]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2007-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* $OpenBSD: altq_hfsc.c,v 1.25 2007/09/13 20:40:02 chl Exp $ */ | |
30 | /* $KAME: altq_hfsc.c,v 1.17 2002/11/29 07:48:33 kjc Exp $ */ | |
31 | ||
32 | /* | |
33 | * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. | |
34 | * | |
35 | * Permission to use, copy, modify, and distribute this software and | |
36 | * its documentation is hereby granted (including for commercial or | |
37 | * for-profit use), provided that both the copyright notice and this | |
38 | * permission notice appear in all copies of the software, derivative | |
39 | * works, or modified versions, and any portions thereof. | |
40 | * | |
41 | * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF | |
42 | * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS | |
43 | * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED | |
44 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | |
45 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
46 | * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE | |
47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
48 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | |
49 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |
50 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
51 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
52 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |
53 | * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | |
54 | * DAMAGE. | |
55 | * | |
56 | * Carnegie Mellon encourages (but does not require) users of this | |
57 | * software to return any improvements or extensions that they make, | |
58 | * and to grant Carnegie Mellon the rights to redistribute these | |
59 | * changes without encumbrance. | |
60 | */ | |
61 | /* | |
62 | * H-FSC is described in Proceedings of SIGCOMM'97, | |
63 | * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, | |
64 | * Real-Time and Priority Service" | |
65 | * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. | |
66 | * | |
67 | * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. | |
68 | * when a class has an upperlimit, the fit-time is computed from the | |
69 | * upperlimit service curve. the link-sharing scheduler does not schedule | |
70 | * a class whose fit-time exceeds the current time. | |
71 | */ | |
72 | ||
73 | #if PKTSCHED_HFSC | |
74 | ||
75 | #include <sys/cdefs.h> | |
76 | #include <sys/param.h> | |
77 | #include <sys/malloc.h> | |
78 | #include <sys/mbuf.h> | |
79 | #include <sys/systm.h> | |
80 | #include <sys/errno.h> | |
81 | #include <sys/kernel.h> | |
82 | #include <sys/syslog.h> | |
83 | ||
84 | #include <kern/zalloc.h> | |
85 | ||
86 | #include <net/if.h> | |
87 | #include <net/net_osdep.h> | |
88 | ||
89 | #include <net/pktsched/pktsched_hfsc.h> | |
90 | #include <netinet/in.h> | |
91 | ||
92 | /* | |
93 | * function prototypes | |
94 | */ | |
95 | #if 0 | |
96 | static int hfsc_enqueue_ifclassq(struct ifclassq *, struct mbuf *); | |
97 | static struct mbuf *hfsc_dequeue_ifclassq(struct ifclassq *, cqdq_op_t); | |
98 | static int hfsc_request_ifclassq(struct ifclassq *, cqrq_t, void *); | |
99 | #endif | |
100 | static int hfsc_addq(struct hfsc_class *, struct mbuf *, struct pf_mtag *); | |
101 | static struct mbuf *hfsc_getq(struct hfsc_class *); | |
102 | static struct mbuf *hfsc_pollq(struct hfsc_class *); | |
103 | static void hfsc_purgeq(struct hfsc_if *, struct hfsc_class *, u_int32_t, | |
104 | u_int32_t *, u_int32_t *); | |
105 | static void hfsc_print_sc(struct hfsc_if *, u_int32_t, u_int64_t, | |
106 | struct service_curve *, struct internal_sc *, const char *); | |
107 | static void hfsc_updateq_linkrate(struct hfsc_if *, struct hfsc_class *); | |
108 | static void hfsc_updateq(struct hfsc_if *, struct hfsc_class *, cqev_t); | |
109 | ||
110 | static int hfsc_clear_interface(struct hfsc_if *); | |
111 | static struct hfsc_class *hfsc_class_create(struct hfsc_if *, | |
112 | struct service_curve *, struct service_curve *, struct service_curve *, | |
113 | struct hfsc_class *, u_int32_t, int, u_int32_t); | |
114 | static int hfsc_class_destroy(struct hfsc_if *, struct hfsc_class *); | |
115 | static int hfsc_destroy_locked(struct hfsc_if *); | |
116 | static struct hfsc_class *hfsc_nextclass(struct hfsc_class *); | |
117 | static struct hfsc_class *hfsc_clh_to_clp(struct hfsc_if *, u_int32_t); | |
118 | static const char *hfsc_style(struct hfsc_if *); | |
119 | ||
120 | static void set_active(struct hfsc_class *, u_int32_t); | |
121 | static void set_passive(struct hfsc_class *); | |
122 | ||
123 | static void init_ed(struct hfsc_class *, u_int32_t); | |
124 | static void update_ed(struct hfsc_class *, u_int32_t); | |
125 | static void update_d(struct hfsc_class *, u_int32_t); | |
126 | static void init_vf(struct hfsc_class *, u_int32_t); | |
127 | static void update_vf(struct hfsc_class *, u_int32_t, u_int64_t); | |
128 | static void update_cfmin(struct hfsc_class *); | |
129 | static void ellist_insert(struct hfsc_class *); | |
130 | static void ellist_remove(struct hfsc_class *); | |
131 | static void ellist_update(struct hfsc_class *); | |
132 | static struct hfsc_class *ellist_get_mindl(ellist_t *, u_int64_t); | |
133 | static void actlist_insert(struct hfsc_class *); | |
134 | static void actlist_remove(struct hfsc_class *); | |
135 | static void actlist_update(struct hfsc_class *); | |
136 | static struct hfsc_class *actlist_firstfit(struct hfsc_class *, u_int64_t); | |
137 | ||
138 | static inline u_int64_t seg_x2y(u_int64_t, u_int64_t); | |
139 | static inline u_int64_t seg_y2x(u_int64_t, u_int64_t); | |
140 | static inline u_int64_t m2sm(u_int64_t); | |
141 | static inline u_int64_t m2ism(u_int64_t); | |
142 | static inline u_int64_t d2dx(u_int64_t); | |
143 | static u_int64_t sm2m(u_int64_t); | |
144 | static u_int64_t dx2d(u_int64_t); | |
145 | ||
146 | static boolean_t sc2isc(struct hfsc_class *, struct service_curve *, | |
147 | struct internal_sc *, u_int64_t); | |
148 | static void rtsc_init(struct runtime_sc *, struct internal_sc *, | |
149 | u_int64_t, u_int64_t); | |
150 | static u_int64_t rtsc_y2x(struct runtime_sc *, u_int64_t); | |
151 | static u_int64_t rtsc_x2y(struct runtime_sc *, u_int64_t); | |
152 | static void rtsc_min(struct runtime_sc *, struct internal_sc *, | |
153 | u_int64_t, u_int64_t); | |
154 | ||
155 | #define HFSC_ZONE_MAX 32 /* maximum elements in zone */ | |
156 | #define HFSC_ZONE_NAME "pktsched_hfsc" /* zone name */ | |
157 | ||
158 | static unsigned int hfsc_size; /* size of zone element */ | |
159 | static struct zone *hfsc_zone; /* zone for hfsc_if */ | |
160 | ||
161 | #define HFSC_CL_ZONE_MAX 32 /* maximum elements in zone */ | |
162 | #define HFSC_CL_ZONE_NAME "pktsched_hfsc_cl" /* zone name */ | |
163 | ||
164 | static unsigned int hfsc_cl_size; /* size of zone element */ | |
165 | static struct zone *hfsc_cl_zone; /* zone for hfsc_class */ | |
166 | ||
167 | /* | |
168 | * macros | |
169 | */ | |
170 | #define HFSC_IS_A_PARENT_CLASS(cl) ((cl)->cl_children != NULL) | |
171 | ||
172 | #define HT_INFINITY 0xffffffffffffffffLL /* infinite time value */ | |
173 | ||
174 | void | |
175 | hfsc_init(void) | |
176 | { | |
177 | hfsc_size = sizeof (struct hfsc_if); | |
178 | hfsc_zone = zinit(hfsc_size, HFSC_ZONE_MAX * hfsc_size, | |
179 | 0, HFSC_ZONE_NAME); | |
180 | if (hfsc_zone == NULL) { | |
181 | panic("%s: failed allocating %s", __func__, HFSC_ZONE_NAME); | |
182 | /* NOTREACHED */ | |
183 | } | |
184 | zone_change(hfsc_zone, Z_EXPAND, TRUE); | |
185 | zone_change(hfsc_zone, Z_CALLERACCT, TRUE); | |
186 | ||
187 | hfsc_cl_size = sizeof (struct hfsc_class); | |
188 | hfsc_cl_zone = zinit(hfsc_cl_size, HFSC_CL_ZONE_MAX * hfsc_cl_size, | |
189 | 0, HFSC_CL_ZONE_NAME); | |
190 | if (hfsc_cl_zone == NULL) { | |
191 | panic("%s: failed allocating %s", __func__, HFSC_CL_ZONE_NAME); | |
192 | /* NOTREACHED */ | |
193 | } | |
194 | zone_change(hfsc_cl_zone, Z_EXPAND, TRUE); | |
195 | zone_change(hfsc_cl_zone, Z_CALLERACCT, TRUE); | |
196 | } | |
197 | ||
198 | struct hfsc_if * | |
199 | hfsc_alloc(struct ifnet *ifp, int how, boolean_t altq) | |
200 | { | |
201 | struct hfsc_if *hif; | |
202 | ||
203 | hif = (how == M_WAITOK) ? zalloc(hfsc_zone) : zalloc_noblock(hfsc_zone); | |
204 | if (hif == NULL) | |
205 | return (NULL); | |
206 | ||
207 | bzero(hif, hfsc_size); | |
208 | TAILQ_INIT(&hif->hif_eligible); | |
209 | hif->hif_ifq = &ifp->if_snd; | |
210 | if (altq) { | |
211 | hif->hif_maxclasses = HFSC_MAX_CLASSES; | |
212 | hif->hif_flags |= HFSCIFF_ALTQ; | |
213 | } else { | |
214 | hif->hif_maxclasses = IFCQ_SC_MAX + 1; /* incl. root class */ | |
215 | } | |
216 | ||
217 | if ((hif->hif_class_tbl = _MALLOC(sizeof (struct hfsc_class *) * | |
218 | hif->hif_maxclasses, M_DEVBUF, M_WAITOK|M_ZERO)) == NULL) { | |
219 | log(LOG_ERR, "%s: %s unable to allocate class table array\n", | |
220 | if_name(ifp), hfsc_style(hif)); | |
221 | goto error; | |
222 | } | |
223 | ||
224 | if (pktsched_verbose) { | |
225 | log(LOG_DEBUG, "%s: %s scheduler allocated\n", | |
226 | if_name(ifp), hfsc_style(hif)); | |
227 | } | |
228 | ||
229 | return (hif); | |
230 | ||
231 | error: | |
232 | if (hif->hif_class_tbl != NULL) { | |
233 | _FREE(hif->hif_class_tbl, M_DEVBUF); | |
234 | hif->hif_class_tbl = NULL; | |
235 | } | |
236 | zfree(hfsc_zone, hif); | |
237 | ||
238 | return (NULL); | |
239 | } | |
240 | ||
241 | int | |
242 | hfsc_destroy(struct hfsc_if *hif) | |
243 | { | |
244 | struct ifclassq *ifq = hif->hif_ifq; | |
245 | int err; | |
246 | ||
247 | IFCQ_LOCK(ifq); | |
248 | err = hfsc_destroy_locked(hif); | |
249 | IFCQ_UNLOCK(ifq); | |
250 | ||
251 | return (err); | |
252 | } | |
253 | ||
254 | static int | |
255 | hfsc_destroy_locked(struct hfsc_if *hif) | |
256 | { | |
257 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
258 | ||
259 | (void) hfsc_clear_interface(hif); | |
260 | (void) hfsc_class_destroy(hif, hif->hif_rootclass); | |
261 | ||
262 | VERIFY(hif->hif_class_tbl != NULL); | |
263 | _FREE(hif->hif_class_tbl, M_DEVBUF); | |
264 | hif->hif_class_tbl = NULL; | |
265 | ||
266 | if (pktsched_verbose) { | |
267 | log(LOG_DEBUG, "%s: %s scheduler destroyed\n", | |
268 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif)); | |
269 | } | |
270 | ||
271 | zfree(hfsc_zone, hif); | |
272 | ||
273 | return (0); | |
274 | } | |
275 | ||
276 | /* | |
277 | * bring the interface back to the initial state by discarding | |
278 | * all the filters and classes except the root class. | |
279 | */ | |
280 | static int | |
281 | hfsc_clear_interface(struct hfsc_if *hif) | |
282 | { | |
283 | struct hfsc_class *cl; | |
284 | ||
285 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
286 | ||
287 | /* clear out the classes */ | |
288 | while (hif->hif_rootclass != NULL && | |
289 | (cl = hif->hif_rootclass->cl_children) != NULL) { | |
290 | /* | |
291 | * remove the first leaf class found in the hierarchy | |
292 | * then start over | |
293 | */ | |
294 | for (; cl != NULL; cl = hfsc_nextclass(cl)) { | |
295 | if (!HFSC_IS_A_PARENT_CLASS(cl)) { | |
296 | (void) hfsc_class_destroy(hif, cl); | |
297 | break; | |
298 | } | |
299 | } | |
300 | } | |
301 | ||
302 | return (0); | |
303 | } | |
304 | ||
305 | /* discard all the queued packets on the interface */ | |
306 | void | |
307 | hfsc_purge(struct hfsc_if *hif) | |
308 | { | |
309 | struct hfsc_class *cl; | |
310 | ||
311 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
312 | ||
313 | for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) { | |
314 | if (!qempty(&cl->cl_q)) | |
315 | hfsc_purgeq(hif, cl, 0, NULL, NULL); | |
316 | } | |
317 | #if !PF_ALTQ | |
318 | /* | |
319 | * This assertion is safe to be made only when PF_ALTQ is not | |
320 | * configured; otherwise, IFCQ_LEN represents the sum of the | |
321 | * packets managed by ifcq_disc and altq_disc instances, which | |
322 | * is possible when transitioning between the two. | |
323 | */ | |
324 | VERIFY(IFCQ_LEN(hif->hif_ifq) == 0); | |
325 | #endif /* !PF_ALTQ */ | |
326 | } | |
327 | ||
328 | void | |
329 | hfsc_event(struct hfsc_if *hif, cqev_t ev) | |
330 | { | |
331 | struct hfsc_class *cl; | |
332 | ||
333 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
334 | ||
335 | for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) | |
336 | hfsc_updateq(hif, cl, ev); | |
337 | } | |
338 | ||
339 | int | |
340 | hfsc_add_queue(struct hfsc_if *hif, struct service_curve *rtsc, | |
341 | struct service_curve *lssc, struct service_curve *ulsc, | |
342 | u_int32_t qlimit, int flags, u_int32_t parent_qid, u_int32_t qid, | |
343 | struct hfsc_class **clp) | |
344 | { | |
345 | struct hfsc_class *cl = NULL, *parent; | |
346 | ||
347 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
348 | ||
349 | if (parent_qid == HFSC_NULLCLASS_HANDLE && hif->hif_rootclass == NULL) | |
350 | parent = NULL; | |
351 | else if ((parent = hfsc_clh_to_clp(hif, parent_qid)) == NULL) | |
352 | return (EINVAL); | |
353 | ||
354 | if (hfsc_clh_to_clp(hif, qid) != NULL) | |
355 | return (EBUSY); | |
356 | ||
357 | cl = hfsc_class_create(hif, rtsc, lssc, ulsc, parent, | |
358 | qlimit, flags, qid); | |
359 | if (cl == NULL) | |
360 | return (ENOMEM); | |
361 | ||
362 | if (clp != NULL) | |
363 | *clp = cl; | |
364 | ||
365 | return (0); | |
366 | } | |
367 | ||
368 | static struct hfsc_class * | |
369 | hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc, | |
370 | struct service_curve *fsc, struct service_curve *usc, | |
371 | struct hfsc_class *parent, u_int32_t qlimit, int flags, u_int32_t qid) | |
372 | { | |
373 | struct ifnet *ifp; | |
374 | struct ifclassq *ifq; | |
375 | struct hfsc_class *cl, *p; | |
376 | u_int64_t eff_rate; | |
377 | u_int32_t i; | |
378 | ||
379 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
380 | ||
381 | /* Sanitize flags unless internally configured */ | |
382 | if (hif->hif_flags & HFSCIFF_ALTQ) | |
383 | flags &= HFCF_USERFLAGS; | |
384 | ||
385 | if (hif->hif_classes >= hif->hif_maxclasses) { | |
386 | log(LOG_ERR, "%s: %s out of classes! (max %d)\n", | |
387 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif), | |
388 | hif->hif_maxclasses); | |
389 | return (NULL); | |
390 | } | |
391 | ||
392 | #if !CLASSQ_RED | |
393 | if (flags & HFCF_RED) { | |
394 | log(LOG_ERR, "%s: %s RED not available!\n", | |
395 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif)); | |
396 | return (NULL); | |
397 | } | |
398 | #endif /* !CLASSQ_RED */ | |
399 | ||
400 | #if !CLASSQ_RIO | |
401 | if (flags & HFCF_RIO) { | |
402 | log(LOG_ERR, "%s: %s RIO not available!\n", | |
403 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif)); | |
404 | return (NULL); | |
405 | } | |
406 | #endif /* CLASSQ_RIO */ | |
407 | ||
408 | #if !CLASSQ_BLUE | |
409 | if (flags & HFCF_BLUE) { | |
410 | log(LOG_ERR, "%s: %s BLUE not available!\n", | |
411 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif)); | |
412 | return (NULL); | |
413 | } | |
414 | #endif /* CLASSQ_BLUE */ | |
415 | ||
416 | /* These are mutually exclusive */ | |
417 | if ((flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) && | |
418 | (flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) != HFCF_RED && | |
419 | (flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) != HFCF_RIO && | |
420 | (flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) != HFCF_BLUE && | |
421 | (flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) != HFCF_SFB) { | |
422 | log(LOG_ERR, "%s: %s more than one RED|RIO|BLUE|SFB\n", | |
423 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif)); | |
424 | return (NULL); | |
425 | } | |
426 | ||
427 | cl = zalloc(hfsc_cl_zone); | |
428 | if (cl == NULL) | |
429 | return (NULL); | |
430 | ||
431 | bzero(cl, hfsc_cl_size); | |
432 | TAILQ_INIT(&cl->cl_actc); | |
433 | ifq = hif->hif_ifq; | |
434 | ifp = HFSCIF_IFP(hif); | |
435 | ||
436 | if (qlimit == 0 || qlimit > IFCQ_MAXLEN(ifq)) { | |
437 | qlimit = IFCQ_MAXLEN(ifq); | |
438 | if (qlimit == 0) | |
439 | qlimit = DEFAULT_QLIMIT; /* use default */ | |
440 | } | |
441 | _qinit(&cl->cl_q, Q_DROPTAIL, qlimit); | |
442 | ||
443 | cl->cl_flags = flags; | |
444 | if (flags & (HFCF_RED|HFCF_RIO|HFCF_BLUE|HFCF_SFB)) { | |
445 | #if CLASSQ_RED || CLASSQ_RIO | |
446 | int pkttime; | |
447 | #endif /* CLASSQ_RED || CLASSQ_RIO */ | |
448 | u_int64_t m2; | |
449 | ||
450 | m2 = 0; | |
451 | if (rsc != NULL && rsc->m2 > m2) | |
452 | m2 = rsc->m2; | |
453 | if (fsc != NULL && fsc->m2 > m2) | |
454 | m2 = fsc->m2; | |
455 | if (usc != NULL && usc->m2 > m2) | |
456 | m2 = usc->m2; | |
457 | ||
458 | cl->cl_qflags = 0; | |
459 | if (flags & HFCF_ECN) { | |
460 | if (flags & HFCF_BLUE) | |
461 | cl->cl_qflags |= BLUEF_ECN; | |
462 | else if (flags & HFCF_SFB) | |
463 | cl->cl_qflags |= SFBF_ECN; | |
464 | else if (flags & HFCF_RED) | |
465 | cl->cl_qflags |= REDF_ECN; | |
466 | else if (flags & HFCF_RIO) | |
467 | cl->cl_qflags |= RIOF_ECN; | |
468 | } | |
469 | if (flags & HFCF_FLOWCTL) { | |
470 | if (flags & HFCF_SFB) | |
471 | cl->cl_qflags |= SFBF_FLOWCTL; | |
472 | } | |
473 | if (flags & HFCF_CLEARDSCP) { | |
474 | if (flags & HFCF_RIO) | |
475 | cl->cl_qflags |= RIOF_CLEARDSCP; | |
476 | } | |
477 | #if CLASSQ_RED || CLASSQ_RIO | |
478 | /* | |
479 | * XXX: RED & RIO should be watching link speed and MTU | |
480 | * events and recompute pkttime accordingly. | |
481 | */ | |
482 | if (m2 < 8) | |
483 | pkttime = 1000 * 1000 * 1000; /* 1 sec */ | |
484 | else | |
485 | pkttime = (int64_t)ifp->if_mtu * 1000 * 1000 * 1000 / | |
486 | (m2 / 8); | |
487 | ||
488 | /* Test for exclusivity {RED,RIO,BLUE,SFB} was done above */ | |
489 | #if CLASSQ_RED | |
490 | if (flags & HFCF_RED) { | |
491 | cl->cl_red = red_alloc(ifp, 0, 0, | |
492 | qlimit(&cl->cl_q) * 10/100, | |
493 | qlimit(&cl->cl_q) * 30/100, | |
494 | cl->cl_qflags, pkttime); | |
495 | if (cl->cl_red != NULL) | |
496 | qtype(&cl->cl_q) = Q_RED; | |
497 | } | |
498 | #endif /* CLASSQ_RED */ | |
499 | #if CLASSQ_RIO | |
500 | if (flags & HFCF_RIO) { | |
501 | cl->cl_rio = | |
502 | rio_alloc(ifp, 0, NULL, cl->cl_qflags, pkttime); | |
503 | if (cl->cl_rio != NULL) | |
504 | qtype(&cl->cl_q) = Q_RIO; | |
505 | } | |
506 | #endif /* CLASSQ_RIO */ | |
507 | #endif /* CLASSQ_RED || CLASSQ_RIO */ | |
508 | #if CLASSQ_BLUE | |
509 | if (flags & HFCF_BLUE) { | |
510 | cl->cl_blue = blue_alloc(ifp, 0, 0, cl->cl_qflags); | |
511 | if (cl->cl_blue != NULL) | |
512 | qtype(&cl->cl_q) = Q_BLUE; | |
513 | } | |
514 | #endif /* CLASSQ_BLUE */ | |
515 | if (flags & HFCF_SFB) { | |
516 | if (!(cl->cl_flags & HFCF_LAZY)) | |
517 | cl->cl_sfb = sfb_alloc(ifp, qid, | |
518 | qlimit(&cl->cl_q), cl->cl_qflags); | |
519 | if (cl->cl_sfb != NULL || (cl->cl_flags & HFCF_LAZY)) | |
520 | qtype(&cl->cl_q) = Q_SFB; | |
521 | } | |
522 | } | |
523 | ||
524 | cl->cl_id = hif->hif_classid++; | |
525 | cl->cl_handle = qid; | |
526 | cl->cl_hif = hif; | |
527 | cl->cl_parent = parent; | |
528 | ||
529 | eff_rate = ifnet_output_linkrate(HFSCIF_IFP(hif)); | |
530 | hif->hif_eff_rate = eff_rate; | |
531 | ||
532 | if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) && | |
533 | (!(rsc->fl & HFSCF_M1_PCT) || (rsc->m1 > 0 && rsc->m1 <= 100)) && | |
534 | (!(rsc->fl & HFSCF_M2_PCT) || (rsc->m2 > 0 && rsc->m2 <= 100))) { | |
535 | rsc->fl &= HFSCF_USERFLAGS; | |
536 | cl->cl_flags |= HFCF_RSC; | |
537 | cl->cl_rsc0 = *rsc; | |
538 | (void) sc2isc(cl, &cl->cl_rsc0, &cl->cl_rsc, eff_rate); | |
539 | rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); | |
540 | rtsc_init(&cl->cl_eligible, &cl->cl_rsc, 0, 0); | |
541 | } | |
542 | if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) && | |
543 | (!(fsc->fl & HFSCF_M1_PCT) || (fsc->m1 > 0 && fsc->m1 <= 100)) && | |
544 | (!(fsc->fl & HFSCF_M2_PCT) || (fsc->m2 > 0 && fsc->m2 <= 100))) { | |
545 | fsc->fl &= HFSCF_USERFLAGS; | |
546 | cl->cl_flags |= HFCF_FSC; | |
547 | cl->cl_fsc0 = *fsc; | |
548 | (void) sc2isc(cl, &cl->cl_fsc0, &cl->cl_fsc, eff_rate); | |
549 | rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); | |
550 | } | |
551 | if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) && | |
552 | (!(usc->fl & HFSCF_M1_PCT) || (usc->m1 > 0 && usc->m1 <= 100)) && | |
553 | (!(usc->fl & HFSCF_M2_PCT) || (usc->m2 > 0 && usc->m2 <= 100))) { | |
554 | usc->fl &= HFSCF_USERFLAGS; | |
555 | cl->cl_flags |= HFCF_USC; | |
556 | cl->cl_usc0 = *usc; | |
557 | (void) sc2isc(cl, &cl->cl_usc0, &cl->cl_usc, eff_rate); | |
558 | rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); | |
559 | } | |
560 | ||
561 | /* | |
562 | * find a free slot in the class table. if the slot matching | |
563 | * the lower bits of qid is free, use this slot. otherwise, | |
564 | * use the first free slot. | |
565 | */ | |
566 | i = qid % hif->hif_maxclasses; | |
567 | if (hif->hif_class_tbl[i] == NULL) { | |
568 | hif->hif_class_tbl[i] = cl; | |
569 | } else { | |
570 | for (i = 0; i < hif->hif_maxclasses; i++) | |
571 | if (hif->hif_class_tbl[i] == NULL) { | |
572 | hif->hif_class_tbl[i] = cl; | |
573 | break; | |
574 | } | |
575 | if (i == hif->hif_maxclasses) { | |
576 | goto err_ret; | |
577 | } | |
578 | } | |
579 | hif->hif_classes++; | |
580 | ||
581 | if (flags & HFCF_DEFAULTCLASS) | |
582 | hif->hif_defaultclass = cl; | |
583 | ||
584 | if (parent == NULL) { | |
585 | /* this is root class */ | |
586 | hif->hif_rootclass = cl; | |
587 | } else { | |
588 | /* add this class to the children list of the parent */ | |
589 | if ((p = parent->cl_children) == NULL) | |
590 | parent->cl_children = cl; | |
591 | else { | |
592 | while (p->cl_siblings != NULL) | |
593 | p = p->cl_siblings; | |
594 | p->cl_siblings = cl; | |
595 | } | |
596 | } | |
597 | ||
598 | if (pktsched_verbose) { | |
599 | log(LOG_DEBUG, "%s: %s created qid=%d pqid=%d qlimit=%d " | |
600 | "flags=%b\n", if_name(ifp), hfsc_style(hif), cl->cl_handle, | |
601 | (cl->cl_parent != NULL) ? cl->cl_parent->cl_handle : 0, | |
602 | qlimit(&cl->cl_q), cl->cl_flags, HFCF_BITS); | |
603 | if (cl->cl_flags & HFCF_RSC) { | |
604 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
605 | &cl->cl_rsc0, &cl->cl_rsc, "rsc"); | |
606 | } | |
607 | if (cl->cl_flags & HFCF_FSC) { | |
608 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
609 | &cl->cl_fsc0, &cl->cl_fsc, "fsc"); | |
610 | } | |
611 | if (cl->cl_flags & HFCF_USC) { | |
612 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
613 | &cl->cl_usc0, &cl->cl_usc, "usc"); | |
614 | } | |
615 | } | |
616 | ||
617 | return (cl); | |
618 | ||
619 | err_ret: | |
620 | if (cl->cl_qalg.ptr != NULL) { | |
621 | #if CLASSQ_RIO | |
622 | if (q_is_rio(&cl->cl_q)) | |
623 | rio_destroy(cl->cl_rio); | |
624 | #endif /* CLASSQ_RIO */ | |
625 | #if CLASSQ_RED | |
626 | if (q_is_red(&cl->cl_q)) | |
627 | red_destroy(cl->cl_red); | |
628 | #endif /* CLASSQ_RED */ | |
629 | #if CLASSQ_BLUE | |
630 | if (q_is_blue(&cl->cl_q)) | |
631 | blue_destroy(cl->cl_blue); | |
632 | #endif /* CLASSQ_BLUE */ | |
633 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
634 | sfb_destroy(cl->cl_sfb); | |
635 | cl->cl_qalg.ptr = NULL; | |
636 | qtype(&cl->cl_q) = Q_DROPTAIL; | |
637 | qstate(&cl->cl_q) = QS_RUNNING; | |
638 | } | |
639 | zfree(hfsc_cl_zone, cl); | |
640 | return (NULL); | |
641 | } | |
642 | ||
643 | int | |
644 | hfsc_remove_queue(struct hfsc_if *hif, u_int32_t qid) | |
645 | { | |
646 | struct hfsc_class *cl; | |
647 | ||
648 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
649 | ||
650 | if ((cl = hfsc_clh_to_clp(hif, qid)) == NULL) | |
651 | return (EINVAL); | |
652 | ||
653 | return (hfsc_class_destroy(hif, cl)); | |
654 | } | |
655 | ||
656 | static int | |
657 | hfsc_class_destroy(struct hfsc_if *hif, struct hfsc_class *cl) | |
658 | { | |
659 | u_int32_t i; | |
660 | ||
661 | if (cl == NULL) | |
662 | return (0); | |
663 | ||
664 | if (HFSC_IS_A_PARENT_CLASS(cl)) | |
665 | return (EBUSY); | |
666 | ||
667 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
668 | ||
669 | if (!qempty(&cl->cl_q)) | |
670 | hfsc_purgeq(hif, cl, 0, NULL, NULL); | |
671 | ||
672 | if (cl->cl_parent == NULL) { | |
673 | /* this is root class */ | |
674 | } else { | |
675 | struct hfsc_class *p = cl->cl_parent->cl_children; | |
676 | ||
677 | if (p == cl) | |
678 | cl->cl_parent->cl_children = cl->cl_siblings; | |
679 | else do { | |
680 | if (p->cl_siblings == cl) { | |
681 | p->cl_siblings = cl->cl_siblings; | |
682 | break; | |
683 | } | |
684 | } while ((p = p->cl_siblings) != NULL); | |
685 | VERIFY(p != NULL); | |
686 | } | |
687 | ||
688 | for (i = 0; i < hif->hif_maxclasses; i++) | |
689 | if (hif->hif_class_tbl[i] == cl) { | |
690 | hif->hif_class_tbl[i] = NULL; | |
691 | break; | |
692 | } | |
693 | ||
694 | hif->hif_classes--; | |
695 | ||
696 | if (cl->cl_qalg.ptr != NULL) { | |
697 | #if CLASSQ_RIO | |
698 | if (q_is_rio(&cl->cl_q)) | |
699 | rio_destroy(cl->cl_rio); | |
700 | #endif /* CLASSQ_RIO */ | |
701 | #if CLASSQ_RED | |
702 | if (q_is_red(&cl->cl_q)) | |
703 | red_destroy(cl->cl_red); | |
704 | #endif /* CLASSQ_RED */ | |
705 | #if CLASSQ_BLUE | |
706 | if (q_is_blue(&cl->cl_q)) | |
707 | blue_destroy(cl->cl_blue); | |
708 | #endif /* CLASSQ_BLUE */ | |
709 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
710 | sfb_destroy(cl->cl_sfb); | |
711 | cl->cl_qalg.ptr = NULL; | |
712 | qtype(&cl->cl_q) = Q_DROPTAIL; | |
713 | qstate(&cl->cl_q) = QS_RUNNING; | |
714 | } | |
715 | ||
716 | if (cl == hif->hif_rootclass) | |
717 | hif->hif_rootclass = NULL; | |
718 | if (cl == hif->hif_defaultclass) | |
719 | hif->hif_defaultclass = NULL; | |
720 | ||
721 | if (pktsched_verbose) { | |
722 | log(LOG_DEBUG, "%s: %s destroyed qid=%d slot=%d\n", | |
723 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif), | |
724 | cl->cl_handle, cl->cl_id); | |
725 | } | |
726 | ||
727 | zfree(hfsc_cl_zone, cl); | |
728 | ||
729 | return (0); | |
730 | } | |
731 | ||
732 | /* | |
733 | * hfsc_nextclass returns the next class in the tree. | |
734 | * usage: | |
735 | * for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) | |
736 | * do_something; | |
737 | */ | |
738 | static struct hfsc_class * | |
739 | hfsc_nextclass(struct hfsc_class *cl) | |
740 | { | |
741 | IFCQ_LOCK_ASSERT_HELD(cl->cl_hif->hif_ifq); | |
742 | ||
743 | if (cl->cl_children != NULL) | |
744 | cl = cl->cl_children; | |
745 | else if (cl->cl_siblings != NULL) | |
746 | cl = cl->cl_siblings; | |
747 | else { | |
748 | while ((cl = cl->cl_parent) != NULL) | |
749 | if (cl->cl_siblings) { | |
750 | cl = cl->cl_siblings; | |
751 | break; | |
752 | } | |
753 | } | |
754 | ||
755 | return (cl); | |
756 | } | |
757 | ||
758 | int | |
759 | hfsc_enqueue(struct hfsc_if *hif, struct hfsc_class *cl, struct mbuf *m, | |
760 | struct pf_mtag *t) | |
761 | { | |
762 | struct ifclassq *ifq = hif->hif_ifq; | |
763 | u_int32_t len; | |
764 | int ret; | |
765 | ||
766 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
767 | VERIFY(cl == NULL || cl->cl_hif == hif); | |
768 | ||
769 | if (cl == NULL) { | |
770 | cl = hfsc_clh_to_clp(hif, t->pftag_qid); | |
771 | if (cl == NULL || HFSC_IS_A_PARENT_CLASS(cl)) { | |
772 | cl = hif->hif_defaultclass; | |
773 | if (cl == NULL) { | |
774 | IFCQ_CONVERT_LOCK(ifq); | |
775 | m_freem(m); | |
776 | return (ENOBUFS); | |
777 | } | |
778 | } | |
779 | } | |
780 | ||
781 | len = m_pktlen(m); | |
782 | ||
783 | ret = hfsc_addq(cl, m, t); | |
784 | if (ret != 0) { | |
785 | if (ret == CLASSQEQ_SUCCESS_FC) { | |
786 | /* packet enqueued, return advisory feedback */ | |
787 | ret = EQFULL; | |
788 | } else { | |
789 | VERIFY(ret == CLASSQEQ_DROPPED || | |
790 | ret == CLASSQEQ_DROPPED_FC || | |
791 | ret == CLASSQEQ_DROPPED_SP); | |
792 | /* packet has been freed in hfsc_addq */ | |
793 | PKTCNTR_ADD(&cl->cl_stats.drop_cnt, 1, len); | |
794 | IFCQ_DROP_ADD(ifq, 1, len); | |
795 | switch (ret) { | |
796 | case CLASSQEQ_DROPPED: | |
797 | return (ENOBUFS); | |
798 | case CLASSQEQ_DROPPED_FC: | |
799 | return (EQFULL); | |
800 | case CLASSQEQ_DROPPED_SP: | |
801 | return (EQSUSPENDED); | |
802 | } | |
803 | /* NOT_REACHED */ | |
804 | } | |
805 | } | |
806 | IFCQ_INC_LEN(ifq); | |
807 | cl->cl_hif->hif_packets++; | |
808 | ||
809 | /* successfully queued. */ | |
810 | if (qlen(&cl->cl_q) == 1) | |
811 | set_active(cl, len); | |
812 | ||
813 | return (ret); | |
814 | } | |
815 | ||
816 | /* | |
817 | * note: CLASSQDQ_POLL returns the next packet without removing the packet | |
818 | * from the queue. CLASSQDQ_REMOVE is a normal dequeue operation. | |
819 | * CLASSQDQ_REMOVE must return the same packet if called immediately | |
820 | * after CLASSQDQ_POLL. | |
821 | */ | |
822 | struct mbuf * | |
823 | hfsc_dequeue(struct hfsc_if *hif, cqdq_op_t op) | |
824 | { | |
825 | struct ifclassq *ifq = hif->hif_ifq; | |
826 | struct hfsc_class *cl; | |
827 | struct mbuf *m; | |
828 | u_int32_t len, next_len; | |
829 | int realtime = 0; | |
830 | u_int64_t cur_time; | |
831 | ||
832 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
833 | ||
834 | if (hif->hif_packets == 0) | |
835 | /* no packet in the tree */ | |
836 | return (NULL); | |
837 | ||
838 | cur_time = read_machclk(); | |
839 | ||
840 | if (op == CLASSQDQ_REMOVE && hif->hif_pollcache != NULL) { | |
841 | ||
842 | cl = hif->hif_pollcache; | |
843 | hif->hif_pollcache = NULL; | |
844 | /* check if the class was scheduled by real-time criteria */ | |
845 | if (cl->cl_flags & HFCF_RSC) | |
846 | realtime = (cl->cl_e <= cur_time); | |
847 | } else { | |
848 | /* | |
849 | * if there are eligible classes, use real-time criteria. | |
850 | * find the class with the minimum deadline among | |
851 | * the eligible classes. | |
852 | */ | |
853 | if ((cl = ellist_get_mindl(&hif->hif_eligible, cur_time)) | |
854 | != NULL) { | |
855 | realtime = 1; | |
856 | } else { | |
857 | int fits = 0; | |
858 | /* | |
859 | * use link-sharing criteria | |
860 | * get the class with the minimum vt in the hierarchy | |
861 | */ | |
862 | cl = hif->hif_rootclass; | |
863 | while (HFSC_IS_A_PARENT_CLASS(cl)) { | |
864 | ||
865 | cl = actlist_firstfit(cl, cur_time); | |
866 | if (cl == NULL) { | |
867 | if (fits > 0) | |
868 | log(LOG_ERR, "%s: %s " | |
869 | "%d fit but none found\n", | |
870 | if_name(HFSCIF_IFP(hif)), | |
871 | hfsc_style(hif), fits); | |
872 | return (NULL); | |
873 | } | |
874 | /* | |
875 | * update parent's cl_cvtmin. | |
876 | * don't update if the new vt is smaller. | |
877 | */ | |
878 | if (cl->cl_parent->cl_cvtmin < cl->cl_vt) | |
879 | cl->cl_parent->cl_cvtmin = cl->cl_vt; | |
880 | fits++; | |
881 | } | |
882 | } | |
883 | ||
884 | if (op == CLASSQDQ_POLL) { | |
885 | hif->hif_pollcache = cl; | |
886 | m = hfsc_pollq(cl); | |
887 | return (m); | |
888 | } | |
889 | } | |
890 | ||
891 | m = hfsc_getq(cl); | |
892 | VERIFY(m != NULL); | |
893 | len = m_pktlen(m); | |
894 | cl->cl_hif->hif_packets--; | |
895 | IFCQ_DEC_LEN(ifq); | |
896 | IFCQ_XMIT_ADD(ifq, 1, len); | |
897 | PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, 1, len); | |
898 | ||
899 | update_vf(cl, len, cur_time); | |
900 | if (realtime) | |
901 | cl->cl_cumul += len; | |
902 | ||
903 | if (!qempty(&cl->cl_q)) { | |
904 | if (cl->cl_flags & HFCF_RSC) { | |
905 | /* update ed */ | |
906 | next_len = m_pktlen(qhead(&cl->cl_q)); | |
907 | ||
908 | if (realtime) | |
909 | update_ed(cl, next_len); | |
910 | else | |
911 | update_d(cl, next_len); | |
912 | } | |
913 | } else { | |
914 | /* the class becomes passive */ | |
915 | set_passive(cl); | |
916 | } | |
917 | ||
918 | return (m); | |
919 | ||
920 | } | |
921 | ||
922 | static int | |
923 | hfsc_addq(struct hfsc_class *cl, struct mbuf *m, struct pf_mtag *t) | |
924 | { | |
925 | struct ifclassq *ifq = cl->cl_hif->hif_ifq; | |
926 | ||
927 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
928 | ||
929 | #if CLASSQ_RIO | |
930 | if (q_is_rio(&cl->cl_q)) | |
931 | return (rio_addq(cl->cl_rio, &cl->cl_q, m, t)); | |
932 | else | |
933 | #endif /* CLASSQ_RIO */ | |
934 | #if CLASSQ_RED | |
935 | if (q_is_red(&cl->cl_q)) | |
936 | return (red_addq(cl->cl_red, &cl->cl_q, m, t)); | |
937 | else | |
938 | #endif /* CLASSQ_RED */ | |
939 | #if CLASSQ_BLUE | |
940 | if (q_is_blue(&cl->cl_q)) | |
941 | return (blue_addq(cl->cl_blue, &cl->cl_q, m, t)); | |
942 | else | |
943 | #endif /* CLASSQ_BLUE */ | |
944 | if (q_is_sfb(&cl->cl_q)) { | |
945 | if (cl->cl_sfb == NULL) { | |
946 | struct ifnet *ifp = HFSCIF_IFP(cl->cl_hif); | |
947 | ||
948 | VERIFY(cl->cl_flags & HFCF_LAZY); | |
949 | IFCQ_CONVERT_LOCK(ifq); | |
950 | ||
951 | cl->cl_sfb = sfb_alloc(ifp, cl->cl_handle, | |
952 | qlimit(&cl->cl_q), cl->cl_qflags); | |
953 | if (cl->cl_sfb == NULL) { | |
954 | /* fall back to droptail */ | |
955 | qtype(&cl->cl_q) = Q_DROPTAIL; | |
956 | cl->cl_flags &= ~HFCF_SFB; | |
957 | cl->cl_qflags &= ~(SFBF_ECN | SFBF_FLOWCTL); | |
958 | ||
959 | log(LOG_ERR, "%s: %s SFB lazy allocation " | |
960 | "failed for qid=%d slot=%d, falling back " | |
961 | "to DROPTAIL\n", if_name(ifp), | |
962 | hfsc_style(cl->cl_hif), cl->cl_handle, | |
963 | cl->cl_id); | |
964 | } | |
965 | } | |
966 | if (cl->cl_sfb != NULL) | |
967 | return (sfb_addq(cl->cl_sfb, &cl->cl_q, m, t)); | |
968 | } else if (qlen(&cl->cl_q) >= qlimit(&cl->cl_q)) { | |
969 | IFCQ_CONVERT_LOCK(ifq); | |
970 | m_freem(m); | |
971 | return (CLASSQEQ_DROPPED); | |
972 | } | |
973 | ||
974 | if (cl->cl_flags & HFCF_CLEARDSCP) | |
975 | write_dsfield(m, t, 0); | |
976 | ||
977 | _addq(&cl->cl_q, m); | |
978 | ||
979 | return (0); | |
980 | } | |
981 | ||
982 | static struct mbuf * | |
983 | hfsc_getq(struct hfsc_class *cl) | |
984 | { | |
985 | IFCQ_LOCK_ASSERT_HELD(cl->cl_hif->hif_ifq); | |
986 | ||
987 | #if CLASSQ_RIO | |
988 | if (q_is_rio(&cl->cl_q)) | |
989 | return (rio_getq(cl->cl_rio, &cl->cl_q)); | |
990 | else | |
991 | #endif /* CLASSQ_RIO */ | |
992 | #if CLASSQ_RED | |
993 | if (q_is_red(&cl->cl_q)) | |
994 | return (red_getq(cl->cl_red, &cl->cl_q)); | |
995 | else | |
996 | #endif /* CLASSQ_RED */ | |
997 | #if CLASSQ_BLUE | |
998 | if (q_is_blue(&cl->cl_q)) | |
999 | return (blue_getq(cl->cl_blue, &cl->cl_q)); | |
1000 | else | |
1001 | #endif /* CLASSQ_BLUE */ | |
1002 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
1003 | return (sfb_getq(cl->cl_sfb, &cl->cl_q)); | |
1004 | ||
1005 | return (_getq(&cl->cl_q)); | |
1006 | } | |
1007 | ||
1008 | static struct mbuf * | |
1009 | hfsc_pollq(struct hfsc_class *cl) | |
1010 | { | |
1011 | IFCQ_LOCK_ASSERT_HELD(cl->cl_hif->hif_ifq); | |
1012 | ||
1013 | return (qhead(&cl->cl_q)); | |
1014 | } | |
1015 | ||
1016 | static void | |
1017 | hfsc_purgeq(struct hfsc_if *hif, struct hfsc_class *cl, u_int32_t flow, | |
1018 | u_int32_t *packets, u_int32_t *bytes) | |
1019 | { | |
1020 | struct ifclassq *ifq = hif->hif_ifq; | |
1021 | u_int32_t cnt = 0, len = 0, qlen; | |
1022 | ||
1023 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
1024 | ||
1025 | if ((qlen = qlen(&cl->cl_q)) == 0) { | |
1026 | VERIFY(hif->hif_packets == 0); | |
1027 | goto done; | |
1028 | } | |
1029 | ||
1030 | /* become regular mutex before freeing mbufs */ | |
1031 | IFCQ_CONVERT_LOCK(ifq); | |
1032 | ||
1033 | #if CLASSQ_RIO | |
1034 | if (q_is_rio(&cl->cl_q)) | |
1035 | rio_purgeq(cl->cl_rio, &cl->cl_q, flow, &cnt, &len); | |
1036 | else | |
1037 | #endif /* CLASSQ_RIO */ | |
1038 | #if CLASSQ_RED | |
1039 | if (q_is_red(&cl->cl_q)) | |
1040 | red_purgeq(cl->cl_red, &cl->cl_q, flow, &cnt, &len); | |
1041 | else | |
1042 | #endif /* CLASSQ_RED */ | |
1043 | #if CLASSQ_BLUE | |
1044 | if (q_is_blue(&cl->cl_q)) | |
1045 | blue_purgeq(cl->cl_blue, &cl->cl_q, flow, &cnt, &len); | |
1046 | else | |
1047 | #endif /* CLASSQ_BLUE */ | |
1048 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
1049 | sfb_purgeq(cl->cl_sfb, &cl->cl_q, flow, &cnt, &len); | |
1050 | else | |
1051 | _flushq_flow(&cl->cl_q, flow, &cnt, &len); | |
1052 | ||
1053 | if (cnt > 0) { | |
1054 | VERIFY(qlen(&cl->cl_q) == (qlen - cnt)); | |
1055 | ||
1056 | PKTCNTR_ADD(&cl->cl_stats.drop_cnt, cnt, len); | |
1057 | IFCQ_DROP_ADD(ifq, cnt, len); | |
1058 | ||
1059 | VERIFY(hif->hif_packets >= cnt); | |
1060 | hif->hif_packets -= cnt; | |
1061 | ||
1062 | VERIFY(((signed)IFCQ_LEN(ifq) - cnt) >= 0); | |
1063 | IFCQ_LEN(ifq) -= cnt; | |
1064 | ||
1065 | if (qempty(&cl->cl_q)) { | |
1066 | update_vf(cl, 0, 0); /* remove cl from the actlist */ | |
1067 | set_passive(cl); | |
1068 | } | |
1069 | ||
1070 | if (pktsched_verbose) { | |
1071 | log(LOG_DEBUG, "%s: %s purge qid=%d slot=%d " | |
1072 | "qlen=[%d,%d] cnt=%d len=%d flow=0x%x\n", | |
1073 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif), | |
1074 | cl->cl_handle, cl->cl_id, qlen, qlen(&cl->cl_q), | |
1075 | cnt, len, flow); | |
1076 | } | |
1077 | } | |
1078 | done: | |
1079 | if (packets != NULL) | |
1080 | *packets = cnt; | |
1081 | if (bytes != NULL) | |
1082 | *bytes = len; | |
1083 | } | |
1084 | ||
1085 | static void | |
1086 | hfsc_print_sc(struct hfsc_if *hif, u_int32_t qid, u_int64_t eff_rate, | |
1087 | struct service_curve *sc, struct internal_sc *isc, const char *which) | |
1088 | { | |
1089 | struct ifnet *ifp = HFSCIF_IFP(hif); | |
1090 | ||
1091 | log(LOG_DEBUG, "%s: %s qid=%d {%s_m1=%llu%s [%llu], " | |
1092 | "%s_d=%u msec, %s_m2=%llu%s [%llu]} linkrate=%llu bps\n", | |
1093 | if_name(ifp), hfsc_style(hif), qid, | |
1094 | which, sc->m1, (sc->fl & HFSCF_M1_PCT) ? "%" : " bps", isc->sm1, | |
1095 | which, sc->d, | |
1096 | which, sc->m2, (sc->fl & HFSCF_M2_PCT) ? "%" : " bps", isc->sm2, | |
1097 | eff_rate); | |
1098 | } | |
1099 | ||
1100 | static void | |
1101 | hfsc_updateq_linkrate(struct hfsc_if *hif, struct hfsc_class *cl) | |
1102 | { | |
1103 | u_int64_t eff_rate = ifnet_output_linkrate(HFSCIF_IFP(hif)); | |
1104 | struct service_curve *sc; | |
1105 | struct internal_sc *isc; | |
1106 | ||
1107 | /* Update parameters only if rate has changed */ | |
1108 | if (eff_rate == hif->hif_eff_rate) | |
1109 | return; | |
1110 | ||
1111 | sc = &cl->cl_rsc0; | |
1112 | isc = &cl->cl_rsc; | |
1113 | if ((cl->cl_flags & HFCF_RSC) && sc2isc(cl, sc, isc, eff_rate)) { | |
1114 | rtsc_init(&cl->cl_deadline, isc, 0, 0); | |
1115 | rtsc_init(&cl->cl_eligible, isc, 0, 0); | |
1116 | if (pktsched_verbose) { | |
1117 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
1118 | sc, isc, "rsc"); | |
1119 | } | |
1120 | } | |
1121 | sc = &cl->cl_fsc0; | |
1122 | isc = &cl->cl_fsc; | |
1123 | if ((cl->cl_flags & HFCF_FSC) && sc2isc(cl, sc, isc, eff_rate)) { | |
1124 | rtsc_init(&cl->cl_virtual, isc, 0, 0); | |
1125 | if (pktsched_verbose) { | |
1126 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
1127 | sc, isc, "fsc"); | |
1128 | } | |
1129 | } | |
1130 | sc = &cl->cl_usc0; | |
1131 | isc = &cl->cl_usc; | |
1132 | if ((cl->cl_flags & HFCF_USC) && sc2isc(cl, sc, isc, eff_rate)) { | |
1133 | rtsc_init(&cl->cl_ulimit, isc, 0, 0); | |
1134 | if (pktsched_verbose) { | |
1135 | hfsc_print_sc(hif, cl->cl_handle, eff_rate, | |
1136 | sc, isc, "usc"); | |
1137 | } | |
1138 | } | |
1139 | } | |
1140 | ||
1141 | static void | |
1142 | hfsc_updateq(struct hfsc_if *hif, struct hfsc_class *cl, cqev_t ev) | |
1143 | { | |
1144 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
1145 | ||
1146 | if (pktsched_verbose) { | |
1147 | log(LOG_DEBUG, "%s: %s update qid=%d slot=%d event=%s\n", | |
1148 | if_name(HFSCIF_IFP(hif)), hfsc_style(hif), | |
1149 | cl->cl_handle, cl->cl_id, ifclassq_ev2str(ev)); | |
1150 | } | |
1151 | ||
1152 | if (ev == CLASSQ_EV_LINK_SPEED) | |
1153 | hfsc_updateq_linkrate(hif, cl); | |
1154 | ||
1155 | #if CLASSQ_RIO | |
1156 | if (q_is_rio(&cl->cl_q)) | |
1157 | return (rio_updateq(cl->cl_rio, ev)); | |
1158 | #endif /* CLASSQ_RIO */ | |
1159 | #if CLASSQ_RED | |
1160 | if (q_is_red(&cl->cl_q)) | |
1161 | return (red_updateq(cl->cl_red, ev)); | |
1162 | #endif /* CLASSQ_RED */ | |
1163 | #if CLASSQ_BLUE | |
1164 | if (q_is_blue(&cl->cl_q)) | |
1165 | return (blue_updateq(cl->cl_blue, ev)); | |
1166 | #endif /* CLASSQ_BLUE */ | |
1167 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
1168 | return (sfb_updateq(cl->cl_sfb, ev)); | |
1169 | } | |
1170 | ||
1171 | static void | |
1172 | set_active(struct hfsc_class *cl, u_int32_t len) | |
1173 | { | |
1174 | if (cl->cl_flags & HFCF_RSC) | |
1175 | init_ed(cl, len); | |
1176 | if (cl->cl_flags & HFCF_FSC) | |
1177 | init_vf(cl, len); | |
1178 | ||
1179 | cl->cl_stats.period++; | |
1180 | } | |
1181 | ||
1182 | static void | |
1183 | set_passive(struct hfsc_class *cl) | |
1184 | { | |
1185 | if (cl->cl_flags & HFCF_RSC) | |
1186 | ellist_remove(cl); | |
1187 | ||
1188 | /* | |
1189 | * actlist is now handled in update_vf() so that update_vf(cl, 0, 0) | |
1190 | * needs to be called explicitly to remove a class from actlist | |
1191 | */ | |
1192 | } | |
1193 | ||
1194 | static void | |
1195 | init_ed(struct hfsc_class *cl, u_int32_t next_len) | |
1196 | { | |
1197 | u_int64_t cur_time; | |
1198 | ||
1199 | cur_time = read_machclk(); | |
1200 | ||
1201 | /* update the deadline curve */ | |
1202 | rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); | |
1203 | ||
1204 | /* | |
1205 | * update the eligible curve. | |
1206 | * for concave, it is equal to the deadline curve. | |
1207 | * for convex, it is a linear curve with slope m2. | |
1208 | */ | |
1209 | cl->cl_eligible = cl->cl_deadline; | |
1210 | if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { | |
1211 | cl->cl_eligible.dx = 0; | |
1212 | cl->cl_eligible.dy = 0; | |
1213 | } | |
1214 | ||
1215 | /* compute e and d */ | |
1216 | cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); | |
1217 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); | |
1218 | ||
1219 | ellist_insert(cl); | |
1220 | } | |
1221 | ||
1222 | static void | |
1223 | update_ed(struct hfsc_class *cl, u_int32_t next_len) | |
1224 | { | |
1225 | cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); | |
1226 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); | |
1227 | ||
1228 | ellist_update(cl); | |
1229 | } | |
1230 | ||
1231 | static void | |
1232 | update_d(struct hfsc_class *cl, u_int32_t next_len) | |
1233 | { | |
1234 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); | |
1235 | } | |
1236 | ||
1237 | static void | |
1238 | init_vf(struct hfsc_class *cl, u_int32_t len) | |
1239 | { | |
1240 | #pragma unused(len) | |
1241 | struct hfsc_class *max_cl, *p; | |
1242 | u_int64_t vt, f, cur_time; | |
1243 | int go_active; | |
1244 | ||
1245 | cur_time = 0; | |
1246 | go_active = 1; | |
1247 | for (; cl->cl_parent != NULL; cl = cl->cl_parent) { | |
1248 | ||
1249 | if (go_active && cl->cl_nactive++ == 0) | |
1250 | go_active = 1; | |
1251 | else | |
1252 | go_active = 0; | |
1253 | ||
1254 | if (go_active) { | |
1255 | max_cl = actlist_last(&cl->cl_parent->cl_actc); | |
1256 | if (max_cl != NULL) { | |
1257 | /* | |
1258 | * set vt to the average of the min and max | |
1259 | * classes. if the parent's period didn't | |
1260 | * change, don't decrease vt of the class. | |
1261 | */ | |
1262 | vt = max_cl->cl_vt; | |
1263 | if (cl->cl_parent->cl_cvtmin != 0) | |
1264 | vt = (cl->cl_parent->cl_cvtmin + vt)/2; | |
1265 | ||
1266 | if (cl->cl_parent->cl_vtperiod != | |
1267 | cl->cl_parentperiod || vt > cl->cl_vt) | |
1268 | cl->cl_vt = vt; | |
1269 | } else { | |
1270 | /* | |
1271 | * first child for a new parent backlog period. | |
1272 | * add parent's cvtmax to vtoff of children | |
1273 | * to make a new vt (vtoff + vt) larger than | |
1274 | * the vt in the last period for all children. | |
1275 | */ | |
1276 | vt = cl->cl_parent->cl_cvtmax; | |
1277 | for (p = cl->cl_parent->cl_children; p != NULL; | |
1278 | p = p->cl_siblings) | |
1279 | p->cl_vtoff += vt; | |
1280 | cl->cl_vt = 0; | |
1281 | cl->cl_parent->cl_cvtmax = 0; | |
1282 | cl->cl_parent->cl_cvtmin = 0; | |
1283 | } | |
1284 | cl->cl_initvt = cl->cl_vt; | |
1285 | ||
1286 | /* update the virtual curve */ | |
1287 | vt = cl->cl_vt + cl->cl_vtoff; | |
1288 | rtsc_min(&cl->cl_virtual, &cl->cl_fsc, | |
1289 | vt, cl->cl_total); | |
1290 | if (cl->cl_virtual.x == vt) { | |
1291 | cl->cl_virtual.x -= cl->cl_vtoff; | |
1292 | cl->cl_vtoff = 0; | |
1293 | } | |
1294 | cl->cl_vtadj = 0; | |
1295 | ||
1296 | cl->cl_vtperiod++; /* increment vt period */ | |
1297 | cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; | |
1298 | if (cl->cl_parent->cl_nactive == 0) | |
1299 | cl->cl_parentperiod++; | |
1300 | cl->cl_f = 0; | |
1301 | ||
1302 | actlist_insert(cl); | |
1303 | ||
1304 | if (cl->cl_flags & HFCF_USC) { | |
1305 | /* class has upper limit curve */ | |
1306 | if (cur_time == 0) | |
1307 | cur_time = read_machclk(); | |
1308 | ||
1309 | /* update the ulimit curve */ | |
1310 | rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, | |
1311 | cl->cl_total); | |
1312 | /* compute myf */ | |
1313 | cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, | |
1314 | cl->cl_total); | |
1315 | cl->cl_myfadj = 0; | |
1316 | } | |
1317 | } | |
1318 | ||
1319 | if (cl->cl_myf > cl->cl_cfmin) | |
1320 | f = cl->cl_myf; | |
1321 | else | |
1322 | f = cl->cl_cfmin; | |
1323 | if (f != cl->cl_f) { | |
1324 | cl->cl_f = f; | |
1325 | update_cfmin(cl->cl_parent); | |
1326 | } | |
1327 | } | |
1328 | } | |
1329 | ||
1330 | static void | |
1331 | update_vf(struct hfsc_class *cl, u_int32_t len, u_int64_t cur_time) | |
1332 | { | |
1333 | #pragma unused(cur_time) | |
1334 | #if 0 | |
1335 | u_int64_t myf_bound, delta; | |
1336 | #endif | |
1337 | u_int64_t f; | |
1338 | int go_passive; | |
1339 | ||
1340 | go_passive = (qempty(&cl->cl_q) && (cl->cl_flags & HFCF_FSC)); | |
1341 | ||
1342 | for (; cl->cl_parent != NULL; cl = cl->cl_parent) { | |
1343 | ||
1344 | cl->cl_total += len; | |
1345 | ||
1346 | if (!(cl->cl_flags & HFCF_FSC) || cl->cl_nactive == 0) | |
1347 | continue; | |
1348 | ||
1349 | if (go_passive && --cl->cl_nactive == 0) | |
1350 | go_passive = 1; | |
1351 | else | |
1352 | go_passive = 0; | |
1353 | ||
1354 | if (go_passive) { | |
1355 | /* no more active child, going passive */ | |
1356 | ||
1357 | /* update cvtmax of the parent class */ | |
1358 | if (cl->cl_vt > cl->cl_parent->cl_cvtmax) | |
1359 | cl->cl_parent->cl_cvtmax = cl->cl_vt; | |
1360 | ||
1361 | /* remove this class from the vt list */ | |
1362 | actlist_remove(cl); | |
1363 | ||
1364 | update_cfmin(cl->cl_parent); | |
1365 | ||
1366 | continue; | |
1367 | } | |
1368 | ||
1369 | /* | |
1370 | * update vt and f | |
1371 | */ | |
1372 | cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) | |
1373 | - cl->cl_vtoff + cl->cl_vtadj; | |
1374 | ||
1375 | /* | |
1376 | * if vt of the class is smaller than cvtmin, | |
1377 | * the class was skipped in the past due to non-fit. | |
1378 | * if so, we need to adjust vtadj. | |
1379 | */ | |
1380 | if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { | |
1381 | cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; | |
1382 | cl->cl_vt = cl->cl_parent->cl_cvtmin; | |
1383 | } | |
1384 | ||
1385 | /* update the vt list */ | |
1386 | actlist_update(cl); | |
1387 | ||
1388 | if (cl->cl_flags & HFCF_USC) { | |
1389 | cl->cl_myf = cl->cl_myfadj + | |
1390 | rtsc_y2x(&cl->cl_ulimit, cl->cl_total); | |
1391 | #if 0 | |
1392 | /* | |
1393 | * if myf lags behind by more than one clock tick | |
1394 | * from the current time, adjust myfadj to prevent | |
1395 | * a rate-limited class from going greedy. | |
1396 | * in a steady state under rate-limiting, myf | |
1397 | * fluctuates within one clock tick. | |
1398 | */ | |
1399 | myf_bound = cur_time - machclk_per_tick; | |
1400 | if (cl->cl_myf < myf_bound) { | |
1401 | delta = cur_time - cl->cl_myf; | |
1402 | cl->cl_myfadj += delta; | |
1403 | cl->cl_myf += delta; | |
1404 | } | |
1405 | #endif | |
1406 | } | |
1407 | ||
1408 | /* cl_f is max(cl_myf, cl_cfmin) */ | |
1409 | if (cl->cl_myf > cl->cl_cfmin) | |
1410 | f = cl->cl_myf; | |
1411 | else | |
1412 | f = cl->cl_cfmin; | |
1413 | if (f != cl->cl_f) { | |
1414 | cl->cl_f = f; | |
1415 | update_cfmin(cl->cl_parent); | |
1416 | } | |
1417 | } | |
1418 | } | |
1419 | ||
1420 | static void | |
1421 | update_cfmin(struct hfsc_class *cl) | |
1422 | { | |
1423 | struct hfsc_class *p; | |
1424 | u_int64_t cfmin; | |
1425 | ||
1426 | if (TAILQ_EMPTY(&cl->cl_actc)) { | |
1427 | cl->cl_cfmin = 0; | |
1428 | return; | |
1429 | } | |
1430 | cfmin = HT_INFINITY; | |
1431 | TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) { | |
1432 | if (p->cl_f == 0) { | |
1433 | cl->cl_cfmin = 0; | |
1434 | return; | |
1435 | } | |
1436 | if (p->cl_f < cfmin) | |
1437 | cfmin = p->cl_f; | |
1438 | } | |
1439 | cl->cl_cfmin = cfmin; | |
1440 | } | |
1441 | ||
1442 | /* | |
1443 | * TAILQ based ellist and actlist implementation | |
1444 | * (ion wanted to make a calendar queue based implementation) | |
1445 | */ | |
1446 | /* | |
1447 | * eligible list holds backlogged classes being sorted by their eligible times. | |
1448 | * there is one eligible list per interface. | |
1449 | */ | |
1450 | ||
1451 | static void | |
1452 | ellist_insert(struct hfsc_class *cl) | |
1453 | { | |
1454 | struct hfsc_if *hif = cl->cl_hif; | |
1455 | struct hfsc_class *p; | |
1456 | ||
1457 | /* check the last entry first */ | |
1458 | if ((p = TAILQ_LAST(&hif->hif_eligible, _eligible)) == NULL || | |
1459 | p->cl_e <= cl->cl_e) { | |
1460 | TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist); | |
1461 | return; | |
1462 | } | |
1463 | ||
1464 | TAILQ_FOREACH(p, &hif->hif_eligible, cl_ellist) { | |
1465 | if (cl->cl_e < p->cl_e) { | |
1466 | TAILQ_INSERT_BEFORE(p, cl, cl_ellist); | |
1467 | return; | |
1468 | } | |
1469 | } | |
1470 | VERIFY(0); /* should not reach here */ | |
1471 | } | |
1472 | ||
1473 | static void | |
1474 | ellist_remove(struct hfsc_class *cl) | |
1475 | { | |
1476 | struct hfsc_if *hif = cl->cl_hif; | |
1477 | ||
1478 | TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist); | |
1479 | } | |
1480 | ||
1481 | static void | |
1482 | ellist_update(struct hfsc_class *cl) | |
1483 | { | |
1484 | struct hfsc_if *hif = cl->cl_hif; | |
1485 | struct hfsc_class *p, *last; | |
1486 | ||
1487 | /* | |
1488 | * the eligible time of a class increases monotonically. | |
1489 | * if the next entry has a larger eligible time, nothing to do. | |
1490 | */ | |
1491 | p = TAILQ_NEXT(cl, cl_ellist); | |
1492 | if (p == NULL || cl->cl_e <= p->cl_e) | |
1493 | return; | |
1494 | ||
1495 | /* check the last entry */ | |
1496 | last = TAILQ_LAST(&hif->hif_eligible, _eligible); | |
1497 | VERIFY(last != NULL); | |
1498 | if (last->cl_e <= cl->cl_e) { | |
1499 | TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist); | |
1500 | TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist); | |
1501 | return; | |
1502 | } | |
1503 | ||
1504 | /* | |
1505 | * the new position must be between the next entry | |
1506 | * and the last entry | |
1507 | */ | |
1508 | while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) { | |
1509 | if (cl->cl_e < p->cl_e) { | |
1510 | TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist); | |
1511 | TAILQ_INSERT_BEFORE(p, cl, cl_ellist); | |
1512 | return; | |
1513 | } | |
1514 | } | |
1515 | VERIFY(0); /* should not reach here */ | |
1516 | } | |
1517 | ||
1518 | /* find the class with the minimum deadline among the eligible classes */ | |
1519 | static struct hfsc_class * | |
1520 | ellist_get_mindl(ellist_t *head, u_int64_t cur_time) | |
1521 | { | |
1522 | struct hfsc_class *p, *cl = NULL; | |
1523 | ||
1524 | TAILQ_FOREACH(p, head, cl_ellist) { | |
1525 | if (p->cl_e > cur_time) | |
1526 | break; | |
1527 | if (cl == NULL || p->cl_d < cl->cl_d) | |
1528 | cl = p; | |
1529 | } | |
1530 | return (cl); | |
1531 | } | |
1532 | ||
1533 | /* | |
1534 | * active children list holds backlogged child classes being sorted | |
1535 | * by their virtual time. | |
1536 | * each intermediate class has one active children list. | |
1537 | */ | |
1538 | ||
1539 | static void | |
1540 | actlist_insert(struct hfsc_class *cl) | |
1541 | { | |
1542 | struct hfsc_class *p; | |
1543 | ||
1544 | /* check the last entry first */ | |
1545 | if ((p = TAILQ_LAST(&cl->cl_parent->cl_actc, _active)) == NULL || | |
1546 | p->cl_vt <= cl->cl_vt) { | |
1547 | TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist); | |
1548 | return; | |
1549 | } | |
1550 | ||
1551 | TAILQ_FOREACH(p, &cl->cl_parent->cl_actc, cl_actlist) { | |
1552 | if (cl->cl_vt < p->cl_vt) { | |
1553 | TAILQ_INSERT_BEFORE(p, cl, cl_actlist); | |
1554 | return; | |
1555 | } | |
1556 | } | |
1557 | VERIFY(0); /* should not reach here */ | |
1558 | } | |
1559 | ||
1560 | static void | |
1561 | actlist_remove(struct hfsc_class *cl) | |
1562 | { | |
1563 | TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist); | |
1564 | } | |
1565 | ||
1566 | static void | |
1567 | actlist_update(struct hfsc_class *cl) | |
1568 | { | |
1569 | struct hfsc_class *p, *last; | |
1570 | ||
1571 | /* | |
1572 | * the virtual time of a class increases monotonically during its | |
1573 | * backlogged period. | |
1574 | * if the next entry has a larger virtual time, nothing to do. | |
1575 | */ | |
1576 | p = TAILQ_NEXT(cl, cl_actlist); | |
1577 | if (p == NULL || cl->cl_vt < p->cl_vt) | |
1578 | return; | |
1579 | ||
1580 | /* check the last entry */ | |
1581 | last = TAILQ_LAST(&cl->cl_parent->cl_actc, _active); | |
1582 | VERIFY(last != NULL); | |
1583 | if (last->cl_vt <= cl->cl_vt) { | |
1584 | TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist); | |
1585 | TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist); | |
1586 | return; | |
1587 | } | |
1588 | ||
1589 | /* | |
1590 | * the new position must be between the next entry | |
1591 | * and the last entry | |
1592 | */ | |
1593 | while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) { | |
1594 | if (cl->cl_vt < p->cl_vt) { | |
1595 | TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist); | |
1596 | TAILQ_INSERT_BEFORE(p, cl, cl_actlist); | |
1597 | return; | |
1598 | } | |
1599 | } | |
1600 | VERIFY(0); /* should not reach here */ | |
1601 | } | |
1602 | ||
1603 | static struct hfsc_class * | |
1604 | actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time) | |
1605 | { | |
1606 | struct hfsc_class *p; | |
1607 | ||
1608 | TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) { | |
1609 | if (p->cl_f <= cur_time) | |
1610 | return (p); | |
1611 | } | |
1612 | return (NULL); | |
1613 | } | |
1614 | ||
1615 | /* | |
1616 | * service curve support functions | |
1617 | * | |
1618 | * external service curve parameters | |
1619 | * m: bits/sec | |
1620 | * d: msec | |
1621 | * internal service curve parameters | |
1622 | * sm: (bytes/tsc_interval) << SM_SHIFT | |
1623 | * ism: (tsc_count/byte) << ISM_SHIFT | |
1624 | * dx: tsc_count | |
1625 | * | |
1626 | * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits. | |
1627 | * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU | |
1628 | * speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective | |
1629 | * digits in decimal using the following table. | |
1630 | * | |
1631 | * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps | |
1632 | * ----------+------------------------------------------------------- | |
1633 | * bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6 | |
1634 | * sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6 | |
1635 | * sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6 | |
1636 | * | |
1637 | * nsec/byte 80000 8000 800 80 8 | |
1638 | * ism(500MHz) 40000 4000 400 40 4 | |
1639 | * ism(200MHz) 16000 1600 160 16 1.6 | |
1640 | */ | |
1641 | #define SM_SHIFT 24 | |
1642 | #define ISM_SHIFT 10 | |
1643 | ||
1644 | #define SM_MASK ((1LL << SM_SHIFT) - 1) | |
1645 | #define ISM_MASK ((1LL << ISM_SHIFT) - 1) | |
1646 | ||
1647 | static inline u_int64_t | |
1648 | seg_x2y(u_int64_t x, u_int64_t sm) | |
1649 | { | |
1650 | u_int64_t y; | |
1651 | ||
1652 | /* | |
1653 | * compute | |
1654 | * y = x * sm >> SM_SHIFT | |
1655 | * but divide it for the upper and lower bits to avoid overflow | |
1656 | */ | |
1657 | y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); | |
1658 | return (y); | |
1659 | } | |
1660 | ||
1661 | static inline u_int64_t | |
1662 | seg_y2x(u_int64_t y, u_int64_t ism) | |
1663 | { | |
1664 | u_int64_t x; | |
1665 | ||
1666 | if (y == 0) | |
1667 | x = 0; | |
1668 | else if (ism == HT_INFINITY) | |
1669 | x = HT_INFINITY; | |
1670 | else { | |
1671 | x = (y >> ISM_SHIFT) * ism | |
1672 | + (((y & ISM_MASK) * ism) >> ISM_SHIFT); | |
1673 | } | |
1674 | return (x); | |
1675 | } | |
1676 | ||
1677 | static inline u_int64_t | |
1678 | m2sm(u_int64_t m) | |
1679 | { | |
1680 | u_int64_t sm; | |
1681 | ||
1682 | sm = (m << SM_SHIFT) / 8 / machclk_freq; | |
1683 | return (sm); | |
1684 | } | |
1685 | ||
1686 | static inline u_int64_t | |
1687 | m2ism(u_int64_t m) | |
1688 | { | |
1689 | u_int64_t ism; | |
1690 | ||
1691 | if (m == 0) | |
1692 | ism = HT_INFINITY; | |
1693 | else | |
1694 | ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m; | |
1695 | return (ism); | |
1696 | } | |
1697 | ||
1698 | static inline u_int64_t | |
1699 | d2dx(u_int64_t d) | |
1700 | { | |
1701 | u_int64_t dx; | |
1702 | ||
1703 | dx = (d * machclk_freq) / 1000; | |
1704 | return (dx); | |
1705 | } | |
1706 | ||
1707 | static u_int64_t | |
1708 | sm2m(u_int64_t sm) | |
1709 | { | |
1710 | u_int64_t m; | |
1711 | ||
1712 | m = (sm * 8 * machclk_freq) >> SM_SHIFT; | |
1713 | return (m); | |
1714 | } | |
1715 | ||
1716 | static u_int64_t | |
1717 | dx2d(u_int64_t dx) | |
1718 | { | |
1719 | u_int64_t d; | |
1720 | ||
1721 | d = dx * 1000 / machclk_freq; | |
1722 | return (d); | |
1723 | } | |
1724 | ||
1725 | static boolean_t | |
1726 | sc2isc(struct hfsc_class *cl, struct service_curve *sc, struct internal_sc *isc, | |
1727 | u_int64_t eff_rate) | |
1728 | { | |
1729 | struct hfsc_if *hif = cl->cl_hif; | |
1730 | struct internal_sc oisc = *isc; | |
1731 | u_int64_t m1, m2; | |
1732 | ||
1733 | if (eff_rate == 0 && (sc->fl & (HFSCF_M1_PCT | HFSCF_M2_PCT))) { | |
1734 | /* | |
1735 | * If service curve is configured with percentage and the | |
1736 | * effective uplink rate is not known, assume this is a | |
1737 | * transient case, and that the rate will be updated in | |
1738 | * the near future via CLASSQ_EV_LINK_SPEED. Pick a | |
1739 | * reasonable number for now, e.g. 10 Mbps. | |
1740 | */ | |
1741 | eff_rate = (10 * 1000 * 1000); | |
1742 | ||
1743 | log(LOG_WARNING, "%s: %s qid=%d slot=%d eff_rate unknown; " | |
1744 | "using temporary rate %llu bps\n", if_name(HFSCIF_IFP(hif)), | |
1745 | hfsc_style(hif), cl->cl_handle, cl->cl_id, eff_rate); | |
1746 | } | |
1747 | ||
1748 | m1 = sc->m1; | |
1749 | if (sc->fl & HFSCF_M1_PCT) { | |
1750 | VERIFY(m1 > 0 && m1 <= 100); | |
1751 | m1 = (eff_rate * m1) / 100; | |
1752 | } | |
1753 | ||
1754 | m2 = sc->m2; | |
1755 | if (sc->fl & HFSCF_M2_PCT) { | |
1756 | VERIFY(m2 > 0 && m2 <= 100); | |
1757 | m2 = (eff_rate * m2) / 100; | |
1758 | } | |
1759 | ||
1760 | isc->sm1 = m2sm(m1); | |
1761 | isc->ism1 = m2ism(m1); | |
1762 | isc->dx = d2dx(sc->d); | |
1763 | isc->dy = seg_x2y(isc->dx, isc->sm1); | |
1764 | isc->sm2 = m2sm(m2); | |
1765 | isc->ism2 = m2ism(m2); | |
1766 | ||
1767 | /* return non-zero if there's any change */ | |
1768 | return (bcmp(&oisc, isc, sizeof (*isc))); | |
1769 | } | |
1770 | ||
1771 | /* | |
1772 | * initialize the runtime service curve with the given internal | |
1773 | * service curve starting at (x, y). | |
1774 | */ | |
1775 | static void | |
1776 | rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x, | |
1777 | u_int64_t y) | |
1778 | { | |
1779 | rtsc->x = x; | |
1780 | rtsc->y = y; | |
1781 | rtsc->sm1 = isc->sm1; | |
1782 | rtsc->ism1 = isc->ism1; | |
1783 | rtsc->dx = isc->dx; | |
1784 | rtsc->dy = isc->dy; | |
1785 | rtsc->sm2 = isc->sm2; | |
1786 | rtsc->ism2 = isc->ism2; | |
1787 | } | |
1788 | ||
1789 | /* | |
1790 | * calculate the y-projection of the runtime service curve by the | |
1791 | * given x-projection value | |
1792 | */ | |
1793 | static u_int64_t | |
1794 | rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y) | |
1795 | { | |
1796 | u_int64_t x; | |
1797 | ||
1798 | if (y < rtsc->y) | |
1799 | x = rtsc->x; | |
1800 | else if (y <= rtsc->y + rtsc->dy) { | |
1801 | /* x belongs to the 1st segment */ | |
1802 | if (rtsc->dy == 0) | |
1803 | x = rtsc->x + rtsc->dx; | |
1804 | else | |
1805 | x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); | |
1806 | } else { | |
1807 | /* x belongs to the 2nd segment */ | |
1808 | x = rtsc->x + rtsc->dx | |
1809 | + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); | |
1810 | } | |
1811 | return (x); | |
1812 | } | |
1813 | ||
1814 | static u_int64_t | |
1815 | rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x) | |
1816 | { | |
1817 | u_int64_t y; | |
1818 | ||
1819 | if (x <= rtsc->x) | |
1820 | y = rtsc->y; | |
1821 | else if (x <= rtsc->x + rtsc->dx) | |
1822 | /* y belongs to the 1st segment */ | |
1823 | y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); | |
1824 | else | |
1825 | /* y belongs to the 2nd segment */ | |
1826 | y = rtsc->y + rtsc->dy | |
1827 | + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); | |
1828 | return (y); | |
1829 | } | |
1830 | ||
1831 | /* | |
1832 | * update the runtime service curve by taking the minimum of the current | |
1833 | * runtime service curve and the service curve starting at (x, y). | |
1834 | */ | |
1835 | static void | |
1836 | rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x, | |
1837 | u_int64_t y) | |
1838 | { | |
1839 | u_int64_t y1, y2, dx, dy; | |
1840 | ||
1841 | if (isc->sm1 <= isc->sm2) { | |
1842 | /* service curve is convex */ | |
1843 | y1 = rtsc_x2y(rtsc, x); | |
1844 | if (y1 < y) | |
1845 | /* the current rtsc is smaller */ | |
1846 | return; | |
1847 | rtsc->x = x; | |
1848 | rtsc->y = y; | |
1849 | return; | |
1850 | } | |
1851 | ||
1852 | /* | |
1853 | * service curve is concave | |
1854 | * compute the two y values of the current rtsc | |
1855 | * y1: at x | |
1856 | * y2: at (x + dx) | |
1857 | */ | |
1858 | y1 = rtsc_x2y(rtsc, x); | |
1859 | if (y1 <= y) { | |
1860 | /* rtsc is below isc, no change to rtsc */ | |
1861 | return; | |
1862 | } | |
1863 | ||
1864 | y2 = rtsc_x2y(rtsc, x + isc->dx); | |
1865 | if (y2 >= y + isc->dy) { | |
1866 | /* rtsc is above isc, replace rtsc by isc */ | |
1867 | rtsc->x = x; | |
1868 | rtsc->y = y; | |
1869 | rtsc->dx = isc->dx; | |
1870 | rtsc->dy = isc->dy; | |
1871 | return; | |
1872 | } | |
1873 | ||
1874 | /* | |
1875 | * the two curves intersect | |
1876 | * compute the offsets (dx, dy) using the reverse | |
1877 | * function of seg_x2y() | |
1878 | * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) | |
1879 | */ | |
1880 | dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2); | |
1881 | /* | |
1882 | * check if (x, y1) belongs to the 1st segment of rtsc. | |
1883 | * if so, add the offset. | |
1884 | */ | |
1885 | if (rtsc->x + rtsc->dx > x) | |
1886 | dx += rtsc->x + rtsc->dx - x; | |
1887 | dy = seg_x2y(dx, isc->sm1); | |
1888 | ||
1889 | rtsc->x = x; | |
1890 | rtsc->y = y; | |
1891 | rtsc->dx = dx; | |
1892 | rtsc->dy = dy; | |
1893 | } | |
1894 | ||
1895 | int | |
1896 | hfsc_get_class_stats(struct hfsc_if *hif, u_int32_t qid, | |
1897 | struct hfsc_classstats *sp) | |
1898 | { | |
1899 | struct hfsc_class *cl; | |
1900 | ||
1901 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
1902 | ||
1903 | if ((cl = hfsc_clh_to_clp(hif, qid)) == NULL) | |
1904 | return (EINVAL); | |
1905 | ||
1906 | sp->class_id = cl->cl_id; | |
1907 | sp->class_handle = cl->cl_handle; | |
1908 | ||
1909 | if (cl->cl_flags & HFCF_RSC) { | |
1910 | sp->rsc.m1 = sm2m(cl->cl_rsc.sm1); | |
1911 | sp->rsc.d = dx2d(cl->cl_rsc.dx); | |
1912 | sp->rsc.m2 = sm2m(cl->cl_rsc.sm2); | |
1913 | } else { | |
1914 | sp->rsc.m1 = 0; | |
1915 | sp->rsc.d = 0; | |
1916 | sp->rsc.m2 = 0; | |
1917 | } | |
1918 | if (cl->cl_flags & HFCF_FSC) { | |
1919 | sp->fsc.m1 = sm2m(cl->cl_fsc.sm1); | |
1920 | sp->fsc.d = dx2d(cl->cl_fsc.dx); | |
1921 | sp->fsc.m2 = sm2m(cl->cl_fsc.sm2); | |
1922 | } else { | |
1923 | sp->fsc.m1 = 0; | |
1924 | sp->fsc.d = 0; | |
1925 | sp->fsc.m2 = 0; | |
1926 | } | |
1927 | if (cl->cl_flags & HFCF_USC) { | |
1928 | sp->usc.m1 = sm2m(cl->cl_usc.sm1); | |
1929 | sp->usc.d = dx2d(cl->cl_usc.dx); | |
1930 | sp->usc.m2 = sm2m(cl->cl_usc.sm2); | |
1931 | } else { | |
1932 | sp->usc.m1 = 0; | |
1933 | sp->usc.d = 0; | |
1934 | sp->usc.m2 = 0; | |
1935 | } | |
1936 | ||
1937 | sp->total = cl->cl_total; | |
1938 | sp->cumul = cl->cl_cumul; | |
1939 | ||
1940 | sp->d = cl->cl_d; | |
1941 | sp->e = cl->cl_e; | |
1942 | sp->vt = cl->cl_vt; | |
1943 | sp->f = cl->cl_f; | |
1944 | ||
1945 | sp->initvt = cl->cl_initvt; | |
1946 | sp->vtperiod = cl->cl_vtperiod; | |
1947 | sp->parentperiod = cl->cl_parentperiod; | |
1948 | sp->nactive = cl->cl_nactive; | |
1949 | sp->vtoff = cl->cl_vtoff; | |
1950 | sp->cvtmax = cl->cl_cvtmax; | |
1951 | sp->myf = cl->cl_myf; | |
1952 | sp->cfmin = cl->cl_cfmin; | |
1953 | sp->cvtmin = cl->cl_cvtmin; | |
1954 | sp->myfadj = cl->cl_myfadj; | |
1955 | sp->vtadj = cl->cl_vtadj; | |
1956 | ||
1957 | sp->cur_time = read_machclk(); | |
1958 | sp->machclk_freq = machclk_freq; | |
1959 | ||
1960 | sp->qlength = qlen(&cl->cl_q); | |
1961 | sp->qlimit = qlimit(&cl->cl_q); | |
1962 | sp->xmit_cnt = cl->cl_stats.xmit_cnt; | |
1963 | sp->drop_cnt = cl->cl_stats.drop_cnt; | |
1964 | sp->period = cl->cl_stats.period; | |
1965 | ||
1966 | sp->qtype = qtype(&cl->cl_q); | |
1967 | sp->qstate = qstate(&cl->cl_q); | |
1968 | #if CLASSQ_RED | |
1969 | if (q_is_red(&cl->cl_q)) | |
1970 | red_getstats(cl->cl_red, &sp->red[0]); | |
1971 | #endif /* CLASSQ_RED */ | |
1972 | #if CLASSQ_RIO | |
1973 | if (q_is_rio(&cl->cl_q)) | |
1974 | rio_getstats(cl->cl_rio, &sp->red[0]); | |
1975 | #endif /* CLASSQ_RIO */ | |
1976 | #if CLASSQ_BLUE | |
1977 | if (q_is_blue(&cl->cl_q)) | |
1978 | blue_getstats(cl->cl_blue, &sp->blue); | |
1979 | #endif /* CLASSQ_BLUE */ | |
1980 | if (q_is_sfb(&cl->cl_q) && cl->cl_sfb != NULL) | |
1981 | sfb_getstats(cl->cl_sfb, &sp->sfb); | |
1982 | ||
1983 | return (0); | |
1984 | } | |
1985 | ||
1986 | /* convert a class handle to the corresponding class pointer */ | |
1987 | static struct hfsc_class * | |
1988 | hfsc_clh_to_clp(struct hfsc_if *hif, u_int32_t chandle) | |
1989 | { | |
1990 | u_int32_t i; | |
1991 | struct hfsc_class *cl; | |
1992 | ||
1993 | IFCQ_LOCK_ASSERT_HELD(hif->hif_ifq); | |
1994 | ||
1995 | /* | |
1996 | * first, try optimistically the slot matching the lower bits of | |
1997 | * the handle. if it fails, do the linear table search. | |
1998 | */ | |
1999 | i = chandle % hif->hif_maxclasses; | |
2000 | if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle) | |
2001 | return (cl); | |
2002 | for (i = 0; i < hif->hif_maxclasses; i++) | |
2003 | if ((cl = hif->hif_class_tbl[i]) != NULL && | |
2004 | cl->cl_handle == chandle) | |
2005 | return (cl); | |
2006 | return (NULL); | |
2007 | } | |
2008 | ||
2009 | static const char * | |
2010 | hfsc_style(struct hfsc_if *hif) | |
2011 | { | |
2012 | return ((hif->hif_flags & HFSCIFF_ALTQ) ? "ALTQ_HFSC" : "HFSC"); | |
2013 | } | |
2014 | ||
2015 | int | |
2016 | hfsc_setup_ifclassq(struct ifclassq *ifq, u_int32_t flags) | |
2017 | { | |
2018 | #pragma unused(ifq, flags) | |
2019 | return (ENXIO); /* not yet */ | |
2020 | } | |
2021 | ||
2022 | int | |
2023 | hfsc_teardown_ifclassq(struct ifclassq *ifq) | |
2024 | { | |
2025 | struct hfsc_if *hif = ifq->ifcq_disc; | |
2026 | int i; | |
2027 | ||
2028 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
2029 | VERIFY(hif != NULL && ifq->ifcq_type == PKTSCHEDT_HFSC); | |
2030 | ||
2031 | (void) hfsc_destroy_locked(hif); | |
2032 | ||
2033 | ifq->ifcq_disc = NULL; | |
2034 | for (i = 0; i < IFCQ_SC_MAX; i++) { | |
2035 | ifq->ifcq_disc_slots[i].qid = 0; | |
2036 | ifq->ifcq_disc_slots[i].cl = NULL; | |
2037 | } | |
2038 | ||
2039 | return (ifclassq_detach(ifq)); | |
2040 | } | |
2041 | ||
2042 | int | |
2043 | hfsc_getqstats_ifclassq(struct ifclassq *ifq, u_int32_t slot, | |
2044 | struct if_ifclassq_stats *ifqs) | |
2045 | { | |
2046 | struct hfsc_if *hif = ifq->ifcq_disc; | |
2047 | ||
2048 | IFCQ_LOCK_ASSERT_HELD(ifq); | |
2049 | VERIFY(ifq->ifcq_type == PKTSCHEDT_HFSC); | |
2050 | ||
2051 | if (slot >= IFCQ_SC_MAX) | |
2052 | return (EINVAL); | |
2053 | ||
2054 | return (hfsc_get_class_stats(hif, ifq->ifcq_disc_slots[slot].qid, | |
2055 | &ifqs->ifqs_hfsc_stats)); | |
2056 | } | |
2057 | #endif /* PKTSCHED_HFSC */ |