]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* @(#)hfs_readwrite.c 1.0 | |
29 | * | |
30 | * (c) 1998-2001 Apple Computer, Inc. All Rights Reserved | |
31 | * | |
32 | * hfs_readwrite.c -- vnode operations to deal with reading and writing files. | |
33 | * | |
34 | */ | |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/systm.h> | |
38 | #include <sys/resourcevar.h> | |
39 | #include <sys/kernel.h> | |
40 | #include <sys/fcntl.h> | |
41 | #include <sys/filedesc.h> | |
42 | #include <sys/stat.h> | |
43 | #include <sys/buf.h> | |
44 | #include <sys/proc.h> | |
45 | #include <sys/kauth.h> | |
46 | #include <sys/vnode.h> | |
47 | #include <sys/vnode_internal.h> | |
48 | #include <sys/uio.h> | |
49 | #include <sys/vfs_context.h> | |
50 | #include <sys/fsevents.h> | |
51 | #include <kern/kalloc.h> | |
52 | #include <sys/disk.h> | |
53 | #include <sys/sysctl.h> | |
54 | #include <sys/fsctl.h> | |
55 | ||
56 | #include <miscfs/specfs/specdev.h> | |
57 | ||
58 | #include <sys/ubc.h> | |
59 | #include <sys/ubc_internal.h> | |
60 | ||
61 | #include <vm/vm_pageout.h> | |
62 | #include <vm/vm_kern.h> | |
63 | ||
64 | #include <sys/kdebug.h> | |
65 | ||
66 | #include "hfs.h" | |
67 | #include "hfs_attrlist.h" | |
68 | #include "hfs_endian.h" | |
69 | #include "hfs_fsctl.h" | |
70 | #include "hfs_quota.h" | |
71 | #include "hfscommon/headers/FileMgrInternal.h" | |
72 | #include "hfscommon/headers/BTreesInternal.h" | |
73 | #include "hfs_cnode.h" | |
74 | #include "hfs_dbg.h" | |
75 | ||
76 | #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2))) | |
77 | ||
78 | enum { | |
79 | MAXHFSFILESIZE = 0x7FFFFFFF /* this needs to go in the mount structure */ | |
80 | }; | |
81 | ||
82 | /* from bsd/hfs/hfs_vfsops.c */ | |
83 | extern int hfs_vfs_vget (struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context); | |
84 | ||
85 | static int hfs_clonelink(struct vnode *, int, kauth_cred_t, struct proc *); | |
86 | static int hfs_clonefile(struct vnode *, int, int, int); | |
87 | static int hfs_clonesysfile(struct vnode *, int, int, int, kauth_cred_t, struct proc *); | |
88 | static int hfs_minorupdate(struct vnode *vp); | |
89 | static int do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skip, vfs_context_t context); | |
90 | ||
91 | ||
92 | int flush_cache_on_write = 0; | |
93 | SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files"); | |
94 | ||
95 | ||
96 | /* | |
97 | * Read data from a file. | |
98 | */ | |
99 | int | |
100 | hfs_vnop_read(struct vnop_read_args *ap) | |
101 | { | |
102 | uio_t uio = ap->a_uio; | |
103 | struct vnode *vp = ap->a_vp; | |
104 | struct cnode *cp; | |
105 | struct filefork *fp; | |
106 | struct hfsmount *hfsmp; | |
107 | off_t filesize; | |
108 | off_t filebytes; | |
109 | off_t start_resid = uio_resid(uio); | |
110 | off_t offset = uio_offset(uio); | |
111 | int retval = 0; | |
112 | ||
113 | /* Preflight checks */ | |
114 | if (!vnode_isreg(vp)) { | |
115 | /* can only read regular files */ | |
116 | if (vnode_isdir(vp)) | |
117 | return (EISDIR); | |
118 | else | |
119 | return (EPERM); | |
120 | } | |
121 | if (start_resid == 0) | |
122 | return (0); /* Nothing left to do */ | |
123 | if (offset < 0) | |
124 | return (EINVAL); /* cant read from a negative offset */ | |
125 | ||
126 | #if HFS_COMPRESSION | |
127 | if (VNODE_IS_RSRC(vp)) { | |
128 | if (hfs_hides_rsrc(ap->a_context, VTOC(vp), 1)) { /* 1 == don't take the cnode lock */ | |
129 | return 0; | |
130 | } | |
131 | /* otherwise read the resource fork normally */ | |
132 | } else { | |
133 | int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ | |
134 | if (compressed) { | |
135 | retval = decmpfs_read_compressed(ap, &compressed, VTOCMP(vp)); | |
136 | if (compressed) { | |
137 | if (retval == 0) { | |
138 | /* successful read, update the access time */ | |
139 | VTOC(vp)->c_touch_acctime = TRUE; | |
140 | ||
141 | /* compressed files are not hot file candidates */ | |
142 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
143 | VTOF(vp)->ff_bytesread = 0; | |
144 | } | |
145 | } | |
146 | return retval; | |
147 | } | |
148 | /* otherwise the file was converted back to a regular file while we were reading it */ | |
149 | retval = 0; | |
150 | } | |
151 | } | |
152 | #endif /* HFS_COMPRESSION */ | |
153 | ||
154 | cp = VTOC(vp); | |
155 | fp = VTOF(vp); | |
156 | hfsmp = VTOHFS(vp); | |
157 | ||
158 | /* Protect against a size change. */ | |
159 | hfs_lock_truncate(cp, 0); | |
160 | ||
161 | filesize = fp->ff_size; | |
162 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; | |
163 | if (offset > filesize) { | |
164 | if ((hfsmp->hfs_flags & HFS_STANDARD) && | |
165 | (offset > (off_t)MAXHFSFILESIZE)) { | |
166 | retval = EFBIG; | |
167 | } | |
168 | goto exit; | |
169 | } | |
170 | ||
171 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_START, | |
172 | (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); | |
173 | ||
174 | retval = cluster_read(vp, uio, filesize, ap->a_ioflag); | |
175 | ||
176 | cp->c_touch_acctime = TRUE; | |
177 | ||
178 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_END, | |
179 | (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); | |
180 | ||
181 | /* | |
182 | * Keep track blocks read | |
183 | */ | |
184 | if (hfsmp->hfc_stage == HFC_RECORDING && retval == 0) { | |
185 | int took_cnode_lock = 0; | |
186 | off_t bytesread; | |
187 | ||
188 | bytesread = start_resid - uio_resid(uio); | |
189 | ||
190 | /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ | |
191 | if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff) { | |
192 | hfs_lock(cp, HFS_FORCE_LOCK); | |
193 | took_cnode_lock = 1; | |
194 | } | |
195 | /* | |
196 | * If this file hasn't been seen since the start of | |
197 | * the current sampling period then start over. | |
198 | */ | |
199 | if (cp->c_atime < hfsmp->hfc_timebase) { | |
200 | struct timeval tv; | |
201 | ||
202 | fp->ff_bytesread = bytesread; | |
203 | microtime(&tv); | |
204 | cp->c_atime = tv.tv_sec; | |
205 | } else { | |
206 | fp->ff_bytesread += bytesread; | |
207 | } | |
208 | if (took_cnode_lock) | |
209 | hfs_unlock(cp); | |
210 | } | |
211 | exit: | |
212 | hfs_unlock_truncate(cp, 0); | |
213 | return (retval); | |
214 | } | |
215 | ||
216 | /* | |
217 | * Write data to a file. | |
218 | */ | |
219 | int | |
220 | hfs_vnop_write(struct vnop_write_args *ap) | |
221 | { | |
222 | uio_t uio = ap->a_uio; | |
223 | struct vnode *vp = ap->a_vp; | |
224 | struct cnode *cp; | |
225 | struct filefork *fp; | |
226 | struct hfsmount *hfsmp; | |
227 | kauth_cred_t cred = NULL; | |
228 | off_t origFileSize; | |
229 | off_t writelimit; | |
230 | off_t bytesToAdd = 0; | |
231 | off_t actualBytesAdded; | |
232 | off_t filebytes; | |
233 | off_t offset; | |
234 | ssize_t resid; | |
235 | int eflags; | |
236 | int ioflag = ap->a_ioflag; | |
237 | int retval = 0; | |
238 | int lockflags; | |
239 | int cnode_locked = 0; | |
240 | int partialwrite = 0; | |
241 | int exclusive_lock = 0; | |
242 | ||
243 | #if HFS_COMPRESSION | |
244 | if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ | |
245 | int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); | |
246 | switch(state) { | |
247 | case FILE_IS_COMPRESSED: | |
248 | return EACCES; | |
249 | case FILE_IS_CONVERTING: | |
250 | /* if FILE_IS_CONVERTING, we allow writes */ | |
251 | break; | |
252 | default: | |
253 | printf("invalid state %d for compressed file\n", state); | |
254 | /* fall through */ | |
255 | } | |
256 | } | |
257 | #endif | |
258 | ||
259 | // LP64todo - fix this! uio_resid may be 64-bit value | |
260 | resid = uio_resid(uio); | |
261 | offset = uio_offset(uio); | |
262 | ||
263 | if (ioflag & IO_APPEND) { | |
264 | exclusive_lock = 1; | |
265 | } | |
266 | ||
267 | if (offset < 0) | |
268 | return (EINVAL); | |
269 | if (resid == 0) | |
270 | return (E_NONE); | |
271 | if (!vnode_isreg(vp)) | |
272 | return (EPERM); /* Can only write regular files */ | |
273 | ||
274 | cp = VTOC(vp); | |
275 | fp = VTOF(vp); | |
276 | hfsmp = VTOHFS(vp); | |
277 | ||
278 | eflags = kEFDeferMask; /* defer file block allocations */ | |
279 | #ifdef HFS_SPARSE_DEV | |
280 | /* | |
281 | * When the underlying device is sparse and space | |
282 | * is low (< 8MB), stop doing delayed allocations | |
283 | * and begin doing synchronous I/O. | |
284 | */ | |
285 | if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && | |
286 | (hfs_freeblks(hfsmp, 0) < 2048)) { | |
287 | eflags &= ~kEFDeferMask; | |
288 | ioflag |= IO_SYNC; | |
289 | } | |
290 | #endif /* HFS_SPARSE_DEV */ | |
291 | ||
292 | again: | |
293 | /* Protect against a size change. */ | |
294 | hfs_lock_truncate(cp, exclusive_lock); | |
295 | ||
296 | if (ioflag & IO_APPEND) { | |
297 | uio_setoffset(uio, fp->ff_size); | |
298 | offset = fp->ff_size; | |
299 | } | |
300 | if ((cp->c_flags & APPEND) && offset != fp->ff_size) { | |
301 | retval = EPERM; | |
302 | goto exit; | |
303 | } | |
304 | ||
305 | origFileSize = fp->ff_size; | |
306 | writelimit = offset + resid; | |
307 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; | |
308 | ||
309 | /* If the truncate lock is shared, and if we either have virtual | |
310 | * blocks or will need to extend the file, upgrade the truncate | |
311 | * to exclusive lock. If upgrade fails, we lose the lock and | |
312 | * have to get exclusive lock again. Note that we want to | |
313 | * grab the truncate lock exclusive even if we're not allocating new blocks | |
314 | * because we could still be growing past the LEOF. | |
315 | */ | |
316 | if ((exclusive_lock == 0) && | |
317 | ((fp->ff_unallocblocks != 0) || (writelimit > origFileSize))) { | |
318 | exclusive_lock = 1; | |
319 | /* Lock upgrade failed and we lost our shared lock, try again */ | |
320 | if (lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock) == FALSE) { | |
321 | goto again; | |
322 | } | |
323 | } | |
324 | ||
325 | if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) { | |
326 | goto exit; | |
327 | } | |
328 | cnode_locked = 1; | |
329 | ||
330 | if (!exclusive_lock) { | |
331 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_START, | |
332 | (int)offset, uio_resid(uio), (int)fp->ff_size, | |
333 | (int)filebytes, 0); | |
334 | } | |
335 | ||
336 | /* Check if we do not need to extend the file */ | |
337 | if (writelimit <= filebytes) { | |
338 | goto sizeok; | |
339 | } | |
340 | ||
341 | cred = vfs_context_ucred(ap->a_context); | |
342 | bytesToAdd = writelimit - filebytes; | |
343 | ||
344 | #if QUOTA | |
345 | retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, hfsmp->blockSize)), | |
346 | cred, 0); | |
347 | if (retval) | |
348 | goto exit; | |
349 | #endif /* QUOTA */ | |
350 | ||
351 | if (hfs_start_transaction(hfsmp) != 0) { | |
352 | retval = EINVAL; | |
353 | goto exit; | |
354 | } | |
355 | ||
356 | while (writelimit > filebytes) { | |
357 | bytesToAdd = writelimit - filebytes; | |
358 | if (cred && suser(cred, NULL) != 0) | |
359 | eflags |= kEFReserveMask; | |
360 | ||
361 | /* Protect extents b-tree and allocation bitmap */ | |
362 | lockflags = SFL_BITMAP; | |
363 | if (overflow_extents(fp)) | |
364 | lockflags |= SFL_EXTENTS; | |
365 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
366 | ||
367 | /* Files that are changing size are not hot file candidates. */ | |
368 | if (hfsmp->hfc_stage == HFC_RECORDING) { | |
369 | fp->ff_bytesread = 0; | |
370 | } | |
371 | retval = MacToVFSError(ExtendFileC (hfsmp, (FCB*)fp, bytesToAdd, | |
372 | 0, eflags, &actualBytesAdded)); | |
373 | ||
374 | hfs_systemfile_unlock(hfsmp, lockflags); | |
375 | ||
376 | if ((actualBytesAdded == 0) && (retval == E_NONE)) | |
377 | retval = ENOSPC; | |
378 | if (retval != E_NONE) | |
379 | break; | |
380 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; | |
381 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_NONE, | |
382 | (int)offset, uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); | |
383 | } | |
384 | (void) hfs_update(vp, TRUE); | |
385 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
386 | (void) hfs_end_transaction(hfsmp); | |
387 | ||
388 | /* | |
389 | * If we didn't grow the file enough try a partial write. | |
390 | * POSIX expects this behavior. | |
391 | */ | |
392 | if ((retval == ENOSPC) && (filebytes > offset)) { | |
393 | retval = 0; | |
394 | partialwrite = 1; | |
395 | uio_setresid(uio, (uio_resid(uio) - bytesToAdd)); | |
396 | resid -= bytesToAdd; | |
397 | writelimit = filebytes; | |
398 | } | |
399 | sizeok: | |
400 | if (retval == E_NONE) { | |
401 | off_t filesize; | |
402 | off_t zero_off; | |
403 | off_t tail_off; | |
404 | off_t inval_start; | |
405 | off_t inval_end; | |
406 | off_t io_start; | |
407 | int lflag; | |
408 | struct rl_entry *invalid_range; | |
409 | ||
410 | if (writelimit > fp->ff_size) | |
411 | filesize = writelimit; | |
412 | else | |
413 | filesize = fp->ff_size; | |
414 | ||
415 | lflag = ioflag & ~(IO_TAILZEROFILL | IO_HEADZEROFILL | IO_NOZEROVALID | IO_NOZERODIRTY); | |
416 | ||
417 | if (offset <= fp->ff_size) { | |
418 | zero_off = offset & ~PAGE_MASK_64; | |
419 | ||
420 | /* Check to see whether the area between the zero_offset and the start | |
421 | of the transfer to see whether is invalid and should be zero-filled | |
422 | as part of the transfer: | |
423 | */ | |
424 | if (offset > zero_off) { | |
425 | if (rl_scan(&fp->ff_invalidranges, zero_off, offset - 1, &invalid_range) != RL_NOOVERLAP) | |
426 | lflag |= IO_HEADZEROFILL; | |
427 | } | |
428 | } else { | |
429 | off_t eof_page_base = fp->ff_size & ~PAGE_MASK_64; | |
430 | ||
431 | /* The bytes between fp->ff_size and uio->uio_offset must never be | |
432 | read without being zeroed. The current last block is filled with zeroes | |
433 | if it holds valid data but in all cases merely do a little bookkeeping | |
434 | to track the area from the end of the current last page to the start of | |
435 | the area actually written. For the same reason only the bytes up to the | |
436 | start of the page where this write will start is invalidated; any remainder | |
437 | before uio->uio_offset is explicitly zeroed as part of the cluster_write. | |
438 | ||
439 | Note that inval_start, the start of the page after the current EOF, | |
440 | may be past the start of the write, in which case the zeroing | |
441 | will be handled by the cluser_write of the actual data. | |
442 | */ | |
443 | inval_start = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; | |
444 | inval_end = offset & ~PAGE_MASK_64; | |
445 | zero_off = fp->ff_size; | |
446 | ||
447 | if ((fp->ff_size & PAGE_MASK_64) && | |
448 | (rl_scan(&fp->ff_invalidranges, | |
449 | eof_page_base, | |
450 | fp->ff_size - 1, | |
451 | &invalid_range) != RL_NOOVERLAP)) { | |
452 | /* The page containing the EOF is not valid, so the | |
453 | entire page must be made inaccessible now. If the write | |
454 | starts on a page beyond the page containing the eof | |
455 | (inval_end > eof_page_base), add the | |
456 | whole page to the range to be invalidated. Otherwise | |
457 | (i.e. if the write starts on the same page), zero-fill | |
458 | the entire page explicitly now: | |
459 | */ | |
460 | if (inval_end > eof_page_base) { | |
461 | inval_start = eof_page_base; | |
462 | } else { | |
463 | zero_off = eof_page_base; | |
464 | }; | |
465 | }; | |
466 | ||
467 | if (inval_start < inval_end) { | |
468 | struct timeval tv; | |
469 | /* There's some range of data that's going to be marked invalid */ | |
470 | ||
471 | if (zero_off < inval_start) { | |
472 | /* The pages between inval_start and inval_end are going to be invalidated, | |
473 | and the actual write will start on a page past inval_end. Now's the last | |
474 | chance to zero-fill the page containing the EOF: | |
475 | */ | |
476 | hfs_unlock(cp); | |
477 | cnode_locked = 0; | |
478 | retval = cluster_write(vp, (uio_t) 0, | |
479 | fp->ff_size, inval_start, | |
480 | zero_off, (off_t)0, | |
481 | lflag | IO_HEADZEROFILL | IO_NOZERODIRTY); | |
482 | hfs_lock(cp, HFS_FORCE_LOCK); | |
483 | cnode_locked = 1; | |
484 | if (retval) goto ioerr_exit; | |
485 | offset = uio_offset(uio); | |
486 | }; | |
487 | ||
488 | /* Mark the remaining area of the newly allocated space as invalid: */ | |
489 | rl_add(inval_start, inval_end - 1 , &fp->ff_invalidranges); | |
490 | microuptime(&tv); | |
491 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; | |
492 | zero_off = fp->ff_size = inval_end; | |
493 | }; | |
494 | ||
495 | if (offset > zero_off) lflag |= IO_HEADZEROFILL; | |
496 | }; | |
497 | ||
498 | /* Check to see whether the area between the end of the write and the end of | |
499 | the page it falls in is invalid and should be zero-filled as part of the transfer: | |
500 | */ | |
501 | tail_off = (writelimit + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; | |
502 | if (tail_off > filesize) tail_off = filesize; | |
503 | if (tail_off > writelimit) { | |
504 | if (rl_scan(&fp->ff_invalidranges, writelimit, tail_off - 1, &invalid_range) != RL_NOOVERLAP) { | |
505 | lflag |= IO_TAILZEROFILL; | |
506 | }; | |
507 | }; | |
508 | ||
509 | /* | |
510 | * if the write starts beyond the current EOF (possibly advanced in the | |
511 | * zeroing of the last block, above), then we'll zero fill from the current EOF | |
512 | * to where the write begins: | |
513 | * | |
514 | * NOTE: If (and ONLY if) the portion of the file about to be written is | |
515 | * before the current EOF it might be marked as invalid now and must be | |
516 | * made readable (removed from the invalid ranges) before cluster_write | |
517 | * tries to write it: | |
518 | */ | |
519 | io_start = (lflag & IO_HEADZEROFILL) ? zero_off : offset; | |
520 | if (io_start < fp->ff_size) { | |
521 | off_t io_end; | |
522 | ||
523 | io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; | |
524 | rl_remove(io_start, io_end - 1, &fp->ff_invalidranges); | |
525 | }; | |
526 | ||
527 | hfs_unlock(cp); | |
528 | cnode_locked = 0; | |
529 | ||
530 | /* | |
531 | * We need to tell UBC the fork's new size BEFORE calling | |
532 | * cluster_write, in case any of the new pages need to be | |
533 | * paged out before cluster_write completes (which does happen | |
534 | * in embedded systems due to extreme memory pressure). | |
535 | * Similarly, we need to tell hfs_vnop_pageout what the new EOF | |
536 | * will be, so that it can pass that on to cluster_pageout, and | |
537 | * allow those pageouts. | |
538 | * | |
539 | * We don't update ff_size yet since we don't want pageins to | |
540 | * be able to see uninitialized data between the old and new | |
541 | * EOF, until cluster_write has completed and initialized that | |
542 | * part of the file. | |
543 | * | |
544 | * The vnode pager relies on the file size last given to UBC via | |
545 | * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or | |
546 | * ff_size (whichever is larger). NOTE: ff_new_size is always | |
547 | * zero, unless we are extending the file via write. | |
548 | */ | |
549 | if (filesize > fp->ff_size) { | |
550 | fp->ff_new_size = filesize; | |
551 | ubc_setsize(vp, filesize); | |
552 | } | |
553 | retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off, | |
554 | tail_off, lflag | IO_NOZERODIRTY); | |
555 | if (retval) { | |
556 | fp->ff_new_size = 0; /* no longer extending; use ff_size */ | |
557 | if (filesize > origFileSize) { | |
558 | ubc_setsize(vp, origFileSize); | |
559 | } | |
560 | goto ioerr_exit; | |
561 | } | |
562 | ||
563 | if (filesize > origFileSize) { | |
564 | fp->ff_size = filesize; | |
565 | ||
566 | /* Files that are changing size are not hot file candidates. */ | |
567 | if (hfsmp->hfc_stage == HFC_RECORDING) { | |
568 | fp->ff_bytesread = 0; | |
569 | } | |
570 | } | |
571 | fp->ff_new_size = 0; /* ff_size now has the correct size */ | |
572 | ||
573 | /* If we wrote some bytes, then touch the change and mod times */ | |
574 | if (resid > uio_resid(uio)) { | |
575 | cp->c_touch_chgtime = TRUE; | |
576 | cp->c_touch_modtime = TRUE; | |
577 | } | |
578 | } | |
579 | if (partialwrite) { | |
580 | uio_setresid(uio, (uio_resid(uio) + bytesToAdd)); | |
581 | resid += bytesToAdd; | |
582 | } | |
583 | ||
584 | // XXXdbg - see radar 4871353 for more info | |
585 | { | |
586 | if (flush_cache_on_write && ((ioflag & IO_NOCACHE) || vnode_isnocache(vp))) { | |
587 | VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL); | |
588 | } | |
589 | } | |
590 | ||
591 | ioerr_exit: | |
592 | /* | |
593 | * If we successfully wrote any data, and we are not the superuser | |
594 | * we clear the setuid and setgid bits as a precaution against | |
595 | * tampering. | |
596 | */ | |
597 | if (cp->c_mode & (S_ISUID | S_ISGID)) { | |
598 | cred = vfs_context_ucred(ap->a_context); | |
599 | if (resid > uio_resid(uio) && cred && suser(cred, NULL)) { | |
600 | if (!cnode_locked) { | |
601 | hfs_lock(cp, HFS_FORCE_LOCK); | |
602 | cnode_locked = 1; | |
603 | } | |
604 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
605 | } | |
606 | } | |
607 | if (retval) { | |
608 | if (ioflag & IO_UNIT) { | |
609 | if (!cnode_locked) { | |
610 | hfs_lock(cp, HFS_FORCE_LOCK); | |
611 | cnode_locked = 1; | |
612 | } | |
613 | (void)hfs_truncate(vp, origFileSize, ioflag & IO_SYNC, | |
614 | 0, 0, ap->a_context); | |
615 | // LP64todo - fix this! resid needs to by user_ssize_t | |
616 | uio_setoffset(uio, (uio_offset(uio) - (resid - uio_resid(uio)))); | |
617 | uio_setresid(uio, resid); | |
618 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; | |
619 | } | |
620 | } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio))) { | |
621 | if (!cnode_locked) { | |
622 | hfs_lock(cp, HFS_FORCE_LOCK); | |
623 | cnode_locked = 1; | |
624 | } | |
625 | retval = hfs_update(vp, TRUE); | |
626 | } | |
627 | /* Updating vcbWrCnt doesn't need to be atomic. */ | |
628 | hfsmp->vcbWrCnt++; | |
629 | ||
630 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_END, | |
631 | (int)uio_offset(uio), uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); | |
632 | exit: | |
633 | if (cnode_locked) | |
634 | hfs_unlock(cp); | |
635 | hfs_unlock_truncate(cp, exclusive_lock); | |
636 | return (retval); | |
637 | } | |
638 | ||
639 | /* support for the "bulk-access" fcntl */ | |
640 | ||
641 | #define CACHE_LEVELS 16 | |
642 | #define NUM_CACHE_ENTRIES (64*16) | |
643 | #define PARENT_IDS_FLAG 0x100 | |
644 | ||
645 | struct access_cache { | |
646 | int numcached; | |
647 | int cachehits; /* these two for statistics gathering */ | |
648 | int lookups; | |
649 | unsigned int *acache; | |
650 | unsigned char *haveaccess; | |
651 | }; | |
652 | ||
653 | struct access_t { | |
654 | uid_t uid; /* IN: effective user id */ | |
655 | short flags; /* IN: access requested (i.e. R_OK) */ | |
656 | short num_groups; /* IN: number of groups user belongs to */ | |
657 | int num_files; /* IN: number of files to process */ | |
658 | int *file_ids; /* IN: array of file ids */ | |
659 | gid_t *groups; /* IN: array of groups */ | |
660 | short *access; /* OUT: access info for each file (0 for 'has access') */ | |
661 | } __attribute__((unavailable)); // this structure is for reference purposes only | |
662 | ||
663 | struct user32_access_t { | |
664 | uid_t uid; /* IN: effective user id */ | |
665 | short flags; /* IN: access requested (i.e. R_OK) */ | |
666 | short num_groups; /* IN: number of groups user belongs to */ | |
667 | int num_files; /* IN: number of files to process */ | |
668 | user32_addr_t file_ids; /* IN: array of file ids */ | |
669 | user32_addr_t groups; /* IN: array of groups */ | |
670 | user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
671 | }; | |
672 | ||
673 | struct user64_access_t { | |
674 | uid_t uid; /* IN: effective user id */ | |
675 | short flags; /* IN: access requested (i.e. R_OK) */ | |
676 | short num_groups; /* IN: number of groups user belongs to */ | |
677 | int num_files; /* IN: number of files to process */ | |
678 | user64_addr_t file_ids; /* IN: array of file ids */ | |
679 | user64_addr_t groups; /* IN: array of groups */ | |
680 | user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
681 | }; | |
682 | ||
683 | ||
684 | // these are the "extended" versions of the above structures | |
685 | // note that it is crucial that they be different sized than | |
686 | // the regular version | |
687 | struct ext_access_t { | |
688 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ | |
689 | uint32_t num_files; /* IN: number of files to process */ | |
690 | uint32_t map_size; /* IN: size of the bit map */ | |
691 | uint32_t *file_ids; /* IN: Array of file ids */ | |
692 | char *bitmap; /* OUT: hash-bitmap of interesting directory ids */ | |
693 | short *access; /* OUT: access info for each file (0 for 'has access') */ | |
694 | uint32_t num_parents; /* future use */ | |
695 | cnid_t *parents; /* future use */ | |
696 | } __attribute__((unavailable)); // this structure is for reference purposes only | |
697 | ||
698 | struct user32_ext_access_t { | |
699 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ | |
700 | uint32_t num_files; /* IN: number of files to process */ | |
701 | uint32_t map_size; /* IN: size of the bit map */ | |
702 | user32_addr_t file_ids; /* IN: Array of file ids */ | |
703 | user32_addr_t bitmap; /* OUT: hash-bitmap of interesting directory ids */ | |
704 | user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
705 | uint32_t num_parents; /* future use */ | |
706 | user32_addr_t parents; /* future use */ | |
707 | }; | |
708 | ||
709 | struct user64_ext_access_t { | |
710 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ | |
711 | uint32_t num_files; /* IN: number of files to process */ | |
712 | uint32_t map_size; /* IN: size of the bit map */ | |
713 | user64_addr_t file_ids; /* IN: array of file ids */ | |
714 | user64_addr_t bitmap; /* IN: array of groups */ | |
715 | user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
716 | uint32_t num_parents;/* future use */ | |
717 | user64_addr_t parents;/* future use */ | |
718 | }; | |
719 | ||
720 | ||
721 | /* | |
722 | * Perform a binary search for the given parent_id. Return value is | |
723 | * the index if there is a match. If no_match_indexp is non-NULL it | |
724 | * will be assigned with the index to insert the item (even if it was | |
725 | * not found). | |
726 | */ | |
727 | static int cache_binSearch(cnid_t *array, unsigned int hi, cnid_t parent_id, int *no_match_indexp) | |
728 | { | |
729 | int index=-1; | |
730 | unsigned int lo=0; | |
731 | ||
732 | do { | |
733 | unsigned int mid = ((hi - lo)/2) + lo; | |
734 | unsigned int this_id = array[mid]; | |
735 | ||
736 | if (parent_id == this_id) { | |
737 | hi = mid; | |
738 | break; | |
739 | } | |
740 | ||
741 | if (parent_id < this_id) { | |
742 | hi = mid; | |
743 | continue; | |
744 | } | |
745 | ||
746 | if (parent_id > this_id) { | |
747 | lo = mid + 1; | |
748 | continue; | |
749 | } | |
750 | } while(lo < hi); | |
751 | ||
752 | /* check if lo and hi converged on the match */ | |
753 | if (parent_id == array[hi]) { | |
754 | index = hi; | |
755 | } | |
756 | ||
757 | if (no_match_indexp) { | |
758 | *no_match_indexp = hi; | |
759 | } | |
760 | ||
761 | return index; | |
762 | } | |
763 | ||
764 | ||
765 | static int | |
766 | lookup_bucket(struct access_cache *cache, int *indexp, cnid_t parent_id) | |
767 | { | |
768 | unsigned int hi; | |
769 | int matches = 0; | |
770 | int index, no_match_index; | |
771 | ||
772 | if (cache->numcached == 0) { | |
773 | *indexp = 0; | |
774 | return 0; // table is empty, so insert at index=0 and report no match | |
775 | } | |
776 | ||
777 | if (cache->numcached > NUM_CACHE_ENTRIES) { | |
778 | /*printf("hfs: EGAD! numcached is %d... cut our losses and trim to %d\n", | |
779 | cache->numcached, NUM_CACHE_ENTRIES);*/ | |
780 | cache->numcached = NUM_CACHE_ENTRIES; | |
781 | } | |
782 | ||
783 | hi = cache->numcached - 1; | |
784 | ||
785 | index = cache_binSearch(cache->acache, hi, parent_id, &no_match_index); | |
786 | ||
787 | /* if no existing entry found, find index for new one */ | |
788 | if (index == -1) { | |
789 | index = no_match_index; | |
790 | matches = 0; | |
791 | } else { | |
792 | matches = 1; | |
793 | } | |
794 | ||
795 | *indexp = index; | |
796 | return matches; | |
797 | } | |
798 | ||
799 | /* | |
800 | * Add a node to the access_cache at the given index (or do a lookup first | |
801 | * to find the index if -1 is passed in). We currently do a replace rather | |
802 | * than an insert if the cache is full. | |
803 | */ | |
804 | static void | |
805 | add_node(struct access_cache *cache, int index, cnid_t nodeID, int access) | |
806 | { | |
807 | int lookup_index = -1; | |
808 | ||
809 | /* need to do a lookup first if -1 passed for index */ | |
810 | if (index == -1) { | |
811 | if (lookup_bucket(cache, &lookup_index, nodeID)) { | |
812 | if (cache->haveaccess[lookup_index] != access && cache->haveaccess[lookup_index] == ESRCH) { | |
813 | // only update an entry if the previous access was ESRCH (i.e. a scope checking error) | |
814 | cache->haveaccess[lookup_index] = access; | |
815 | } | |
816 | ||
817 | /* mission accomplished */ | |
818 | return; | |
819 | } else { | |
820 | index = lookup_index; | |
821 | } | |
822 | ||
823 | } | |
824 | ||
825 | /* if the cache is full, do a replace rather than an insert */ | |
826 | if (cache->numcached >= NUM_CACHE_ENTRIES) { | |
827 | //printf("hfs: cache is full (%d). replace at index %d\n", cache->numcached, index); | |
828 | cache->numcached = NUM_CACHE_ENTRIES-1; | |
829 | ||
830 | if (index > cache->numcached) { | |
831 | // printf("hfs: index %d pinned to %d\n", index, cache->numcached); | |
832 | index = cache->numcached; | |
833 | } | |
834 | } | |
835 | ||
836 | if (index < cache->numcached && index < NUM_CACHE_ENTRIES && nodeID > cache->acache[index]) { | |
837 | index++; | |
838 | } | |
839 | ||
840 | if (index >= 0 && index < cache->numcached) { | |
841 | /* only do bcopy if we're inserting */ | |
842 | bcopy( cache->acache+index, cache->acache+(index+1), (cache->numcached - index)*sizeof(int) ); | |
843 | bcopy( cache->haveaccess+index, cache->haveaccess+(index+1), (cache->numcached - index)*sizeof(unsigned char) ); | |
844 | } | |
845 | ||
846 | cache->acache[index] = nodeID; | |
847 | cache->haveaccess[index] = access; | |
848 | cache->numcached++; | |
849 | } | |
850 | ||
851 | ||
852 | struct cinfo { | |
853 | uid_t uid; | |
854 | gid_t gid; | |
855 | mode_t mode; | |
856 | cnid_t parentcnid; | |
857 | u_int16_t recflags; | |
858 | }; | |
859 | ||
860 | static int | |
861 | snoop_callback(const struct cat_desc *descp, const struct cat_attr *attrp, void * arg) | |
862 | { | |
863 | struct cinfo *cip = (struct cinfo *)arg; | |
864 | ||
865 | cip->uid = attrp->ca_uid; | |
866 | cip->gid = attrp->ca_gid; | |
867 | cip->mode = attrp->ca_mode; | |
868 | cip->parentcnid = descp->cd_parentcnid; | |
869 | cip->recflags = attrp->ca_recflags; | |
870 | ||
871 | return (0); | |
872 | } | |
873 | ||
874 | /* | |
875 | * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item | |
876 | * isn't incore, then go to the catalog. | |
877 | */ | |
878 | static int | |
879 | do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, cnid_t cnid, | |
880 | struct cnode *skip_cp, CatalogKey *keyp, struct cat_attr *cnattrp) | |
881 | { | |
882 | int error = 0; | |
883 | ||
884 | /* if this id matches the one the fsctl was called with, skip the lookup */ | |
885 | if (cnid == skip_cp->c_cnid) { | |
886 | cnattrp->ca_uid = skip_cp->c_uid; | |
887 | cnattrp->ca_gid = skip_cp->c_gid; | |
888 | cnattrp->ca_mode = skip_cp->c_mode; | |
889 | cnattrp->ca_recflags = skip_cp->c_attr.ca_recflags; | |
890 | keyp->hfsPlus.parentID = skip_cp->c_parentcnid; | |
891 | } else { | |
892 | struct cinfo c_info; | |
893 | ||
894 | /* otherwise, check the cnode hash incase the file/dir is incore */ | |
895 | if (hfs_chash_snoop(hfsmp, cnid, snoop_callback, &c_info) == 0) { | |
896 | cnattrp->ca_uid = c_info.uid; | |
897 | cnattrp->ca_gid = c_info.gid; | |
898 | cnattrp->ca_mode = c_info.mode; | |
899 | cnattrp->ca_recflags = c_info.recflags; | |
900 | keyp->hfsPlus.parentID = c_info.parentcnid; | |
901 | } else { | |
902 | int lockflags; | |
903 | ||
904 | lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); | |
905 | ||
906 | /* lookup this cnid in the catalog */ | |
907 | error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp); | |
908 | ||
909 | hfs_systemfile_unlock(hfsmp, lockflags); | |
910 | ||
911 | cache->lookups++; | |
912 | } | |
913 | } | |
914 | ||
915 | return (error); | |
916 | } | |
917 | ||
918 | ||
919 | /* | |
920 | * Compute whether we have access to the given directory (nodeID) and all its parents. Cache | |
921 | * up to CACHE_LEVELS as we progress towards the root. | |
922 | */ | |
923 | static int | |
924 | do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID, | |
925 | struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred, | |
926 | struct vfs_context *my_context, | |
927 | char *bitmap, | |
928 | uint32_t map_size, | |
929 | cnid_t* parents, | |
930 | uint32_t num_parents) | |
931 | { | |
932 | int myErr = 0; | |
933 | int myResult; | |
934 | HFSCatalogNodeID thisNodeID; | |
935 | unsigned int myPerms; | |
936 | struct cat_attr cnattr; | |
937 | int cache_index = -1, scope_index = -1, scope_idx_start = -1; | |
938 | CatalogKey catkey; | |
939 | ||
940 | int i = 0, ids_to_cache = 0; | |
941 | int parent_ids[CACHE_LEVELS]; | |
942 | ||
943 | thisNodeID = nodeID; | |
944 | while (thisNodeID >= kRootDirID) { | |
945 | myResult = 0; /* default to "no access" */ | |
946 | ||
947 | /* check the cache before resorting to hitting the catalog */ | |
948 | ||
949 | /* ASSUMPTION: access info of cached entries is "final"... i.e. no need | |
950 | * to look any further after hitting cached dir */ | |
951 | ||
952 | if (lookup_bucket(cache, &cache_index, thisNodeID)) { | |
953 | cache->cachehits++; | |
954 | myErr = cache->haveaccess[cache_index]; | |
955 | if (scope_index != -1) { | |
956 | if (myErr == ESRCH) { | |
957 | myErr = 0; | |
958 | } | |
959 | } else { | |
960 | scope_index = 0; // so we'll just use the cache result | |
961 | scope_idx_start = ids_to_cache; | |
962 | } | |
963 | myResult = (myErr == 0) ? 1 : 0; | |
964 | goto ExitThisRoutine; | |
965 | } | |
966 | ||
967 | ||
968 | if (parents) { | |
969 | int tmp; | |
970 | tmp = cache_binSearch(parents, num_parents-1, thisNodeID, NULL); | |
971 | if (scope_index == -1) | |
972 | scope_index = tmp; | |
973 | if (tmp != -1 && scope_idx_start == -1 && ids_to_cache < CACHE_LEVELS) { | |
974 | scope_idx_start = ids_to_cache; | |
975 | } | |
976 | } | |
977 | ||
978 | /* remember which parents we want to cache */ | |
979 | if (ids_to_cache < CACHE_LEVELS) { | |
980 | parent_ids[ids_to_cache] = thisNodeID; | |
981 | ids_to_cache++; | |
982 | } | |
983 | // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"... | |
984 | if (bitmap && map_size) { | |
985 | bitmap[(thisNodeID/8)%(map_size)]|=(1<<(thisNodeID&7)); | |
986 | } | |
987 | ||
988 | ||
989 | /* do the lookup (checks the cnode hash, then the catalog) */ | |
990 | myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr); | |
991 | if (myErr) { | |
992 | goto ExitThisRoutine; /* no access */ | |
993 | } | |
994 | ||
995 | /* Root always gets access. */ | |
996 | if (suser(myp_ucred, NULL) == 0) { | |
997 | thisNodeID = catkey.hfsPlus.parentID; | |
998 | myResult = 1; | |
999 | continue; | |
1000 | } | |
1001 | ||
1002 | // if the thing has acl's, do the full permission check | |
1003 | if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { | |
1004 | struct vnode *vp; | |
1005 | ||
1006 | /* get the vnode for this cnid */ | |
1007 | myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0); | |
1008 | if ( myErr ) { | |
1009 | myResult = 0; | |
1010 | goto ExitThisRoutine; | |
1011 | } | |
1012 | ||
1013 | thisNodeID = VTOC(vp)->c_parentcnid; | |
1014 | ||
1015 | hfs_unlock(VTOC(vp)); | |
1016 | ||
1017 | if (vnode_vtype(vp) == VDIR) { | |
1018 | myErr = vnode_authorize(vp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), my_context); | |
1019 | } else { | |
1020 | myErr = vnode_authorize(vp, NULL, KAUTH_VNODE_READ_DATA, my_context); | |
1021 | } | |
1022 | ||
1023 | vnode_put(vp); | |
1024 | if (myErr) { | |
1025 | myResult = 0; | |
1026 | goto ExitThisRoutine; | |
1027 | } | |
1028 | } else { | |
1029 | unsigned int flags; | |
1030 | ||
1031 | myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, | |
1032 | cnattr.ca_mode, hfsmp->hfs_mp, | |
1033 | myp_ucred, theProcPtr); | |
1034 | ||
1035 | if (cnattr.ca_mode & S_IFDIR) { | |
1036 | flags = R_OK | X_OK; | |
1037 | } else { | |
1038 | flags = R_OK; | |
1039 | } | |
1040 | if ( (myPerms & flags) != flags) { | |
1041 | myResult = 0; | |
1042 | myErr = EACCES; | |
1043 | goto ExitThisRoutine; /* no access */ | |
1044 | } | |
1045 | ||
1046 | /* up the hierarchy we go */ | |
1047 | thisNodeID = catkey.hfsPlus.parentID; | |
1048 | } | |
1049 | } | |
1050 | ||
1051 | /* if here, we have access to this node */ | |
1052 | myResult = 1; | |
1053 | ||
1054 | ExitThisRoutine: | |
1055 | if (parents && myErr == 0 && scope_index == -1) { | |
1056 | myErr = ESRCH; | |
1057 | } | |
1058 | ||
1059 | if (myErr) { | |
1060 | myResult = 0; | |
1061 | } | |
1062 | *err = myErr; | |
1063 | ||
1064 | /* cache the parent directory(ies) */ | |
1065 | for (i = 0; i < ids_to_cache; i++) { | |
1066 | if (myErr == 0 && parents && (scope_idx_start == -1 || i > scope_idx_start)) { | |
1067 | add_node(cache, -1, parent_ids[i], ESRCH); | |
1068 | } else { | |
1069 | add_node(cache, -1, parent_ids[i], myErr); | |
1070 | } | |
1071 | } | |
1072 | ||
1073 | return (myResult); | |
1074 | } | |
1075 | ||
1076 | static int | |
1077 | do_bulk_access_check(struct hfsmount *hfsmp, struct vnode *vp, | |
1078 | struct vnop_ioctl_args *ap, int arg_size, vfs_context_t context) | |
1079 | { | |
1080 | boolean_t is64bit; | |
1081 | ||
1082 | /* | |
1083 | * NOTE: on entry, the vnode is locked. Incase this vnode | |
1084 | * happens to be in our list of file_ids, we'll note it | |
1085 | * avoid calling hfs_chashget_nowait() on that id as that | |
1086 | * will cause a "locking against myself" panic. | |
1087 | */ | |
1088 | Boolean check_leaf = true; | |
1089 | ||
1090 | struct user64_ext_access_t *user_access_structp; | |
1091 | struct user64_ext_access_t tmp_user_access; | |
1092 | struct access_cache cache; | |
1093 | ||
1094 | int error = 0, prev_parent_check_ok=1; | |
1095 | unsigned int i; | |
1096 | ||
1097 | short flags; | |
1098 | unsigned int num_files = 0; | |
1099 | int map_size = 0; | |
1100 | int num_parents = 0; | |
1101 | int *file_ids=NULL; | |
1102 | short *access=NULL; | |
1103 | char *bitmap=NULL; | |
1104 | cnid_t *parents=NULL; | |
1105 | int leaf_index; | |
1106 | ||
1107 | cnid_t cnid; | |
1108 | cnid_t prevParent_cnid = 0; | |
1109 | unsigned int myPerms; | |
1110 | short myaccess = 0; | |
1111 | struct cat_attr cnattr; | |
1112 | CatalogKey catkey; | |
1113 | struct cnode *skip_cp = VTOC(vp); | |
1114 | kauth_cred_t cred = vfs_context_ucred(context); | |
1115 | proc_t p = vfs_context_proc(context); | |
1116 | ||
1117 | is64bit = proc_is64bit(p); | |
1118 | ||
1119 | /* initialize the local cache and buffers */ | |
1120 | cache.numcached = 0; | |
1121 | cache.cachehits = 0; | |
1122 | cache.lookups = 0; | |
1123 | cache.acache = NULL; | |
1124 | cache.haveaccess = NULL; | |
1125 | ||
1126 | /* struct copyin done during dispatch... need to copy file_id array separately */ | |
1127 | if (ap->a_data == NULL) { | |
1128 | error = EINVAL; | |
1129 | goto err_exit_bulk_access; | |
1130 | } | |
1131 | ||
1132 | if (is64bit) { | |
1133 | if (arg_size != sizeof(struct user64_ext_access_t)) { | |
1134 | error = EINVAL; | |
1135 | goto err_exit_bulk_access; | |
1136 | } | |
1137 | ||
1138 | user_access_structp = (struct user64_ext_access_t *)ap->a_data; | |
1139 | ||
1140 | } else if (arg_size == sizeof(struct user32_access_t)) { | |
1141 | struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data; | |
1142 | ||
1143 | // convert an old style bulk-access struct to the new style | |
1144 | tmp_user_access.flags = accessp->flags; | |
1145 | tmp_user_access.num_files = accessp->num_files; | |
1146 | tmp_user_access.map_size = 0; | |
1147 | tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); | |
1148 | tmp_user_access.bitmap = USER_ADDR_NULL; | |
1149 | tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); | |
1150 | tmp_user_access.num_parents = 0; | |
1151 | user_access_structp = &tmp_user_access; | |
1152 | ||
1153 | } else if (arg_size == sizeof(struct user32_ext_access_t)) { | |
1154 | struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data; | |
1155 | ||
1156 | // up-cast from a 32-bit version of the struct | |
1157 | tmp_user_access.flags = accessp->flags; | |
1158 | tmp_user_access.num_files = accessp->num_files; | |
1159 | tmp_user_access.map_size = accessp->map_size; | |
1160 | tmp_user_access.num_parents = accessp->num_parents; | |
1161 | ||
1162 | tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); | |
1163 | tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap); | |
1164 | tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); | |
1165 | tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents); | |
1166 | ||
1167 | user_access_structp = &tmp_user_access; | |
1168 | } else { | |
1169 | error = EINVAL; | |
1170 | goto err_exit_bulk_access; | |
1171 | } | |
1172 | ||
1173 | map_size = user_access_structp->map_size; | |
1174 | ||
1175 | num_files = user_access_structp->num_files; | |
1176 | ||
1177 | num_parents= user_access_structp->num_parents; | |
1178 | ||
1179 | if (num_files < 1) { | |
1180 | goto err_exit_bulk_access; | |
1181 | } | |
1182 | if (num_files > 1024) { | |
1183 | error = EINVAL; | |
1184 | goto err_exit_bulk_access; | |
1185 | } | |
1186 | ||
1187 | if (num_parents > 1024) { | |
1188 | error = EINVAL; | |
1189 | goto err_exit_bulk_access; | |
1190 | } | |
1191 | ||
1192 | file_ids = (int *) kalloc(sizeof(int) * num_files); | |
1193 | access = (short *) kalloc(sizeof(short) * num_files); | |
1194 | if (map_size) { | |
1195 | bitmap = (char *) kalloc(sizeof(char) * map_size); | |
1196 | } | |
1197 | ||
1198 | if (num_parents) { | |
1199 | parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents); | |
1200 | } | |
1201 | ||
1202 | cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES); | |
1203 | cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1204 | ||
1205 | if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) { | |
1206 | if (file_ids) { | |
1207 | kfree(file_ids, sizeof(int) * num_files); | |
1208 | } | |
1209 | if (bitmap) { | |
1210 | kfree(bitmap, sizeof(char) * map_size); | |
1211 | } | |
1212 | if (access) { | |
1213 | kfree(access, sizeof(short) * num_files); | |
1214 | } | |
1215 | if (cache.acache) { | |
1216 | kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); | |
1217 | } | |
1218 | if (cache.haveaccess) { | |
1219 | kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1220 | } | |
1221 | if (parents) { | |
1222 | kfree(parents, sizeof(cnid_t) * num_parents); | |
1223 | } | |
1224 | return ENOMEM; | |
1225 | } | |
1226 | ||
1227 | // make sure the bitmap is zero'ed out... | |
1228 | if (bitmap) { | |
1229 | bzero(bitmap, (sizeof(char) * map_size)); | |
1230 | } | |
1231 | ||
1232 | if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids, | |
1233 | num_files * sizeof(int)))) { | |
1234 | goto err_exit_bulk_access; | |
1235 | } | |
1236 | ||
1237 | if (num_parents) { | |
1238 | if ((error = copyin(user_access_structp->parents, (caddr_t)parents, | |
1239 | num_parents * sizeof(cnid_t)))) { | |
1240 | goto err_exit_bulk_access; | |
1241 | } | |
1242 | } | |
1243 | ||
1244 | flags = user_access_structp->flags; | |
1245 | if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) { | |
1246 | flags = R_OK; | |
1247 | } | |
1248 | ||
1249 | /* check if we've been passed leaf node ids or parent ids */ | |
1250 | if (flags & PARENT_IDS_FLAG) { | |
1251 | check_leaf = false; | |
1252 | } | |
1253 | ||
1254 | /* Check access to each file_id passed in */ | |
1255 | for (i = 0; i < num_files; i++) { | |
1256 | leaf_index=-1; | |
1257 | cnid = (cnid_t) file_ids[i]; | |
1258 | ||
1259 | /* root always has access */ | |
1260 | if ((!parents) && (!suser(cred, NULL))) { | |
1261 | access[i] = 0; | |
1262 | continue; | |
1263 | } | |
1264 | ||
1265 | if (check_leaf) { | |
1266 | /* do the lookup (checks the cnode hash, then the catalog) */ | |
1267 | error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr); | |
1268 | if (error) { | |
1269 | access[i] = (short) error; | |
1270 | continue; | |
1271 | } | |
1272 | ||
1273 | if (parents) { | |
1274 | // Check if the leaf matches one of the parent scopes | |
1275 | leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL); | |
1276 | if (leaf_index >= 0 && parents[leaf_index] == cnid) | |
1277 | prev_parent_check_ok = 0; | |
1278 | else if (leaf_index >= 0) | |
1279 | prev_parent_check_ok = 1; | |
1280 | } | |
1281 | ||
1282 | // if the thing has acl's, do the full permission check | |
1283 | if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { | |
1284 | struct vnode *cvp; | |
1285 | int myErr = 0; | |
1286 | /* get the vnode for this cnid */ | |
1287 | myErr = hfs_vget(hfsmp, cnid, &cvp, 0); | |
1288 | if ( myErr ) { | |
1289 | access[i] = myErr; | |
1290 | continue; | |
1291 | } | |
1292 | ||
1293 | hfs_unlock(VTOC(cvp)); | |
1294 | ||
1295 | if (vnode_vtype(cvp) == VDIR) { | |
1296 | myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context); | |
1297 | } else { | |
1298 | myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context); | |
1299 | } | |
1300 | ||
1301 | vnode_put(cvp); | |
1302 | if (myErr) { | |
1303 | access[i] = myErr; | |
1304 | continue; | |
1305 | } | |
1306 | } else { | |
1307 | /* before calling CheckAccess(), check the target file for read access */ | |
1308 | myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, | |
1309 | cnattr.ca_mode, hfsmp->hfs_mp, cred, p); | |
1310 | ||
1311 | /* fail fast if no access */ | |
1312 | if ((myPerms & flags) == 0) { | |
1313 | access[i] = EACCES; | |
1314 | continue; | |
1315 | } | |
1316 | } | |
1317 | } else { | |
1318 | /* we were passed an array of parent ids */ | |
1319 | catkey.hfsPlus.parentID = cnid; | |
1320 | } | |
1321 | ||
1322 | /* if the last guy had the same parent and had access, we're done */ | |
1323 | if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) { | |
1324 | cache.cachehits++; | |
1325 | access[i] = 0; | |
1326 | continue; | |
1327 | } | |
1328 | ||
1329 | myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID, | |
1330 | skip_cp, p, cred, context,bitmap, map_size, parents, num_parents); | |
1331 | ||
1332 | if (myaccess || (error == ESRCH && leaf_index != -1)) { | |
1333 | access[i] = 0; // have access.. no errors to report | |
1334 | } else { | |
1335 | access[i] = (error != 0 ? (short) error : EACCES); | |
1336 | } | |
1337 | ||
1338 | prevParent_cnid = catkey.hfsPlus.parentID; | |
1339 | } | |
1340 | ||
1341 | /* copyout the access array */ | |
1342 | if ((error = copyout((caddr_t)access, user_access_structp->access, | |
1343 | num_files * sizeof (short)))) { | |
1344 | goto err_exit_bulk_access; | |
1345 | } | |
1346 | if (map_size && bitmap) { | |
1347 | if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap, | |
1348 | map_size * sizeof (char)))) { | |
1349 | goto err_exit_bulk_access; | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | ||
1354 | err_exit_bulk_access: | |
1355 | ||
1356 | //printf("hfs: on exit (err %d), numfiles/numcached/cachehits/lookups is %d/%d/%d/%d\n", error, num_files, cache.numcached, cache.cachehits, cache.lookups); | |
1357 | ||
1358 | if (file_ids) | |
1359 | kfree(file_ids, sizeof(int) * num_files); | |
1360 | if (parents) | |
1361 | kfree(parents, sizeof(cnid_t) * num_parents); | |
1362 | if (bitmap) | |
1363 | kfree(bitmap, sizeof(char) * map_size); | |
1364 | if (access) | |
1365 | kfree(access, sizeof(short) * num_files); | |
1366 | if (cache.acache) | |
1367 | kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); | |
1368 | if (cache.haveaccess) | |
1369 | kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1370 | ||
1371 | return (error); | |
1372 | } | |
1373 | ||
1374 | ||
1375 | /* end "bulk-access" support */ | |
1376 | ||
1377 | ||
1378 | /* | |
1379 | * Callback for use with freeze ioctl. | |
1380 | */ | |
1381 | static int | |
1382 | hfs_freezewrite_callback(struct vnode *vp, __unused void *cargs) | |
1383 | { | |
1384 | vnode_waitforwrites(vp, 0, 0, 0, "hfs freeze"); | |
1385 | ||
1386 | return 0; | |
1387 | } | |
1388 | ||
1389 | /* | |
1390 | * Control filesystem operating characteristics. | |
1391 | */ | |
1392 | int | |
1393 | hfs_vnop_ioctl( struct vnop_ioctl_args /* { | |
1394 | vnode_t a_vp; | |
1395 | int a_command; | |
1396 | caddr_t a_data; | |
1397 | int a_fflag; | |
1398 | vfs_context_t a_context; | |
1399 | } */ *ap) | |
1400 | { | |
1401 | struct vnode * vp = ap->a_vp; | |
1402 | struct hfsmount *hfsmp = VTOHFS(vp); | |
1403 | vfs_context_t context = ap->a_context; | |
1404 | kauth_cred_t cred = vfs_context_ucred(context); | |
1405 | proc_t p = vfs_context_proc(context); | |
1406 | struct vfsstatfs *vfsp; | |
1407 | boolean_t is64bit; | |
1408 | off_t jnl_start, jnl_size; | |
1409 | struct hfs_journal_info *jip; | |
1410 | #if HFS_COMPRESSION | |
1411 | int compressed = 0; | |
1412 | off_t uncompressed_size = -1; | |
1413 | int decmpfs_error = 0; | |
1414 | ||
1415 | if (ap->a_command == F_RDADVISE) { | |
1416 | /* we need to inspect the decmpfs state of the file as early as possible */ | |
1417 | compressed = hfs_file_is_compressed(VTOC(vp), 0); | |
1418 | if (compressed) { | |
1419 | if (VNODE_IS_RSRC(vp)) { | |
1420 | /* if this is the resource fork, treat it as if it were empty */ | |
1421 | uncompressed_size = 0; | |
1422 | } else { | |
1423 | decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0); | |
1424 | if (decmpfs_error != 0) { | |
1425 | /* failed to get the uncompressed size, we'll check for this later */ | |
1426 | uncompressed_size = -1; | |
1427 | } | |
1428 | } | |
1429 | } | |
1430 | } | |
1431 | #endif /* HFS_COMPRESSION */ | |
1432 | ||
1433 | is64bit = proc_is64bit(p); | |
1434 | ||
1435 | switch (ap->a_command) { | |
1436 | ||
1437 | case HFS_GETPATH: | |
1438 | { | |
1439 | struct vnode *file_vp; | |
1440 | cnid_t cnid; | |
1441 | int outlen; | |
1442 | char *bufptr; | |
1443 | int error; | |
1444 | ||
1445 | /* Caller must be owner of file system. */ | |
1446 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1447 | if (suser(cred, NULL) && | |
1448 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1449 | return (EACCES); | |
1450 | } | |
1451 | /* Target vnode must be file system's root. */ | |
1452 | if (!vnode_isvroot(vp)) { | |
1453 | return (EINVAL); | |
1454 | } | |
1455 | bufptr = (char *)ap->a_data; | |
1456 | cnid = strtoul(bufptr, NULL, 10); | |
1457 | ||
1458 | /* We need to call hfs_vfs_vget to leverage the code that will | |
1459 | * fix the origin list for us if needed, as opposed to calling | |
1460 | * hfs_vget, since we will need the parent for build_path call. | |
1461 | */ | |
1462 | ||
1463 | if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) { | |
1464 | return (error); | |
1465 | } | |
1466 | error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, 0, context); | |
1467 | vnode_put(file_vp); | |
1468 | ||
1469 | return (error); | |
1470 | } | |
1471 | ||
1472 | case HFS_PREV_LINK: | |
1473 | case HFS_NEXT_LINK: | |
1474 | { | |
1475 | cnid_t linkfileid; | |
1476 | cnid_t nextlinkid; | |
1477 | cnid_t prevlinkid; | |
1478 | int error; | |
1479 | ||
1480 | /* Caller must be owner of file system. */ | |
1481 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1482 | if (suser(cred, NULL) && | |
1483 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1484 | return (EACCES); | |
1485 | } | |
1486 | /* Target vnode must be file system's root. */ | |
1487 | if (!vnode_isvroot(vp)) { | |
1488 | return (EINVAL); | |
1489 | } | |
1490 | linkfileid = *(cnid_t *)ap->a_data; | |
1491 | if (linkfileid < kHFSFirstUserCatalogNodeID) { | |
1492 | return (EINVAL); | |
1493 | } | |
1494 | if ((error = hfs_lookuplink(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) { | |
1495 | return (error); | |
1496 | } | |
1497 | if (ap->a_command == HFS_NEXT_LINK) { | |
1498 | *(cnid_t *)ap->a_data = nextlinkid; | |
1499 | } else { | |
1500 | *(cnid_t *)ap->a_data = prevlinkid; | |
1501 | } | |
1502 | return (0); | |
1503 | } | |
1504 | ||
1505 | case HFS_RESIZE_PROGRESS: { | |
1506 | ||
1507 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1508 | if (suser(cred, NULL) && | |
1509 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1510 | return (EACCES); /* must be owner of file system */ | |
1511 | } | |
1512 | if (!vnode_isvroot(vp)) { | |
1513 | return (EINVAL); | |
1514 | } | |
1515 | /* file system must not be mounted read-only */ | |
1516 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1517 | return (EROFS); | |
1518 | } | |
1519 | ||
1520 | return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data); | |
1521 | } | |
1522 | ||
1523 | case HFS_RESIZE_VOLUME: { | |
1524 | u_int64_t newsize; | |
1525 | u_int64_t cursize; | |
1526 | ||
1527 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1528 | if (suser(cred, NULL) && | |
1529 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1530 | return (EACCES); /* must be owner of file system */ | |
1531 | } | |
1532 | if (!vnode_isvroot(vp)) { | |
1533 | return (EINVAL); | |
1534 | } | |
1535 | ||
1536 | /* filesystem must not be mounted read only */ | |
1537 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1538 | return (EROFS); | |
1539 | } | |
1540 | newsize = *(u_int64_t *)ap->a_data; | |
1541 | cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize; | |
1542 | ||
1543 | if (newsize > cursize) { | |
1544 | return hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context); | |
1545 | } else if (newsize < cursize) { | |
1546 | return hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context); | |
1547 | } else { | |
1548 | return (0); | |
1549 | } | |
1550 | } | |
1551 | case HFS_CHANGE_NEXT_ALLOCATION: { | |
1552 | int error = 0; /* Assume success */ | |
1553 | u_int32_t location; | |
1554 | ||
1555 | if (vnode_vfsisrdonly(vp)) { | |
1556 | return (EROFS); | |
1557 | } | |
1558 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1559 | if (suser(cred, NULL) && | |
1560 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1561 | return (EACCES); /* must be owner of file system */ | |
1562 | } | |
1563 | if (!vnode_isvroot(vp)) { | |
1564 | return (EINVAL); | |
1565 | } | |
1566 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
1567 | location = *(u_int32_t *)ap->a_data; | |
1568 | if ((location >= hfsmp->allocLimit) && | |
1569 | (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) { | |
1570 | error = EINVAL; | |
1571 | goto fail_change_next_allocation; | |
1572 | } | |
1573 | /* Return previous value. */ | |
1574 | *(u_int32_t *)ap->a_data = hfsmp->nextAllocation; | |
1575 | if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) { | |
1576 | /* On magic value for location, set nextAllocation to next block | |
1577 | * after metadata zone and set flag in mount structure to indicate | |
1578 | * that nextAllocation should not be updated again. | |
1579 | */ | |
1580 | if (hfsmp->hfs_metazone_end != 0) { | |
1581 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1); | |
1582 | } | |
1583 | hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION; | |
1584 | } else { | |
1585 | hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION; | |
1586 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location); | |
1587 | } | |
1588 | MarkVCBDirty(hfsmp); | |
1589 | fail_change_next_allocation: | |
1590 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
1591 | return (error); | |
1592 | } | |
1593 | ||
1594 | #ifdef HFS_SPARSE_DEV | |
1595 | case HFS_SETBACKINGSTOREINFO: { | |
1596 | struct vnode * bsfs_rootvp; | |
1597 | struct vnode * di_vp; | |
1598 | struct hfs_backingstoreinfo *bsdata; | |
1599 | int error = 0; | |
1600 | ||
1601 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1602 | return (EROFS); | |
1603 | } | |
1604 | if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { | |
1605 | return (EALREADY); | |
1606 | } | |
1607 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1608 | if (suser(cred, NULL) && | |
1609 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1610 | return (EACCES); /* must be owner of file system */ | |
1611 | } | |
1612 | bsdata = (struct hfs_backingstoreinfo *)ap->a_data; | |
1613 | if (bsdata == NULL) { | |
1614 | return (EINVAL); | |
1615 | } | |
1616 | if ((error = file_vnode(bsdata->backingfd, &di_vp))) { | |
1617 | return (error); | |
1618 | } | |
1619 | if ((error = vnode_getwithref(di_vp))) { | |
1620 | file_drop(bsdata->backingfd); | |
1621 | return(error); | |
1622 | } | |
1623 | ||
1624 | if (vnode_mount(vp) == vnode_mount(di_vp)) { | |
1625 | (void)vnode_put(di_vp); | |
1626 | file_drop(bsdata->backingfd); | |
1627 | return (EINVAL); | |
1628 | } | |
1629 | ||
1630 | /* | |
1631 | * Obtain the backing fs root vnode and keep a reference | |
1632 | * on it. This reference will be dropped in hfs_unmount. | |
1633 | */ | |
1634 | error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */ | |
1635 | if (error) { | |
1636 | (void)vnode_put(di_vp); | |
1637 | file_drop(bsdata->backingfd); | |
1638 | return (error); | |
1639 | } | |
1640 | vnode_ref(bsfs_rootvp); | |
1641 | vnode_put(bsfs_rootvp); | |
1642 | ||
1643 | hfsmp->hfs_backingfs_rootvp = bsfs_rootvp; | |
1644 | hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; | |
1645 | hfsmp->hfs_sparsebandblks = bsdata->bandsize / HFSTOVCB(hfsmp)->blockSize; | |
1646 | hfsmp->hfs_sparsebandblks *= 4; | |
1647 | ||
1648 | vfs_markdependency(hfsmp->hfs_mp); | |
1649 | ||
1650 | /* | |
1651 | * If the sparse image is on a sparse image file (as opposed to a sparse | |
1652 | * bundle), then we may need to limit the free space to the maximum size | |
1653 | * of a file on that volume. So we query (using pathconf), and if we get | |
1654 | * a meaningful result, we cache the number of blocks for later use in | |
1655 | * hfs_freeblks(). | |
1656 | */ | |
1657 | hfsmp->hfs_backingfs_maxblocks = 0; | |
1658 | if (vnode_vtype(di_vp) == VREG) { | |
1659 | int terr; | |
1660 | int hostbits; | |
1661 | terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context); | |
1662 | if (terr == 0 && hostbits != 0 && hostbits < 64) { | |
1663 | u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits; | |
1664 | ||
1665 | hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize; | |
1666 | } | |
1667 | } | |
1668 | ||
1669 | (void)vnode_put(di_vp); | |
1670 | file_drop(bsdata->backingfd); | |
1671 | return (0); | |
1672 | } | |
1673 | case HFS_CLRBACKINGSTOREINFO: { | |
1674 | struct vnode * tmpvp; | |
1675 | ||
1676 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1677 | if (suser(cred, NULL) && | |
1678 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1679 | return (EACCES); /* must be owner of file system */ | |
1680 | } | |
1681 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1682 | return (EROFS); | |
1683 | } | |
1684 | ||
1685 | if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && | |
1686 | hfsmp->hfs_backingfs_rootvp) { | |
1687 | ||
1688 | hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE; | |
1689 | tmpvp = hfsmp->hfs_backingfs_rootvp; | |
1690 | hfsmp->hfs_backingfs_rootvp = NULLVP; | |
1691 | hfsmp->hfs_sparsebandblks = 0; | |
1692 | vnode_rele(tmpvp); | |
1693 | } | |
1694 | return (0); | |
1695 | } | |
1696 | #endif /* HFS_SPARSE_DEV */ | |
1697 | ||
1698 | case F_FREEZE_FS: { | |
1699 | struct mount *mp; | |
1700 | ||
1701 | mp = vnode_mount(vp); | |
1702 | hfsmp = VFSTOHFS(mp); | |
1703 | ||
1704 | if (!(hfsmp->jnl)) | |
1705 | return (ENOTSUP); | |
1706 | ||
1707 | vfsp = vfs_statfs(mp); | |
1708 | ||
1709 | if (kauth_cred_getuid(cred) != vfsp->f_owner && | |
1710 | !kauth_cred_issuser(cred)) | |
1711 | return (EACCES); | |
1712 | ||
1713 | lck_rw_lock_exclusive(&hfsmp->hfs_insync); | |
1714 | ||
1715 | // flush things before we get started to try and prevent | |
1716 | // dirty data from being paged out while we're frozen. | |
1717 | // note: can't do this after taking the lock as it will | |
1718 | // deadlock against ourselves. | |
1719 | vnode_iterate(mp, 0, hfs_freezewrite_callback, NULL); | |
1720 | hfs_global_exclusive_lock_acquire(hfsmp); | |
1721 | ||
1722 | // DO NOT call hfs_journal_flush() because that takes a | |
1723 | // shared lock on the global exclusive lock! | |
1724 | journal_flush(hfsmp->jnl); | |
1725 | ||
1726 | // don't need to iterate on all vnodes, we just need to | |
1727 | // wait for writes to the system files and the device vnode | |
1728 | if (HFSTOVCB(hfsmp)->extentsRefNum) | |
1729 | vnode_waitforwrites(HFSTOVCB(hfsmp)->extentsRefNum, 0, 0, 0, "hfs freeze"); | |
1730 | if (HFSTOVCB(hfsmp)->catalogRefNum) | |
1731 | vnode_waitforwrites(HFSTOVCB(hfsmp)->catalogRefNum, 0, 0, 0, "hfs freeze"); | |
1732 | if (HFSTOVCB(hfsmp)->allocationsRefNum) | |
1733 | vnode_waitforwrites(HFSTOVCB(hfsmp)->allocationsRefNum, 0, 0, 0, "hfs freeze"); | |
1734 | if (hfsmp->hfs_attribute_vp) | |
1735 | vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs freeze"); | |
1736 | vnode_waitforwrites(hfsmp->hfs_devvp, 0, 0, 0, "hfs freeze"); | |
1737 | ||
1738 | hfsmp->hfs_freezing_proc = current_proc(); | |
1739 | ||
1740 | return (0); | |
1741 | } | |
1742 | ||
1743 | case F_THAW_FS: { | |
1744 | vfsp = vfs_statfs(vnode_mount(vp)); | |
1745 | if (kauth_cred_getuid(cred) != vfsp->f_owner && | |
1746 | !kauth_cred_issuser(cred)) | |
1747 | return (EACCES); | |
1748 | ||
1749 | // if we're not the one who froze the fs then we | |
1750 | // can't thaw it. | |
1751 | if (hfsmp->hfs_freezing_proc != current_proc()) { | |
1752 | return EPERM; | |
1753 | } | |
1754 | ||
1755 | // NOTE: if you add code here, also go check the | |
1756 | // code that "thaws" the fs in hfs_vnop_close() | |
1757 | // | |
1758 | hfsmp->hfs_freezing_proc = NULL; | |
1759 | hfs_global_exclusive_lock_release(hfsmp); | |
1760 | lck_rw_unlock_exclusive(&hfsmp->hfs_insync); | |
1761 | ||
1762 | return (0); | |
1763 | } | |
1764 | ||
1765 | case HFS_BULKACCESS_FSCTL: { | |
1766 | int size; | |
1767 | ||
1768 | if (hfsmp->hfs_flags & HFS_STANDARD) { | |
1769 | return EINVAL; | |
1770 | } | |
1771 | ||
1772 | if (is64bit) { | |
1773 | size = sizeof(struct user64_access_t); | |
1774 | } else { | |
1775 | size = sizeof(struct user32_access_t); | |
1776 | } | |
1777 | ||
1778 | return do_bulk_access_check(hfsmp, vp, ap, size, context); | |
1779 | } | |
1780 | ||
1781 | case HFS_EXT_BULKACCESS_FSCTL: { | |
1782 | int size; | |
1783 | ||
1784 | if (hfsmp->hfs_flags & HFS_STANDARD) { | |
1785 | return EINVAL; | |
1786 | } | |
1787 | ||
1788 | if (is64bit) { | |
1789 | size = sizeof(struct user64_ext_access_t); | |
1790 | } else { | |
1791 | size = sizeof(struct user32_ext_access_t); | |
1792 | } | |
1793 | ||
1794 | return do_bulk_access_check(hfsmp, vp, ap, size, context); | |
1795 | } | |
1796 | ||
1797 | case HFS_SETACLSTATE: { | |
1798 | int state; | |
1799 | ||
1800 | if (ap->a_data == NULL) { | |
1801 | return (EINVAL); | |
1802 | } | |
1803 | ||
1804 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1805 | state = *(int *)ap->a_data; | |
1806 | ||
1807 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1808 | return (EROFS); | |
1809 | } | |
1810 | // super-user can enable or disable acl's on a volume. | |
1811 | // the volume owner can only enable acl's | |
1812 | if (!is_suser() && (state == 0 || kauth_cred_getuid(cred) != vfsp->f_owner)) { | |
1813 | return (EPERM); | |
1814 | } | |
1815 | if (state == 0 || state == 1) | |
1816 | return hfs_set_volxattr(hfsmp, HFS_SETACLSTATE, state); | |
1817 | else | |
1818 | return (EINVAL); | |
1819 | } | |
1820 | ||
1821 | case HFS_SET_XATTREXTENTS_STATE: { | |
1822 | int state; | |
1823 | ||
1824 | if (ap->a_data == NULL) { | |
1825 | return (EINVAL); | |
1826 | } | |
1827 | ||
1828 | state = *(int *)ap->a_data; | |
1829 | ||
1830 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1831 | return (EROFS); | |
1832 | } | |
1833 | ||
1834 | /* Super-user can enable or disable extent-based extended | |
1835 | * attribute support on a volume | |
1836 | */ | |
1837 | if (!is_suser()) { | |
1838 | return (EPERM); | |
1839 | } | |
1840 | if (state == 0 || state == 1) | |
1841 | return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state); | |
1842 | else | |
1843 | return (EINVAL); | |
1844 | } | |
1845 | ||
1846 | case F_FULLFSYNC: { | |
1847 | int error; | |
1848 | ||
1849 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1850 | return (EROFS); | |
1851 | } | |
1852 | error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK); | |
1853 | if (error == 0) { | |
1854 | error = hfs_fsync(vp, MNT_WAIT, TRUE, p); | |
1855 | hfs_unlock(VTOC(vp)); | |
1856 | } | |
1857 | ||
1858 | return error; | |
1859 | } | |
1860 | ||
1861 | case F_CHKCLEAN: { | |
1862 | register struct cnode *cp; | |
1863 | int error; | |
1864 | ||
1865 | if (!vnode_isreg(vp)) | |
1866 | return EINVAL; | |
1867 | ||
1868 | error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK); | |
1869 | if (error == 0) { | |
1870 | cp = VTOC(vp); | |
1871 | /* | |
1872 | * used by regression test to determine if | |
1873 | * all the dirty pages (via write) have been cleaned | |
1874 | * after a call to 'fsysnc'. | |
1875 | */ | |
1876 | error = is_file_clean(vp, VTOF(vp)->ff_size); | |
1877 | hfs_unlock(cp); | |
1878 | } | |
1879 | return (error); | |
1880 | } | |
1881 | ||
1882 | case F_RDADVISE: { | |
1883 | register struct radvisory *ra; | |
1884 | struct filefork *fp; | |
1885 | int error; | |
1886 | ||
1887 | if (!vnode_isreg(vp)) | |
1888 | return EINVAL; | |
1889 | ||
1890 | ra = (struct radvisory *)(ap->a_data); | |
1891 | fp = VTOF(vp); | |
1892 | ||
1893 | /* Protect against a size change. */ | |
1894 | hfs_lock_truncate(VTOC(vp), TRUE); | |
1895 | ||
1896 | #if HFS_COMPRESSION | |
1897 | if (compressed && (uncompressed_size == -1)) { | |
1898 | /* fetching the uncompressed size failed above, so return the error */ | |
1899 | error = decmpfs_error; | |
1900 | } else if ((compressed && (ra->ra_offset >= uncompressed_size)) || | |
1901 | (!compressed && (ra->ra_offset >= fp->ff_size))) { | |
1902 | error = EFBIG; | |
1903 | } | |
1904 | #else /* HFS_COMPRESSION */ | |
1905 | if (ra->ra_offset >= fp->ff_size) { | |
1906 | error = EFBIG; | |
1907 | } | |
1908 | #endif /* HFS_COMPRESSION */ | |
1909 | else { | |
1910 | error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count); | |
1911 | } | |
1912 | ||
1913 | hfs_unlock_truncate(VTOC(vp), TRUE); | |
1914 | return (error); | |
1915 | } | |
1916 | ||
1917 | case F_READBOOTSTRAP: | |
1918 | case F_WRITEBOOTSTRAP: | |
1919 | { | |
1920 | struct vnode *devvp = NULL; | |
1921 | user_fbootstraptransfer_t *user_bootstrapp; | |
1922 | int devBlockSize; | |
1923 | int error; | |
1924 | uio_t auio; | |
1925 | daddr64_t blockNumber; | |
1926 | u_int32_t blockOffset; | |
1927 | u_int32_t xfersize; | |
1928 | struct buf *bp; | |
1929 | user_fbootstraptransfer_t user_bootstrap; | |
1930 | ||
1931 | if (!vnode_isvroot(vp)) | |
1932 | return (EINVAL); | |
1933 | /* LP64 - when caller is a 64 bit process then we are passed a pointer | |
1934 | * to a user_fbootstraptransfer_t else we get a pointer to a | |
1935 | * fbootstraptransfer_t which we munge into a user_fbootstraptransfer_t | |
1936 | */ | |
1937 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1938 | return (EROFS); | |
1939 | } | |
1940 | if (is64bit) { | |
1941 | user_bootstrapp = (user_fbootstraptransfer_t *)ap->a_data; | |
1942 | } | |
1943 | else { | |
1944 | user32_fbootstraptransfer_t *bootstrapp = (user32_fbootstraptransfer_t *)ap->a_data; | |
1945 | user_bootstrapp = &user_bootstrap; | |
1946 | user_bootstrap.fbt_offset = bootstrapp->fbt_offset; | |
1947 | user_bootstrap.fbt_length = bootstrapp->fbt_length; | |
1948 | user_bootstrap.fbt_buffer = CAST_USER_ADDR_T(bootstrapp->fbt_buffer); | |
1949 | } | |
1950 | if (user_bootstrapp->fbt_offset + user_bootstrapp->fbt_length > 1024) | |
1951 | return EINVAL; | |
1952 | ||
1953 | devvp = VTOHFS(vp)->hfs_devvp; | |
1954 | auio = uio_create(1, user_bootstrapp->fbt_offset, | |
1955 | is64bit ? UIO_USERSPACE64 : UIO_USERSPACE32, | |
1956 | (ap->a_command == F_WRITEBOOTSTRAP) ? UIO_WRITE : UIO_READ); | |
1957 | uio_addiov(auio, user_bootstrapp->fbt_buffer, user_bootstrapp->fbt_length); | |
1958 | ||
1959 | devBlockSize = vfs_devblocksize(vnode_mount(vp)); | |
1960 | ||
1961 | while (uio_resid(auio) > 0) { | |
1962 | blockNumber = uio_offset(auio) / devBlockSize; | |
1963 | error = (int)buf_bread(devvp, blockNumber, devBlockSize, cred, &bp); | |
1964 | if (error) { | |
1965 | if (bp) buf_brelse(bp); | |
1966 | uio_free(auio); | |
1967 | return error; | |
1968 | }; | |
1969 | ||
1970 | blockOffset = uio_offset(auio) % devBlockSize; | |
1971 | xfersize = devBlockSize - blockOffset; | |
1972 | error = uiomove((caddr_t)buf_dataptr(bp) + blockOffset, (int)xfersize, auio); | |
1973 | if (error) { | |
1974 | buf_brelse(bp); | |
1975 | uio_free(auio); | |
1976 | return error; | |
1977 | }; | |
1978 | if (uio_rw(auio) == UIO_WRITE) { | |
1979 | error = VNOP_BWRITE(bp); | |
1980 | if (error) { | |
1981 | uio_free(auio); | |
1982 | return error; | |
1983 | } | |
1984 | } else { | |
1985 | buf_brelse(bp); | |
1986 | }; | |
1987 | }; | |
1988 | uio_free(auio); | |
1989 | }; | |
1990 | return 0; | |
1991 | ||
1992 | case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ | |
1993 | { | |
1994 | if (is64bit) { | |
1995 | *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); | |
1996 | } | |
1997 | else { | |
1998 | *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); | |
1999 | } | |
2000 | return 0; | |
2001 | } | |
2002 | ||
2003 | case SPOTLIGHT_FSCTL_GET_MOUNT_TIME: | |
2004 | *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time; | |
2005 | break; | |
2006 | ||
2007 | case SPOTLIGHT_FSCTL_GET_LAST_MTIME: | |
2008 | *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime; | |
2009 | break; | |
2010 | ||
2011 | case HFS_FSCTL_SET_VERY_LOW_DISK: | |
2012 | if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) { | |
2013 | return EINVAL; | |
2014 | } | |
2015 | ||
2016 | hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data; | |
2017 | break; | |
2018 | ||
2019 | case HFS_FSCTL_SET_LOW_DISK: | |
2020 | if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel | |
2021 | || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) { | |
2022 | ||
2023 | return EINVAL; | |
2024 | } | |
2025 | ||
2026 | hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data; | |
2027 | break; | |
2028 | ||
2029 | case HFS_FSCTL_SET_DESIRED_DISK: | |
2030 | if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) { | |
2031 | return EINVAL; | |
2032 | } | |
2033 | ||
2034 | hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data; | |
2035 | break; | |
2036 | ||
2037 | case HFS_VOLUME_STATUS: | |
2038 | *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions; | |
2039 | break; | |
2040 | ||
2041 | case HFS_SET_BOOT_INFO: | |
2042 | if (!vnode_isvroot(vp)) | |
2043 | return(EINVAL); | |
2044 | if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner)) | |
2045 | return(EACCES); /* must be superuser or owner of filesystem */ | |
2046 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2047 | return (EROFS); | |
2048 | } | |
2049 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
2050 | bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo)); | |
2051 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
2052 | (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); | |
2053 | break; | |
2054 | ||
2055 | case HFS_GET_BOOT_INFO: | |
2056 | if (!vnode_isvroot(vp)) | |
2057 | return(EINVAL); | |
2058 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
2059 | bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo)); | |
2060 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
2061 | break; | |
2062 | ||
2063 | case HFS_MARK_BOOT_CORRUPT: | |
2064 | /* Mark the boot volume corrupt by setting | |
2065 | * kHFSVolumeInconsistentBit in the volume header. This will | |
2066 | * force fsck_hfs on next mount. | |
2067 | */ | |
2068 | if (!is_suser()) { | |
2069 | return EACCES; | |
2070 | } | |
2071 | ||
2072 | /* Allowed only on the root vnode of the boot volume */ | |
2073 | if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) || | |
2074 | !vnode_isvroot(vp)) { | |
2075 | return EINVAL; | |
2076 | } | |
2077 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2078 | return (EROFS); | |
2079 | } | |
2080 | printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n"); | |
2081 | hfs_mark_volume_inconsistent(hfsmp); | |
2082 | break; | |
2083 | ||
2084 | case HFS_FSCTL_GET_JOURNAL_INFO: | |
2085 | jip = (struct hfs_journal_info*)ap->a_data; | |
2086 | ||
2087 | if (vp == NULLVP) | |
2088 | return EINVAL; | |
2089 | ||
2090 | if (hfsmp->jnl == NULL) { | |
2091 | jnl_start = 0; | |
2092 | jnl_size = 0; | |
2093 | } else { | |
2094 | jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset; | |
2095 | jnl_size = (off_t)hfsmp->jnl_size; | |
2096 | } | |
2097 | ||
2098 | jip->jstart = jnl_start; | |
2099 | jip->jsize = jnl_size; | |
2100 | break; | |
2101 | ||
2102 | case HFS_SET_ALWAYS_ZEROFILL: { | |
2103 | struct cnode *cp = VTOC(vp); | |
2104 | ||
2105 | if (*(int *)ap->a_data) { | |
2106 | cp->c_flag |= C_ALWAYS_ZEROFILL; | |
2107 | } else { | |
2108 | cp->c_flag &= ~C_ALWAYS_ZEROFILL; | |
2109 | } | |
2110 | break; | |
2111 | } | |
2112 | ||
2113 | default: | |
2114 | return (ENOTTY); | |
2115 | } | |
2116 | ||
2117 | return 0; | |
2118 | } | |
2119 | ||
2120 | /* | |
2121 | * select | |
2122 | */ | |
2123 | int | |
2124 | hfs_vnop_select(__unused struct vnop_select_args *ap) | |
2125 | /* | |
2126 | struct vnop_select_args { | |
2127 | vnode_t a_vp; | |
2128 | int a_which; | |
2129 | int a_fflags; | |
2130 | void *a_wql; | |
2131 | vfs_context_t a_context; | |
2132 | }; | |
2133 | */ | |
2134 | { | |
2135 | /* | |
2136 | * We should really check to see if I/O is possible. | |
2137 | */ | |
2138 | return (1); | |
2139 | } | |
2140 | ||
2141 | /* | |
2142 | * Converts a logical block number to a physical block, and optionally returns | |
2143 | * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize. | |
2144 | * The physical block number is based on the device block size, currently its 512. | |
2145 | * The block run is returned in logical blocks, and is the REMAINING amount of blocks | |
2146 | */ | |
2147 | int | |
2148 | hfs_bmap(struct vnode *vp, daddr_t bn, struct vnode **vpp, daddr64_t *bnp, unsigned int *runp) | |
2149 | { | |
2150 | struct filefork *fp = VTOF(vp); | |
2151 | struct hfsmount *hfsmp = VTOHFS(vp); | |
2152 | int retval = E_NONE; | |
2153 | u_int32_t logBlockSize; | |
2154 | size_t bytesContAvail = 0; | |
2155 | off_t blockposition; | |
2156 | int lockExtBtree; | |
2157 | int lockflags = 0; | |
2158 | ||
2159 | /* | |
2160 | * Check for underlying vnode requests and ensure that logical | |
2161 | * to physical mapping is requested. | |
2162 | */ | |
2163 | if (vpp != NULL) | |
2164 | *vpp = hfsmp->hfs_devvp; | |
2165 | if (bnp == NULL) | |
2166 | return (0); | |
2167 | ||
2168 | logBlockSize = GetLogicalBlockSize(vp); | |
2169 | blockposition = (off_t)bn * logBlockSize; | |
2170 | ||
2171 | lockExtBtree = overflow_extents(fp); | |
2172 | ||
2173 | if (lockExtBtree) | |
2174 | lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_EXCLUSIVE_LOCK); | |
2175 | ||
2176 | retval = MacToVFSError( | |
2177 | MapFileBlockC (HFSTOVCB(hfsmp), | |
2178 | (FCB*)fp, | |
2179 | MAXPHYSIO, | |
2180 | blockposition, | |
2181 | bnp, | |
2182 | &bytesContAvail)); | |
2183 | ||
2184 | if (lockExtBtree) | |
2185 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2186 | ||
2187 | if (retval == E_NONE) { | |
2188 | /* Figure out how many read ahead blocks there are */ | |
2189 | if (runp != NULL) { | |
2190 | if (can_cluster(logBlockSize)) { | |
2191 | /* Make sure this result never goes negative: */ | |
2192 | *runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; | |
2193 | } else { | |
2194 | *runp = 0; | |
2195 | } | |
2196 | } | |
2197 | } | |
2198 | return (retval); | |
2199 | } | |
2200 | ||
2201 | /* | |
2202 | * Convert logical block number to file offset. | |
2203 | */ | |
2204 | int | |
2205 | hfs_vnop_blktooff(struct vnop_blktooff_args *ap) | |
2206 | /* | |
2207 | struct vnop_blktooff_args { | |
2208 | vnode_t a_vp; | |
2209 | daddr64_t a_lblkno; | |
2210 | off_t *a_offset; | |
2211 | }; | |
2212 | */ | |
2213 | { | |
2214 | if (ap->a_vp == NULL) | |
2215 | return (EINVAL); | |
2216 | *ap->a_offset = (off_t)ap->a_lblkno * (off_t)GetLogicalBlockSize(ap->a_vp); | |
2217 | ||
2218 | return(0); | |
2219 | } | |
2220 | ||
2221 | /* | |
2222 | * Convert file offset to logical block number. | |
2223 | */ | |
2224 | int | |
2225 | hfs_vnop_offtoblk(struct vnop_offtoblk_args *ap) | |
2226 | /* | |
2227 | struct vnop_offtoblk_args { | |
2228 | vnode_t a_vp; | |
2229 | off_t a_offset; | |
2230 | daddr64_t *a_lblkno; | |
2231 | }; | |
2232 | */ | |
2233 | { | |
2234 | if (ap->a_vp == NULL) | |
2235 | return (EINVAL); | |
2236 | *ap->a_lblkno = (daddr64_t)(ap->a_offset / (off_t)GetLogicalBlockSize(ap->a_vp)); | |
2237 | ||
2238 | return(0); | |
2239 | } | |
2240 | ||
2241 | /* | |
2242 | * Map file offset to physical block number. | |
2243 | * | |
2244 | * If this function is called for write operation, and if the file | |
2245 | * had virtual blocks allocated (delayed allocation), real blocks | |
2246 | * are allocated by calling ExtendFileC(). | |
2247 | * | |
2248 | * If this function is called for read operation, and if the file | |
2249 | * had virtual blocks allocated (delayed allocation), no change | |
2250 | * to the size of file is done, and if required, rangelist is | |
2251 | * searched for mapping. | |
2252 | * | |
2253 | * System file cnodes are expected to be locked (shared or exclusive). | |
2254 | */ | |
2255 | int | |
2256 | hfs_vnop_blockmap(struct vnop_blockmap_args *ap) | |
2257 | /* | |
2258 | struct vnop_blockmap_args { | |
2259 | vnode_t a_vp; | |
2260 | off_t a_foffset; | |
2261 | size_t a_size; | |
2262 | daddr64_t *a_bpn; | |
2263 | size_t *a_run; | |
2264 | void *a_poff; | |
2265 | int a_flags; | |
2266 | vfs_context_t a_context; | |
2267 | }; | |
2268 | */ | |
2269 | { | |
2270 | struct vnode *vp = ap->a_vp; | |
2271 | struct cnode *cp; | |
2272 | struct filefork *fp; | |
2273 | struct hfsmount *hfsmp; | |
2274 | size_t bytesContAvail = 0; | |
2275 | int retval = E_NONE; | |
2276 | int syslocks = 0; | |
2277 | int lockflags = 0; | |
2278 | struct rl_entry *invalid_range; | |
2279 | enum rl_overlaptype overlaptype; | |
2280 | int started_tr = 0; | |
2281 | int tooklock = 0; | |
2282 | ||
2283 | #if HFS_COMPRESSION | |
2284 | if (VNODE_IS_RSRC(vp)) { | |
2285 | /* allow blockmaps to the resource fork */ | |
2286 | } else { | |
2287 | if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ | |
2288 | int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); | |
2289 | switch(state) { | |
2290 | case FILE_IS_COMPRESSED: | |
2291 | return ENOTSUP; | |
2292 | case FILE_IS_CONVERTING: | |
2293 | /* if FILE_IS_CONVERTING, we allow blockmap */ | |
2294 | break; | |
2295 | default: | |
2296 | printf("invalid state %d for compressed file\n", state); | |
2297 | /* fall through */ | |
2298 | } | |
2299 | } | |
2300 | } | |
2301 | #endif /* HFS_COMPRESSION */ | |
2302 | ||
2303 | /* Do not allow blockmap operation on a directory */ | |
2304 | if (vnode_isdir(vp)) { | |
2305 | return (ENOTSUP); | |
2306 | } | |
2307 | ||
2308 | /* | |
2309 | * Check for underlying vnode requests and ensure that logical | |
2310 | * to physical mapping is requested. | |
2311 | */ | |
2312 | if (ap->a_bpn == NULL) | |
2313 | return (0); | |
2314 | ||
2315 | if ( !vnode_issystem(vp) && !vnode_islnk(vp) && !vnode_isswap(vp)) { | |
2316 | if (VTOC(vp)->c_lockowner != current_thread()) { | |
2317 | hfs_lock(VTOC(vp), HFS_FORCE_LOCK); | |
2318 | tooklock = 1; | |
2319 | } | |
2320 | } | |
2321 | hfsmp = VTOHFS(vp); | |
2322 | cp = VTOC(vp); | |
2323 | fp = VTOF(vp); | |
2324 | ||
2325 | retry: | |
2326 | /* Check virtual blocks only when performing write operation */ | |
2327 | if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { | |
2328 | if (hfs_start_transaction(hfsmp) != 0) { | |
2329 | retval = EINVAL; | |
2330 | goto exit; | |
2331 | } else { | |
2332 | started_tr = 1; | |
2333 | } | |
2334 | syslocks = SFL_EXTENTS | SFL_BITMAP; | |
2335 | ||
2336 | } else if (overflow_extents(fp)) { | |
2337 | syslocks = SFL_EXTENTS; | |
2338 | } | |
2339 | ||
2340 | if (syslocks) | |
2341 | lockflags = hfs_systemfile_lock(hfsmp, syslocks, HFS_EXCLUSIVE_LOCK); | |
2342 | ||
2343 | /* | |
2344 | * Check for any delayed allocations. | |
2345 | */ | |
2346 | if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { | |
2347 | int64_t actbytes; | |
2348 | u_int32_t loanedBlocks; | |
2349 | ||
2350 | // | |
2351 | // Make sure we have a transaction. It's possible | |
2352 | // that we came in and fp->ff_unallocblocks was zero | |
2353 | // but during the time we blocked acquiring the extents | |
2354 | // btree, ff_unallocblocks became non-zero and so we | |
2355 | // will need to start a transaction. | |
2356 | // | |
2357 | if (started_tr == 0) { | |
2358 | if (syslocks) { | |
2359 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2360 | syslocks = 0; | |
2361 | } | |
2362 | goto retry; | |
2363 | } | |
2364 | ||
2365 | /* | |
2366 | * Note: ExtendFileC will Release any blocks on loan and | |
2367 | * aquire real blocks. So we ask to extend by zero bytes | |
2368 | * since ExtendFileC will account for the virtual blocks. | |
2369 | */ | |
2370 | ||
2371 | loanedBlocks = fp->ff_unallocblocks; | |
2372 | retval = ExtendFileC(hfsmp, (FCB*)fp, 0, 0, | |
2373 | kEFAllMask | kEFNoClumpMask, &actbytes); | |
2374 | ||
2375 | if (retval) { | |
2376 | fp->ff_unallocblocks = loanedBlocks; | |
2377 | cp->c_blocks += loanedBlocks; | |
2378 | fp->ff_blocks += loanedBlocks; | |
2379 | ||
2380 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
2381 | hfsmp->loanedBlocks += loanedBlocks; | |
2382 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
2383 | ||
2384 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2385 | cp->c_flag |= C_MODIFIED; | |
2386 | if (started_tr) { | |
2387 | (void) hfs_update(vp, TRUE); | |
2388 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
2389 | ||
2390 | hfs_end_transaction(hfsmp); | |
2391 | started_tr = 0; | |
2392 | } | |
2393 | goto exit; | |
2394 | } | |
2395 | } | |
2396 | ||
2397 | retval = MapFileBlockC(hfsmp, (FCB *)fp, ap->a_size, ap->a_foffset, | |
2398 | ap->a_bpn, &bytesContAvail); | |
2399 | if (syslocks) { | |
2400 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2401 | syslocks = 0; | |
2402 | } | |
2403 | ||
2404 | if (started_tr) { | |
2405 | (void) hfs_update(vp, TRUE); | |
2406 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
2407 | hfs_end_transaction(hfsmp); | |
2408 | started_tr = 0; | |
2409 | } | |
2410 | if (retval) { | |
2411 | /* On write, always return error because virtual blocks, if any, | |
2412 | * should have been allocated in ExtendFileC(). We do not | |
2413 | * allocate virtual blocks on read, therefore return error | |
2414 | * only if no virtual blocks are allocated. Otherwise we search | |
2415 | * rangelist for zero-fills | |
2416 | */ | |
2417 | if ((MacToVFSError(retval) != ERANGE) || | |
2418 | (ap->a_flags & VNODE_WRITE) || | |
2419 | ((ap->a_flags & VNODE_READ) && (fp->ff_unallocblocks == 0))) { | |
2420 | goto exit; | |
2421 | } | |
2422 | ||
2423 | /* Validate if the start offset is within logical file size */ | |
2424 | if (ap->a_foffset > fp->ff_size) { | |
2425 | goto exit; | |
2426 | } | |
2427 | ||
2428 | /* Searching file extents has failed for read operation, therefore | |
2429 | * search rangelist for any uncommitted holes in the file. | |
2430 | */ | |
2431 | overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset, | |
2432 | ap->a_foffset + (off_t)(ap->a_size - 1), | |
2433 | &invalid_range); | |
2434 | switch(overlaptype) { | |
2435 | case RL_OVERLAPISCONTAINED: | |
2436 | /* start_offset <= rl_start, end_offset >= rl_end */ | |
2437 | if (ap->a_foffset != invalid_range->rl_start) { | |
2438 | break; | |
2439 | } | |
2440 | case RL_MATCHINGOVERLAP: | |
2441 | /* start_offset = rl_start, end_offset = rl_end */ | |
2442 | case RL_OVERLAPCONTAINSRANGE: | |
2443 | /* start_offset >= rl_start, end_offset <= rl_end */ | |
2444 | case RL_OVERLAPSTARTSBEFORE: | |
2445 | /* start_offset > rl_start, end_offset >= rl_start */ | |
2446 | if ((off_t)fp->ff_size > (invalid_range->rl_end + 1)) { | |
2447 | bytesContAvail = (invalid_range->rl_end + 1) - ap->a_foffset; | |
2448 | } else { | |
2449 | bytesContAvail = fp->ff_size - ap->a_foffset; | |
2450 | } | |
2451 | if (bytesContAvail > ap->a_size) { | |
2452 | bytesContAvail = ap->a_size; | |
2453 | } | |
2454 | *ap->a_bpn = (daddr64_t)-1; | |
2455 | retval = 0; | |
2456 | break; | |
2457 | case RL_OVERLAPENDSAFTER: | |
2458 | /* start_offset < rl_start, end_offset < rl_end */ | |
2459 | case RL_NOOVERLAP: | |
2460 | break; | |
2461 | } | |
2462 | goto exit; | |
2463 | } | |
2464 | ||
2465 | /* MapFileC() found a valid extent in the filefork. Search the | |
2466 | * mapping information further for invalid file ranges | |
2467 | */ | |
2468 | overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset, | |
2469 | ap->a_foffset + (off_t)bytesContAvail - 1, | |
2470 | &invalid_range); | |
2471 | if (overlaptype != RL_NOOVERLAP) { | |
2472 | switch(overlaptype) { | |
2473 | case RL_MATCHINGOVERLAP: | |
2474 | case RL_OVERLAPCONTAINSRANGE: | |
2475 | case RL_OVERLAPSTARTSBEFORE: | |
2476 | /* There's no valid block for this byte offset */ | |
2477 | *ap->a_bpn = (daddr64_t)-1; | |
2478 | /* There's no point limiting the amount to be returned | |
2479 | * if the invalid range that was hit extends all the way | |
2480 | * to the EOF (i.e. there's no valid bytes between the | |
2481 | * end of this range and the file's EOF): | |
2482 | */ | |
2483 | if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && | |
2484 | ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { | |
2485 | bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; | |
2486 | } | |
2487 | break; | |
2488 | ||
2489 | case RL_OVERLAPISCONTAINED: | |
2490 | case RL_OVERLAPENDSAFTER: | |
2491 | /* The range of interest hits an invalid block before the end: */ | |
2492 | if (invalid_range->rl_start == ap->a_foffset) { | |
2493 | /* There's actually no valid information to be had starting here: */ | |
2494 | *ap->a_bpn = (daddr64_t)-1; | |
2495 | if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && | |
2496 | ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { | |
2497 | bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; | |
2498 | } | |
2499 | } else { | |
2500 | bytesContAvail = invalid_range->rl_start - ap->a_foffset; | |
2501 | } | |
2502 | break; | |
2503 | ||
2504 | case RL_NOOVERLAP: | |
2505 | break; | |
2506 | } /* end switch */ | |
2507 | if (bytesContAvail > ap->a_size) | |
2508 | bytesContAvail = ap->a_size; | |
2509 | } | |
2510 | ||
2511 | exit: | |
2512 | if (retval == 0) { | |
2513 | if (ap->a_run) | |
2514 | *ap->a_run = bytesContAvail; | |
2515 | ||
2516 | if (ap->a_poff) | |
2517 | *(int *)ap->a_poff = 0; | |
2518 | } | |
2519 | ||
2520 | if (tooklock) | |
2521 | hfs_unlock(cp); | |
2522 | ||
2523 | return (MacToVFSError(retval)); | |
2524 | } | |
2525 | ||
2526 | ||
2527 | /* | |
2528 | * prepare and issue the I/O | |
2529 | * buf_strategy knows how to deal | |
2530 | * with requests that require | |
2531 | * fragmented I/Os | |
2532 | */ | |
2533 | int | |
2534 | hfs_vnop_strategy(struct vnop_strategy_args *ap) | |
2535 | { | |
2536 | buf_t bp = ap->a_bp; | |
2537 | vnode_t vp = buf_vnode(bp); | |
2538 | ||
2539 | return (buf_strategy(VTOHFS(vp)->hfs_devvp, ap)); | |
2540 | } | |
2541 | ||
2542 | static int | |
2543 | hfs_minorupdate(struct vnode *vp) { | |
2544 | struct cnode *cp = VTOC(vp); | |
2545 | cp->c_flag &= ~C_MODIFIED; | |
2546 | cp->c_touch_acctime = 0; | |
2547 | cp->c_touch_chgtime = 0; | |
2548 | cp->c_touch_modtime = 0; | |
2549 | ||
2550 | return 0; | |
2551 | } | |
2552 | ||
2553 | static int | |
2554 | do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skipupdate, vfs_context_t context) | |
2555 | { | |
2556 | register struct cnode *cp = VTOC(vp); | |
2557 | struct filefork *fp = VTOF(vp); | |
2558 | struct proc *p = vfs_context_proc(context);; | |
2559 | kauth_cred_t cred = vfs_context_ucred(context); | |
2560 | int retval; | |
2561 | off_t bytesToAdd; | |
2562 | off_t actualBytesAdded; | |
2563 | off_t filebytes; | |
2564 | u_int32_t fileblocks; | |
2565 | int blksize; | |
2566 | struct hfsmount *hfsmp; | |
2567 | int lockflags; | |
2568 | ||
2569 | blksize = VTOVCB(vp)->blockSize; | |
2570 | fileblocks = fp->ff_blocks; | |
2571 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
2572 | ||
2573 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_START, | |
2574 | (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); | |
2575 | ||
2576 | if (length < 0) | |
2577 | return (EINVAL); | |
2578 | ||
2579 | /* This should only happen with a corrupt filesystem */ | |
2580 | if ((off_t)fp->ff_size < 0) | |
2581 | return (EINVAL); | |
2582 | ||
2583 | if ((!ISHFSPLUS(VTOVCB(vp))) && (length > (off_t)MAXHFSFILESIZE)) | |
2584 | return (EFBIG); | |
2585 | ||
2586 | hfsmp = VTOHFS(vp); | |
2587 | ||
2588 | retval = E_NONE; | |
2589 | ||
2590 | /* Files that are changing size are not hot file candidates. */ | |
2591 | if (hfsmp->hfc_stage == HFC_RECORDING) { | |
2592 | fp->ff_bytesread = 0; | |
2593 | } | |
2594 | ||
2595 | /* | |
2596 | * We cannot just check if fp->ff_size == length (as an optimization) | |
2597 | * since there may be extra physical blocks that also need truncation. | |
2598 | */ | |
2599 | #if QUOTA | |
2600 | if ((retval = hfs_getinoquota(cp))) | |
2601 | return(retval); | |
2602 | #endif /* QUOTA */ | |
2603 | ||
2604 | /* | |
2605 | * Lengthen the size of the file. We must ensure that the | |
2606 | * last byte of the file is allocated. Since the smallest | |
2607 | * value of ff_size is 0, length will be at least 1. | |
2608 | */ | |
2609 | if (length > (off_t)fp->ff_size) { | |
2610 | #if QUOTA | |
2611 | retval = hfs_chkdq(cp, (int64_t)(roundup(length - filebytes, blksize)), | |
2612 | cred, 0); | |
2613 | if (retval) | |
2614 | goto Err_Exit; | |
2615 | #endif /* QUOTA */ | |
2616 | /* | |
2617 | * If we don't have enough physical space then | |
2618 | * we need to extend the physical size. | |
2619 | */ | |
2620 | if (length > filebytes) { | |
2621 | int eflags; | |
2622 | u_int32_t blockHint = 0; | |
2623 | ||
2624 | /* All or nothing and don't round up to clumpsize. */ | |
2625 | eflags = kEFAllMask | kEFNoClumpMask; | |
2626 | ||
2627 | if (cred && suser(cred, NULL) != 0) | |
2628 | eflags |= kEFReserveMask; /* keep a reserve */ | |
2629 | ||
2630 | /* | |
2631 | * Allocate Journal and Quota files in metadata zone. | |
2632 | */ | |
2633 | if (filebytes == 0 && | |
2634 | hfsmp->hfs_flags & HFS_METADATA_ZONE && | |
2635 | hfs_virtualmetafile(cp)) { | |
2636 | eflags |= kEFMetadataMask; | |
2637 | blockHint = hfsmp->hfs_metazone_start; | |
2638 | } | |
2639 | if (hfs_start_transaction(hfsmp) != 0) { | |
2640 | retval = EINVAL; | |
2641 | goto Err_Exit; | |
2642 | } | |
2643 | ||
2644 | /* Protect extents b-tree and allocation bitmap */ | |
2645 | lockflags = SFL_BITMAP; | |
2646 | if (overflow_extents(fp)) | |
2647 | lockflags |= SFL_EXTENTS; | |
2648 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
2649 | ||
2650 | while ((length > filebytes) && (retval == E_NONE)) { | |
2651 | bytesToAdd = length - filebytes; | |
2652 | retval = MacToVFSError(ExtendFileC(VTOVCB(vp), | |
2653 | (FCB*)fp, | |
2654 | bytesToAdd, | |
2655 | blockHint, | |
2656 | eflags, | |
2657 | &actualBytesAdded)); | |
2658 | ||
2659 | filebytes = (off_t)fp->ff_blocks * (off_t)blksize; | |
2660 | if (actualBytesAdded == 0 && retval == E_NONE) { | |
2661 | if (length > filebytes) | |
2662 | length = filebytes; | |
2663 | break; | |
2664 | } | |
2665 | } /* endwhile */ | |
2666 | ||
2667 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2668 | ||
2669 | if (hfsmp->jnl) { | |
2670 | if (skipupdate) { | |
2671 | (void) hfs_minorupdate(vp); | |
2672 | } | |
2673 | else { | |
2674 | (void) hfs_update(vp, TRUE); | |
2675 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
2676 | } | |
2677 | } | |
2678 | ||
2679 | hfs_end_transaction(hfsmp); | |
2680 | ||
2681 | if (retval) | |
2682 | goto Err_Exit; | |
2683 | ||
2684 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, | |
2685 | (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); | |
2686 | } | |
2687 | ||
2688 | if (!(flags & IO_NOZEROFILL)) { | |
2689 | if (UBCINFOEXISTS(vp) && (vnode_issystem(vp) == 0) && retval == E_NONE) { | |
2690 | struct rl_entry *invalid_range; | |
2691 | off_t zero_limit; | |
2692 | ||
2693 | zero_limit = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; | |
2694 | if (length < zero_limit) zero_limit = length; | |
2695 | ||
2696 | if (length > (off_t)fp->ff_size) { | |
2697 | struct timeval tv; | |
2698 | ||
2699 | /* Extending the file: time to fill out the current last page w. zeroes? */ | |
2700 | if ((fp->ff_size & PAGE_MASK_64) && | |
2701 | (rl_scan(&fp->ff_invalidranges, fp->ff_size & ~PAGE_MASK_64, | |
2702 | fp->ff_size - 1, &invalid_range) == RL_NOOVERLAP)) { | |
2703 | ||
2704 | /* There's some valid data at the start of the (current) last page | |
2705 | of the file, so zero out the remainder of that page to ensure the | |
2706 | entire page contains valid data. Since there is no invalid range | |
2707 | possible past the (current) eof, there's no need to remove anything | |
2708 | from the invalid range list before calling cluster_write(): */ | |
2709 | hfs_unlock(cp); | |
2710 | retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit, | |
2711 | fp->ff_size, (off_t)0, | |
2712 | (flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); | |
2713 | hfs_lock(cp, HFS_FORCE_LOCK); | |
2714 | if (retval) goto Err_Exit; | |
2715 | ||
2716 | /* Merely invalidate the remaining area, if necessary: */ | |
2717 | if (length > zero_limit) { | |
2718 | microuptime(&tv); | |
2719 | rl_add(zero_limit, length - 1, &fp->ff_invalidranges); | |
2720 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; | |
2721 | } | |
2722 | } else { | |
2723 | /* The page containing the (current) eof is invalid: just add the | |
2724 | remainder of the page to the invalid list, along with the area | |
2725 | being newly allocated: | |
2726 | */ | |
2727 | microuptime(&tv); | |
2728 | rl_add(fp->ff_size, length - 1, &fp->ff_invalidranges); | |
2729 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; | |
2730 | }; | |
2731 | } | |
2732 | } else { | |
2733 | panic("hfs_truncate: invoked on non-UBC object?!"); | |
2734 | }; | |
2735 | } | |
2736 | cp->c_touch_modtime = TRUE; | |
2737 | fp->ff_size = length; | |
2738 | ||
2739 | } else { /* Shorten the size of the file */ | |
2740 | ||
2741 | if ((off_t)fp->ff_size > length) { | |
2742 | /* Any space previously marked as invalid is now irrelevant: */ | |
2743 | rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges); | |
2744 | } | |
2745 | ||
2746 | /* | |
2747 | * Account for any unmapped blocks. Note that the new | |
2748 | * file length can still end up with unmapped blocks. | |
2749 | */ | |
2750 | if (fp->ff_unallocblocks > 0) { | |
2751 | u_int32_t finalblks; | |
2752 | u_int32_t loanedBlocks; | |
2753 | ||
2754 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
2755 | ||
2756 | loanedBlocks = fp->ff_unallocblocks; | |
2757 | cp->c_blocks -= loanedBlocks; | |
2758 | fp->ff_blocks -= loanedBlocks; | |
2759 | fp->ff_unallocblocks = 0; | |
2760 | ||
2761 | hfsmp->loanedBlocks -= loanedBlocks; | |
2762 | ||
2763 | finalblks = (length + blksize - 1) / blksize; | |
2764 | if (finalblks > fp->ff_blocks) { | |
2765 | /* calculate required unmapped blocks */ | |
2766 | loanedBlocks = finalblks - fp->ff_blocks; | |
2767 | hfsmp->loanedBlocks += loanedBlocks; | |
2768 | ||
2769 | fp->ff_unallocblocks = loanedBlocks; | |
2770 | cp->c_blocks += loanedBlocks; | |
2771 | fp->ff_blocks += loanedBlocks; | |
2772 | } | |
2773 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
2774 | } | |
2775 | ||
2776 | /* | |
2777 | * For a TBE process the deallocation of the file blocks is | |
2778 | * delayed until the file is closed. And hfs_close calls | |
2779 | * truncate with the IO_NDELAY flag set. So when IO_NDELAY | |
2780 | * isn't set, we make sure this isn't a TBE process. | |
2781 | */ | |
2782 | if ((flags & IO_NDELAY) || (proc_tbe(p) == 0)) { | |
2783 | #if QUOTA | |
2784 | off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); | |
2785 | #endif /* QUOTA */ | |
2786 | if (hfs_start_transaction(hfsmp) != 0) { | |
2787 | retval = EINVAL; | |
2788 | goto Err_Exit; | |
2789 | } | |
2790 | ||
2791 | if (fp->ff_unallocblocks == 0) { | |
2792 | /* Protect extents b-tree and allocation bitmap */ | |
2793 | lockflags = SFL_BITMAP; | |
2794 | if (overflow_extents(fp)) | |
2795 | lockflags |= SFL_EXTENTS; | |
2796 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
2797 | ||
2798 | retval = MacToVFSError(TruncateFileC(VTOVCB(vp), | |
2799 | (FCB*)fp, length, false)); | |
2800 | ||
2801 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2802 | } | |
2803 | if (hfsmp->jnl) { | |
2804 | if (retval == 0) { | |
2805 | fp->ff_size = length; | |
2806 | } | |
2807 | if (skipupdate) { | |
2808 | (void) hfs_minorupdate(vp); | |
2809 | } | |
2810 | else { | |
2811 | (void) hfs_update(vp, TRUE); | |
2812 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
2813 | } | |
2814 | } | |
2815 | hfs_end_transaction(hfsmp); | |
2816 | ||
2817 | filebytes = (off_t)fp->ff_blocks * (off_t)blksize; | |
2818 | if (retval) | |
2819 | goto Err_Exit; | |
2820 | #if QUOTA | |
2821 | /* These are bytesreleased */ | |
2822 | (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); | |
2823 | #endif /* QUOTA */ | |
2824 | } | |
2825 | /* Only set update flag if the logical length changes */ | |
2826 | if ((off_t)fp->ff_size != length) | |
2827 | cp->c_touch_modtime = TRUE; | |
2828 | fp->ff_size = length; | |
2829 | } | |
2830 | if (cp->c_mode & (S_ISUID | S_ISGID)) { | |
2831 | if (!vfs_context_issuser(context)) { | |
2832 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
2833 | skipupdate = 0; | |
2834 | } | |
2835 | } | |
2836 | if (skipupdate) { | |
2837 | retval = hfs_minorupdate(vp); | |
2838 | } | |
2839 | else { | |
2840 | cp->c_touch_chgtime = TRUE; /* status changed */ | |
2841 | cp->c_touch_modtime = TRUE; /* file data was modified */ | |
2842 | retval = hfs_update(vp, MNT_WAIT); | |
2843 | } | |
2844 | if (retval) { | |
2845 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, | |
2846 | -1, -1, -1, retval, 0); | |
2847 | } | |
2848 | ||
2849 | Err_Exit: | |
2850 | ||
2851 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_END, | |
2852 | (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); | |
2853 | ||
2854 | return (retval); | |
2855 | } | |
2856 | ||
2857 | ||
2858 | ||
2859 | /* | |
2860 | * Truncate a cnode to at most length size, freeing (or adding) the | |
2861 | * disk blocks. | |
2862 | */ | |
2863 | __private_extern__ | |
2864 | int | |
2865 | hfs_truncate(struct vnode *vp, off_t length, int flags, int skipsetsize, | |
2866 | int skipupdate, vfs_context_t context) | |
2867 | { | |
2868 | struct filefork *fp = VTOF(vp); | |
2869 | off_t filebytes; | |
2870 | u_int32_t fileblocks; | |
2871 | int blksize, error = 0; | |
2872 | struct cnode *cp = VTOC(vp); | |
2873 | ||
2874 | /* Cannot truncate an HFS directory! */ | |
2875 | if (vnode_isdir(vp)) { | |
2876 | return (EISDIR); | |
2877 | } | |
2878 | /* A swap file cannot change size. */ | |
2879 | if (vnode_isswap(vp) && (length != 0)) { | |
2880 | return (EPERM); | |
2881 | } | |
2882 | ||
2883 | blksize = VTOVCB(vp)->blockSize; | |
2884 | fileblocks = fp->ff_blocks; | |
2885 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
2886 | ||
2887 | // | |
2888 | // Have to do this here so that we don't wind up with | |
2889 | // i/o pending for blocks that are about to be released | |
2890 | // if we truncate the file. | |
2891 | // | |
2892 | // If skipsetsize is set, then the caller is responsible | |
2893 | // for the ubc_setsize. | |
2894 | // | |
2895 | // Even if skipsetsize is set, if the length is zero we | |
2896 | // want to call ubc_setsize() because as of SnowLeopard | |
2897 | // it will no longer cause any page-ins and it will drop | |
2898 | // any dirty pages so that we don't do any i/o that we | |
2899 | // don't have to. This also prevents a race where i/o | |
2900 | // for truncated blocks may overwrite later data if the | |
2901 | // blocks get reallocated to a different file. | |
2902 | // | |
2903 | if (!skipsetsize || length == 0) | |
2904 | ubc_setsize(vp, length); | |
2905 | ||
2906 | // have to loop truncating or growing files that are | |
2907 | // really big because otherwise transactions can get | |
2908 | // enormous and consume too many kernel resources. | |
2909 | ||
2910 | if (length < filebytes) { | |
2911 | while (filebytes > length) { | |
2912 | if ((filebytes - length) > HFS_BIGFILE_SIZE && overflow_extents(fp)) { | |
2913 | filebytes -= HFS_BIGFILE_SIZE; | |
2914 | } else { | |
2915 | filebytes = length; | |
2916 | } | |
2917 | cp->c_flag |= C_FORCEUPDATE; | |
2918 | error = do_hfs_truncate(vp, filebytes, flags, skipupdate, context); | |
2919 | if (error) | |
2920 | break; | |
2921 | } | |
2922 | } else if (length > filebytes) { | |
2923 | while (filebytes < length) { | |
2924 | if ((length - filebytes) > HFS_BIGFILE_SIZE && overflow_extents(fp)) { | |
2925 | filebytes += HFS_BIGFILE_SIZE; | |
2926 | } else { | |
2927 | filebytes = length; | |
2928 | } | |
2929 | cp->c_flag |= C_FORCEUPDATE; | |
2930 | error = do_hfs_truncate(vp, filebytes, flags, skipupdate, context); | |
2931 | if (error) | |
2932 | break; | |
2933 | } | |
2934 | } else /* Same logical size */ { | |
2935 | ||
2936 | error = do_hfs_truncate(vp, length, flags, skipupdate, context); | |
2937 | } | |
2938 | /* Files that are changing size are not hot file candidates. */ | |
2939 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
2940 | fp->ff_bytesread = 0; | |
2941 | } | |
2942 | ||
2943 | return (error); | |
2944 | } | |
2945 | ||
2946 | ||
2947 | ||
2948 | /* | |
2949 | * Preallocate file storage space. | |
2950 | */ | |
2951 | int | |
2952 | hfs_vnop_allocate(struct vnop_allocate_args /* { | |
2953 | vnode_t a_vp; | |
2954 | off_t a_length; | |
2955 | u_int32_t a_flags; | |
2956 | off_t *a_bytesallocated; | |
2957 | off_t a_offset; | |
2958 | vfs_context_t a_context; | |
2959 | } */ *ap) | |
2960 | { | |
2961 | struct vnode *vp = ap->a_vp; | |
2962 | struct cnode *cp; | |
2963 | struct filefork *fp; | |
2964 | ExtendedVCB *vcb; | |
2965 | off_t length = ap->a_length; | |
2966 | off_t startingPEOF; | |
2967 | off_t moreBytesRequested; | |
2968 | off_t actualBytesAdded; | |
2969 | off_t filebytes; | |
2970 | u_int32_t fileblocks; | |
2971 | int retval, retval2; | |
2972 | u_int32_t blockHint; | |
2973 | u_int32_t extendFlags; /* For call to ExtendFileC */ | |
2974 | struct hfsmount *hfsmp; | |
2975 | kauth_cred_t cred = vfs_context_ucred(ap->a_context); | |
2976 | int lockflags; | |
2977 | ||
2978 | *(ap->a_bytesallocated) = 0; | |
2979 | ||
2980 | if (!vnode_isreg(vp)) | |
2981 | return (EISDIR); | |
2982 | if (length < (off_t)0) | |
2983 | return (EINVAL); | |
2984 | ||
2985 | cp = VTOC(vp); | |
2986 | ||
2987 | hfs_lock_truncate(cp, TRUE); | |
2988 | ||
2989 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK))) { | |
2990 | goto Err_Exit; | |
2991 | } | |
2992 | ||
2993 | fp = VTOF(vp); | |
2994 | hfsmp = VTOHFS(vp); | |
2995 | vcb = VTOVCB(vp); | |
2996 | ||
2997 | fileblocks = fp->ff_blocks; | |
2998 | filebytes = (off_t)fileblocks * (off_t)vcb->blockSize; | |
2999 | ||
3000 | if ((ap->a_flags & ALLOCATEFROMVOL) && (length < filebytes)) { | |
3001 | retval = EINVAL; | |
3002 | goto Err_Exit; | |
3003 | } | |
3004 | ||
3005 | /* Fill in the flags word for the call to Extend the file */ | |
3006 | ||
3007 | extendFlags = kEFNoClumpMask; | |
3008 | if (ap->a_flags & ALLOCATECONTIG) | |
3009 | extendFlags |= kEFContigMask; | |
3010 | if (ap->a_flags & ALLOCATEALL) | |
3011 | extendFlags |= kEFAllMask; | |
3012 | if (cred && suser(cred, NULL) != 0) | |
3013 | extendFlags |= kEFReserveMask; | |
3014 | if (hfs_virtualmetafile(cp)) | |
3015 | extendFlags |= kEFMetadataMask; | |
3016 | ||
3017 | retval = E_NONE; | |
3018 | blockHint = 0; | |
3019 | startingPEOF = filebytes; | |
3020 | ||
3021 | if (ap->a_flags & ALLOCATEFROMPEOF) | |
3022 | length += filebytes; | |
3023 | else if (ap->a_flags & ALLOCATEFROMVOL) | |
3024 | blockHint = ap->a_offset / VTOVCB(vp)->blockSize; | |
3025 | ||
3026 | /* If no changes are necesary, then we're done */ | |
3027 | if (filebytes == length) | |
3028 | goto Std_Exit; | |
3029 | ||
3030 | /* | |
3031 | * Lengthen the size of the file. We must ensure that the | |
3032 | * last byte of the file is allocated. Since the smallest | |
3033 | * value of filebytes is 0, length will be at least 1. | |
3034 | */ | |
3035 | if (length > filebytes) { | |
3036 | off_t total_bytes_added = 0, orig_request_size; | |
3037 | ||
3038 | orig_request_size = moreBytesRequested = length - filebytes; | |
3039 | ||
3040 | #if QUOTA | |
3041 | retval = hfs_chkdq(cp, | |
3042 | (int64_t)(roundup(moreBytesRequested, vcb->blockSize)), | |
3043 | cred, 0); | |
3044 | if (retval) | |
3045 | goto Err_Exit; | |
3046 | ||
3047 | #endif /* QUOTA */ | |
3048 | /* | |
3049 | * Metadata zone checks. | |
3050 | */ | |
3051 | if (hfsmp->hfs_flags & HFS_METADATA_ZONE) { | |
3052 | /* | |
3053 | * Allocate Journal and Quota files in metadata zone. | |
3054 | */ | |
3055 | if (hfs_virtualmetafile(cp)) { | |
3056 | blockHint = hfsmp->hfs_metazone_start; | |
3057 | } else if ((blockHint >= hfsmp->hfs_metazone_start) && | |
3058 | (blockHint <= hfsmp->hfs_metazone_end)) { | |
3059 | /* | |
3060 | * Move blockHint outside metadata zone. | |
3061 | */ | |
3062 | blockHint = hfsmp->hfs_metazone_end + 1; | |
3063 | } | |
3064 | } | |
3065 | ||
3066 | ||
3067 | while ((length > filebytes) && (retval == E_NONE)) { | |
3068 | off_t bytesRequested; | |
3069 | ||
3070 | if (hfs_start_transaction(hfsmp) != 0) { | |
3071 | retval = EINVAL; | |
3072 | goto Err_Exit; | |
3073 | } | |
3074 | ||
3075 | /* Protect extents b-tree and allocation bitmap */ | |
3076 | lockflags = SFL_BITMAP; | |
3077 | if (overflow_extents(fp)) | |
3078 | lockflags |= SFL_EXTENTS; | |
3079 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3080 | ||
3081 | if (moreBytesRequested >= HFS_BIGFILE_SIZE) { | |
3082 | bytesRequested = HFS_BIGFILE_SIZE; | |
3083 | } else { | |
3084 | bytesRequested = moreBytesRequested; | |
3085 | } | |
3086 | ||
3087 | if (extendFlags & kEFContigMask) { | |
3088 | // if we're on a sparse device, this will force it to do a | |
3089 | // full scan to find the space needed. | |
3090 | hfsmp->hfs_flags &= ~HFS_DID_CONTIG_SCAN; | |
3091 | } | |
3092 | ||
3093 | retval = MacToVFSError(ExtendFileC(vcb, | |
3094 | (FCB*)fp, | |
3095 | bytesRequested, | |
3096 | blockHint, | |
3097 | extendFlags, | |
3098 | &actualBytesAdded)); | |
3099 | ||
3100 | if (retval == E_NONE) { | |
3101 | *(ap->a_bytesallocated) += actualBytesAdded; | |
3102 | total_bytes_added += actualBytesAdded; | |
3103 | moreBytesRequested -= actualBytesAdded; | |
3104 | if (blockHint != 0) { | |
3105 | blockHint += actualBytesAdded / vcb->blockSize; | |
3106 | } | |
3107 | } | |
3108 | filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; | |
3109 | ||
3110 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3111 | ||
3112 | if (hfsmp->jnl) { | |
3113 | (void) hfs_update(vp, TRUE); | |
3114 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
3115 | } | |
3116 | ||
3117 | hfs_end_transaction(hfsmp); | |
3118 | } | |
3119 | ||
3120 | ||
3121 | /* | |
3122 | * if we get an error and no changes were made then exit | |
3123 | * otherwise we must do the hfs_update to reflect the changes | |
3124 | */ | |
3125 | if (retval && (startingPEOF == filebytes)) | |
3126 | goto Err_Exit; | |
3127 | ||
3128 | /* | |
3129 | * Adjust actualBytesAdded to be allocation block aligned, not | |
3130 | * clump size aligned. | |
3131 | * NOTE: So what we are reporting does not affect reality | |
3132 | * until the file is closed, when we truncate the file to allocation | |
3133 | * block size. | |
3134 | */ | |
3135 | if (total_bytes_added != 0 && orig_request_size < total_bytes_added) | |
3136 | *(ap->a_bytesallocated) = | |
3137 | roundup(orig_request_size, (off_t)vcb->blockSize); | |
3138 | ||
3139 | } else { /* Shorten the size of the file */ | |
3140 | ||
3141 | if (fp->ff_size > length) { | |
3142 | /* | |
3143 | * Any buffers that are past the truncation point need to be | |
3144 | * invalidated (to maintain buffer cache consistency). | |
3145 | */ | |
3146 | } | |
3147 | ||
3148 | retval = hfs_truncate(vp, length, 0, 0, 0, ap->a_context); | |
3149 | filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; | |
3150 | ||
3151 | /* | |
3152 | * if we get an error and no changes were made then exit | |
3153 | * otherwise we must do the hfs_update to reflect the changes | |
3154 | */ | |
3155 | if (retval && (startingPEOF == filebytes)) goto Err_Exit; | |
3156 | #if QUOTA | |
3157 | /* These are bytesreleased */ | |
3158 | (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); | |
3159 | #endif /* QUOTA */ | |
3160 | ||
3161 | if (fp->ff_size > filebytes) { | |
3162 | fp->ff_size = filebytes; | |
3163 | ||
3164 | hfs_unlock(cp); | |
3165 | ubc_setsize(vp, fp->ff_size); | |
3166 | hfs_lock(cp, HFS_FORCE_LOCK); | |
3167 | } | |
3168 | } | |
3169 | ||
3170 | Std_Exit: | |
3171 | cp->c_touch_chgtime = TRUE; | |
3172 | cp->c_touch_modtime = TRUE; | |
3173 | retval2 = hfs_update(vp, MNT_WAIT); | |
3174 | ||
3175 | if (retval == 0) | |
3176 | retval = retval2; | |
3177 | Err_Exit: | |
3178 | hfs_unlock_truncate(cp, TRUE); | |
3179 | hfs_unlock(cp); | |
3180 | return (retval); | |
3181 | } | |
3182 | ||
3183 | ||
3184 | /* | |
3185 | * Pagein for HFS filesystem | |
3186 | */ | |
3187 | int | |
3188 | hfs_vnop_pagein(struct vnop_pagein_args *ap) | |
3189 | /* | |
3190 | struct vnop_pagein_args { | |
3191 | vnode_t a_vp, | |
3192 | upl_t a_pl, | |
3193 | vm_offset_t a_pl_offset, | |
3194 | off_t a_f_offset, | |
3195 | size_t a_size, | |
3196 | int a_flags | |
3197 | vfs_context_t a_context; | |
3198 | }; | |
3199 | */ | |
3200 | { | |
3201 | vnode_t vp = ap->a_vp; | |
3202 | int error; | |
3203 | ||
3204 | #if HFS_COMPRESSION | |
3205 | if (VNODE_IS_RSRC(vp)) { | |
3206 | /* allow pageins of the resource fork */ | |
3207 | } else { | |
3208 | int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ | |
3209 | if (compressed) { | |
3210 | error = decmpfs_pagein_compressed(ap, &compressed, VTOCMP(vp)); | |
3211 | if (compressed) { | |
3212 | if (error == 0) { | |
3213 | /* successful page-in, update the access time */ | |
3214 | VTOC(vp)->c_touch_acctime = TRUE; | |
3215 | ||
3216 | /* compressed files are not hot file candidates */ | |
3217 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
3218 | VTOF(vp)->ff_bytesread = 0; | |
3219 | } | |
3220 | } | |
3221 | return error; | |
3222 | } | |
3223 | /* otherwise the file was converted back to a regular file while we were reading it */ | |
3224 | } | |
3225 | } | |
3226 | #endif | |
3227 | ||
3228 | error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, | |
3229 | ap->a_size, (off_t)VTOF(vp)->ff_size, ap->a_flags); | |
3230 | /* | |
3231 | * Keep track of blocks read. | |
3232 | */ | |
3233 | if (!vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) { | |
3234 | struct cnode *cp; | |
3235 | struct filefork *fp; | |
3236 | int bytesread; | |
3237 | int took_cnode_lock = 0; | |
3238 | ||
3239 | cp = VTOC(vp); | |
3240 | fp = VTOF(vp); | |
3241 | ||
3242 | if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE) | |
3243 | bytesread = fp->ff_size; | |
3244 | else | |
3245 | bytesread = ap->a_size; | |
3246 | ||
3247 | /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ | |
3248 | if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) { | |
3249 | hfs_lock(cp, HFS_FORCE_LOCK); | |
3250 | took_cnode_lock = 1; | |
3251 | } | |
3252 | /* | |
3253 | * If this file hasn't been seen since the start of | |
3254 | * the current sampling period then start over. | |
3255 | */ | |
3256 | if (cp->c_atime < VTOHFS(vp)->hfc_timebase) { | |
3257 | struct timeval tv; | |
3258 | ||
3259 | fp->ff_bytesread = bytesread; | |
3260 | microtime(&tv); | |
3261 | cp->c_atime = tv.tv_sec; | |
3262 | } else { | |
3263 | fp->ff_bytesread += bytesread; | |
3264 | } | |
3265 | cp->c_touch_acctime = TRUE; | |
3266 | if (took_cnode_lock) | |
3267 | hfs_unlock(cp); | |
3268 | } | |
3269 | return (error); | |
3270 | } | |
3271 | ||
3272 | /* | |
3273 | * Pageout for HFS filesystem. | |
3274 | */ | |
3275 | int | |
3276 | hfs_vnop_pageout(struct vnop_pageout_args *ap) | |
3277 | /* | |
3278 | struct vnop_pageout_args { | |
3279 | vnode_t a_vp, | |
3280 | upl_t a_pl, | |
3281 | vm_offset_t a_pl_offset, | |
3282 | off_t a_f_offset, | |
3283 | size_t a_size, | |
3284 | int a_flags | |
3285 | vfs_context_t a_context; | |
3286 | }; | |
3287 | */ | |
3288 | { | |
3289 | vnode_t vp = ap->a_vp; | |
3290 | struct cnode *cp; | |
3291 | struct filefork *fp; | |
3292 | int retval = 0; | |
3293 | off_t filesize; | |
3294 | upl_t upl; | |
3295 | upl_page_info_t* pl; | |
3296 | vm_offset_t a_pl_offset; | |
3297 | int a_flags; | |
3298 | int is_pageoutv2 = 0; | |
3299 | ||
3300 | cp = VTOC(vp); | |
3301 | fp = VTOF(vp); | |
3302 | ||
3303 | /* | |
3304 | * Figure out where the file ends, for pageout purposes. If | |
3305 | * ff_new_size > ff_size, then we're in the middle of extending the | |
3306 | * file via a write, so it is safe (and necessary) that we be able | |
3307 | * to pageout up to that point. | |
3308 | */ | |
3309 | filesize = fp->ff_size; | |
3310 | if (fp->ff_new_size > filesize) | |
3311 | filesize = fp->ff_new_size; | |
3312 | ||
3313 | a_flags = ap->a_flags; | |
3314 | a_pl_offset = ap->a_pl_offset; | |
3315 | ||
3316 | /* | |
3317 | * we can tell if we're getting the new or old behavior from the UPL | |
3318 | */ | |
3319 | if ((upl = ap->a_pl) == NULL) { | |
3320 | int request_flags; | |
3321 | ||
3322 | is_pageoutv2 = 1; | |
3323 | /* | |
3324 | * we're in control of any UPL we commit | |
3325 | * make sure someone hasn't accidentally passed in UPL_NOCOMMIT | |
3326 | */ | |
3327 | a_flags &= ~UPL_NOCOMMIT; | |
3328 | a_pl_offset = 0; | |
3329 | ||
3330 | /* | |
3331 | * take truncate lock (shared) to guard against | |
3332 | * zero-fill thru fsync interfering, but only for v2 | |
3333 | */ | |
3334 | hfs_lock_truncate(cp, 0); | |
3335 | ||
3336 | if (a_flags & UPL_MSYNC) { | |
3337 | request_flags = UPL_UBC_MSYNC | UPL_RET_ONLY_DIRTY; | |
3338 | } | |
3339 | else { | |
3340 | request_flags = UPL_UBC_PAGEOUT | UPL_RET_ONLY_DIRTY; | |
3341 | } | |
3342 | ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, request_flags); | |
3343 | ||
3344 | if (upl == (upl_t) NULL) { | |
3345 | retval = EINVAL; | |
3346 | goto pageout_done; | |
3347 | } | |
3348 | } | |
3349 | /* | |
3350 | * from this point forward upl points at the UPL we're working with | |
3351 | * it was either passed in or we succesfully created it | |
3352 | */ | |
3353 | ||
3354 | /* | |
3355 | * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own | |
3356 | * UPL instead of relying on the UPL passed into us. We go ahead and do that here, | |
3357 | * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for | |
3358 | * N dirty ranges in the UPL. Note that this is almost a direct copy of the | |
3359 | * logic in vnode_pageout except that we need to do it after grabbing the truncate | |
3360 | * lock in HFS so that we don't lock invert ourselves. | |
3361 | * | |
3362 | * Note that we can still get into this function on behalf of the default pager with | |
3363 | * non-V2 behavior (swapfiles). However in that case, we did not grab locks above | |
3364 | * since fsync and other writing threads will grab the locks, then mark the | |
3365 | * relevant pages as busy. But the pageout codepath marks the pages as busy, | |
3366 | * and THEN would attempt to grab the truncate lock, which would result in deadlock. So | |
3367 | * we do not try to grab anything for the pre-V2 case, which should only be accessed | |
3368 | * by the paging/VM system. | |
3369 | */ | |
3370 | ||
3371 | if (is_pageoutv2) { | |
3372 | off_t f_offset; | |
3373 | int offset; | |
3374 | int isize; | |
3375 | int pg_index; | |
3376 | int error; | |
3377 | int error_ret = 0; | |
3378 | ||
3379 | isize = ap->a_size; | |
3380 | f_offset = ap->a_f_offset; | |
3381 | ||
3382 | /* | |
3383 | * Scan from the back to find the last page in the UPL, so that we | |
3384 | * aren't looking at a UPL that may have already been freed by the | |
3385 | * preceding aborts/completions. | |
3386 | */ | |
3387 | for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { | |
3388 | if (upl_page_present(pl, --pg_index)) | |
3389 | break; | |
3390 | if (pg_index == 0) { | |
3391 | ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); | |
3392 | goto pageout_done; | |
3393 | } | |
3394 | } | |
3395 | ||
3396 | /* | |
3397 | * initialize the offset variables before we touch the UPL. | |
3398 | * a_f_offset is the position into the file, in bytes | |
3399 | * offset is the position into the UPL, in bytes | |
3400 | * pg_index is the pg# of the UPL we're operating on. | |
3401 | * isize is the offset into the UPL of the last non-clean page. | |
3402 | */ | |
3403 | isize = ((pg_index + 1) * PAGE_SIZE); | |
3404 | ||
3405 | offset = 0; | |
3406 | pg_index = 0; | |
3407 | ||
3408 | while (isize) { | |
3409 | int xsize; | |
3410 | int num_of_pages; | |
3411 | ||
3412 | if ( !upl_page_present(pl, pg_index)) { | |
3413 | /* | |
3414 | * we asked for RET_ONLY_DIRTY, so it's possible | |
3415 | * to get back empty slots in the UPL. | |
3416 | * just skip over them | |
3417 | */ | |
3418 | f_offset += PAGE_SIZE; | |
3419 | offset += PAGE_SIZE; | |
3420 | isize -= PAGE_SIZE; | |
3421 | pg_index++; | |
3422 | ||
3423 | continue; | |
3424 | } | |
3425 | if ( !upl_dirty_page(pl, pg_index)) { | |
3426 | panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index, upl); | |
3427 | } | |
3428 | ||
3429 | /* | |
3430 | * We know that we have at least one dirty page. | |
3431 | * Now checking to see how many in a row we have | |
3432 | */ | |
3433 | num_of_pages = 1; | |
3434 | xsize = isize - PAGE_SIZE; | |
3435 | ||
3436 | while (xsize) { | |
3437 | if ( !upl_dirty_page(pl, pg_index + num_of_pages)) | |
3438 | break; | |
3439 | num_of_pages++; | |
3440 | xsize -= PAGE_SIZE; | |
3441 | } | |
3442 | xsize = num_of_pages * PAGE_SIZE; | |
3443 | ||
3444 | if (!vnode_isswap(vp)) { | |
3445 | off_t end_of_range; | |
3446 | int tooklock; | |
3447 | ||
3448 | tooklock = 0; | |
3449 | ||
3450 | if (cp->c_lockowner != current_thread()) { | |
3451 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK))) { | |
3452 | /* | |
3453 | * we're in the v2 path, so we are the | |
3454 | * owner of the UPL... we may have already | |
3455 | * processed some of the UPL, so abort it | |
3456 | * from the current working offset to the | |
3457 | * end of the UPL | |
3458 | */ | |
3459 | ubc_upl_abort_range(upl, | |
3460 | offset, | |
3461 | ap->a_size - offset, | |
3462 | UPL_ABORT_FREE_ON_EMPTY); | |
3463 | goto pageout_done; | |
3464 | } | |
3465 | tooklock = 1; | |
3466 | } | |
3467 | end_of_range = f_offset + xsize - 1; | |
3468 | ||
3469 | if (end_of_range >= filesize) { | |
3470 | end_of_range = (off_t)(filesize - 1); | |
3471 | } | |
3472 | if (f_offset < filesize) { | |
3473 | rl_remove(f_offset, end_of_range, &fp->ff_invalidranges); | |
3474 | cp->c_flag |= C_MODIFIED; /* leof is dirty */ | |
3475 | } | |
3476 | if (tooklock) { | |
3477 | hfs_unlock(cp); | |
3478 | } | |
3479 | } | |
3480 | if ((error = cluster_pageout(vp, upl, offset, f_offset, | |
3481 | xsize, filesize, a_flags))) { | |
3482 | if (error_ret == 0) | |
3483 | error_ret = error; | |
3484 | } | |
3485 | f_offset += xsize; | |
3486 | offset += xsize; | |
3487 | isize -= xsize; | |
3488 | pg_index += num_of_pages; | |
3489 | } | |
3490 | /* capture errnos bubbled out of cluster_pageout if they occurred */ | |
3491 | if (error_ret != 0) { | |
3492 | retval = error_ret; | |
3493 | } | |
3494 | } /* end block for v2 pageout behavior */ | |
3495 | else { | |
3496 | if (!vnode_isswap(vp)) { | |
3497 | off_t end_of_range; | |
3498 | int tooklock = 0; | |
3499 | ||
3500 | if (cp->c_lockowner != current_thread()) { | |
3501 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK))) { | |
3502 | if (!(a_flags & UPL_NOCOMMIT)) { | |
3503 | ubc_upl_abort_range(upl, | |
3504 | a_pl_offset, | |
3505 | ap->a_size, | |
3506 | UPL_ABORT_FREE_ON_EMPTY); | |
3507 | } | |
3508 | goto pageout_done; | |
3509 | } | |
3510 | tooklock = 1; | |
3511 | } | |
3512 | end_of_range = ap->a_f_offset + ap->a_size - 1; | |
3513 | ||
3514 | if (end_of_range >= filesize) { | |
3515 | end_of_range = (off_t)(filesize - 1); | |
3516 | } | |
3517 | if (ap->a_f_offset < filesize) { | |
3518 | rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); | |
3519 | cp->c_flag |= C_MODIFIED; /* leof is dirty */ | |
3520 | } | |
3521 | ||
3522 | if (tooklock) { | |
3523 | hfs_unlock(cp); | |
3524 | } | |
3525 | } | |
3526 | /* | |
3527 | * just call cluster_pageout for old pre-v2 behavior | |
3528 | */ | |
3529 | retval = cluster_pageout(vp, upl, a_pl_offset, ap->a_f_offset, | |
3530 | ap->a_size, filesize, a_flags); | |
3531 | } | |
3532 | ||
3533 | /* | |
3534 | * If data was written, update the modification time of the file. | |
3535 | * If setuid or setgid bits are set and this process is not the | |
3536 | * superuser then clear the setuid and setgid bits as a precaution | |
3537 | * against tampering. | |
3538 | */ | |
3539 | if (retval == 0) { | |
3540 | cp->c_touch_modtime = TRUE; | |
3541 | cp->c_touch_chgtime = TRUE; | |
3542 | if ((cp->c_mode & (S_ISUID | S_ISGID)) && | |
3543 | (vfs_context_suser(ap->a_context) != 0)) { | |
3544 | hfs_lock(cp, HFS_FORCE_LOCK); | |
3545 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
3546 | hfs_unlock(cp); | |
3547 | } | |
3548 | } | |
3549 | ||
3550 | pageout_done: | |
3551 | if (is_pageoutv2) { | |
3552 | /* release truncate lock (shared) */ | |
3553 | hfs_unlock_truncate(cp, 0); | |
3554 | } | |
3555 | return (retval); | |
3556 | } | |
3557 | ||
3558 | /* | |
3559 | * Intercept B-Tree node writes to unswap them if necessary. | |
3560 | */ | |
3561 | int | |
3562 | hfs_vnop_bwrite(struct vnop_bwrite_args *ap) | |
3563 | { | |
3564 | int retval = 0; | |
3565 | register struct buf *bp = ap->a_bp; | |
3566 | register struct vnode *vp = buf_vnode(bp); | |
3567 | BlockDescriptor block; | |
3568 | ||
3569 | /* Trap B-Tree writes */ | |
3570 | if ((VTOC(vp)->c_fileid == kHFSExtentsFileID) || | |
3571 | (VTOC(vp)->c_fileid == kHFSCatalogFileID) || | |
3572 | (VTOC(vp)->c_fileid == kHFSAttributesFileID) || | |
3573 | (vp == VTOHFS(vp)->hfc_filevp)) { | |
3574 | ||
3575 | /* | |
3576 | * Swap and validate the node if it is in native byte order. | |
3577 | * This is always be true on big endian, so we always validate | |
3578 | * before writing here. On little endian, the node typically has | |
3579 | * been swapped and validated when it was written to the journal, | |
3580 | * so we won't do anything here. | |
3581 | */ | |
3582 | if (((u_int16_t *)((char *)buf_dataptr(bp) + buf_count(bp) - 2))[0] == 0x000e) { | |
3583 | /* Prepare the block pointer */ | |
3584 | block.blockHeader = bp; | |
3585 | block.buffer = (char *)buf_dataptr(bp); | |
3586 | block.blockNum = buf_lblkno(bp); | |
3587 | /* not found in cache ==> came from disk */ | |
3588 | block.blockReadFromDisk = (buf_fromcache(bp) == 0); | |
3589 | block.blockSize = buf_count(bp); | |
3590 | ||
3591 | /* Endian un-swap B-Tree node */ | |
3592 | retval = hfs_swap_BTNode (&block, vp, kSwapBTNodeHostToBig, false); | |
3593 | if (retval) | |
3594 | panic("hfs_vnop_bwrite: about to write corrupt node!\n"); | |
3595 | } | |
3596 | } | |
3597 | ||
3598 | /* This buffer shouldn't be locked anymore but if it is clear it */ | |
3599 | if ((buf_flags(bp) & B_LOCKED)) { | |
3600 | // XXXdbg | |
3601 | if (VTOHFS(vp)->jnl) { | |
3602 | panic("hfs: CLEARING the lock bit on bp %p\n", bp); | |
3603 | } | |
3604 | buf_clearflags(bp, B_LOCKED); | |
3605 | } | |
3606 | retval = vn_bwrite (ap); | |
3607 | ||
3608 | return (retval); | |
3609 | } | |
3610 | ||
3611 | /* | |
3612 | * Relocate a file to a new location on disk | |
3613 | * cnode must be locked on entry | |
3614 | * | |
3615 | * Relocation occurs by cloning the file's data from its | |
3616 | * current set of blocks to a new set of blocks. During | |
3617 | * the relocation all of the blocks (old and new) are | |
3618 | * owned by the file. | |
3619 | * | |
3620 | * ----------------- | |
3621 | * |///////////////| | |
3622 | * ----------------- | |
3623 | * 0 N (file offset) | |
3624 | * | |
3625 | * ----------------- ----------------- | |
3626 | * |///////////////| | | STEP 1 (acquire new blocks) | |
3627 | * ----------------- ----------------- | |
3628 | * 0 N N+1 2N | |
3629 | * | |
3630 | * ----------------- ----------------- | |
3631 | * |///////////////| |///////////////| STEP 2 (clone data) | |
3632 | * ----------------- ----------------- | |
3633 | * 0 N N+1 2N | |
3634 | * | |
3635 | * ----------------- | |
3636 | * |///////////////| STEP 3 (head truncate blocks) | |
3637 | * ----------------- | |
3638 | * 0 N | |
3639 | * | |
3640 | * During steps 2 and 3 page-outs to file offsets less | |
3641 | * than or equal to N are suspended. | |
3642 | * | |
3643 | * During step 3 page-ins to the file get suspended. | |
3644 | */ | |
3645 | __private_extern__ | |
3646 | int | |
3647 | hfs_relocate(struct vnode *vp, u_int32_t blockHint, kauth_cred_t cred, | |
3648 | struct proc *p) | |
3649 | { | |
3650 | struct cnode *cp; | |
3651 | struct filefork *fp; | |
3652 | struct hfsmount *hfsmp; | |
3653 | u_int32_t headblks; | |
3654 | u_int32_t datablks; | |
3655 | u_int32_t blksize; | |
3656 | u_int32_t growsize; | |
3657 | u_int32_t nextallocsave; | |
3658 | daddr64_t sector_a, sector_b; | |
3659 | int eflags; | |
3660 | off_t newbytes; | |
3661 | int retval; | |
3662 | int lockflags = 0; | |
3663 | int took_trunc_lock = 0; | |
3664 | int started_tr = 0; | |
3665 | enum vtype vnodetype; | |
3666 | ||
3667 | vnodetype = vnode_vtype(vp); | |
3668 | if (vnodetype != VREG && vnodetype != VLNK) { | |
3669 | return (EPERM); | |
3670 | } | |
3671 | ||
3672 | hfsmp = VTOHFS(vp); | |
3673 | if (hfsmp->hfs_flags & HFS_FRAGMENTED_FREESPACE) { | |
3674 | return (ENOSPC); | |
3675 | } | |
3676 | ||
3677 | cp = VTOC(vp); | |
3678 | fp = VTOF(vp); | |
3679 | if (fp->ff_unallocblocks) | |
3680 | return (EINVAL); | |
3681 | blksize = hfsmp->blockSize; | |
3682 | if (blockHint == 0) | |
3683 | blockHint = hfsmp->nextAllocation; | |
3684 | ||
3685 | if ((fp->ff_size > 0x7fffffff) || | |
3686 | ((fp->ff_size > blksize) && vnodetype == VLNK)) { | |
3687 | return (EFBIG); | |
3688 | } | |
3689 | ||
3690 | // | |
3691 | // We do not believe that this call to hfs_fsync() is | |
3692 | // necessary and it causes a journal transaction | |
3693 | // deadlock so we are removing it. | |
3694 | // | |
3695 | //if (vnodetype == VREG && !vnode_issystem(vp)) { | |
3696 | // retval = hfs_fsync(vp, MNT_WAIT, 0, p); | |
3697 | // if (retval) | |
3698 | // return (retval); | |
3699 | //} | |
3700 | ||
3701 | if (!vnode_issystem(vp) && (vnodetype != VLNK)) { | |
3702 | hfs_unlock(cp); | |
3703 | hfs_lock_truncate(cp, TRUE); | |
3704 | /* Force lock since callers expects lock to be held. */ | |
3705 | if ((retval = hfs_lock(cp, HFS_FORCE_LOCK))) { | |
3706 | hfs_unlock_truncate(cp, TRUE); | |
3707 | return (retval); | |
3708 | } | |
3709 | /* No need to continue if file was removed. */ | |
3710 | if (cp->c_flag & C_NOEXISTS) { | |
3711 | hfs_unlock_truncate(cp, TRUE); | |
3712 | return (ENOENT); | |
3713 | } | |
3714 | took_trunc_lock = 1; | |
3715 | } | |
3716 | headblks = fp->ff_blocks; | |
3717 | datablks = howmany(fp->ff_size, blksize); | |
3718 | growsize = datablks * blksize; | |
3719 | eflags = kEFContigMask | kEFAllMask | kEFNoClumpMask; | |
3720 | if (blockHint >= hfsmp->hfs_metazone_start && | |
3721 | blockHint <= hfsmp->hfs_metazone_end) | |
3722 | eflags |= kEFMetadataMask; | |
3723 | ||
3724 | if (hfs_start_transaction(hfsmp) != 0) { | |
3725 | if (took_trunc_lock) | |
3726 | hfs_unlock_truncate(cp, TRUE); | |
3727 | return (EINVAL); | |
3728 | } | |
3729 | started_tr = 1; | |
3730 | /* | |
3731 | * Protect the extents b-tree and the allocation bitmap | |
3732 | * during MapFileBlockC and ExtendFileC operations. | |
3733 | */ | |
3734 | lockflags = SFL_BITMAP; | |
3735 | if (overflow_extents(fp)) | |
3736 | lockflags |= SFL_EXTENTS; | |
3737 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3738 | ||
3739 | retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize - 1, §or_a, NULL); | |
3740 | if (retval) { | |
3741 | retval = MacToVFSError(retval); | |
3742 | goto out; | |
3743 | } | |
3744 | ||
3745 | /* | |
3746 | * STEP 1 - acquire new allocation blocks. | |
3747 | */ | |
3748 | nextallocsave = hfsmp->nextAllocation; | |
3749 | retval = ExtendFileC(hfsmp, (FCB*)fp, growsize, blockHint, eflags, &newbytes); | |
3750 | if (eflags & kEFMetadataMask) { | |
3751 | HFS_MOUNT_LOCK(hfsmp, TRUE); | |
3752 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, nextallocsave); | |
3753 | MarkVCBDirty(hfsmp); | |
3754 | HFS_MOUNT_UNLOCK(hfsmp, TRUE); | |
3755 | } | |
3756 | ||
3757 | retval = MacToVFSError(retval); | |
3758 | if (retval == 0) { | |
3759 | cp->c_flag |= C_MODIFIED; | |
3760 | if (newbytes < growsize) { | |
3761 | retval = ENOSPC; | |
3762 | goto restore; | |
3763 | } else if (fp->ff_blocks < (headblks + datablks)) { | |
3764 | printf("hfs_relocate: allocation failed"); | |
3765 | retval = ENOSPC; | |
3766 | goto restore; | |
3767 | } | |
3768 | ||
3769 | retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize, §or_b, NULL); | |
3770 | if (retval) { | |
3771 | retval = MacToVFSError(retval); | |
3772 | } else if ((sector_a + 1) == sector_b) { | |
3773 | retval = ENOSPC; | |
3774 | goto restore; | |
3775 | } else if ((eflags & kEFMetadataMask) && | |
3776 | ((((u_int64_t)sector_b * hfsmp->hfs_logical_block_size) / blksize) > | |
3777 | hfsmp->hfs_metazone_end)) { | |
3778 | #if 0 | |
3779 | const char * filestr; | |
3780 | char emptystr = '\0'; | |
3781 | ||
3782 | if (cp->c_desc.cd_nameptr != NULL) { | |
3783 | filestr = (const char *)&cp->c_desc.cd_nameptr[0]; | |
3784 | } else if (vnode_name(vp) != NULL) { | |
3785 | filestr = vnode_name(vp); | |
3786 | } else { | |
3787 | filestr = &emptystr; | |
3788 | } | |
3789 | #endif | |
3790 | retval = ENOSPC; | |
3791 | goto restore; | |
3792 | } | |
3793 | } | |
3794 | /* Done with system locks and journal for now. */ | |
3795 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3796 | lockflags = 0; | |
3797 | hfs_end_transaction(hfsmp); | |
3798 | started_tr = 0; | |
3799 | ||
3800 | if (retval) { | |
3801 | /* | |
3802 | * Check to see if failure is due to excessive fragmentation. | |
3803 | */ | |
3804 | if ((retval == ENOSPC) && | |
3805 | (hfs_freeblks(hfsmp, 0) > (datablks * 2))) { | |
3806 | hfsmp->hfs_flags |= HFS_FRAGMENTED_FREESPACE; | |
3807 | } | |
3808 | goto out; | |
3809 | } | |
3810 | /* | |
3811 | * STEP 2 - clone file data into the new allocation blocks. | |
3812 | */ | |
3813 | ||
3814 | if (vnodetype == VLNK) | |
3815 | retval = hfs_clonelink(vp, blksize, cred, p); | |
3816 | else if (vnode_issystem(vp)) | |
3817 | retval = hfs_clonesysfile(vp, headblks, datablks, blksize, cred, p); | |
3818 | else | |
3819 | retval = hfs_clonefile(vp, headblks, datablks, blksize); | |
3820 | ||
3821 | /* Start transaction for step 3 or for a restore. */ | |
3822 | if (hfs_start_transaction(hfsmp) != 0) { | |
3823 | retval = EINVAL; | |
3824 | goto out; | |
3825 | } | |
3826 | started_tr = 1; | |
3827 | if (retval) | |
3828 | goto restore; | |
3829 | ||
3830 | /* | |
3831 | * STEP 3 - switch to cloned data and remove old blocks. | |
3832 | */ | |
3833 | lockflags = SFL_BITMAP; | |
3834 | if (overflow_extents(fp)) | |
3835 | lockflags |= SFL_EXTENTS; | |
3836 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3837 | ||
3838 | retval = HeadTruncateFile(hfsmp, (FCB*)fp, headblks); | |
3839 | ||
3840 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3841 | lockflags = 0; | |
3842 | if (retval) | |
3843 | goto restore; | |
3844 | out: | |
3845 | if (took_trunc_lock) | |
3846 | hfs_unlock_truncate(cp, TRUE); | |
3847 | ||
3848 | if (lockflags) { | |
3849 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3850 | lockflags = 0; | |
3851 | } | |
3852 | ||
3853 | /* Push cnode's new extent data to disk. */ | |
3854 | if (retval == 0) { | |
3855 | (void) hfs_update(vp, MNT_WAIT); | |
3856 | } | |
3857 | if (hfsmp->jnl) { | |
3858 | if (cp->c_cnid < kHFSFirstUserCatalogNodeID) | |
3859 | (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); | |
3860 | else | |
3861 | (void) hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); | |
3862 | } | |
3863 | exit: | |
3864 | if (started_tr) | |
3865 | hfs_end_transaction(hfsmp); | |
3866 | ||
3867 | return (retval); | |
3868 | ||
3869 | restore: | |
3870 | if (fp->ff_blocks == headblks) { | |
3871 | if (took_trunc_lock) | |
3872 | hfs_unlock_truncate(cp, TRUE); | |
3873 | goto exit; | |
3874 | } | |
3875 | /* | |
3876 | * Give back any newly allocated space. | |
3877 | */ | |
3878 | if (lockflags == 0) { | |
3879 | lockflags = SFL_BITMAP; | |
3880 | if (overflow_extents(fp)) | |
3881 | lockflags |= SFL_EXTENTS; | |
3882 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3883 | } | |
3884 | ||
3885 | (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, false); | |
3886 | ||
3887 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3888 | lockflags = 0; | |
3889 | ||
3890 | if (took_trunc_lock) | |
3891 | hfs_unlock_truncate(cp, TRUE); | |
3892 | goto exit; | |
3893 | } | |
3894 | ||
3895 | ||
3896 | /* | |
3897 | * Clone a symlink. | |
3898 | * | |
3899 | */ | |
3900 | static int | |
3901 | hfs_clonelink(struct vnode *vp, int blksize, kauth_cred_t cred, __unused struct proc *p) | |
3902 | { | |
3903 | struct buf *head_bp = NULL; | |
3904 | struct buf *tail_bp = NULL; | |
3905 | int error; | |
3906 | ||
3907 | ||
3908 | error = (int)buf_meta_bread(vp, (daddr64_t)0, blksize, cred, &head_bp); | |
3909 | if (error) | |
3910 | goto out; | |
3911 | ||
3912 | tail_bp = buf_getblk(vp, (daddr64_t)1, blksize, 0, 0, BLK_META); | |
3913 | if (tail_bp == NULL) { | |
3914 | error = EIO; | |
3915 | goto out; | |
3916 | } | |
3917 | bcopy((char *)buf_dataptr(head_bp), (char *)buf_dataptr(tail_bp), blksize); | |
3918 | error = (int)buf_bwrite(tail_bp); | |
3919 | out: | |
3920 | if (head_bp) { | |
3921 | buf_markinvalid(head_bp); | |
3922 | buf_brelse(head_bp); | |
3923 | } | |
3924 | (void) buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0); | |
3925 | ||
3926 | return (error); | |
3927 | } | |
3928 | ||
3929 | /* | |
3930 | * Clone a file's data within the file. | |
3931 | * | |
3932 | */ | |
3933 | static int | |
3934 | hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize) | |
3935 | { | |
3936 | caddr_t bufp; | |
3937 | size_t bufsize; | |
3938 | size_t copysize; | |
3939 | size_t iosize; | |
3940 | size_t offset; | |
3941 | off_t writebase; | |
3942 | uio_t auio; | |
3943 | int error = 0; | |
3944 | ||
3945 | writebase = blkstart * blksize; | |
3946 | copysize = blkcnt * blksize; | |
3947 | iosize = bufsize = MIN(copysize, 128 * 1024); | |
3948 | offset = 0; | |
3949 | ||
3950 | if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { | |
3951 | return (ENOMEM); | |
3952 | } | |
3953 | hfs_unlock(VTOC(vp)); | |
3954 | ||
3955 | auio = uio_create(1, 0, UIO_SYSSPACE, UIO_READ); | |
3956 | ||
3957 | while (offset < copysize) { | |
3958 | iosize = MIN(copysize - offset, iosize); | |
3959 | ||
3960 | uio_reset(auio, offset, UIO_SYSSPACE, UIO_READ); | |
3961 | uio_addiov(auio, (uintptr_t)bufp, iosize); | |
3962 | ||
3963 | error = cluster_read(vp, auio, copysize, IO_NOCACHE); | |
3964 | if (error) { | |
3965 | printf("hfs_clonefile: cluster_read failed - %d\n", error); | |
3966 | break; | |
3967 | } | |
3968 | if (uio_resid(auio) != 0) { | |
3969 | printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", uio_resid(auio)); | |
3970 | error = EIO; | |
3971 | break; | |
3972 | } | |
3973 | ||
3974 | uio_reset(auio, writebase + offset, UIO_SYSSPACE, UIO_WRITE); | |
3975 | uio_addiov(auio, (uintptr_t)bufp, iosize); | |
3976 | ||
3977 | error = cluster_write(vp, auio, writebase + offset, | |
3978 | writebase + offset + iosize, | |
3979 | uio_offset(auio), 0, IO_NOCACHE | IO_SYNC); | |
3980 | if (error) { | |
3981 | printf("hfs_clonefile: cluster_write failed - %d\n", error); | |
3982 | break; | |
3983 | } | |
3984 | if (uio_resid(auio) != 0) { | |
3985 | printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n"); | |
3986 | error = EIO; | |
3987 | break; | |
3988 | } | |
3989 | offset += iosize; | |
3990 | } | |
3991 | uio_free(auio); | |
3992 | ||
3993 | if ((blksize & PAGE_MASK)) { | |
3994 | /* | |
3995 | * since the copy may not have started on a PAGE | |
3996 | * boundary (or may not have ended on one), we | |
3997 | * may have pages left in the cache since NOCACHE | |
3998 | * will let partially written pages linger... | |
3999 | * lets just flush the entire range to make sure | |
4000 | * we don't have any pages left that are beyond | |
4001 | * (or intersect) the real LEOF of this file | |
4002 | */ | |
4003 | ubc_msync(vp, writebase, writebase + offset, NULL, UBC_INVALIDATE | UBC_PUSHDIRTY); | |
4004 | } else { | |
4005 | /* | |
4006 | * No need to call ubc_sync_range or hfs_invalbuf | |
4007 | * since the file was copied using IO_NOCACHE and | |
4008 | * the copy was done starting and ending on a page | |
4009 | * boundary in the file. | |
4010 | */ | |
4011 | } | |
4012 | kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); | |
4013 | ||
4014 | hfs_lock(VTOC(vp), HFS_FORCE_LOCK); | |
4015 | return (error); | |
4016 | } | |
4017 | ||
4018 | /* | |
4019 | * Clone a system (metadata) file. | |
4020 | * | |
4021 | */ | |
4022 | static int | |
4023 | hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, | |
4024 | kauth_cred_t cred, struct proc *p) | |
4025 | { | |
4026 | caddr_t bufp; | |
4027 | char * offset; | |
4028 | size_t bufsize; | |
4029 | size_t iosize; | |
4030 | struct buf *bp = NULL; | |
4031 | daddr64_t blkno; | |
4032 | daddr64_t blk; | |
4033 | daddr64_t start_blk; | |
4034 | daddr64_t last_blk; | |
4035 | int breadcnt; | |
4036 | int i; | |
4037 | int error = 0; | |
4038 | ||
4039 | ||
4040 | iosize = GetLogicalBlockSize(vp); | |
4041 | bufsize = MIN(blkcnt * blksize, 1024 * 1024) & ~(iosize - 1); | |
4042 | breadcnt = bufsize / iosize; | |
4043 | ||
4044 | if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { | |
4045 | return (ENOMEM); | |
4046 | } | |
4047 | start_blk = ((daddr64_t)blkstart * blksize) / iosize; | |
4048 | last_blk = ((daddr64_t)blkcnt * blksize) / iosize; | |
4049 | blkno = 0; | |
4050 | ||
4051 | while (blkno < last_blk) { | |
4052 | /* | |
4053 | * Read up to a megabyte | |
4054 | */ | |
4055 | offset = bufp; | |
4056 | for (i = 0, blk = blkno; (i < breadcnt) && (blk < last_blk); ++i, ++blk) { | |
4057 | error = (int)buf_meta_bread(vp, blk, iosize, cred, &bp); | |
4058 | if (error) { | |
4059 | printf("hfs_clonesysfile: meta_bread error %d\n", error); | |
4060 | goto out; | |
4061 | } | |
4062 | if (buf_count(bp) != iosize) { | |
4063 | printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp)); | |
4064 | goto out; | |
4065 | } | |
4066 | bcopy((char *)buf_dataptr(bp), offset, iosize); | |
4067 | ||
4068 | buf_markinvalid(bp); | |
4069 | buf_brelse(bp); | |
4070 | bp = NULL; | |
4071 | ||
4072 | offset += iosize; | |
4073 | } | |
4074 | ||
4075 | /* | |
4076 | * Write up to a megabyte | |
4077 | */ | |
4078 | offset = bufp; | |
4079 | for (i = 0; (i < breadcnt) && (blkno < last_blk); ++i, ++blkno) { | |
4080 | bp = buf_getblk(vp, start_blk + blkno, iosize, 0, 0, BLK_META); | |
4081 | if (bp == NULL) { | |
4082 | printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk + blkno); | |
4083 | error = EIO; | |
4084 | goto out; | |
4085 | } | |
4086 | bcopy(offset, (char *)buf_dataptr(bp), iosize); | |
4087 | error = (int)buf_bwrite(bp); | |
4088 | bp = NULL; | |
4089 | if (error) | |
4090 | goto out; | |
4091 | offset += iosize; | |
4092 | } | |
4093 | } | |
4094 | out: | |
4095 | if (bp) { | |
4096 | buf_brelse(bp); | |
4097 | } | |
4098 | ||
4099 | kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); | |
4100 | ||
4101 | error = hfs_fsync(vp, MNT_WAIT, 0, p); | |
4102 | ||
4103 | return (error); | |
4104 | } |