]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | #include <platforms.h> | |
32 | #include <mach_kdb.h> | |
33 | #include <vm/vm_page.h> | |
34 | #include <pexpert/pexpert.h> | |
35 | ||
36 | #include <i386/cpuid.h> | |
37 | #if MACH_KDB | |
38 | #include <machine/db_machdep.h> | |
39 | #include <ddb/db_aout.h> | |
40 | #include <ddb/db_access.h> | |
41 | #include <ddb/db_sym.h> | |
42 | #include <ddb/db_variables.h> | |
43 | #include <ddb/db_command.h> | |
44 | #include <ddb/db_output.h> | |
45 | #include <ddb/db_expr.h> | |
46 | #endif | |
47 | ||
48 | #define min(a,b) ((a) < (b) ? (a) : (b)) | |
49 | #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo)) | |
50 | ||
51 | /* Only for 32bit values */ | |
52 | #define bit(n) (1U << (n)) | |
53 | #define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1)) | |
54 | #define bitfield(x,h,l) ((((x) & bitmask(h,l)) >> l)) | |
55 | ||
56 | /* | |
57 | * Leaf 2 cache descriptor encodings. | |
58 | */ | |
59 | typedef enum { | |
60 | _NULL_, /* NULL (empty) descriptor */ | |
61 | CACHE, /* Cache */ | |
62 | TLB, /* TLB */ | |
63 | STLB, /* Shared second-level unified TLB */ | |
64 | PREFETCH /* Prefetch size */ | |
65 | } cpuid_leaf2_desc_type_t; | |
66 | ||
67 | typedef enum { | |
68 | NA, /* Not Applicable */ | |
69 | FULLY, /* Fully-associative */ | |
70 | TRACE, /* Trace Cache (P4 only) */ | |
71 | INST, /* Instruction TLB */ | |
72 | DATA, /* Data TLB */ | |
73 | DATA0, /* Data TLB, 1st level */ | |
74 | DATA1, /* Data TLB, 2nd level */ | |
75 | L1, /* L1 (unified) cache */ | |
76 | L1_INST, /* L1 Instruction cache */ | |
77 | L1_DATA, /* L1 Data cache */ | |
78 | L2, /* L2 (unified) cache */ | |
79 | L3, /* L3 (unified) cache */ | |
80 | L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */ | |
81 | L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */ | |
82 | SMALL, /* Small page TLB */ | |
83 | LARGE, /* Large page TLB */ | |
84 | BOTH /* Small and Large page TLB */ | |
85 | } cpuid_leaf2_qualifier_t; | |
86 | ||
87 | typedef struct cpuid_cache_descriptor { | |
88 | uint8_t value; /* descriptor code */ | |
89 | uint8_t type; /* cpuid_leaf2_desc_type_t */ | |
90 | uint8_t level; /* level of cache/TLB hierachy */ | |
91 | uint8_t ways; /* wayness of cache */ | |
92 | uint16_t size; /* cachesize or TLB pagesize */ | |
93 | uint16_t entries; /* number of TLB entries or linesize */ | |
94 | } cpuid_cache_descriptor_t; | |
95 | ||
96 | /* | |
97 | * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field | |
98 | */ | |
99 | #define K (1) | |
100 | #define M (1024) | |
101 | ||
102 | /* | |
103 | * Intel cache descriptor table: | |
104 | */ | |
105 | static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = { | |
106 | // ------------------------------------------------------- | |
107 | // value type level ways size entries | |
108 | // ------------------------------------------------------- | |
109 | { 0x00, _NULL_, NA, NA, NA, NA }, | |
110 | { 0x01, TLB, INST, 4, SMALL, 32 }, | |
111 | { 0x02, TLB, INST, FULLY, LARGE, 2 }, | |
112 | { 0x03, TLB, DATA, 4, SMALL, 64 }, | |
113 | { 0x04, TLB, DATA, 4, LARGE, 8 }, | |
114 | { 0x05, TLB, DATA1, 4, LARGE, 32 }, | |
115 | { 0x06, CACHE, L1_INST, 4, 8*K, 32 }, | |
116 | { 0x08, CACHE, L1_INST, 4, 16*K, 32 }, | |
117 | { 0x09, CACHE, L1_INST, 4, 32*K, 64 }, | |
118 | { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 }, | |
119 | { 0x0B, TLB, INST, 4, LARGE, 4 }, | |
120 | { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 }, | |
121 | { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 }, | |
122 | { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 }, | |
123 | { 0x21, CACHE, L2, 8, 256*K, 64 }, | |
124 | { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 }, | |
125 | { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 }, | |
126 | { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 }, | |
127 | { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 }, | |
128 | { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 }, | |
129 | { 0x30, CACHE, L1_INST, 8, 32*K, 64 }, | |
130 | { 0x40, CACHE, L2, NA, 0, NA }, | |
131 | { 0x41, CACHE, L2, 4, 128*K, 32 }, | |
132 | { 0x42, CACHE, L2, 4, 256*K, 32 }, | |
133 | { 0x43, CACHE, L2, 4, 512*K, 32 }, | |
134 | { 0x44, CACHE, L2, 4, 1*M, 32 }, | |
135 | { 0x45, CACHE, L2, 4, 2*M, 32 }, | |
136 | { 0x46, CACHE, L3, 4, 4*M, 64 }, | |
137 | { 0x47, CACHE, L3, 8, 8*M, 64 }, | |
138 | { 0x48, CACHE, L2, 12, 3*M, 64 }, | |
139 | { 0x49, CACHE, L2, 16, 4*M, 64 }, | |
140 | { 0x4A, CACHE, L3, 12, 6*M, 64 }, | |
141 | { 0x4B, CACHE, L3, 16, 8*M, 64 }, | |
142 | { 0x4C, CACHE, L3, 12, 12*M, 64 }, | |
143 | { 0x4D, CACHE, L3, 16, 16*M, 64 }, | |
144 | { 0x4E, CACHE, L2, 24, 6*M, 64 }, | |
145 | { 0x4F, TLB, INST, NA, SMALL, 32 }, | |
146 | { 0x50, TLB, INST, NA, BOTH, 64 }, | |
147 | { 0x51, TLB, INST, NA, BOTH, 128 }, | |
148 | { 0x52, TLB, INST, NA, BOTH, 256 }, | |
149 | { 0x55, TLB, INST, FULLY, BOTH, 7 }, | |
150 | { 0x56, TLB, DATA0, 4, LARGE, 16 }, | |
151 | { 0x57, TLB, DATA0, 4, SMALL, 16 }, | |
152 | { 0x59, TLB, DATA0, FULLY, SMALL, 16 }, | |
153 | { 0x5A, TLB, DATA0, 4, LARGE, 32 }, | |
154 | { 0x5B, TLB, DATA, NA, BOTH, 64 }, | |
155 | { 0x5C, TLB, DATA, NA, BOTH, 128 }, | |
156 | { 0x5D, TLB, DATA, NA, BOTH, 256 }, | |
157 | { 0x60, CACHE, L1, 16*K, 8, 64 }, | |
158 | { 0x61, CACHE, L1, 4, 8*K, 64 }, | |
159 | { 0x62, CACHE, L1, 4, 16*K, 64 }, | |
160 | { 0x63, CACHE, L1, 4, 32*K, 64 }, | |
161 | { 0x70, CACHE, TRACE, 8, 12*K, NA }, | |
162 | { 0x71, CACHE, TRACE, 8, 16*K, NA }, | |
163 | { 0x72, CACHE, TRACE, 8, 32*K, NA }, | |
164 | { 0x78, CACHE, L2, 4, 1*M, 64 }, | |
165 | { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 }, | |
166 | { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 }, | |
167 | { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 }, | |
168 | { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 }, | |
169 | { 0x7D, CACHE, L2, 8, 2*M, 64 }, | |
170 | { 0x7F, CACHE, L2, 2, 512*K, 64 }, | |
171 | { 0x80, CACHE, L2, 8, 512*K, 64 }, | |
172 | { 0x82, CACHE, L2, 8, 256*K, 32 }, | |
173 | { 0x83, CACHE, L2, 8, 512*K, 32 }, | |
174 | { 0x84, CACHE, L2, 8, 1*M, 32 }, | |
175 | { 0x85, CACHE, L2, 8, 2*M, 32 }, | |
176 | { 0x86, CACHE, L2, 4, 512*K, 64 }, | |
177 | { 0x87, CACHE, L2, 8, 1*M, 64 }, | |
178 | { 0xB0, TLB, INST, 4, SMALL, 128 }, | |
179 | { 0xB1, TLB, INST, 4, LARGE, 8 }, | |
180 | { 0xB2, TLB, INST, 4, SMALL, 64 }, | |
181 | { 0xB3, TLB, DATA, 4, SMALL, 128 }, | |
182 | { 0xB4, TLB, DATA1, 4, SMALL, 256 }, | |
183 | { 0xBA, TLB, DATA1, 4, BOTH, 64 }, | |
184 | { 0xCA, STLB, DATA1, 4, BOTH, 512 }, | |
185 | { 0xD0, CACHE, L3, 4, 512*K, 64 }, | |
186 | { 0xD1, CACHE, L3, 4, 1*M, 64 }, | |
187 | { 0xD2, CACHE, L3, 4, 2*M, 64 }, | |
188 | { 0xD6, CACHE, L3, 8, 1*M, 64 }, | |
189 | { 0xD7, CACHE, L3, 8, 2*M, 64 }, | |
190 | { 0xD8, CACHE, L3, 8, 4*M, 64 }, | |
191 | { 0xDC, CACHE, L3, 12, 1536*K, 64 }, | |
192 | { 0xDD, CACHE, L3, 12, 3*M, 64 }, | |
193 | { 0xDE, CACHE, L3, 12, 6*M, 64 }, | |
194 | { 0xE2, CACHE, L3, 16, 2*M, 64 }, | |
195 | { 0xE3, CACHE, L3, 16, 4*M, 64 }, | |
196 | { 0xE4, CACHE, L3, 16, 8*M, 64 }, | |
197 | { 0xF0, PREFETCH, NA, NA, 64, NA }, | |
198 | { 0xF1, PREFETCH, NA, NA, 128, NA } | |
199 | }; | |
200 | #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \ | |
201 | sizeof(cpuid_cache_descriptor_t)) | |
202 | ||
203 | static inline cpuid_cache_descriptor_t * | |
204 | cpuid_leaf2_find(uint8_t value) | |
205 | { | |
206 | unsigned int i; | |
207 | ||
208 | for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++) | |
209 | if (intel_cpuid_leaf2_descriptor_table[i].value == value) | |
210 | return &intel_cpuid_leaf2_descriptor_table[i]; | |
211 | return NULL; | |
212 | } | |
213 | ||
214 | /* | |
215 | * CPU identification routines. | |
216 | */ | |
217 | ||
218 | static i386_cpu_info_t *cpuid_cpu_infop = NULL; | |
219 | static i386_cpu_info_t cpuid_cpu_info; | |
220 | ||
221 | #if defined(__x86_64__) | |
222 | static void _do_cpuid(uint32_t selector, uint32_t *result) | |
223 | { | |
224 | do_cpuid(selector, result); | |
225 | } | |
226 | #else | |
227 | static void _do_cpuid(uint32_t selector, uint32_t *result) | |
228 | { | |
229 | if (cpu_mode_is64bit()) { | |
230 | asm("call _cpuid64" | |
231 | : "=a" (result[0]), | |
232 | "=b" (result[1]), | |
233 | "=c" (result[2]), | |
234 | "=d" (result[3]) | |
235 | : "a"(selector)); | |
236 | } else { | |
237 | do_cpuid(selector, result); | |
238 | } | |
239 | } | |
240 | #endif | |
241 | ||
242 | /* this function is Intel-specific */ | |
243 | static void | |
244 | cpuid_set_cache_info( i386_cpu_info_t * info_p ) | |
245 | { | |
246 | uint32_t cpuid_result[4]; | |
247 | uint32_t reg[4]; | |
248 | uint32_t index; | |
249 | uint32_t linesizes[LCACHE_MAX]; | |
250 | unsigned int i; | |
251 | unsigned int j; | |
252 | boolean_t cpuid_deterministic_supported = FALSE; | |
253 | ||
254 | bzero( linesizes, sizeof(linesizes) ); | |
255 | ||
256 | /* Get processor cache descriptor info using leaf 2. We don't use | |
257 | * this internally, but must publish it for KEXTs. | |
258 | */ | |
259 | _do_cpuid(2, cpuid_result); | |
260 | for (j = 0; j < 4; j++) { | |
261 | if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */ | |
262 | continue; | |
263 | ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j]; | |
264 | } | |
265 | /* first byte gives number of cpuid calls to get all descriptors */ | |
266 | for (i = 1; i < info_p->cache_info[0]; i++) { | |
267 | if (i*16 > sizeof(info_p->cache_info)) | |
268 | break; | |
269 | _do_cpuid(2, cpuid_result); | |
270 | for (j = 0; j < 4; j++) { | |
271 | if ((cpuid_result[j] >> 31) == 1) | |
272 | continue; | |
273 | ((uint32_t *) info_p->cache_info)[4*i+j] = | |
274 | cpuid_result[j]; | |
275 | } | |
276 | } | |
277 | ||
278 | /* | |
279 | * Get cache info using leaf 4, the "deterministic cache parameters." | |
280 | * Most processors Mac OS X supports implement this flavor of CPUID. | |
281 | * Loop over each cache on the processor. | |
282 | */ | |
283 | _do_cpuid(0, cpuid_result); | |
284 | if (cpuid_result[eax] >= 4) | |
285 | cpuid_deterministic_supported = TRUE; | |
286 | ||
287 | for (index = 0; cpuid_deterministic_supported; index++) { | |
288 | cache_type_t type = Lnone; | |
289 | uint32_t cache_type; | |
290 | uint32_t cache_level; | |
291 | uint32_t cache_sharing; | |
292 | uint32_t cache_linesize; | |
293 | uint32_t cache_sets; | |
294 | uint32_t cache_associativity; | |
295 | uint32_t cache_size; | |
296 | uint32_t cache_partitions; | |
297 | uint32_t colors; | |
298 | ||
299 | reg[eax] = 4; /* cpuid request 4 */ | |
300 | reg[ecx] = index; /* index starting at 0 */ | |
301 | cpuid(reg); | |
302 | //kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]); | |
303 | cache_type = bitfield(reg[eax], 4, 0); | |
304 | if (cache_type == 0) | |
305 | break; /* no more caches */ | |
306 | cache_level = bitfield(reg[eax], 7, 5); | |
307 | cache_sharing = bitfield(reg[eax], 25, 14) + 1; | |
308 | info_p->cpuid_cores_per_package | |
309 | = bitfield(reg[eax], 31, 26) + 1; | |
310 | cache_linesize = bitfield(reg[ebx], 11, 0) + 1; | |
311 | cache_partitions = bitfield(reg[ebx], 21, 12) + 1; | |
312 | cache_associativity = bitfield(reg[ebx], 31, 22) + 1; | |
313 | cache_sets = bitfield(reg[ecx], 31, 0) + 1; | |
314 | ||
315 | /* Map type/levels returned by CPUID into cache_type_t */ | |
316 | switch (cache_level) { | |
317 | case 1: | |
318 | type = cache_type == 1 ? L1D : | |
319 | cache_type == 2 ? L1I : | |
320 | Lnone; | |
321 | break; | |
322 | case 2: | |
323 | type = cache_type == 3 ? L2U : | |
324 | Lnone; | |
325 | break; | |
326 | case 3: | |
327 | type = cache_type == 3 ? L3U : | |
328 | Lnone; | |
329 | break; | |
330 | default: | |
331 | type = Lnone; | |
332 | } | |
333 | ||
334 | /* The total size of a cache is: | |
335 | * ( linesize * sets * associativity * partitions ) | |
336 | */ | |
337 | if (type != Lnone) { | |
338 | cache_size = cache_linesize * cache_sets * | |
339 | cache_associativity * cache_partitions; | |
340 | info_p->cache_size[type] = cache_size; | |
341 | info_p->cache_sharing[type] = cache_sharing; | |
342 | info_p->cache_partitions[type] = cache_partitions; | |
343 | linesizes[type] = cache_linesize; | |
344 | ||
345 | /* Compute the number of page colors for this cache, | |
346 | * which is: | |
347 | * ( linesize * sets ) / page_size | |
348 | * | |
349 | * To help visualize this, consider two views of a | |
350 | * physical address. To the cache, it is composed | |
351 | * of a line offset, a set selector, and a tag. | |
352 | * To VM, it is composed of a page offset, a page | |
353 | * color, and other bits in the pageframe number: | |
354 | * | |
355 | * +-----------------+---------+--------+ | |
356 | * cache: | tag | set | offset | | |
357 | * +-----------------+---------+--------+ | |
358 | * | |
359 | * +-----------------+-------+----------+ | |
360 | * VM: | don't care | color | pg offset| | |
361 | * +-----------------+-------+----------+ | |
362 | * | |
363 | * The color is those bits in (set+offset) not covered | |
364 | * by the page offset. | |
365 | */ | |
366 | colors = ( cache_linesize * cache_sets ) >> 12; | |
367 | ||
368 | if ( colors > vm_cache_geometry_colors ) | |
369 | vm_cache_geometry_colors = colors; | |
370 | } | |
371 | } | |
372 | ||
373 | /* | |
374 | * If deterministic cache parameters are not available, use | |
375 | * something else | |
376 | */ | |
377 | if (info_p->cpuid_cores_per_package == 0) { | |
378 | info_p->cpuid_cores_per_package = 1; | |
379 | ||
380 | /* cpuid define in 1024 quantities */ | |
381 | info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024; | |
382 | info_p->cache_sharing[L2U] = 1; | |
383 | info_p->cache_partitions[L2U] = 1; | |
384 | ||
385 | linesizes[L2U] = info_p->cpuid_cache_linesize; | |
386 | } | |
387 | ||
388 | /* | |
389 | * What linesize to publish? We use the L2 linesize if any, | |
390 | * else the L1D. | |
391 | */ | |
392 | if ( linesizes[L2U] ) | |
393 | info_p->cache_linesize = linesizes[L2U]; | |
394 | else if (linesizes[L1D]) | |
395 | info_p->cache_linesize = linesizes[L1D]; | |
396 | else panic("no linesize"); | |
397 | ||
398 | /* | |
399 | * Extract and publish TLB information from Leaf 2 descriptors. | |
400 | */ | |
401 | for (i = 1; i < sizeof(info_p->cache_info); i++) { | |
402 | cpuid_cache_descriptor_t *descp; | |
403 | int id; | |
404 | int level; | |
405 | int page; | |
406 | ||
407 | descp = cpuid_leaf2_find(info_p->cache_info[i]); | |
408 | if (descp == NULL) | |
409 | continue; | |
410 | ||
411 | switch (descp->type) { | |
412 | case TLB: | |
413 | page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE; | |
414 | /* determine I or D: */ | |
415 | switch (descp->level) { | |
416 | case INST: | |
417 | id = TLB_INST; | |
418 | break; | |
419 | case DATA: | |
420 | case DATA0: | |
421 | case DATA1: | |
422 | id = TLB_DATA; | |
423 | break; | |
424 | default: | |
425 | continue; | |
426 | } | |
427 | /* determine level: */ | |
428 | switch (descp->level) { | |
429 | case DATA1: | |
430 | level = 1; | |
431 | break; | |
432 | default: | |
433 | level = 0; | |
434 | } | |
435 | info_p->cpuid_tlb[id][page][level] = descp->entries; | |
436 | break; | |
437 | case STLB: | |
438 | info_p->cpuid_stlb = descp->entries; | |
439 | } | |
440 | } | |
441 | } | |
442 | ||
443 | static void | |
444 | cpuid_set_generic_info(i386_cpu_info_t *info_p) | |
445 | { | |
446 | uint32_t cpuid_reg[4]; | |
447 | char str[128], *p; | |
448 | ||
449 | /* do cpuid 0 to get vendor */ | |
450 | _do_cpuid(0, cpuid_reg); | |
451 | info_p->cpuid_max_basic = cpuid_reg[eax]; | |
452 | bcopy((char *)&cpuid_reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */ | |
453 | bcopy((char *)&cpuid_reg[ecx], &info_p->cpuid_vendor[8], 4); | |
454 | bcopy((char *)&cpuid_reg[edx], &info_p->cpuid_vendor[4], 4); | |
455 | info_p->cpuid_vendor[12] = 0; | |
456 | ||
457 | /* get extended cpuid results */ | |
458 | _do_cpuid(0x80000000, cpuid_reg); | |
459 | info_p->cpuid_max_ext = cpuid_reg[eax]; | |
460 | ||
461 | /* check to see if we can get brand string */ | |
462 | if (info_p->cpuid_max_ext >= 0x80000004) { | |
463 | /* | |
464 | * The brand string 48 bytes (max), guaranteed to | |
465 | * be NUL terminated. | |
466 | */ | |
467 | _do_cpuid(0x80000002, cpuid_reg); | |
468 | bcopy((char *)cpuid_reg, &str[0], 16); | |
469 | _do_cpuid(0x80000003, cpuid_reg); | |
470 | bcopy((char *)cpuid_reg, &str[16], 16); | |
471 | _do_cpuid(0x80000004, cpuid_reg); | |
472 | bcopy((char *)cpuid_reg, &str[32], 16); | |
473 | for (p = str; *p != '\0'; p++) { | |
474 | if (*p != ' ') break; | |
475 | } | |
476 | strlcpy(info_p->cpuid_brand_string, | |
477 | p, sizeof(info_p->cpuid_brand_string)); | |
478 | ||
479 | if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN, | |
480 | min(sizeof(info_p->cpuid_brand_string), | |
481 | strlen(CPUID_STRING_UNKNOWN) + 1))) { | |
482 | /* | |
483 | * This string means we have a firmware-programmable brand string, | |
484 | * and the firmware couldn't figure out what sort of CPU we have. | |
485 | */ | |
486 | info_p->cpuid_brand_string[0] = '\0'; | |
487 | } | |
488 | } | |
489 | ||
490 | /* Get cache and addressing info. */ | |
491 | if (info_p->cpuid_max_ext >= 0x80000006) { | |
492 | _do_cpuid(0x80000006, cpuid_reg); | |
493 | info_p->cpuid_cache_linesize = bitfield(cpuid_reg[ecx], 7, 0); | |
494 | info_p->cpuid_cache_L2_associativity = | |
495 | bitfield(cpuid_reg[ecx],15,12); | |
496 | info_p->cpuid_cache_size = bitfield(cpuid_reg[ecx],31,16); | |
497 | _do_cpuid(0x80000008, cpuid_reg); | |
498 | info_p->cpuid_address_bits_physical = | |
499 | bitfield(cpuid_reg[eax], 7, 0); | |
500 | info_p->cpuid_address_bits_virtual = | |
501 | bitfield(cpuid_reg[eax],15, 8); | |
502 | } | |
503 | ||
504 | /* get processor signature and decode */ | |
505 | _do_cpuid(1, cpuid_reg); | |
506 | info_p->cpuid_signature = cpuid_reg[eax]; | |
507 | info_p->cpuid_stepping = bitfield(cpuid_reg[eax], 3, 0); | |
508 | info_p->cpuid_model = bitfield(cpuid_reg[eax], 7, 4); | |
509 | info_p->cpuid_family = bitfield(cpuid_reg[eax], 11, 8); | |
510 | info_p->cpuid_type = bitfield(cpuid_reg[eax], 13, 12); | |
511 | info_p->cpuid_extmodel = bitfield(cpuid_reg[eax], 19, 16); | |
512 | info_p->cpuid_extfamily = bitfield(cpuid_reg[eax], 27, 20); | |
513 | info_p->cpuid_brand = bitfield(cpuid_reg[ebx], 7, 0); | |
514 | info_p->cpuid_features = quad(cpuid_reg[ecx], cpuid_reg[edx]); | |
515 | ||
516 | /* Fold extensions into family/model */ | |
517 | if (info_p->cpuid_family == 0x0f) | |
518 | info_p->cpuid_family += info_p->cpuid_extfamily; | |
519 | if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06) | |
520 | info_p->cpuid_model += (info_p->cpuid_extmodel << 4); | |
521 | ||
522 | if (info_p->cpuid_features & CPUID_FEATURE_HTT) | |
523 | info_p->cpuid_logical_per_package = | |
524 | bitfield(cpuid_reg[ebx], 23, 16); | |
525 | else | |
526 | info_p->cpuid_logical_per_package = 1; | |
527 | ||
528 | if (info_p->cpuid_max_ext >= 0x80000001) { | |
529 | _do_cpuid(0x80000001, cpuid_reg); | |
530 | info_p->cpuid_extfeatures = | |
531 | quad(cpuid_reg[ecx], cpuid_reg[edx]); | |
532 | } | |
533 | ||
534 | /* Fold in the Invariant TSC feature bit, if present */ | |
535 | if (info_p->cpuid_max_ext >= 0x80000007) { | |
536 | _do_cpuid(0x80000007, cpuid_reg); | |
537 | info_p->cpuid_extfeatures |= | |
538 | cpuid_reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI; | |
539 | } | |
540 | ||
541 | /* Find the microcode version number a.k.a. signature a.k.a. BIOS ID */ | |
542 | info_p->cpuid_microcode_version = | |
543 | (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32); | |
544 | ||
545 | if (info_p->cpuid_model == CPUID_MODEL_NEHALEM) { | |
546 | /* | |
547 | * For Nehalem, find the number of enabled cores and threads | |
548 | * (which determines whether SMT/Hyperthreading is active). | |
549 | */ | |
550 | uint64_t msr_core_thread_count = rdmsr64(MSR_CORE_THREAD_COUNT); | |
551 | info_p->core_count = bitfield((uint32_t)msr_core_thread_count, 31, 16); | |
552 | info_p->thread_count = bitfield((uint32_t)msr_core_thread_count, 15, 0); | |
553 | } | |
554 | ||
555 | if (info_p->cpuid_max_basic >= 0x5) { | |
556 | /* | |
557 | * Extract the Monitor/Mwait Leaf info: | |
558 | */ | |
559 | _do_cpuid(5, cpuid_reg); | |
560 | info_p->cpuid_mwait_linesize_min = cpuid_reg[eax]; | |
561 | info_p->cpuid_mwait_linesize_max = cpuid_reg[ebx]; | |
562 | info_p->cpuid_mwait_extensions = cpuid_reg[ecx]; | |
563 | info_p->cpuid_mwait_sub_Cstates = cpuid_reg[edx]; | |
564 | } | |
565 | ||
566 | if (info_p->cpuid_max_basic >= 0x6) { | |
567 | /* | |
568 | * The thermal and Power Leaf: | |
569 | */ | |
570 | _do_cpuid(6, cpuid_reg); | |
571 | info_p->cpuid_thermal_sensor = | |
572 | bitfield(cpuid_reg[eax], 0, 0); | |
573 | info_p->cpuid_thermal_dynamic_acceleration = | |
574 | bitfield(cpuid_reg[eax], 1, 1); | |
575 | info_p->cpuid_thermal_thresholds = | |
576 | bitfield(cpuid_reg[ebx], 3, 0); | |
577 | info_p->cpuid_thermal_ACNT_MCNT = | |
578 | bitfield(cpuid_reg[ecx], 0, 0); | |
579 | } | |
580 | ||
581 | if (info_p->cpuid_max_basic >= 0xa) { | |
582 | /* | |
583 | * Architectural Performance Monitoring Leaf: | |
584 | */ | |
585 | _do_cpuid(0xa, cpuid_reg); | |
586 | info_p->cpuid_arch_perf_version = | |
587 | bitfield(cpuid_reg[eax], 7, 0); | |
588 | info_p->cpuid_arch_perf_number = | |
589 | bitfield(cpuid_reg[eax],15, 8); | |
590 | info_p->cpuid_arch_perf_width = | |
591 | bitfield(cpuid_reg[eax],23,16); | |
592 | info_p->cpuid_arch_perf_events_number = | |
593 | bitfield(cpuid_reg[eax],31,24); | |
594 | info_p->cpuid_arch_perf_events = | |
595 | cpuid_reg[ebx]; | |
596 | info_p->cpuid_arch_perf_fixed_number = | |
597 | bitfield(cpuid_reg[edx], 4, 0); | |
598 | info_p->cpuid_arch_perf_fixed_width = | |
599 | bitfield(cpuid_reg[edx],12, 5); | |
600 | } | |
601 | ||
602 | return; | |
603 | } | |
604 | ||
605 | void | |
606 | cpuid_set_info(void) | |
607 | { | |
608 | bzero((void *)&cpuid_cpu_info, sizeof(cpuid_cpu_info)); | |
609 | ||
610 | cpuid_set_generic_info(&cpuid_cpu_info); | |
611 | ||
612 | /* verify we are running on a supported CPU */ | |
613 | if ((strncmp(CPUID_VID_INTEL, cpuid_cpu_info.cpuid_vendor, | |
614 | min(strlen(CPUID_STRING_UNKNOWN) + 1, | |
615 | sizeof(cpuid_cpu_info.cpuid_vendor)))) || | |
616 | (cpuid_cpu_info.cpuid_family != 6) || | |
617 | (cpuid_cpu_info.cpuid_model < 13)) | |
618 | panic("Unsupported CPU"); | |
619 | ||
620 | cpuid_cpu_info.cpuid_cpu_type = CPU_TYPE_X86; | |
621 | cpuid_cpu_info.cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1; | |
622 | ||
623 | cpuid_set_cache_info(&cpuid_cpu_info); | |
624 | ||
625 | if (cpuid_cpu_info.core_count == 0) { | |
626 | cpuid_cpu_info.core_count = | |
627 | cpuid_cpu_info.cpuid_cores_per_package; | |
628 | cpuid_cpu_info.thread_count = | |
629 | cpuid_cpu_info.cpuid_logical_per_package; | |
630 | } | |
631 | ||
632 | cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */ | |
633 | } | |
634 | ||
635 | static struct { | |
636 | uint64_t mask; | |
637 | const char *name; | |
638 | } feature_map[] = { | |
639 | {CPUID_FEATURE_FPU, "FPU",}, | |
640 | {CPUID_FEATURE_VME, "VME",}, | |
641 | {CPUID_FEATURE_DE, "DE",}, | |
642 | {CPUID_FEATURE_PSE, "PSE",}, | |
643 | {CPUID_FEATURE_TSC, "TSC",}, | |
644 | {CPUID_FEATURE_MSR, "MSR",}, | |
645 | {CPUID_FEATURE_PAE, "PAE",}, | |
646 | {CPUID_FEATURE_MCE, "MCE",}, | |
647 | {CPUID_FEATURE_CX8, "CX8",}, | |
648 | {CPUID_FEATURE_APIC, "APIC",}, | |
649 | {CPUID_FEATURE_SEP, "SEP",}, | |
650 | {CPUID_FEATURE_MTRR, "MTRR",}, | |
651 | {CPUID_FEATURE_PGE, "PGE",}, | |
652 | {CPUID_FEATURE_MCA, "MCA",}, | |
653 | {CPUID_FEATURE_CMOV, "CMOV",}, | |
654 | {CPUID_FEATURE_PAT, "PAT",}, | |
655 | {CPUID_FEATURE_PSE36, "PSE36",}, | |
656 | {CPUID_FEATURE_PSN, "PSN",}, | |
657 | {CPUID_FEATURE_CLFSH, "CLFSH",}, | |
658 | {CPUID_FEATURE_DS, "DS",}, | |
659 | {CPUID_FEATURE_ACPI, "ACPI",}, | |
660 | {CPUID_FEATURE_MMX, "MMX",}, | |
661 | {CPUID_FEATURE_FXSR, "FXSR",}, | |
662 | {CPUID_FEATURE_SSE, "SSE",}, | |
663 | {CPUID_FEATURE_SSE2, "SSE2",}, | |
664 | {CPUID_FEATURE_SS, "SS",}, | |
665 | {CPUID_FEATURE_HTT, "HTT",}, | |
666 | {CPUID_FEATURE_TM, "TM",}, | |
667 | {CPUID_FEATURE_SSE3, "SSE3"}, | |
668 | {CPUID_FEATURE_MONITOR, "MON"}, | |
669 | {CPUID_FEATURE_DSCPL, "DSCPL"}, | |
670 | {CPUID_FEATURE_VMX, "VMX"}, | |
671 | {CPUID_FEATURE_SMX, "SMX"}, | |
672 | {CPUID_FEATURE_EST, "EST"}, | |
673 | {CPUID_FEATURE_TM2, "TM2"}, | |
674 | {CPUID_FEATURE_SSSE3, "SSSE3"}, | |
675 | {CPUID_FEATURE_CID, "CID"}, | |
676 | {CPUID_FEATURE_CX16, "CX16"}, | |
677 | {CPUID_FEATURE_xTPR, "TPR"}, | |
678 | {CPUID_FEATURE_PDCM, "PDCM"}, | |
679 | {CPUID_FEATURE_SSE4_1, "SSE4.1"}, | |
680 | {CPUID_FEATURE_SSE4_2, "SSE4.2"}, | |
681 | {CPUID_FEATURE_xAPIC, "xAPIC"}, | |
682 | {CPUID_FEATURE_POPCNT, "POPCNT"}, | |
683 | {CPUID_FEATURE_VMM, "VMM"}, | |
684 | {0, 0} | |
685 | }, | |
686 | extfeature_map[] = { | |
687 | {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"}, | |
688 | {CPUID_EXTFEATURE_XD, "XD"}, | |
689 | {CPUID_EXTFEATURE_EM64T, "EM64T"}, | |
690 | {CPUID_EXTFEATURE_LAHF, "LAHF"}, | |
691 | {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"}, | |
692 | {CPUID_EXTFEATURE_TSCI, "TSCI"}, | |
693 | {0, 0} | |
694 | }; | |
695 | ||
696 | i386_cpu_info_t * | |
697 | cpuid_info(void) | |
698 | { | |
699 | /* Set-up the cpuid_info stucture lazily */ | |
700 | if (cpuid_cpu_infop == NULL) { | |
701 | cpuid_set_info(); | |
702 | cpuid_cpu_infop = &cpuid_cpu_info; | |
703 | } | |
704 | return cpuid_cpu_infop; | |
705 | } | |
706 | ||
707 | char * | |
708 | cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len) | |
709 | { | |
710 | size_t len = -1; | |
711 | char *p = buf; | |
712 | int i; | |
713 | ||
714 | for (i = 0; feature_map[i].mask != 0; i++) { | |
715 | if ((features & feature_map[i].mask) == 0) | |
716 | continue; | |
717 | if (len > 0) | |
718 | *p++ = ' '; | |
719 | len = min(strlen(feature_map[i].name), (size_t) ((buf_len-1) - (p-buf))); | |
720 | if (len == 0) | |
721 | break; | |
722 | bcopy(feature_map[i].name, p, len); | |
723 | p += len; | |
724 | } | |
725 | *p = '\0'; | |
726 | return buf; | |
727 | } | |
728 | ||
729 | char * | |
730 | cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len) | |
731 | { | |
732 | size_t len = -1; | |
733 | char *p = buf; | |
734 | int i; | |
735 | ||
736 | for (i = 0; extfeature_map[i].mask != 0; i++) { | |
737 | if ((extfeatures & extfeature_map[i].mask) == 0) | |
738 | continue; | |
739 | if (len > 0) | |
740 | *p++ = ' '; | |
741 | len = min(strlen(extfeature_map[i].name), (size_t) ((buf_len-1)-(p-buf))); | |
742 | if (len == 0) | |
743 | break; | |
744 | bcopy(extfeature_map[i].name, p, len); | |
745 | p += len; | |
746 | } | |
747 | *p = '\0'; | |
748 | return buf; | |
749 | } | |
750 | ||
751 | ||
752 | void | |
753 | cpuid_feature_display( | |
754 | const char *header) | |
755 | { | |
756 | char buf[256]; | |
757 | ||
758 | kprintf("%s: %s\n", header, | |
759 | cpuid_get_feature_names(cpuid_features(), | |
760 | buf, sizeof(buf))); | |
761 | if (cpuid_features() & CPUID_FEATURE_HTT) { | |
762 | #define s_if_plural(n) ((n > 1) ? "s" : "") | |
763 | kprintf(" HTT: %d core%s per package;" | |
764 | " %d logical cpu%s per package\n", | |
765 | cpuid_cpu_info.cpuid_cores_per_package, | |
766 | s_if_plural(cpuid_cpu_info.cpuid_cores_per_package), | |
767 | cpuid_cpu_info.cpuid_logical_per_package, | |
768 | s_if_plural(cpuid_cpu_info.cpuid_logical_per_package)); | |
769 | } | |
770 | } | |
771 | ||
772 | void | |
773 | cpuid_extfeature_display( | |
774 | const char *header) | |
775 | { | |
776 | char buf[256]; | |
777 | ||
778 | kprintf("%s: %s\n", header, | |
779 | cpuid_get_extfeature_names(cpuid_extfeatures(), | |
780 | buf, sizeof(buf))); | |
781 | } | |
782 | ||
783 | void | |
784 | cpuid_cpu_display( | |
785 | const char *header) | |
786 | { | |
787 | if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') { | |
788 | kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string); | |
789 | } | |
790 | } | |
791 | ||
792 | unsigned int | |
793 | cpuid_family(void) | |
794 | { | |
795 | return cpuid_info()->cpuid_family; | |
796 | } | |
797 | ||
798 | cpu_type_t | |
799 | cpuid_cputype(void) | |
800 | { | |
801 | return cpuid_info()->cpuid_cpu_type; | |
802 | } | |
803 | ||
804 | cpu_subtype_t | |
805 | cpuid_cpusubtype(void) | |
806 | { | |
807 | return cpuid_info()->cpuid_cpu_subtype; | |
808 | } | |
809 | ||
810 | uint64_t | |
811 | cpuid_features(void) | |
812 | { | |
813 | static int checked = 0; | |
814 | char fpu_arg[20] = { 0 }; | |
815 | ||
816 | (void) cpuid_info(); | |
817 | if (!checked) { | |
818 | /* check for boot-time fpu limitations */ | |
819 | if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) { | |
820 | printf("limiting fpu features to: %s\n", fpu_arg); | |
821 | if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) { | |
822 | printf("no sse or sse2\n"); | |
823 | cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR); | |
824 | } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) { | |
825 | printf("no sse2\n"); | |
826 | cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2); | |
827 | } | |
828 | } | |
829 | checked = 1; | |
830 | } | |
831 | return cpuid_cpu_info.cpuid_features; | |
832 | } | |
833 | ||
834 | uint64_t | |
835 | cpuid_extfeatures(void) | |
836 | { | |
837 | return cpuid_info()->cpuid_extfeatures; | |
838 | } | |
839 | ||
840 | ||
841 | #if MACH_KDB | |
842 | ||
843 | /* | |
844 | * Display the cpuid | |
845 | * * | |
846 | * cp | |
847 | */ | |
848 | void | |
849 | db_cpuid(__unused db_expr_t addr, | |
850 | __unused int have_addr, | |
851 | __unused db_expr_t count, | |
852 | __unused char *modif) | |
853 | { | |
854 | ||
855 | uint32_t i, mid; | |
856 | uint32_t cpid[4]; | |
857 | ||
858 | do_cpuid(0, cpid); /* Get the first cpuid which is the number of | |
859 | * basic ids */ | |
860 | db_printf("%08X - %08X %08X %08X %08X\n", | |
861 | 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
862 | ||
863 | mid = cpid[eax]; /* Set the number */ | |
864 | for (i = 1; i <= mid; i++) { /* Dump 'em out */ | |
865 | do_cpuid(i, cpid); /* Get the next */ | |
866 | db_printf("%08X - %08X %08X %08X %08X\n", | |
867 | i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
868 | } | |
869 | db_printf("\n"); | |
870 | ||
871 | do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which | |
872 | * is the number of extended ids */ | |
873 | db_printf("%08X - %08X %08X %08X %08X\n", | |
874 | 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
875 | ||
876 | mid = cpid[eax]; /* Set the number */ | |
877 | for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */ | |
878 | do_cpuid(i, cpid); /* Get the next */ | |
879 | db_printf("%08X - %08X %08X %08X %08X\n", | |
880 | i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
881 | } | |
882 | } | |
883 | ||
884 | #endif |