]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * File: kern/clock.c | |
27 | * Purpose: Routines for the creation and use of kernel | |
28 | * alarm clock services. This file and the ipc | |
29 | * routines in kern/ipc_clock.c constitute the | |
30 | * machine-independent clock service layer. | |
31 | */ | |
32 | ||
33 | #include <cpus.h> | |
34 | #include <mach_host.h> | |
35 | ||
36 | #include <mach/boolean.h> | |
37 | #include <mach/processor_info.h> | |
38 | #include <mach/vm_param.h> | |
39 | #include <machine/mach_param.h> | |
40 | #include <kern/cpu_number.h> | |
41 | #include <kern/misc_protos.h> | |
42 | #include <kern/lock.h> | |
43 | #include <kern/host.h> | |
44 | #include <kern/spl.h> | |
45 | #include <kern/thread.h> | |
46 | #include <kern/thread_swap.h> | |
47 | #include <kern/ipc_host.h> | |
48 | #include <kern/clock.h> | |
49 | #include <kern/zalloc.h> | |
50 | #include <ipc/ipc_port.h> | |
51 | ||
52 | #include <mach/mach_syscalls.h> | |
53 | #include <mach/clock_reply.h> | |
54 | #include <mach/mach_time.h> | |
55 | ||
56 | #include <kern/mk_timer.h> | |
57 | ||
58 | /* | |
59 | * Exported interface | |
60 | */ | |
61 | ||
62 | #include <mach/clock_server.h> | |
63 | #include <mach/mach_host_server.h> | |
64 | ||
65 | /* local data declarations */ | |
66 | decl_simple_lock_data(static,ClockLock) /* clock system synchronization */ | |
67 | static struct zone *alarm_zone; /* zone for user alarms */ | |
68 | static struct alarm *alrmfree; /* alarm free list pointer */ | |
69 | static struct alarm *alrmdone; /* alarm done list pointer */ | |
70 | static long alrm_seqno; /* uniquely identifies alarms */ | |
71 | static thread_call_data_t alarm_deliver; | |
72 | ||
73 | decl_simple_lock_data(static,calend_adjlock) | |
74 | static int64_t calend_adjtotal; | |
75 | static uint32_t calend_adjdelta; | |
76 | ||
77 | static timer_call_data_t calend_adjcall; | |
78 | static uint64_t calend_adjinterval, calend_adjdeadline; | |
79 | ||
80 | /* backwards compatibility */ | |
81 | int hz = HZ; /* GET RID OF THIS !!! */ | |
82 | int tick = (1000000 / HZ); /* GET RID OF THIS !!! */ | |
83 | ||
84 | /* external declarations */ | |
85 | extern struct clock clock_list[]; | |
86 | extern int clock_count; | |
87 | ||
88 | /* local clock subroutines */ | |
89 | static | |
90 | void flush_alarms( | |
91 | clock_t clock); | |
92 | ||
93 | static | |
94 | void post_alarm( | |
95 | clock_t clock, | |
96 | alarm_t alarm); | |
97 | ||
98 | static | |
99 | int check_time( | |
100 | alarm_type_t alarm_type, | |
101 | mach_timespec_t *alarm_time, | |
102 | mach_timespec_t *clock_time); | |
103 | ||
104 | static | |
105 | void clock_alarm_deliver( | |
106 | thread_call_param_t p0, | |
107 | thread_call_param_t p1); | |
108 | ||
109 | static | |
110 | void clock_calend_adjust( | |
111 | timer_call_param_t p0, | |
112 | timer_call_param_t p1); | |
113 | ||
114 | /* | |
115 | * Macros to lock/unlock clock system. | |
116 | */ | |
117 | #define LOCK_CLOCK(s) \ | |
118 | s = splclock(); \ | |
119 | simple_lock(&ClockLock); | |
120 | ||
121 | #define UNLOCK_CLOCK(s) \ | |
122 | simple_unlock(&ClockLock); \ | |
123 | splx(s); | |
124 | ||
125 | /* | |
126 | * Configure the clock system. (Not sure if we need this, | |
127 | * as separate from clock_init()). | |
128 | */ | |
129 | void | |
130 | clock_config(void) | |
131 | { | |
132 | clock_t clock; | |
133 | register int i; | |
134 | ||
135 | if (cpu_number() != master_cpu) | |
136 | panic("clock_config"); | |
137 | ||
138 | /* | |
139 | * Configure clock devices. | |
140 | */ | |
141 | simple_lock_init(&calend_adjlock, ETAP_MISC_CLOCK); | |
142 | simple_lock_init(&ClockLock, ETAP_MISC_CLOCK); | |
143 | for (i = 0; i < clock_count; i++) { | |
144 | clock = &clock_list[i]; | |
145 | if (clock->cl_ops) { | |
146 | if ((*clock->cl_ops->c_config)() == 0) | |
147 | clock->cl_ops = 0; | |
148 | } | |
149 | } | |
150 | ||
151 | /* start alarm sequence numbers at 0 */ | |
152 | alrm_seqno = 0; | |
153 | } | |
154 | ||
155 | /* | |
156 | * Initialize the clock system. | |
157 | */ | |
158 | void | |
159 | clock_init(void) | |
160 | { | |
161 | clock_t clock; | |
162 | register int i; | |
163 | ||
164 | /* | |
165 | * Initialize basic clock structures. | |
166 | */ | |
167 | for (i = 0; i < clock_count; i++) { | |
168 | clock = &clock_list[i]; | |
169 | if (clock->cl_ops) | |
170 | (*clock->cl_ops->c_init)(); | |
171 | } | |
172 | } | |
173 | ||
174 | /* | |
175 | * Initialize the clock ipc service facility. | |
176 | */ | |
177 | void | |
178 | clock_service_create(void) | |
179 | { | |
180 | clock_t clock; | |
181 | register int i; | |
182 | ||
183 | mk_timer_initialize(); | |
184 | ||
185 | /* | |
186 | * Initialize ipc clock services. | |
187 | */ | |
188 | for (i = 0; i < clock_count; i++) { | |
189 | clock = &clock_list[i]; | |
190 | if (clock->cl_ops) { | |
191 | ipc_clock_init(clock); | |
192 | ipc_clock_enable(clock); | |
193 | } | |
194 | } | |
195 | ||
196 | timer_call_setup(&calend_adjcall, clock_calend_adjust, NULL); | |
197 | ||
198 | /* | |
199 | * Initialize clock service alarms. | |
200 | */ | |
201 | i = sizeof(struct alarm); | |
202 | alarm_zone = zinit(i, (4096/i)*i, 10*i, "alarms"); | |
203 | ||
204 | thread_call_setup(&alarm_deliver, clock_alarm_deliver, NULL); | |
205 | } | |
206 | ||
207 | /* | |
208 | * Get the service port on a clock. | |
209 | */ | |
210 | kern_return_t | |
211 | host_get_clock_service( | |
212 | host_t host, | |
213 | clock_id_t clock_id, | |
214 | clock_t *clock) /* OUT */ | |
215 | { | |
216 | if (host == HOST_NULL || clock_id < 0 || clock_id >= clock_count) { | |
217 | *clock = CLOCK_NULL; | |
218 | return (KERN_INVALID_ARGUMENT); | |
219 | } | |
220 | ||
221 | *clock = &clock_list[clock_id]; | |
222 | if ((*clock)->cl_ops == 0) | |
223 | return (KERN_FAILURE); | |
224 | return (KERN_SUCCESS); | |
225 | } | |
226 | ||
227 | /* | |
228 | * Get the control port on a clock. | |
229 | */ | |
230 | kern_return_t | |
231 | host_get_clock_control( | |
232 | host_priv_t host_priv, | |
233 | clock_id_t clock_id, | |
234 | clock_t *clock) /* OUT */ | |
235 | { | |
236 | if (host_priv == HOST_PRIV_NULL || clock_id < 0 || clock_id >= clock_count) { | |
237 | *clock = CLOCK_NULL; | |
238 | return (KERN_INVALID_ARGUMENT); | |
239 | } | |
240 | ||
241 | *clock = &clock_list[clock_id]; | |
242 | if ((*clock)->cl_ops == 0) | |
243 | return (KERN_FAILURE); | |
244 | return (KERN_SUCCESS); | |
245 | } | |
246 | ||
247 | /* | |
248 | * Get the current clock time. | |
249 | */ | |
250 | kern_return_t | |
251 | clock_get_time( | |
252 | clock_t clock, | |
253 | mach_timespec_t *cur_time) /* OUT */ | |
254 | { | |
255 | if (clock == CLOCK_NULL) | |
256 | return (KERN_INVALID_ARGUMENT); | |
257 | return ((*clock->cl_ops->c_gettime)(cur_time)); | |
258 | } | |
259 | ||
260 | /* | |
261 | * Get clock attributes. | |
262 | */ | |
263 | kern_return_t | |
264 | clock_get_attributes( | |
265 | clock_t clock, | |
266 | clock_flavor_t flavor, | |
267 | clock_attr_t attr, /* OUT */ | |
268 | mach_msg_type_number_t *count) /* IN/OUT */ | |
269 | { | |
270 | kern_return_t (*getattr)( | |
271 | clock_flavor_t flavor, | |
272 | clock_attr_t attr, | |
273 | mach_msg_type_number_t *count); | |
274 | ||
275 | if (clock == CLOCK_NULL) | |
276 | return (KERN_INVALID_ARGUMENT); | |
277 | if (getattr = clock->cl_ops->c_getattr) | |
278 | return((*getattr)(flavor, attr, count)); | |
279 | else | |
280 | return (KERN_FAILURE); | |
281 | } | |
282 | ||
283 | /* | |
284 | * Set the current clock time. | |
285 | */ | |
286 | kern_return_t | |
287 | clock_set_time( | |
288 | clock_t clock, | |
289 | mach_timespec_t new_time) | |
290 | { | |
291 | mach_timespec_t *clock_time; | |
292 | kern_return_t (*settime)( | |
293 | mach_timespec_t *clock_time); | |
294 | extern kern_return_t | |
295 | calend_settime( | |
296 | mach_timespec_t *clock_time); | |
297 | ||
298 | if (clock == CLOCK_NULL) | |
299 | return (KERN_INVALID_ARGUMENT); | |
300 | if ((settime = clock->cl_ops->c_settime) == 0) | |
301 | return (KERN_FAILURE); | |
302 | if (settime == calend_settime) | |
303 | return (KERN_FAILURE); | |
304 | clock_time = &new_time; | |
305 | if (BAD_MACH_TIMESPEC(clock_time)) | |
306 | return (KERN_INVALID_VALUE); | |
307 | ||
308 | /* | |
309 | * Flush all outstanding alarms. | |
310 | */ | |
311 | flush_alarms(clock); | |
312 | ||
313 | /* | |
314 | * Set the new time. | |
315 | */ | |
316 | return ((*settime)(clock_time)); | |
317 | } | |
318 | ||
319 | /* | |
320 | * Set the clock alarm resolution. | |
321 | */ | |
322 | kern_return_t | |
323 | clock_set_attributes( | |
324 | clock_t clock, | |
325 | clock_flavor_t flavor, | |
326 | clock_attr_t attr, | |
327 | mach_msg_type_number_t count) | |
328 | { | |
329 | kern_return_t (*setattr)( | |
330 | clock_flavor_t flavor, | |
331 | clock_attr_t attr, | |
332 | mach_msg_type_number_t count); | |
333 | ||
334 | if (clock == CLOCK_NULL) | |
335 | return (KERN_INVALID_ARGUMENT); | |
336 | if (setattr = clock->cl_ops->c_setattr) | |
337 | return ((*setattr)(flavor, attr, count)); | |
338 | else | |
339 | return (KERN_FAILURE); | |
340 | } | |
341 | ||
342 | /* | |
343 | * Setup a clock alarm. | |
344 | */ | |
345 | kern_return_t | |
346 | clock_alarm( | |
347 | clock_t clock, | |
348 | alarm_type_t alarm_type, | |
349 | mach_timespec_t alarm_time, | |
350 | ipc_port_t alarm_port, | |
351 | mach_msg_type_name_t alarm_port_type) | |
352 | { | |
353 | alarm_t alarm; | |
354 | mach_timespec_t clock_time; | |
355 | int chkstat; | |
356 | kern_return_t reply_code; | |
357 | spl_t s; | |
358 | ||
359 | if (clock == CLOCK_NULL) | |
360 | return (KERN_INVALID_ARGUMENT); | |
361 | if (clock->cl_ops->c_setalrm == 0) | |
362 | return (KERN_FAILURE); | |
363 | if (IP_VALID(alarm_port) == 0) | |
364 | return (KERN_INVALID_CAPABILITY); | |
365 | ||
366 | /* | |
367 | * Check alarm parameters. If parameters are invalid, | |
368 | * send alarm message immediately. | |
369 | */ | |
370 | (*clock->cl_ops->c_gettime)(&clock_time); | |
371 | chkstat = check_time(alarm_type, &alarm_time, &clock_time); | |
372 | if (chkstat <= 0) { | |
373 | reply_code = (chkstat < 0 ? KERN_INVALID_VALUE : KERN_SUCCESS); | |
374 | clock_alarm_reply(alarm_port, alarm_port_type, | |
375 | reply_code, alarm_type, clock_time); | |
376 | return (KERN_SUCCESS); | |
377 | } | |
378 | ||
379 | /* | |
380 | * Get alarm and add to clock alarm list. | |
381 | */ | |
382 | ||
383 | LOCK_CLOCK(s); | |
384 | if ((alarm = alrmfree) == 0) { | |
385 | UNLOCK_CLOCK(s); | |
386 | alarm = (alarm_t) zalloc(alarm_zone); | |
387 | if (alarm == 0) | |
388 | return (KERN_RESOURCE_SHORTAGE); | |
389 | LOCK_CLOCK(s); | |
390 | } | |
391 | else | |
392 | alrmfree = alarm->al_next; | |
393 | ||
394 | alarm->al_status = ALARM_CLOCK; | |
395 | alarm->al_time = alarm_time; | |
396 | alarm->al_type = alarm_type; | |
397 | alarm->al_port = alarm_port; | |
398 | alarm->al_port_type = alarm_port_type; | |
399 | alarm->al_clock = clock; | |
400 | alarm->al_seqno = alrm_seqno++; | |
401 | post_alarm(clock, alarm); | |
402 | UNLOCK_CLOCK(s); | |
403 | ||
404 | return (KERN_SUCCESS); | |
405 | } | |
406 | ||
407 | /* | |
408 | * Sleep on a clock. System trap. User-level libmach clock_sleep | |
409 | * interface call takes a mach_timespec_t sleep_time argument which it | |
410 | * converts to sleep_sec and sleep_nsec arguments which are then | |
411 | * passed to clock_sleep_trap. | |
412 | */ | |
413 | kern_return_t | |
414 | clock_sleep_trap( | |
415 | mach_port_name_t clock_name, | |
416 | sleep_type_t sleep_type, | |
417 | int sleep_sec, | |
418 | int sleep_nsec, | |
419 | mach_timespec_t *wakeup_time) | |
420 | { | |
421 | clock_t clock; | |
422 | mach_timespec_t swtime; | |
423 | kern_return_t rvalue; | |
424 | ||
425 | /* | |
426 | * Convert the trap parameters. | |
427 | */ | |
428 | if (clock_name != MACH_PORT_NULL) | |
429 | clock = port_name_to_clock(clock_name); | |
430 | else | |
431 | clock = &clock_list[SYSTEM_CLOCK]; | |
432 | ||
433 | swtime.tv_sec = sleep_sec; | |
434 | swtime.tv_nsec = sleep_nsec; | |
435 | ||
436 | /* | |
437 | * Call the actual clock_sleep routine. | |
438 | */ | |
439 | rvalue = clock_sleep_internal(clock, sleep_type, &swtime); | |
440 | ||
441 | /* | |
442 | * Return current time as wakeup time. | |
443 | */ | |
444 | if (rvalue != KERN_INVALID_ARGUMENT && rvalue != KERN_FAILURE) { | |
445 | copyout((char *)&swtime, (char *)wakeup_time, | |
446 | sizeof(mach_timespec_t)); | |
447 | } | |
448 | return (rvalue); | |
449 | } | |
450 | ||
451 | /* | |
452 | * Kernel internally callable clock sleep routine. The calling | |
453 | * thread is suspended until the requested sleep time is reached. | |
454 | */ | |
455 | kern_return_t | |
456 | clock_sleep_internal( | |
457 | clock_t clock, | |
458 | sleep_type_t sleep_type, | |
459 | mach_timespec_t *sleep_time) | |
460 | { | |
461 | alarm_t alarm; | |
462 | mach_timespec_t clock_time; | |
463 | kern_return_t rvalue; | |
464 | int chkstat; | |
465 | spl_t s; | |
466 | ||
467 | if (clock == CLOCK_NULL) | |
468 | return (KERN_INVALID_ARGUMENT); | |
469 | if (clock->cl_ops->c_setalrm == 0) | |
470 | return (KERN_FAILURE); | |
471 | ||
472 | /* | |
473 | * Check sleep parameters. If parameters are invalid | |
474 | * return an error, otherwise post alarm request. | |
475 | */ | |
476 | (*clock->cl_ops->c_gettime)(&clock_time); | |
477 | ||
478 | chkstat = check_time(sleep_type, sleep_time, &clock_time); | |
479 | if (chkstat < 0) | |
480 | return (KERN_INVALID_VALUE); | |
481 | rvalue = KERN_SUCCESS; | |
482 | if (chkstat > 0) { | |
483 | wait_result_t wait_result; | |
484 | ||
485 | /* | |
486 | * Get alarm and add to clock alarm list. | |
487 | */ | |
488 | ||
489 | LOCK_CLOCK(s); | |
490 | if ((alarm = alrmfree) == 0) { | |
491 | UNLOCK_CLOCK(s); | |
492 | alarm = (alarm_t) zalloc(alarm_zone); | |
493 | if (alarm == 0) | |
494 | return (KERN_RESOURCE_SHORTAGE); | |
495 | LOCK_CLOCK(s); | |
496 | } | |
497 | else | |
498 | alrmfree = alarm->al_next; | |
499 | ||
500 | /* | |
501 | * Wait for alarm to occur. | |
502 | */ | |
503 | wait_result = assert_wait((event_t)alarm, THREAD_ABORTSAFE); | |
504 | if (wait_result == THREAD_WAITING) { | |
505 | alarm->al_time = *sleep_time; | |
506 | alarm->al_status = ALARM_SLEEP; | |
507 | post_alarm(clock, alarm); | |
508 | UNLOCK_CLOCK(s); | |
509 | ||
510 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
511 | ||
512 | /* | |
513 | * Note if alarm expired normally or whether it | |
514 | * was aborted. If aborted, delete alarm from | |
515 | * clock alarm list. Return alarm to free list. | |
516 | */ | |
517 | LOCK_CLOCK(s); | |
518 | if (alarm->al_status != ALARM_DONE) { | |
519 | assert(wait_result != THREAD_AWAKENED); | |
520 | if ((alarm->al_prev)->al_next = alarm->al_next) | |
521 | (alarm->al_next)->al_prev = alarm->al_prev; | |
522 | rvalue = KERN_ABORTED; | |
523 | } | |
524 | *sleep_time = alarm->al_time; | |
525 | alarm->al_status = ALARM_FREE; | |
526 | } else { | |
527 | assert(wait_result == THREAD_INTERRUPTED); | |
528 | assert(alarm->al_status == ALARM_FREE); | |
529 | rvalue = KERN_ABORTED; | |
530 | } | |
531 | alarm->al_next = alrmfree; | |
532 | alrmfree = alarm; | |
533 | UNLOCK_CLOCK(s); | |
534 | } | |
535 | else | |
536 | *sleep_time = clock_time; | |
537 | ||
538 | return (rvalue); | |
539 | } | |
540 | ||
541 | /* | |
542 | * CLOCK INTERRUPT SERVICE ROUTINES. | |
543 | */ | |
544 | ||
545 | /* | |
546 | * Service clock alarm interrupts. Called from machine dependent | |
547 | * layer at splclock(). The clock_id argument specifies the clock, | |
548 | * and the clock_time argument gives that clock's current time. | |
549 | */ | |
550 | void | |
551 | clock_alarm_intr( | |
552 | clock_id_t clock_id, | |
553 | mach_timespec_t *clock_time) | |
554 | { | |
555 | clock_t clock; | |
556 | register alarm_t alrm1; | |
557 | register alarm_t alrm2; | |
558 | mach_timespec_t *alarm_time; | |
559 | spl_t s; | |
560 | ||
561 | clock = &clock_list[clock_id]; | |
562 | ||
563 | /* | |
564 | * Update clock alarm list. All alarms that are due are moved | |
565 | * to the alarmdone list to be serviced by the alarm_thread. | |
566 | */ | |
567 | ||
568 | LOCK_CLOCK(s); | |
569 | alrm1 = (alarm_t) &clock->cl_alarm; | |
570 | while (alrm2 = alrm1->al_next) { | |
571 | alarm_time = &alrm2->al_time; | |
572 | if (CMP_MACH_TIMESPEC(alarm_time, clock_time) > 0) | |
573 | break; | |
574 | ||
575 | /* | |
576 | * Alarm has expired, so remove it from the | |
577 | * clock alarm list. | |
578 | */ | |
579 | if (alrm1->al_next = alrm2->al_next) | |
580 | (alrm1->al_next)->al_prev = alrm1; | |
581 | ||
582 | /* | |
583 | * If a clock_sleep() alarm, wakeup the thread | |
584 | * which issued the clock_sleep() call. | |
585 | */ | |
586 | if (alrm2->al_status == ALARM_SLEEP) { | |
587 | alrm2->al_next = 0; | |
588 | alrm2->al_status = ALARM_DONE; | |
589 | alrm2->al_time = *clock_time; | |
590 | thread_wakeup((event_t)alrm2); | |
591 | } | |
592 | ||
593 | /* | |
594 | * If a clock_alarm() alarm, place the alarm on | |
595 | * the alarm done list and schedule the alarm | |
596 | * delivery mechanism. | |
597 | */ | |
598 | else { | |
599 | assert(alrm2->al_status == ALARM_CLOCK); | |
600 | if (alrm2->al_next = alrmdone) | |
601 | alrmdone->al_prev = alrm2; | |
602 | else | |
603 | thread_call_enter(&alarm_deliver); | |
604 | alrm2->al_prev = (alarm_t) &alrmdone; | |
605 | alrmdone = alrm2; | |
606 | alrm2->al_status = ALARM_DONE; | |
607 | alrm2->al_time = *clock_time; | |
608 | } | |
609 | } | |
610 | ||
611 | /* | |
612 | * Setup the clock dependent layer to deliver another | |
613 | * interrupt for the next pending alarm. | |
614 | */ | |
615 | if (alrm2) | |
616 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
617 | UNLOCK_CLOCK(s); | |
618 | } | |
619 | ||
620 | /* | |
621 | * ALARM DELIVERY ROUTINES. | |
622 | */ | |
623 | ||
624 | static void | |
625 | clock_alarm_deliver( | |
626 | thread_call_param_t p0, | |
627 | thread_call_param_t p1) | |
628 | { | |
629 | register alarm_t alrm; | |
630 | kern_return_t code; | |
631 | spl_t s; | |
632 | ||
633 | LOCK_CLOCK(s); | |
634 | while (alrm = alrmdone) { | |
635 | if (alrmdone = alrm->al_next) | |
636 | alrmdone->al_prev = (alarm_t) &alrmdone; | |
637 | UNLOCK_CLOCK(s); | |
638 | ||
639 | code = (alrm->al_status == ALARM_DONE? KERN_SUCCESS: KERN_ABORTED); | |
640 | if (alrm->al_port != IP_NULL) { | |
641 | /* Deliver message to designated port */ | |
642 | if (IP_VALID(alrm->al_port)) { | |
643 | clock_alarm_reply(alrm->al_port, alrm->al_port_type, code, | |
644 | alrm->al_type, alrm->al_time); | |
645 | } | |
646 | ||
647 | LOCK_CLOCK(s); | |
648 | alrm->al_status = ALARM_FREE; | |
649 | alrm->al_next = alrmfree; | |
650 | alrmfree = alrm; | |
651 | } | |
652 | else | |
653 | panic("clock_alarm_deliver"); | |
654 | } | |
655 | ||
656 | UNLOCK_CLOCK(s); | |
657 | } | |
658 | ||
659 | /* | |
660 | * CLOCK PRIVATE SERVICING SUBROUTINES. | |
661 | */ | |
662 | ||
663 | /* | |
664 | * Flush all pending alarms on a clock. All alarms | |
665 | * are activated and timestamped correctly, so any | |
666 | * programs waiting on alarms/threads will proceed | |
667 | * with accurate information. | |
668 | */ | |
669 | static | |
670 | void | |
671 | flush_alarms( | |
672 | clock_t clock) | |
673 | { | |
674 | register alarm_t alrm1, alrm2; | |
675 | spl_t s; | |
676 | ||
677 | /* | |
678 | * Flush all outstanding alarms. | |
679 | */ | |
680 | LOCK_CLOCK(s); | |
681 | alrm1 = (alarm_t) &clock->cl_alarm; | |
682 | while (alrm2 = alrm1->al_next) { | |
683 | /* | |
684 | * Remove alarm from the clock alarm list. | |
685 | */ | |
686 | if (alrm1->al_next = alrm2->al_next) | |
687 | (alrm1->al_next)->al_prev = alrm1; | |
688 | ||
689 | /* | |
690 | * If a clock_sleep() alarm, wakeup the thread | |
691 | * which issued the clock_sleep() call. | |
692 | */ | |
693 | if (alrm2->al_status == ALARM_SLEEP) { | |
694 | alrm2->al_next = 0; | |
695 | thread_wakeup((event_t)alrm2); | |
696 | } | |
697 | else { | |
698 | /* | |
699 | * If a clock_alarm() alarm, place the alarm on | |
700 | * the alarm done list and wakeup the dedicated | |
701 | * kernel alarm_thread to service the alarm. | |
702 | */ | |
703 | assert(alrm2->al_status == ALARM_CLOCK); | |
704 | if (alrm2->al_next = alrmdone) | |
705 | alrmdone->al_prev = alrm2; | |
706 | else | |
707 | thread_wakeup((event_t)&alrmdone); | |
708 | alrm2->al_prev = (alarm_t) &alrmdone; | |
709 | alrmdone = alrm2; | |
710 | } | |
711 | } | |
712 | UNLOCK_CLOCK(s); | |
713 | } | |
714 | ||
715 | /* | |
716 | * Post an alarm on a clock's active alarm list. The alarm is | |
717 | * inserted in time-order into the clock's active alarm list. | |
718 | * Always called from within a LOCK_CLOCK() code section. | |
719 | */ | |
720 | static | |
721 | void | |
722 | post_alarm( | |
723 | clock_t clock, | |
724 | alarm_t alarm) | |
725 | { | |
726 | register alarm_t alrm1, alrm2; | |
727 | mach_timespec_t *alarm_time; | |
728 | mach_timespec_t *queue_time; | |
729 | ||
730 | /* | |
731 | * Traverse alarm list until queue time is greater | |
732 | * than alarm time, then insert alarm. | |
733 | */ | |
734 | alarm_time = &alarm->al_time; | |
735 | alrm1 = (alarm_t) &clock->cl_alarm; | |
736 | while (alrm2 = alrm1->al_next) { | |
737 | queue_time = &alrm2->al_time; | |
738 | if (CMP_MACH_TIMESPEC(queue_time, alarm_time) > 0) | |
739 | break; | |
740 | alrm1 = alrm2; | |
741 | } | |
742 | alrm1->al_next = alarm; | |
743 | alarm->al_next = alrm2; | |
744 | alarm->al_prev = alrm1; | |
745 | if (alrm2) | |
746 | alrm2->al_prev = alarm; | |
747 | ||
748 | /* | |
749 | * If the inserted alarm is the 'earliest' alarm, | |
750 | * reset the device layer alarm time accordingly. | |
751 | */ | |
752 | if (clock->cl_alarm.al_next == alarm) | |
753 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
754 | } | |
755 | ||
756 | /* | |
757 | * Check the validity of 'alarm_time' and 'alarm_type'. If either | |
758 | * argument is invalid, return a negative value. If the 'alarm_time' | |
759 | * is now, return a 0 value. If the 'alarm_time' is in the future, | |
760 | * return a positive value. | |
761 | */ | |
762 | static | |
763 | int | |
764 | check_time( | |
765 | alarm_type_t alarm_type, | |
766 | mach_timespec_t *alarm_time, | |
767 | mach_timespec_t *clock_time) | |
768 | { | |
769 | int result; | |
770 | ||
771 | if (BAD_ALRMTYPE(alarm_type)) | |
772 | return (-1); | |
773 | if (BAD_MACH_TIMESPEC(alarm_time)) | |
774 | return (-1); | |
775 | if ((alarm_type & ALRMTYPE) == TIME_RELATIVE) | |
776 | ADD_MACH_TIMESPEC(alarm_time, clock_time); | |
777 | ||
778 | result = CMP_MACH_TIMESPEC(alarm_time, clock_time); | |
779 | ||
780 | return ((result >= 0)? result: 0); | |
781 | } | |
782 | ||
783 | mach_timespec_t | |
784 | clock_get_system_value(void) | |
785 | { | |
786 | clock_t clock = &clock_list[SYSTEM_CLOCK]; | |
787 | mach_timespec_t value; | |
788 | ||
789 | (void) (*clock->cl_ops->c_gettime)(&value); | |
790 | ||
791 | return value; | |
792 | } | |
793 | ||
794 | mach_timespec_t | |
795 | clock_get_calendar_value(void) | |
796 | { | |
797 | clock_t clock = &clock_list[CALENDAR_CLOCK]; | |
798 | mach_timespec_t value = MACH_TIMESPEC_ZERO; | |
799 | ||
800 | (void) (*clock->cl_ops->c_gettime)(&value); | |
801 | ||
802 | return value; | |
803 | } | |
804 | ||
805 | void | |
806 | clock_set_calendar_value( | |
807 | mach_timespec_t value) | |
808 | { | |
809 | clock_t clock = &clock_list[CALENDAR_CLOCK]; | |
810 | ||
811 | (void) (*clock->cl_ops->c_settime)(&value); | |
812 | } | |
813 | ||
814 | void | |
815 | clock_deadline_for_periodic_event( | |
816 | uint64_t interval, | |
817 | uint64_t abstime, | |
818 | uint64_t *deadline) | |
819 | { | |
820 | assert(interval != 0); | |
821 | ||
822 | *deadline += interval; | |
823 | ||
824 | if (*deadline <= abstime) { | |
825 | *deadline = abstime; | |
826 | clock_get_uptime(&abstime); | |
827 | *deadline += interval; | |
828 | ||
829 | if (*deadline <= abstime) { | |
830 | *deadline = abstime; | |
831 | *deadline += interval; | |
832 | } | |
833 | } | |
834 | } | |
835 | ||
836 | void | |
837 | mk_timebase_info( | |
838 | uint32_t *delta, | |
839 | uint32_t *abs_to_ns_numer, | |
840 | uint32_t *abs_to_ns_denom, | |
841 | uint32_t *proc_to_abs_numer, | |
842 | uint32_t *proc_to_abs_denom) | |
843 | { | |
844 | mach_timebase_info_data_t info; | |
845 | uint32_t one = 1; | |
846 | ||
847 | clock_timebase_info(&info); | |
848 | ||
849 | copyout((void *)&one, (void *)delta, sizeof (uint32_t)); | |
850 | ||
851 | copyout((void *)&info.numer, (void *)abs_to_ns_numer, sizeof (uint32_t)); | |
852 | copyout((void *)&info.denom, (void *)abs_to_ns_denom, sizeof (uint32_t)); | |
853 | ||
854 | copyout((void *)&one, (void *)proc_to_abs_numer, sizeof (uint32_t)); | |
855 | copyout((void *)&one, (void *)proc_to_abs_denom, sizeof (uint32_t)); | |
856 | } | |
857 | ||
858 | kern_return_t | |
859 | mach_timebase_info( | |
860 | mach_timebase_info_t out_info) | |
861 | { | |
862 | mach_timebase_info_data_t info; | |
863 | ||
864 | clock_timebase_info(&info); | |
865 | ||
866 | copyout((void *)&info, (void *)out_info, sizeof (info)); | |
867 | ||
868 | return (KERN_SUCCESS); | |
869 | } | |
870 | ||
871 | kern_return_t | |
872 | mach_wait_until( | |
873 | uint64_t deadline) | |
874 | { | |
875 | int wait_result; | |
876 | ||
877 | wait_result = assert_wait((event_t)&mach_wait_until, THREAD_ABORTSAFE); | |
878 | if (wait_result == THREAD_WAITING) { | |
879 | thread_set_timer_deadline(deadline); | |
880 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
881 | if (wait_result != THREAD_TIMED_OUT) | |
882 | thread_cancel_timer(); | |
883 | } | |
884 | ||
885 | return ((wait_result == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
886 | } | |
887 | ||
888 | int64_t | |
889 | clock_set_calendar_adjtime( | |
890 | int64_t total, | |
891 | uint32_t delta) | |
892 | { | |
893 | int64_t ototal; | |
894 | spl_t s; | |
895 | ||
896 | s = splclock(); | |
897 | simple_lock(&calend_adjlock); | |
898 | ||
899 | if (calend_adjinterval == 0) | |
900 | clock_interval_to_absolutetime_interval(10000, NSEC_PER_USEC, | |
901 | &calend_adjinterval); | |
902 | ||
903 | ototal = calend_adjtotal; | |
904 | ||
905 | if (total != 0) { | |
906 | uint64_t abstime; | |
907 | ||
908 | if (total > 0) { | |
909 | if (delta > total) | |
910 | delta = total; | |
911 | } | |
912 | else { | |
913 | if (delta > -total) | |
914 | delta = -total; | |
915 | } | |
916 | ||
917 | calend_adjtotal = total; | |
918 | calend_adjdelta = delta; | |
919 | ||
920 | if (calend_adjdeadline >= calend_adjinterval) | |
921 | calend_adjdeadline -= calend_adjinterval; | |
922 | clock_get_uptime(&abstime); | |
923 | clock_deadline_for_periodic_event(calend_adjinterval, abstime, | |
924 | &calend_adjdeadline); | |
925 | ||
926 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
927 | } | |
928 | else { | |
929 | calend_adjtotal = 0; | |
930 | ||
931 | timer_call_cancel(&calend_adjcall); | |
932 | } | |
933 | ||
934 | simple_unlock(&calend_adjlock); | |
935 | splx(s); | |
936 | ||
937 | return (ototal); | |
938 | } | |
939 | ||
940 | static void | |
941 | clock_calend_adjust( | |
942 | timer_call_param_t p0, | |
943 | timer_call_param_t p1) | |
944 | { | |
945 | spl_t s; | |
946 | ||
947 | s = splclock(); | |
948 | simple_lock(&calend_adjlock); | |
949 | ||
950 | if (calend_adjtotal > 0) { | |
951 | clock_adjust_calendar((clock_res_t)calend_adjdelta); | |
952 | calend_adjtotal -= calend_adjdelta; | |
953 | ||
954 | if (calend_adjdelta > calend_adjtotal) | |
955 | calend_adjdelta = calend_adjtotal; | |
956 | } | |
957 | else | |
958 | if (calend_adjtotal < 0) { | |
959 | clock_adjust_calendar(-(clock_res_t)calend_adjdelta); | |
960 | calend_adjtotal += calend_adjdelta; | |
961 | ||
962 | if (calend_adjdelta > -calend_adjtotal) | |
963 | calend_adjdelta = -calend_adjtotal; | |
964 | } | |
965 | ||
966 | if (calend_adjtotal != 0) { | |
967 | uint64_t abstime; | |
968 | ||
969 | clock_get_uptime(&abstime); | |
970 | clock_deadline_for_periodic_event(calend_adjinterval, abstime, | |
971 | &calend_adjdeadline); | |
972 | ||
973 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
974 | } | |
975 | ||
976 | simple_unlock(&calend_adjlock); | |
977 | splx(s); | |
978 | } |