]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2010-2018 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | #include <kern/kern_types.h> | |
33 | #include <kern/ledger.h> | |
34 | #include <kern/kalloc.h> | |
35 | #include <kern/task.h> | |
36 | #include <kern/thread.h> | |
37 | ||
38 | #include <kern/processor.h> | |
39 | #include <kern/machine.h> | |
40 | #include <kern/queue.h> | |
41 | #include <kern/policy_internal.h> | |
42 | ||
43 | #include <sys/errno.h> | |
44 | ||
45 | #include <libkern/OSAtomic.h> | |
46 | #include <mach/mach_types.h> | |
47 | #include <os/overflow.h> | |
48 | ||
49 | #include <vm/pmap.h> | |
50 | ||
51 | /* | |
52 | * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for | |
53 | * ledger actions (LEDGER_ACTION_BLOCK, etc). | |
54 | */ | |
55 | #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */ | |
56 | #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */ | |
57 | #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */ | |
58 | #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */ | |
59 | #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */ | |
60 | #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */ | |
61 | #define LF_WARNED 0x2000 /* callback was called for balance warning */ | |
62 | #define LF_TRACKING_MAX 0x4000 /* track max balance. Exclusive w.r.t refill */ | |
63 | #define LF_PANIC_ON_NEGATIVE 0x8000 /* panic if it goes negative */ | |
64 | #define LF_TRACK_CREDIT_ONLY 0x10000 /* only update "credit" */ | |
65 | ||
66 | /* Determine whether a ledger entry exists and has been initialized and active */ | |
67 | #define ENTRY_VALID(l, e) \ | |
68 | (((l) != NULL) && ((e) >= 0) && ((e) < (l)->l_size) && \ | |
69 | (((l)->l_entries[e].le_flags & LF_ENTRY_ACTIVE) == LF_ENTRY_ACTIVE)) | |
70 | ||
71 | #define ASSERT(a) assert(a) | |
72 | ||
73 | #ifdef LEDGER_DEBUG | |
74 | int ledger_debug = 0; | |
75 | ||
76 | #define lprintf(a) if (ledger_debug) { \ | |
77 | printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \ | |
78 | printf a ; \ | |
79 | } | |
80 | #else | |
81 | #define lprintf(a) | |
82 | #endif | |
83 | ||
84 | struct ledger_callback { | |
85 | ledger_callback_t lc_func; | |
86 | const void *lc_param0; | |
87 | const void *lc_param1; | |
88 | }; | |
89 | ||
90 | struct entry_template { | |
91 | char et_key[LEDGER_NAME_MAX]; | |
92 | char et_group[LEDGER_NAME_MAX]; | |
93 | char et_units[LEDGER_NAME_MAX]; | |
94 | uint32_t et_flags; | |
95 | struct ledger_callback *et_callback; | |
96 | }; | |
97 | ||
98 | lck_grp_t ledger_lck_grp; | |
99 | ||
100 | /* | |
101 | * Modifying the reference count, table size, or table contents requires | |
102 | * holding the lt_lock. Modfying the table address requires both lt_lock | |
103 | * and setting the inuse bit. This means that the lt_entries field can be | |
104 | * safely dereferenced if you hold either the lock or the inuse bit. The | |
105 | * inuse bit exists solely to allow us to swap in a new, larger entries | |
106 | * table without requiring a full lock to be acquired on each lookup. | |
107 | * Accordingly, the inuse bit should never be held for longer than it takes | |
108 | * to extract a value from the table - i.e., 2 or 3 memory references. | |
109 | */ | |
110 | struct ledger_template { | |
111 | const char *lt_name; | |
112 | int lt_refs; | |
113 | int lt_cnt; | |
114 | int lt_table_size; | |
115 | volatile uint32_t lt_inuse; | |
116 | lck_mtx_t lt_lock; | |
117 | zone_t lt_zone; | |
118 | bool lt_initialized; | |
119 | struct entry_template *lt_entries; | |
120 | }; | |
121 | ||
122 | #define template_lock(template) lck_mtx_lock(&(template)->lt_lock) | |
123 | #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock) | |
124 | ||
125 | #define TEMPLATE_INUSE(s, t) { \ | |
126 | s = splsched(); \ | |
127 | while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \ | |
128 | ; \ | |
129 | } | |
130 | ||
131 | #define TEMPLATE_IDLE(s, t) { \ | |
132 | (t)->lt_inuse = 0; \ | |
133 | splx(s); \ | |
134 | } | |
135 | ||
136 | static int ledger_cnt = 0; | |
137 | /* ledger ast helper functions */ | |
138 | static uint32_t ledger_check_needblock(ledger_t l, uint64_t now); | |
139 | static kern_return_t ledger_perform_blocking(ledger_t l); | |
140 | static uint32_t flag_set(volatile uint32_t *flags, uint32_t bit); | |
141 | static uint32_t flag_clear(volatile uint32_t *flags, uint32_t bit); | |
142 | ||
143 | static void ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, | |
144 | int entry, struct ledger_entry *le); | |
145 | ||
146 | #if 0 | |
147 | static void | |
148 | debug_callback(const void *p0, __unused const void *p1) | |
149 | { | |
150 | printf("ledger: resource exhausted [%s] for task %p\n", | |
151 | (const char *)p0, p1); | |
152 | } | |
153 | #endif | |
154 | ||
155 | /************************************/ | |
156 | ||
157 | static uint64_t | |
158 | abstime_to_nsecs(uint64_t abstime) | |
159 | { | |
160 | uint64_t nsecs; | |
161 | ||
162 | absolutetime_to_nanoseconds(abstime, &nsecs); | |
163 | return (nsecs); | |
164 | } | |
165 | ||
166 | static uint64_t | |
167 | nsecs_to_abstime(uint64_t nsecs) | |
168 | { | |
169 | uint64_t abstime; | |
170 | ||
171 | nanoseconds_to_absolutetime(nsecs, &abstime); | |
172 | return (abstime); | |
173 | } | |
174 | ||
175 | void | |
176 | ledger_init(void) | |
177 | { | |
178 | lck_grp_init(&ledger_lck_grp, "ledger", LCK_GRP_ATTR_NULL); | |
179 | } | |
180 | ||
181 | ledger_template_t | |
182 | ledger_template_create(const char *name) | |
183 | { | |
184 | ledger_template_t template; | |
185 | ||
186 | template = (ledger_template_t)kalloc(sizeof (*template)); | |
187 | if (template == NULL) | |
188 | return (NULL); | |
189 | ||
190 | template->lt_name = name; | |
191 | template->lt_refs = 1; | |
192 | template->lt_cnt = 0; | |
193 | template->lt_table_size = 1; | |
194 | template->lt_inuse = 0; | |
195 | template->lt_zone = NULL; | |
196 | lck_mtx_init(&template->lt_lock, &ledger_lck_grp, LCK_ATTR_NULL); | |
197 | ||
198 | template->lt_entries = (struct entry_template *) | |
199 | kalloc(sizeof (struct entry_template) * template->lt_table_size); | |
200 | if (template->lt_entries == NULL) { | |
201 | kfree(template, sizeof (*template)); | |
202 | template = NULL; | |
203 | } | |
204 | ||
205 | return (template); | |
206 | } | |
207 | ||
208 | void | |
209 | ledger_template_dereference(ledger_template_t template) | |
210 | { | |
211 | template_lock(template); | |
212 | template->lt_refs--; | |
213 | template_unlock(template); | |
214 | ||
215 | if (template->lt_refs == 0) | |
216 | kfree(template, sizeof (*template)); | |
217 | } | |
218 | ||
219 | /* | |
220 | * Add a new entry to the list of entries in a ledger template. There is | |
221 | * currently no mechanism to remove an entry. Implementing such a mechanism | |
222 | * would require us to maintain per-entry reference counts, which we would | |
223 | * prefer to avoid if possible. | |
224 | */ | |
225 | int | |
226 | ledger_entry_add(ledger_template_t template, const char *key, | |
227 | const char *group, const char *units) | |
228 | { | |
229 | int idx; | |
230 | struct entry_template *et; | |
231 | ||
232 | if ((key == NULL) || (strlen(key) >= LEDGER_NAME_MAX) || (template->lt_zone != NULL)) | |
233 | return (-1); | |
234 | ||
235 | template_lock(template); | |
236 | ||
237 | /* If the table is full, attempt to double its size */ | |
238 | if (template->lt_cnt == template->lt_table_size) { | |
239 | struct entry_template *new_entries, *old_entries; | |
240 | int old_cnt, old_sz, new_sz = 0; | |
241 | spl_t s; | |
242 | ||
243 | old_cnt = template->lt_table_size; | |
244 | old_sz = old_cnt * (int)(sizeof(struct entry_template)); | |
245 | /* double old_sz allocation, but check for overflow */ | |
246 | if (os_mul_overflow(old_sz, 2, &new_sz)) { | |
247 | template_unlock(template); | |
248 | return -1; | |
249 | } | |
250 | new_entries = kalloc(new_sz); | |
251 | if (new_entries == NULL) { | |
252 | template_unlock(template); | |
253 | return -1; | |
254 | } | |
255 | memcpy(new_entries, template->lt_entries, old_sz); | |
256 | memset(((char *)new_entries) + old_sz, 0, old_sz); | |
257 | /* assume: if the sz didn't overflow, neither will the count */ | |
258 | template->lt_table_size = old_cnt * 2; | |
259 | ||
260 | old_entries = template->lt_entries; | |
261 | ||
262 | TEMPLATE_INUSE(s, template); | |
263 | template->lt_entries = new_entries; | |
264 | TEMPLATE_IDLE(s, template); | |
265 | ||
266 | kfree(old_entries, old_sz); | |
267 | } | |
268 | ||
269 | et = &template->lt_entries[template->lt_cnt]; | |
270 | strlcpy(et->et_key, key, LEDGER_NAME_MAX); | |
271 | strlcpy(et->et_group, group, LEDGER_NAME_MAX); | |
272 | strlcpy(et->et_units, units, LEDGER_NAME_MAX); | |
273 | et->et_flags = LF_ENTRY_ACTIVE; | |
274 | et->et_callback = NULL; | |
275 | ||
276 | idx = template->lt_cnt++; | |
277 | template_unlock(template); | |
278 | ||
279 | return (idx); | |
280 | } | |
281 | ||
282 | ||
283 | kern_return_t | |
284 | ledger_entry_setactive(ledger_t ledger, int entry) | |
285 | { | |
286 | struct ledger_entry *le; | |
287 | ||
288 | if ((ledger == NULL) || (entry < 0) || (entry >= ledger->l_size)) | |
289 | return (KERN_INVALID_ARGUMENT); | |
290 | ||
291 | le = &ledger->l_entries[entry]; | |
292 | if ((le->le_flags & LF_ENTRY_ACTIVE) == 0) { | |
293 | flag_set(&le->le_flags, LF_ENTRY_ACTIVE); | |
294 | } | |
295 | return (KERN_SUCCESS); | |
296 | } | |
297 | ||
298 | ||
299 | int | |
300 | ledger_key_lookup(ledger_template_t template, const char *key) | |
301 | { | |
302 | int idx; | |
303 | ||
304 | template_lock(template); | |
305 | for (idx = 0; idx < template->lt_cnt; idx++) | |
306 | if (template->lt_entries != NULL && | |
307 | (strcmp(key, template->lt_entries[idx].et_key) == 0)) | |
308 | break; | |
309 | ||
310 | if (idx >= template->lt_cnt) | |
311 | idx = -1; | |
312 | template_unlock(template); | |
313 | ||
314 | return (idx); | |
315 | } | |
316 | ||
317 | /* | |
318 | * Complete the initialization of ledger template | |
319 | * by initializing ledger zone. After initializing | |
320 | * the ledger zone, adding an entry in the ledger | |
321 | * template would fail. | |
322 | */ | |
323 | void | |
324 | ledger_template_complete(ledger_template_t template) | |
325 | { | |
326 | size_t ledger_size; | |
327 | ledger_size = sizeof(struct ledger) + (template->lt_cnt * sizeof(struct ledger_entry)); | |
328 | template->lt_zone = zinit(ledger_size, CONFIG_TASK_MAX * ledger_size, | |
329 | ledger_size, | |
330 | template->lt_name); | |
331 | template->lt_initialized = true; | |
332 | } | |
333 | ||
334 | /* | |
335 | * Like ledger_template_complete, except we'll ask | |
336 | * the pmap layer to manage allocations for us. | |
337 | * Meant for ledgers that should be owned by the | |
338 | * pmap layer. | |
339 | */ | |
340 | void | |
341 | ledger_template_complete_secure_alloc(ledger_template_t template) | |
342 | { | |
343 | size_t ledger_size; | |
344 | ledger_size = sizeof(struct ledger) + (template->lt_cnt * sizeof(struct ledger_entry)); | |
345 | pmap_ledger_alloc_init(ledger_size); | |
346 | template->lt_initialized = true; | |
347 | } | |
348 | ||
349 | /* | |
350 | * Create a new ledger based on the specified template. As part of the | |
351 | * ledger creation we need to allocate space for a table of ledger entries. | |
352 | * The size of the table is based on the size of the template at the time | |
353 | * the ledger is created. If additional entries are added to the template | |
354 | * after the ledger is created, they will not be tracked in this ledger. | |
355 | */ | |
356 | ledger_t | |
357 | ledger_instantiate(ledger_template_t template, int entry_type) | |
358 | { | |
359 | ledger_t ledger; | |
360 | size_t cnt; | |
361 | int i; | |
362 | ||
363 | template_lock(template); | |
364 | template->lt_refs++; | |
365 | cnt = template->lt_cnt; | |
366 | template_unlock(template); | |
367 | ||
368 | if (template->lt_zone) { | |
369 | ledger = (ledger_t)zalloc(template->lt_zone); | |
370 | } else { | |
371 | ledger = pmap_ledger_alloc(); | |
372 | } | |
373 | ||
374 | if (ledger == NULL) { | |
375 | ledger_template_dereference(template); | |
376 | return LEDGER_NULL; | |
377 | } | |
378 | ||
379 | ledger->l_template = template; | |
380 | ledger->l_id = ledger_cnt++; | |
381 | os_ref_init(&ledger->l_refs, NULL); | |
382 | ledger->l_size = (int32_t)cnt; | |
383 | ||
384 | template_lock(template); | |
385 | assert(ledger->l_size <= template->lt_cnt); | |
386 | for (i = 0; i < ledger->l_size; i++) { | |
387 | struct ledger_entry *le = &ledger->l_entries[i]; | |
388 | struct entry_template *et = &template->lt_entries[i]; | |
389 | ||
390 | le->le_flags = et->et_flags; | |
391 | /* make entry inactive by removing active bit */ | |
392 | if (entry_type == LEDGER_CREATE_INACTIVE_ENTRIES) | |
393 | flag_clear(&le->le_flags, LF_ENTRY_ACTIVE); | |
394 | /* | |
395 | * If template has a callback, this entry is opted-in, | |
396 | * by default. | |
397 | */ | |
398 | if (et->et_callback != NULL) | |
399 | flag_set(&le->le_flags, LEDGER_ACTION_CALLBACK); | |
400 | le->le_credit = 0; | |
401 | le->le_debit = 0; | |
402 | le->le_limit = LEDGER_LIMIT_INFINITY; | |
403 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
404 | le->_le.le_refill.le_refill_period = 0; | |
405 | le->_le.le_refill.le_last_refill = 0; | |
406 | } | |
407 | template_unlock(template); | |
408 | ||
409 | return (ledger); | |
410 | } | |
411 | ||
412 | static uint32_t | |
413 | flag_set(volatile uint32_t *flags, uint32_t bit) | |
414 | { | |
415 | return (OSBitOrAtomic(bit, flags)); | |
416 | } | |
417 | ||
418 | static uint32_t | |
419 | flag_clear(volatile uint32_t *flags, uint32_t bit) | |
420 | { | |
421 | return (OSBitAndAtomic(~bit, flags)); | |
422 | } | |
423 | ||
424 | /* | |
425 | * Take a reference on a ledger | |
426 | */ | |
427 | kern_return_t | |
428 | ledger_reference(ledger_t ledger) | |
429 | { | |
430 | if (!LEDGER_VALID(ledger)) | |
431 | return (KERN_INVALID_ARGUMENT); | |
432 | os_ref_retain(&ledger->l_refs); | |
433 | return (KERN_SUCCESS); | |
434 | } | |
435 | ||
436 | int | |
437 | ledger_reference_count(ledger_t ledger) | |
438 | { | |
439 | if (!LEDGER_VALID(ledger)) | |
440 | return (-1); | |
441 | ||
442 | return os_ref_get_count(&ledger->l_refs); | |
443 | } | |
444 | ||
445 | /* | |
446 | * Remove a reference on a ledger. If this is the last reference, | |
447 | * deallocate the unused ledger. | |
448 | */ | |
449 | kern_return_t | |
450 | ledger_dereference(ledger_t ledger) | |
451 | { | |
452 | if (!LEDGER_VALID(ledger)) | |
453 | return (KERN_INVALID_ARGUMENT); | |
454 | ||
455 | if (os_ref_release(&ledger->l_refs) == 0) { | |
456 | if (ledger->l_template->lt_zone) { | |
457 | zfree(ledger->l_template->lt_zone, ledger); | |
458 | } else { | |
459 | pmap_ledger_free(ledger); | |
460 | } | |
461 | } | |
462 | ||
463 | return (KERN_SUCCESS); | |
464 | } | |
465 | ||
466 | /* | |
467 | * Determine whether an entry has exceeded its warning level. | |
468 | */ | |
469 | static inline int | |
470 | warn_level_exceeded(struct ledger_entry *le) | |
471 | { | |
472 | ledger_amount_t balance; | |
473 | ||
474 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
475 | assert(le->le_debit == 0); | |
476 | } else { | |
477 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
478 | } | |
479 | ||
480 | /* | |
481 | * XXX - Currently, we only support warnings for ledgers which | |
482 | * use positive limits. | |
483 | */ | |
484 | balance = le->le_credit - le->le_debit; | |
485 | if ((le->le_warn_level != LEDGER_LIMIT_INFINITY) && (balance > le->le_warn_level)) | |
486 | return (1); | |
487 | return (0); | |
488 | } | |
489 | ||
490 | /* | |
491 | * Determine whether an entry has exceeded its limit. | |
492 | */ | |
493 | static inline int | |
494 | limit_exceeded(struct ledger_entry *le) | |
495 | { | |
496 | ledger_amount_t balance; | |
497 | ||
498 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
499 | assert(le->le_debit == 0); | |
500 | } else { | |
501 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
502 | } | |
503 | ||
504 | balance = le->le_credit - le->le_debit; | |
505 | if ((le->le_limit <= 0) && (balance < le->le_limit)) | |
506 | return (1); | |
507 | ||
508 | if ((le->le_limit > 0) && (balance > le->le_limit)) | |
509 | return (1); | |
510 | return (0); | |
511 | } | |
512 | ||
513 | static inline struct ledger_callback * | |
514 | entry_get_callback(ledger_t ledger, int entry) | |
515 | { | |
516 | struct ledger_callback *callback; | |
517 | spl_t s; | |
518 | ||
519 | TEMPLATE_INUSE(s, ledger->l_template); | |
520 | callback = ledger->l_template->lt_entries[entry].et_callback; | |
521 | TEMPLATE_IDLE(s, ledger->l_template); | |
522 | ||
523 | return (callback); | |
524 | } | |
525 | ||
526 | /* | |
527 | * If the ledger value is positive, wake up anybody waiting on it. | |
528 | */ | |
529 | static inline void | |
530 | ledger_limit_entry_wakeup(struct ledger_entry *le) | |
531 | { | |
532 | uint32_t flags; | |
533 | ||
534 | if (!limit_exceeded(le)) { | |
535 | flags = flag_clear(&le->le_flags, LF_CALLED_BACK); | |
536 | ||
537 | while (le->le_flags & LF_WAKE_NEEDED) { | |
538 | flag_clear(&le->le_flags, LF_WAKE_NEEDED); | |
539 | thread_wakeup((event_t)le); | |
540 | } | |
541 | } | |
542 | } | |
543 | ||
544 | /* | |
545 | * Refill the coffers. | |
546 | */ | |
547 | static void | |
548 | ledger_refill(uint64_t now, ledger_t ledger, int entry) | |
549 | { | |
550 | uint64_t elapsed, period, periods; | |
551 | struct ledger_entry *le; | |
552 | ledger_amount_t balance, due; | |
553 | ||
554 | assert(entry >= 0 && entry < ledger->l_size); | |
555 | ||
556 | le = &ledger->l_entries[entry]; | |
557 | ||
558 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); | |
559 | ||
560 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
561 | assert(le->le_debit == 0); | |
562 | return; | |
563 | } | |
564 | ||
565 | /* | |
566 | * If another thread is handling the refill already, we're not | |
567 | * needed. | |
568 | */ | |
569 | if (flag_set(&le->le_flags, LF_REFILL_INPROGRESS) & LF_REFILL_INPROGRESS) { | |
570 | return; | |
571 | } | |
572 | ||
573 | /* | |
574 | * If the timestamp we're about to use to refill is older than the | |
575 | * last refill, then someone else has already refilled this ledger | |
576 | * and there's nothing for us to do here. | |
577 | */ | |
578 | if (now <= le->_le.le_refill.le_last_refill) { | |
579 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); | |
580 | return; | |
581 | } | |
582 | ||
583 | /* | |
584 | * See how many refill periods have passed since we last | |
585 | * did a refill. | |
586 | */ | |
587 | period = le->_le.le_refill.le_refill_period; | |
588 | elapsed = now - le->_le.le_refill.le_last_refill; | |
589 | if ((period == 0) || (elapsed < period)) { | |
590 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); | |
591 | return; | |
592 | } | |
593 | ||
594 | /* | |
595 | * Optimize for the most common case of only one or two | |
596 | * periods elapsing. | |
597 | */ | |
598 | periods = 0; | |
599 | while ((periods < 2) && (elapsed > 0)) { | |
600 | periods++; | |
601 | elapsed -= period; | |
602 | } | |
603 | ||
604 | /* | |
605 | * OK, it's been a long time. Do a divide to figure out | |
606 | * how long. | |
607 | */ | |
608 | if (elapsed > 0) | |
609 | periods = (now - le->_le.le_refill.le_last_refill) / period; | |
610 | ||
611 | balance = le->le_credit - le->le_debit; | |
612 | due = periods * le->le_limit; | |
613 | ||
614 | if (balance - due < 0) | |
615 | due = balance; | |
616 | ||
617 | assertf(due >= 0,"now=%llu, ledger=%p, entry=%d, balance=%lld, due=%lld", now, ledger, entry, balance, due); | |
618 | ||
619 | OSAddAtomic64(due, &le->le_debit); | |
620 | ||
621 | assert(le->le_debit >= 0); | |
622 | ||
623 | /* | |
624 | * If we've completely refilled the pool, set the refill time to now. | |
625 | * Otherwise set it to the time at which it last should have been | |
626 | * fully refilled. | |
627 | */ | |
628 | if (balance == due) | |
629 | le->_le.le_refill.le_last_refill = now; | |
630 | else | |
631 | le->_le.le_refill.le_last_refill += (le->_le.le_refill.le_refill_period * periods); | |
632 | ||
633 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); | |
634 | ||
635 | lprintf(("Refill %lld %lld->%lld\n", periods, balance, balance - due)); | |
636 | if (!limit_exceeded(le)) | |
637 | ledger_limit_entry_wakeup(le); | |
638 | } | |
639 | ||
640 | void | |
641 | ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, | |
642 | int entry, struct ledger_entry *le) | |
643 | { | |
644 | if (le->le_flags & LF_TRACKING_MAX) { | |
645 | ledger_amount_t balance = le->le_credit - le->le_debit; | |
646 | ||
647 | if (balance > le->_le._le_max.le_lifetime_max){ | |
648 | le->_le._le_max.le_lifetime_max = balance; | |
649 | } | |
650 | ||
651 | #if CONFIG_LEDGER_INTERVAL_MAX | |
652 | if (balance > le->_le._le_max.le_interval_max) { | |
653 | le->_le._le_max.le_interval_max = balance; | |
654 | } | |
655 | #endif /* LEDGER_CONFIG_INTERVAL_MAX */ | |
656 | } | |
657 | ||
658 | /* Check to see whether we're due a refill */ | |
659 | if (le->le_flags & LF_REFILL_SCHEDULED) { | |
660 | assert(!(le->le_flags & LF_TRACKING_MAX)); | |
661 | ||
662 | uint64_t now = mach_absolute_time(); | |
663 | if ((now - le->_le.le_refill.le_last_refill) > le->_le.le_refill.le_refill_period) | |
664 | ledger_refill(now, ledger, entry); | |
665 | } | |
666 | ||
667 | if (limit_exceeded(le)) { | |
668 | /* | |
669 | * We've exceeded the limit for this entry. There | |
670 | * are several possible ways to handle it. We can block, | |
671 | * we can execute a callback, or we can ignore it. In | |
672 | * either of the first two cases, we want to set the AST | |
673 | * flag so we can take the appropriate action just before | |
674 | * leaving the kernel. The one caveat is that if we have | |
675 | * already called the callback, we don't want to do it | |
676 | * again until it gets rearmed. | |
677 | */ | |
678 | if ((le->le_flags & LEDGER_ACTION_BLOCK) || | |
679 | (!(le->le_flags & LF_CALLED_BACK) && | |
680 | entry_get_callback(ledger, entry))) { | |
681 | act_set_astledger_async(thread); | |
682 | } | |
683 | } else { | |
684 | /* | |
685 | * The balance on the account is below the limit. | |
686 | * | |
687 | * If there are any threads blocked on this entry, now would | |
688 | * be a good time to wake them up. | |
689 | */ | |
690 | if (le->le_flags & LF_WAKE_NEEDED) | |
691 | ledger_limit_entry_wakeup(le); | |
692 | ||
693 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
694 | /* | |
695 | * Client has requested that a callback be invoked whenever | |
696 | * the ledger's balance crosses into or out of the warning | |
697 | * level. | |
698 | */ | |
699 | if (warn_level_exceeded(le)) { | |
700 | /* | |
701 | * This ledger's balance is above the warning level. | |
702 | */ | |
703 | if ((le->le_flags & LF_WARNED) == 0) { | |
704 | /* | |
705 | * If we are above the warning level and | |
706 | * have not yet invoked the callback, | |
707 | * set the AST so it can be done before returning | |
708 | * to userland. | |
709 | */ | |
710 | act_set_astledger_async(thread); | |
711 | } | |
712 | } else { | |
713 | /* | |
714 | * This ledger's balance is below the warning level. | |
715 | */ | |
716 | if (le->le_flags & LF_WARNED) { | |
717 | /* | |
718 | * If we are below the warning level and | |
719 | * the LF_WARNED flag is still set, we need | |
720 | * to invoke the callback to let the client | |
721 | * know the ledger balance is now back below | |
722 | * the warning level. | |
723 | */ | |
724 | act_set_astledger_async(thread); | |
725 | } | |
726 | } | |
727 | } | |
728 | } | |
729 | ||
730 | if ((le->le_flags & LF_PANIC_ON_NEGATIVE) && | |
731 | (le->le_credit < le->le_debit)) { | |
732 | panic("ledger_entry_check_new_balance(%p,%d): negative ledger %p credit:%lld debit:%lld balance:%lld\n", | |
733 | ledger, entry, le, | |
734 | le->le_credit, | |
735 | le->le_debit, | |
736 | le->le_credit - le->le_debit); | |
737 | } | |
738 | } | |
739 | ||
740 | void | |
741 | ledger_check_new_balance(thread_t thread, ledger_t ledger, int entry) | |
742 | { | |
743 | struct ledger_entry *le; | |
744 | assert(entry > 0 && entry <= ledger->l_size); | |
745 | le = &ledger->l_entries[entry]; | |
746 | ledger_entry_check_new_balance(thread, ledger, entry, le); | |
747 | } | |
748 | ||
749 | /* | |
750 | * Add value to an entry in a ledger for a specific thread. | |
751 | */ | |
752 | kern_return_t | |
753 | ledger_credit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) | |
754 | { | |
755 | ledger_amount_t old, new; | |
756 | struct ledger_entry *le; | |
757 | ||
758 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) | |
759 | return (KERN_INVALID_VALUE); | |
760 | ||
761 | if (amount == 0) | |
762 | return (KERN_SUCCESS); | |
763 | ||
764 | le = &ledger->l_entries[entry]; | |
765 | ||
766 | old = OSAddAtomic64(amount, &le->le_credit); | |
767 | new = old + amount; | |
768 | lprintf(("%p Credit %lld->%lld\n", thread, old, new)); | |
769 | ||
770 | if (thread) { | |
771 | ledger_entry_check_new_balance(thread, ledger, entry, le); | |
772 | } | |
773 | ||
774 | return (KERN_SUCCESS); | |
775 | } | |
776 | ||
777 | /* | |
778 | * Add value to an entry in a ledger. | |
779 | */ | |
780 | kern_return_t | |
781 | ledger_credit(ledger_t ledger, int entry, ledger_amount_t amount) | |
782 | { | |
783 | return ledger_credit_thread(current_thread(), ledger, entry, amount); | |
784 | } | |
785 | ||
786 | /* | |
787 | * Add value to an entry in a ledger; do not check balance after update. | |
788 | */ | |
789 | kern_return_t | |
790 | ledger_credit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) | |
791 | { | |
792 | return ledger_credit_thread(NULL, ledger, entry, amount); | |
793 | } | |
794 | ||
795 | /* Add all of one ledger's values into another. | |
796 | * They must have been created from the same template. | |
797 | * This is not done atomically. Another thread (if not otherwise synchronized) | |
798 | * may see bogus values when comparing one entry to another. | |
799 | * As each entry's credit & debit are modified one at a time, the warning/limit | |
800 | * may spuriously trip, or spuriously fail to trip, or another thread (if not | |
801 | * otherwise synchronized) may see a bogus balance. | |
802 | */ | |
803 | kern_return_t | |
804 | ledger_rollup(ledger_t to_ledger, ledger_t from_ledger) | |
805 | { | |
806 | int i; | |
807 | ||
808 | assert(to_ledger->l_template == from_ledger->l_template); | |
809 | ||
810 | for (i = 0; i < to_ledger->l_size; i++) { | |
811 | ledger_rollup_entry(to_ledger, from_ledger, i); | |
812 | } | |
813 | ||
814 | return (KERN_SUCCESS); | |
815 | } | |
816 | ||
817 | /* Add one ledger entry value to another. | |
818 | * They must have been created from the same template. | |
819 | * Since the credit and debit values are added one | |
820 | * at a time, other thread might read the a bogus value. | |
821 | */ | |
822 | kern_return_t | |
823 | ledger_rollup_entry(ledger_t to_ledger, ledger_t from_ledger, int entry) | |
824 | { | |
825 | struct ledger_entry *from_le, *to_le; | |
826 | ||
827 | assert(to_ledger->l_template == from_ledger->l_template); | |
828 | if (ENTRY_VALID(from_ledger, entry) && ENTRY_VALID(to_ledger, entry)) { | |
829 | from_le = &from_ledger->l_entries[entry]; | |
830 | to_le = &to_ledger->l_entries[entry]; | |
831 | OSAddAtomic64(from_le->le_credit, &to_le->le_credit); | |
832 | OSAddAtomic64(from_le->le_debit, &to_le->le_debit); | |
833 | } | |
834 | ||
835 | return (KERN_SUCCESS); | |
836 | } | |
837 | ||
838 | /* | |
839 | * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller. | |
840 | * Note that some clients of ledgers (notably, task wakeup statistics) require that | |
841 | * le_credit only ever increase as a function of ledger_credit(). | |
842 | */ | |
843 | kern_return_t | |
844 | ledger_zero_balance(ledger_t ledger, int entry) | |
845 | { | |
846 | struct ledger_entry *le; | |
847 | ledger_amount_t debit, credit; | |
848 | ||
849 | if (!ENTRY_VALID(ledger, entry)) | |
850 | return (KERN_INVALID_VALUE); | |
851 | ||
852 | le = &ledger->l_entries[entry]; | |
853 | ||
854 | top: | |
855 | debit = le->le_debit; | |
856 | credit = le->le_credit; | |
857 | ||
858 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
859 | assert(le->le_debit == 0); | |
860 | if (!OSCompareAndSwap64(credit, 0, &le->le_credit)) { | |
861 | goto top; | |
862 | } | |
863 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_credit, 0)); | |
864 | } else if (credit > debit) { | |
865 | if (!OSCompareAndSwap64(debit, credit, &le->le_debit)) | |
866 | goto top; | |
867 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_debit, le->le_credit)); | |
868 | } else if (credit < debit) { | |
869 | if (!OSCompareAndSwap64(credit, debit, &le->le_credit)) | |
870 | goto top; | |
871 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_credit, le->le_debit)); | |
872 | } | |
873 | ||
874 | return (KERN_SUCCESS); | |
875 | } | |
876 | ||
877 | kern_return_t | |
878 | ledger_get_limit(ledger_t ledger, int entry, ledger_amount_t *limit) | |
879 | { | |
880 | struct ledger_entry *le; | |
881 | ||
882 | if (!ENTRY_VALID(ledger, entry)) | |
883 | return (KERN_INVALID_VALUE); | |
884 | ||
885 | le = &ledger->l_entries[entry]; | |
886 | *limit = le->le_limit; | |
887 | ||
888 | lprintf(("ledger_get_limit: %lld\n", *limit)); | |
889 | ||
890 | return (KERN_SUCCESS); | |
891 | } | |
892 | ||
893 | /* | |
894 | * Adjust the limit of a limited resource. This does not affect the | |
895 | * current balance, so the change doesn't affect the thread until the | |
896 | * next refill. | |
897 | * | |
898 | * warn_level: If non-zero, causes the callback to be invoked when | |
899 | * the balance exceeds this level. Specified as a percentage [of the limit]. | |
900 | */ | |
901 | kern_return_t | |
902 | ledger_set_limit(ledger_t ledger, int entry, ledger_amount_t limit, | |
903 | uint8_t warn_level_percentage) | |
904 | { | |
905 | struct ledger_entry *le; | |
906 | ||
907 | if (!ENTRY_VALID(ledger, entry)) | |
908 | return (KERN_INVALID_VALUE); | |
909 | ||
910 | lprintf(("ledger_set_limit: %lld\n", limit)); | |
911 | le = &ledger->l_entries[entry]; | |
912 | ||
913 | if (limit == LEDGER_LIMIT_INFINITY) { | |
914 | /* | |
915 | * Caller wishes to disable the limit. This will implicitly | |
916 | * disable automatic refill, as refills implicitly depend | |
917 | * on the limit. | |
918 | */ | |
919 | ledger_disable_refill(ledger, entry); | |
920 | } | |
921 | ||
922 | le->le_limit = limit; | |
923 | if (le->le_flags & LF_REFILL_SCHEDULED) { | |
924 | assert(!(le->le_flags & LF_TRACKING_MAX)); | |
925 | le->_le.le_refill.le_last_refill = 0; | |
926 | } | |
927 | flag_clear(&le->le_flags, LF_CALLED_BACK); | |
928 | flag_clear(&le->le_flags, LF_WARNED); | |
929 | ledger_limit_entry_wakeup(le); | |
930 | ||
931 | if (warn_level_percentage != 0) { | |
932 | assert(warn_level_percentage <= 100); | |
933 | assert(limit > 0); /* no negative limit support for warnings */ | |
934 | assert(limit != LEDGER_LIMIT_INFINITY); /* warn % without limit makes no sense */ | |
935 | le->le_warn_level = (le->le_limit * warn_level_percentage) / 100; | |
936 | } else { | |
937 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
938 | } | |
939 | ||
940 | return (KERN_SUCCESS); | |
941 | } | |
942 | ||
943 | #if CONFIG_LEDGER_INTERVAL_MAX | |
944 | kern_return_t | |
945 | ledger_get_interval_max(ledger_t ledger, int entry, | |
946 | ledger_amount_t *max_interval_balance, int reset) | |
947 | { | |
948 | struct ledger_entry *le; | |
949 | le = &ledger->l_entries[entry]; | |
950 | ||
951 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { | |
952 | return (KERN_INVALID_VALUE); | |
953 | } | |
954 | ||
955 | *max_interval_balance = le->_le._le_max.le_interval_max; | |
956 | lprintf(("ledger_get_interval_max: %lld%s\n", *max_interval_balance, | |
957 | (reset) ? " --> 0" : "")); | |
958 | ||
959 | if (reset) { | |
960 | le->_le._le_max.le_interval_max = 0; | |
961 | } | |
962 | ||
963 | return (KERN_SUCCESS); | |
964 | } | |
965 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ | |
966 | ||
967 | kern_return_t | |
968 | ledger_get_lifetime_max(ledger_t ledger, int entry, | |
969 | ledger_amount_t *max_lifetime_balance) | |
970 | { | |
971 | struct ledger_entry *le; | |
972 | le = &ledger->l_entries[entry]; | |
973 | ||
974 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { | |
975 | return (KERN_INVALID_VALUE); | |
976 | } | |
977 | ||
978 | *max_lifetime_balance = le->_le._le_max.le_lifetime_max; | |
979 | lprintf(("ledger_get_lifetime_max: %lld\n", *max_lifetime_balance)); | |
980 | ||
981 | return (KERN_SUCCESS); | |
982 | } | |
983 | ||
984 | /* | |
985 | * Enable tracking of periodic maximums for this ledger entry. | |
986 | */ | |
987 | kern_return_t | |
988 | ledger_track_maximum(ledger_template_t template, int entry, | |
989 | __unused int period_in_secs) | |
990 | { | |
991 | template_lock(template); | |
992 | ||
993 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
994 | template_unlock(template); | |
995 | return (KERN_INVALID_VALUE); | |
996 | } | |
997 | ||
998 | /* Refill is incompatible with max tracking. */ | |
999 | if (template->lt_entries[entry].et_flags & LF_REFILL_SCHEDULED) { | |
1000 | return (KERN_INVALID_VALUE); | |
1001 | } | |
1002 | ||
1003 | template->lt_entries[entry].et_flags |= LF_TRACKING_MAX; | |
1004 | template_unlock(template); | |
1005 | ||
1006 | return (KERN_SUCCESS); | |
1007 | } | |
1008 | ||
1009 | kern_return_t | |
1010 | ledger_panic_on_negative(ledger_template_t template, int entry) | |
1011 | { | |
1012 | template_lock(template); | |
1013 | ||
1014 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
1015 | template_unlock(template); | |
1016 | return (KERN_INVALID_VALUE); | |
1017 | } | |
1018 | ||
1019 | template->lt_entries[entry].et_flags |= LF_PANIC_ON_NEGATIVE; | |
1020 | ||
1021 | template_unlock(template); | |
1022 | ||
1023 | return (KERN_SUCCESS); | |
1024 | } | |
1025 | ||
1026 | kern_return_t | |
1027 | ledger_track_credit_only(ledger_template_t template, int entry) | |
1028 | { | |
1029 | template_lock(template); | |
1030 | ||
1031 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
1032 | template_unlock(template); | |
1033 | return (KERN_INVALID_VALUE); | |
1034 | } | |
1035 | ||
1036 | template->lt_entries[entry].et_flags |= LF_TRACK_CREDIT_ONLY; | |
1037 | ||
1038 | template_unlock(template); | |
1039 | ||
1040 | return (KERN_SUCCESS); | |
1041 | } | |
1042 | ||
1043 | /* | |
1044 | * Add a callback to be executed when the resource goes into deficit. | |
1045 | */ | |
1046 | kern_return_t | |
1047 | ledger_set_callback(ledger_template_t template, int entry, | |
1048 | ledger_callback_t func, const void *param0, const void *param1) | |
1049 | { | |
1050 | struct entry_template *et; | |
1051 | struct ledger_callback *old_cb, *new_cb; | |
1052 | ||
1053 | if ((entry < 0) || (entry >= template->lt_cnt)) | |
1054 | return (KERN_INVALID_VALUE); | |
1055 | ||
1056 | if (func) { | |
1057 | new_cb = (struct ledger_callback *)kalloc(sizeof (*new_cb)); | |
1058 | new_cb->lc_func = func; | |
1059 | new_cb->lc_param0 = param0; | |
1060 | new_cb->lc_param1 = param1; | |
1061 | } else { | |
1062 | new_cb = NULL; | |
1063 | } | |
1064 | ||
1065 | template_lock(template); | |
1066 | et = &template->lt_entries[entry]; | |
1067 | old_cb = et->et_callback; | |
1068 | et->et_callback = new_cb; | |
1069 | template_unlock(template); | |
1070 | if (old_cb) | |
1071 | kfree(old_cb, sizeof (*old_cb)); | |
1072 | ||
1073 | return (KERN_SUCCESS); | |
1074 | } | |
1075 | ||
1076 | /* | |
1077 | * Disable callback notification for a specific ledger entry. | |
1078 | * | |
1079 | * Otherwise, if using a ledger template which specified a | |
1080 | * callback function (ledger_set_callback()), it will be invoked when | |
1081 | * the resource goes into deficit. | |
1082 | */ | |
1083 | kern_return_t | |
1084 | ledger_disable_callback(ledger_t ledger, int entry) | |
1085 | { | |
1086 | if (!ENTRY_VALID(ledger, entry)) | |
1087 | return (KERN_INVALID_VALUE); | |
1088 | ||
1089 | /* | |
1090 | * le_warn_level is used to indicate *if* this ledger has a warning configured, | |
1091 | * in addition to what that warning level is set to. | |
1092 | * This means a side-effect of ledger_disable_callback() is that the | |
1093 | * warning level is forgotten. | |
1094 | */ | |
1095 | ledger->l_entries[entry].le_warn_level = LEDGER_LIMIT_INFINITY; | |
1096 | flag_clear(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); | |
1097 | return (KERN_SUCCESS); | |
1098 | } | |
1099 | ||
1100 | /* | |
1101 | * Enable callback notification for a specific ledger entry. | |
1102 | * | |
1103 | * This is only needed if ledger_disable_callback() has previously | |
1104 | * been invoked against an entry; there must already be a callback | |
1105 | * configured. | |
1106 | */ | |
1107 | kern_return_t | |
1108 | ledger_enable_callback(ledger_t ledger, int entry) | |
1109 | { | |
1110 | if (!ENTRY_VALID(ledger, entry)) | |
1111 | return (KERN_INVALID_VALUE); | |
1112 | ||
1113 | assert(entry_get_callback(ledger, entry) != NULL); | |
1114 | ||
1115 | flag_set(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); | |
1116 | return (KERN_SUCCESS); | |
1117 | } | |
1118 | ||
1119 | /* | |
1120 | * Query the automatic refill period for this ledger entry. | |
1121 | * | |
1122 | * A period of 0 means this entry has none configured. | |
1123 | */ | |
1124 | kern_return_t | |
1125 | ledger_get_period(ledger_t ledger, int entry, uint64_t *period) | |
1126 | { | |
1127 | struct ledger_entry *le; | |
1128 | ||
1129 | if (!ENTRY_VALID(ledger, entry)) | |
1130 | return (KERN_INVALID_VALUE); | |
1131 | ||
1132 | le = &ledger->l_entries[entry]; | |
1133 | *period = abstime_to_nsecs(le->_le.le_refill.le_refill_period); | |
1134 | lprintf(("ledger_get_period: %llx\n", *period)); | |
1135 | return (KERN_SUCCESS); | |
1136 | } | |
1137 | ||
1138 | /* | |
1139 | * Adjust the automatic refill period. | |
1140 | */ | |
1141 | kern_return_t | |
1142 | ledger_set_period(ledger_t ledger, int entry, uint64_t period) | |
1143 | { | |
1144 | struct ledger_entry *le; | |
1145 | ||
1146 | lprintf(("ledger_set_period: %llx\n", period)); | |
1147 | if (!ENTRY_VALID(ledger, entry)) | |
1148 | return (KERN_INVALID_VALUE); | |
1149 | ||
1150 | le = &ledger->l_entries[entry]; | |
1151 | ||
1152 | /* | |
1153 | * A refill period refills the ledger in multiples of the limit, | |
1154 | * so if you haven't set one yet, you need a lesson on ledgers. | |
1155 | */ | |
1156 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); | |
1157 | ||
1158 | if (le->le_flags & LF_TRACKING_MAX) { | |
1159 | /* | |
1160 | * Refill is incompatible with rolling max tracking. | |
1161 | */ | |
1162 | return (KERN_INVALID_VALUE); | |
1163 | } | |
1164 | ||
1165 | le->_le.le_refill.le_refill_period = nsecs_to_abstime(period); | |
1166 | ||
1167 | /* | |
1168 | * Set the 'starting time' for the next refill to now. Since | |
1169 | * we're resetting the balance to zero here, we consider this | |
1170 | * moment the starting time for accumulating a balance that | |
1171 | * counts towards the limit. | |
1172 | */ | |
1173 | le->_le.le_refill.le_last_refill = mach_absolute_time(); | |
1174 | ledger_zero_balance(ledger, entry); | |
1175 | ||
1176 | flag_set(&le->le_flags, LF_REFILL_SCHEDULED); | |
1177 | ||
1178 | return (KERN_SUCCESS); | |
1179 | } | |
1180 | ||
1181 | /* | |
1182 | * Disable automatic refill. | |
1183 | */ | |
1184 | kern_return_t | |
1185 | ledger_disable_refill(ledger_t ledger, int entry) | |
1186 | { | |
1187 | struct ledger_entry *le; | |
1188 | ||
1189 | if (!ENTRY_VALID(ledger, entry)) | |
1190 | return (KERN_INVALID_VALUE); | |
1191 | ||
1192 | le = &ledger->l_entries[entry]; | |
1193 | ||
1194 | flag_clear(&le->le_flags, LF_REFILL_SCHEDULED); | |
1195 | ||
1196 | return (KERN_SUCCESS); | |
1197 | } | |
1198 | ||
1199 | kern_return_t | |
1200 | ledger_get_actions(ledger_t ledger, int entry, int *actions) | |
1201 | { | |
1202 | if (!ENTRY_VALID(ledger, entry)) | |
1203 | return (KERN_INVALID_VALUE); | |
1204 | ||
1205 | *actions = ledger->l_entries[entry].le_flags & LEDGER_ACTION_MASK; | |
1206 | lprintf(("ledger_get_actions: %#x\n", *actions)); | |
1207 | return (KERN_SUCCESS); | |
1208 | } | |
1209 | ||
1210 | kern_return_t | |
1211 | ledger_set_action(ledger_t ledger, int entry, int action) | |
1212 | { | |
1213 | lprintf(("ledger_set_action: %#x\n", action)); | |
1214 | if (!ENTRY_VALID(ledger, entry)) | |
1215 | return (KERN_INVALID_VALUE); | |
1216 | ||
1217 | flag_set(&ledger->l_entries[entry].le_flags, action); | |
1218 | return (KERN_SUCCESS); | |
1219 | } | |
1220 | ||
1221 | kern_return_t | |
1222 | ledger_debit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) | |
1223 | { | |
1224 | struct ledger_entry *le; | |
1225 | ledger_amount_t old, new; | |
1226 | ||
1227 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) | |
1228 | return (KERN_INVALID_ARGUMENT); | |
1229 | ||
1230 | if (amount == 0) | |
1231 | return (KERN_SUCCESS); | |
1232 | ||
1233 | le = &ledger->l_entries[entry]; | |
1234 | ||
1235 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
1236 | assert(le->le_debit == 0); | |
1237 | old = OSAddAtomic64(-amount, &le->le_credit); | |
1238 | new = old - amount; | |
1239 | } else { | |
1240 | old = OSAddAtomic64(amount, &le->le_debit); | |
1241 | new = old + amount; | |
1242 | } | |
1243 | lprintf(("%p Debit %lld->%lld\n", thread, old, new)); | |
1244 | ||
1245 | if (thread) { | |
1246 | ledger_entry_check_new_balance(thread, ledger, entry, le); | |
1247 | } | |
1248 | ||
1249 | return (KERN_SUCCESS); | |
1250 | } | |
1251 | ||
1252 | kern_return_t | |
1253 | ledger_debit(ledger_t ledger, int entry, ledger_amount_t amount) | |
1254 | { | |
1255 | return ledger_debit_thread(current_thread(), ledger, entry, amount); | |
1256 | } | |
1257 | ||
1258 | kern_return_t | |
1259 | ledger_debit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) | |
1260 | { | |
1261 | return ledger_debit_thread(NULL, ledger, entry, amount); | |
1262 | } | |
1263 | ||
1264 | void | |
1265 | ledger_ast(thread_t thread) | |
1266 | { | |
1267 | struct ledger *l = thread->t_ledger; | |
1268 | struct ledger *thl; | |
1269 | uint32_t block; | |
1270 | uint64_t now; | |
1271 | uint8_t task_flags; | |
1272 | uint8_t task_percentage; | |
1273 | uint64_t task_interval; | |
1274 | ||
1275 | kern_return_t ret; | |
1276 | task_t task = thread->task; | |
1277 | ||
1278 | lprintf(("Ledger AST for %p\n", thread)); | |
1279 | ||
1280 | ASSERT(task != NULL); | |
1281 | ASSERT(thread == current_thread()); | |
1282 | ||
1283 | top: | |
1284 | /* | |
1285 | * Take a self-consistent snapshot of the CPU usage monitor parameters. The task | |
1286 | * can change them at any point (with the task locked). | |
1287 | */ | |
1288 | task_lock(task); | |
1289 | task_flags = task->rusage_cpu_flags; | |
1290 | task_percentage = task->rusage_cpu_perthr_percentage; | |
1291 | task_interval = task->rusage_cpu_perthr_interval; | |
1292 | task_unlock(task); | |
1293 | ||
1294 | /* | |
1295 | * Make sure this thread is up to date with regards to any task-wide per-thread | |
1296 | * CPU limit, but only if it doesn't have a thread-private blocking CPU limit. | |
1297 | */ | |
1298 | if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) && | |
1299 | ((thread->options & TH_OPT_PRVT_CPULIMIT) == 0)) { | |
1300 | uint8_t percentage; | |
1301 | uint64_t interval; | |
1302 | int action; | |
1303 | ||
1304 | thread_get_cpulimit(&action, &percentage, &interval); | |
1305 | ||
1306 | /* | |
1307 | * If the thread's CPU limits no longer match the task's, or the | |
1308 | * task has a limit but the thread doesn't, update the limit. | |
1309 | */ | |
1310 | if (((thread->options & TH_OPT_PROC_CPULIMIT) == 0) || | |
1311 | (interval != task_interval) || (percentage != task_percentage)) { | |
1312 | thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION, task_percentage, task_interval); | |
1313 | assert((thread->options & TH_OPT_PROC_CPULIMIT) != 0); | |
1314 | } | |
1315 | } else if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) && | |
1316 | (thread->options & TH_OPT_PROC_CPULIMIT)) { | |
1317 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); | |
1318 | ||
1319 | /* | |
1320 | * Task no longer has a per-thread CPU limit; remove this thread's | |
1321 | * corresponding CPU limit. | |
1322 | */ | |
1323 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); | |
1324 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); | |
1325 | } | |
1326 | ||
1327 | /* | |
1328 | * If the task or thread is being terminated, let's just get on with it | |
1329 | */ | |
1330 | if ((l == NULL) || !task->active || task->halting || !thread->active) | |
1331 | return; | |
1332 | ||
1333 | /* | |
1334 | * Examine all entries in deficit to see which might be eligble for | |
1335 | * an automatic refill, which require callbacks to be issued, and | |
1336 | * which require blocking. | |
1337 | */ | |
1338 | block = 0; | |
1339 | now = mach_absolute_time(); | |
1340 | ||
1341 | /* | |
1342 | * Note that thread->t_threadledger may have been changed by the | |
1343 | * thread_set_cpulimit() call above - so don't examine it until afterwards. | |
1344 | */ | |
1345 | thl = thread->t_threadledger; | |
1346 | if (LEDGER_VALID(thl)) { | |
1347 | block |= ledger_check_needblock(thl, now); | |
1348 | } | |
1349 | block |= ledger_check_needblock(l, now); | |
1350 | ||
1351 | /* | |
1352 | * If we are supposed to block on the availability of one or more | |
1353 | * resources, find the first entry in deficit for which we should wait. | |
1354 | * Schedule a refill if necessary and then sleep until the resource | |
1355 | * becomes available. | |
1356 | */ | |
1357 | if (block) { | |
1358 | if (LEDGER_VALID(thl)) { | |
1359 | ret = ledger_perform_blocking(thl); | |
1360 | if (ret != KERN_SUCCESS) | |
1361 | goto top; | |
1362 | } | |
1363 | ret = ledger_perform_blocking(l); | |
1364 | if (ret != KERN_SUCCESS) | |
1365 | goto top; | |
1366 | } /* block */ | |
1367 | } | |
1368 | ||
1369 | static uint32_t | |
1370 | ledger_check_needblock(ledger_t l, uint64_t now) | |
1371 | { | |
1372 | int i; | |
1373 | uint32_t flags, block = 0; | |
1374 | struct ledger_entry *le; | |
1375 | struct ledger_callback *lc; | |
1376 | ||
1377 | ||
1378 | for (i = 0; i < l->l_size; i++) { | |
1379 | le = &l->l_entries[i]; | |
1380 | ||
1381 | lc = entry_get_callback(l, i); | |
1382 | ||
1383 | if (limit_exceeded(le) == FALSE) { | |
1384 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
1385 | /* | |
1386 | * If needed, invoke the callback as a warning. | |
1387 | * This needs to happen both when the balance rises above | |
1388 | * the warning level, and also when it dips back below it. | |
1389 | */ | |
1390 | assert(lc != NULL); | |
1391 | /* | |
1392 | * See comments for matching logic in ledger_check_new_balance(). | |
1393 | */ | |
1394 | if (warn_level_exceeded(le)) { | |
1395 | flags = flag_set(&le->le_flags, LF_WARNED); | |
1396 | if ((flags & LF_WARNED) == 0) { | |
1397 | lc->lc_func(LEDGER_WARNING_ROSE_ABOVE, lc->lc_param0, lc->lc_param1); | |
1398 | } | |
1399 | } else { | |
1400 | flags = flag_clear(&le->le_flags, LF_WARNED); | |
1401 | if (flags & LF_WARNED) { | |
1402 | lc->lc_func(LEDGER_WARNING_DIPPED_BELOW, lc->lc_param0, lc->lc_param1); | |
1403 | } | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | continue; | |
1408 | } | |
1409 | ||
1410 | /* We're over the limit, so refill if we are eligible and past due. */ | |
1411 | if (le->le_flags & LF_REFILL_SCHEDULED) { | |
1412 | assert(!(le->le_flags & LF_TRACKING_MAX)); | |
1413 | ||
1414 | if ((le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period) > now) { | |
1415 | ledger_refill(now, l, i); | |
1416 | if (limit_exceeded(le) == FALSE) | |
1417 | continue; | |
1418 | } | |
1419 | } | |
1420 | ||
1421 | if (le->le_flags & LEDGER_ACTION_BLOCK) | |
1422 | block = 1; | |
1423 | if ((le->le_flags & LEDGER_ACTION_CALLBACK) == 0) | |
1424 | continue; | |
1425 | ||
1426 | /* | |
1427 | * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to | |
1428 | * be a registered callback. | |
1429 | */ | |
1430 | assert(lc != NULL); | |
1431 | flags = flag_set(&le->le_flags, LF_CALLED_BACK); | |
1432 | /* Callback has already been called */ | |
1433 | if (flags & LF_CALLED_BACK) | |
1434 | continue; | |
1435 | lc->lc_func(FALSE, lc->lc_param0, lc->lc_param1); | |
1436 | } | |
1437 | return(block); | |
1438 | } | |
1439 | ||
1440 | ||
1441 | /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */ | |
1442 | static kern_return_t | |
1443 | ledger_perform_blocking(ledger_t l) | |
1444 | { | |
1445 | int i; | |
1446 | kern_return_t ret; | |
1447 | struct ledger_entry *le; | |
1448 | ||
1449 | for (i = 0; i < l->l_size; i++) { | |
1450 | le = &l->l_entries[i]; | |
1451 | if ((!limit_exceeded(le)) || | |
1452 | ((le->le_flags & LEDGER_ACTION_BLOCK) == 0)) | |
1453 | continue; | |
1454 | ||
1455 | assert(!(le->le_flags & LF_TRACKING_MAX)); | |
1456 | ||
1457 | /* Prepare to sleep until the resource is refilled */ | |
1458 | ret = assert_wait_deadline(le, THREAD_INTERRUPTIBLE, | |
1459 | le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period); | |
1460 | if (ret != THREAD_WAITING) | |
1461 | return(KERN_SUCCESS); | |
1462 | ||
1463 | /* Mark that somebody is waiting on this entry */ | |
1464 | flag_set(&le->le_flags, LF_WAKE_NEEDED); | |
1465 | ||
1466 | ret = thread_block_reason(THREAD_CONTINUE_NULL, NULL, | |
1467 | AST_LEDGER); | |
1468 | if (ret != THREAD_AWAKENED) | |
1469 | return(KERN_SUCCESS); | |
1470 | ||
1471 | /* | |
1472 | * The world may have changed while we were asleep. | |
1473 | * Some other resource we need may have gone into | |
1474 | * deficit. Or maybe we're supposed to die now. | |
1475 | * Go back to the top and reevaluate. | |
1476 | */ | |
1477 | return(KERN_FAILURE); | |
1478 | } | |
1479 | return(KERN_SUCCESS); | |
1480 | } | |
1481 | ||
1482 | ||
1483 | kern_return_t | |
1484 | ledger_get_entries(ledger_t ledger, int entry, ledger_amount_t *credit, | |
1485 | ledger_amount_t *debit) | |
1486 | { | |
1487 | struct ledger_entry *le; | |
1488 | ||
1489 | if (!ENTRY_VALID(ledger, entry)) | |
1490 | return (KERN_INVALID_ARGUMENT); | |
1491 | ||
1492 | le = &ledger->l_entries[entry]; | |
1493 | ||
1494 | *credit = le->le_credit; | |
1495 | *debit = le->le_debit; | |
1496 | ||
1497 | return (KERN_SUCCESS); | |
1498 | } | |
1499 | ||
1500 | kern_return_t | |
1501 | ledger_reset_callback_state(ledger_t ledger, int entry) | |
1502 | { | |
1503 | struct ledger_entry *le; | |
1504 | ||
1505 | if (!ENTRY_VALID(ledger, entry)) | |
1506 | return (KERN_INVALID_ARGUMENT); | |
1507 | ||
1508 | le = &ledger->l_entries[entry]; | |
1509 | ||
1510 | flag_clear(&le->le_flags, LF_CALLED_BACK); | |
1511 | ||
1512 | return (KERN_SUCCESS); | |
1513 | } | |
1514 | ||
1515 | kern_return_t | |
1516 | ledger_disable_panic_on_negative(ledger_t ledger, int entry) | |
1517 | { | |
1518 | struct ledger_entry *le; | |
1519 | ||
1520 | if (!ENTRY_VALID(ledger, entry)) | |
1521 | return (KERN_INVALID_ARGUMENT); | |
1522 | ||
1523 | le = &ledger->l_entries[entry]; | |
1524 | ||
1525 | flag_clear(&le->le_flags, LF_PANIC_ON_NEGATIVE); | |
1526 | ||
1527 | return (KERN_SUCCESS); | |
1528 | } | |
1529 | ||
1530 | kern_return_t | |
1531 | ledger_get_panic_on_negative(ledger_t ledger, int entry, int *panic_on_negative) | |
1532 | { | |
1533 | struct ledger_entry *le; | |
1534 | ||
1535 | if (!ENTRY_VALID(ledger, entry)) | |
1536 | return (KERN_INVALID_ARGUMENT); | |
1537 | ||
1538 | le = &ledger->l_entries[entry]; | |
1539 | ||
1540 | if (le->le_flags & LF_PANIC_ON_NEGATIVE) { | |
1541 | *panic_on_negative = TRUE; | |
1542 | } else { | |
1543 | *panic_on_negative = FALSE; | |
1544 | } | |
1545 | ||
1546 | return (KERN_SUCCESS); | |
1547 | } | |
1548 | ||
1549 | kern_return_t | |
1550 | ledger_get_balance(ledger_t ledger, int entry, ledger_amount_t *balance) | |
1551 | { | |
1552 | struct ledger_entry *le; | |
1553 | ||
1554 | if (!ENTRY_VALID(ledger, entry)) | |
1555 | return (KERN_INVALID_ARGUMENT); | |
1556 | ||
1557 | le = &ledger->l_entries[entry]; | |
1558 | ||
1559 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { | |
1560 | assert(le->le_debit == 0); | |
1561 | } else { | |
1562 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
1563 | } | |
1564 | ||
1565 | *balance = le->le_credit - le->le_debit; | |
1566 | ||
1567 | return (KERN_SUCCESS); | |
1568 | } | |
1569 | ||
1570 | int | |
1571 | ledger_template_info(void **buf, int *len) | |
1572 | { | |
1573 | struct ledger_template_info *lti; | |
1574 | struct entry_template *et; | |
1575 | int i; | |
1576 | ledger_t l; | |
1577 | ||
1578 | /* | |
1579 | * Since all tasks share a ledger template, we'll just use the | |
1580 | * caller's as the source. | |
1581 | */ | |
1582 | l = current_task()->ledger; | |
1583 | if ((*len < 0) || (l == NULL)) | |
1584 | return (EINVAL); | |
1585 | ||
1586 | if (*len > l->l_size) | |
1587 | *len = l->l_size; | |
1588 | lti = kalloc((*len) * sizeof (struct ledger_template_info)); | |
1589 | if (lti == NULL) | |
1590 | return (ENOMEM); | |
1591 | *buf = lti; | |
1592 | ||
1593 | template_lock(l->l_template); | |
1594 | et = l->l_template->lt_entries; | |
1595 | ||
1596 | for (i = 0; i < *len; i++) { | |
1597 | memset(lti, 0, sizeof (*lti)); | |
1598 | strlcpy(lti->lti_name, et->et_key, LEDGER_NAME_MAX); | |
1599 | strlcpy(lti->lti_group, et->et_group, LEDGER_NAME_MAX); | |
1600 | strlcpy(lti->lti_units, et->et_units, LEDGER_NAME_MAX); | |
1601 | et++; | |
1602 | lti++; | |
1603 | } | |
1604 | template_unlock(l->l_template); | |
1605 | ||
1606 | return (0); | |
1607 | } | |
1608 | ||
1609 | static void | |
1610 | ledger_fill_entry_info(struct ledger_entry *le, | |
1611 | struct ledger_entry_info *lei, | |
1612 | uint64_t now) | |
1613 | { | |
1614 | assert(le != NULL); | |
1615 | assert(lei != NULL); | |
1616 | ||
1617 | memset(lei, 0, sizeof (*lei)); | |
1618 | ||
1619 | lei->lei_limit = le->le_limit; | |
1620 | lei->lei_credit = le->le_credit; | |
1621 | lei->lei_debit = le->le_debit; | |
1622 | lei->lei_balance = lei->lei_credit - lei->lei_debit; | |
1623 | lei->lei_refill_period = (le->le_flags & LF_REFILL_SCHEDULED) ? | |
1624 | abstime_to_nsecs(le->_le.le_refill.le_refill_period) : 0; | |
1625 | lei->lei_last_refill = abstime_to_nsecs(now - le->_le.le_refill.le_last_refill); | |
1626 | } | |
1627 | ||
1628 | int | |
1629 | ledger_get_task_entry_info_multiple(task_t task, void **buf, int *len) | |
1630 | { | |
1631 | struct ledger_entry_info *lei; | |
1632 | struct ledger_entry *le; | |
1633 | uint64_t now = mach_absolute_time(); | |
1634 | int i; | |
1635 | ledger_t l; | |
1636 | ||
1637 | if ((*len < 0) || ((l = task->ledger) == NULL)) | |
1638 | return (EINVAL); | |
1639 | ||
1640 | if (*len > l->l_size) | |
1641 | *len = l->l_size; | |
1642 | lei = kalloc((*len) * sizeof (struct ledger_entry_info)); | |
1643 | if (lei == NULL) | |
1644 | return (ENOMEM); | |
1645 | *buf = lei; | |
1646 | ||
1647 | le = l->l_entries; | |
1648 | ||
1649 | for (i = 0; i < *len; i++) { | |
1650 | ledger_fill_entry_info(le, lei, now); | |
1651 | le++; | |
1652 | lei++; | |
1653 | } | |
1654 | ||
1655 | return (0); | |
1656 | } | |
1657 | ||
1658 | void | |
1659 | ledger_get_entry_info(ledger_t ledger, | |
1660 | int entry, | |
1661 | struct ledger_entry_info *lei) | |
1662 | { | |
1663 | uint64_t now = mach_absolute_time(); | |
1664 | ||
1665 | assert(ledger != NULL); | |
1666 | assert(lei != NULL); | |
1667 | ||
1668 | if (entry >= 0 && entry < ledger->l_size) { | |
1669 | struct ledger_entry *le = &ledger->l_entries[entry]; | |
1670 | ledger_fill_entry_info(le, lei, now); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | int | |
1675 | ledger_info(task_t task, struct ledger_info *info) | |
1676 | { | |
1677 | ledger_t l; | |
1678 | ||
1679 | if ((l = task->ledger) == NULL) | |
1680 | return (ENOENT); | |
1681 | ||
1682 | memset(info, 0, sizeof (*info)); | |
1683 | ||
1684 | strlcpy(info->li_name, l->l_template->lt_name, LEDGER_NAME_MAX); | |
1685 | info->li_id = l->l_id; | |
1686 | info->li_entries = l->l_size; | |
1687 | return (0); | |
1688 | } | |
1689 | ||
1690 | #ifdef LEDGER_DEBUG | |
1691 | int | |
1692 | ledger_limit(task_t task, struct ledger_limit_args *args) | |
1693 | { | |
1694 | ledger_t l; | |
1695 | int64_t limit; | |
1696 | int idx; | |
1697 | ||
1698 | if ((l = task->ledger) == NULL) | |
1699 | return (EINVAL); | |
1700 | ||
1701 | idx = ledger_key_lookup(l->l_template, args->lla_name); | |
1702 | if ((idx < 0) || (idx >= l->l_size)) | |
1703 | return (EINVAL); | |
1704 | ||
1705 | /* | |
1706 | * XXX - this doesn't really seem like the right place to have | |
1707 | * a context-sensitive conversion of userspace units into kernel | |
1708 | * units. For now I'll handwave and say that the ledger() system | |
1709 | * call isn't meant for civilians to use - they should be using | |
1710 | * the process policy interfaces. | |
1711 | */ | |
1712 | if (idx == task_ledgers.cpu_time) { | |
1713 | int64_t nsecs; | |
1714 | ||
1715 | if (args->lla_refill_period) { | |
1716 | /* | |
1717 | * If a refill is scheduled, then the limit is | |
1718 | * specified as a percentage of one CPU. The | |
1719 | * syscall specifies the refill period in terms of | |
1720 | * milliseconds, so we need to convert to nsecs. | |
1721 | */ | |
1722 | args->lla_refill_period *= 1000000; | |
1723 | nsecs = args->lla_limit * | |
1724 | (args->lla_refill_period / 100); | |
1725 | lprintf(("CPU limited to %lld nsecs per second\n", | |
1726 | nsecs)); | |
1727 | } else { | |
1728 | /* | |
1729 | * If no refill is scheduled, then this is a | |
1730 | * fixed amount of CPU time (in nsecs) that can | |
1731 | * be consumed. | |
1732 | */ | |
1733 | nsecs = args->lla_limit; | |
1734 | lprintf(("CPU limited to %lld nsecs\n", nsecs)); | |
1735 | } | |
1736 | limit = nsecs_to_abstime(nsecs); | |
1737 | } else { | |
1738 | limit = args->lla_limit; | |
1739 | lprintf(("%s limited to %lld\n", args->lla_name, limit)); | |
1740 | } | |
1741 | ||
1742 | if (args->lla_refill_period > 0) | |
1743 | ledger_set_period(l, idx, args->lla_refill_period); | |
1744 | ||
1745 | ledger_set_limit(l, idx, limit); | |
1746 | flag_set(&l->l_entries[idx].le_flags, LEDGER_ACTION_BLOCK); | |
1747 | return (0); | |
1748 | } | |
1749 | #endif |