]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <unistd.h> | |
29 | #include <stdio.h> | |
30 | #include <math.h> | |
31 | #include <sys/kdebug.h> | |
32 | #include <stdlib.h> | |
33 | #include <pthread.h> | |
34 | #include <errno.h> | |
35 | #include <err.h> | |
36 | #include <string.h> | |
37 | #include <assert.h> | |
38 | #include <sysexits.h> | |
39 | #include <sys/sysctl.h> | |
40 | #include <getopt.h> | |
41 | ||
42 | #include <spawn.h> | |
43 | #include <spawn_private.h> | |
44 | #include <sys/spawn_internal.h> | |
45 | #include <mach-o/dyld.h> | |
46 | ||
47 | #include <mach/mach_time.h> | |
48 | #include <mach/mach.h> | |
49 | #include <mach/task.h> | |
50 | #include <mach/semaphore.h> | |
51 | ||
52 | #include <pthread/qos_private.h> | |
53 | ||
54 | #include <sys/resource.h> | |
55 | ||
56 | #include <stdatomic.h> | |
57 | ||
58 | #include <os/tsd.h> | |
59 | #include <TargetConditionals.h> | |
60 | ||
61 | typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN, WAKE_HOP } wake_type_t; | |
62 | typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY_FIXEDPRI } my_policy_type_t; | |
63 | ||
64 | #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0) | |
65 | #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0) | |
66 | #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0) | |
67 | ||
68 | #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */ | |
69 | #define COMPUTATION_NANOS (10000000ll) /* 10 ms */ | |
70 | #define LL_CONSTRAINT_NANOS ( 2000000ll) /* 2 ms */ | |
71 | #define LL_COMPUTATION_NANOS ( 1000000ll) /* 1 ms */ | |
72 | #define RT_CHURN_COMP_NANOS ( 1000000ll) /* 1 ms */ | |
73 | #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */ | |
74 | #define TRACEWORTHY_NANOS_TEST ( 2000000ll) /* 2 ms */ | |
75 | ||
76 | #if DEBUG | |
77 | #define debug_log(args ...) printf(args) | |
78 | #else | |
79 | #define debug_log(args ...) do { } while(0) | |
80 | #endif | |
81 | ||
82 | /* Declarations */ | |
83 | static void* worker_thread(void *arg); | |
84 | static void usage(); | |
85 | static int thread_setup(uint32_t my_id); | |
86 | static my_policy_type_t parse_thread_policy(const char *str); | |
87 | static void selfexec_with_apptype(int argc, char *argv[]); | |
88 | static void parse_args(int argc, char *argv[]); | |
89 | ||
90 | static __attribute__((aligned(128))) _Atomic uint32_t g_done_threads; | |
91 | static __attribute__((aligned(128))) _Atomic boolean_t g_churn_stop = FALSE; | |
92 | static __attribute__((aligned(128))) _Atomic uint64_t g_churn_stopped_at = 0; | |
93 | ||
94 | /* Global variables (general) */ | |
95 | static uint32_t g_numcpus; | |
96 | static uint32_t g_nphysicalcpu; | |
97 | static uint32_t g_nlogicalcpu; | |
98 | static uint32_t g_numthreads; | |
99 | static wake_type_t g_waketype; | |
100 | static policy_t g_policy; | |
101 | static uint32_t g_iterations; | |
102 | static struct mach_timebase_info g_mti; | |
103 | static semaphore_t g_main_sem; | |
104 | static uint64_t *g_thread_endtimes_abs; | |
105 | static boolean_t g_verbose = FALSE; | |
106 | static boolean_t g_do_affinity = FALSE; | |
107 | static uint64_t g_starttime_abs; | |
108 | static uint32_t g_iteration_sleeptime_us = 0; | |
109 | static uint32_t g_priority = 0; | |
110 | static uint32_t g_churn_pri = 0; | |
111 | static uint32_t g_churn_count = 0; | |
112 | static uint32_t g_rt_churn_count = 0; | |
113 | ||
114 | static pthread_t* g_churn_threads = NULL; | |
115 | static pthread_t* g_rt_churn_threads = NULL; | |
116 | ||
117 | /* should we skip test if run on non-intel */ | |
118 | static boolean_t g_run_on_intel_only = FALSE; | |
119 | ||
120 | /* Threshold for dropping a 'bad run' tracepoint */ | |
121 | static uint64_t g_traceworthy_latency_ns = TRACEWORTHY_NANOS; | |
122 | ||
123 | /* Have we re-execed to set apptype? */ | |
124 | static boolean_t g_seen_apptype = FALSE; | |
125 | ||
126 | /* usleep in betweeen iterations */ | |
127 | static boolean_t g_do_sleep = TRUE; | |
128 | ||
129 | /* Every thread spins until all threads have checked in */ | |
130 | static boolean_t g_do_all_spin = FALSE; | |
131 | ||
132 | /* Every thread backgrounds temporarily before parking */ | |
133 | static boolean_t g_drop_priority = FALSE; | |
134 | ||
135 | /* Use low-latency (sub 4ms deadline) realtime threads */ | |
136 | static boolean_t g_rt_ll = FALSE; | |
137 | ||
138 | /* Test whether realtime threads are scheduled on the separate CPUs */ | |
139 | static boolean_t g_test_rt = FALSE; | |
140 | ||
141 | static boolean_t g_rt_churn = FALSE; | |
142 | ||
143 | /* On SMT machines, test whether realtime threads are scheduled on the correct CPUs */ | |
144 | static boolean_t g_test_rt_smt = FALSE; | |
145 | ||
146 | /* Test whether realtime threads are successfully avoiding CPU 0 on Intel */ | |
147 | static boolean_t g_test_rt_avoid0 = FALSE; | |
148 | ||
149 | /* Print a histgram showing how many threads ran on each CPU */ | |
150 | static boolean_t g_histogram = FALSE; | |
151 | ||
152 | /* One randomly chosen thread holds up the train for a certain duration. */ | |
153 | static boolean_t g_do_one_long_spin = FALSE; | |
154 | static uint32_t g_one_long_spin_id = 0; | |
155 | static uint64_t g_one_long_spin_length_abs = 0; | |
156 | static uint64_t g_one_long_spin_length_ns = 0; | |
157 | ||
158 | /* Each thread spins for a certain duration after waking up before blocking again. */ | |
159 | static boolean_t g_do_each_spin = FALSE; | |
160 | static uint64_t g_each_spin_duration_abs = 0; | |
161 | static uint64_t g_each_spin_duration_ns = 0; | |
162 | ||
163 | /* Global variables (broadcast) */ | |
164 | static semaphore_t g_broadcastsem; | |
165 | static semaphore_t g_leadersem; | |
166 | static semaphore_t g_readysem; | |
167 | static semaphore_t g_donesem; | |
168 | static semaphore_t g_rt_churn_sem; | |
169 | static semaphore_t g_rt_churn_start_sem; | |
170 | ||
171 | /* Global variables (chain) */ | |
172 | static semaphore_t *g_semarr; | |
173 | ||
174 | typedef struct { | |
175 | __attribute__((aligned(128))) uint32_t current; | |
176 | uint32_t accum; | |
177 | } histogram_t; | |
178 | ||
179 | static histogram_t *g_cpu_histogram; | |
180 | static _Atomic uint64_t *g_cpu_map; | |
181 | ||
182 | static uint64_t | |
183 | abs_to_nanos(uint64_t abstime) | |
184 | { | |
185 | return (uint64_t)(abstime * (((double)g_mti.numer) / ((double)g_mti.denom))); | |
186 | } | |
187 | ||
188 | static uint64_t | |
189 | nanos_to_abs(uint64_t ns) | |
190 | { | |
191 | return (uint64_t)(ns * (((double)g_mti.denom) / ((double)g_mti.numer))); | |
192 | } | |
193 | ||
194 | inline static void | |
195 | yield(void) | |
196 | { | |
197 | #if defined(__arm__) || defined(__arm64__) | |
198 | asm volatile ("yield"); | |
199 | #elif defined(__x86_64__) || defined(__i386__) | |
200 | asm volatile ("pause"); | |
201 | #else | |
202 | #error Unrecognized architecture | |
203 | #endif | |
204 | } | |
205 | ||
206 | static void * | |
207 | churn_thread(__unused void *arg) | |
208 | { | |
209 | uint64_t spin_count = 0; | |
210 | ||
211 | /* | |
212 | * As a safety measure to avoid wedging, we will bail on the spin if | |
213 | * it's been more than 1s after the most recent run start | |
214 | */ | |
215 | ||
216 | while (g_churn_stop == FALSE && | |
217 | mach_absolute_time() < (g_starttime_abs + NSEC_PER_SEC)) { | |
218 | spin_count++; | |
219 | yield(); | |
220 | } | |
221 | ||
222 | /* This is totally racy, but only here to detect if anyone stops early */ | |
223 | atomic_fetch_add_explicit(&g_churn_stopped_at, spin_count, memory_order_relaxed); | |
224 | ||
225 | return NULL; | |
226 | } | |
227 | ||
228 | static void | |
229 | create_churn_threads() | |
230 | { | |
231 | if (g_churn_count == 0) { | |
232 | g_churn_count = g_numcpus - 1; | |
233 | } | |
234 | ||
235 | errno_t err; | |
236 | ||
237 | struct sched_param param = { .sched_priority = (int)g_churn_pri }; | |
238 | pthread_attr_t attr; | |
239 | ||
240 | /* Array for churn threads */ | |
241 | g_churn_threads = (pthread_t*) valloc(sizeof(pthread_t) * g_churn_count); | |
242 | assert(g_churn_threads); | |
243 | ||
244 | if ((err = pthread_attr_init(&attr))) { | |
245 | errc(EX_OSERR, err, "pthread_attr_init"); | |
246 | } | |
247 | ||
248 | if ((err = pthread_attr_setschedparam(&attr, ¶m))) { | |
249 | errc(EX_OSERR, err, "pthread_attr_setschedparam"); | |
250 | } | |
251 | ||
252 | if ((err = pthread_attr_setschedpolicy(&attr, SCHED_RR))) { | |
253 | errc(EX_OSERR, err, "pthread_attr_setschedpolicy"); | |
254 | } | |
255 | ||
256 | for (uint32_t i = 0; i < g_churn_count; i++) { | |
257 | pthread_t new_thread; | |
258 | ||
259 | if ((err = pthread_create(&new_thread, &attr, churn_thread, NULL))) { | |
260 | errc(EX_OSERR, err, "pthread_create"); | |
261 | } | |
262 | g_churn_threads[i] = new_thread; | |
263 | } | |
264 | ||
265 | if ((err = pthread_attr_destroy(&attr))) { | |
266 | errc(EX_OSERR, err, "pthread_attr_destroy"); | |
267 | } | |
268 | } | |
269 | ||
270 | static void | |
271 | join_churn_threads(void) | |
272 | { | |
273 | if (atomic_load_explicit(&g_churn_stopped_at, memory_order_seq_cst) != 0) { | |
274 | printf("Warning: Some of the churn threads may have stopped early: %lld\n", | |
275 | g_churn_stopped_at); | |
276 | } | |
277 | ||
278 | atomic_store_explicit(&g_churn_stop, TRUE, memory_order_seq_cst); | |
279 | ||
280 | /* Rejoin churn threads */ | |
281 | for (uint32_t i = 0; i < g_churn_count; i++) { | |
282 | errno_t err = pthread_join(g_churn_threads[i], NULL); | |
283 | if (err) { | |
284 | errc(EX_OSERR, err, "pthread_join %d", i); | |
285 | } | |
286 | } | |
287 | } | |
288 | ||
289 | /* | |
290 | * Set policy | |
291 | */ | |
292 | static int | |
293 | rt_churn_thread_setup(void) | |
294 | { | |
295 | kern_return_t kr; | |
296 | thread_time_constraint_policy_data_t pol; | |
297 | ||
298 | /* Hard-coded realtime parameters (similar to what Digi uses) */ | |
299 | pol.period = 100000; | |
300 | pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS * 2); | |
301 | pol.computation = (uint32_t) nanos_to_abs(RT_CHURN_COMP_NANOS * 2); | |
302 | pol.preemptible = 0; /* Ignored by OS */ | |
303 | ||
304 | kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, | |
305 | (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); | |
306 | mach_assert_zero_t(0, kr); | |
307 | ||
308 | return 0; | |
309 | } | |
310 | ||
311 | static void * | |
312 | rt_churn_thread(__unused void *arg) | |
313 | { | |
314 | rt_churn_thread_setup(); | |
315 | ||
316 | for (uint32_t i = 0; i < g_iterations; i++) { | |
317 | kern_return_t kr = semaphore_wait_signal(g_rt_churn_start_sem, g_rt_churn_sem); | |
318 | mach_assert_zero_t(0, kr); | |
319 | ||
320 | volatile double x = 0.0; | |
321 | volatile double y = 0.0; | |
322 | ||
323 | uint64_t endspin = mach_absolute_time() + nanos_to_abs(RT_CHURN_COMP_NANOS); | |
324 | while (mach_absolute_time() < endspin) { | |
325 | y = y + 1.5 + x; | |
326 | x = sqrt(y); | |
327 | } | |
328 | } | |
329 | ||
330 | kern_return_t kr = semaphore_signal(g_rt_churn_sem); | |
331 | mach_assert_zero_t(0, kr); | |
332 | ||
333 | return NULL; | |
334 | } | |
335 | ||
336 | static void | |
337 | wait_for_rt_churn_threads(void) | |
338 | { | |
339 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
340 | kern_return_t kr = semaphore_wait(g_rt_churn_sem); | |
341 | mach_assert_zero_t(0, kr); | |
342 | } | |
343 | } | |
344 | ||
345 | static void | |
346 | start_rt_churn_threads(void) | |
347 | { | |
348 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
349 | kern_return_t kr = semaphore_signal(g_rt_churn_start_sem); | |
350 | mach_assert_zero_t(0, kr); | |
351 | } | |
352 | } | |
353 | ||
354 | static void | |
355 | create_rt_churn_threads(void) | |
356 | { | |
357 | if (g_rt_churn_count == 0) { | |
358 | /* Leave 1 CPU to ensure that the main thread can make progress */ | |
359 | g_rt_churn_count = g_numcpus - 1; | |
360 | } | |
361 | ||
362 | errno_t err; | |
363 | ||
364 | struct sched_param param = { .sched_priority = (int)g_churn_pri }; | |
365 | pthread_attr_t attr; | |
366 | ||
367 | /* Array for churn threads */ | |
368 | g_rt_churn_threads = (pthread_t*) valloc(sizeof(pthread_t) * g_rt_churn_count); | |
369 | assert(g_rt_churn_threads); | |
370 | ||
371 | if ((err = pthread_attr_init(&attr))) { | |
372 | errc(EX_OSERR, err, "pthread_attr_init"); | |
373 | } | |
374 | ||
375 | if ((err = pthread_attr_setschedparam(&attr, ¶m))) { | |
376 | errc(EX_OSERR, err, "pthread_attr_setschedparam"); | |
377 | } | |
378 | ||
379 | if ((err = pthread_attr_setschedpolicy(&attr, SCHED_RR))) { | |
380 | errc(EX_OSERR, err, "pthread_attr_setschedpolicy"); | |
381 | } | |
382 | ||
383 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
384 | pthread_t new_thread; | |
385 | ||
386 | if ((err = pthread_create(&new_thread, &attr, rt_churn_thread, NULL))) { | |
387 | errc(EX_OSERR, err, "pthread_create"); | |
388 | } | |
389 | g_rt_churn_threads[i] = new_thread; | |
390 | } | |
391 | ||
392 | if ((err = pthread_attr_destroy(&attr))) { | |
393 | errc(EX_OSERR, err, "pthread_attr_destroy"); | |
394 | } | |
395 | ||
396 | /* Wait until all threads have checked in */ | |
397 | wait_for_rt_churn_threads(); | |
398 | } | |
399 | ||
400 | static void | |
401 | join_rt_churn_threads(void) | |
402 | { | |
403 | /* Rejoin rt churn threads */ | |
404 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
405 | errno_t err = pthread_join(g_rt_churn_threads[i], NULL); | |
406 | if (err) { | |
407 | errc(EX_OSERR, err, "pthread_join %d", i); | |
408 | } | |
409 | } | |
410 | } | |
411 | ||
412 | /* | |
413 | * Figure out what thread policy to use | |
414 | */ | |
415 | static my_policy_type_t | |
416 | parse_thread_policy(const char *str) | |
417 | { | |
418 | if (strcmp(str, "timeshare") == 0) { | |
419 | return MY_POLICY_TIMESHARE; | |
420 | } else if (strcmp(str, "realtime") == 0) { | |
421 | return MY_POLICY_REALTIME; | |
422 | } else if (strcmp(str, "fixed") == 0) { | |
423 | return MY_POLICY_FIXEDPRI; | |
424 | } else { | |
425 | errx(EX_USAGE, "Invalid thread policy \"%s\"", str); | |
426 | } | |
427 | } | |
428 | ||
429 | /* | |
430 | * Figure out what wakeup pattern to use | |
431 | */ | |
432 | static wake_type_t | |
433 | parse_wakeup_pattern(const char *str) | |
434 | { | |
435 | if (strcmp(str, "chain") == 0) { | |
436 | return WAKE_CHAIN; | |
437 | } else if (strcmp(str, "hop") == 0) { | |
438 | return WAKE_HOP; | |
439 | } else if (strcmp(str, "broadcast-single-sem") == 0) { | |
440 | return WAKE_BROADCAST_ONESEM; | |
441 | } else if (strcmp(str, "broadcast-per-thread") == 0) { | |
442 | return WAKE_BROADCAST_PERTHREAD; | |
443 | } else { | |
444 | errx(EX_USAGE, "Invalid wakeup pattern \"%s\"", str); | |
445 | } | |
446 | } | |
447 | ||
448 | /* | |
449 | * Set policy | |
450 | */ | |
451 | static int | |
452 | thread_setup(uint32_t my_id) | |
453 | { | |
454 | kern_return_t kr; | |
455 | errno_t ret; | |
456 | thread_time_constraint_policy_data_t pol; | |
457 | ||
458 | if (g_priority) { | |
459 | int policy = SCHED_OTHER; | |
460 | if (g_policy == MY_POLICY_FIXEDPRI) { | |
461 | policy = SCHED_RR; | |
462 | } | |
463 | ||
464 | struct sched_param param = {.sched_priority = (int)g_priority}; | |
465 | if ((ret = pthread_setschedparam(pthread_self(), policy, ¶m))) { | |
466 | errc(EX_OSERR, ret, "pthread_setschedparam: %d", my_id); | |
467 | } | |
468 | } | |
469 | ||
470 | switch (g_policy) { | |
471 | case MY_POLICY_TIMESHARE: | |
472 | break; | |
473 | case MY_POLICY_REALTIME: | |
474 | /* Hard-coded realtime parameters (similar to what Digi uses) */ | |
475 | pol.period = 100000; | |
476 | if (g_rt_ll) { | |
477 | pol.constraint = (uint32_t) nanos_to_abs(LL_CONSTRAINT_NANOS); | |
478 | pol.computation = (uint32_t) nanos_to_abs(LL_COMPUTATION_NANOS); | |
479 | } else { | |
480 | pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS); | |
481 | pol.computation = (uint32_t) nanos_to_abs(COMPUTATION_NANOS); | |
482 | } | |
483 | pol.preemptible = 0; /* Ignored by OS */ | |
484 | ||
485 | kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, | |
486 | (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); | |
487 | mach_assert_zero_t(my_id, kr); | |
488 | break; | |
489 | case MY_POLICY_FIXEDPRI: | |
490 | ret = pthread_set_fixedpriority_self(); | |
491 | if (ret) { | |
492 | errc(EX_OSERR, ret, "pthread_set_fixedpriority_self"); | |
493 | } | |
494 | break; | |
495 | default: | |
496 | errx(EX_USAGE, "invalid policy type %d", g_policy); | |
497 | } | |
498 | ||
499 | if (g_do_affinity) { | |
500 | thread_affinity_policy_data_t affinity; | |
501 | ||
502 | affinity.affinity_tag = my_id % 2; | |
503 | ||
504 | kr = thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY, | |
505 | (thread_policy_t)&affinity, THREAD_AFFINITY_POLICY_COUNT); | |
506 | mach_assert_zero_t(my_id, kr); | |
507 | } | |
508 | ||
509 | return 0; | |
510 | } | |
511 | ||
512 | /* | |
513 | * Wait for a wakeup, potentially wake up another of the "0-N" threads, | |
514 | * and notify the main thread when done. | |
515 | */ | |
516 | static void* | |
517 | worker_thread(void *arg) | |
518 | { | |
519 | uint32_t my_id = (uint32_t)(uintptr_t)arg; | |
520 | kern_return_t kr; | |
521 | ||
522 | volatile double x = 0.0; | |
523 | volatile double y = 0.0; | |
524 | ||
525 | /* Set policy and so forth */ | |
526 | thread_setup(my_id); | |
527 | ||
528 | for (uint32_t i = 0; i < g_iterations; i++) { | |
529 | if (my_id == 0) { | |
530 | /* | |
531 | * Leader thread either wakes everyone up or starts the chain going. | |
532 | */ | |
533 | ||
534 | /* Give the worker threads undisturbed time to finish before waiting on them */ | |
535 | if (g_do_sleep) { | |
536 | usleep(g_iteration_sleeptime_us); | |
537 | } | |
538 | ||
539 | debug_log("%d Leader thread wait for ready\n", i); | |
540 | ||
541 | /* | |
542 | * Wait for everyone else to declare ready | |
543 | * Is there a better way to do this that won't interfere with the rest of the chain? | |
544 | * TODO: Invent 'semaphore wait for N signals' | |
545 | */ | |
546 | ||
547 | for (uint32_t j = 0; j < g_numthreads - 1; j++) { | |
548 | kr = semaphore_wait(g_readysem); | |
549 | mach_assert_zero_t(my_id, kr); | |
550 | } | |
551 | ||
552 | debug_log("%d Leader thread wait\n", i); | |
553 | ||
554 | if (i > 0) { | |
555 | for (int cpuid = 0; cpuid < g_numcpus; cpuid++) { | |
556 | if (g_cpu_histogram[cpuid].current == 1) { | |
557 | atomic_fetch_or_explicit(&g_cpu_map[i - 1], (1UL << cpuid), memory_order_relaxed); | |
558 | g_cpu_histogram[cpuid].current = 0; | |
559 | } | |
560 | } | |
561 | } | |
562 | ||
563 | /* Signal main thread and wait for start of iteration */ | |
564 | ||
565 | kr = semaphore_wait_signal(g_leadersem, g_main_sem); | |
566 | mach_assert_zero_t(my_id, kr); | |
567 | ||
568 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
569 | ||
570 | debug_log("%d Leader thread go\n", i); | |
571 | ||
572 | assert_zero_t(my_id, atomic_load_explicit(&g_done_threads, memory_order_relaxed)); | |
573 | ||
574 | switch (g_waketype) { | |
575 | case WAKE_BROADCAST_ONESEM: | |
576 | kr = semaphore_signal_all(g_broadcastsem); | |
577 | mach_assert_zero_t(my_id, kr); | |
578 | break; | |
579 | case WAKE_BROADCAST_PERTHREAD: | |
580 | for (uint32_t j = 1; j < g_numthreads; j++) { | |
581 | kr = semaphore_signal(g_semarr[j]); | |
582 | mach_assert_zero_t(my_id, kr); | |
583 | } | |
584 | break; | |
585 | case WAKE_CHAIN: | |
586 | kr = semaphore_signal(g_semarr[my_id + 1]); | |
587 | mach_assert_zero_t(my_id, kr); | |
588 | break; | |
589 | case WAKE_HOP: | |
590 | kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); | |
591 | mach_assert_zero_t(my_id, kr); | |
592 | break; | |
593 | } | |
594 | } else { | |
595 | /* | |
596 | * Everyone else waits to be woken up, | |
597 | * records when she wakes up, and possibly | |
598 | * wakes up a friend. | |
599 | */ | |
600 | switch (g_waketype) { | |
601 | case WAKE_BROADCAST_ONESEM: | |
602 | kr = semaphore_wait_signal(g_broadcastsem, g_readysem); | |
603 | mach_assert_zero_t(my_id, kr); | |
604 | ||
605 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
606 | break; | |
607 | ||
608 | case WAKE_BROADCAST_PERTHREAD: | |
609 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
610 | mach_assert_zero_t(my_id, kr); | |
611 | ||
612 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
613 | break; | |
614 | ||
615 | case WAKE_CHAIN: | |
616 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
617 | mach_assert_zero_t(my_id, kr); | |
618 | ||
619 | /* Signal the next thread *after* recording wake time */ | |
620 | ||
621 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
622 | ||
623 | if (my_id < (g_numthreads - 1)) { | |
624 | kr = semaphore_signal(g_semarr[my_id + 1]); | |
625 | mach_assert_zero_t(my_id, kr); | |
626 | } | |
627 | ||
628 | break; | |
629 | ||
630 | case WAKE_HOP: | |
631 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
632 | mach_assert_zero_t(my_id, kr); | |
633 | ||
634 | /* Signal the next thread *after* recording wake time */ | |
635 | ||
636 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
637 | ||
638 | if (my_id < (g_numthreads - 1)) { | |
639 | kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); | |
640 | mach_assert_zero_t(my_id, kr); | |
641 | } else { | |
642 | kr = semaphore_signal_all(g_donesem); | |
643 | mach_assert_zero_t(my_id, kr); | |
644 | } | |
645 | ||
646 | break; | |
647 | } | |
648 | } | |
649 | ||
650 | unsigned int cpuid = _os_cpu_number(); | |
651 | assert(cpuid < g_numcpus); | |
652 | debug_log("Thread %p woke up on CPU %d for iteration %d.\n", pthread_self(), cpuid, i); | |
653 | g_cpu_histogram[cpuid].current = 1; | |
654 | g_cpu_histogram[cpuid].accum++; | |
655 | ||
656 | if (g_do_one_long_spin && g_one_long_spin_id == my_id) { | |
657 | /* One randomly chosen thread holds up the train for a while. */ | |
658 | ||
659 | uint64_t endspin = g_starttime_abs + g_one_long_spin_length_abs; | |
660 | while (mach_absolute_time() < endspin) { | |
661 | y = y + 1.5 + x; | |
662 | x = sqrt(y); | |
663 | } | |
664 | } | |
665 | ||
666 | if (g_do_each_spin) { | |
667 | /* Each thread spins for a certain duration after waking up before blocking again. */ | |
668 | ||
669 | uint64_t endspin = mach_absolute_time() + g_each_spin_duration_abs; | |
670 | while (mach_absolute_time() < endspin) { | |
671 | y = y + 1.5 + x; | |
672 | x = sqrt(y); | |
673 | } | |
674 | } | |
675 | ||
676 | uint32_t done_threads; | |
677 | done_threads = atomic_fetch_add_explicit(&g_done_threads, 1, memory_order_relaxed) + 1; | |
678 | ||
679 | debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), done_threads, i); | |
680 | ||
681 | if (g_drop_priority) { | |
682 | /* Drop priority to BG momentarily */ | |
683 | errno_t ret = setpriority(PRIO_DARWIN_THREAD, 0, PRIO_DARWIN_BG); | |
684 | if (ret) { | |
685 | errc(EX_OSERR, ret, "setpriority PRIO_DARWIN_BG"); | |
686 | } | |
687 | } | |
688 | ||
689 | if (g_do_all_spin) { | |
690 | /* Everyone spins until the last thread checks in. */ | |
691 | ||
692 | while (atomic_load_explicit(&g_done_threads, memory_order_relaxed) < g_numthreads) { | |
693 | y = y + 1.5 + x; | |
694 | x = sqrt(y); | |
695 | } | |
696 | } | |
697 | ||
698 | if (g_drop_priority) { | |
699 | /* Restore normal priority */ | |
700 | errno_t ret = setpriority(PRIO_DARWIN_THREAD, 0, 0); | |
701 | if (ret) { | |
702 | errc(EX_OSERR, ret, "setpriority 0"); | |
703 | } | |
704 | } | |
705 | ||
706 | debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i); | |
707 | } | |
708 | ||
709 | if (my_id == 0) { | |
710 | /* Give the worker threads undisturbed time to finish before waiting on them */ | |
711 | if (g_do_sleep) { | |
712 | usleep(g_iteration_sleeptime_us); | |
713 | } | |
714 | ||
715 | /* Wait for the worker threads to finish */ | |
716 | for (uint32_t i = 0; i < g_numthreads - 1; i++) { | |
717 | kr = semaphore_wait(g_readysem); | |
718 | mach_assert_zero_t(my_id, kr); | |
719 | } | |
720 | ||
721 | /* Tell everyone and the main thread that the last iteration is done */ | |
722 | debug_log("%d Leader thread done\n", g_iterations - 1); | |
723 | ||
724 | for (int cpuid = 0; cpuid < g_numcpus; cpuid++) { | |
725 | if (g_cpu_histogram[cpuid].current == 1) { | |
726 | atomic_fetch_or_explicit(&g_cpu_map[g_iterations - 1], (1UL << cpuid), memory_order_relaxed); | |
727 | g_cpu_histogram[cpuid].current = 0; | |
728 | } | |
729 | } | |
730 | ||
731 | kr = semaphore_signal_all(g_main_sem); | |
732 | mach_assert_zero_t(my_id, kr); | |
733 | } else { | |
734 | /* Hold up thread teardown so it doesn't affect the last iteration */ | |
735 | kr = semaphore_wait_signal(g_main_sem, g_readysem); | |
736 | mach_assert_zero_t(my_id, kr); | |
737 | } | |
738 | ||
739 | return 0; | |
740 | } | |
741 | ||
742 | /* | |
743 | * Given an array of uint64_t values, compute average, max, min, and standard deviation | |
744 | */ | |
745 | static void | |
746 | compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, uint64_t *minp, float *stddevp) | |
747 | { | |
748 | uint32_t i; | |
749 | uint64_t _sum = 0; | |
750 | uint64_t _max = 0; | |
751 | uint64_t _min = UINT64_MAX; | |
752 | float _avg = 0; | |
753 | float _dev = 0; | |
754 | ||
755 | for (i = 0; i < count; i++) { | |
756 | _sum += values[i]; | |
757 | _max = values[i] > _max ? values[i] : _max; | |
758 | _min = values[i] < _min ? values[i] : _min; | |
759 | } | |
760 | ||
761 | _avg = ((float)_sum) / ((float)count); | |
762 | ||
763 | _dev = 0; | |
764 | for (i = 0; i < count; i++) { | |
765 | _dev += powf((((float)values[i]) - _avg), 2); | |
766 | } | |
767 | ||
768 | _dev /= count; | |
769 | _dev = sqrtf(_dev); | |
770 | ||
771 | *averagep = _avg; | |
772 | *maxp = _max; | |
773 | *minp = _min; | |
774 | *stddevp = _dev; | |
775 | } | |
776 | ||
777 | int | |
778 | main(int argc, char **argv) | |
779 | { | |
780 | errno_t ret; | |
781 | kern_return_t kr; | |
782 | ||
783 | pthread_t *threads; | |
784 | uint64_t *worst_latencies_ns; | |
785 | uint64_t *worst_latencies_from_first_ns; | |
786 | uint64_t max, min; | |
787 | float avg, stddev; | |
788 | ||
789 | bool test_fail = false; | |
790 | ||
791 | for (int i = 0; i < argc; i++) { | |
792 | if (strcmp(argv[i], "--switched_apptype") == 0) { | |
793 | g_seen_apptype = TRUE; | |
794 | } | |
795 | } | |
796 | ||
797 | if (!g_seen_apptype) { | |
798 | selfexec_with_apptype(argc, argv); | |
799 | } | |
800 | ||
801 | parse_args(argc, argv); | |
802 | ||
803 | srand((unsigned int)time(NULL)); | |
804 | ||
805 | mach_timebase_info(&g_mti); | |
806 | ||
807 | #if TARGET_OS_OSX | |
808 | /* SKIP test if running on arm platform */ | |
809 | if (g_run_on_intel_only) { | |
810 | int is_arm = 0; | |
811 | size_t is_arm_size = sizeof(is_arm); | |
812 | ret = sysctlbyname("hw.optional.arm64", &is_arm, &is_arm_size, NULL, 0); | |
813 | if (ret == 0 && is_arm) { | |
814 | printf("Unsupported platform. Skipping test.\n"); | |
815 | exit(0); | |
816 | } | |
817 | } | |
818 | #endif /* TARGET_OS_OSX */ | |
819 | ||
820 | size_t ncpu_size = sizeof(g_numcpus); | |
821 | ret = sysctlbyname("hw.ncpu", &g_numcpus, &ncpu_size, NULL, 0); | |
822 | if (ret) { | |
823 | err(EX_OSERR, "Failed sysctlbyname(hw.ncpu)"); | |
824 | } | |
825 | assert(g_numcpus <= 64); /* g_cpu_map needs to be extended for > 64 cpus */ | |
826 | ||
827 | size_t physicalcpu_size = sizeof(g_nphysicalcpu); | |
828 | ret = sysctlbyname("hw.physicalcpu", &g_nphysicalcpu, &physicalcpu_size, NULL, 0); | |
829 | if (ret) { | |
830 | err(EX_OSERR, "Failed sysctlbyname(hw.physicalcpu)"); | |
831 | } | |
832 | ||
833 | size_t logicalcpu_size = sizeof(g_nlogicalcpu); | |
834 | ret = sysctlbyname("hw.logicalcpu", &g_nlogicalcpu, &logicalcpu_size, NULL, 0); | |
835 | if (ret) { | |
836 | err(EX_OSERR, "Failed sysctlbyname(hw.logicalcpu)"); | |
837 | } | |
838 | ||
839 | if (g_test_rt) { | |
840 | if (g_numthreads == 0) { | |
841 | g_numthreads = g_numcpus; | |
842 | } | |
843 | g_policy = MY_POLICY_REALTIME; | |
844 | g_do_all_spin = TRUE; | |
845 | g_histogram = true; | |
846 | /* Don't change g_traceworthy_latency_ns if it's explicity been set to something other than the default */ | |
847 | if (g_traceworthy_latency_ns == TRACEWORTHY_NANOS) { | |
848 | g_traceworthy_latency_ns = TRACEWORTHY_NANOS_TEST; | |
849 | } | |
850 | } else if (g_test_rt_smt) { | |
851 | if (g_nlogicalcpu != 2 * g_nphysicalcpu) { | |
852 | /* Not SMT */ | |
853 | printf("Attempt to run --test-rt-smt on a non-SMT device\n"); | |
854 | exit(0); | |
855 | } | |
856 | ||
857 | if (g_numthreads == 0) { | |
858 | g_numthreads = g_nphysicalcpu; | |
859 | } | |
860 | g_policy = MY_POLICY_REALTIME; | |
861 | g_do_all_spin = TRUE; | |
862 | g_histogram = true; | |
863 | } else if (g_test_rt_avoid0) { | |
864 | #if defined(__x86_64__) || defined(__i386__) | |
865 | if (g_numthreads == 0) { | |
866 | g_numthreads = g_nphysicalcpu - 1; | |
867 | } | |
868 | if (g_numthreads == 0) { | |
869 | printf("Attempt to run --test-rt-avoid0 on a uniprocessor\n"); | |
870 | exit(0); | |
871 | } | |
872 | g_policy = MY_POLICY_REALTIME; | |
873 | g_do_all_spin = TRUE; | |
874 | g_histogram = true; | |
875 | #else | |
876 | printf("Attempt to run --test-rt-avoid0 on a non-Intel device\n"); | |
877 | exit(0); | |
878 | #endif | |
879 | } else if (g_numthreads == 0) { | |
880 | g_numthreads = g_numcpus; | |
881 | } | |
882 | ||
883 | if (g_do_each_spin) { | |
884 | g_each_spin_duration_abs = nanos_to_abs(g_each_spin_duration_ns); | |
885 | } | |
886 | ||
887 | /* Configure the long-spin thread to take up half of its computation */ | |
888 | if (g_do_one_long_spin) { | |
889 | g_one_long_spin_length_ns = COMPUTATION_NANOS / 2; | |
890 | g_one_long_spin_length_abs = nanos_to_abs(g_one_long_spin_length_ns); | |
891 | } | |
892 | ||
893 | /* Estimate the amount of time the cleanup phase needs to back off */ | |
894 | g_iteration_sleeptime_us = g_numthreads * 20; | |
895 | ||
896 | uint32_t threads_per_core = (g_numthreads / g_numcpus) + 1; | |
897 | if (g_do_each_spin) { | |
898 | g_iteration_sleeptime_us += threads_per_core * (g_each_spin_duration_ns / NSEC_PER_USEC); | |
899 | } | |
900 | if (g_do_one_long_spin) { | |
901 | g_iteration_sleeptime_us += g_one_long_spin_length_ns / NSEC_PER_USEC; | |
902 | } | |
903 | ||
904 | /* Arrays for threads and their wakeup times */ | |
905 | threads = (pthread_t*) valloc(sizeof(pthread_t) * g_numthreads); | |
906 | assert(threads); | |
907 | ||
908 | size_t endtimes_size = sizeof(uint64_t) * g_numthreads; | |
909 | ||
910 | g_thread_endtimes_abs = (uint64_t*) valloc(endtimes_size); | |
911 | assert(g_thread_endtimes_abs); | |
912 | ||
913 | /* Ensure the allocation is pre-faulted */ | |
914 | ret = memset_s(g_thread_endtimes_abs, endtimes_size, 0, endtimes_size); | |
915 | if (ret) { | |
916 | errc(EX_OSERR, ret, "memset_s endtimes"); | |
917 | } | |
918 | ||
919 | size_t latencies_size = sizeof(uint64_t) * g_iterations; | |
920 | ||
921 | worst_latencies_ns = (uint64_t*) valloc(latencies_size); | |
922 | assert(worst_latencies_ns); | |
923 | ||
924 | /* Ensure the allocation is pre-faulted */ | |
925 | ret = memset_s(worst_latencies_ns, latencies_size, 0, latencies_size); | |
926 | if (ret) { | |
927 | errc(EX_OSERR, ret, "memset_s latencies"); | |
928 | } | |
929 | ||
930 | worst_latencies_from_first_ns = (uint64_t*) valloc(latencies_size); | |
931 | assert(worst_latencies_from_first_ns); | |
932 | ||
933 | /* Ensure the allocation is pre-faulted */ | |
934 | ret = memset_s(worst_latencies_from_first_ns, latencies_size, 0, latencies_size); | |
935 | if (ret) { | |
936 | errc(EX_OSERR, ret, "memset_s latencies_from_first"); | |
937 | } | |
938 | ||
939 | size_t histogram_size = sizeof(histogram_t) * g_numcpus; | |
940 | g_cpu_histogram = (histogram_t *)valloc(histogram_size); | |
941 | assert(g_cpu_histogram); | |
942 | /* Ensure the allocation is pre-faulted */ | |
943 | ret = memset_s(g_cpu_histogram, histogram_size, 0, histogram_size); | |
944 | if (ret) { | |
945 | errc(EX_OSERR, ret, "memset_s g_cpu_histogram"); | |
946 | } | |
947 | ||
948 | size_t map_size = sizeof(uint64_t) * g_iterations; | |
949 | g_cpu_map = (_Atomic uint64_t *)valloc(map_size); | |
950 | assert(g_cpu_map); | |
951 | /* Ensure the allocation is pre-faulted */ | |
952 | ret = memset_s(g_cpu_map, map_size, 0, map_size); | |
953 | if (ret) { | |
954 | errc(EX_OSERR, ret, "memset_s g_cpu_map"); | |
955 | } | |
956 | ||
957 | kr = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0); | |
958 | mach_assert_zero(kr); | |
959 | ||
960 | /* Either one big semaphore or one per thread */ | |
961 | if (g_waketype == WAKE_CHAIN || | |
962 | g_waketype == WAKE_BROADCAST_PERTHREAD || | |
963 | g_waketype == WAKE_HOP) { | |
964 | g_semarr = valloc(sizeof(semaphore_t) * g_numthreads); | |
965 | assert(g_semarr); | |
966 | ||
967 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
968 | kr = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0); | |
969 | mach_assert_zero(kr); | |
970 | } | |
971 | ||
972 | g_leadersem = g_semarr[0]; | |
973 | } else { | |
974 | kr = semaphore_create(mach_task_self(), &g_broadcastsem, SYNC_POLICY_FIFO, 0); | |
975 | mach_assert_zero(kr); | |
976 | kr = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0); | |
977 | mach_assert_zero(kr); | |
978 | } | |
979 | ||
980 | if (g_waketype == WAKE_HOP) { | |
981 | kr = semaphore_create(mach_task_self(), &g_donesem, SYNC_POLICY_FIFO, 0); | |
982 | mach_assert_zero(kr); | |
983 | } | |
984 | ||
985 | kr = semaphore_create(mach_task_self(), &g_readysem, SYNC_POLICY_FIFO, 0); | |
986 | mach_assert_zero(kr); | |
987 | ||
988 | kr = semaphore_create(mach_task_self(), &g_rt_churn_sem, SYNC_POLICY_FIFO, 0); | |
989 | mach_assert_zero(kr); | |
990 | ||
991 | kr = semaphore_create(mach_task_self(), &g_rt_churn_start_sem, SYNC_POLICY_FIFO, 0); | |
992 | mach_assert_zero(kr); | |
993 | ||
994 | atomic_store_explicit(&g_done_threads, 0, memory_order_relaxed); | |
995 | ||
996 | /* Create the threads */ | |
997 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
998 | ret = pthread_create(&threads[i], NULL, worker_thread, (void*)(uintptr_t)i); | |
999 | if (ret) { | |
1000 | errc(EX_OSERR, ret, "pthread_create %d", i); | |
1001 | } | |
1002 | } | |
1003 | ||
1004 | ret = setpriority(PRIO_DARWIN_ROLE, 0, PRIO_DARWIN_ROLE_UI_FOCAL); | |
1005 | if (ret) { | |
1006 | errc(EX_OSERR, ret, "setpriority"); | |
1007 | } | |
1008 | ||
1009 | thread_setup(0); | |
1010 | ||
1011 | g_starttime_abs = mach_absolute_time(); | |
1012 | ||
1013 | if (g_churn_pri) { | |
1014 | create_churn_threads(); | |
1015 | } | |
1016 | if (g_rt_churn) { | |
1017 | create_rt_churn_threads(); | |
1018 | } | |
1019 | ||
1020 | /* Let everyone get settled */ | |
1021 | kr = semaphore_wait(g_main_sem); | |
1022 | mach_assert_zero(kr); | |
1023 | ||
1024 | /* Give the system a bit more time to settle */ | |
1025 | if (g_do_sleep) { | |
1026 | usleep(g_iteration_sleeptime_us); | |
1027 | } | |
1028 | ||
1029 | /* Go! */ | |
1030 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1031 | uint32_t j; | |
1032 | uint64_t worst_abs = 0, best_abs = UINT64_MAX; | |
1033 | ||
1034 | if (g_do_one_long_spin) { | |
1035 | g_one_long_spin_id = (uint32_t)rand() % g_numthreads; | |
1036 | } | |
1037 | ||
1038 | if (g_rt_churn) { | |
1039 | start_rt_churn_threads(); | |
1040 | usleep(100); | |
1041 | } | |
1042 | ||
1043 | debug_log("%d Main thread reset\n", i); | |
1044 | ||
1045 | atomic_store_explicit(&g_done_threads, 0, memory_order_seq_cst); | |
1046 | ||
1047 | g_starttime_abs = mach_absolute_time(); | |
1048 | ||
1049 | /* Fire them off and wait for worker threads to finish */ | |
1050 | kr = semaphore_wait_signal(g_main_sem, g_leadersem); | |
1051 | mach_assert_zero(kr); | |
1052 | ||
1053 | debug_log("%d Main thread return\n", i); | |
1054 | ||
1055 | assert(atomic_load_explicit(&g_done_threads, memory_order_relaxed) == g_numthreads); | |
1056 | ||
1057 | if (g_rt_churn) { | |
1058 | wait_for_rt_churn_threads(); | |
1059 | } | |
1060 | ||
1061 | /* | |
1062 | * We report the worst latencies relative to start time | |
1063 | * and relative to the lead worker thread. | |
1064 | */ | |
1065 | for (j = 0; j < g_numthreads; j++) { | |
1066 | uint64_t latency_abs; | |
1067 | ||
1068 | latency_abs = g_thread_endtimes_abs[j] - g_starttime_abs; | |
1069 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
1070 | } | |
1071 | ||
1072 | worst_latencies_ns[i] = abs_to_nanos(worst_abs); | |
1073 | ||
1074 | worst_abs = 0; | |
1075 | for (j = 1; j < g_numthreads; j++) { | |
1076 | uint64_t latency_abs; | |
1077 | ||
1078 | latency_abs = g_thread_endtimes_abs[j] - g_thread_endtimes_abs[0]; | |
1079 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
1080 | best_abs = best_abs > latency_abs ? latency_abs : best_abs; | |
1081 | } | |
1082 | ||
1083 | worst_latencies_from_first_ns[i] = abs_to_nanos(worst_abs); | |
1084 | ||
1085 | /* | |
1086 | * In the event of a bad run, cut a trace point. | |
1087 | */ | |
1088 | if (worst_latencies_from_first_ns[i] > g_traceworthy_latency_ns) { | |
1089 | /* Ariadne's ad-hoc test signpost */ | |
1090 | kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns[i], g_traceworthy_latency_ns, 0, 0); | |
1091 | ||
1092 | if (g_verbose) { | |
1093 | printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns[i]) / 1000.0); | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | /* Give the system a bit more time to settle */ | |
1098 | if (g_do_sleep) { | |
1099 | usleep(g_iteration_sleeptime_us); | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | /* Rejoin threads */ | |
1104 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
1105 | ret = pthread_join(threads[i], NULL); | |
1106 | if (ret) { | |
1107 | errc(EX_OSERR, ret, "pthread_join %d", i); | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | if (g_rt_churn) { | |
1112 | join_rt_churn_threads(); | |
1113 | } | |
1114 | ||
1115 | if (g_churn_pri) { | |
1116 | join_churn_threads(); | |
1117 | } | |
1118 | ||
1119 | compute_stats(worst_latencies_ns, g_iterations, &avg, &max, &min, &stddev); | |
1120 | printf("Results (from a stop):\n"); | |
1121 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
1122 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
1123 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
1124 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
1125 | ||
1126 | putchar('\n'); | |
1127 | ||
1128 | compute_stats(worst_latencies_from_first_ns, g_iterations, &avg, &max, &min, &stddev); | |
1129 | printf("Results (relative to first thread):\n"); | |
1130 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
1131 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
1132 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
1133 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
1134 | ||
1135 | #if 0 | |
1136 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1137 | printf("Iteration %d: %f us\n", i, worst_latencies_ns[i] / 1000.0); | |
1138 | } | |
1139 | #endif | |
1140 | ||
1141 | if (g_histogram) { | |
1142 | putchar('\n'); | |
1143 | ||
1144 | for (uint32_t i = 0; i < g_numcpus; i++) { | |
1145 | printf("%d\t%d\n", i, g_cpu_histogram[i].accum); | |
1146 | } | |
1147 | } | |
1148 | ||
1149 | if (g_test_rt || g_test_rt_smt || g_test_rt_avoid0) { | |
1150 | #define PRIMARY 0x5555555555555555ULL | |
1151 | #define SECONDARY 0xaaaaaaaaaaaaaaaaULL | |
1152 | ||
1153 | int fail_count = 0; | |
1154 | ||
1155 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1156 | bool secondary = false; | |
1157 | bool fail = false; | |
1158 | uint64_t map = g_cpu_map[i]; | |
1159 | if (g_test_rt_smt) { | |
1160 | /* Test for one or more threads running on secondary cores unexpectedly (WARNING) */ | |
1161 | secondary = (map & SECONDARY); | |
1162 | /* Test for threads running on both primary and secondary cpus of the same core (FAIL) */ | |
1163 | fail = ((map & PRIMARY) & ((map & SECONDARY) >> 1)); | |
1164 | } else if (g_test_rt) { | |
1165 | fail = (__builtin_popcountll(map) != g_numthreads) && (worst_latencies_ns[i] > g_traceworthy_latency_ns); | |
1166 | } else if (g_test_rt_avoid0) { | |
1167 | fail = ((map & 0x1) == 0x1); | |
1168 | } | |
1169 | if (secondary || fail) { | |
1170 | printf("Iteration %d: 0x%llx%s%s\n", i, map, | |
1171 | secondary ? " SECONDARY" : "", | |
1172 | fail ? " FAIL" : ""); | |
1173 | } | |
1174 | test_fail |= fail; | |
1175 | fail_count += fail; | |
1176 | } | |
1177 | ||
1178 | if (test_fail && (g_iterations >= 100) && (fail_count <= g_iterations / 100)) { | |
1179 | printf("99%% or better success rate\n"); | |
1180 | test_fail = 0; | |
1181 | } | |
1182 | } | |
1183 | ||
1184 | free(threads); | |
1185 | free(g_thread_endtimes_abs); | |
1186 | free(worst_latencies_ns); | |
1187 | free(worst_latencies_from_first_ns); | |
1188 | free(g_cpu_histogram); | |
1189 | free(g_cpu_map); | |
1190 | ||
1191 | return test_fail; | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | * WARNING: This is SPI specifically intended for use by launchd to start UI | |
1196 | * apps. We use it here for a test tool only to opt into QoS using the same | |
1197 | * policies. Do not use this outside xnu or libxpc/launchd. | |
1198 | */ | |
1199 | static void | |
1200 | selfexec_with_apptype(int argc, char *argv[]) | |
1201 | { | |
1202 | int ret; | |
1203 | posix_spawnattr_t attr; | |
1204 | extern char **environ; | |
1205 | char *new_argv[argc + 1 + 1 /* NULL */]; | |
1206 | int i; | |
1207 | char prog[PATH_MAX]; | |
1208 | uint32_t prog_size = PATH_MAX; | |
1209 | ||
1210 | ret = _NSGetExecutablePath(prog, &prog_size); | |
1211 | if (ret) { | |
1212 | err(EX_OSERR, "_NSGetExecutablePath"); | |
1213 | } | |
1214 | ||
1215 | for (i = 0; i < argc; i++) { | |
1216 | new_argv[i] = argv[i]; | |
1217 | } | |
1218 | ||
1219 | new_argv[i] = "--switched_apptype"; | |
1220 | new_argv[i + 1] = NULL; | |
1221 | ||
1222 | ret = posix_spawnattr_init(&attr); | |
1223 | if (ret) { | |
1224 | errc(EX_OSERR, ret, "posix_spawnattr_init"); | |
1225 | } | |
1226 | ||
1227 | ret = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETEXEC); | |
1228 | if (ret) { | |
1229 | errc(EX_OSERR, ret, "posix_spawnattr_setflags"); | |
1230 | } | |
1231 | ||
1232 | ret = posix_spawnattr_setprocesstype_np(&attr, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT); | |
1233 | if (ret) { | |
1234 | errc(EX_OSERR, ret, "posix_spawnattr_setprocesstype_np"); | |
1235 | } | |
1236 | ||
1237 | ret = posix_spawn(NULL, prog, NULL, &attr, new_argv, environ); | |
1238 | if (ret) { | |
1239 | errc(EX_OSERR, ret, "posix_spawn"); | |
1240 | } | |
1241 | } | |
1242 | ||
1243 | /* | |
1244 | * Admittedly not very attractive. | |
1245 | */ | |
1246 | static void __attribute__((noreturn)) | |
1247 | usage() | |
1248 | { | |
1249 | errx(EX_USAGE, "Usage: %s <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> " | |
1250 | "<realtime | timeshare | fixed> <iterations>\n\t\t" | |
1251 | "[--trace <traceworthy latency in ns>] " | |
1252 | "[--verbose] [--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity]\n\t\t" | |
1253 | "[--no-sleep] [--drop-priority] [--churn-pri <pri>] [--churn-count <n>]\n\t\t" | |
1254 | "[--rt-churn] [--rt-churn-count <n>] [--rt-ll] [--test-rt] [--test-rt-smt] [--test-rt-avoid0]", | |
1255 | getprogname()); | |
1256 | } | |
1257 | ||
1258 | static struct option* g_longopts; | |
1259 | static int option_index; | |
1260 | ||
1261 | static uint32_t | |
1262 | read_dec_arg() | |
1263 | { | |
1264 | char *cp; | |
1265 | /* char* optarg is a magic global */ | |
1266 | ||
1267 | uint32_t arg_val = (uint32_t)strtoull(optarg, &cp, 10); | |
1268 | ||
1269 | if (cp == optarg || *cp) { | |
1270 | errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"", | |
1271 | g_longopts[option_index].name, optarg); | |
1272 | } | |
1273 | ||
1274 | return arg_val; | |
1275 | } | |
1276 | ||
1277 | static void | |
1278 | parse_args(int argc, char *argv[]) | |
1279 | { | |
1280 | enum { | |
1281 | OPT_GETOPT = 0, | |
1282 | OPT_SPIN_TIME, | |
1283 | OPT_TRACE, | |
1284 | OPT_PRIORITY, | |
1285 | OPT_CHURN_PRI, | |
1286 | OPT_CHURN_COUNT, | |
1287 | OPT_RT_CHURN_COUNT, | |
1288 | }; | |
1289 | ||
1290 | static struct option longopts[] = { | |
1291 | /* BEGIN IGNORE CODESTYLE */ | |
1292 | { "spin-time", required_argument, NULL, OPT_SPIN_TIME }, | |
1293 | { "trace", required_argument, NULL, OPT_TRACE }, | |
1294 | { "priority", required_argument, NULL, OPT_PRIORITY }, | |
1295 | { "churn-pri", required_argument, NULL, OPT_CHURN_PRI }, | |
1296 | { "churn-count", required_argument, NULL, OPT_CHURN_COUNT }, | |
1297 | { "rt-churn-count", required_argument, NULL, OPT_RT_CHURN_COUNT }, | |
1298 | { "switched_apptype", no_argument, (int*)&g_seen_apptype, TRUE }, | |
1299 | { "spin-one", no_argument, (int*)&g_do_one_long_spin, TRUE }, | |
1300 | { "intel-only", no_argument, (int*)&g_run_on_intel_only, TRUE }, | |
1301 | { "spin-all", no_argument, (int*)&g_do_all_spin, TRUE }, | |
1302 | { "affinity", no_argument, (int*)&g_do_affinity, TRUE }, | |
1303 | { "no-sleep", no_argument, (int*)&g_do_sleep, FALSE }, | |
1304 | { "drop-priority", no_argument, (int*)&g_drop_priority, TRUE }, | |
1305 | { "test-rt", no_argument, (int*)&g_test_rt, TRUE }, | |
1306 | { "test-rt-smt", no_argument, (int*)&g_test_rt_smt, TRUE }, | |
1307 | { "test-rt-avoid0", no_argument, (int*)&g_test_rt_avoid0, TRUE }, | |
1308 | { "rt-churn", no_argument, (int*)&g_rt_churn, TRUE }, | |
1309 | { "rt-ll", no_argument, (int*)&g_rt_ll, TRUE }, | |
1310 | { "histogram", no_argument, (int*)&g_histogram, TRUE }, | |
1311 | { "verbose", no_argument, (int*)&g_verbose, TRUE }, | |
1312 | { "help", no_argument, NULL, 'h' }, | |
1313 | { NULL, 0, NULL, 0 } | |
1314 | /* END IGNORE CODESTYLE */ | |
1315 | }; | |
1316 | ||
1317 | g_longopts = longopts; | |
1318 | int ch = 0; | |
1319 | ||
1320 | while ((ch = getopt_long(argc, argv, "h", longopts, &option_index)) != -1) { | |
1321 | switch (ch) { | |
1322 | case OPT_GETOPT: | |
1323 | /* getopt_long set a variable */ | |
1324 | break; | |
1325 | case OPT_SPIN_TIME: | |
1326 | g_do_each_spin = TRUE; | |
1327 | g_each_spin_duration_ns = read_dec_arg(); | |
1328 | break; | |
1329 | case OPT_TRACE: | |
1330 | g_traceworthy_latency_ns = read_dec_arg(); | |
1331 | break; | |
1332 | case OPT_PRIORITY: | |
1333 | g_priority = read_dec_arg(); | |
1334 | break; | |
1335 | case OPT_CHURN_PRI: | |
1336 | g_churn_pri = read_dec_arg(); | |
1337 | break; | |
1338 | case OPT_CHURN_COUNT: | |
1339 | g_churn_count = read_dec_arg(); | |
1340 | break; | |
1341 | case OPT_RT_CHURN_COUNT: | |
1342 | g_rt_churn_count = read_dec_arg(); | |
1343 | break; | |
1344 | case '?': | |
1345 | case 'h': | |
1346 | default: | |
1347 | usage(); | |
1348 | /* NORETURN */ | |
1349 | } | |
1350 | } | |
1351 | ||
1352 | /* | |
1353 | * getopt_long reorders all the options to the beginning of the argv array. | |
1354 | * Jump past them to the non-option arguments. | |
1355 | */ | |
1356 | ||
1357 | argc -= optind; | |
1358 | argv += optind; | |
1359 | ||
1360 | if (argc > 4) { | |
1361 | warnx("Too many non-option arguments passed"); | |
1362 | usage(); | |
1363 | } | |
1364 | ||
1365 | if (argc != 4) { | |
1366 | warnx("Missing required <threads> <waketype> <policy> <iterations> arguments"); | |
1367 | usage(); | |
1368 | } | |
1369 | ||
1370 | char *cp; | |
1371 | ||
1372 | /* How many threads? */ | |
1373 | g_numthreads = (uint32_t)strtoull(argv[0], &cp, 10); | |
1374 | ||
1375 | if (cp == argv[0] || *cp) { | |
1376 | errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[0]); | |
1377 | } | |
1378 | ||
1379 | /* What wakeup pattern? */ | |
1380 | g_waketype = parse_wakeup_pattern(argv[1]); | |
1381 | ||
1382 | /* Policy */ | |
1383 | g_policy = parse_thread_policy(argv[2]); | |
1384 | ||
1385 | /* Iterations */ | |
1386 | g_iterations = (uint32_t)strtoull(argv[3], &cp, 10); | |
1387 | ||
1388 | if (cp == argv[3] || *cp) { | |
1389 | errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[3]); | |
1390 | } | |
1391 | ||
1392 | if (g_iterations < 1) { | |
1393 | errx(EX_USAGE, "Must have at least one iteration"); | |
1394 | } | |
1395 | ||
1396 | if (g_numthreads == 1 && g_waketype == WAKE_CHAIN) { | |
1397 | errx(EX_USAGE, "chain mode requires more than one thread"); | |
1398 | } | |
1399 | ||
1400 | if (g_numthreads == 1 && g_waketype == WAKE_HOP) { | |
1401 | errx(EX_USAGE, "hop mode requires more than one thread"); | |
1402 | } | |
1403 | } |