1920 | if (p->cleaning || p->laundry) { | |
1921 | /* | |
1922 | * page is being acted upon, | |
1923 | * so don't mess with it | |
1924 | */ | |
1925 | vm_page_purged_others++; | |
1926 | continue; | |
1927 | } | |
1928 | if (p->busy) { | |
1929 | /* | |
1930 | * We can't reclaim a busy page but we can | |
1931 | * make it more likely to be paged (it's not wired) to make | |
1932 | * sure that it gets considered by | |
1933 | * vm_pageout_scan() later. | |
1934 | */ | |
1935 | vm_page_deactivate(p); | |
1936 | vm_page_purged_busy++; | |
1937 | continue; | |
1938 | } | |
1939 | ||
1940 | assert(p->object != kernel_object); | |
1941 | ||
1942 | /* | |
1943 | * we can discard this page... | |
1944 | */ | |
1945 | if (p->pmapped == TRUE) { | |
1946 | int refmod_state; | |
1947 | /* | |
1948 | * unmap the page | |
1949 | */ | |
1950 | refmod_state = pmap_disconnect(p->phys_page); | |
1951 | if (refmod_state & VM_MEM_MODIFIED) { | |
1952 | SET_PAGE_DIRTY(p, FALSE); | |
1953 | } | |
1954 | } | |
1955 | if (p->dirty || p->precious) { | |
1956 | /* | |
1957 | * we saved the cost of cleaning this page ! | |
1958 | */ | |
1959 | vm_page_purged_count++; | |
1960 | } | |
1961 | ||
1962 | break; | |
1963 | ||
1964 | case REAP_TERMINATE: | |
1965 | if (p->absent || p->private) { | |
1966 | /* | |
1967 | * For private pages, VM_PAGE_FREE just | |
1968 | * leaves the page structure around for | |
1969 | * its owner to clean up. For absent | |
1970 | * pages, the structure is returned to | |
1971 | * the appropriate pool. | |
1972 | */ | |
1973 | break; | |
1974 | } | |
1975 | if (p->fictitious) { | |
1976 | assert (p->phys_page == vm_page_guard_addr); | |
1977 | break; | |
1978 | } | |
1979 | if (!p->dirty && p->wpmapped) | |
1980 | p->dirty = pmap_is_modified(p->phys_page); | |
1981 | ||
1982 | if ((p->dirty || p->precious) && !p->error && object->alive) { | |
1983 | ||
1984 | if (!p->laundry) { | |
1985 | VM_PAGE_QUEUES_REMOVE(p); | |
1986 | /* | |
1987 | * flush page... page will be freed | |
1988 | * upon completion of I/O | |
1989 | */ | |
1990 | vm_pageout_cluster(p, TRUE); | |
1991 | } | |
1992 | vm_page_unlock_queues(); | |
1993 | /* | |
1994 | * free the pages reclaimed so far | |
1995 | */ | |
1996 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1997 | disconnect_on_release); | |
1998 | ||
1999 | vm_object_paging_wait(object, THREAD_UNINT); | |
2000 | ||
2001 | goto restart_after_sleep; | |
2002 | } | |
2003 | break; | |
2004 | ||
2005 | case REAP_REAP: | |
2006 | break; | |
2007 | } | |
2008 | vm_page_free_prepare_queues(p); | |
2009 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
2010 | /* | |
2011 | * Add this page to our list of reclaimed pages, | |
2012 | * to be freed later. | |
2013 | */ | |
2014 | p->pageq.next = (queue_entry_t) local_free_q; | |
2015 | local_free_q = p; | |
2016 | } | |
2017 | vm_page_unlock_queues(); | |
2018 | ||
2019 | /* | |
2020 | * Free the remaining reclaimed pages | |
2021 | */ | |
2022 | VM_OBJ_REAP_FREELIST(local_free_q, | |
2023 | disconnect_on_release); | |
2024 | } | |
2025 | ||
2026 | ||
2027 | void | |
2028 | vm_object_reap_async( | |
2029 | vm_object_t object) | |
2030 | { | |
2031 | vm_object_lock_assert_exclusive(object); | |
2032 | ||
2033 | vm_object_reaper_lock_spin(); | |
2034 | ||
2035 | vm_object_reap_count_async++; | |
2036 | ||
2037 | /* enqueue the VM object... */ | |
2038 | queue_enter(&vm_object_reaper_queue, object, | |
2039 | vm_object_t, cached_list); | |
2040 | ||
2041 | vm_object_reaper_unlock(); | |
2042 | ||
2043 | /* ... and wake up the reaper thread */ | |
2044 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
2045 | } | |
2046 | ||
2047 | ||
2048 | void | |
2049 | vm_object_reaper_thread(void) | |
2050 | { | |
2051 | vm_object_t object, shadow_object; | |
2052 | ||
2053 | vm_object_reaper_lock_spin(); | |
2054 | ||
2055 | while (!queue_empty(&vm_object_reaper_queue)) { | |
2056 | queue_remove_first(&vm_object_reaper_queue, | |
2057 | object, | |
2058 | vm_object_t, | |
2059 | cached_list); | |
2060 | ||
2061 | vm_object_reaper_unlock(); | |
2062 | vm_object_lock(object); | |
2063 | ||
2064 | assert(object->terminating); | |
2065 | assert(!object->alive); | |
2066 | ||
2067 | /* | |
2068 | * The pageout daemon might be playing with our pages. | |
2069 | * Now that the object is dead, it won't touch any more | |
2070 | * pages, but some pages might already be on their way out. | |
2071 | * Hence, we wait until the active paging activities have | |
2072 | * ceased before we break the association with the pager | |
2073 | * itself. | |
2074 | */ | |
2075 | while (object->paging_in_progress != 0 || | |
2076 | object->activity_in_progress != 0) { | |
2077 | vm_object_wait(object, | |
2078 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
2079 | THREAD_UNINT); | |
2080 | vm_object_lock(object); | |
2081 | } | |
2082 | ||
2083 | shadow_object = | |
2084 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
2085 | ||
2086 | vm_object_reap(object); | |
2087 | /* cache is unlocked and object is no longer valid */ | |
2088 | object = VM_OBJECT_NULL; | |
2089 | ||
2090 | if (shadow_object != VM_OBJECT_NULL) { | |
2091 | /* | |
2092 | * Drop the reference "object" was holding on | |
2093 | * its shadow object. | |
2094 | */ | |
2095 | vm_object_deallocate(shadow_object); | |
2096 | shadow_object = VM_OBJECT_NULL; | |
2097 | } | |
2098 | vm_object_reaper_lock_spin(); | |
2099 | } | |
2100 | ||
2101 | /* wait for more work... */ | |
2102 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
2103 | ||
2104 | vm_object_reaper_unlock(); | |
2105 | ||
2106 | thread_block((thread_continue_t) vm_object_reaper_thread); | |
2107 | /*NOTREACHED*/ | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | * Routine: vm_object_pager_wakeup | |
2112 | * Purpose: Wake up anyone waiting for termination of a pager. | |
2113 | */ | |
2114 | ||
2115 | static void | |
2116 | vm_object_pager_wakeup( | |
2117 | memory_object_t pager) | |
2118 | { | |
2119 | vm_object_hash_entry_t entry; | |
2120 | boolean_t waiting = FALSE; | |
2121 | lck_mtx_t *lck; | |
2122 | ||
2123 | /* | |
2124 | * If anyone was waiting for the memory_object_terminate | |
2125 | * to be queued, wake them up now. | |
2126 | */ | |
2127 | lck = vm_object_hash_lock_spin(pager); | |
2128 | entry = vm_object_hash_lookup(pager, TRUE); | |
2129 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
2130 | waiting = entry->waiting; | |
2131 | vm_object_hash_unlock(lck); | |
2132 | ||
2133 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
2134 | if (waiting) | |
2135 | thread_wakeup((event_t) pager); | |
2136 | vm_object_hash_entry_free(entry); | |
2137 | } | |
2138 | } | |
2139 | ||
2140 | /* | |
2141 | * Routine: vm_object_release_pager | |
2142 | * Purpose: Terminate the pager and, upon completion, | |
2143 | * release our last reference to it. | |
2144 | * just like memory_object_terminate, except | |
2145 | * that we wake up anyone blocked in vm_object_enter | |
2146 | * waiting for termination message to be queued | |
2147 | * before calling memory_object_init. | |
2148 | */ | |
2149 | static void | |
2150 | vm_object_release_pager( | |
2151 | memory_object_t pager, | |
2152 | boolean_t hashed) | |
2153 | { | |
2154 | ||
2155 | /* | |
2156 | * Terminate the pager. | |
2157 | */ | |
2158 | ||
2159 | (void) memory_object_terminate(pager); | |
2160 | ||
2161 | if (hashed == TRUE) { | |
2162 | /* | |
2163 | * Wakeup anyone waiting for this terminate | |
2164 | * and remove the entry from the hash | |
2165 | */ | |
2166 | vm_object_pager_wakeup(pager); | |
2167 | } | |
2168 | /* | |
2169 | * Release reference to pager. | |
2170 | */ | |
2171 | memory_object_deallocate(pager); | |
2172 | } | |
2173 | ||
2174 | /* | |
2175 | * Routine: vm_object_destroy | |
2176 | * Purpose: | |
2177 | * Shut down a VM object, despite the | |
2178 | * presence of address map (or other) references | |
2179 | * to the vm_object. | |
2180 | */ | |
2181 | kern_return_t | |
2182 | vm_object_destroy( | |
2183 | vm_object_t object, | |
2184 | __unused kern_return_t reason) | |
2185 | { | |
2186 | memory_object_t old_pager; | |
2187 | ||
2188 | if (object == VM_OBJECT_NULL) | |
2189 | return(KERN_SUCCESS); | |
2190 | ||
2191 | /* | |
2192 | * Remove the pager association immediately. | |
2193 | * | |
2194 | * This will prevent the memory manager from further | |
2195 | * meddling. [If it wanted to flush data or make | |
2196 | * other changes, it should have done so before performing | |
2197 | * the destroy call.] | |
2198 | */ | |
2199 | ||
2200 | vm_object_lock(object); | |
2201 | object->can_persist = FALSE; | |
2202 | object->named = FALSE; | |
2203 | object->alive = FALSE; | |
2204 | ||
2205 | if (object->hashed) { | |
2206 | lck_mtx_t *lck; | |
2207 | /* | |
2208 | * Rip out the pager from the vm_object now... | |
2209 | */ | |
2210 | lck = vm_object_hash_lock_spin(object->pager); | |
2211 | vm_object_remove(object); | |
2212 | vm_object_hash_unlock(lck); | |
2213 | } | |
2214 | old_pager = object->pager; | |
2215 | object->pager = MEMORY_OBJECT_NULL; | |
2216 | if (old_pager != MEMORY_OBJECT_NULL) | |
2217 | memory_object_control_disable(object->pager_control); | |
2218 | ||
2219 | /* | |
2220 | * Wait for the existing paging activity (that got | |
2221 | * through before we nulled out the pager) to subside. | |
2222 | */ | |
2223 | ||
2224 | vm_object_paging_wait(object, THREAD_UNINT); | |
2225 | vm_object_unlock(object); | |
2226 | ||
2227 | /* | |
2228 | * Terminate the object now. | |
2229 | */ | |
2230 | if (old_pager != MEMORY_OBJECT_NULL) { | |
2231 | vm_object_release_pager(old_pager, object->hashed); | |
2232 | ||
2233 | /* | |
2234 | * JMM - Release the caller's reference. This assumes the | |
2235 | * caller had a reference to release, which is a big (but | |
2236 | * currently valid) assumption if this is driven from the | |
2237 | * vnode pager (it is holding a named reference when making | |
2238 | * this call).. | |
2239 | */ | |
2240 | vm_object_deallocate(object); | |
2241 | ||
2242 | } | |
2243 | return(KERN_SUCCESS); | |
2244 | } | |
2245 | ||
2246 | ||
2247 | #if VM_OBJECT_CACHE | |
2248 | ||
2249 | #define VM_OBJ_DEACT_ALL_STATS DEBUG | |
2250 | #if VM_OBJ_DEACT_ALL_STATS | |
2251 | uint32_t vm_object_deactivate_all_pages_batches = 0; | |
2252 | uint32_t vm_object_deactivate_all_pages_pages = 0; | |
2253 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2254 | /* | |
2255 | * vm_object_deactivate_all_pages | |
2256 | * | |
2257 | * Deactivate all pages in the specified object. (Keep its pages | |
2258 | * in memory even though it is no longer referenced.) | |
2259 | * | |
2260 | * The object must be locked. | |
2261 | */ | |
2262 | static void | |
2263 | vm_object_deactivate_all_pages( | |
2264 | register vm_object_t object) | |
2265 | { | |
2266 | register vm_page_t p; | |
2267 | int loop_count; | |
2268 | #if VM_OBJ_DEACT_ALL_STATS | |
2269 | int pages_count; | |
2270 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2271 | #define V_O_D_A_P_MAX_BATCH 256 | |
2272 | ||
2273 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); | |
2274 | #if VM_OBJ_DEACT_ALL_STATS | |
2275 | pages_count = 0; | |
2276 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2277 | vm_page_lock_queues(); | |
2278 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2279 | if (--loop_count == 0) { | |
2280 | #if VM_OBJ_DEACT_ALL_STATS | |
2281 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, | |
2282 | 1); | |
2283 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2284 | pages_count); | |
2285 | pages_count = 0; | |
2286 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2287 | lck_mtx_yield(&vm_page_queue_lock); | |
2288 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); | |
2289 | } | |
2290 | if (!p->busy && !p->throttled) { | |
2291 | #if VM_OBJ_DEACT_ALL_STATS | |
2292 | pages_count++; | |
2293 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2294 | vm_page_deactivate(p); | |
2295 | } | |
2296 | } | |
2297 | #if VM_OBJ_DEACT_ALL_STATS | |
2298 | if (pages_count) { | |
2299 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1); | |
2300 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2301 | pages_count); | |
2302 | pages_count = 0; | |
2303 | } | |
2304 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2305 | vm_page_unlock_queues(); | |
2306 | } | |
2307 | #endif /* VM_OBJECT_CACHE */ | |
2308 | ||
2309 | ||
2310 | ||
2311 | /* | |
2312 | * The "chunk" macros are used by routines below when looking for pages to deactivate. These | |
2313 | * exist because of the need to handle shadow chains. When deactivating pages, we only | |
2314 | * want to deactive the ones at the top most level in the object chain. In order to do | |
2315 | * this efficiently, the specified address range is divided up into "chunks" and we use | |
2316 | * a bit map to keep track of which pages have already been processed as we descend down | |
2317 | * the shadow chain. These chunk macros hide the details of the bit map implementation | |
2318 | * as much as we can. | |
2319 | * | |
2320 | * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is | |
2321 | * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest | |
2322 | * order bit represents page 0 in the current range and highest order bit represents | |
2323 | * page 63. | |
2324 | * | |
2325 | * For further convenience, we also use negative logic for the page state in the bit map. | |
2326 | * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has | |
2327 | * been processed. This way we can simply test the 64-bit long word to see if it's zero | |
2328 | * to easily tell if the whole range has been processed. Therefore, the bit map starts | |
2329 | * out with all the bits set. The macros below hide all these details from the caller. | |
2330 | */ | |
2331 | ||
2332 | #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */ | |
2333 | /* be the same as the number of bits in */ | |
2334 | /* the chunk_state_t type. We use 64 */ | |
2335 | /* just for convenience. */ | |
2336 | ||
2337 | #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */ | |
2338 | ||
2339 | typedef uint64_t chunk_state_t; | |
2340 | ||
2341 | /* | |
2342 | * The bit map uses negative logic, so we start out with all 64 bits set to indicate | |
2343 | * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE, | |
2344 | * then we mark pages beyond the len as having been "processed" so that we don't waste time | |
2345 | * looking at pages in that range. This can save us from unnecessarily chasing down the | |
2346 | * shadow chain. | |
2347 | */ | |
2348 | ||
2349 | #define CHUNK_INIT(c, len) \ | |
2350 | MACRO_BEGIN \ | |
2351 | uint64_t p; \ | |
2352 | \ | |
2353 | (c) = 0xffffffffffffffffLL; \ | |
2354 | \ | |
2355 | for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \ | |
2356 | MARK_PAGE_HANDLED(c, p); \ | |
2357 | MACRO_END | |
2358 | ||
2359 | ||
2360 | /* | |
2361 | * Return true if all pages in the chunk have not yet been processed. | |
2362 | */ | |
2363 | ||
2364 | #define CHUNK_NOT_COMPLETE(c) ((c) != 0) | |
2365 | ||
2366 | /* | |
2367 | * Return true if the page at offset 'p' in the bit map has already been handled | |
2368 | * while processing a higher level object in the shadow chain. | |
2369 | */ | |
2370 | ||
2371 | #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0) | |
2372 | ||
2373 | /* | |
2374 | * Mark the page at offset 'p' in the bit map as having been processed. | |
2375 | */ | |
2376 | ||
2377 | #define MARK_PAGE_HANDLED(c, p) \ | |
2378 | MACRO_BEGIN \ | |
2379 | (c) = (c) & ~(1LL << (p)); \ | |
2380 | MACRO_END | |
2381 | ||
2382 | ||
2383 | /* | |
2384 | * Return true if the page at the given offset has been paged out. Object is | |
2385 | * locked upon entry and returned locked. | |
2386 | */ | |
2387 | ||
2388 | static boolean_t | |
2389 | page_is_paged_out( | |
2390 | vm_object_t object, | |
2391 | vm_object_offset_t offset) | |
2392 | { | |
2393 | kern_return_t kr; | |
2394 | memory_object_t pager; | |
2395 | ||
2396 | /* | |
2397 | * Check the existence map for the page if we have one, otherwise | |
2398 | * ask the pager about this page. | |
2399 | */ | |
2400 | ||
2401 | #if MACH_PAGEMAP | |
2402 | if (object->existence_map) { | |
2403 | if (vm_external_state_get(object->existence_map, offset) | |
2404 | == VM_EXTERNAL_STATE_EXISTS) { | |
2405 | /* | |
2406 | * We found the page | |
2407 | */ | |
2408 | ||
2409 | return TRUE; | |
2410 | } | |
2411 | } else | |
2412 | #endif | |
2413 | if (object->internal && | |
2414 | object->alive && | |
2415 | !object->terminating && | |
2416 | object->pager_ready) { | |
2417 | ||
2418 | /* | |
2419 | * We're already holding a "paging in progress" reference | |
2420 | * so the object can't disappear when we release the lock. | |
2421 | */ | |
2422 | ||
2423 | assert(object->paging_in_progress); | |
2424 | pager = object->pager; | |
2425 | vm_object_unlock(object); | |
2426 | ||
2427 | kr = memory_object_data_request( | |
2428 | pager, | |
2429 | offset + object->paging_offset, | |
2430 | 0, /* just poke the pager */ | |
2431 | VM_PROT_READ, | |
2432 | NULL); | |
2433 | ||
2434 | vm_object_lock(object); | |
2435 | ||
2436 | if (kr == KERN_SUCCESS) { | |
2437 | ||
2438 | /* | |
2439 | * We found the page | |
2440 | */ | |
2441 | ||
2442 | return TRUE; | |
2443 | } | |
2444 | } | |
2445 | ||
2446 | return FALSE; | |
2447 | } | |
2448 | ||
2449 | ||
2450 | ||
2451 | /* | |
2452 | * Deactivate the pages in the specified object and range. If kill_page is set, also discard any | |
2453 | * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify | |
2454 | * a size that is less than or equal to the CHUNK_SIZE. | |
2455 | */ | |
2456 | ||
2457 | static void | |
2458 | deactivate_pages_in_object( | |
2459 | vm_object_t object, | |
2460 | vm_object_offset_t offset, | |
2461 | vm_object_size_t size, | |
2462 | boolean_t kill_page, | |
2463 | boolean_t reusable_page, | |
2464 | #if !MACH_ASSERT | |
2465 | __unused | |
2466 | #endif | |
2467 | boolean_t all_reusable, | |
2468 | chunk_state_t *chunk_state) | |
2469 | { | |
2470 | vm_page_t m; | |
2471 | int p; | |
2472 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
2473 | struct vm_page_delayed_work *dwp; | |
2474 | int dw_count; | |
2475 | int dw_limit; | |
2476 | unsigned int reusable = 0; | |
2477 | ||
2478 | ||
2479 | /* | |
2480 | * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the | |
2481 | * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may | |
2482 | * have pages marked as having been processed already. We stop the loop early if we find we've handled | |
2483 | * all the pages in the chunk. | |
2484 | */ | |
2485 | ||
2486 | dwp = &dw_array[0]; | |
2487 | dw_count = 0; | |
2488 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
2489 | ||
2490 | for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) { | |
2491 | ||
2492 | /* | |
2493 | * If this offset has already been found and handled in a higher level object, then don't | |
2494 | * do anything with it in the current shadow object. | |
2495 | */ | |
2496 | ||
2497 | if (PAGE_ALREADY_HANDLED(*chunk_state, p)) | |
2498 | continue; | |
2499 | ||
2500 | /* | |
2501 | * See if the page at this offset is around. First check to see if the page is resident, | |
2502 | * then if not, check the existence map or with the pager. | |
2503 | */ | |
2504 | ||
2505 | if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
2506 | ||
2507 | /* | |
2508 | * We found a page we were looking for. Mark it as "handled" now in the chunk_state | |
2509 | * so that we won't bother looking for a page at this offset again if there are more | |
2510 | * shadow objects. Then deactivate the page. | |
2511 | */ | |
2512 | ||
2513 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2514 | ||
2515 | if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && (!m->laundry)) { | |
2516 | int clear_refmod; | |
2517 | ||
2518 | clear_refmod = VM_MEM_REFERENCED; | |
2519 | dwp->dw_mask = DW_clear_reference; | |
2520 | ||
2521 | if ((kill_page) && (object->internal)) { | |
2522 | m->precious = FALSE; | |
2523 | m->dirty = FALSE; | |
2524 | ||
2525 | clear_refmod |= VM_MEM_MODIFIED; | |
2526 | if (m->throttled) { | |
2527 | /* | |
2528 | * This page is now clean and | |
2529 | * reclaimable. Move it out | |
2530 | * of the throttled queue, so | |
2531 | * that vm_pageout_scan() can | |
2532 | * find it. | |
2533 | */ | |
2534 | dwp->dw_mask |= DW_move_page; | |
2535 | } | |
2536 | #if MACH_PAGEMAP | |
2537 | vm_external_state_clr(object->existence_map, offset); | |
2538 | #endif /* MACH_PAGEMAP */ | |
2539 | ||
2540 | if (reusable_page && !m->reusable) { | |
2541 | assert(!all_reusable); | |
2542 | assert(!object->all_reusable); | |
2543 | m->reusable = TRUE; | |
2544 | object->reusable_page_count++; | |
2545 | assert(object->resident_page_count >= object->reusable_page_count); | |
2546 | reusable++; | |
2547 | } | |
2548 | } | |
2549 | pmap_clear_refmod(m->phys_page, clear_refmod); | |
2550 | ||
2551 | if (!m->throttled && !(reusable_page || all_reusable)) | |
2552 | dwp->dw_mask |= DW_move_page; | |
2553 | ||
2554 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
2555 | ||
2556 | if (dw_count >= dw_limit) { | |
2557 | if (reusable) { | |
2558 | OSAddAtomic(reusable, | |
2559 | &vm_page_stats_reusable.reusable_count); | |
2560 | vm_page_stats_reusable.reusable += reusable; | |
2561 | reusable = 0; | |
2562 | } | |
2563 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
2564 | ||
2565 | dwp = &dw_array[0]; | |
2566 | dw_count = 0; | |
2567 | } | |
2568 | } | |
2569 | ||
2570 | } else { | |
2571 | ||
2572 | /* | |
2573 | * The page at this offset isn't memory resident, check to see if it's | |
2574 | * been paged out. If so, mark it as handled so we don't bother looking | |
2575 | * for it in the shadow chain. | |
2576 | */ | |
2577 | ||
2578 | if (page_is_paged_out(object, offset)) { | |
2579 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2580 | ||
2581 | /* | |
2582 | * If we're killing a non-resident page, then clear the page in the existence | |
2583 | * map so we don't bother paging it back in if it's touched again in the future. | |
2584 | */ | |
2585 | ||
2586 | if ((kill_page) && (object->internal)) { | |
2587 | #if MACH_PAGEMAP | |
2588 | vm_external_state_clr(object->existence_map, offset); | |
2589 | #endif /* MACH_PAGEMAP */ | |
2590 | } | |
2591 | } | |
2592 | } | |
2593 | } | |
2594 | ||
2595 | if (reusable) { | |
2596 | OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count); | |
2597 | vm_page_stats_reusable.reusable += reusable; | |
2598 | reusable = 0; | |
2599 | } | |
2600 | ||
2601 | if (dw_count) | |
2602 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
2603 | } | |
2604 | ||
2605 | ||
2606 | /* | |
2607 | * Deactive a "chunk" of the given range of the object starting at offset. A "chunk" | |
2608 | * will always be less than or equal to the given size. The total range is divided up | |
2609 | * into chunks for efficiency and performance related to the locks and handling the shadow | |
2610 | * chain. This routine returns how much of the given "size" it actually processed. It's | |
2611 | * up to the caler to loop and keep calling this routine until the entire range they want | |
2612 | * to process has been done. | |
2613 | */ | |
2614 | ||
2615 | static vm_object_size_t | |
2616 | deactivate_a_chunk( | |
2617 | vm_object_t orig_object, | |
2618 | vm_object_offset_t offset, | |
2619 | vm_object_size_t size, | |
2620 | boolean_t kill_page, | |
2621 | boolean_t reusable_page, | |
2622 | boolean_t all_reusable) | |
2623 | { | |
2624 | vm_object_t object; | |
2625 | vm_object_t tmp_object; | |
2626 | vm_object_size_t length; | |
2627 | chunk_state_t chunk_state; | |
2628 | ||
2629 | ||
2630 | /* | |
2631 | * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the | |
2632 | * remaining size the caller asked for. | |
2633 | */ | |
2634 | ||
2635 | length = MIN(size, CHUNK_SIZE); | |
2636 | ||
2637 | /* | |
2638 | * The chunk_state keeps track of which pages we've already processed if there's | |
2639 | * a shadow chain on this object. At this point, we haven't done anything with this | |
2640 | * range of pages yet, so initialize the state to indicate no pages processed yet. | |
2641 | */ | |
2642 | ||
2643 | CHUNK_INIT(chunk_state, length); | |
2644 | object = orig_object; | |
2645 | ||
2646 | /* | |
2647 | * Start at the top level object and iterate around the loop once for each object | |
2648 | * in the shadow chain. We stop processing early if we've already found all the pages | |
2649 | * in the range. Otherwise we stop when we run out of shadow objects. | |
2650 | */ | |
2651 | ||
2652 | while (object && CHUNK_NOT_COMPLETE(chunk_state)) { | |
2653 | vm_object_paging_begin(object); | |
2654 | ||
2655 | deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state); | |
2656 | ||
2657 | vm_object_paging_end(object); | |
2658 | ||
2659 | /* | |
2660 | * We've finished with this object, see if there's a shadow object. If | |
2661 | * there is, update the offset and lock the new object. We also turn off | |
2662 | * kill_page at this point since we only kill pages in the top most object. | |
2663 | */ | |
2664 | ||
2665 | tmp_object = object->shadow; | |
2666 | ||
2667 | if (tmp_object) { | |
2668 | kill_page = FALSE; | |
2669 | reusable_page = FALSE; | |
2670 | all_reusable = FALSE; | |
2671 | offset += object->vo_shadow_offset; | |
2672 | vm_object_lock(tmp_object); | |
2673 | } | |
2674 | ||
2675 | if (object != orig_object) | |
2676 | vm_object_unlock(object); | |
2677 | ||
2678 | object = tmp_object; | |
2679 | } | |
2680 | ||
2681 | if (object && object != orig_object) | |
2682 | vm_object_unlock(object); | |
2683 | ||
2684 | return length; | |
2685 | } | |
2686 | ||
2687 | ||
2688 | ||
2689 | /* | |
2690 | * Move any resident pages in the specified range to the inactive queue. If kill_page is set, | |
2691 | * we also clear the modified status of the page and "forget" any changes that have been made | |
2692 | * to the page. | |
2693 | */ | |
2694 | ||
2695 | __private_extern__ void | |
2696 | vm_object_deactivate_pages( | |
2697 | vm_object_t object, | |
2698 | vm_object_offset_t offset, | |
2699 | vm_object_size_t size, | |
2700 | boolean_t kill_page, | |
2701 | boolean_t reusable_page) | |
2702 | { | |
2703 | vm_object_size_t length; | |
2704 | boolean_t all_reusable; | |
2705 | ||
2706 | /* | |
2707 | * We break the range up into chunks and do one chunk at a time. This is for | |
2708 | * efficiency and performance while handling the shadow chains and the locks. | |
2709 | * The deactivate_a_chunk() function returns how much of the range it processed. | |
2710 | * We keep calling this routine until the given size is exhausted. | |
2711 | */ | |
2712 | ||
2713 | ||
2714 | all_reusable = FALSE; | |
2715 | if (reusable_page && | |
2716 | object->internal && | |
2717 | object->vo_size != 0 && | |
2718 | object->vo_size == size && | |
2719 | object->reusable_page_count == 0) { | |
2720 | all_reusable = TRUE; | |
2721 | reusable_page = FALSE; | |
2722 | } | |
2723 | ||
2724 | if ((reusable_page || all_reusable) && object->all_reusable) { | |
2725 | /* This means MADV_FREE_REUSABLE has been called twice, which | |
2726 | * is probably illegal. */ | |
2727 | return; | |
2728 | } | |
2729 | ||
2730 | while (size) { | |
2731 | length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable); | |
2732 | ||
2733 | size -= length; | |
2734 | offset += length; | |
2735 | } | |
2736 | ||
2737 | if (all_reusable) { | |
2738 | if (!object->all_reusable) { | |
2739 | unsigned int reusable; | |
2740 | ||
2741 | object->all_reusable = TRUE; | |
2742 | assert(object->reusable_page_count == 0); | |
2743 | /* update global stats */ | |
2744 | reusable = object->resident_page_count; | |
2745 | OSAddAtomic(reusable, | |
2746 | &vm_page_stats_reusable.reusable_count); | |
2747 | vm_page_stats_reusable.reusable += reusable; | |
2748 | vm_page_stats_reusable.all_reusable_calls++; | |
2749 | } | |
2750 | } else if (reusable_page) { | |
2751 | vm_page_stats_reusable.partial_reusable_calls++; | |
2752 | } | |
2753 | } | |
2754 | ||
2755 | void | |
2756 | vm_object_reuse_pages( | |
2757 | vm_object_t object, | |
2758 | vm_object_offset_t start_offset, | |
2759 | vm_object_offset_t end_offset, | |
2760 | boolean_t allow_partial_reuse) | |
2761 | { | |
2762 | vm_object_offset_t cur_offset; | |
2763 | vm_page_t m; | |
2764 | unsigned int reused, reusable; | |
2765 | ||
2766 | #define VM_OBJECT_REUSE_PAGE(object, m, reused) \ | |
2767 | MACRO_BEGIN \ | |
2768 | if ((m) != VM_PAGE_NULL && \ | |
2769 | (m)->reusable) { \ | |
2770 | assert((object)->reusable_page_count <= \ | |
2771 | (object)->resident_page_count); \ | |
2772 | assert((object)->reusable_page_count > 0); \ | |
2773 | (object)->reusable_page_count--; \ | |
2774 | (m)->reusable = FALSE; \ | |
2775 | (reused)++; \ | |
2776 | } \ | |
2777 | MACRO_END | |
2778 | ||
2779 | reused = 0; | |
2780 | reusable = 0; | |
2781 | ||
2782 | vm_object_lock_assert_exclusive(object); | |
2783 | ||
2784 | if (object->all_reusable) { | |
2785 | assert(object->reusable_page_count == 0); | |
2786 | object->all_reusable = FALSE; | |
2787 | if (end_offset - start_offset == object->vo_size || | |
2788 | !allow_partial_reuse) { | |
2789 | vm_page_stats_reusable.all_reuse_calls++; | |
2790 | reused = object->resident_page_count; | |
2791 | } else { | |
2792 | vm_page_stats_reusable.partial_reuse_calls++; | |
2793 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2794 | if (m->offset < start_offset || | |
2795 | m->offset >= end_offset) { | |
2796 | m->reusable = TRUE; | |
2797 | object->reusable_page_count++; | |
2798 | assert(object->resident_page_count >= object->reusable_page_count); | |
2799 | continue; | |
2800 | } else { | |
2801 | assert(!m->reusable); | |
2802 | reused++; | |
2803 | } | |
2804 | } | |
2805 | } | |
2806 | } else if (object->resident_page_count > | |
2807 | ((end_offset - start_offset) >> PAGE_SHIFT)) { | |
2808 | vm_page_stats_reusable.partial_reuse_calls++; | |
2809 | for (cur_offset = start_offset; | |
2810 | cur_offset < end_offset; | |
2811 | cur_offset += PAGE_SIZE_64) { | |
2812 | if (object->reusable_page_count == 0) { | |
2813 | break; | |
2814 | } | |
2815 | m = vm_page_lookup(object, cur_offset); | |
2816 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2817 | } | |
2818 | } else { | |
2819 | vm_page_stats_reusable.partial_reuse_calls++; | |
2820 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2821 | if (object->reusable_page_count == 0) { | |
2822 | break; | |
2823 | } | |
2824 | if (m->offset < start_offset || | |
2825 | m->offset >= end_offset) { | |
2826 | continue; | |
2827 | } | |
2828 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2829 | } | |
2830 | } | |
2831 | ||
2832 | /* update global stats */ | |
2833 | OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count); | |
2834 | vm_page_stats_reusable.reused += reused; | |
2835 | vm_page_stats_reusable.reusable += reusable; | |
2836 | } | |
2837 | ||
2838 | /* | |
2839 | * Routine: vm_object_pmap_protect | |
2840 | * | |
2841 | * Purpose: | |
2842 | * Reduces the permission for all physical | |
2843 | * pages in the specified object range. | |
2844 | * | |
2845 | * If removing write permission only, it is | |
2846 | * sufficient to protect only the pages in | |
2847 | * the top-level object; only those pages may | |
2848 | * have write permission. | |
2849 | * | |
2850 | * If removing all access, we must follow the | |
2851 | * shadow chain from the top-level object to | |
2852 | * remove access to all pages in shadowed objects. | |
2853 | * | |
2854 | * The object must *not* be locked. The object must | |
2855 | * be temporary/internal. | |
2856 | * | |
2857 | * If pmap is not NULL, this routine assumes that | |
2858 | * the only mappings for the pages are in that | |
2859 | * pmap. | |
2860 | */ | |
2861 | ||
2862 | __private_extern__ void | |
2863 | vm_object_pmap_protect( | |
2864 | register vm_object_t object, | |
2865 | register vm_object_offset_t offset, | |
2866 | vm_object_size_t size, | |
2867 | pmap_t pmap, | |
2868 | vm_map_offset_t pmap_start, | |
2869 | vm_prot_t prot) | |
2870 | { | |
2871 | if (object == VM_OBJECT_NULL) | |
2872 | return; | |
2873 | size = vm_object_round_page(size); | |
2874 | offset = vm_object_trunc_page(offset); | |
2875 | ||
2876 | vm_object_lock(object); | |
2877 | ||
2878 | if (object->phys_contiguous) { | |
2879 | if (pmap != NULL) { | |
2880 | vm_object_unlock(object); | |
2881 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
2882 | } else { | |
2883 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
2884 | ||
2885 | phys_start = object->vo_shadow_offset + offset; | |
2886 | phys_end = phys_start + size; | |
2887 | assert(phys_start <= phys_end); | |
2888 | assert(phys_end <= object->vo_shadow_offset + object->vo_size); | |
2889 | vm_object_unlock(object); | |
2890 | ||
2891 | for (phys_addr = phys_start; | |
2892 | phys_addr < phys_end; | |
2893 | phys_addr += PAGE_SIZE_64) { | |
2894 | pmap_page_protect((ppnum_t) (phys_addr >> PAGE_SHIFT), prot); | |
2895 | } | |
2896 | } | |
2897 | return; | |
2898 | } | |
2899 | ||
2900 | assert(object->internal); | |
2901 | ||
2902 | while (TRUE) { | |
2903 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { | |
2904 | vm_object_unlock(object); | |
2905 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
2906 | return; | |
2907 | } | |
2908 | ||
2909 | /* if we are doing large ranges with respect to resident */ | |
2910 | /* page count then we should interate over pages otherwise */ | |
2911 | /* inverse page look-up will be faster */ | |
2912 | if (ptoa_64(object->resident_page_count / 4) < size) { | |
2913 | vm_page_t p; | |
2914 | vm_object_offset_t end; | |
2915 | ||
2916 | end = offset + size; | |
2917 | ||
2918 | if (pmap != PMAP_NULL) { | |
2919 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2920 | if (!p->fictitious && | |
2921 | (offset <= p->offset) && (p->offset < end)) { | |
2922 | vm_map_offset_t start; | |
2923 | ||
2924 | start = pmap_start + p->offset - offset; | |
2925 | pmap_protect(pmap, start, start + PAGE_SIZE_64, prot); | |
2926 | } | |
2927 | } | |
2928 | } else { | |
2929 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2930 | if (!p->fictitious && | |
2931 | (offset <= p->offset) && (p->offset < end)) { | |
2932 | ||
2933 | pmap_page_protect(p->phys_page, prot); | |
2934 | } | |
2935 | } | |
2936 | } | |
2937 | } else { | |
2938 | vm_page_t p; | |
2939 | vm_object_offset_t end; | |
2940 | vm_object_offset_t target_off; | |
2941 | ||
2942 | end = offset + size; | |
2943 | ||
2944 | if (pmap != PMAP_NULL) { | |
2945 | for(target_off = offset; | |
2946 | target_off < end; | |
2947 | target_off += PAGE_SIZE) { | |
2948 | p = vm_page_lookup(object, target_off); | |
2949 | if (p != VM_PAGE_NULL) { | |
2950 | vm_object_offset_t start; | |
2951 | start = pmap_start + | |
2952 | (p->offset - offset); | |
2953 | pmap_protect(pmap, start, | |
2954 | start + PAGE_SIZE, prot); | |
2955 | } | |
2956 | } | |
2957 | } else { | |
2958 | for(target_off = offset; | |
2959 | target_off < end; target_off += PAGE_SIZE) { | |
2960 | p = vm_page_lookup(object, target_off); | |
2961 | if (p != VM_PAGE_NULL) { | |
2962 | pmap_page_protect(p->phys_page, prot); | |
2963 | } | |
2964 | } | |
2965 | } | |
2966 | } | |
2967 | ||
2968 | if (prot == VM_PROT_NONE) { | |
2969 | /* | |
2970 | * Must follow shadow chain to remove access | |
2971 | * to pages in shadowed objects. | |
2972 | */ | |
2973 | register vm_object_t next_object; | |
2974 | ||
2975 | next_object = object->shadow; | |
2976 | if (next_object != VM_OBJECT_NULL) { | |
2977 | offset += object->vo_shadow_offset; | |
2978 | vm_object_lock(next_object); | |
2979 | vm_object_unlock(object); | |
2980 | object = next_object; | |
2981 | } | |
2982 | else { | |
2983 | /* | |
2984 | * End of chain - we are done. | |
2985 | */ | |
2986 | break; | |
2987 | } | |
2988 | } | |
2989 | else { | |
2990 | /* | |
2991 | * Pages in shadowed objects may never have | |
2992 | * write permission - we may stop here. | |
2993 | */ | |
2994 | break; | |
2995 | } | |
2996 | } | |
2997 | ||
2998 | vm_object_unlock(object); | |
2999 | } | |
3000 | ||
3001 | /* | |
3002 | * Routine: vm_object_copy_slowly | |
3003 | * | |
3004 | * Description: | |
3005 | * Copy the specified range of the source | |
3006 | * virtual memory object without using | |
3007 | * protection-based optimizations (such | |
3008 | * as copy-on-write). The pages in the | |
3009 | * region are actually copied. | |
3010 | * | |
3011 | * In/out conditions: | |
3012 | * The caller must hold a reference and a lock | |
3013 | * for the source virtual memory object. The source | |
3014 | * object will be returned *unlocked*. | |
3015 | * | |
3016 | * Results: | |
3017 | * If the copy is completed successfully, KERN_SUCCESS is | |
3018 | * returned. If the caller asserted the interruptible | |
3019 | * argument, and an interruption occurred while waiting | |
3020 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
3021 | * returned. Other values may be returned to indicate | |
3022 | * hard errors during the copy operation. | |
3023 | * | |
3024 | * A new virtual memory object is returned in a | |
3025 | * parameter (_result_object). The contents of this | |
3026 | * new object, starting at a zero offset, are a copy | |
3027 | * of the source memory region. In the event of | |
3028 | * an error, this parameter will contain the value | |
3029 | * VM_OBJECT_NULL. | |
3030 | */ | |
3031 | __private_extern__ kern_return_t | |
3032 | vm_object_copy_slowly( | |
3033 | register vm_object_t src_object, | |
3034 | vm_object_offset_t src_offset, | |
3035 | vm_object_size_t size, | |
3036 | boolean_t interruptible, | |
3037 | vm_object_t *_result_object) /* OUT */ | |
3038 | { | |
3039 | vm_object_t new_object; | |
3040 | vm_object_offset_t new_offset; | |
3041 | ||
3042 | struct vm_object_fault_info fault_info; | |
3043 | ||
3044 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
3045 | src_object, src_offset, size, 0, 0); | |
3046 | ||
3047 | if (size == 0) { | |
3048 | vm_object_unlock(src_object); | |
3049 | *_result_object = VM_OBJECT_NULL; | |
3050 | return(KERN_INVALID_ARGUMENT); | |
3051 | } | |
3052 | ||
3053 | /* | |
3054 | * Prevent destruction of the source object while we copy. | |
3055 | */ | |
3056 | ||
3057 | vm_object_reference_locked(src_object); | |
3058 | vm_object_unlock(src_object); | |
3059 | ||
3060 | /* | |
3061 | * Create a new object to hold the copied pages. | |
3062 | * A few notes: | |
3063 | * We fill the new object starting at offset 0, | |
3064 | * regardless of the input offset. | |
3065 | * We don't bother to lock the new object within | |
3066 | * this routine, since we have the only reference. | |
3067 | */ | |
3068 | ||
3069 | new_object = vm_object_allocate(size); | |
3070 | new_offset = 0; | |
3071 | ||
3072 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
3073 | ||
3074 | fault_info.interruptible = interruptible; | |
3075 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3076 | fault_info.user_tag = 0; | |
3077 | fault_info.lo_offset = src_offset; | |
3078 | fault_info.hi_offset = src_offset + size; | |
3079 | fault_info.no_cache = FALSE; | |
3080 | fault_info.stealth = TRUE; | |
3081 | fault_info.io_sync = FALSE; | |
3082 | fault_info.cs_bypass = FALSE; | |
3083 | fault_info.mark_zf_absent = FALSE; | |
3084 | fault_info.batch_pmap_op = FALSE; | |
3085 | ||
3086 | for ( ; | |
3087 | size != 0 ; | |
3088 | src_offset += PAGE_SIZE_64, | |
3089 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
3090 | ) { | |
3091 | vm_page_t new_page; | |
3092 | vm_fault_return_t result; | |
3093 | ||
3094 | vm_object_lock(new_object); | |
3095 | ||
3096 | while ((new_page = vm_page_alloc(new_object, new_offset)) | |
3097 | == VM_PAGE_NULL) { | |
3098 | ||
3099 | vm_object_unlock(new_object); | |
3100 | ||
3101 | if (!vm_page_wait(interruptible)) { | |
3102 | vm_object_deallocate(new_object); | |
3103 | vm_object_deallocate(src_object); | |
3104 | *_result_object = VM_OBJECT_NULL; | |
3105 | return(MACH_SEND_INTERRUPTED); | |
3106 | } | |
3107 | vm_object_lock(new_object); | |
3108 | } | |
3109 | vm_object_unlock(new_object); | |
3110 | ||
3111 | do { | |
3112 | vm_prot_t prot = VM_PROT_READ; | |
3113 | vm_page_t _result_page; | |
3114 | vm_page_t top_page; | |
3115 | register | |
3116 | vm_page_t result_page; | |
3117 | kern_return_t error_code; | |
3118 | ||
3119 | vm_object_lock(src_object); | |
3120 | vm_object_paging_begin(src_object); | |
3121 | ||
3122 | if (size > (vm_size_t) -1) { | |
3123 | /* 32-bit overflow */ | |
3124 | fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
3125 | } else { | |
3126 | fault_info.cluster_size = (vm_size_t) size; | |
3127 | assert(fault_info.cluster_size == size); | |
3128 | } | |
3129 | ||
3130 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); | |
3131 | result = vm_fault_page(src_object, src_offset, | |
3132 | VM_PROT_READ, FALSE, | |
3133 | &prot, &_result_page, &top_page, | |
3134 | (int *)0, | |
3135 | &error_code, FALSE, FALSE, &fault_info); | |
3136 | ||
3137 | switch(result) { | |
3138 | case VM_FAULT_SUCCESS: | |
3139 | result_page = _result_page; | |
3140 | ||
3141 | /* | |
3142 | * Copy the page to the new object. | |
3143 | * | |
3144 | * POLICY DECISION: | |
3145 | * If result_page is clean, | |
3146 | * we could steal it instead | |
3147 | * of copying. | |
3148 | */ | |
3149 | ||
3150 | vm_page_copy(result_page, new_page); | |
3151 | vm_object_unlock(result_page->object); | |
3152 | ||
3153 | /* | |
3154 | * Let go of both pages (make them | |
3155 | * not busy, perform wakeup, activate). | |
3156 | */ | |
3157 | vm_object_lock(new_object); | |
3158 | SET_PAGE_DIRTY(new_page, FALSE); | |
3159 | PAGE_WAKEUP_DONE(new_page); | |
3160 | vm_object_unlock(new_object); | |
3161 | ||
3162 | vm_object_lock(result_page->object); | |
3163 | PAGE_WAKEUP_DONE(result_page); | |
3164 | ||
3165 | vm_page_lockspin_queues(); | |
3166 | if (!result_page->active && | |
3167 | !result_page->inactive && | |
3168 | !result_page->throttled) | |
3169 | vm_page_activate(result_page); | |
3170 | vm_page_activate(new_page); | |
3171 | vm_page_unlock_queues(); | |
3172 | ||
3173 | /* | |
3174 | * Release paging references and | |
3175 | * top-level placeholder page, if any. | |
3176 | */ | |
3177 | ||
3178 | vm_fault_cleanup(result_page->object, | |
3179 | top_page); | |
3180 | ||
3181 | break; | |
3182 | ||
3183 | case VM_FAULT_RETRY: | |
3184 | break; | |
3185 | ||
3186 | case VM_FAULT_MEMORY_SHORTAGE: | |
3187 | if (vm_page_wait(interruptible)) | |
3188 | break; | |
3189 | /* fall thru */ | |
3190 | ||
3191 | case VM_FAULT_INTERRUPTED: | |
3192 | vm_object_lock(new_object); | |
3193 | VM_PAGE_FREE(new_page); | |
3194 | vm_object_unlock(new_object); | |
3195 | ||
3196 | vm_object_deallocate(new_object); | |
3197 | vm_object_deallocate(src_object); | |
3198 | *_result_object = VM_OBJECT_NULL; | |
3199 | return(MACH_SEND_INTERRUPTED); | |
3200 | ||
3201 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
3202 | /* success but no VM page: fail */ | |
3203 | vm_object_paging_end(src_object); | |
3204 | vm_object_unlock(src_object); | |
3205 | /*FALLTHROUGH*/ | |
3206 | case VM_FAULT_MEMORY_ERROR: | |
3207 | /* | |
3208 | * A policy choice: | |
3209 | * (a) ignore pages that we can't | |
3210 | * copy | |
3211 | * (b) return the null object if | |
3212 | * any page fails [chosen] | |
3213 | */ | |
3214 | ||
3215 | vm_object_lock(new_object); | |
3216 | VM_PAGE_FREE(new_page); | |
3217 | vm_object_unlock(new_object); | |
3218 | ||
3219 | vm_object_deallocate(new_object); | |
3220 | vm_object_deallocate(src_object); | |
3221 | *_result_object = VM_OBJECT_NULL; | |
3222 | return(error_code ? error_code: | |
3223 | KERN_MEMORY_ERROR); | |
3224 | ||
3225 | default: | |
3226 | panic("vm_object_copy_slowly: unexpected error" | |
3227 | " 0x%x from vm_fault_page()\n", result); | |
3228 | } | |
3229 | } while (result != VM_FAULT_SUCCESS); | |
3230 | } | |
3231 | ||
3232 | /* | |
3233 | * Lose the extra reference, and return our object. | |
3234 | */ | |
3235 | vm_object_deallocate(src_object); | |
3236 | *_result_object = new_object; | |
3237 | return(KERN_SUCCESS); | |
3238 | } | |
3239 | ||
3240 | /* | |
3241 | * Routine: vm_object_copy_quickly | |
3242 | * | |
3243 | * Purpose: | |
3244 | * Copy the specified range of the source virtual | |
3245 | * memory object, if it can be done without waiting | |
3246 | * for user-generated events. | |
3247 | * | |
3248 | * Results: | |
3249 | * If the copy is successful, the copy is returned in | |
3250 | * the arguments; otherwise, the arguments are not | |
3251 | * affected. | |
3252 | * | |
3253 | * In/out conditions: | |
3254 | * The object should be unlocked on entry and exit. | |
3255 | */ | |
3256 | ||
3257 | /*ARGSUSED*/ | |
3258 | __private_extern__ boolean_t | |
3259 | vm_object_copy_quickly( | |
3260 | vm_object_t *_object, /* INOUT */ | |
3261 | __unused vm_object_offset_t offset, /* IN */ | |
3262 | __unused vm_object_size_t size, /* IN */ | |
3263 | boolean_t *_src_needs_copy, /* OUT */ | |
3264 | boolean_t *_dst_needs_copy) /* OUT */ | |
3265 | { | |
3266 | vm_object_t object = *_object; | |
3267 | memory_object_copy_strategy_t copy_strategy; | |
3268 | ||
3269 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
3270 | *_object, offset, size, 0, 0); | |
3271 | if (object == VM_OBJECT_NULL) { | |
3272 | *_src_needs_copy = FALSE; | |
3273 | *_dst_needs_copy = FALSE; | |
3274 | return(TRUE); | |
3275 | } | |
3276 | ||
3277 | vm_object_lock(object); | |
3278 | ||
3279 | copy_strategy = object->copy_strategy; | |
3280 | ||
3281 | switch (copy_strategy) { | |
3282 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3283 | ||
3284 | /* | |
3285 | * Symmetric copy strategy. | |
3286 | * Make another reference to the object. | |
3287 | * Leave object/offset unchanged. | |
3288 | */ | |
3289 | ||
3290 | vm_object_reference_locked(object); | |
3291 | object->shadowed = TRUE; | |
3292 | vm_object_unlock(object); | |
3293 | ||
3294 | /* | |
3295 | * Both source and destination must make | |
3296 | * shadows, and the source must be made | |
3297 | * read-only if not already. | |
3298 | */ | |
3299 | ||
3300 | *_src_needs_copy = TRUE; | |
3301 | *_dst_needs_copy = TRUE; | |
3302 | ||
3303 | break; | |
3304 | ||
3305 | case MEMORY_OBJECT_COPY_DELAY: | |
3306 | vm_object_unlock(object); | |
3307 | return(FALSE); | |
3308 | ||
3309 | default: | |
3310 | vm_object_unlock(object); | |
3311 | return(FALSE); | |
3312 | } | |
3313 | return(TRUE); | |
3314 | } | |
3315 | ||
3316 | static int copy_call_count = 0; | |
3317 | static int copy_call_sleep_count = 0; | |
3318 | static int copy_call_restart_count = 0; | |
3319 | ||
3320 | /* | |
3321 | * Routine: vm_object_copy_call [internal] | |
3322 | * | |
3323 | * Description: | |
3324 | * Copy the source object (src_object), using the | |
3325 | * user-managed copy algorithm. | |
3326 | * | |
3327 | * In/out conditions: | |
3328 | * The source object must be locked on entry. It | |
3329 | * will be *unlocked* on exit. | |
3330 | * | |
3331 | * Results: | |
3332 | * If the copy is successful, KERN_SUCCESS is returned. | |
3333 | * A new object that represents the copied virtual | |
3334 | * memory is returned in a parameter (*_result_object). | |
3335 | * If the return value indicates an error, this parameter | |
3336 | * is not valid. | |
3337 | */ | |
3338 | static kern_return_t | |
3339 | vm_object_copy_call( | |
3340 | vm_object_t src_object, | |
3341 | vm_object_offset_t src_offset, | |
3342 | vm_object_size_t size, | |
3343 | vm_object_t *_result_object) /* OUT */ | |
3344 | { | |
3345 | kern_return_t kr; | |
3346 | vm_object_t copy; | |
3347 | boolean_t check_ready = FALSE; | |
3348 | uint32_t try_failed_count = 0; | |
3349 | ||
3350 | /* | |
3351 | * If a copy is already in progress, wait and retry. | |
3352 | * | |
3353 | * XXX | |
3354 | * Consider making this call interruptable, as Mike | |
3355 | * intended it to be. | |
3356 | * | |
3357 | * XXXO | |
3358 | * Need a counter or version or something to allow | |
3359 | * us to use the copy that the currently requesting | |
3360 | * thread is obtaining -- is it worth adding to the | |
3361 | * vm object structure? Depends how common this case it. | |
3362 | */ | |
3363 | copy_call_count++; | |
3364 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3365 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3366 | THREAD_UNINT); | |
3367 | copy_call_restart_count++; | |
3368 | } | |
3369 | ||
3370 | /* | |
3371 | * Indicate (for the benefit of memory_object_create_copy) | |
3372 | * that we want a copy for src_object. (Note that we cannot | |
3373 | * do a real assert_wait before calling memory_object_copy, | |
3374 | * so we simply set the flag.) | |
3375 | */ | |
3376 | ||
3377 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
3378 | vm_object_unlock(src_object); | |
3379 | ||
3380 | /* | |
3381 | * Ask the memory manager to give us a memory object | |
3382 | * which represents a copy of the src object. | |
3383 | * The memory manager may give us a memory object | |
3384 | * which we already have, or it may give us a | |
3385 | * new memory object. This memory object will arrive | |
3386 | * via memory_object_create_copy. | |
3387 | */ | |
3388 | ||
3389 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
3390 | if (kr != KERN_SUCCESS) { | |
3391 | return kr; | |
3392 | } | |
3393 | ||
3394 | /* | |
3395 | * Wait for the copy to arrive. | |
3396 | */ | |
3397 | vm_object_lock(src_object); | |
3398 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3399 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3400 | THREAD_UNINT); | |
3401 | copy_call_sleep_count++; | |
3402 | } | |
3403 | Retry: | |
3404 | assert(src_object->copy != VM_OBJECT_NULL); | |
3405 | copy = src_object->copy; | |
3406 | if (!vm_object_lock_try(copy)) { | |
3407 | vm_object_unlock(src_object); | |
3408 | ||
3409 | try_failed_count++; | |
3410 | mutex_pause(try_failed_count); /* wait a bit */ | |
3411 | ||
3412 | vm_object_lock(src_object); | |
3413 | goto Retry; | |
3414 | } | |
3415 | if (copy->vo_size < src_offset+size) | |
3416 | copy->vo_size = src_offset+size; | |
3417 | ||
3418 | if (!copy->pager_ready) | |
3419 | check_ready = TRUE; | |
3420 | ||
3421 | /* | |
3422 | * Return the copy. | |
3423 | */ | |
3424 | *_result_object = copy; | |
3425 | vm_object_unlock(copy); | |
3426 | vm_object_unlock(src_object); | |
3427 | ||
3428 | /* Wait for the copy to be ready. */ | |
3429 | if (check_ready == TRUE) { | |
3430 | vm_object_lock(copy); | |
3431 | while (!copy->pager_ready) { | |
3432 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); | |
3433 | } | |
3434 | vm_object_unlock(copy); | |
3435 | } | |
3436 | ||
3437 | return KERN_SUCCESS; | |
3438 | } | |
3439 | ||
3440 | static int copy_delayed_lock_collisions = 0; | |
3441 | static int copy_delayed_max_collisions = 0; | |
3442 | static int copy_delayed_lock_contention = 0; | |
3443 | static int copy_delayed_protect_iterate = 0; | |
3444 | ||
3445 | /* | |
3446 | * Routine: vm_object_copy_delayed [internal] | |
3447 | * | |
3448 | * Description: | |
3449 | * Copy the specified virtual memory object, using | |
3450 | * the asymmetric copy-on-write algorithm. | |
3451 | * | |
3452 | * In/out conditions: | |
3453 | * The src_object must be locked on entry. It will be unlocked | |
3454 | * on exit - so the caller must also hold a reference to it. | |
3455 | * | |
3456 | * This routine will not block waiting for user-generated | |
3457 | * events. It is not interruptible. | |
3458 | */ | |
3459 | __private_extern__ vm_object_t | |
3460 | vm_object_copy_delayed( | |
3461 | vm_object_t src_object, | |
3462 | vm_object_offset_t src_offset, | |
3463 | vm_object_size_t size, | |
3464 | boolean_t src_object_shared) | |
3465 | { | |
3466 | vm_object_t new_copy = VM_OBJECT_NULL; | |
3467 | vm_object_t old_copy; | |
3468 | vm_page_t p; | |
3469 | vm_object_size_t copy_size = src_offset + size; | |
3470 | ||
3471 | ||
3472 | int collisions = 0; | |
3473 | /* | |
3474 | * The user-level memory manager wants to see all of the changes | |
3475 | * to this object, but it has promised not to make any changes on | |
3476 | * its own. | |
3477 | * | |
3478 | * Perform an asymmetric copy-on-write, as follows: | |
3479 | * Create a new object, called a "copy object" to hold | |
3480 | * pages modified by the new mapping (i.e., the copy, | |
3481 | * not the original mapping). | |
3482 | * Record the original object as the backing object for | |
3483 | * the copy object. If the original mapping does not | |
3484 | * change a page, it may be used read-only by the copy. | |
3485 | * Record the copy object in the original object. | |
3486 | * When the original mapping causes a page to be modified, | |
3487 | * it must be copied to a new page that is "pushed" to | |
3488 | * the copy object. | |
3489 | * Mark the new mapping (the copy object) copy-on-write. | |
3490 | * This makes the copy object itself read-only, allowing | |
3491 | * it to be reused if the original mapping makes no | |
3492 | * changes, and simplifying the synchronization required | |
3493 | * in the "push" operation described above. | |
3494 | * | |
3495 | * The copy-on-write is said to be assymetric because the original | |
3496 | * object is *not* marked copy-on-write. A copied page is pushed | |
3497 | * to the copy object, regardless which party attempted to modify | |
3498 | * the page. | |
3499 | * | |
3500 | * Repeated asymmetric copy operations may be done. If the | |
3501 | * original object has not been changed since the last copy, its | |
3502 | * copy object can be reused. Otherwise, a new copy object can be | |
3503 | * inserted between the original object and its previous copy | |
3504 | * object. Since any copy object is read-only, this cannot affect | |
3505 | * affect the contents of the previous copy object. | |
3506 | * | |
3507 | * Note that a copy object is higher in the object tree than the | |
3508 | * original object; therefore, use of the copy object recorded in | |
3509 | * the original object must be done carefully, to avoid deadlock. | |
3510 | */ | |
3511 | ||
3512 | Retry: | |
3513 | ||
3514 | /* | |
3515 | * Wait for paging in progress. | |
3516 | */ | |
3517 | if (!src_object->true_share && | |
3518 | (src_object->paging_in_progress != 0 || | |
3519 | src_object->activity_in_progress != 0)) { | |
3520 | if (src_object_shared == TRUE) { | |
3521 | vm_object_unlock(src_object); | |
3522 | vm_object_lock(src_object); | |
3523 | src_object_shared = FALSE; | |
3524 | goto Retry; | |
3525 | } | |
3526 | vm_object_paging_wait(src_object, THREAD_UNINT); | |
3527 | } | |
3528 | /* | |
3529 | * See whether we can reuse the result of a previous | |
3530 | * copy operation. | |
3531 | */ | |
3532 | ||
3533 | old_copy = src_object->copy; | |
3534 | if (old_copy != VM_OBJECT_NULL) { | |
3535 | int lock_granted; | |
3536 | ||
3537 | /* | |
3538 | * Try to get the locks (out of order) | |
3539 | */ | |
3540 | if (src_object_shared == TRUE) | |
3541 | lock_granted = vm_object_lock_try_shared(old_copy); | |
3542 | else | |
3543 | lock_granted = vm_object_lock_try(old_copy); | |
3544 | ||
3545 | if (!lock_granted) { | |
3546 | vm_object_unlock(src_object); | |
3547 | ||
3548 | if (collisions++ == 0) | |
3549 | copy_delayed_lock_contention++; | |
3550 | mutex_pause(collisions); | |
3551 | ||
3552 | /* Heisenberg Rules */ | |
3553 | copy_delayed_lock_collisions++; | |
3554 | ||
3555 | if (collisions > copy_delayed_max_collisions) | |
3556 | copy_delayed_max_collisions = collisions; | |
3557 | ||
3558 | if (src_object_shared == TRUE) | |
3559 | vm_object_lock_shared(src_object); | |
3560 | else | |
3561 | vm_object_lock(src_object); | |
3562 | ||
3563 | goto Retry; | |
3564 | } | |
3565 | ||
3566 | /* | |
3567 | * Determine whether the old copy object has | |
3568 | * been modified. | |
3569 | */ | |
3570 | ||
3571 | if (old_copy->resident_page_count == 0 && | |
3572 | !old_copy->pager_created) { | |
3573 | /* | |
3574 | * It has not been modified. | |
3575 | * | |
3576 | * Return another reference to | |
3577 | * the existing copy-object if | |
3578 | * we can safely grow it (if | |
3579 | * needed). | |
3580 | */ | |
3581 | ||
3582 | if (old_copy->vo_size < copy_size) { | |
3583 | if (src_object_shared == TRUE) { | |
3584 | vm_object_unlock(old_copy); | |
3585 | vm_object_unlock(src_object); | |
3586 | ||
3587 | vm_object_lock(src_object); | |
3588 | src_object_shared = FALSE; | |
3589 | goto Retry; | |
3590 | } | |
3591 | /* | |
3592 | * We can't perform a delayed copy if any of the | |
3593 | * pages in the extended range are wired (because | |
3594 | * we can't safely take write permission away from | |
3595 | * wired pages). If the pages aren't wired, then | |
3596 | * go ahead and protect them. | |
3597 | */ | |
3598 | copy_delayed_protect_iterate++; | |
3599 | ||
3600 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3601 | if (!p->fictitious && | |
3602 | p->offset >= old_copy->vo_size && | |
3603 | p->offset < copy_size) { | |
3604 | if (VM_PAGE_WIRED(p)) { | |
3605 | vm_object_unlock(old_copy); | |
3606 | vm_object_unlock(src_object); | |
3607 | ||
3608 | if (new_copy != VM_OBJECT_NULL) { | |
3609 | vm_object_unlock(new_copy); | |
3610 | vm_object_deallocate(new_copy); | |
3611 | } | |
3612 | ||
3613 | return VM_OBJECT_NULL; | |
3614 | } else { | |
3615 | pmap_page_protect(p->phys_page, | |
3616 | (VM_PROT_ALL & ~VM_PROT_WRITE)); | |
3617 | } | |
3618 | } | |
3619 | } | |
3620 | old_copy->vo_size = copy_size; | |
3621 | } | |
3622 | if (src_object_shared == TRUE) | |
3623 | vm_object_reference_shared(old_copy); | |
3624 | else | |
3625 | vm_object_reference_locked(old_copy); | |
3626 | vm_object_unlock(old_copy); | |
3627 | vm_object_unlock(src_object); | |
3628 | ||
3629 | if (new_copy != VM_OBJECT_NULL) { | |
3630 | vm_object_unlock(new_copy); | |
3631 | vm_object_deallocate(new_copy); | |
3632 | } | |
3633 | return(old_copy); | |
3634 | } | |
3635 | ||
3636 | ||
3637 | ||
3638 | /* | |
3639 | * Adjust the size argument so that the newly-created | |
3640 | * copy object will be large enough to back either the | |
3641 | * old copy object or the new mapping. | |
3642 | */ | |
3643 | if (old_copy->vo_size > copy_size) | |
3644 | copy_size = old_copy->vo_size; | |
3645 | ||
3646 | if (new_copy == VM_OBJECT_NULL) { | |
3647 | vm_object_unlock(old_copy); | |
3648 | vm_object_unlock(src_object); | |
3649 | new_copy = vm_object_allocate(copy_size); | |
3650 | vm_object_lock(src_object); | |
3651 | vm_object_lock(new_copy); | |
3652 | ||
3653 | src_object_shared = FALSE; | |
3654 | goto Retry; | |
3655 | } | |
3656 | new_copy->vo_size = copy_size; | |
3657 | ||
3658 | /* | |
3659 | * The copy-object is always made large enough to | |
3660 | * completely shadow the original object, since | |
3661 | * it may have several users who want to shadow | |
3662 | * the original object at different points. | |
3663 | */ | |
3664 | ||
3665 | assert((old_copy->shadow == src_object) && | |
3666 | (old_copy->vo_shadow_offset == (vm_object_offset_t) 0)); | |
3667 | ||
3668 | } else if (new_copy == VM_OBJECT_NULL) { | |
3669 | vm_object_unlock(src_object); | |
3670 | new_copy = vm_object_allocate(copy_size); | |
3671 | vm_object_lock(src_object); | |
3672 | vm_object_lock(new_copy); | |
3673 | ||
3674 | src_object_shared = FALSE; | |
3675 | goto Retry; | |
3676 | } | |
3677 | ||
3678 | /* | |
3679 | * We now have the src object locked, and the new copy object | |
3680 | * allocated and locked (and potentially the old copy locked). | |
3681 | * Before we go any further, make sure we can still perform | |
3682 | * a delayed copy, as the situation may have changed. | |
3683 | * | |
3684 | * Specifically, we can't perform a delayed copy if any of the | |
3685 | * pages in the range are wired (because we can't safely take | |
3686 | * write permission away from wired pages). If the pages aren't | |
3687 | * wired, then go ahead and protect them. | |
3688 | */ | |
3689 | copy_delayed_protect_iterate++; | |
3690 | ||
3691 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3692 | if (!p->fictitious && p->offset < copy_size) { | |
3693 | if (VM_PAGE_WIRED(p)) { | |
3694 | if (old_copy) | |
3695 | vm_object_unlock(old_copy); | |
3696 | vm_object_unlock(src_object); | |
3697 | vm_object_unlock(new_copy); | |
3698 | vm_object_deallocate(new_copy); | |
3699 | return VM_OBJECT_NULL; | |
3700 | } else { | |
3701 | pmap_page_protect(p->phys_page, | |
3702 | (VM_PROT_ALL & ~VM_PROT_WRITE)); | |
3703 | } | |
3704 | } | |
3705 | } | |
3706 | if (old_copy != VM_OBJECT_NULL) { | |
3707 | /* | |
3708 | * Make the old copy-object shadow the new one. | |
3709 | * It will receive no more pages from the original | |
3710 | * object. | |
3711 | */ | |
3712 | ||
3713 | /* remove ref. from old_copy */ | |
3714 | vm_object_lock_assert_exclusive(src_object); | |
3715 | src_object->ref_count--; | |
3716 | assert(src_object->ref_count > 0); | |
3717 | vm_object_lock_assert_exclusive(old_copy); | |
3718 | old_copy->shadow = new_copy; | |
3719 | vm_object_lock_assert_exclusive(new_copy); | |
3720 | assert(new_copy->ref_count > 0); | |
3721 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
3722 | ||
3723 | #if TASK_SWAPPER | |
3724 | if (old_copy->res_count) { | |
3725 | VM_OBJ_RES_INCR(new_copy); | |
3726 | VM_OBJ_RES_DECR(src_object); | |
3727 | } | |
3728 | #endif | |
3729 | ||
3730 | vm_object_unlock(old_copy); /* done with old_copy */ | |
3731 | } | |
3732 | ||
3733 | /* | |
3734 | * Point the new copy at the existing object. | |
3735 | */ | |
3736 | vm_object_lock_assert_exclusive(new_copy); | |
3737 | new_copy->shadow = src_object; | |
3738 | new_copy->vo_shadow_offset = 0; | |
3739 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
3740 | ||
3741 | vm_object_lock_assert_exclusive(src_object); | |
3742 | vm_object_reference_locked(src_object); | |
3743 | src_object->copy = new_copy; | |
3744 | vm_object_unlock(src_object); | |
3745 | vm_object_unlock(new_copy); | |
3746 | ||
3747 | XPR(XPR_VM_OBJECT, | |
3748 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
3749 | new_copy, src_object, 0, 0, 0); | |
3750 | ||
3751 | return new_copy; | |
3752 | } | |
3753 | ||
3754 | /* | |
3755 | * Routine: vm_object_copy_strategically | |
3756 | * | |
3757 | * Purpose: | |
3758 | * Perform a copy according to the source object's | |
3759 | * declared strategy. This operation may block, | |
3760 | * and may be interrupted. | |
3761 | */ | |
3762 | __private_extern__ kern_return_t | |
3763 | vm_object_copy_strategically( | |
3764 | register vm_object_t src_object, | |
3765 | vm_object_offset_t src_offset, | |
3766 | vm_object_size_t size, | |
3767 | vm_object_t *dst_object, /* OUT */ | |
3768 | vm_object_offset_t *dst_offset, /* OUT */ | |
3769 | boolean_t *dst_needs_copy) /* OUT */ | |
3770 | { | |
3771 | boolean_t result; | |
3772 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
3773 | boolean_t object_lock_shared = FALSE; | |
3774 | memory_object_copy_strategy_t copy_strategy; | |
3775 | ||
3776 | assert(src_object != VM_OBJECT_NULL); | |
3777 | ||
3778 | copy_strategy = src_object->copy_strategy; | |
3779 | ||
3780 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
3781 | vm_object_lock_shared(src_object); | |
3782 | object_lock_shared = TRUE; | |
3783 | } else | |
3784 | vm_object_lock(src_object); | |
3785 | ||
3786 | /* | |
3787 | * The copy strategy is only valid if the memory manager | |
3788 | * is "ready". Internal objects are always ready. | |
3789 | */ | |
3790 | ||
3791 | while (!src_object->internal && !src_object->pager_ready) { | |
3792 | wait_result_t wait_result; | |
3793 | ||
3794 | if (object_lock_shared == TRUE) { | |
3795 | vm_object_unlock(src_object); | |
3796 | vm_object_lock(src_object); | |
3797 | object_lock_shared = FALSE; | |
3798 | continue; | |
3799 | } | |
3800 | wait_result = vm_object_sleep( src_object, | |
3801 | VM_OBJECT_EVENT_PAGER_READY, | |
3802 | interruptible); | |
3803 | if (wait_result != THREAD_AWAKENED) { | |
3804 | vm_object_unlock(src_object); | |
3805 | *dst_object = VM_OBJECT_NULL; | |
3806 | *dst_offset = 0; | |
3807 | *dst_needs_copy = FALSE; | |
3808 | return(MACH_SEND_INTERRUPTED); | |
3809 | } | |
3810 | } | |
3811 | ||
3812 | /* | |
3813 | * Use the appropriate copy strategy. | |
3814 | */ | |
3815 | ||
3816 | switch (copy_strategy) { | |
3817 | case MEMORY_OBJECT_COPY_DELAY: | |
3818 | *dst_object = vm_object_copy_delayed(src_object, | |
3819 | src_offset, size, object_lock_shared); | |
3820 | if (*dst_object != VM_OBJECT_NULL) { | |
3821 | *dst_offset = src_offset; | |
3822 | *dst_needs_copy = TRUE; | |
3823 | result = KERN_SUCCESS; | |
3824 | break; | |
3825 | } | |
3826 | vm_object_lock(src_object); | |
3827 | /* fall thru when delayed copy not allowed */ | |
3828 | ||
3829 | case MEMORY_OBJECT_COPY_NONE: | |
3830 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
3831 | interruptible, dst_object); | |
3832 | if (result == KERN_SUCCESS) { | |
3833 | *dst_offset = 0; | |
3834 | *dst_needs_copy = FALSE; | |
3835 | } | |
3836 | break; | |
3837 | ||
3838 | case MEMORY_OBJECT_COPY_CALL: | |
3839 | result = vm_object_copy_call(src_object, src_offset, size, | |
3840 | dst_object); | |
3841 | if (result == KERN_SUCCESS) { | |
3842 | *dst_offset = src_offset; | |
3843 | *dst_needs_copy = TRUE; | |
3844 | } | |
3845 | break; | |
3846 | ||
3847 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3848 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0); | |
3849 | vm_object_unlock(src_object); | |
3850 | result = KERN_MEMORY_RESTART_COPY; | |
3851 | break; | |
3852 | ||
3853 | default: | |
3854 | panic("copy_strategically: bad strategy"); | |
3855 | result = KERN_INVALID_ARGUMENT; | |
3856 | } | |
3857 | return(result); | |
3858 | } | |
3859 | ||
3860 | /* | |
3861 | * vm_object_shadow: | |
3862 | * | |
3863 | * Create a new object which is backed by the | |
3864 | * specified existing object range. The source | |
3865 | * object reference is deallocated. | |
3866 | * | |
3867 | * The new object and offset into that object | |
3868 | * are returned in the source parameters. | |
3869 | */ | |
3870 | boolean_t vm_object_shadow_check = TRUE; | |
3871 | ||
3872 | __private_extern__ boolean_t | |
3873 | vm_object_shadow( | |
3874 | vm_object_t *object, /* IN/OUT */ | |
3875 | vm_object_offset_t *offset, /* IN/OUT */ | |
3876 | vm_object_size_t length) | |
3877 | { | |
3878 | register vm_object_t source; | |
3879 | register vm_object_t result; | |
3880 | ||
3881 | source = *object; | |
3882 | assert(source != VM_OBJECT_NULL); | |
3883 | if (source == VM_OBJECT_NULL) | |
3884 | return FALSE; | |
3885 | ||
3886 | #if 0 | |
3887 | /* | |
3888 | * XXX FBDP | |
3889 | * This assertion is valid but it gets triggered by Rosetta for example | |
3890 | * due to a combination of vm_remap() that changes a VM object's | |
3891 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
3892 | * that then sets "needs_copy" on its map entry. This creates a | |
3893 | * mapping situation that VM should never see and doesn't know how to | |
3894 | * handle. | |
3895 | * It's not clear if this can create any real problem but we should | |
3896 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
3897 | * do more than just set "needs_copy" to handle the copy-on-write... | |
3898 | * In the meantime, let's disable the assertion. | |
3899 | */ | |
3900 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
3901 | #endif | |
3902 | ||
3903 | /* | |
3904 | * Determine if we really need a shadow. | |
3905 | * | |
3906 | * If the source object is larger than what we are trying | |
3907 | * to create, then force the shadow creation even if the | |
3908 | * ref count is 1. This will allow us to [potentially] | |
3909 | * collapse the underlying object away in the future | |
3910 | * (freeing up the extra data it might contain and that | |
3911 | * we don't need). | |
3912 | */ | |
3913 | if (vm_object_shadow_check && | |
3914 | source->vo_size == length && | |
3915 | source->ref_count == 1 && | |
3916 | (source->shadow == VM_OBJECT_NULL || | |
3917 | source->shadow->copy == VM_OBJECT_NULL) ) | |
3918 | { | |
3919 | source->shadowed = FALSE; | |
3920 | return FALSE; | |
3921 | } | |
3922 | ||
3923 | /* | |
3924 | * Allocate a new object with the given length | |
3925 | */ | |
3926 | ||
3927 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
3928 | panic("vm_object_shadow: no object for shadowing"); | |
3929 | ||
3930 | /* | |
3931 | * The new object shadows the source object, adding | |
3932 | * a reference to it. Our caller changes his reference | |
3933 | * to point to the new object, removing a reference to | |
3934 | * the source object. Net result: no change of reference | |
3935 | * count. | |
3936 | */ | |
3937 | result->shadow = source; | |
3938 | ||
3939 | /* | |
3940 | * Store the offset into the source object, | |
3941 | * and fix up the offset into the new object. | |
3942 | */ | |
3943 | ||
3944 | result->vo_shadow_offset = *offset; | |
3945 | ||
3946 | /* | |
3947 | * Return the new things | |
3948 | */ | |
3949 | ||
3950 | *offset = 0; | |
3951 | *object = result; | |
3952 | return TRUE; | |
3953 | } | |
3954 | ||
3955 | /* | |
3956 | * The relationship between vm_object structures and | |
3957 | * the memory_object requires careful synchronization. | |
3958 | * | |
3959 | * All associations are created by memory_object_create_named | |
3960 | * for external pagers and vm_object_pager_create for internal | |
3961 | * objects as follows: | |
3962 | * | |
3963 | * pager: the memory_object itself, supplied by | |
3964 | * the user requesting a mapping (or the kernel, | |
3965 | * when initializing internal objects); the | |
3966 | * kernel simulates holding send rights by keeping | |
3967 | * a port reference; | |
3968 | * | |
3969 | * pager_request: | |
3970 | * the memory object control port, | |
3971 | * created by the kernel; the kernel holds | |
3972 | * receive (and ownership) rights to this | |
3973 | * port, but no other references. | |
3974 | * | |
3975 | * When initialization is complete, the "initialized" field | |
3976 | * is asserted. Other mappings using a particular memory object, | |
3977 | * and any references to the vm_object gained through the | |
3978 | * port association must wait for this initialization to occur. | |
3979 | * | |
3980 | * In order to allow the memory manager to set attributes before | |
3981 | * requests (notably virtual copy operations, but also data or | |
3982 | * unlock requests) are made, a "ready" attribute is made available. | |
3983 | * Only the memory manager may affect the value of this attribute. | |
3984 | * Its value does not affect critical kernel functions, such as | |
3985 | * internal object initialization or destruction. [Furthermore, | |
3986 | * memory objects created by the kernel are assumed to be ready | |
3987 | * immediately; the default memory manager need not explicitly | |
3988 | * set the "ready" attribute.] | |
3989 | * | |
3990 | * [Both the "initialized" and "ready" attribute wait conditions | |
3991 | * use the "pager" field as the wait event.] | |
3992 | * | |
3993 | * The port associations can be broken down by any of the | |
3994 | * following routines: | |
3995 | * vm_object_terminate: | |
3996 | * No references to the vm_object remain, and | |
3997 | * the object cannot (or will not) be cached. | |
3998 | * This is the normal case, and is done even | |
3999 | * though one of the other cases has already been | |
4000 | * done. | |
4001 | * memory_object_destroy: | |
4002 | * The memory manager has requested that the | |
4003 | * kernel relinquish references to the memory | |
4004 | * object. [The memory manager may not want to | |
4005 | * destroy the memory object, but may wish to | |
4006 | * refuse or tear down existing memory mappings.] | |
4007 | * | |
4008 | * Each routine that breaks an association must break all of | |
4009 | * them at once. At some later time, that routine must clear | |
4010 | * the pager field and release the memory object references. | |
4011 | * [Furthermore, each routine must cope with the simultaneous | |
4012 | * or previous operations of the others.] | |
4013 | * | |
4014 | * In addition to the lock on the object, the vm_object_hash_lock | |
4015 | * governs the associations. References gained through the | |
4016 | * association require use of the hash lock. | |
4017 | * | |
4018 | * Because the pager field may be cleared spontaneously, it | |
4019 | * cannot be used to determine whether a memory object has | |
4020 | * ever been associated with a particular vm_object. [This | |
4021 | * knowledge is important to the shadow object mechanism.] | |
4022 | * For this reason, an additional "created" attribute is | |
4023 | * provided. | |
4024 | * | |
4025 | * During various paging operations, the pager reference found in the | |
4026 | * vm_object must be valid. To prevent this from being released, | |
4027 | * (other than being removed, i.e., made null), routines may use | |
4028 | * the vm_object_paging_begin/end routines [actually, macros]. | |
4029 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
4030 | * [Operations that alter the validity of the pager values include the | |
4031 | * termination routines and vm_object_collapse.] | |
4032 | */ | |
4033 | ||
4034 | ||
4035 | /* | |
4036 | * Routine: vm_object_enter | |
4037 | * Purpose: | |
4038 | * Find a VM object corresponding to the given | |
4039 | * pager; if no such object exists, create one, | |
4040 | * and initialize the pager. | |
4041 | */ | |
4042 | vm_object_t | |
4043 | vm_object_enter( | |
4044 | memory_object_t pager, | |
4045 | vm_object_size_t size, | |
4046 | boolean_t internal, | |
4047 | boolean_t init, | |
4048 | boolean_t named) | |
4049 | { | |
4050 | register vm_object_t object; | |
4051 | vm_object_t new_object; | |
4052 | boolean_t must_init; | |
4053 | vm_object_hash_entry_t entry, new_entry; | |
4054 | uint32_t try_failed_count = 0; | |
4055 | lck_mtx_t *lck; | |
4056 | ||
4057 | if (pager == MEMORY_OBJECT_NULL) | |
4058 | return(vm_object_allocate(size)); | |
4059 | ||
4060 | new_object = VM_OBJECT_NULL; | |
4061 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4062 | must_init = init; | |
4063 | ||
4064 | /* | |
4065 | * Look for an object associated with this port. | |
4066 | */ | |
4067 | Retry: | |
4068 | lck = vm_object_hash_lock_spin(pager); | |
4069 | do { | |
4070 | entry = vm_object_hash_lookup(pager, FALSE); | |
4071 | ||
4072 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { | |
4073 | if (new_object == VM_OBJECT_NULL) { | |
4074 | /* | |
4075 | * We must unlock to create a new object; | |
4076 | * if we do so, we must try the lookup again. | |
4077 | */ | |
4078 | vm_object_hash_unlock(lck); | |
4079 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
4080 | new_entry = vm_object_hash_entry_alloc(pager); | |
4081 | new_object = vm_object_allocate(size); | |
4082 | lck = vm_object_hash_lock_spin(pager); | |
4083 | } else { | |
4084 | /* | |
4085 | * Lookup failed twice, and we have something | |
4086 | * to insert; set the object. | |
4087 | */ | |
4088 | vm_object_hash_insert(new_entry, new_object); | |
4089 | entry = new_entry; | |
4090 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4091 | new_object = VM_OBJECT_NULL; | |
4092 | must_init = TRUE; | |
4093 | } | |
4094 | } else if (entry->object == VM_OBJECT_NULL) { | |
4095 | /* | |
4096 | * If a previous object is being terminated, | |
4097 | * we must wait for the termination message | |
4098 | * to be queued (and lookup the entry again). | |
4099 | */ | |
4100 | entry->waiting = TRUE; | |
4101 | entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4102 | assert_wait((event_t) pager, THREAD_UNINT); | |
4103 | vm_object_hash_unlock(lck); | |
4104 | ||
4105 | thread_block(THREAD_CONTINUE_NULL); | |
4106 | lck = vm_object_hash_lock_spin(pager); | |
4107 | } | |
4108 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); | |
4109 | ||
4110 | object = entry->object; | |
4111 | assert(object != VM_OBJECT_NULL); | |
4112 | ||
4113 | if (!must_init) { | |
4114 | if ( !vm_object_lock_try(object)) { | |
4115 | ||
4116 | vm_object_hash_unlock(lck); | |
4117 | ||
4118 | try_failed_count++; | |
4119 | mutex_pause(try_failed_count); /* wait a bit */ | |
4120 | goto Retry; | |
4121 | } | |
4122 | assert(!internal || object->internal); | |
4123 | #if VM_OBJECT_CACHE | |
4124 | if (object->ref_count == 0) { | |
4125 | if ( !vm_object_cache_lock_try()) { | |
4126 | ||
4127 | vm_object_hash_unlock(lck); | |
4128 | vm_object_unlock(object); | |
4129 | ||
4130 | try_failed_count++; | |
4131 | mutex_pause(try_failed_count); /* wait a bit */ | |
4132 | goto Retry; | |
4133 | } | |
4134 | XPR(XPR_VM_OBJECT_CACHE, | |
4135 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
4136 | object, | |
4137 | vm_object_cached_list.next, | |
4138 | vm_object_cached_list.prev, 0,0); | |
4139 | queue_remove(&vm_object_cached_list, object, | |
4140 | vm_object_t, cached_list); | |
4141 | vm_object_cached_count--; | |
4142 | ||
4143 | vm_object_cache_unlock(); | |
4144 | } | |
4145 | #endif | |
4146 | if (named) { | |
4147 | assert(!object->named); | |
4148 | object->named = TRUE; | |
4149 | } | |
4150 | vm_object_lock_assert_exclusive(object); | |
4151 | object->ref_count++; | |
4152 | vm_object_res_reference(object); | |
4153 | ||
4154 | vm_object_hash_unlock(lck); | |
4155 | vm_object_unlock(object); | |
4156 | ||
4157 | VM_STAT_INCR(hits); | |
4158 | } else | |
4159 | vm_object_hash_unlock(lck); | |
4160 | ||
4161 | assert(object->ref_count > 0); | |
4162 | ||
4163 | VM_STAT_INCR(lookups); | |
4164 | ||
4165 | XPR(XPR_VM_OBJECT, | |
4166 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
4167 | pager, object, must_init, 0, 0); | |
4168 | ||
4169 | /* | |
4170 | * If we raced to create a vm_object but lost, let's | |
4171 | * throw away ours. | |
4172 | */ | |
4173 | ||
4174 | if (new_object != VM_OBJECT_NULL) | |
4175 | vm_object_deallocate(new_object); | |
4176 | ||
4177 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
4178 | vm_object_hash_entry_free(new_entry); | |
4179 | ||
4180 | if (must_init) { | |
4181 | memory_object_control_t control; | |
4182 | ||
4183 | /* | |
4184 | * Allocate request port. | |
4185 | */ | |
4186 | ||
4187 | control = memory_object_control_allocate(object); | |
4188 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
4189 | ||
4190 | vm_object_lock(object); | |
4191 | assert(object != kernel_object); | |
4192 | ||
4193 | /* | |
4194 | * Copy the reference we were given. | |
4195 | */ | |
4196 | ||
4197 | memory_object_reference(pager); | |
4198 | object->pager_created = TRUE; | |
4199 | object->pager = pager; | |
4200 | object->internal = internal; | |
4201 | object->pager_trusted = internal; | |
4202 | if (!internal) { | |
4203 | /* copy strategy invalid until set by memory manager */ | |
4204 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
4205 | } | |
4206 | object->pager_control = control; | |
4207 | object->pager_ready = FALSE; | |
4208 | ||
4209 | vm_object_unlock(object); | |
4210 | ||
4211 | /* | |
4212 | * Let the pager know we're using it. | |
4213 | */ | |
4214 | ||
4215 | (void) memory_object_init(pager, | |
4216 | object->pager_control, | |
4217 | PAGE_SIZE); | |
4218 | ||
4219 | vm_object_lock(object); | |
4220 | if (named) | |
4221 | object->named = TRUE; | |
4222 | if (internal) { | |
4223 | object->pager_ready = TRUE; | |
4224 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
4225 | } | |
4226 | ||
4227 | object->pager_initialized = TRUE; | |
4228 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
4229 | } else { | |
4230 | vm_object_lock(object); | |
4231 | } | |
4232 | ||
4233 | /* | |
4234 | * [At this point, the object must be locked] | |
4235 | */ | |
4236 | ||
4237 | /* | |
4238 | * Wait for the work above to be done by the first | |
4239 | * thread to map this object. | |
4240 | */ | |
4241 | ||
4242 | while (!object->pager_initialized) { | |
4243 | vm_object_sleep(object, | |
4244 | VM_OBJECT_EVENT_INITIALIZED, | |
4245 | THREAD_UNINT); | |
4246 | } | |
4247 | vm_object_unlock(object); | |
4248 | ||
4249 | XPR(XPR_VM_OBJECT, | |
4250 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
4251 | object, object->pager, internal, 0,0); | |
4252 | return(object); | |
4253 | } | |
4254 | ||
4255 | /* | |
4256 | * Routine: vm_object_pager_create | |
4257 | * Purpose: | |
4258 | * Create a memory object for an internal object. | |
4259 | * In/out conditions: | |
4260 | * The object is locked on entry and exit; | |
4261 | * it may be unlocked within this call. | |
4262 | * Limitations: | |
4263 | * Only one thread may be performing a | |
4264 | * vm_object_pager_create on an object at | |
4265 | * a time. Presumably, only the pageout | |
4266 | * daemon will be using this routine. | |
4267 | */ | |
4268 | ||
4269 | void | |
4270 | vm_object_pager_create( | |
4271 | register vm_object_t object) | |
4272 | { | |
4273 | memory_object_t pager; | |
4274 | vm_object_hash_entry_t entry; | |
4275 | lck_mtx_t *lck; | |
4276 | #if MACH_PAGEMAP | |
4277 | vm_object_size_t size; | |
4278 | vm_external_map_t map; | |
4279 | #endif /* MACH_PAGEMAP */ | |
4280 | ||
4281 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
4282 | object, 0,0,0,0); | |
4283 | ||
4284 | assert(object != kernel_object); | |
4285 | ||
4286 | if (memory_manager_default_check() != KERN_SUCCESS) | |
4287 | return; | |
4288 | ||
4289 | /* | |
4290 | * Prevent collapse or termination by holding a paging reference | |
4291 | */ | |
4292 | ||
4293 | vm_object_paging_begin(object); | |
4294 | if (object->pager_created) { | |
4295 | /* | |
4296 | * Someone else got to it first... | |
4297 | * wait for them to finish initializing the ports | |
4298 | */ | |
4299 | while (!object->pager_initialized) { | |
4300 | vm_object_sleep(object, | |
4301 | VM_OBJECT_EVENT_INITIALIZED, | |
4302 | THREAD_UNINT); | |
4303 | } | |
4304 | vm_object_paging_end(object); | |
4305 | return; | |
4306 | } | |
4307 | ||
4308 | /* | |
4309 | * Indicate that a memory object has been assigned | |
4310 | * before dropping the lock, to prevent a race. | |
4311 | */ | |
4312 | ||
4313 | object->pager_created = TRUE; | |
4314 | object->paging_offset = 0; | |
4315 | ||
4316 | #if MACH_PAGEMAP | |
4317 | size = object->vo_size; | |
4318 | #endif /* MACH_PAGEMAP */ | |
4319 | vm_object_unlock(object); | |
4320 | ||
4321 | #if MACH_PAGEMAP | |
4322 | map = vm_external_create(size); | |
4323 | vm_object_lock(object); | |
4324 | assert(object->vo_size == size); | |
4325 | object->existence_map = map; | |
4326 | vm_object_unlock(object); | |
4327 | #endif /* MACH_PAGEMAP */ | |
4328 | ||
4329 | if ((uint32_t) object->vo_size != object->vo_size) { | |
4330 | panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n", | |
4331 | (uint64_t) object->vo_size); | |
4332 | } | |
4333 | ||
4334 | /* | |
4335 | * Create the [internal] pager, and associate it with this object. | |
4336 | * | |
4337 | * We make the association here so that vm_object_enter() | |
4338 | * can look up the object to complete initializing it. No | |
4339 | * user will ever map this object. | |
4340 | */ | |
4341 | { | |
4342 | memory_object_default_t dmm; | |
4343 | ||
4344 | /* acquire a reference for the default memory manager */ | |
4345 | dmm = memory_manager_default_reference(); | |
4346 | ||
4347 | assert(object->temporary); | |
4348 | ||
4349 | /* create our new memory object */ | |
4350 | assert((vm_size_t) object->vo_size == object->vo_size); | |
4351 | (void) memory_object_create(dmm, (vm_size_t) object->vo_size, | |
4352 | &pager); | |
4353 | ||
4354 | memory_object_default_deallocate(dmm); | |
4355 | } | |
4356 | ||
4357 | entry = vm_object_hash_entry_alloc(pager); | |
4358 | ||
4359 | lck = vm_object_hash_lock_spin(pager); | |
4360 | vm_object_hash_insert(entry, object); | |
4361 | vm_object_hash_unlock(lck); | |
4362 | ||
4363 | /* | |
4364 | * A reference was returned by | |
4365 | * memory_object_create(), and it is | |
4366 | * copied by vm_object_enter(). | |
4367 | */ | |
4368 | ||
4369 | if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object) | |
4370 | panic("vm_object_pager_create: mismatch"); | |
4371 | ||
4372 | /* | |
4373 | * Drop the reference we were passed. | |
4374 | */ | |
4375 | memory_object_deallocate(pager); | |
4376 | ||
4377 | vm_object_lock(object); | |
4378 | ||
4379 | /* | |
4380 | * Release the paging reference | |
4381 | */ | |
4382 | vm_object_paging_end(object); | |
4383 | } | |
4384 | ||
4385 | /* | |
4386 | * Routine: vm_object_remove | |
4387 | * Purpose: | |
4388 | * Eliminate the pager/object association | |
4389 | * for this pager. | |
4390 | * Conditions: | |
4391 | * The object cache must be locked. | |
4392 | */ | |
4393 | __private_extern__ void | |
4394 | vm_object_remove( | |
4395 | vm_object_t object) | |
4396 | { | |
4397 | memory_object_t pager; | |
4398 | ||
4399 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { | |
4400 | vm_object_hash_entry_t entry; | |
4401 | ||
4402 | entry = vm_object_hash_lookup(pager, FALSE); | |
4403 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
4404 | entry->object = VM_OBJECT_NULL; | |
4405 | } | |
4406 | ||
4407 | } | |
4408 | ||
4409 | /* | |
4410 | * Global variables for vm_object_collapse(): | |
4411 | * | |
4412 | * Counts for normal collapses and bypasses. | |
4413 | * Debugging variables, to watch or disable collapse. | |
4414 | */ | |
4415 | static long object_collapses = 0; | |
4416 | static long object_bypasses = 0; | |
4417 | ||
4418 | static boolean_t vm_object_collapse_allowed = TRUE; | |
4419 | static boolean_t vm_object_bypass_allowed = TRUE; | |
4420 | ||
4421 | #if MACH_PAGEMAP | |
4422 | static int vm_external_discarded; | |
4423 | static int vm_external_collapsed; | |
4424 | #endif | |
4425 | ||
4426 | unsigned long vm_object_collapse_encrypted = 0; | |
4427 | ||
4428 | /* | |
4429 | * Routine: vm_object_do_collapse | |
4430 | * Purpose: | |
4431 | * Collapse an object with the object backing it. | |
4432 | * Pages in the backing object are moved into the | |
4433 | * parent, and the backing object is deallocated. | |
4434 | * Conditions: | |
4435 | * Both objects and the cache are locked; the page | |
4436 | * queues are unlocked. | |
4437 | * | |
4438 | */ | |
4439 | static void | |
4440 | vm_object_do_collapse( | |
4441 | vm_object_t object, | |
4442 | vm_object_t backing_object) | |
4443 | { | |
4444 | vm_page_t p, pp; | |
4445 | vm_object_offset_t new_offset, backing_offset; | |
4446 | vm_object_size_t size; | |
4447 | ||
4448 | vm_object_lock_assert_exclusive(object); | |
4449 | vm_object_lock_assert_exclusive(backing_object); | |
4450 | ||
4451 | backing_offset = object->vo_shadow_offset; | |
4452 | size = object->vo_size; | |
4453 | ||
4454 | /* | |
4455 | * Move all in-memory pages from backing_object | |
4456 | * to the parent. Pages that have been paged out | |
4457 | * will be overwritten by any of the parent's | |
4458 | * pages that shadow them. | |
4459 | */ | |
4460 | ||
4461 | while (!queue_empty(&backing_object->memq)) { | |
4462 | ||
4463 | p = (vm_page_t) queue_first(&backing_object->memq); | |
4464 | ||
4465 | new_offset = (p->offset - backing_offset); | |
4466 | ||
4467 | assert(!p->busy || p->absent); | |
4468 | ||
4469 | /* | |
4470 | * If the parent has a page here, or if | |
4471 | * this page falls outside the parent, | |
4472 | * dispose of it. | |
4473 | * | |
4474 | * Otherwise, move it as planned. | |
4475 | */ | |
4476 | ||
4477 | if (p->offset < backing_offset || new_offset >= size) { | |
4478 | VM_PAGE_FREE(p); | |
4479 | } else { | |
4480 | /* | |
4481 | * ENCRYPTED SWAP: | |
4482 | * The encryption key includes the "pager" and the | |
4483 | * "paging_offset". These will not change during the | |
4484 | * object collapse, so we can just move an encrypted | |
4485 | * page from one object to the other in this case. | |
4486 | * We can't decrypt the page here, since we can't drop | |
4487 | * the object lock. | |
4488 | */ | |
4489 | if (p->encrypted) { | |
4490 | vm_object_collapse_encrypted++; | |
4491 | } | |
4492 | pp = vm_page_lookup(object, new_offset); | |
4493 | if (pp == VM_PAGE_NULL) { | |
4494 | ||
4495 | /* | |
4496 | * Parent now has no page. | |
4497 | * Move the backing object's page up. | |
4498 | */ | |
4499 | ||
4500 | vm_page_rename(p, object, new_offset, TRUE); | |
4501 | #if MACH_PAGEMAP | |
4502 | } else if (pp->absent) { | |
4503 | ||
4504 | /* | |
4505 | * Parent has an absent page... | |
4506 | * it's not being paged in, so | |
4507 | * it must really be missing from | |
4508 | * the parent. | |
4509 | * | |
4510 | * Throw out the absent page... | |
4511 | * any faults looking for that | |
4512 | * page will restart with the new | |
4513 | * one. | |
4514 | */ | |
4515 | ||
4516 | VM_PAGE_FREE(pp); | |
4517 | vm_page_rename(p, object, new_offset, TRUE); | |
4518 | #endif /* MACH_PAGEMAP */ | |
4519 | } else { | |
4520 | assert(! pp->absent); | |
4521 | ||
4522 | /* | |
4523 | * Parent object has a real page. | |
4524 | * Throw away the backing object's | |
4525 | * page. | |
4526 | */ | |
4527 | VM_PAGE_FREE(p); | |
4528 | } | |
4529 | } | |
4530 | } | |
4531 | ||
4532 | #if !MACH_PAGEMAP | |
4533 | assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL)) | |
4534 | || (!backing_object->pager_created | |
4535 | && (backing_object->pager == MEMORY_OBJECT_NULL))); | |
4536 | #else | |
4537 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
4538 | #endif /* !MACH_PAGEMAP */ | |
4539 | ||
4540 | if (backing_object->pager != MEMORY_OBJECT_NULL) { | |
4541 | vm_object_hash_entry_t entry; | |
4542 | ||
4543 | /* | |
4544 | * Move the pager from backing_object to object. | |
4545 | * | |
4546 | * XXX We're only using part of the paging space | |
4547 | * for keeps now... we ought to discard the | |
4548 | * unused portion. | |
4549 | */ | |
4550 | ||
4551 | assert(!object->paging_in_progress); | |
4552 | assert(!object->activity_in_progress); | |
4553 | object->pager = backing_object->pager; | |
4554 | ||
4555 | if (backing_object->hashed) { | |
4556 | lck_mtx_t *lck; | |
4557 | ||
4558 | lck = vm_object_hash_lock_spin(backing_object->pager); | |
4559 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
4560 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
4561 | entry->object = object; | |
4562 | vm_object_hash_unlock(lck); | |
4563 | ||
4564 | object->hashed = TRUE; | |
4565 | } | |
4566 | object->pager_created = backing_object->pager_created; | |
4567 | object->pager_control = backing_object->pager_control; | |
4568 | object->pager_ready = backing_object->pager_ready; | |
4569 | object->pager_initialized = backing_object->pager_initialized; | |
4570 | object->paging_offset = | |
4571 | backing_object->paging_offset + backing_offset; | |
4572 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
4573 | memory_object_control_collapse(object->pager_control, | |
4574 | object); | |
4575 | } | |
4576 | } | |
4577 | ||
4578 | #if MACH_PAGEMAP | |
4579 | /* | |
4580 | * If the shadow offset is 0, the use the existence map from | |
4581 | * the backing object if there is one. If the shadow offset is | |
4582 | * not zero, toss it. | |
4583 | * | |
4584 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
4585 | * if the map is to be salvaged. For now, we just just toss the | |
4586 | * old map, giving the collapsed object no map. This means that | |
4587 | * the pager is invoked for zero fill pages. If analysis shows | |
4588 | * that this happens frequently and is a performance hit, then | |
4589 | * this code should be fixed to salvage the map. | |
4590 | */ | |
4591 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
4592 | if (backing_offset || (size != backing_object->vo_size)) { | |
4593 | vm_external_discarded++; | |
4594 | vm_external_destroy(backing_object->existence_map, | |
4595 | backing_object->vo_size); | |
4596 | } | |
4597 | else { | |
4598 | vm_external_collapsed++; | |
4599 | object->existence_map = backing_object->existence_map; | |
4600 | } | |
4601 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
4602 | #endif /* MACH_PAGEMAP */ | |
4603 | ||
4604 | /* | |
4605 | * Object now shadows whatever backing_object did. | |
4606 | * Note that the reference to backing_object->shadow | |
4607 | * moves from within backing_object to within object. | |
4608 | */ | |
4609 | ||
4610 | assert(!object->phys_contiguous); | |
4611 | assert(!backing_object->phys_contiguous); | |
4612 | object->shadow = backing_object->shadow; | |
4613 | if (object->shadow) { | |
4614 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4615 | } else { | |
4616 | /* no shadow, therefore no shadow offset... */ | |
4617 | object->vo_shadow_offset = 0; | |
4618 | } | |
4619 | assert((object->shadow == VM_OBJECT_NULL) || | |
4620 | (object->shadow->copy != backing_object)); | |
4621 | ||
4622 | /* | |
4623 | * Discard backing_object. | |
4624 | * | |
4625 | * Since the backing object has no pages, no | |
4626 | * pager left, and no object references within it, | |
4627 | * all that is necessary is to dispose of it. | |
4628 | */ | |
4629 | ||
4630 | assert((backing_object->ref_count == 1) && | |
4631 | (backing_object->resident_page_count == 0) && | |
4632 | (backing_object->paging_in_progress == 0) && | |
4633 | (backing_object->activity_in_progress == 0)); | |
4634 | ||
4635 | backing_object->alive = FALSE; | |
4636 | vm_object_unlock(backing_object); | |
4637 | ||
4638 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
4639 | backing_object, 0,0,0,0); | |
4640 | ||
4641 | vm_object_lock_destroy(backing_object); | |
4642 | ||
4643 | zfree(vm_object_zone, backing_object); | |
4644 | ||
4645 | object_collapses++; | |
4646 | } | |
4647 | ||
4648 | static void | |
4649 | vm_object_do_bypass( | |
4650 | vm_object_t object, | |
4651 | vm_object_t backing_object) | |
4652 | { | |
4653 | /* | |
4654 | * Make the parent shadow the next object | |
4655 | * in the chain. | |
4656 | */ | |
4657 | ||
4658 | vm_object_lock_assert_exclusive(object); | |
4659 | vm_object_lock_assert_exclusive(backing_object); | |
4660 | ||
4661 | #if TASK_SWAPPER | |
4662 | /* | |
4663 | * Do object reference in-line to | |
4664 | * conditionally increment shadow's | |
4665 | * residence count. If object is not | |
4666 | * resident, leave residence count | |
4667 | * on shadow alone. | |
4668 | */ | |
4669 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
4670 | vm_object_lock(backing_object->shadow); | |
4671 | vm_object_lock_assert_exclusive(backing_object->shadow); | |
4672 | backing_object->shadow->ref_count++; | |
4673 | if (object->res_count != 0) | |
4674 | vm_object_res_reference(backing_object->shadow); | |
4675 | vm_object_unlock(backing_object->shadow); | |
4676 | } | |
4677 | #else /* TASK_SWAPPER */ | |
4678 | vm_object_reference(backing_object->shadow); | |
4679 | #endif /* TASK_SWAPPER */ | |
4680 | ||
4681 | assert(!object->phys_contiguous); | |
4682 | assert(!backing_object->phys_contiguous); | |
4683 | object->shadow = backing_object->shadow; | |
4684 | if (object->shadow) { | |
4685 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4686 | } else { | |
4687 | /* no shadow, therefore no shadow offset... */ | |
4688 | object->vo_shadow_offset = 0; | |
4689 | } | |
4690 | ||
4691 | /* | |
4692 | * Backing object might have had a copy pointer | |
4693 | * to us. If it did, clear it. | |
4694 | */ | |
4695 | if (backing_object->copy == object) { | |
4696 | backing_object->copy = VM_OBJECT_NULL; | |
4697 | } | |
4698 | ||
4699 | /* | |
4700 | * Drop the reference count on backing_object. | |
4701 | #if TASK_SWAPPER | |
4702 | * Since its ref_count was at least 2, it | |
4703 | * will not vanish; so we don't need to call | |
4704 | * vm_object_deallocate. | |
4705 | * [with a caveat for "named" objects] | |
4706 | * | |
4707 | * The res_count on the backing object is | |
4708 | * conditionally decremented. It's possible | |
4709 | * (via vm_pageout_scan) to get here with | |
4710 | * a "swapped" object, which has a 0 res_count, | |
4711 | * in which case, the backing object res_count | |
4712 | * is already down by one. | |
4713 | #else | |
4714 | * Don't call vm_object_deallocate unless | |
4715 | * ref_count drops to zero. | |
4716 | * | |
4717 | * The ref_count can drop to zero here if the | |
4718 | * backing object could be bypassed but not | |
4719 | * collapsed, such as when the backing object | |
4720 | * is temporary and cachable. | |
4721 | #endif | |
4722 | */ | |
4723 | if (backing_object->ref_count > 2 || | |
4724 | (!backing_object->named && backing_object->ref_count > 1)) { | |
4725 | vm_object_lock_assert_exclusive(backing_object); | |
4726 | backing_object->ref_count--; | |
4727 | #if TASK_SWAPPER | |
4728 | if (object->res_count != 0) | |
4729 | vm_object_res_deallocate(backing_object); | |
4730 | assert(backing_object->ref_count > 0); | |
4731 | #endif /* TASK_SWAPPER */ | |
4732 | vm_object_unlock(backing_object); | |
4733 | } else { | |
4734 | ||
4735 | /* | |
4736 | * Drop locks so that we can deallocate | |
4737 | * the backing object. | |
4738 | */ | |
4739 | ||
4740 | #if TASK_SWAPPER | |
4741 | if (object->res_count == 0) { | |
4742 | /* XXX get a reference for the deallocate below */ | |
4743 | vm_object_res_reference(backing_object); | |
4744 | } | |
4745 | #endif /* TASK_SWAPPER */ | |
4746 | /* | |
4747 | * vm_object_collapse (the caller of this function) is | |
4748 | * now called from contexts that may not guarantee that a | |
4749 | * valid reference is held on the object... w/o a valid | |
4750 | * reference, it is unsafe and unwise (you will definitely | |
4751 | * regret it) to unlock the object and then retake the lock | |
4752 | * since the object may be terminated and recycled in between. | |
4753 | * The "activity_in_progress" reference will keep the object | |
4754 | * 'stable'. | |
4755 | */ | |
4756 | vm_object_activity_begin(object); | |
4757 | vm_object_unlock(object); | |
4758 | ||
4759 | vm_object_unlock(backing_object); | |
4760 | vm_object_deallocate(backing_object); | |
4761 | ||
4762 | /* | |
4763 | * Relock object. We don't have to reverify | |
4764 | * its state since vm_object_collapse will | |
4765 | * do that for us as it starts at the | |
4766 | * top of its loop. | |
4767 | */ | |
4768 | ||
4769 | vm_object_lock(object); | |
4770 | vm_object_activity_end(object); | |
4771 | } | |
4772 | ||
4773 | object_bypasses++; | |
4774 | } | |
4775 | ||
4776 | ||
4777 | /* | |
4778 | * vm_object_collapse: | |
4779 | * | |
4780 | * Perform an object collapse or an object bypass if appropriate. | |
4781 | * The real work of collapsing and bypassing is performed in | |
4782 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
4783 | * | |
4784 | * Requires that the object be locked and the page queues be unlocked. | |
4785 | * | |
4786 | */ | |
4787 | static unsigned long vm_object_collapse_calls = 0; | |
4788 | static unsigned long vm_object_collapse_objects = 0; | |
4789 | static unsigned long vm_object_collapse_do_collapse = 0; | |
4790 | static unsigned long vm_object_collapse_do_bypass = 0; | |
4791 | ||
4792 | __private_extern__ void | |
4793 | vm_object_collapse( | |
4794 | register vm_object_t object, | |
4795 | register vm_object_offset_t hint_offset, | |
4796 | boolean_t can_bypass) | |
4797 | { | |
4798 | register vm_object_t backing_object; | |
4799 | register unsigned int rcount; | |
4800 | register unsigned int size; | |
4801 | vm_object_t original_object; | |
4802 | int object_lock_type; | |
4803 | int backing_object_lock_type; | |
4804 | ||
4805 | vm_object_collapse_calls++; | |
4806 | ||
4807 | if (! vm_object_collapse_allowed && | |
4808 | ! (can_bypass && vm_object_bypass_allowed)) { | |
4809 | return; | |
4810 | } | |
4811 | ||
4812 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
4813 | object, 0,0,0,0); | |
4814 | ||
4815 | if (object == VM_OBJECT_NULL) | |
4816 | return; | |
4817 | ||
4818 | original_object = object; | |
4819 | ||
4820 | /* | |
4821 | * The top object was locked "exclusive" by the caller. | |
4822 | * In the first pass, to determine if we can collapse the shadow chain, | |
4823 | * take a "shared" lock on the shadow objects. If we can collapse, | |
4824 | * we'll have to go down the chain again with exclusive locks. | |
4825 | */ | |
4826 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4827 | backing_object_lock_type = OBJECT_LOCK_SHARED; | |
4828 | ||
4829 | retry: | |
4830 | object = original_object; | |
4831 | vm_object_lock_assert_exclusive(object); | |
4832 | ||
4833 | while (TRUE) { | |
4834 | vm_object_collapse_objects++; | |
4835 | /* | |
4836 | * Verify that the conditions are right for either | |
4837 | * collapse or bypass: | |
4838 | */ | |
4839 | ||
4840 | /* | |
4841 | * There is a backing object, and | |
4842 | */ | |
4843 | ||
4844 | backing_object = object->shadow; | |
4845 | if (backing_object == VM_OBJECT_NULL) { | |
4846 | if (object != original_object) { | |
4847 | vm_object_unlock(object); | |
4848 | } | |
4849 | return; | |
4850 | } | |
4851 | if (backing_object_lock_type == OBJECT_LOCK_SHARED) { | |
4852 | vm_object_lock_shared(backing_object); | |
4853 | } else { | |
4854 | vm_object_lock(backing_object); | |
4855 | } | |
4856 | ||
4857 | /* | |
4858 | * No pages in the object are currently | |
4859 | * being paged out, and | |
4860 | */ | |
4861 | if (object->paging_in_progress != 0 || | |
4862 | object->activity_in_progress != 0) { | |
4863 | /* try and collapse the rest of the shadow chain */ | |
4864 | if (object != original_object) { | |
4865 | vm_object_unlock(object); | |
4866 | } | |
4867 | object = backing_object; | |
4868 | object_lock_type = backing_object_lock_type; | |
4869 | continue; | |
4870 | } | |
4871 | ||
4872 | /* | |
4873 | * ... | |
4874 | * The backing object is not read_only, | |
4875 | * and no pages in the backing object are | |
4876 | * currently being paged out. | |
4877 | * The backing object is internal. | |
4878 | * | |
4879 | */ | |
4880 | ||
4881 | if (!backing_object->internal || | |
4882 | backing_object->paging_in_progress != 0 || | |
4883 | backing_object->activity_in_progress != 0) { | |
4884 | /* try and collapse the rest of the shadow chain */ | |
4885 | if (object != original_object) { | |
4886 | vm_object_unlock(object); | |
4887 | } | |
4888 | object = backing_object; | |
4889 | object_lock_type = backing_object_lock_type; | |
4890 | continue; | |
4891 | } | |
4892 | ||
4893 | /* | |
4894 | * The backing object can't be a copy-object: | |
4895 | * the shadow_offset for the copy-object must stay | |
4896 | * as 0. Furthermore (for the 'we have all the | |
4897 | * pages' case), if we bypass backing_object and | |
4898 | * just shadow the next object in the chain, old | |
4899 | * pages from that object would then have to be copied | |
4900 | * BOTH into the (former) backing_object and into the | |
4901 | * parent object. | |
4902 | */ | |
4903 | if (backing_object->shadow != VM_OBJECT_NULL && | |
4904 | backing_object->shadow->copy == backing_object) { | |
4905 | /* try and collapse the rest of the shadow chain */ | |
4906 | if (object != original_object) { | |
4907 | vm_object_unlock(object); | |
4908 | } | |
4909 | object = backing_object; | |
4910 | object_lock_type = backing_object_lock_type; | |
4911 | continue; | |
4912 | } | |
4913 | ||
4914 | /* | |
4915 | * We can now try to either collapse the backing | |
4916 | * object (if the parent is the only reference to | |
4917 | * it) or (perhaps) remove the parent's reference | |
4918 | * to it. | |
4919 | * | |
4920 | * If there is exactly one reference to the backing | |
4921 | * object, we may be able to collapse it into the | |
4922 | * parent. | |
4923 | * | |
4924 | * If MACH_PAGEMAP is defined: | |
4925 | * The parent must not have a pager created for it, | |
4926 | * since collapsing a backing_object dumps new pages | |
4927 | * into the parent that its pager doesn't know about | |
4928 | * (and the collapse code can't merge the existence | |
4929 | * maps). | |
4930 | * Otherwise: | |
4931 | * As long as one of the objects is still not known | |
4932 | * to the pager, we can collapse them. | |
4933 | */ | |
4934 | if (backing_object->ref_count == 1 && | |
4935 | (!object->pager_created | |
4936 | #if !MACH_PAGEMAP | |
4937 | || !backing_object->pager_created | |
4938 | #endif /*!MACH_PAGEMAP */ | |
4939 | ) && vm_object_collapse_allowed) { | |
4940 | ||
4941 | /* | |
4942 | * We need the exclusive lock on the VM objects. | |
4943 | */ | |
4944 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
4945 | /* | |
4946 | * We have an object and its shadow locked | |
4947 | * "shared". We can't just upgrade the locks | |
4948 | * to "exclusive", as some other thread might | |
4949 | * also have these objects locked "shared" and | |
4950 | * attempt to upgrade one or the other to | |
4951 | * "exclusive". The upgrades would block | |
4952 | * forever waiting for the other "shared" locks | |
4953 | * to get released. | |
4954 | * So we have to release the locks and go | |
4955 | * down the shadow chain again (since it could | |
4956 | * have changed) with "exclusive" locking. | |
4957 | */ | |
4958 | vm_object_unlock(backing_object); | |
4959 | if (object != original_object) | |
4960 | vm_object_unlock(object); | |
4961 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4962 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4963 | goto retry; | |
4964 | } | |
4965 | ||
4966 | XPR(XPR_VM_OBJECT, | |
4967 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", | |
4968 | backing_object, object, | |
4969 | backing_object->pager, | |
4970 | backing_object->pager_control, 0); | |
4971 | ||
4972 | /* | |
4973 | * Collapse the object with its backing | |
4974 | * object, and try again with the object's | |
4975 | * new backing object. | |
4976 | */ | |
4977 | ||
4978 | vm_object_do_collapse(object, backing_object); | |
4979 | vm_object_collapse_do_collapse++; | |
4980 | continue; | |
4981 | } | |
4982 | ||
4983 | /* | |
4984 | * Collapsing the backing object was not possible | |
4985 | * or permitted, so let's try bypassing it. | |
4986 | */ | |
4987 | ||
4988 | if (! (can_bypass && vm_object_bypass_allowed)) { | |
4989 | /* try and collapse the rest of the shadow chain */ | |
4990 | if (object != original_object) { | |
4991 | vm_object_unlock(object); | |
4992 | } | |
4993 | object = backing_object; | |
4994 | object_lock_type = backing_object_lock_type; | |
4995 | continue; | |
4996 | } | |
4997 | ||
4998 | ||
4999 | /* | |
5000 | * If the object doesn't have all its pages present, | |
5001 | * we have to make sure no pages in the backing object | |
5002 | * "show through" before bypassing it. | |
5003 | */ | |
5004 | size = atop(object->vo_size); | |
5005 | rcount = object->resident_page_count; | |
5006 | ||
5007 | if (rcount != size) { | |
5008 | vm_object_offset_t offset; | |
5009 | vm_object_offset_t backing_offset; | |
5010 | unsigned int backing_rcount; | |
5011 | ||
5012 | /* | |
5013 | * If the backing object has a pager but no pagemap, | |
5014 | * then we cannot bypass it, because we don't know | |
5015 | * what pages it has. | |
5016 | */ | |
5017 | if (backing_object->pager_created | |
5018 | #if MACH_PAGEMAP | |
5019 | && (backing_object->existence_map == VM_EXTERNAL_NULL) | |
5020 | #endif /* MACH_PAGEMAP */ | |
5021 | ) { | |
5022 | /* try and collapse the rest of the shadow chain */ | |
5023 | if (object != original_object) { | |
5024 | vm_object_unlock(object); | |
5025 | } | |
5026 | object = backing_object; | |
5027 | object_lock_type = backing_object_lock_type; | |
5028 | continue; | |
5029 | } | |
5030 | ||
5031 | /* | |
5032 | * If the object has a pager but no pagemap, | |
5033 | * then we cannot bypass it, because we don't know | |
5034 | * what pages it has. | |
5035 | */ | |
5036 | if (object->pager_created | |
5037 | #if MACH_PAGEMAP | |
5038 | && (object->existence_map == VM_EXTERNAL_NULL) | |
5039 | #endif /* MACH_PAGEMAP */ | |
5040 | ) { | |
5041 | /* try and collapse the rest of the shadow chain */ | |
5042 | if (object != original_object) { | |
5043 | vm_object_unlock(object); | |
5044 | } | |
5045 | object = backing_object; | |
5046 | object_lock_type = backing_object_lock_type; | |
5047 | continue; | |
5048 | } | |
5049 | ||
5050 | backing_offset = object->vo_shadow_offset; | |
5051 | backing_rcount = backing_object->resident_page_count; | |
5052 | ||
5053 | if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) { | |
5054 | /* | |
5055 | * we have enough pages in the backing object to guarantee that | |
5056 | * at least 1 of them must be 'uncovered' by a resident page | |
5057 | * in the object we're evaluating, so move on and | |
5058 | * try to collapse the rest of the shadow chain | |
5059 | */ | |
5060 | if (object != original_object) { | |
5061 | vm_object_unlock(object); | |
5062 | } | |
5063 | object = backing_object; | |
5064 | object_lock_type = backing_object_lock_type; | |
5065 | continue; | |
5066 | } | |
5067 | ||
5068 | /* | |
5069 | * If all of the pages in the backing object are | |
5070 | * shadowed by the parent object, the parent | |
5071 | * object no longer has to shadow the backing | |
5072 | * object; it can shadow the next one in the | |
5073 | * chain. | |
5074 | * | |
5075 | * If the backing object has existence info, | |
5076 | * we must check examine its existence info | |
5077 | * as well. | |
5078 | * | |
5079 | */ | |
5080 | ||
5081 | #if MACH_PAGEMAP | |
5082 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
5083 | (vm_external_state_get((obj)->existence_map, \ | |
5084 | (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \ | |
5085 | ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
5086 | #else | |
5087 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
5088 | (((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
5089 | #endif /* MACH_PAGEMAP */ | |
5090 | ||
5091 | /* | |
5092 | * Check the hint location first | |
5093 | * (since it is often the quickest way out of here). | |
5094 | */ | |
5095 | if (object->cow_hint != ~(vm_offset_t)0) | |
5096 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
5097 | else | |
5098 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
5099 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
5100 | ||
5101 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
5102 | backing_offset, backing_rcount) && | |
5103 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
5104 | /* dependency right at the hint */ | |
5105 | object->cow_hint = (vm_offset_t) hint_offset; /* atomic */ | |
5106 | /* try and collapse the rest of the shadow chain */ | |
5107 | if (object != original_object) { | |
5108 | vm_object_unlock(object); | |
5109 | } | |
5110 | object = backing_object; | |
5111 | object_lock_type = backing_object_lock_type; | |
5112 | continue; | |
5113 | } | |
5114 | ||
5115 | /* | |
5116 | * If the object's window onto the backing_object | |
5117 | * is large compared to the number of resident | |
5118 | * pages in the backing object, it makes sense to | |
5119 | * walk the backing_object's resident pages first. | |
5120 | * | |
5121 | * NOTE: Pages may be in both the existence map and/or | |
5122 | * resident, so if we don't find a dependency while | |
5123 | * walking the backing object's resident page list | |
5124 | * directly, and there is an existence map, we'll have | |
5125 | * to run the offset based 2nd pass. Because we may | |
5126 | * have to run both passes, we need to be careful | |
5127 | * not to decrement 'rcount' in the 1st pass | |
5128 | */ | |
5129 | if (backing_rcount && backing_rcount < (size / 8)) { | |
5130 | unsigned int rc = rcount; | |
5131 | vm_page_t p; | |
5132 | ||
5133 | backing_rcount = backing_object->resident_page_count; | |
5134 | p = (vm_page_t)queue_first(&backing_object->memq); | |
5135 | do { | |
5136 | offset = (p->offset - backing_offset); | |
5137 | ||
5138 | if (offset < object->vo_size && | |
5139 | offset != hint_offset && | |
5140 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
5141 | /* found a dependency */ | |
5142 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
5143 | ||
5144 | break; | |
5145 | } | |
5146 | p = (vm_page_t) queue_next(&p->listq); | |
5147 | ||
5148 | } while (--backing_rcount); | |
5149 | ||
5150 | if (backing_rcount != 0 ) { | |
5151 | /* try and collapse the rest of the shadow chain */ | |
5152 | if (object != original_object) { | |
5153 | vm_object_unlock(object); | |
5154 | } | |
5155 | object = backing_object; | |
5156 | object_lock_type = backing_object_lock_type; | |
5157 | continue; | |
5158 | } | |
5159 | } | |
5160 | ||
5161 | /* | |
5162 | * Walk through the offsets looking for pages in the | |
5163 | * backing object that show through to the object. | |
5164 | */ | |
5165 | if (backing_rcount | |
5166 | #if MACH_PAGEMAP | |
5167 | || backing_object->existence_map | |
5168 | #endif /* MACH_PAGEMAP */ | |
5169 | ) { | |
5170 | offset = hint_offset; | |
5171 | ||
5172 | while((offset = | |
5173 | (offset + PAGE_SIZE_64 < object->vo_size) ? | |
5174 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
5175 | ||
5176 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
5177 | backing_offset, backing_rcount) && | |
5178 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
5179 | /* found a dependency */ | |
5180 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
5181 | break; | |
5182 | } | |
5183 | } | |
5184 | if (offset != hint_offset) { | |
5185 | /* try and collapse the rest of the shadow chain */ | |
5186 | if (object != original_object) { | |
5187 | vm_object_unlock(object); | |
5188 | } | |
5189 | object = backing_object; | |
5190 | object_lock_type = backing_object_lock_type; | |
5191 | continue; | |
5192 | } | |
5193 | } | |
5194 | } | |
5195 | ||
5196 | /* | |
5197 | * We need "exclusive" locks on the 2 VM objects. | |
5198 | */ | |
5199 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
5200 | vm_object_unlock(backing_object); | |
5201 | if (object != original_object) | |
5202 | vm_object_unlock(object); | |
5203 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5204 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5205 | goto retry; | |
5206 | } | |
5207 | ||
5208 | /* reset the offset hint for any objects deeper in the chain */ | |
5209 | object->cow_hint = (vm_offset_t)0; | |
5210 | ||
5211 | /* | |
5212 | * All interesting pages in the backing object | |
5213 | * already live in the parent or its pager. | |
5214 | * Thus we can bypass the backing object. | |
5215 | */ | |
5216 | ||
5217 | vm_object_do_bypass(object, backing_object); | |
5218 | vm_object_collapse_do_bypass++; | |
5219 | ||
5220 | /* | |
5221 | * Try again with this object's new backing object. | |
5222 | */ | |
5223 | ||
5224 | continue; | |
5225 | } | |
5226 | ||
5227 | if (object != original_object) { | |
5228 | vm_object_unlock(object); | |
5229 | } | |
5230 | } | |
5231 | ||
5232 | /* | |
5233 | * Routine: vm_object_page_remove: [internal] | |
5234 | * Purpose: | |
5235 | * Removes all physical pages in the specified | |
5236 | * object range from the object's list of pages. | |
5237 | * | |
5238 | * In/out conditions: | |
5239 | * The object must be locked. | |
5240 | * The object must not have paging_in_progress, usually | |
5241 | * guaranteed by not having a pager. | |
5242 | */ | |
5243 | unsigned int vm_object_page_remove_lookup = 0; | |
5244 | unsigned int vm_object_page_remove_iterate = 0; | |
5245 | ||
5246 | __private_extern__ void | |
5247 | vm_object_page_remove( | |
5248 | register vm_object_t object, | |
5249 | register vm_object_offset_t start, | |
5250 | register vm_object_offset_t end) | |
5251 | { | |
5252 | register vm_page_t p, next; | |
5253 | ||
5254 | /* | |
5255 | * One and two page removals are most popular. | |
5256 | * The factor of 16 here is somewhat arbitrary. | |
5257 | * It balances vm_object_lookup vs iteration. | |
5258 | */ | |
5259 | ||
5260 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { | |
5261 | vm_object_page_remove_lookup++; | |
5262 | ||
5263 | for (; start < end; start += PAGE_SIZE_64) { | |
5264 | p = vm_page_lookup(object, start); | |
5265 | if (p != VM_PAGE_NULL) { | |
5266 | assert(!p->cleaning && !p->pageout && !p->laundry); | |
5267 | if (!p->fictitious && p->pmapped) | |
5268 | pmap_disconnect(p->phys_page); | |
5269 | VM_PAGE_FREE(p); | |
5270 | } | |
5271 | } | |
5272 | } else { | |
5273 | vm_object_page_remove_iterate++; | |
5274 | ||
5275 | p = (vm_page_t) queue_first(&object->memq); | |
5276 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
5277 | next = (vm_page_t) queue_next(&p->listq); | |
5278 | if ((start <= p->offset) && (p->offset < end)) { | |
5279 | assert(!p->cleaning && !p->pageout && !p->laundry); | |
5280 | if (!p->fictitious && p->pmapped) | |
5281 | pmap_disconnect(p->phys_page); | |
5282 | VM_PAGE_FREE(p); | |
5283 | } | |
5284 | p = next; | |
5285 | } | |
5286 | } | |
5287 | } | |
5288 | ||
5289 | ||
5290 | /* | |
5291 | * Routine: vm_object_coalesce | |
5292 | * Function: Coalesces two objects backing up adjoining | |
5293 | * regions of memory into a single object. | |
5294 | * | |
5295 | * returns TRUE if objects were combined. | |
5296 | * | |
5297 | * NOTE: Only works at the moment if the second object is NULL - | |
5298 | * if it's not, which object do we lock first? | |
5299 | * | |
5300 | * Parameters: | |
5301 | * prev_object First object to coalesce | |
5302 | * prev_offset Offset into prev_object | |
5303 | * next_object Second object into coalesce | |
5304 | * next_offset Offset into next_object | |
5305 | * | |
5306 | * prev_size Size of reference to prev_object | |
5307 | * next_size Size of reference to next_object | |
5308 | * | |
5309 | * Conditions: | |
5310 | * The object(s) must *not* be locked. The map must be locked | |
5311 | * to preserve the reference to the object(s). | |
5312 | */ | |
5313 | static int vm_object_coalesce_count = 0; | |
5314 | ||
5315 | __private_extern__ boolean_t | |
5316 | vm_object_coalesce( | |
5317 | register vm_object_t prev_object, | |
5318 | vm_object_t next_object, | |
5319 | vm_object_offset_t prev_offset, | |
5320 | __unused vm_object_offset_t next_offset, | |
5321 | vm_object_size_t prev_size, | |
5322 | vm_object_size_t next_size) | |
5323 | { | |
5324 | vm_object_size_t newsize; | |
5325 | ||
5326 | #ifdef lint | |
5327 | next_offset++; | |
5328 | #endif /* lint */ | |
5329 | ||
5330 | if (next_object != VM_OBJECT_NULL) { | |
5331 | return(FALSE); | |
5332 | } | |
5333 | ||
5334 | if (prev_object == VM_OBJECT_NULL) { | |
5335 | return(TRUE); | |
5336 | } | |
5337 | ||
5338 | XPR(XPR_VM_OBJECT, | |
5339 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
5340 | prev_object, prev_offset, prev_size, next_size, 0); | |
5341 | ||
5342 | vm_object_lock(prev_object); | |
5343 | ||
5344 | /* | |
5345 | * Try to collapse the object first | |
5346 | */ | |
5347 | vm_object_collapse(prev_object, prev_offset, TRUE); | |
5348 | ||
5349 | /* | |
5350 | * Can't coalesce if pages not mapped to | |
5351 | * prev_entry may be in use any way: | |
5352 | * . more than one reference | |
5353 | * . paged out | |
5354 | * . shadows another object | |
5355 | * . has a copy elsewhere | |
5356 | * . is purgeable | |
5357 | * . paging references (pages might be in page-list) | |
5358 | */ | |
5359 | ||
5360 | if ((prev_object->ref_count > 1) || | |
5361 | prev_object->pager_created || | |
5362 | (prev_object->shadow != VM_OBJECT_NULL) || | |
5363 | (prev_object->copy != VM_OBJECT_NULL) || | |
5364 | (prev_object->true_share != FALSE) || | |
5365 | (prev_object->purgable != VM_PURGABLE_DENY) || | |
5366 | (prev_object->paging_in_progress != 0) || | |
5367 | (prev_object->activity_in_progress != 0)) { | |
5368 | vm_object_unlock(prev_object); | |
5369 | return(FALSE); | |
5370 | } | |
5371 | ||
5372 | vm_object_coalesce_count++; | |
5373 | ||
5374 | /* | |
5375 | * Remove any pages that may still be in the object from | |
5376 | * a previous deallocation. | |
5377 | */ | |
5378 | vm_object_page_remove(prev_object, | |
5379 | prev_offset + prev_size, | |
5380 | prev_offset + prev_size + next_size); | |
5381 | ||
5382 | /* | |
5383 | * Extend the object if necessary. | |
5384 | */ | |
5385 | newsize = prev_offset + prev_size + next_size; | |
5386 | if (newsize > prev_object->vo_size) { | |
5387 | #if MACH_PAGEMAP | |
5388 | /* | |
5389 | * We cannot extend an object that has existence info, | |
5390 | * since the existence info might then fail to cover | |
5391 | * the entire object. | |
5392 | * | |
5393 | * This assertion must be true because the object | |
5394 | * has no pager, and we only create existence info | |
5395 | * for objects with pagers. | |
5396 | */ | |
5397 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
5398 | #endif /* MACH_PAGEMAP */ | |
5399 | prev_object->vo_size = newsize; | |
5400 | } | |
5401 | ||
5402 | vm_object_unlock(prev_object); | |
5403 | return(TRUE); | |
5404 | } | |
5405 | ||
5406 | /* | |
5407 | * Attach a set of physical pages to an object, so that they can | |
5408 | * be mapped by mapping the object. Typically used to map IO memory. | |
5409 | * | |
5410 | * The mapping function and its private data are used to obtain the | |
5411 | * physical addresses for each page to be mapped. | |
5412 | */ | |
5413 | void | |
5414 | vm_object_page_map( | |
5415 | vm_object_t object, | |
5416 | vm_object_offset_t offset, | |
5417 | vm_object_size_t size, | |
5418 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
5419 | vm_object_offset_t offset), | |
5420 | void *map_fn_data) /* private to map_fn */ | |
5421 | { | |
5422 | int64_t num_pages; | |
5423 | int i; | |
5424 | vm_page_t m; | |
5425 | vm_page_t old_page; | |
5426 | vm_object_offset_t addr; | |
5427 | ||
5428 | num_pages = atop_64(size); | |
5429 | ||
5430 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
5431 | ||
5432 | addr = (*map_fn)(map_fn_data, offset); | |
5433 | ||
5434 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5435 | vm_page_more_fictitious(); | |
5436 | ||
5437 | vm_object_lock(object); | |
5438 | if ((old_page = vm_page_lookup(object, offset)) | |
5439 | != VM_PAGE_NULL) | |
5440 | { | |
5441 | VM_PAGE_FREE(old_page); | |
5442 | } | |
5443 | ||
5444 | assert((ppnum_t) addr == addr); | |
5445 | vm_page_init(m, (ppnum_t) addr, FALSE); | |
5446 | /* | |
5447 | * private normally requires lock_queues but since we | |
5448 | * are initializing the page, its not necessary here | |
5449 | */ | |
5450 | m->private = TRUE; /* don`t free page */ | |
5451 | m->wire_count = 1; | |
5452 | vm_page_insert(m, object, offset); | |
5453 | ||
5454 | PAGE_WAKEUP_DONE(m); | |
5455 | vm_object_unlock(object); | |
5456 | } | |
5457 | } | |
5458 | ||
5459 | kern_return_t | |
5460 | vm_object_populate_with_private( | |
5461 | vm_object_t object, | |
5462 | vm_object_offset_t offset, | |
5463 | ppnum_t phys_page, | |
5464 | vm_size_t size) | |
5465 | { | |
5466 | ppnum_t base_page; | |
5467 | vm_object_offset_t base_offset; | |
5468 | ||
5469 | ||
5470 | if (!object->private) | |
5471 | return KERN_FAILURE; | |
5472 | ||
5473 | base_page = phys_page; | |
5474 | ||
5475 | vm_object_lock(object); | |
5476 | ||
5477 | if (!object->phys_contiguous) { | |
5478 | vm_page_t m; | |
5479 | ||
5480 | if ((base_offset = trunc_page_64(offset)) != offset) { | |
5481 | vm_object_unlock(object); | |
5482 | return KERN_FAILURE; | |
5483 | } | |
5484 | base_offset += object->paging_offset; | |
5485 | ||
5486 | while (size) { | |
5487 | m = vm_page_lookup(object, base_offset); | |
5488 | ||
5489 | if (m != VM_PAGE_NULL) { | |
5490 | if (m->fictitious) { | |
5491 | if (m->phys_page != vm_page_guard_addr) { | |
5492 | ||
5493 | vm_page_lockspin_queues(); | |
5494 | m->private = TRUE; | |
5495 | vm_page_unlock_queues(); | |
5496 | ||
5497 | m->fictitious = FALSE; | |
5498 | m->phys_page = base_page; | |
5499 | } | |
5500 | } else if (m->phys_page != base_page) { | |
5501 | ||
5502 | if ( !m->private) { | |
5503 | /* | |
5504 | * we'd leak a real page... that can't be right | |
5505 | */ | |
5506 | panic("vm_object_populate_with_private - %p not private", m); | |
5507 | } | |
5508 | if (m->pmapped) { | |
5509 | /* | |
5510 | * pmap call to clear old mapping | |
5511 | */ | |
5512 | pmap_disconnect(m->phys_page); | |
5513 | } | |
5514 | m->phys_page = base_page; | |
5515 | } | |
5516 | if (m->encrypted) { | |
5517 | /* | |
5518 | * we should never see this on a ficticious or private page | |
5519 | */ | |
5520 | panic("vm_object_populate_with_private - %p encrypted", m); | |
5521 | } | |
5522 | ||
5523 | } else { | |
5524 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5525 | vm_page_more_fictitious(); | |
5526 | ||
5527 | /* | |
5528 | * private normally requires lock_queues but since we | |
5529 | * are initializing the page, its not necessary here | |
5530 | */ | |
5531 | m->private = TRUE; | |
5532 | m->fictitious = FALSE; | |
5533 | m->phys_page = base_page; | |
5534 | m->unusual = TRUE; | |
5535 | m->busy = FALSE; | |
5536 | ||
5537 | vm_page_insert(m, object, base_offset); | |
5538 | } | |
5539 | base_page++; /* Go to the next physical page */ | |
5540 | base_offset += PAGE_SIZE; | |
5541 | size -= PAGE_SIZE; | |
5542 | } | |
5543 | } else { | |
5544 | /* NOTE: we should check the original settings here */ | |
5545 | /* if we have a size > zero a pmap call should be made */ | |
5546 | /* to disable the range */ | |
5547 | ||
5548 | /* pmap_? */ | |
5549 | ||
5550 | /* shadows on contiguous memory are not allowed */ | |
5551 | /* we therefore can use the offset field */ | |
5552 | object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; | |
5553 | object->vo_size = size; | |
5554 | } | |
5555 | vm_object_unlock(object); | |
5556 | ||
5557 | return KERN_SUCCESS; | |
5558 | } | |
5559 | ||
5560 | /* | |
5561 | * memory_object_free_from_cache: | |
5562 | * | |
5563 | * Walk the vm_object cache list, removing and freeing vm_objects | |
5564 | * which are backed by the pager identified by the caller, (pager_ops). | |
5565 | * Remove up to "count" objects, if there are that may available | |
5566 | * in the cache. | |
5567 | * | |
5568 | * Walk the list at most once, return the number of vm_objects | |
5569 | * actually freed. | |
5570 | */ | |
5571 | ||
5572 | __private_extern__ kern_return_t | |
5573 | memory_object_free_from_cache( | |
5574 | __unused host_t host, | |
5575 | __unused memory_object_pager_ops_t pager_ops, | |
5576 | int *count) | |
5577 | { | |
5578 | #if VM_OBJECT_CACHE | |
5579 | int object_released = 0; | |
5580 | ||
5581 | register vm_object_t object = VM_OBJECT_NULL; | |
5582 | vm_object_t shadow; | |
5583 | ||
5584 | /* | |
5585 | if(host == HOST_NULL) | |
5586 | return(KERN_INVALID_ARGUMENT); | |
5587 | */ | |
5588 | ||
5589 | try_again: | |
5590 | vm_object_cache_lock(); | |
5591 | ||
5592 | queue_iterate(&vm_object_cached_list, object, | |
5593 | vm_object_t, cached_list) { | |
5594 | if (object->pager && | |
5595 | (pager_ops == object->pager->mo_pager_ops)) { | |
5596 | vm_object_lock(object); | |
5597 | queue_remove(&vm_object_cached_list, object, | |
5598 | vm_object_t, cached_list); | |
5599 | vm_object_cached_count--; | |
5600 | ||
5601 | vm_object_cache_unlock(); | |
5602 | /* | |
5603 | * Since this object is in the cache, we know | |
5604 | * that it is initialized and has only a pager's | |
5605 | * (implicit) reference. Take a reference to avoid | |
5606 | * recursive deallocations. | |
5607 | */ | |
5608 | ||
5609 | assert(object->pager_initialized); | |
5610 | assert(object->ref_count == 0); | |
5611 | vm_object_lock_assert_exclusive(object); | |
5612 | object->ref_count++; | |
5613 | ||
5614 | /* | |
5615 | * Terminate the object. | |
5616 | * If the object had a shadow, we let | |
5617 | * vm_object_deallocate deallocate it. | |
5618 | * "pageout" objects have a shadow, but | |
5619 | * maintain a "paging reference" rather | |
5620 | * than a normal reference. | |
5621 | * (We are careful here to limit recursion.) | |
5622 | */ | |
5623 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5624 | ||
5625 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
5626 | && (shadow != VM_OBJECT_NULL)) { | |
5627 | vm_object_deallocate(shadow); | |
5628 | } | |
5629 | ||
5630 | if(object_released++ == *count) | |
5631 | return KERN_SUCCESS; | |
5632 | goto try_again; | |
5633 | } | |
5634 | } | |
5635 | vm_object_cache_unlock(); | |
5636 | *count = object_released; | |
5637 | #else | |
5638 | *count = 0; | |
5639 | #endif | |
5640 | return KERN_SUCCESS; | |
5641 | } | |
5642 | ||
5643 | ||
5644 | ||
5645 | kern_return_t | |
5646 | memory_object_create_named( | |
5647 | memory_object_t pager, | |
5648 | memory_object_offset_t size, | |
5649 | memory_object_control_t *control) | |
5650 | { | |
5651 | vm_object_t object; | |
5652 | vm_object_hash_entry_t entry; | |
5653 | lck_mtx_t *lck; | |
5654 | ||
5655 | *control = MEMORY_OBJECT_CONTROL_NULL; | |
5656 | if (pager == MEMORY_OBJECT_NULL) | |
5657 | return KERN_INVALID_ARGUMENT; | |
5658 | ||
5659 | lck = vm_object_hash_lock_spin(pager); | |
5660 | entry = vm_object_hash_lookup(pager, FALSE); | |
5661 | ||
5662 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
5663 | (entry->object != VM_OBJECT_NULL)) { | |
5664 | if (entry->object->named == TRUE) | |
5665 | panic("memory_object_create_named: caller already holds the right"); } | |
5666 | vm_object_hash_unlock(lck); | |
5667 | ||
5668 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) { | |
5669 | return(KERN_INVALID_OBJECT); | |
5670 | } | |
5671 | ||
5672 | /* wait for object (if any) to be ready */ | |
5673 | if (object != VM_OBJECT_NULL) { | |
5674 | vm_object_lock(object); | |
5675 | object->named = TRUE; | |
5676 | while (!object->pager_ready) { | |
5677 | vm_object_sleep(object, | |
5678 | VM_OBJECT_EVENT_PAGER_READY, | |
5679 | THREAD_UNINT); | |
5680 | } | |
5681 | *control = object->pager_control; | |
5682 | vm_object_unlock(object); | |
5683 | } | |
5684 | return (KERN_SUCCESS); | |
5685 | } | |
5686 | ||
5687 | ||
5688 | /* | |
5689 | * Routine: memory_object_recover_named [user interface] | |
5690 | * Purpose: | |
5691 | * Attempt to recover a named reference for a VM object. | |
5692 | * VM will verify that the object has not already started | |
5693 | * down the termination path, and if it has, will optionally | |
5694 | * wait for that to finish. | |
5695 | * Returns: | |
5696 | * KERN_SUCCESS - we recovered a named reference on the object | |
5697 | * KERN_FAILURE - we could not recover a reference (object dead) | |
5698 | * KERN_INVALID_ARGUMENT - bad memory object control | |
5699 | */ | |
5700 | kern_return_t | |
5701 | memory_object_recover_named( | |
5702 | memory_object_control_t control, | |
5703 | boolean_t wait_on_terminating) | |
5704 | { | |
5705 | vm_object_t object; | |
5706 | ||
5707 | object = memory_object_control_to_vm_object(control); | |
5708 | if (object == VM_OBJECT_NULL) { | |
5709 | return (KERN_INVALID_ARGUMENT); | |
5710 | } | |
5711 | restart: | |
5712 | vm_object_lock(object); | |
5713 | ||
5714 | if (object->terminating && wait_on_terminating) { | |
5715 | vm_object_wait(object, | |
5716 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
5717 | THREAD_UNINT); | |
5718 | goto restart; | |
5719 | } | |
5720 | ||
5721 | if (!object->alive) { | |
5722 | vm_object_unlock(object); | |
5723 | return KERN_FAILURE; | |
5724 | } | |
5725 | ||
5726 | if (object->named == TRUE) { | |
5727 | vm_object_unlock(object); | |
5728 | return KERN_SUCCESS; | |
5729 | } | |
5730 | #if VM_OBJECT_CACHE | |
5731 | if ((object->ref_count == 0) && (!object->terminating)) { | |
5732 | if (!vm_object_cache_lock_try()) { | |
5733 | vm_object_unlock(object); | |
5734 | goto restart; | |
5735 | } | |
5736 | queue_remove(&vm_object_cached_list, object, | |
5737 | vm_object_t, cached_list); | |
5738 | vm_object_cached_count--; | |
5739 | XPR(XPR_VM_OBJECT_CACHE, | |
5740 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
5741 | object, | |
5742 | vm_object_cached_list.next, | |
5743 | vm_object_cached_list.prev, 0,0); | |
5744 | ||
5745 | vm_object_cache_unlock(); | |
5746 | } | |
5747 | #endif | |
5748 | object->named = TRUE; | |
5749 | vm_object_lock_assert_exclusive(object); | |
5750 | object->ref_count++; | |
5751 | vm_object_res_reference(object); | |
5752 | while (!object->pager_ready) { | |
5753 | vm_object_sleep(object, | |
5754 | VM_OBJECT_EVENT_PAGER_READY, | |
5755 | THREAD_UNINT); | |
5756 | } | |
5757 | vm_object_unlock(object); | |
5758 | return (KERN_SUCCESS); | |
5759 | } | |
5760 | ||
5761 | ||
5762 | /* | |
5763 | * vm_object_release_name: | |
5764 | * | |
5765 | * Enforces name semantic on memory_object reference count decrement | |
5766 | * This routine should not be called unless the caller holds a name | |
5767 | * reference gained through the memory_object_create_named. | |
5768 | * | |
5769 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
5770 | * reference count is not 1. i.e. idle with the only remaining reference | |
5771 | * being the name. | |
5772 | * If the decision is made to proceed the name field flag is set to | |
5773 | * false and the reference count is decremented. If the RESPECT_CACHE | |
5774 | * flag is set and the reference count has gone to zero, the | |
5775 | * memory_object is checked to see if it is cacheable otherwise when | |
5776 | * the reference count is zero, it is simply terminated. | |
5777 | */ | |
5778 | ||
5779 | __private_extern__ kern_return_t | |
5780 | vm_object_release_name( | |
5781 | vm_object_t object, | |
5782 | int flags) | |
5783 | { | |
5784 | vm_object_t shadow; | |
5785 | boolean_t original_object = TRUE; | |
5786 | ||
5787 | while (object != VM_OBJECT_NULL) { | |
5788 | ||
5789 | vm_object_lock(object); | |
5790 | ||
5791 | assert(object->alive); | |
5792 | if (original_object) | |
5793 | assert(object->named); | |
5794 | assert(object->ref_count > 0); | |
5795 | ||
5796 | /* | |
5797 | * We have to wait for initialization before | |
5798 | * destroying or caching the object. | |
5799 | */ | |
5800 | ||
5801 | if (object->pager_created && !object->pager_initialized) { | |
5802 | assert(!object->can_persist); | |
5803 | vm_object_assert_wait(object, | |
5804 | VM_OBJECT_EVENT_INITIALIZED, | |
5805 | THREAD_UNINT); | |
5806 | vm_object_unlock(object); | |
5807 | thread_block(THREAD_CONTINUE_NULL); | |
5808 | continue; | |
5809 | } | |
5810 | ||
5811 | if (((object->ref_count > 1) | |
5812 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
5813 | || (object->terminating)) { | |
5814 | vm_object_unlock(object); | |
5815 | return KERN_FAILURE; | |
5816 | } else { | |
5817 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
5818 | vm_object_unlock(object); | |
5819 | return KERN_SUCCESS; | |
5820 | } | |
5821 | } | |
5822 | ||
5823 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
5824 | (object->ref_count == 1)) { | |
5825 | if (original_object) | |
5826 | object->named = FALSE; | |
5827 | vm_object_unlock(object); | |
5828 | /* let vm_object_deallocate push this thing into */ | |
5829 | /* the cache, if that it is where it is bound */ | |
5830 | vm_object_deallocate(object); | |
5831 | return KERN_SUCCESS; | |
5832 | } | |
5833 | VM_OBJ_RES_DECR(object); | |
5834 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5835 | ||
5836 | if (object->ref_count == 1) { | |
5837 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
5838 | if (original_object) { | |
5839 | return KERN_FAILURE; | |
5840 | } else { | |
5841 | return KERN_SUCCESS; | |
5842 | } | |
5843 | } | |
5844 | if (shadow != VM_OBJECT_NULL) { | |
5845 | original_object = FALSE; | |
5846 | object = shadow; | |
5847 | continue; | |
5848 | } | |
5849 | return KERN_SUCCESS; | |
5850 | } else { | |
5851 | vm_object_lock_assert_exclusive(object); | |
5852 | object->ref_count--; | |
5853 | assert(object->ref_count > 0); | |
5854 | if(original_object) | |
5855 | object->named = FALSE; | |
5856 | vm_object_unlock(object); | |
5857 | return KERN_SUCCESS; | |
5858 | } | |
5859 | } | |
5860 | /*NOTREACHED*/ | |
5861 | assert(0); | |
5862 | return KERN_FAILURE; | |
5863 | } | |
5864 | ||
5865 | ||
5866 | __private_extern__ kern_return_t | |
5867 | vm_object_lock_request( | |
5868 | vm_object_t object, | |
5869 | vm_object_offset_t offset, | |
5870 | vm_object_size_t size, | |
5871 | memory_object_return_t should_return, | |
5872 | int flags, | |
5873 | vm_prot_t prot) | |
5874 | { | |
5875 | __unused boolean_t should_flush; | |
5876 | ||
5877 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
5878 | ||
5879 | XPR(XPR_MEMORY_OBJECT, | |
5880 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
5881 | object, offset, size, | |
5882 | (((should_return&1)<<1)|should_flush), prot); | |
5883 | ||
5884 | /* | |
5885 | * Check for bogus arguments. | |
5886 | */ | |
5887 | if (object == VM_OBJECT_NULL) | |
5888 | return (KERN_INVALID_ARGUMENT); | |
5889 | ||
5890 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) | |
5891 | return (KERN_INVALID_ARGUMENT); | |
5892 | ||
5893 | size = round_page_64(size); | |
5894 | ||
5895 | /* | |
5896 | * Lock the object, and acquire a paging reference to | |
5897 | * prevent the memory_object reference from being released. | |
5898 | */ | |
5899 | vm_object_lock(object); | |
5900 | vm_object_paging_begin(object); | |
5901 | ||
5902 | (void)vm_object_update(object, | |
5903 | offset, size, NULL, NULL, should_return, flags, prot); | |
5904 | ||
5905 | vm_object_paging_end(object); | |
5906 | vm_object_unlock(object); | |
5907 | ||
5908 | return (KERN_SUCCESS); | |
5909 | } | |
5910 | ||
5911 | /* | |
5912 | * Empty a purgeable object by grabbing the physical pages assigned to it and | |
5913 | * putting them on the free queue without writing them to backing store, etc. | |
5914 | * When the pages are next touched they will be demand zero-fill pages. We | |
5915 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
5916 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
5917 | * than happy to grab these since this is a purgeable object. We mark the | |
5918 | * object as "empty" after reaping its pages. | |
5919 | * | |
5920 | * On entry the object must be locked and it must be | |
5921 | * purgeable with no delayed copies pending. | |
5922 | */ | |
5923 | void | |
5924 | vm_object_purge(vm_object_t object) | |
5925 | { | |
5926 | vm_object_lock_assert_exclusive(object); | |
5927 | ||
5928 | if (object->purgable == VM_PURGABLE_DENY) | |
5929 | return; | |
5930 | ||
5931 | assert(object->copy == VM_OBJECT_NULL); | |
5932 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5933 | ||
5934 | if(object->purgable == VM_PURGABLE_VOLATILE) { | |
5935 | unsigned int delta; | |
5936 | assert(object->resident_page_count >= | |
5937 | object->wired_page_count); | |
5938 | delta = (object->resident_page_count - | |
5939 | object->wired_page_count); | |
5940 | if (delta != 0) { | |
5941 | assert(vm_page_purgeable_count >= | |
5942 | delta); | |
5943 | OSAddAtomic(-delta, | |
5944 | (SInt32 *)&vm_page_purgeable_count); | |
5945 | } | |
5946 | if (object->wired_page_count != 0) { | |
5947 | assert(vm_page_purgeable_wired_count >= | |
5948 | object->wired_page_count); | |
5949 | OSAddAtomic(-object->wired_page_count, | |
5950 | (SInt32 *)&vm_page_purgeable_wired_count); | |
5951 | } | |
5952 | } | |
5953 | object->purgable = VM_PURGABLE_EMPTY; | |
5954 | ||
5955 | vm_object_reap_pages(object, REAP_PURGEABLE); | |
5956 | } | |
5957 | ||
5958 | ||
5959 | /* | |
5960 | * vm_object_purgeable_control() allows the caller to control and investigate the | |
5961 | * state of a purgeable object. A purgeable object is created via a call to | |
5962 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
5963 | * never be coalesced with any other object -- even other purgeable objects -- | |
5964 | * and will thus always remain a distinct object. A purgeable object has | |
5965 | * special semantics when its reference count is exactly 1. If its reference | |
5966 | * count is greater than 1, then a purgeable object will behave like a normal | |
5967 | * object and attempts to use this interface will result in an error return | |
5968 | * of KERN_INVALID_ARGUMENT. | |
5969 | * | |
5970 | * A purgeable object may be put into a "volatile" state which will make the | |
5971 | * object's pages elligable for being reclaimed without paging to backing | |
5972 | * store if the system runs low on memory. If the pages in a volatile | |
5973 | * purgeable object are reclaimed, the purgeable object is said to have been | |
5974 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
5975 | * many pages from the object as it can in a convenient manner (pages already | |
5976 | * en route to backing store or busy for other reasons are left as is). When | |
5977 | * a purgeable object is made volatile, its pages will generally be reclaimed | |
5978 | * before other pages in the application's working set. This semantic is | |
5979 | * generally used by applications which can recreate the data in the object | |
5980 | * faster than it can be paged in. One such example might be media assets | |
5981 | * which can be reread from a much faster RAID volume. | |
5982 | * | |
5983 | * A purgeable object may be designated as "non-volatile" which means it will | |
5984 | * behave like all other objects in the system with pages being written to and | |
5985 | * read from backing store as needed to satisfy system memory needs. If the | |
5986 | * object was emptied before the object was made non-volatile, that fact will | |
5987 | * be returned as the old state of the purgeable object (see | |
5988 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which | |
5989 | * were reclaimed as part of emptying the object will be refaulted in as | |
5990 | * zero-fill on demand. It is up to the application to note that an object | |
5991 | * was emptied and recreate the objects contents if necessary. When a | |
5992 | * purgeable object is made non-volatile, its pages will generally not be paged | |
5993 | * out to backing store in the immediate future. A purgeable object may also | |
5994 | * be manually emptied. | |
5995 | * | |
5996 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
5997 | * volatile purgeable object may be queried at any time. This information may | |
5998 | * be used as a control input to let the application know when the system is | |
5999 | * experiencing memory pressure and is reclaiming memory. | |
6000 | * | |
6001 | * The specified address may be any address within the purgeable object. If | |
6002 | * the specified address does not represent any object in the target task's | |
6003 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
6004 | * object containing the specified address is not a purgeable object, then | |
6005 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be | |
6006 | * returned. | |
6007 | * | |
6008 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
6009 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
6010 | * state is used to set the new state of the purgeable object and return its | |
6011 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
6012 | * object is returned in the parameter state. | |
6013 | * | |
6014 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
6015 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
6016 | * the non-volatile, volatile and volatile/empty states described above. | |
6017 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will | |
6018 | * immediately reclaim as many pages in the object as can be conveniently | |
6019 | * collected (some may have already been written to backing store or be | |
6020 | * otherwise busy). | |
6021 | * | |
6022 | * The process of making a purgeable object non-volatile and determining its | |
6023 | * previous state is atomic. Thus, if a purgeable object is made | |
6024 | * VM_PURGABLE_NONVOLATILE and the old state is returned as | |
6025 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are | |
6026 | * completely intact and will remain so until the object is made volatile | |
6027 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
6028 | * was reclaimed while it was in a volatile state and its previous contents | |
6029 | * have been lost. | |
6030 | */ | |
6031 | /* | |
6032 | * The object must be locked. | |
6033 | */ | |
6034 | kern_return_t | |
6035 | vm_object_purgable_control( | |
6036 | vm_object_t object, | |
6037 | vm_purgable_t control, | |
6038 | int *state) | |
6039 | { | |
6040 | int old_state; | |
6041 | int new_state; | |
6042 | ||
6043 | if (object == VM_OBJECT_NULL) { | |
6044 | /* | |
6045 | * Object must already be present or it can't be purgeable. | |
6046 | */ | |
6047 | return KERN_INVALID_ARGUMENT; | |
6048 | } | |
6049 | ||
6050 | /* | |
6051 | * Get current state of the purgeable object. | |
6052 | */ | |
6053 | old_state = object->purgable; | |
6054 | if (old_state == VM_PURGABLE_DENY) | |
6055 | return KERN_INVALID_ARGUMENT; | |
6056 | ||
6057 | /* purgeable cant have delayed copies - now or in the future */ | |
6058 | assert(object->copy == VM_OBJECT_NULL); | |
6059 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
6060 | ||
6061 | /* | |
6062 | * Execute the desired operation. | |
6063 | */ | |
6064 | if (control == VM_PURGABLE_GET_STATE) { | |
6065 | *state = old_state; | |
6066 | return KERN_SUCCESS; | |
6067 | } | |
6068 | ||
6069 | if ((*state) & VM_PURGABLE_DEBUG_EMPTY) { | |
6070 | object->volatile_empty = TRUE; | |
6071 | } | |
6072 | if ((*state) & VM_PURGABLE_DEBUG_FAULT) { | |
6073 | object->volatile_fault = TRUE; | |
6074 | } | |
6075 | ||
6076 | new_state = *state & VM_PURGABLE_STATE_MASK; | |
6077 | if (new_state == VM_PURGABLE_VOLATILE && | |
6078 | object->volatile_empty) { | |
6079 | new_state = VM_PURGABLE_EMPTY; | |
6080 | } | |
6081 | ||
6082 | switch (new_state) { | |
6083 | case VM_PURGABLE_DENY: | |
6084 | case VM_PURGABLE_NONVOLATILE: | |
6085 | object->purgable = new_state; | |
6086 | ||
6087 | if (old_state == VM_PURGABLE_VOLATILE) { | |
6088 | unsigned int delta; | |
6089 | ||
6090 | assert(object->resident_page_count >= | |
6091 | object->wired_page_count); | |
6092 | delta = (object->resident_page_count - | |
6093 | object->wired_page_count); | |
6094 | ||
6095 | assert(vm_page_purgeable_count >= delta); | |
6096 | ||
6097 | if (delta != 0) { | |
6098 | OSAddAtomic(-delta, | |
6099 | (SInt32 *)&vm_page_purgeable_count); | |
6100 | } | |
6101 | if (object->wired_page_count != 0) { | |
6102 | assert(vm_page_purgeable_wired_count >= | |
6103 | object->wired_page_count); | |
6104 | OSAddAtomic(-object->wired_page_count, | |
6105 | (SInt32 *)&vm_page_purgeable_wired_count); | |
6106 | } | |
6107 | ||
6108 | vm_page_lock_queues(); | |
6109 | ||
6110 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6111 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
6112 | assert(queue); | |
6113 | ||
6114 | vm_purgeable_token_delete_last(queue); | |
6115 | assert(queue->debug_count_objects>=0); | |
6116 | ||
6117 | vm_page_unlock_queues(); | |
6118 | } | |
6119 | break; | |
6120 | ||
6121 | case VM_PURGABLE_VOLATILE: | |
6122 | if (object->volatile_fault) { | |
6123 | vm_page_t p; | |
6124 | int refmod; | |
6125 | ||
6126 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6127 | if (p->busy || | |
6128 | VM_PAGE_WIRED(p) || | |
6129 | p->fictitious) { | |
6130 | continue; | |
6131 | } | |
6132 | refmod = pmap_disconnect(p->phys_page); | |
6133 | if ((refmod & VM_MEM_MODIFIED) && | |
6134 | !p->dirty) { | |
6135 | SET_PAGE_DIRTY(p, FALSE); | |
6136 | } | |
6137 | } | |
6138 | } | |
6139 | ||
6140 | if (old_state == VM_PURGABLE_EMPTY && | |
6141 | object->resident_page_count == 0) | |
6142 | break; | |
6143 | ||
6144 | purgeable_q_t queue; | |
6145 | ||
6146 | /* find the correct queue */ | |
6147 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
6148 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
6149 | else { | |
6150 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
6151 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
6152 | else | |
6153 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
6154 | } | |
6155 | ||
6156 | if (old_state == VM_PURGABLE_NONVOLATILE || | |
6157 | old_state == VM_PURGABLE_EMPTY) { | |
6158 | unsigned int delta; | |
6159 | ||
6160 | /* try to add token... this can fail */ | |
6161 | vm_page_lock_queues(); | |
6162 | ||
6163 | kern_return_t result = vm_purgeable_token_add(queue); | |
6164 | if (result != KERN_SUCCESS) { | |
6165 | vm_page_unlock_queues(); | |
6166 | return result; | |
6167 | } | |
6168 | vm_page_unlock_queues(); | |
6169 | ||
6170 | assert(object->resident_page_count >= | |
6171 | object->wired_page_count); | |
6172 | delta = (object->resident_page_count - | |
6173 | object->wired_page_count); | |
6174 | ||
6175 | if (delta != 0) { | |
6176 | OSAddAtomic(delta, | |
6177 | &vm_page_purgeable_count); | |
6178 | } | |
6179 | if (object->wired_page_count != 0) { | |
6180 | OSAddAtomic(object->wired_page_count, | |
6181 | &vm_page_purgeable_wired_count); | |
6182 | } | |
6183 | ||
6184 | object->purgable = new_state; | |
6185 | ||
6186 | /* object should not be on a queue */ | |
6187 | assert(object->objq.next == NULL && object->objq.prev == NULL); | |
6188 | } | |
6189 | else if (old_state == VM_PURGABLE_VOLATILE) { | |
6190 | /* | |
6191 | * if reassigning priorities / purgeable groups, we don't change the | |
6192 | * token queue. So moving priorities will not make pages stay around longer. | |
6193 | * Reasoning is that the algorithm gives most priority to the most important | |
6194 | * object. If a new token is added, the most important object' priority is boosted. | |
6195 | * This biases the system already for purgeable queues that move a lot. | |
6196 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
6197 | */ | |
6198 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6199 | ||
6200 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
6201 | assert(old_queue); | |
6202 | ||
6203 | if (old_queue != queue) { | |
6204 | kern_return_t result; | |
6205 | ||
6206 | /* Changing queue. Have to move token. */ | |
6207 | vm_page_lock_queues(); | |
6208 | vm_purgeable_token_delete_last(old_queue); | |
6209 | result = vm_purgeable_token_add(queue); | |
6210 | vm_page_unlock_queues(); | |
6211 | ||
6212 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ | |
6213 | } | |
6214 | }; | |
6215 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
6216 | ||
6217 | assert(queue->debug_count_objects>=0); | |
6218 | ||
6219 | break; | |
6220 | ||
6221 | ||
6222 | case VM_PURGABLE_EMPTY: | |
6223 | if (object->volatile_fault) { | |
6224 | vm_page_t p; | |
6225 | int refmod; | |
6226 | ||
6227 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6228 | if (p->busy || | |
6229 | VM_PAGE_WIRED(p) || | |
6230 | p->fictitious) { | |
6231 | continue; | |
6232 | } | |
6233 | refmod = pmap_disconnect(p->phys_page); | |
6234 | if ((refmod & VM_MEM_MODIFIED) && | |
6235 | !p->dirty) { | |
6236 | SET_PAGE_DIRTY(p, FALSE); | |
6237 | } | |
6238 | } | |
6239 | } | |
6240 | ||
6241 | if (old_state != new_state) { | |
6242 | assert(old_state == VM_PURGABLE_NONVOLATILE || | |
6243 | old_state == VM_PURGABLE_VOLATILE); | |
6244 | if (old_state == VM_PURGABLE_VOLATILE) { | |
6245 | purgeable_q_t old_queue; | |
6246 | ||
6247 | /* object should be on a queue */ | |
6248 | assert(object->objq.next != NULL && | |
6249 | object->objq.prev != NULL); | |
6250 | old_queue = vm_purgeable_object_remove(object); | |
6251 | assert(old_queue); | |
6252 | vm_page_lock_queues(); | |
6253 | vm_purgeable_token_delete_last(old_queue); | |
6254 | vm_page_unlock_queues(); | |
6255 | } | |
6256 | (void) vm_object_purge(object); | |
6257 | } | |
6258 | break; | |
6259 | ||
6260 | } | |
6261 | *state = old_state; | |
6262 | ||
6263 | return KERN_SUCCESS; | |
6264 | } | |
6265 | ||
6266 | #if TASK_SWAPPER | |
6267 | /* | |
6268 | * vm_object_res_deallocate | |
6269 | * | |
6270 | * (recursively) decrement residence counts on vm objects and their shadows. | |
6271 | * Called from vm_object_deallocate and when swapping out an object. | |
6272 | * | |
6273 | * The object is locked, and remains locked throughout the function, | |
6274 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6275 | * will be dropped, but not the original object. | |
6276 | * | |
6277 | * NOTE: this function used to use recursion, rather than iteration. | |
6278 | */ | |
6279 | ||
6280 | __private_extern__ void | |
6281 | vm_object_res_deallocate( | |
6282 | vm_object_t object) | |
6283 | { | |
6284 | vm_object_t orig_object = object; | |
6285 | /* | |
6286 | * Object is locked so it can be called directly | |
6287 | * from vm_object_deallocate. Original object is never | |
6288 | * unlocked. | |
6289 | */ | |
6290 | assert(object->res_count > 0); | |
6291 | while (--object->res_count == 0) { | |
6292 | assert(object->ref_count >= object->res_count); | |
6293 | vm_object_deactivate_all_pages(object); | |
6294 | /* iterate on shadow, if present */ | |
6295 | if (object->shadow != VM_OBJECT_NULL) { | |
6296 | vm_object_t tmp_object = object->shadow; | |
6297 | vm_object_lock(tmp_object); | |
6298 | if (object != orig_object) | |
6299 | vm_object_unlock(object); | |
6300 | object = tmp_object; | |
6301 | assert(object->res_count > 0); | |
6302 | } else | |
6303 | break; | |
6304 | } | |
6305 | if (object != orig_object) | |
6306 | vm_object_unlock(object); | |
6307 | } | |
6308 | ||
6309 | /* | |
6310 | * vm_object_res_reference | |
6311 | * | |
6312 | * Internal function to increment residence count on a vm object | |
6313 | * and its shadows. It is called only from vm_object_reference, and | |
6314 | * when swapping in a vm object, via vm_map_swap. | |
6315 | * | |
6316 | * The object is locked, and remains locked throughout the function, | |
6317 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6318 | * will be dropped, but not the original object. | |
6319 | * | |
6320 | * NOTE: this function used to use recursion, rather than iteration. | |
6321 | */ | |
6322 | ||
6323 | __private_extern__ void | |
6324 | vm_object_res_reference( | |
6325 | vm_object_t object) | |
6326 | { | |
6327 | vm_object_t orig_object = object; | |
6328 | /* | |
6329 | * Object is locked, so this can be called directly | |
6330 | * from vm_object_reference. This lock is never released. | |
6331 | */ | |
6332 | while ((++object->res_count == 1) && | |
6333 | (object->shadow != VM_OBJECT_NULL)) { | |
6334 | vm_object_t tmp_object = object->shadow; | |
6335 | ||
6336 | assert(object->ref_count >= object->res_count); | |
6337 | vm_object_lock(tmp_object); | |
6338 | if (object != orig_object) | |
6339 | vm_object_unlock(object); | |
6340 | object = tmp_object; | |
6341 | } | |
6342 | if (object != orig_object) | |
6343 | vm_object_unlock(object); | |
6344 | assert(orig_object->ref_count >= orig_object->res_count); | |
6345 | } | |
6346 | #endif /* TASK_SWAPPER */ | |
6347 | ||
6348 | /* | |
6349 | * vm_object_reference: | |
6350 | * | |
6351 | * Gets another reference to the given object. | |
6352 | */ | |
6353 | #ifdef vm_object_reference | |
6354 | #undef vm_object_reference | |
6355 | #endif | |
6356 | __private_extern__ void | |
6357 | vm_object_reference( | |
6358 | register vm_object_t object) | |
6359 | { | |
6360 | if (object == VM_OBJECT_NULL) | |
6361 | return; | |
6362 | ||
6363 | vm_object_lock(object); | |
6364 | assert(object->ref_count > 0); | |
6365 | vm_object_reference_locked(object); | |
6366 | vm_object_unlock(object); | |
6367 | } | |
6368 | ||
6369 | #ifdef MACH_BSD | |
6370 | /* | |
6371 | * Scale the vm_object_cache | |
6372 | * This is required to make sure that the vm_object_cache is big | |
6373 | * enough to effectively cache the mapped file. | |
6374 | * This is really important with UBC as all the regular file vnodes | |
6375 | * have memory object associated with them. Havving this cache too | |
6376 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
6377 | * | |
6378 | * This is also needed as number of vnodes can be dynamically scaled. | |
6379 | */ | |
6380 | kern_return_t | |
6381 | adjust_vm_object_cache( | |
6382 | __unused vm_size_t oval, | |
6383 | __unused vm_size_t nval) | |
6384 | { | |
6385 | #if VM_OBJECT_CACHE | |
6386 | vm_object_cached_max = nval; | |
6387 | vm_object_cache_trim(FALSE); | |
6388 | #endif | |
6389 | return (KERN_SUCCESS); | |
6390 | } | |
6391 | #endif /* MACH_BSD */ | |
6392 | ||
6393 | ||
6394 | /* | |
6395 | * vm_object_transpose | |
6396 | * | |
6397 | * This routine takes two VM objects of the same size and exchanges | |
6398 | * their backing store. | |
6399 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
6400 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
6401 | * | |
6402 | * The VM objects must not be locked by caller. | |
6403 | */ | |
6404 | unsigned int vm_object_transpose_count = 0; | |
6405 | kern_return_t | |
6406 | vm_object_transpose( | |
6407 | vm_object_t object1, | |
6408 | vm_object_t object2, | |
6409 | vm_object_size_t transpose_size) | |
6410 | { | |
6411 | vm_object_t tmp_object; | |
6412 | kern_return_t retval; | |
6413 | boolean_t object1_locked, object2_locked; | |
6414 | vm_page_t page; | |
6415 | vm_object_offset_t page_offset; | |
6416 | lck_mtx_t *hash_lck; | |
6417 | vm_object_hash_entry_t hash_entry; | |
6418 | ||
6419 | tmp_object = VM_OBJECT_NULL; | |
6420 | object1_locked = FALSE; object2_locked = FALSE; | |
6421 | ||
6422 | if (object1 == object2 || | |
6423 | object1 == VM_OBJECT_NULL || | |
6424 | object2 == VM_OBJECT_NULL) { | |
6425 | /* | |
6426 | * If the 2 VM objects are the same, there's | |
6427 | * no point in exchanging their backing store. | |
6428 | */ | |
6429 | retval = KERN_INVALID_VALUE; | |
6430 | goto done; | |
6431 | } | |
6432 | ||
6433 | /* | |
6434 | * Since we need to lock both objects at the same time, | |
6435 | * make sure we always lock them in the same order to | |
6436 | * avoid deadlocks. | |
6437 | */ | |
6438 | if (object1 > object2) { | |
6439 | tmp_object = object1; | |
6440 | object1 = object2; | |
6441 | object2 = tmp_object; | |
6442 | } | |
6443 | ||
6444 | /* | |
6445 | * Allocate a temporary VM object to hold object1's contents | |
6446 | * while we copy object2 to object1. | |
6447 | */ | |
6448 | tmp_object = vm_object_allocate(transpose_size); | |
6449 | vm_object_lock(tmp_object); | |
6450 | tmp_object->can_persist = FALSE; | |
6451 | ||
6452 | ||
6453 | /* | |
6454 | * Grab control of the 1st VM object. | |
6455 | */ | |
6456 | vm_object_lock(object1); | |
6457 | object1_locked = TRUE; | |
6458 | if (!object1->alive || object1->terminating || | |
6459 | object1->copy || object1->shadow || object1->shadowed || | |
6460 | object1->purgable != VM_PURGABLE_DENY) { | |
6461 | /* | |
6462 | * We don't deal with copy or shadow objects (yet). | |
6463 | */ | |
6464 | retval = KERN_INVALID_VALUE; | |
6465 | goto done; | |
6466 | } | |
6467 | /* | |
6468 | * We're about to mess with the object's backing store and | |
6469 | * taking a "paging_in_progress" reference wouldn't be enough | |
6470 | * to prevent any paging activity on this object, so the caller should | |
6471 | * have "quiesced" the objects beforehand, via a UPL operation with | |
6472 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
6473 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
6474 | * | |
6475 | * Wait for any paging operation to complete (but only paging, not | |
6476 | * other kind of activities not linked to the pager). After we're | |
6477 | * statisfied that there's no more paging in progress, we keep the | |
6478 | * object locked, to guarantee that no one tries to access its pager. | |
6479 | */ | |
6480 | vm_object_paging_only_wait(object1, THREAD_UNINT); | |
6481 | ||
6482 | /* | |
6483 | * Same as above for the 2nd object... | |
6484 | */ | |
6485 | vm_object_lock(object2); | |
6486 | object2_locked = TRUE; | |
6487 | if (! object2->alive || object2->terminating || | |
6488 | object2->copy || object2->shadow || object2->shadowed || | |
6489 | object2->purgable != VM_PURGABLE_DENY) { | |
6490 | retval = KERN_INVALID_VALUE; | |
6491 | goto done; | |
6492 | } | |
6493 | vm_object_paging_only_wait(object2, THREAD_UNINT); | |
6494 | ||
6495 | ||
6496 | if (object1->vo_size != object2->vo_size || | |
6497 | object1->vo_size != transpose_size) { | |
6498 | /* | |
6499 | * If the 2 objects don't have the same size, we can't | |
6500 | * exchange their backing stores or one would overflow. | |
6501 | * If their size doesn't match the caller's | |
6502 | * "transpose_size", we can't do it either because the | |
6503 | * transpose operation will affect the entire span of | |
6504 | * the objects. | |
6505 | */ | |
6506 | retval = KERN_INVALID_VALUE; | |
6507 | goto done; | |
6508 | } | |
6509 | ||
6510 | ||
6511 | /* | |
6512 | * Transpose the lists of resident pages. | |
6513 | * This also updates the resident_page_count and the memq_hint. | |
6514 | */ | |
6515 | if (object1->phys_contiguous || queue_empty(&object1->memq)) { | |
6516 | /* | |
6517 | * No pages in object1, just transfer pages | |
6518 | * from object2 to object1. No need to go through | |
6519 | * an intermediate object. | |
6520 | */ | |
6521 | while (!queue_empty(&object2->memq)) { | |
6522 | page = (vm_page_t) queue_first(&object2->memq); | |
6523 | vm_page_rename(page, object1, page->offset, FALSE); | |
6524 | } | |
6525 | assert(queue_empty(&object2->memq)); | |
6526 | } else if (object2->phys_contiguous || queue_empty(&object2->memq)) { | |
6527 | /* | |
6528 | * No pages in object2, just transfer pages | |
6529 | * from object1 to object2. No need to go through | |
6530 | * an intermediate object. | |
6531 | */ | |
6532 | while (!queue_empty(&object1->memq)) { | |
6533 | page = (vm_page_t) queue_first(&object1->memq); | |
6534 | vm_page_rename(page, object2, page->offset, FALSE); | |
6535 | } | |
6536 | assert(queue_empty(&object1->memq)); | |
6537 | } else { | |
6538 | /* transfer object1's pages to tmp_object */ | |
6539 | while (!queue_empty(&object1->memq)) { | |
6540 | page = (vm_page_t) queue_first(&object1->memq); | |
6541 | page_offset = page->offset; | |
6542 | vm_page_remove(page, TRUE); | |
6543 | page->offset = page_offset; | |
6544 | queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
6545 | } | |
6546 | assert(queue_empty(&object1->memq)); | |
6547 | /* transfer object2's pages to object1 */ | |
6548 | while (!queue_empty(&object2->memq)) { | |
6549 | page = (vm_page_t) queue_first(&object2->memq); | |
6550 | vm_page_rename(page, object1, page->offset, FALSE); | |
6551 | } | |
6552 | assert(queue_empty(&object2->memq)); | |
6553 | /* transfer tmp_object's pages to object1 */ | |
6554 | while (!queue_empty(&tmp_object->memq)) { | |
6555 | page = (vm_page_t) queue_first(&tmp_object->memq); | |
6556 | queue_remove(&tmp_object->memq, page, | |
6557 | vm_page_t, listq); | |
6558 | vm_page_insert(page, object2, page->offset); | |
6559 | } | |
6560 | assert(queue_empty(&tmp_object->memq)); | |
6561 | } | |
6562 | ||
6563 | #define __TRANSPOSE_FIELD(field) \ | |
6564 | MACRO_BEGIN \ | |
6565 | tmp_object->field = object1->field; \ | |
6566 | object1->field = object2->field; \ | |
6567 | object2->field = tmp_object->field; \ | |
6568 | MACRO_END | |
6569 | ||
6570 | /* "Lock" refers to the object not its contents */ | |
6571 | /* "size" should be identical */ | |
6572 | assert(object1->vo_size == object2->vo_size); | |
6573 | /* "memq_hint" was updated above when transposing pages */ | |
6574 | /* "ref_count" refers to the object not its contents */ | |
6575 | #if TASK_SWAPPER | |
6576 | /* "res_count" refers to the object not its contents */ | |
6577 | #endif | |
6578 | /* "resident_page_count" was updated above when transposing pages */ | |
6579 | /* "wired_page_count" was updated above when transposing pages */ | |
6580 | /* "reusable_page_count" was updated above when transposing pages */ | |
6581 | /* there should be no "copy" */ | |
6582 | assert(!object1->copy); | |
6583 | assert(!object2->copy); | |
6584 | /* there should be no "shadow" */ | |
6585 | assert(!object1->shadow); | |
6586 | assert(!object2->shadow); | |
6587 | __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */ | |
6588 | __TRANSPOSE_FIELD(pager); | |
6589 | __TRANSPOSE_FIELD(paging_offset); | |
6590 | __TRANSPOSE_FIELD(pager_control); | |
6591 | /* update the memory_objects' pointers back to the VM objects */ | |
6592 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6593 | memory_object_control_collapse(object1->pager_control, | |
6594 | object1); | |
6595 | } | |
6596 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6597 | memory_object_control_collapse(object2->pager_control, | |
6598 | object2); | |
6599 | } | |
6600 | __TRANSPOSE_FIELD(copy_strategy); | |
6601 | /* "paging_in_progress" refers to the object not its contents */ | |
6602 | assert(!object1->paging_in_progress); | |
6603 | assert(!object2->paging_in_progress); | |
6604 | assert(object1->activity_in_progress); | |
6605 | assert(object2->activity_in_progress); | |
6606 | /* "all_wanted" refers to the object not its contents */ | |
6607 | __TRANSPOSE_FIELD(pager_created); | |
6608 | __TRANSPOSE_FIELD(pager_initialized); | |
6609 | __TRANSPOSE_FIELD(pager_ready); | |
6610 | __TRANSPOSE_FIELD(pager_trusted); | |
6611 | __TRANSPOSE_FIELD(can_persist); | |
6612 | __TRANSPOSE_FIELD(internal); | |
6613 | __TRANSPOSE_FIELD(temporary); | |
6614 | __TRANSPOSE_FIELD(private); | |
6615 | __TRANSPOSE_FIELD(pageout); | |
6616 | /* "alive" should be set */ | |
6617 | assert(object1->alive); | |
6618 | assert(object2->alive); | |
6619 | /* "purgeable" should be non-purgeable */ | |
6620 | assert(object1->purgable == VM_PURGABLE_DENY); | |
6621 | assert(object2->purgable == VM_PURGABLE_DENY); | |
6622 | /* "shadowed" refers to the the object not its contents */ | |
6623 | __TRANSPOSE_FIELD(silent_overwrite); | |
6624 | __TRANSPOSE_FIELD(advisory_pageout); | |
6625 | __TRANSPOSE_FIELD(true_share); | |
6626 | /* "terminating" should not be set */ | |
6627 | assert(!object1->terminating); | |
6628 | assert(!object2->terminating); | |
6629 | __TRANSPOSE_FIELD(named); | |
6630 | /* "shadow_severed" refers to the object not its contents */ | |
6631 | __TRANSPOSE_FIELD(phys_contiguous); | |
6632 | __TRANSPOSE_FIELD(nophyscache); | |
6633 | /* "cached_list.next" points to transposed object */ | |
6634 | object1->cached_list.next = (queue_entry_t) object2; | |
6635 | object2->cached_list.next = (queue_entry_t) object1; | |
6636 | /* "cached_list.prev" should be NULL */ | |
6637 | assert(object1->cached_list.prev == NULL); | |
6638 | assert(object2->cached_list.prev == NULL); | |
6639 | /* "msr_q" is linked to the object not its contents */ | |
6640 | assert(queue_empty(&object1->msr_q)); | |
6641 | assert(queue_empty(&object2->msr_q)); | |
6642 | __TRANSPOSE_FIELD(last_alloc); | |
6643 | __TRANSPOSE_FIELD(sequential); | |
6644 | __TRANSPOSE_FIELD(pages_created); | |
6645 | __TRANSPOSE_FIELD(pages_used); | |
6646 | __TRANSPOSE_FIELD(scan_collisions); | |
6647 | #if MACH_PAGEMAP | |
6648 | __TRANSPOSE_FIELD(existence_map); | |
6649 | #endif | |
6650 | __TRANSPOSE_FIELD(cow_hint); | |
6651 | #if MACH_ASSERT | |
6652 | __TRANSPOSE_FIELD(paging_object); | |
6653 | #endif | |
6654 | __TRANSPOSE_FIELD(wimg_bits); | |
6655 | __TRANSPOSE_FIELD(set_cache_attr); | |
6656 | __TRANSPOSE_FIELD(code_signed); | |
6657 | if (object1->hashed) { | |
6658 | hash_lck = vm_object_hash_lock_spin(object2->pager); | |
6659 | hash_entry = vm_object_hash_lookup(object2->pager, FALSE); | |
6660 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
6661 | hash_entry->object = object2; | |
6662 | vm_object_hash_unlock(hash_lck); | |
6663 | } | |
6664 | if (object2->hashed) { | |
6665 | hash_lck = vm_object_hash_lock_spin(object1->pager); | |
6666 | hash_entry = vm_object_hash_lookup(object1->pager, FALSE); | |
6667 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
6668 | hash_entry->object = object1; | |
6669 | vm_object_hash_unlock(hash_lck); | |
6670 | } | |
6671 | __TRANSPOSE_FIELD(hashed); | |
6672 | object1->transposed = TRUE; | |
6673 | object2->transposed = TRUE; | |
6674 | __TRANSPOSE_FIELD(mapping_in_progress); | |
6675 | __TRANSPOSE_FIELD(volatile_empty); | |
6676 | __TRANSPOSE_FIELD(volatile_fault); | |
6677 | __TRANSPOSE_FIELD(all_reusable); | |
6678 | assert(object1->blocked_access); | |
6679 | assert(object2->blocked_access); | |
6680 | assert(object1->__object2_unused_bits == 0); | |
6681 | assert(object2->__object2_unused_bits == 0); | |
6682 | #if UPL_DEBUG | |
6683 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ | |
6684 | #endif | |
6685 | assert(object1->objq.next == NULL); | |
6686 | assert(object1->objq.prev == NULL); | |
6687 | assert(object2->objq.next == NULL); | |
6688 | assert(object2->objq.prev == NULL); | |
6689 | ||
6690 | #undef __TRANSPOSE_FIELD | |
6691 | ||
6692 | retval = KERN_SUCCESS; | |
6693 | ||
6694 | done: | |
6695 | /* | |
6696 | * Cleanup. | |
6697 | */ | |
6698 | if (tmp_object != VM_OBJECT_NULL) { | |
6699 | vm_object_unlock(tmp_object); | |
6700 | /* | |
6701 | * Re-initialize the temporary object to avoid | |
6702 | * deallocating a real pager. | |
6703 | */ | |
6704 | _vm_object_allocate(transpose_size, tmp_object); | |
6705 | vm_object_deallocate(tmp_object); | |
6706 | tmp_object = VM_OBJECT_NULL; | |
6707 | } | |
6708 | ||
6709 | if (object1_locked) { | |
6710 | vm_object_unlock(object1); | |
6711 | object1_locked = FALSE; | |
6712 | } | |
6713 | if (object2_locked) { | |
6714 | vm_object_unlock(object2); | |
6715 | object2_locked = FALSE; | |
6716 | } | |
6717 | ||
6718 | vm_object_transpose_count++; | |
6719 | ||
6720 | return retval; | |
6721 | } | |
6722 | ||
6723 | ||
6724 | /* | |
6725 | * vm_object_cluster_size | |
6726 | * | |
6727 | * Determine how big a cluster we should issue an I/O for... | |
6728 | * | |
6729 | * Inputs: *start == offset of page needed | |
6730 | * *length == maximum cluster pager can handle | |
6731 | * Outputs: *start == beginning offset of cluster | |
6732 | * *length == length of cluster to try | |
6733 | * | |
6734 | * The original *start will be encompassed by the cluster | |
6735 | * | |
6736 | */ | |
6737 | extern int speculative_reads_disabled; | |
6738 | extern int ignore_is_ssd; | |
6739 | ||
6740 | #if CONFIG_EMBEDDED | |
6741 | unsigned int preheat_pages_max = MAX_UPL_TRANSFER; | |
6742 | unsigned int preheat_pages_min = 10; | |
6743 | #else | |
6744 | unsigned int preheat_pages_max = MAX_UPL_TRANSFER; | |
6745 | unsigned int preheat_pages_min = 8; | |
6746 | #endif | |
6747 | ||
6748 | uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1]; | |
6749 | uint32_t pre_heat_cluster[MAX_UPL_TRANSFER + 1]; | |
6750 | ||
6751 | ||
6752 | __private_extern__ void | |
6753 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
6754 | vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming) | |
6755 | { | |
6756 | vm_size_t pre_heat_size; | |
6757 | vm_size_t tail_size; | |
6758 | vm_size_t head_size; | |
6759 | vm_size_t max_length; | |
6760 | vm_size_t cluster_size; | |
6761 | vm_object_offset_t object_size; | |
6762 | vm_object_offset_t orig_start; | |
6763 | vm_object_offset_t target_start; | |
6764 | vm_object_offset_t offset; | |
6765 | vm_behavior_t behavior; | |
6766 | boolean_t look_behind = TRUE; | |
6767 | boolean_t look_ahead = TRUE; | |
6768 | boolean_t isSSD = FALSE; | |
6769 | uint32_t throttle_limit; | |
6770 | int sequential_run; | |
6771 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6772 | unsigned int max_ph_size; | |
6773 | unsigned int min_ph_size; | |
6774 | unsigned int min_ph_size_in_bytes; | |
6775 | ||
6776 | assert( !(*length & PAGE_MASK)); | |
6777 | assert( !(*start & PAGE_MASK_64)); | |
6778 | ||
6779 | /* | |
6780 | * remember maxiumum length of run requested | |
6781 | */ | |
6782 | max_length = *length; | |
6783 | /* | |
6784 | * we'll always return a cluster size of at least | |
6785 | * 1 page, since the original fault must always | |
6786 | * be processed | |
6787 | */ | |
6788 | *length = PAGE_SIZE; | |
6789 | *io_streaming = 0; | |
6790 | ||
6791 | if (speculative_reads_disabled || fault_info == NULL) { | |
6792 | /* | |
6793 | * no cluster... just fault the page in | |
6794 | */ | |
6795 | return; | |
6796 | } | |
6797 | orig_start = *start; | |
6798 | target_start = orig_start; | |
6799 | cluster_size = round_page(fault_info->cluster_size); | |
6800 | behavior = fault_info->behavior; | |
6801 | ||
6802 | vm_object_lock(object); | |
6803 | ||
6804 | if (object->pager == MEMORY_OBJECT_NULL) | |
6805 | goto out; /* pager is gone for this object, nothing more to do */ | |
6806 | ||
6807 | if (!ignore_is_ssd) | |
6808 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
6809 | ||
6810 | min_ph_size = preheat_pages_min; | |
6811 | max_ph_size = preheat_pages_max; | |
6812 | ||
6813 | if (isSSD) { | |
6814 | min_ph_size /= 2; | |
6815 | max_ph_size /= 8; | |
6816 | } | |
6817 | if (min_ph_size < 1) | |
6818 | min_ph_size = 1; | |
6819 | ||
6820 | if (max_ph_size < 1) | |
6821 | max_ph_size = 1; | |
6822 | else if (max_ph_size > MAX_UPL_TRANSFER) | |
6823 | max_ph_size = MAX_UPL_TRANSFER; | |
6824 | ||
6825 | if (max_length > (max_ph_size * PAGE_SIZE)) | |
6826 | max_length = max_ph_size * PAGE_SIZE; | |
6827 | ||
6828 | if (max_length <= PAGE_SIZE) | |
6829 | goto out; | |
6830 | ||
6831 | min_ph_size_in_bytes = min_ph_size * PAGE_SIZE; | |
6832 | ||
6833 | if (object->internal) | |
6834 | object_size = object->vo_size; | |
6835 | else | |
6836 | vnode_pager_get_object_size(object->pager, &object_size); | |
6837 | ||
6838 | object_size = round_page_64(object_size); | |
6839 | ||
6840 | if (orig_start >= object_size) { | |
6841 | /* | |
6842 | * fault occurred beyond the EOF... | |
6843 | * we need to punt w/o changing the | |
6844 | * starting offset | |
6845 | */ | |
6846 | goto out; | |
6847 | } | |
6848 | if (object->pages_used > object->pages_created) { | |
6849 | /* | |
6850 | * must have wrapped our 32 bit counters | |
6851 | * so reset | |
6852 | */ | |
6853 | object->pages_used = object->pages_created = 0; | |
6854 | } | |
6855 | if ((sequential_run = object->sequential)) { | |
6856 | if (sequential_run < 0) { | |
6857 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
6858 | sequential_run = 0 - sequential_run; | |
6859 | } else { | |
6860 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6861 | } | |
6862 | ||
6863 | } | |
6864 | switch (behavior) { | |
6865 | ||
6866 | default: | |
6867 | behavior = VM_BEHAVIOR_DEFAULT; | |
6868 | ||
6869 | case VM_BEHAVIOR_DEFAULT: | |
6870 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
6871 | goto out; | |
6872 | ||
6873 | if (sequential_run >= (3 * PAGE_SIZE)) { | |
6874 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6875 | ||
6876 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) | |
6877 | look_behind = FALSE; | |
6878 | else | |
6879 | look_ahead = FALSE; | |
6880 | ||
6881 | *io_streaming = 1; | |
6882 | } else { | |
6883 | ||
6884 | if (object->pages_created < (20 * min_ph_size)) { | |
6885 | /* | |
6886 | * prime the pump | |
6887 | */ | |
6888 | pre_heat_size = min_ph_size_in_bytes; | |
6889 | } else { | |
6890 | /* | |
6891 | * Linear growth in PH size: The maximum size is max_length... | |
6892 | * this cacluation will result in a size that is neither a | |
6893 | * power of 2 nor a multiple of PAGE_SIZE... so round | |
6894 | * it up to the nearest PAGE_SIZE boundary | |
6895 | */ | |
6896 | pre_heat_size = (max_length * object->pages_used) / object->pages_created; | |
6897 | ||
6898 | if (pre_heat_size < min_ph_size_in_bytes) | |
6899 | pre_heat_size = min_ph_size_in_bytes; | |
6900 | else | |
6901 | pre_heat_size = round_page(pre_heat_size); | |
6902 | } | |
6903 | } | |
6904 | break; | |
6905 | ||
6906 | case VM_BEHAVIOR_RANDOM: | |
6907 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
6908 | goto out; | |
6909 | break; | |
6910 | ||
6911 | case VM_BEHAVIOR_SEQUENTIAL: | |
6912 | if ((pre_heat_size = cluster_size) == 0) | |
6913 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6914 | look_behind = FALSE; | |
6915 | *io_streaming = 1; | |
6916 | ||
6917 | break; | |
6918 | ||
6919 | case VM_BEHAVIOR_RSEQNTL: | |
6920 | if ((pre_heat_size = cluster_size) == 0) | |
6921 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6922 | look_ahead = FALSE; | |
6923 | *io_streaming = 1; | |
6924 | ||
6925 | break; | |
6926 | ||
6927 | } | |
6928 | throttle_limit = (uint32_t) max_length; | |
6929 | assert(throttle_limit == max_length); | |
6930 | ||
6931 | if (vnode_pager_check_hard_throttle(object->pager, &throttle_limit, *io_streaming) == KERN_SUCCESS) { | |
6932 | if (max_length > throttle_limit) | |
6933 | max_length = throttle_limit; | |
6934 | } | |
6935 | if (pre_heat_size > max_length) | |
6936 | pre_heat_size = max_length; | |
6937 | ||
6938 | if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) { | |
6939 | ||
6940 | unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count; | |
6941 | ||
6942 | if (consider_free < vm_page_throttle_limit) { | |
6943 | pre_heat_size = trunc_page(pre_heat_size / 16); | |
6944 | } else if (consider_free < vm_page_free_target) { | |
6945 | pre_heat_size = trunc_page(pre_heat_size / 4); | |
6946 | } | |
6947 | ||
6948 | if (pre_heat_size < min_ph_size_in_bytes) | |
6949 | pre_heat_size = min_ph_size_in_bytes; | |
6950 | } | |
6951 | if (look_ahead == TRUE) { | |
6952 | if (look_behind == TRUE) { | |
6953 | /* | |
6954 | * if we get here its due to a random access... | |
6955 | * so we want to center the original fault address | |
6956 | * within the cluster we will issue... make sure | |
6957 | * to calculate 'head_size' as a multiple of PAGE_SIZE... | |
6958 | * 'pre_heat_size' is a multiple of PAGE_SIZE but not | |
6959 | * necessarily an even number of pages so we need to truncate | |
6960 | * the result to a PAGE_SIZE boundary | |
6961 | */ | |
6962 | head_size = trunc_page(pre_heat_size / 2); | |
6963 | ||
6964 | if (target_start > head_size) | |
6965 | target_start -= head_size; | |
6966 | else | |
6967 | target_start = 0; | |
6968 | ||
6969 | /* | |
6970 | * 'target_start' at this point represents the beginning offset | |
6971 | * of the cluster we are considering... 'orig_start' will be in | |
6972 | * the center of this cluster if we didn't have to clip the start | |
6973 | * due to running into the start of the file | |
6974 | */ | |
6975 | } | |
6976 | if ((target_start + pre_heat_size) > object_size) | |
6977 | pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start)); | |
6978 | /* | |
6979 | * at this point caclulate the number of pages beyond the original fault | |
6980 | * address that we want to consider... this is guaranteed not to extend beyond | |
6981 | * the current EOF... | |
6982 | */ | |
6983 | assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start)); | |
6984 | tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE; | |
6985 | } else { | |
6986 | if (pre_heat_size > target_start) { | |
6987 | /* | |
6988 | * since pre_heat_size is always smaller then 2^32, | |
6989 | * if it is larger then target_start (a 64 bit value) | |
6990 | * it is safe to clip target_start to 32 bits | |
6991 | */ | |
6992 | pre_heat_size = (vm_size_t) target_start; | |
6993 | } | |
6994 | tail_size = 0; | |
6995 | } | |
6996 | assert( !(target_start & PAGE_MASK_64)); | |
6997 | assert( !(pre_heat_size & PAGE_MASK)); | |
6998 | ||
6999 | pre_heat_scaling[pre_heat_size / PAGE_SIZE]++; | |
7000 | ||
7001 | if (pre_heat_size <= PAGE_SIZE) | |
7002 | goto out; | |
7003 | ||
7004 | if (look_behind == TRUE) { | |
7005 | /* | |
7006 | * take a look at the pages before the original | |
7007 | * faulting offset... recalculate this in case | |
7008 | * we had to clip 'pre_heat_size' above to keep | |
7009 | * from running past the EOF. | |
7010 | */ | |
7011 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
7012 | ||
7013 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
7014 | /* | |
7015 | * don't poke below the lowest offset | |
7016 | */ | |
7017 | if (offset < fault_info->lo_offset) | |
7018 | break; | |
7019 | /* | |
7020 | * for external objects and internal objects w/o an existence map | |
7021 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7022 | */ | |
7023 | #if MACH_PAGEMAP | |
7024 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7025 | /* | |
7026 | * we know for a fact that the pager can't provide the page | |
7027 | * so don't include it or any pages beyond it in this cluster | |
7028 | */ | |
7029 | break; | |
7030 | } | |
7031 | #endif | |
7032 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
7033 | /* | |
7034 | * don't bridge resident pages | |
7035 | */ | |
7036 | break; | |
7037 | } | |
7038 | *start = offset; | |
7039 | *length += PAGE_SIZE; | |
7040 | } | |
7041 | } | |
7042 | if (look_ahead == TRUE) { | |
7043 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
7044 | /* | |
7045 | * don't poke above the highest offset | |
7046 | */ | |
7047 | if (offset >= fault_info->hi_offset) | |
7048 | break; | |
7049 | assert(offset < object_size); | |
7050 | ||
7051 | /* | |
7052 | * for external objects and internal objects w/o an existence map | |
7053 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7054 | */ | |
7055 | #if MACH_PAGEMAP | |
7056 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7057 | /* | |
7058 | * we know for a fact that the pager can't provide the page | |
7059 | * so don't include it or any pages beyond it in this cluster | |
7060 | */ | |
7061 | break; | |
7062 | } | |
7063 | #endif | |
7064 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
7065 | /* | |
7066 | * don't bridge resident pages | |
7067 | */ | |
7068 | break; | |
7069 | } | |
7070 | *length += PAGE_SIZE; | |
7071 | } | |
7072 | } | |
7073 | out: | |
7074 | if (*length > max_length) | |
7075 | *length = max_length; | |
7076 | ||
7077 | pre_heat_cluster[*length / PAGE_SIZE]++; | |
7078 | ||
7079 | vm_object_unlock(object); | |
7080 | ||
7081 | DTRACE_VM1(clustersize, vm_size_t, *length); | |
7082 | } | |
7083 | ||
7084 | ||
7085 | /* | |
7086 | * Allow manipulation of individual page state. This is actually part of | |
7087 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
7088 | */ | |
7089 | ||
7090 | kern_return_t | |
7091 | vm_object_page_op( | |
7092 | vm_object_t object, | |
7093 | vm_object_offset_t offset, | |
7094 | int ops, | |
7095 | ppnum_t *phys_entry, | |
7096 | int *flags) | |
7097 | { | |
7098 | vm_page_t dst_page; | |
7099 | ||
7100 | vm_object_lock(object); | |
7101 | ||
7102 | if(ops & UPL_POP_PHYSICAL) { | |
7103 | if(object->phys_contiguous) { | |
7104 | if (phys_entry) { | |
7105 | *phys_entry = (ppnum_t) | |
7106 | (object->vo_shadow_offset >> PAGE_SHIFT); | |
7107 | } | |
7108 | vm_object_unlock(object); | |
7109 | return KERN_SUCCESS; | |
7110 | } else { | |
7111 | vm_object_unlock(object); | |
7112 | return KERN_INVALID_OBJECT; | |
7113 | } | |
7114 | } | |
7115 | if(object->phys_contiguous) { | |
7116 | vm_object_unlock(object); | |
7117 | return KERN_INVALID_OBJECT; | |
7118 | } | |
7119 | ||
7120 | while(TRUE) { | |
7121 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
7122 | vm_object_unlock(object); | |
7123 | return KERN_FAILURE; | |
7124 | } | |
7125 | ||
7126 | /* Sync up on getting the busy bit */ | |
7127 | if((dst_page->busy || dst_page->cleaning) && | |
7128 | (((ops & UPL_POP_SET) && | |
7129 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
7130 | /* someone else is playing with the page, we will */ | |
7131 | /* have to wait */ | |
7132 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7133 | continue; | |
7134 | } | |
7135 | ||
7136 | if (ops & UPL_POP_DUMP) { | |
7137 | if (dst_page->pmapped == TRUE) | |
7138 | pmap_disconnect(dst_page->phys_page); | |
7139 | ||
7140 | VM_PAGE_FREE(dst_page); | |
7141 | break; | |
7142 | } | |
7143 | ||
7144 | if (flags) { | |
7145 | *flags = 0; | |
7146 | ||
7147 | /* Get the condition of flags before requested ops */ | |
7148 | /* are undertaken */ | |
7149 | ||
7150 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
7151 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
7152 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
7153 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
7154 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
7155 | } | |
7156 | ||
7157 | /* The caller should have made a call either contingent with */ | |
7158 | /* or prior to this call to set UPL_POP_BUSY */ | |
7159 | if(ops & UPL_POP_SET) { | |
7160 | /* The protection granted with this assert will */ | |
7161 | /* not be complete. If the caller violates the */ | |
7162 | /* convention and attempts to change page state */ | |
7163 | /* without first setting busy we may not see it */ | |
7164 | /* because the page may already be busy. However */ | |
7165 | /* if such violations occur we will assert sooner */ | |
7166 | /* or later. */ | |
7167 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
7168 | if (ops & UPL_POP_DIRTY) { | |
7169 | SET_PAGE_DIRTY(dst_page, FALSE); | |
7170 | } | |
7171 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; | |
7172 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
7173 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
7174 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
7175 | } | |
7176 | ||
7177 | if(ops & UPL_POP_CLR) { | |
7178 | assert(dst_page->busy); | |
7179 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
7180 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
7181 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
7182 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
7183 | if (ops & UPL_POP_BUSY) { | |
7184 | dst_page->busy = FALSE; | |
7185 | PAGE_WAKEUP(dst_page); | |
7186 | } | |
7187 | } | |
7188 | ||
7189 | if (dst_page->encrypted) { | |
7190 | /* | |
7191 | * ENCRYPTED SWAP: | |
7192 | * We need to decrypt this encrypted page before the | |
7193 | * caller can access its contents. | |
7194 | * But if the caller really wants to access the page's | |
7195 | * contents, they have to keep the page "busy". | |
7196 | * Otherwise, the page could get recycled or re-encrypted | |
7197 | * at any time. | |
7198 | */ | |
7199 | if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) && | |
7200 | dst_page->busy) { | |
7201 | /* | |
7202 | * The page is stable enough to be accessed by | |
7203 | * the caller, so make sure its contents are | |
7204 | * not encrypted. | |
7205 | */ | |
7206 | vm_page_decrypt(dst_page, 0); | |
7207 | } else { | |
7208 | /* | |
7209 | * The page is not busy, so don't bother | |
7210 | * decrypting it, since anything could | |
7211 | * happen to it between now and when the | |
7212 | * caller wants to access it. | |
7213 | * We should not give the caller access | |
7214 | * to this page. | |
7215 | */ | |
7216 | assert(!phys_entry); | |
7217 | } | |
7218 | } | |
7219 | ||
7220 | if (phys_entry) { | |
7221 | /* | |
7222 | * The physical page number will remain valid | |
7223 | * only if the page is kept busy. | |
7224 | * ENCRYPTED SWAP: make sure we don't let the | |
7225 | * caller access an encrypted page. | |
7226 | */ | |
7227 | assert(dst_page->busy); | |
7228 | assert(!dst_page->encrypted); | |
7229 | *phys_entry = dst_page->phys_page; | |
7230 | } | |
7231 | ||
7232 | break; | |
7233 | } | |
7234 | ||
7235 | vm_object_unlock(object); | |
7236 | return KERN_SUCCESS; | |
7237 | ||
7238 | } | |
7239 | ||
7240 | /* | |
7241 | * vm_object_range_op offers performance enhancement over | |
7242 | * vm_object_page_op for page_op functions which do not require page | |
7243 | * level state to be returned from the call. Page_op was created to provide | |
7244 | * a low-cost alternative to page manipulation via UPLs when only a single | |
7245 | * page was involved. The range_op call establishes the ability in the _op | |
7246 | * family of functions to work on multiple pages where the lack of page level | |
7247 | * state handling allows the caller to avoid the overhead of the upl structures. | |
7248 | */ | |
7249 | ||
7250 | kern_return_t | |
7251 | vm_object_range_op( | |
7252 | vm_object_t object, | |
7253 | vm_object_offset_t offset_beg, | |
7254 | vm_object_offset_t offset_end, | |
7255 | int ops, | |
7256 | uint32_t *range) | |
7257 | { | |
7258 | vm_object_offset_t offset; | |
7259 | vm_page_t dst_page; | |
7260 | ||
7261 | if (offset_end - offset_beg > (uint32_t) -1) { | |
7262 | /* range is too big and would overflow "*range" */ | |
7263 | return KERN_INVALID_ARGUMENT; | |
7264 | } | |
7265 | if (object->resident_page_count == 0) { | |
7266 | if (range) { | |
7267 | if (ops & UPL_ROP_PRESENT) { | |
7268 | *range = 0; | |
7269 | } else { | |
7270 | *range = (uint32_t) (offset_end - offset_beg); | |
7271 | assert(*range == (offset_end - offset_beg)); | |
7272 | } | |
7273 | } | |
7274 | return KERN_SUCCESS; | |
7275 | } | |
7276 | vm_object_lock(object); | |
7277 | ||
7278 | if (object->phys_contiguous) { | |
7279 | vm_object_unlock(object); | |
7280 | return KERN_INVALID_OBJECT; | |
7281 | } | |
7282 | ||
7283 | offset = offset_beg & ~PAGE_MASK_64; | |
7284 | ||
7285 | while (offset < offset_end) { | |
7286 | dst_page = vm_page_lookup(object, offset); | |
7287 | if (dst_page != VM_PAGE_NULL) { | |
7288 | if (ops & UPL_ROP_DUMP) { | |
7289 | if (dst_page->busy || dst_page->cleaning) { | |
7290 | /* | |
7291 | * someone else is playing with the | |
7292 | * page, we will have to wait | |
7293 | */ | |
7294 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7295 | /* | |
7296 | * need to relook the page up since it's | |
7297 | * state may have changed while we slept | |
7298 | * it might even belong to a different object | |
7299 | * at this point | |
7300 | */ | |
7301 | continue; | |
7302 | } | |
7303 | if (dst_page->laundry) { | |
7304 | dst_page->pageout = FALSE; | |
7305 | ||
7306 | vm_pageout_steal_laundry(dst_page, FALSE); | |
7307 | } | |
7308 | if (dst_page->pmapped == TRUE) | |
7309 | pmap_disconnect(dst_page->phys_page); | |
7310 | ||
7311 | VM_PAGE_FREE(dst_page); | |
7312 | ||
7313 | } else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent) | |
7314 | break; | |
7315 | } else if (ops & UPL_ROP_PRESENT) | |
7316 | break; | |
7317 | ||
7318 | offset += PAGE_SIZE; | |
7319 | } | |
7320 | vm_object_unlock(object); | |
7321 | ||
7322 | if (range) { | |
7323 | if (offset > offset_end) | |
7324 | offset = offset_end; | |
7325 | if(offset > offset_beg) { | |
7326 | *range = (uint32_t) (offset - offset_beg); | |
7327 | assert(*range == (offset - offset_beg)); | |
7328 | } else { | |
7329 | *range = 0; | |
7330 | } | |
7331 | } | |
7332 | return KERN_SUCCESS; | |
7333 | } | |
7334 | ||
7335 | ||
7336 | uint32_t scan_object_collision = 0; | |
7337 | ||
7338 | void | |
7339 | vm_object_lock(vm_object_t object) | |
7340 | { | |
7341 | if (object == vm_pageout_scan_wants_object) { | |
7342 | scan_object_collision++; | |
7343 | mutex_pause(2); | |
7344 | } | |
7345 | lck_rw_lock_exclusive(&object->Lock); | |
7346 | } | |
7347 | ||
7348 | boolean_t | |
7349 | vm_object_lock_avoid(vm_object_t object) | |
7350 | { | |
7351 | if (object == vm_pageout_scan_wants_object) { | |
7352 | scan_object_collision++; | |
7353 | return TRUE; | |
7354 | } | |
7355 | return FALSE; | |
7356 | } | |
7357 | ||
7358 | boolean_t | |
7359 | _vm_object_lock_try(vm_object_t object) | |
7360 | { | |
7361 | return (lck_rw_try_lock_exclusive(&object->Lock)); | |
7362 | } | |
7363 | ||
7364 | boolean_t | |
7365 | vm_object_lock_try(vm_object_t object) | |
7366 | { | |
7367 | /* | |
7368 | * Called from hibernate path so check before blocking. | |
7369 | */ | |
7370 | if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) { | |
7371 | mutex_pause(2); | |
7372 | } | |
7373 | return _vm_object_lock_try(object); | |
7374 | } | |
7375 | ||
7376 | void | |
7377 | vm_object_lock_shared(vm_object_t object) | |
7378 | { | |
7379 | if (vm_object_lock_avoid(object)) { | |
7380 | mutex_pause(2); | |
7381 | } | |
7382 | lck_rw_lock_shared(&object->Lock); | |
7383 | } | |
7384 | ||
7385 | boolean_t | |
7386 | vm_object_lock_try_shared(vm_object_t object) | |
7387 | { | |
7388 | if (vm_object_lock_avoid(object)) { | |
7389 | mutex_pause(2); | |
7390 | } | |
7391 | return (lck_rw_try_lock_shared(&object->Lock)); | |
7392 | } | |
7393 | ||
7394 | ||
7395 | unsigned int vm_object_change_wimg_mode_count = 0; | |
7396 | ||
7397 | /* | |
7398 | * The object must be locked | |
7399 | */ | |
7400 | void | |
7401 | vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode) | |
7402 | { | |
7403 | vm_page_t p; | |
7404 | ||
7405 | vm_object_lock_assert_exclusive(object); | |
7406 | ||
7407 | vm_object_paging_wait(object, THREAD_UNINT); | |
7408 | ||
7409 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
7410 | ||
7411 | if (!p->fictitious) | |
7412 | pmap_set_cache_attributes(p->phys_page, wimg_mode); | |
7413 | } | |
7414 | if (wimg_mode == VM_WIMG_USE_DEFAULT) | |
7415 | object->set_cache_attr = FALSE; | |
7416 | else | |
7417 | object->set_cache_attr = TRUE; | |
7418 | ||
7419 | object->wimg_bits = wimg_mode; | |
7420 | ||
7421 | vm_object_change_wimg_mode_count++; | |
7422 | } | |
7423 | ||
7424 | #if CONFIG_FREEZE | |
7425 | ||
7426 | kern_return_t vm_object_pack( | |
7427 | unsigned int *purgeable_count, | |
7428 | unsigned int *wired_count, | |
7429 | unsigned int *clean_count, | |
7430 | unsigned int *dirty_count, | |
7431 | unsigned int dirty_budget, | |
7432 | boolean_t *shared, | |
7433 | vm_object_t src_object, | |
7434 | struct default_freezer_handle *df_handle) | |
7435 | { | |
7436 | kern_return_t kr = KERN_SUCCESS; | |
7437 | ||
7438 | vm_object_lock(src_object); | |
7439 | ||
7440 | *purgeable_count = *wired_count = *clean_count = *dirty_count = 0; | |
7441 | *shared = FALSE; | |
7442 | ||
7443 | if (!src_object->alive || src_object->terminating){ | |
7444 | kr = KERN_FAILURE; | |
7445 | goto done; | |
7446 | } | |
7447 | ||
7448 | if (src_object->purgable == VM_PURGABLE_VOLATILE) { | |
7449 | *purgeable_count = src_object->resident_page_count; | |
7450 | ||
7451 | /* If the default freezer handle is null, we're just walking the pages to discover how many can be hibernated */ | |
7452 | if (df_handle != NULL) { | |
7453 | purgeable_q_t queue; | |
7454 | /* object should be on a queue */ | |
7455 | assert(src_object->objq.next != NULL && | |
7456 | src_object->objq.prev != NULL); | |
7457 | queue = vm_purgeable_object_remove(src_object); | |
7458 | assert(queue); | |
7459 | vm_page_lock_queues(); | |
7460 | vm_purgeable_token_delete_first(queue); | |
7461 | vm_page_unlock_queues(); | |
7462 | vm_object_purge(src_object); | |
7463 | } | |
7464 | goto done; | |
7465 | } | |
7466 | ||
7467 | if (src_object->ref_count == 1) { | |
7468 | vm_object_pack_pages(wired_count, clean_count, dirty_count, dirty_budget, src_object, df_handle); | |
7469 | } else { | |
7470 | if (src_object->internal) { | |
7471 | *shared = TRUE; | |
7472 | } | |
7473 | } | |
7474 | done: | |
7475 | vm_object_unlock(src_object); | |
7476 | ||
7477 | return kr; | |
7478 | } | |
7479 | ||
7480 | ||
7481 | void | |
7482 | vm_object_pack_pages( | |
7483 | unsigned int *wired_count, | |
7484 | unsigned int *clean_count, | |
7485 | unsigned int *dirty_count, | |
7486 | unsigned int dirty_budget, | |
7487 | vm_object_t src_object, | |
7488 | struct default_freezer_handle *df_handle) | |
7489 | { | |
7490 | vm_page_t p, next; | |
7491 | ||
7492 | next = (vm_page_t)queue_first(&src_object->memq); | |
7493 | ||
7494 | while (!queue_end(&src_object->memq, (queue_entry_t)next)) { | |
7495 | p = next; | |
7496 | next = (vm_page_t)queue_next(&next->listq); | |
7497 | ||
7498 | /* Finish up if we've hit our pageout limit */ | |
7499 | if (dirty_budget && (dirty_budget == *dirty_count)) { | |
7500 | break; | |
7501 | } | |
7502 | assert(!p->laundry); | |
7503 | ||
7504 | if (p->fictitious || p->busy ) | |
7505 | continue; | |
7506 | ||
7507 | if (p->absent || p->unusual || p->error) | |
7508 | continue; | |
7509 | ||
7510 | if (VM_PAGE_WIRED(p)) { | |
7511 | (*wired_count)++; | |
7512 | continue; | |
7513 | } | |
7514 | ||
7515 | if (df_handle == NULL) { | |
7516 | if (p->dirty || pmap_is_modified(p->phys_page)) { | |
7517 | (*dirty_count)++; | |
7518 | } else { | |
7519 | (*clean_count)++; | |
7520 | } | |
7521 | continue; | |
7522 | } | |
7523 | ||
7524 | if (p->cleaning) { | |
7525 | p->pageout = TRUE; | |
7526 | continue; | |
7527 | } | |
7528 | ||
7529 | if (p->pmapped == TRUE) { | |
7530 | int refmod_state; | |
7531 | refmod_state = pmap_disconnect(p->phys_page); | |
7532 | if (refmod_state & VM_MEM_MODIFIED) { | |
7533 | SET_PAGE_DIRTY(p, FALSE); | |
7534 | } | |
7535 | } | |
7536 | ||
7537 | if (p->dirty) { | |
7538 | default_freezer_pack_page(p, df_handle); | |
7539 | (*dirty_count)++; | |
7540 | } | |
7541 | else { | |
7542 | VM_PAGE_FREE(p); | |
7543 | (*clean_count)++; | |
7544 | } | |
7545 | } | |
7546 | } | |
7547 | ||
7548 | void | |
7549 | vm_object_pageout( | |
7550 | vm_object_t object) | |
7551 | { | |
7552 | vm_page_t p, next; | |
7553 | ||
7554 | assert(object != VM_OBJECT_NULL ); | |
7555 | ||
7556 | vm_object_lock(object); | |
7557 | ||
7558 | next = (vm_page_t)queue_first(&object->memq); | |
7559 | ||
7560 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
7561 | p = next; | |
7562 | next = (vm_page_t)queue_next(&next->listq); | |
7563 | ||
7564 | /* Throw to the pageout queue */ | |
7565 | vm_page_lockspin_queues(); | |
7566 | ||
7567 | /* | |
7568 | * see if page is already in the process of | |
7569 | * being cleaned... if so, leave it alone | |
7570 | */ | |
7571 | if (!p->laundry) { | |
7572 | VM_PAGE_QUEUES_REMOVE(p); | |
7573 | vm_pageout_cluster(p, TRUE); | |
7574 | } | |
7575 | vm_page_unlock_queues(); | |
7576 | } | |
7577 | ||
7578 | vm_object_unlock(object); | |
7579 | } | |
7580 | ||
7581 | kern_return_t | |
7582 | vm_object_pagein( | |
7583 | vm_object_t object) | |
7584 | { | |
7585 | memory_object_t pager; | |
7586 | kern_return_t kr; | |
7587 | ||
7588 | vm_object_lock(object); | |
7589 | ||
7590 | pager = object->pager; | |
7591 | ||
7592 | if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) { | |
7593 | vm_object_unlock(object); | |
7594 | return KERN_FAILURE; | |
7595 | } | |
7596 | ||
7597 | vm_object_paging_wait(object, THREAD_UNINT); | |
7598 | vm_object_paging_begin(object); | |
7599 | ||
7600 | object->blocked_access = TRUE; | |
7601 | vm_object_unlock(object); | |
7602 | ||
7603 | kr = memory_object_data_reclaim(pager, TRUE); | |
7604 | ||
7605 | vm_object_lock(object); | |
7606 | ||
7607 | object->blocked_access = FALSE; | |
7608 | vm_object_paging_end(object); | |
7609 | ||
7610 | vm_object_unlock(object); | |
7611 | ||
7612 | return kr; | |
7613 | } | |
7614 | #endif /* CONFIG_FREEZE */ |