]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm_fault.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Page fault handling module. | |
63 | */ | |
64 | ||
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <libkern/OSAtomic.h> | |
68 | ||
69 | #include <mach/mach_types.h> | |
70 | #include <mach/kern_return.h> | |
71 | #include <mach/message.h> /* for error codes */ | |
72 | #include <mach/vm_param.h> | |
73 | #include <mach/vm_behavior.h> | |
74 | #include <mach/memory_object.h> | |
75 | /* For memory_object_data_{request,unlock} */ | |
76 | #include <mach/sdt.h> | |
77 | ||
78 | #include <kern/kern_types.h> | |
79 | #include <kern/host_statistics.h> | |
80 | #include <kern/counters.h> | |
81 | #include <kern/task.h> | |
82 | #include <kern/thread.h> | |
83 | #include <kern/sched_prim.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/mach_param.h> | |
86 | #include <kern/macro_help.h> | |
87 | #include <kern/zalloc.h> | |
88 | #include <kern/misc_protos.h> | |
89 | #include <kern/policy_internal.h> | |
90 | ||
91 | #include <vm/vm_compressor.h> | |
92 | #include <vm/vm_compressor_pager.h> | |
93 | #include <vm/vm_fault.h> | |
94 | #include <vm/vm_map.h> | |
95 | #include <vm/vm_object.h> | |
96 | #include <vm/vm_page.h> | |
97 | #include <vm/vm_kern.h> | |
98 | #include <vm/pmap.h> | |
99 | #include <vm/vm_pageout.h> | |
100 | #include <vm/vm_protos.h> | |
101 | #include <vm/vm_external.h> | |
102 | #include <vm/memory_object.h> | |
103 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
104 | #include <vm/vm_shared_region.h> | |
105 | ||
106 | #include <sys/codesign.h> | |
107 | #include <sys/reason.h> | |
108 | #include <sys/signalvar.h> | |
109 | ||
110 | #include <san/kasan.h> | |
111 | ||
112 | #define VM_FAULT_CLASSIFY 0 | |
113 | ||
114 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
115 | ||
116 | int vm_protect_privileged_from_untrusted = 1; | |
117 | ||
118 | unsigned int vm_object_pagein_throttle = 16; | |
119 | ||
120 | /* | |
121 | * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which | |
122 | * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts | |
123 | * of memory if they're buggy and can run the system completely out of swap space. If this happens, we | |
124 | * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps | |
125 | * keep the UI active so that the user has a chance to kill the offending task before the system | |
126 | * completely hangs. | |
127 | * | |
128 | * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied | |
129 | * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold | |
130 | * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a | |
131 | * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. | |
132 | */ | |
133 | ||
134 | extern void throttle_lowpri_io(int); | |
135 | ||
136 | extern struct vnode *vnode_pager_lookup_vnode(memory_object_t); | |
137 | ||
138 | uint64_t vm_hard_throttle_threshold; | |
139 | ||
140 | ||
141 | OS_ALWAYS_INLINE | |
142 | boolean_t | |
143 | NEED_TO_HARD_THROTTLE_THIS_TASK(void) | |
144 | { | |
145 | return vm_wants_task_throttled(current_task()) || | |
146 | ((vm_page_free_count < vm_page_throttle_limit || | |
147 | HARD_THROTTLE_LIMIT_REACHED()) && | |
148 | proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED); | |
149 | } | |
150 | ||
151 | #define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */ | |
152 | #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */ | |
153 | ||
154 | #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6 | |
155 | #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000 | |
156 | ||
157 | ||
158 | #define VM_STAT_DECOMPRESSIONS() \ | |
159 | MACRO_BEGIN \ | |
160 | VM_STAT_INCR(decompressions); \ | |
161 | current_thread()->decompressions++; \ | |
162 | MACRO_END | |
163 | ||
164 | boolean_t current_thread_aborted(void); | |
165 | ||
166 | /* Forward declarations of internal routines. */ | |
167 | static kern_return_t vm_fault_wire_fast( | |
168 | vm_map_t map, | |
169 | vm_map_offset_t va, | |
170 | vm_prot_t prot, | |
171 | vm_tag_t wire_tag, | |
172 | vm_map_entry_t entry, | |
173 | pmap_t pmap, | |
174 | vm_map_offset_t pmap_addr, | |
175 | ppnum_t *physpage_p); | |
176 | ||
177 | static kern_return_t vm_fault_internal( | |
178 | vm_map_t map, | |
179 | vm_map_offset_t vaddr, | |
180 | vm_prot_t caller_prot, | |
181 | boolean_t change_wiring, | |
182 | vm_tag_t wire_tag, | |
183 | int interruptible, | |
184 | pmap_t pmap, | |
185 | vm_map_offset_t pmap_addr, | |
186 | ppnum_t *physpage_p); | |
187 | ||
188 | static void vm_fault_copy_cleanup( | |
189 | vm_page_t page, | |
190 | vm_page_t top_page); | |
191 | ||
192 | static void vm_fault_copy_dst_cleanup( | |
193 | vm_page_t page); | |
194 | ||
195 | #if VM_FAULT_CLASSIFY | |
196 | extern void vm_fault_classify(vm_object_t object, | |
197 | vm_object_offset_t offset, | |
198 | vm_prot_t fault_type); | |
199 | ||
200 | extern void vm_fault_classify_init(void); | |
201 | #endif | |
202 | ||
203 | unsigned long vm_pmap_enter_blocked = 0; | |
204 | unsigned long vm_pmap_enter_retried = 0; | |
205 | ||
206 | unsigned long vm_cs_validates = 0; | |
207 | unsigned long vm_cs_revalidates = 0; | |
208 | unsigned long vm_cs_query_modified = 0; | |
209 | unsigned long vm_cs_validated_dirtied = 0; | |
210 | unsigned long vm_cs_bitmap_validated = 0; | |
211 | ||
212 | void vm_pre_fault(vm_map_offset_t, vm_prot_t); | |
213 | ||
214 | extern char *kdp_compressor_decompressed_page; | |
215 | extern addr64_t kdp_compressor_decompressed_page_paddr; | |
216 | extern ppnum_t kdp_compressor_decompressed_page_ppnum; | |
217 | ||
218 | struct vmrtfr { | |
219 | int vmrtfr_maxi; | |
220 | int vmrtfr_curi; | |
221 | int64_t vmrtf_total; | |
222 | vm_rtfault_record_t *vm_rtf_records; | |
223 | } vmrtfrs; | |
224 | #define VMRTF_DEFAULT_BUFSIZE (4096) | |
225 | #define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t)) | |
226 | TUNABLE(int, vmrtf_num_records, "vm_rtfault_records", VMRTF_NUM_RECORDS_DEFAULT); | |
227 | ||
228 | static void vm_rtfrecord_lock(void); | |
229 | static void vm_rtfrecord_unlock(void); | |
230 | static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int); | |
231 | ||
232 | extern lck_grp_t vm_page_lck_grp_bucket; | |
233 | extern lck_attr_t vm_page_lck_attr; | |
234 | LCK_SPIN_DECLARE_ATTR(vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
235 | ||
236 | /* | |
237 | * Routine: vm_fault_init | |
238 | * Purpose: | |
239 | * Initialize our private data structures. | |
240 | */ | |
241 | __startup_func | |
242 | void | |
243 | vm_fault_init(void) | |
244 | { | |
245 | int i, vm_compressor_temp; | |
246 | boolean_t need_default_val = TRUE; | |
247 | /* | |
248 | * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is | |
249 | * computed as a percentage of available memory, and the percentage used is scaled inversely with | |
250 | * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems | |
251 | * and reduce the value down to 10% for very large memory configurations. This helps give us a | |
252 | * definition of a memory hog that makes more sense relative to the amount of ram in the machine. | |
253 | * The formula here simply uses the number of gigabytes of ram to adjust the percentage. | |
254 | */ | |
255 | ||
256 | vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100; | |
257 | ||
258 | /* | |
259 | * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. | |
260 | */ | |
261 | ||
262 | if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof(vm_compressor_temp))) { | |
263 | for (i = 0; i < VM_PAGER_MAX_MODES; i++) { | |
264 | if (((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) { | |
265 | need_default_val = FALSE; | |
266 | vm_compressor_mode = vm_compressor_temp; | |
267 | break; | |
268 | } | |
269 | } | |
270 | if (need_default_val) { | |
271 | printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp); | |
272 | } | |
273 | } | |
274 | if (need_default_val) { | |
275 | /* If no boot arg or incorrect boot arg, try device tree. */ | |
276 | PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode)); | |
277 | } | |
278 | printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode); | |
279 | ||
280 | PE_parse_boot_argn("vm_protect_privileged_from_untrusted", | |
281 | &vm_protect_privileged_from_untrusted, | |
282 | sizeof(vm_protect_privileged_from_untrusted)); | |
283 | } | |
284 | ||
285 | __startup_func | |
286 | static void | |
287 | vm_rtfault_record_init(void) | |
288 | { | |
289 | size_t size; | |
290 | ||
291 | vmrtf_num_records = MAX(vmrtf_num_records, 1); | |
292 | size = vmrtf_num_records * sizeof(vm_rtfault_record_t); | |
293 | vmrtfrs.vm_rtf_records = zalloc_permanent(size, | |
294 | ZALIGN(vm_rtfault_record_t)); | |
295 | vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1; | |
296 | } | |
297 | STARTUP(ZALLOC, STARTUP_RANK_MIDDLE, vm_rtfault_record_init); | |
298 | ||
299 | /* | |
300 | * Routine: vm_fault_cleanup | |
301 | * Purpose: | |
302 | * Clean up the result of vm_fault_page. | |
303 | * Results: | |
304 | * The paging reference for "object" is released. | |
305 | * "object" is unlocked. | |
306 | * If "top_page" is not null, "top_page" is | |
307 | * freed and the paging reference for the object | |
308 | * containing it is released. | |
309 | * | |
310 | * In/out conditions: | |
311 | * "object" must be locked. | |
312 | */ | |
313 | void | |
314 | vm_fault_cleanup( | |
315 | vm_object_t object, | |
316 | vm_page_t top_page) | |
317 | { | |
318 | vm_object_paging_end(object); | |
319 | vm_object_unlock(object); | |
320 | ||
321 | if (top_page != VM_PAGE_NULL) { | |
322 | object = VM_PAGE_OBJECT(top_page); | |
323 | ||
324 | vm_object_lock(object); | |
325 | VM_PAGE_FREE(top_page); | |
326 | vm_object_paging_end(object); | |
327 | vm_object_unlock(object); | |
328 | } | |
329 | } | |
330 | ||
331 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) | |
332 | ||
333 | ||
334 | boolean_t vm_page_deactivate_behind = TRUE; | |
335 | /* | |
336 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
337 | */ | |
338 | #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 | |
339 | #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ | |
340 | /* we use it to size an array on the stack */ | |
341 | ||
342 | int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; | |
343 | ||
344 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) | |
345 | ||
346 | /* | |
347 | * vm_page_is_sequential | |
348 | * | |
349 | * Determine if sequential access is in progress | |
350 | * in accordance with the behavior specified. | |
351 | * Update state to indicate current access pattern. | |
352 | * | |
353 | * object must have at least the shared lock held | |
354 | */ | |
355 | static | |
356 | void | |
357 | vm_fault_is_sequential( | |
358 | vm_object_t object, | |
359 | vm_object_offset_t offset, | |
360 | vm_behavior_t behavior) | |
361 | { | |
362 | vm_object_offset_t last_alloc; | |
363 | int sequential; | |
364 | int orig_sequential; | |
365 | ||
366 | last_alloc = object->last_alloc; | |
367 | sequential = object->sequential; | |
368 | orig_sequential = sequential; | |
369 | ||
370 | offset = vm_object_trunc_page(offset); | |
371 | if (offset == last_alloc && behavior != VM_BEHAVIOR_RANDOM) { | |
372 | /* re-faulting in the same page: no change in behavior */ | |
373 | return; | |
374 | } | |
375 | ||
376 | switch (behavior) { | |
377 | case VM_BEHAVIOR_RANDOM: | |
378 | /* | |
379 | * reset indicator of sequential behavior | |
380 | */ | |
381 | sequential = 0; | |
382 | break; | |
383 | ||
384 | case VM_BEHAVIOR_SEQUENTIAL: | |
385 | if (offset && last_alloc == offset - PAGE_SIZE_64) { | |
386 | /* | |
387 | * advance indicator of sequential behavior | |
388 | */ | |
389 | if (sequential < MAX_SEQUENTIAL_RUN) { | |
390 | sequential += PAGE_SIZE; | |
391 | } | |
392 | } else { | |
393 | /* | |
394 | * reset indicator of sequential behavior | |
395 | */ | |
396 | sequential = 0; | |
397 | } | |
398 | break; | |
399 | ||
400 | case VM_BEHAVIOR_RSEQNTL: | |
401 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { | |
402 | /* | |
403 | * advance indicator of sequential behavior | |
404 | */ | |
405 | if (sequential > -MAX_SEQUENTIAL_RUN) { | |
406 | sequential -= PAGE_SIZE; | |
407 | } | |
408 | } else { | |
409 | /* | |
410 | * reset indicator of sequential behavior | |
411 | */ | |
412 | sequential = 0; | |
413 | } | |
414 | break; | |
415 | ||
416 | case VM_BEHAVIOR_DEFAULT: | |
417 | default: | |
418 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { | |
419 | /* | |
420 | * advance indicator of sequential behavior | |
421 | */ | |
422 | if (sequential < 0) { | |
423 | sequential = 0; | |
424 | } | |
425 | if (sequential < MAX_SEQUENTIAL_RUN) { | |
426 | sequential += PAGE_SIZE; | |
427 | } | |
428 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { | |
429 | /* | |
430 | * advance indicator of sequential behavior | |
431 | */ | |
432 | if (sequential > 0) { | |
433 | sequential = 0; | |
434 | } | |
435 | if (sequential > -MAX_SEQUENTIAL_RUN) { | |
436 | sequential -= PAGE_SIZE; | |
437 | } | |
438 | } else { | |
439 | /* | |
440 | * reset indicator of sequential behavior | |
441 | */ | |
442 | sequential = 0; | |
443 | } | |
444 | break; | |
445 | } | |
446 | if (sequential != orig_sequential) { | |
447 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { | |
448 | /* | |
449 | * if someone else has already updated object->sequential | |
450 | * don't bother trying to update it or object->last_alloc | |
451 | */ | |
452 | return; | |
453 | } | |
454 | } | |
455 | /* | |
456 | * I'd like to do this with a OSCompareAndSwap64, but that | |
457 | * doesn't exist for PPC... however, it shouldn't matter | |
458 | * that much... last_alloc is maintained so that we can determine | |
459 | * if a sequential access pattern is taking place... if only | |
460 | * one thread is banging on this object, no problem with the unprotected | |
461 | * update... if 2 or more threads are banging away, we run the risk of | |
462 | * someone seeing a mangled update... however, in the face of multiple | |
463 | * accesses, no sequential access pattern can develop anyway, so we | |
464 | * haven't lost any real info. | |
465 | */ | |
466 | object->last_alloc = offset; | |
467 | } | |
468 | ||
469 | ||
470 | int vm_page_deactivate_behind_count = 0; | |
471 | ||
472 | /* | |
473 | * vm_page_deactivate_behind | |
474 | * | |
475 | * Determine if sequential access is in progress | |
476 | * in accordance with the behavior specified. If | |
477 | * so, compute a potential page to deactivate and | |
478 | * deactivate it. | |
479 | * | |
480 | * object must be locked. | |
481 | * | |
482 | * return TRUE if we actually deactivate a page | |
483 | */ | |
484 | static | |
485 | boolean_t | |
486 | vm_fault_deactivate_behind( | |
487 | vm_object_t object, | |
488 | vm_object_offset_t offset, | |
489 | vm_behavior_t behavior) | |
490 | { | |
491 | int n; | |
492 | int pages_in_run = 0; | |
493 | int max_pages_in_run = 0; | |
494 | int sequential_run; | |
495 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
496 | vm_object_offset_t run_offset = 0; | |
497 | vm_object_offset_t pg_offset = 0; | |
498 | vm_page_t m; | |
499 | vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; | |
500 | ||
501 | pages_in_run = 0; | |
502 | #if TRACEFAULTPAGE | |
503 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
504 | #endif | |
505 | if (object == kernel_object || vm_page_deactivate_behind == FALSE || (vm_object_trunc_page(offset) != offset)) { | |
506 | /* | |
507 | * Do not deactivate pages from the kernel object: they | |
508 | * are not intended to become pageable. | |
509 | * or we've disabled the deactivate behind mechanism | |
510 | * or we are dealing with an offset that is not aligned to | |
511 | * the system's PAGE_SIZE because in that case we will | |
512 | * handle the deactivation on the aligned offset and, thus, | |
513 | * the full PAGE_SIZE page once. This helps us avoid the redundant | |
514 | * deactivates and the extra faults. | |
515 | */ | |
516 | return FALSE; | |
517 | } | |
518 | if ((sequential_run = object->sequential)) { | |
519 | if (sequential_run < 0) { | |
520 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
521 | sequential_run = 0 - sequential_run; | |
522 | } else { | |
523 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
524 | } | |
525 | } | |
526 | switch (behavior) { | |
527 | case VM_BEHAVIOR_RANDOM: | |
528 | break; | |
529 | case VM_BEHAVIOR_SEQUENTIAL: | |
530 | if (sequential_run >= (int)PAGE_SIZE) { | |
531 | run_offset = 0 - PAGE_SIZE_64; | |
532 | max_pages_in_run = 1; | |
533 | } | |
534 | break; | |
535 | case VM_BEHAVIOR_RSEQNTL: | |
536 | if (sequential_run >= (int)PAGE_SIZE) { | |
537 | run_offset = PAGE_SIZE_64; | |
538 | max_pages_in_run = 1; | |
539 | } | |
540 | break; | |
541 | case VM_BEHAVIOR_DEFAULT: | |
542 | default: | |
543 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; | |
544 | ||
545 | /* | |
546 | * determine if the run of sequential accesss has been | |
547 | * long enough on an object with default access behavior | |
548 | * to consider it for deactivation | |
549 | */ | |
550 | if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { | |
551 | /* | |
552 | * the comparisons between offset and behind are done | |
553 | * in this kind of odd fashion in order to prevent wrap around | |
554 | * at the end points | |
555 | */ | |
556 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { | |
557 | if (offset >= behind) { | |
558 | run_offset = 0 - behind; | |
559 | pg_offset = PAGE_SIZE_64; | |
560 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
561 | } | |
562 | } else { | |
563 | if (offset < -behind) { | |
564 | run_offset = behind; | |
565 | pg_offset = 0 - PAGE_SIZE_64; | |
566 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
567 | } | |
568 | } | |
569 | } | |
570 | break;} | |
571 | } | |
572 | for (n = 0; n < max_pages_in_run; n++) { | |
573 | m = vm_page_lookup(object, offset + run_offset + (n * pg_offset)); | |
574 | ||
575 | if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) { | |
576 | page_run[pages_in_run++] = m; | |
577 | ||
578 | /* | |
579 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... | |
580 | * | |
581 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being | |
582 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the | |
583 | * new reference happens. If no futher references happen on the page after that remote TLB flushes | |
584 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue | |
585 | * by pageout_scan, which is just fine since the last reference would have happened quite far | |
586 | * in the past (TLB caches don't hang around for very long), and of course could just as easily | |
587 | * have happened before we did the deactivate_behind. | |
588 | */ | |
589 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); | |
590 | } | |
591 | } | |
592 | if (pages_in_run) { | |
593 | vm_page_lockspin_queues(); | |
594 | ||
595 | for (n = 0; n < pages_in_run; n++) { | |
596 | m = page_run[n]; | |
597 | ||
598 | vm_page_deactivate_internal(m, FALSE); | |
599 | ||
600 | vm_page_deactivate_behind_count++; | |
601 | #if TRACEFAULTPAGE | |
602 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
603 | #endif | |
604 | } | |
605 | vm_page_unlock_queues(); | |
606 | ||
607 | return TRUE; | |
608 | } | |
609 | return FALSE; | |
610 | } | |
611 | ||
612 | ||
613 | #if (DEVELOPMENT || DEBUG) | |
614 | uint32_t vm_page_creation_throttled_hard = 0; | |
615 | uint32_t vm_page_creation_throttled_soft = 0; | |
616 | uint64_t vm_page_creation_throttle_avoided = 0; | |
617 | #endif /* DEVELOPMENT || DEBUG */ | |
618 | ||
619 | static int | |
620 | vm_page_throttled(boolean_t page_kept) | |
621 | { | |
622 | clock_sec_t elapsed_sec; | |
623 | clock_sec_t tv_sec; | |
624 | clock_usec_t tv_usec; | |
625 | ||
626 | thread_t thread = current_thread(); | |
627 | ||
628 | if (thread->options & TH_OPT_VMPRIV) { | |
629 | return 0; | |
630 | } | |
631 | ||
632 | if (thread->t_page_creation_throttled) { | |
633 | thread->t_page_creation_throttled = 0; | |
634 | ||
635 | if (page_kept == FALSE) { | |
636 | goto no_throttle; | |
637 | } | |
638 | } | |
639 | if (NEED_TO_HARD_THROTTLE_THIS_TASK()) { | |
640 | #if (DEVELOPMENT || DEBUG) | |
641 | thread->t_page_creation_throttled_hard++; | |
642 | OSAddAtomic(1, &vm_page_creation_throttled_hard); | |
643 | #endif /* DEVELOPMENT || DEBUG */ | |
644 | return HARD_THROTTLE_DELAY; | |
645 | } | |
646 | ||
647 | if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) && | |
648 | thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) { | |
649 | if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) { | |
650 | #if (DEVELOPMENT || DEBUG) | |
651 | OSAddAtomic64(1, &vm_page_creation_throttle_avoided); | |
652 | #endif | |
653 | goto no_throttle; | |
654 | } | |
655 | clock_get_system_microtime(&tv_sec, &tv_usec); | |
656 | ||
657 | elapsed_sec = tv_sec - thread->t_page_creation_time; | |
658 | ||
659 | if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS || | |
660 | (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) { | |
661 | if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) { | |
662 | /* | |
663 | * we'll reset our stats to give a well behaved app | |
664 | * that was unlucky enough to accumulate a bunch of pages | |
665 | * over a long period of time a chance to get out of | |
666 | * the throttled state... we reset the counter and timestamp | |
667 | * so that if it stays under the rate limit for the next second | |
668 | * it will be back in our good graces... if it exceeds it, it | |
669 | * will remain in the throttled state | |
670 | */ | |
671 | thread->t_page_creation_time = tv_sec; | |
672 | thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1); | |
673 | } | |
674 | VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1); | |
675 | ||
676 | thread->t_page_creation_throttled = 1; | |
677 | ||
678 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) { | |
679 | #if (DEVELOPMENT || DEBUG) | |
680 | thread->t_page_creation_throttled_hard++; | |
681 | OSAddAtomic(1, &vm_page_creation_throttled_hard); | |
682 | #endif /* DEVELOPMENT || DEBUG */ | |
683 | return HARD_THROTTLE_DELAY; | |
684 | } else { | |
685 | #if (DEVELOPMENT || DEBUG) | |
686 | thread->t_page_creation_throttled_soft++; | |
687 | OSAddAtomic(1, &vm_page_creation_throttled_soft); | |
688 | #endif /* DEVELOPMENT || DEBUG */ | |
689 | return SOFT_THROTTLE_DELAY; | |
690 | } | |
691 | } | |
692 | thread->t_page_creation_time = tv_sec; | |
693 | thread->t_page_creation_count = 0; | |
694 | } | |
695 | no_throttle: | |
696 | thread->t_page_creation_count++; | |
697 | ||
698 | return 0; | |
699 | } | |
700 | ||
701 | ||
702 | /* | |
703 | * check for various conditions that would | |
704 | * prevent us from creating a ZF page... | |
705 | * cleanup is based on being called from vm_fault_page | |
706 | * | |
707 | * object must be locked | |
708 | * object == m->vmp_object | |
709 | */ | |
710 | static vm_fault_return_t | |
711 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle) | |
712 | { | |
713 | int throttle_delay; | |
714 | ||
715 | if (object->shadow_severed || | |
716 | VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { | |
717 | /* | |
718 | * Either: | |
719 | * 1. the shadow chain was severed, | |
720 | * 2. the purgeable object is volatile or empty and is marked | |
721 | * to fault on access while volatile. | |
722 | * Just have to return an error at this point | |
723 | */ | |
724 | if (m != VM_PAGE_NULL) { | |
725 | VM_PAGE_FREE(m); | |
726 | } | |
727 | vm_fault_cleanup(object, first_m); | |
728 | ||
729 | thread_interrupt_level(interruptible_state); | |
730 | ||
731 | return VM_FAULT_MEMORY_ERROR; | |
732 | } | |
733 | if (page_throttle == TRUE) { | |
734 | if ((throttle_delay = vm_page_throttled(FALSE))) { | |
735 | /* | |
736 | * we're throttling zero-fills... | |
737 | * treat this as if we couldn't grab a page | |
738 | */ | |
739 | if (m != VM_PAGE_NULL) { | |
740 | VM_PAGE_FREE(m); | |
741 | } | |
742 | vm_fault_cleanup(object, first_m); | |
743 | ||
744 | VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); | |
745 | ||
746 | delay(throttle_delay); | |
747 | ||
748 | if (current_thread_aborted()) { | |
749 | thread_interrupt_level(interruptible_state); | |
750 | return VM_FAULT_INTERRUPTED; | |
751 | } | |
752 | thread_interrupt_level(interruptible_state); | |
753 | ||
754 | return VM_FAULT_MEMORY_SHORTAGE; | |
755 | } | |
756 | } | |
757 | return VM_FAULT_SUCCESS; | |
758 | } | |
759 | ||
760 | /* | |
761 | * Clear the code signing bits on the given page_t | |
762 | */ | |
763 | static void | |
764 | vm_fault_cs_clear(vm_page_t m) | |
765 | { | |
766 | m->vmp_cs_validated = VMP_CS_ALL_FALSE; | |
767 | m->vmp_cs_tainted = VMP_CS_ALL_FALSE; | |
768 | m->vmp_cs_nx = VMP_CS_ALL_FALSE; | |
769 | } | |
770 | ||
771 | /* | |
772 | * Enqueues the given page on the throttled queue. | |
773 | * The caller must hold the vm_page_queue_lock and it will be held on return. | |
774 | */ | |
775 | static void | |
776 | vm_fault_enqueue_throttled_locked(vm_page_t m) | |
777 | { | |
778 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
779 | assert(!VM_PAGE_WIRED(m)); | |
780 | ||
781 | /* | |
782 | * can't be on the pageout queue since we don't | |
783 | * have a pager to try and clean to | |
784 | */ | |
785 | vm_page_queues_remove(m, TRUE); | |
786 | vm_page_check_pageable_safe(m); | |
787 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); | |
788 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; | |
789 | vm_page_throttled_count++; | |
790 | } | |
791 | ||
792 | /* | |
793 | * do the work to zero fill a page and | |
794 | * inject it into the correct paging queue | |
795 | * | |
796 | * m->vmp_object must be locked | |
797 | * page queue lock must NOT be held | |
798 | */ | |
799 | static int | |
800 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) | |
801 | { | |
802 | int my_fault = DBG_ZERO_FILL_FAULT; | |
803 | vm_object_t object; | |
804 | ||
805 | object = VM_PAGE_OBJECT(m); | |
806 | ||
807 | /* | |
808 | * This is is a zero-fill page fault... | |
809 | * | |
810 | * Checking the page lock is a waste of | |
811 | * time; this page was absent, so | |
812 | * it can't be page locked by a pager. | |
813 | * | |
814 | * we also consider it undefined | |
815 | * with respect to instruction | |
816 | * execution. i.e. it is the responsibility | |
817 | * of higher layers to call for an instruction | |
818 | * sync after changing the contents and before | |
819 | * sending a program into this area. We | |
820 | * choose this approach for performance | |
821 | */ | |
822 | vm_fault_cs_clear(m); | |
823 | m->vmp_pmapped = TRUE; | |
824 | ||
825 | if (no_zero_fill == TRUE) { | |
826 | my_fault = DBG_NZF_PAGE_FAULT; | |
827 | ||
828 | if (m->vmp_absent && m->vmp_busy) { | |
829 | return my_fault; | |
830 | } | |
831 | } else { | |
832 | vm_page_zero_fill(m); | |
833 | ||
834 | VM_STAT_INCR(zero_fill_count); | |
835 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
836 | } | |
837 | assert(!m->vmp_laundry); | |
838 | assert(object != kernel_object); | |
839 | //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); | |
840 | if (!VM_DYNAMIC_PAGING_ENABLED() && | |
841 | (object->purgable == VM_PURGABLE_DENY || | |
842 | object->purgable == VM_PURGABLE_NONVOLATILE || | |
843 | object->purgable == VM_PURGABLE_VOLATILE)) { | |
844 | vm_page_lockspin_queues(); | |
845 | if (!VM_DYNAMIC_PAGING_ENABLED()) { | |
846 | vm_fault_enqueue_throttled_locked(m); | |
847 | } | |
848 | vm_page_unlock_queues(); | |
849 | } | |
850 | return my_fault; | |
851 | } | |
852 | ||
853 | ||
854 | /* | |
855 | * Routine: vm_fault_page | |
856 | * Purpose: | |
857 | * Find the resident page for the virtual memory | |
858 | * specified by the given virtual memory object | |
859 | * and offset. | |
860 | * Additional arguments: | |
861 | * The required permissions for the page is given | |
862 | * in "fault_type". Desired permissions are included | |
863 | * in "protection". | |
864 | * fault_info is passed along to determine pagein cluster | |
865 | * limits... it contains the expected reference pattern, | |
866 | * cluster size if available, etc... | |
867 | * | |
868 | * If the desired page is known to be resident (for | |
869 | * example, because it was previously wired down), asserting | |
870 | * the "unwiring" parameter will speed the search. | |
871 | * | |
872 | * If the operation can be interrupted (by thread_abort | |
873 | * or thread_terminate), then the "interruptible" | |
874 | * parameter should be asserted. | |
875 | * | |
876 | * Results: | |
877 | * The page containing the proper data is returned | |
878 | * in "result_page". | |
879 | * | |
880 | * In/out conditions: | |
881 | * The source object must be locked and referenced, | |
882 | * and must donate one paging reference. The reference | |
883 | * is not affected. The paging reference and lock are | |
884 | * consumed. | |
885 | * | |
886 | * If the call succeeds, the object in which "result_page" | |
887 | * resides is left locked and holding a paging reference. | |
888 | * If this is not the original object, a busy page in the | |
889 | * original object is returned in "top_page", to prevent other | |
890 | * callers from pursuing this same data, along with a paging | |
891 | * reference for the original object. The "top_page" should | |
892 | * be destroyed when this guarantee is no longer required. | |
893 | * The "result_page" is also left busy. It is not removed | |
894 | * from the pageout queues. | |
895 | * Special Case: | |
896 | * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the | |
897 | * fault succeeded but there's no VM page (i.e. the VM object | |
898 | * does not actually hold VM pages, but device memory or | |
899 | * large pages). The object is still locked and we still hold a | |
900 | * paging_in_progress reference. | |
901 | */ | |
902 | unsigned int vm_fault_page_blocked_access = 0; | |
903 | unsigned int vm_fault_page_forced_retry = 0; | |
904 | ||
905 | vm_fault_return_t | |
906 | vm_fault_page( | |
907 | /* Arguments: */ | |
908 | vm_object_t first_object, /* Object to begin search */ | |
909 | vm_object_offset_t first_offset, /* Offset into object */ | |
910 | vm_prot_t fault_type, /* What access is requested */ | |
911 | boolean_t must_be_resident,/* Must page be resident? */ | |
912 | boolean_t caller_lookup, /* caller looked up page */ | |
913 | /* Modifies in place: */ | |
914 | vm_prot_t *protection, /* Protection for mapping */ | |
915 | vm_page_t *result_page, /* Page found, if successful */ | |
916 | /* Returns: */ | |
917 | vm_page_t *top_page, /* Page in top object, if | |
918 | * not result_page. */ | |
919 | int *type_of_fault, /* if non-null, fill in with type of fault | |
920 | * COW, zero-fill, etc... returned in trace point */ | |
921 | /* More arguments: */ | |
922 | kern_return_t *error_code, /* code if page is in error */ | |
923 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
924 | boolean_t data_supply, /* treat as data_supply if | |
925 | * it is a write fault and a full | |
926 | * page is provided */ | |
927 | vm_object_fault_info_t fault_info) | |
928 | { | |
929 | vm_page_t m; | |
930 | vm_object_t object; | |
931 | vm_object_offset_t offset; | |
932 | vm_page_t first_m; | |
933 | vm_object_t next_object; | |
934 | vm_object_t copy_object; | |
935 | boolean_t look_for_page; | |
936 | boolean_t force_fault_retry = FALSE; | |
937 | vm_prot_t access_required = fault_type; | |
938 | vm_prot_t wants_copy_flag; | |
939 | kern_return_t wait_result; | |
940 | wait_interrupt_t interruptible_state; | |
941 | boolean_t data_already_requested = FALSE; | |
942 | vm_behavior_t orig_behavior; | |
943 | vm_size_t orig_cluster_size; | |
944 | vm_fault_return_t error; | |
945 | int my_fault; | |
946 | uint32_t try_failed_count; | |
947 | int interruptible; /* how may fault be interrupted? */ | |
948 | int external_state = VM_EXTERNAL_STATE_UNKNOWN; | |
949 | memory_object_t pager; | |
950 | vm_fault_return_t retval; | |
951 | int grab_options; | |
952 | ||
953 | /* | |
954 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is | |
955 | * marked as paged out in the compressor pager or the pager doesn't exist. | |
956 | * Note also that if the pager for an internal object | |
957 | * has not been created, the pager is not invoked regardless of the value | |
958 | * of MUST_ASK_PAGER(). | |
959 | * | |
960 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
961 | * is marked as paged out in the compressor pager. | |
962 | * PAGED_OUT() is used to determine if a page has already been pushed | |
963 | * into a copy object in order to avoid a redundant page out operation. | |
964 | */ | |
965 | #define MUST_ASK_PAGER(o, f, s) \ | |
966 | ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) | |
967 | ||
968 | #define PAGED_OUT(o, f) \ | |
969 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) | |
970 | ||
971 | /* | |
972 | * Recovery actions | |
973 | */ | |
974 | #define RELEASE_PAGE(m) \ | |
975 | MACRO_BEGIN \ | |
976 | PAGE_WAKEUP_DONE(m); \ | |
977 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
978 | vm_page_lockspin_queues(); \ | |
979 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
980 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \ | |
981 | vm_page_deactivate(m); \ | |
982 | else \ | |
983 | vm_page_activate(m); \ | |
984 | } \ | |
985 | vm_page_unlock_queues(); \ | |
986 | } \ | |
987 | MACRO_END | |
988 | ||
989 | #if TRACEFAULTPAGE | |
990 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
991 | #endif | |
992 | ||
993 | interruptible = fault_info->interruptible; | |
994 | interruptible_state = thread_interrupt_level(interruptible); | |
995 | ||
996 | /* | |
997 | * INVARIANTS (through entire routine): | |
998 | * | |
999 | * 1) At all times, we must either have the object | |
1000 | * lock or a busy page in some object to prevent | |
1001 | * some other thread from trying to bring in | |
1002 | * the same page. | |
1003 | * | |
1004 | * Note that we cannot hold any locks during the | |
1005 | * pager access or when waiting for memory, so | |
1006 | * we use a busy page then. | |
1007 | * | |
1008 | * 2) To prevent another thread from racing us down the | |
1009 | * shadow chain and entering a new page in the top | |
1010 | * object before we do, we must keep a busy page in | |
1011 | * the top object while following the shadow chain. | |
1012 | * | |
1013 | * 3) We must increment paging_in_progress on any object | |
1014 | * for which we have a busy page before dropping | |
1015 | * the object lock | |
1016 | * | |
1017 | * 4) We leave busy pages on the pageout queues. | |
1018 | * If the pageout daemon comes across a busy page, | |
1019 | * it will remove the page from the pageout queues. | |
1020 | */ | |
1021 | ||
1022 | object = first_object; | |
1023 | offset = first_offset; | |
1024 | first_m = VM_PAGE_NULL; | |
1025 | access_required = fault_type; | |
1026 | ||
1027 | /* | |
1028 | * default type of fault | |
1029 | */ | |
1030 | my_fault = DBG_CACHE_HIT_FAULT; | |
1031 | ||
1032 | while (TRUE) { | |
1033 | #if TRACEFAULTPAGE | |
1034 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1035 | #endif | |
1036 | ||
1037 | grab_options = 0; | |
1038 | #if CONFIG_SECLUDED_MEMORY | |
1039 | if (object->can_grab_secluded) { | |
1040 | grab_options |= VM_PAGE_GRAB_SECLUDED; | |
1041 | } | |
1042 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1043 | ||
1044 | if (!object->alive) { | |
1045 | /* | |
1046 | * object is no longer valid | |
1047 | * clean up and return error | |
1048 | */ | |
1049 | vm_fault_cleanup(object, first_m); | |
1050 | thread_interrupt_level(interruptible_state); | |
1051 | ||
1052 | return VM_FAULT_MEMORY_ERROR; | |
1053 | } | |
1054 | ||
1055 | if (!object->pager_created && object->phys_contiguous) { | |
1056 | /* | |
1057 | * A physically-contiguous object without a pager: | |
1058 | * must be a "large page" object. We do not deal | |
1059 | * with VM pages for this object. | |
1060 | */ | |
1061 | caller_lookup = FALSE; | |
1062 | m = VM_PAGE_NULL; | |
1063 | goto phys_contig_object; | |
1064 | } | |
1065 | ||
1066 | if (object->blocked_access) { | |
1067 | /* | |
1068 | * Access to this VM object has been blocked. | |
1069 | * Replace our "paging_in_progress" reference with | |
1070 | * a "activity_in_progress" reference and wait for | |
1071 | * access to be unblocked. | |
1072 | */ | |
1073 | caller_lookup = FALSE; /* no longer valid after sleep */ | |
1074 | vm_object_activity_begin(object); | |
1075 | vm_object_paging_end(object); | |
1076 | while (object->blocked_access) { | |
1077 | vm_object_sleep(object, | |
1078 | VM_OBJECT_EVENT_UNBLOCKED, | |
1079 | THREAD_UNINT); | |
1080 | } | |
1081 | vm_fault_page_blocked_access++; | |
1082 | vm_object_paging_begin(object); | |
1083 | vm_object_activity_end(object); | |
1084 | } | |
1085 | ||
1086 | /* | |
1087 | * See whether the page at 'offset' is resident | |
1088 | */ | |
1089 | if (caller_lookup == TRUE) { | |
1090 | /* | |
1091 | * The caller has already looked up the page | |
1092 | * and gave us the result in "result_page". | |
1093 | * We can use this for the first lookup but | |
1094 | * it loses its validity as soon as we unlock | |
1095 | * the object. | |
1096 | */ | |
1097 | m = *result_page; | |
1098 | caller_lookup = FALSE; /* no longer valid after that */ | |
1099 | } else { | |
1100 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); | |
1101 | } | |
1102 | #if TRACEFAULTPAGE | |
1103 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1104 | #endif | |
1105 | if (m != VM_PAGE_NULL) { | |
1106 | if (m->vmp_busy) { | |
1107 | /* | |
1108 | * The page is being brought in, | |
1109 | * wait for it and then retry. | |
1110 | */ | |
1111 | #if TRACEFAULTPAGE | |
1112 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1113 | #endif | |
1114 | wait_result = PAGE_SLEEP(object, m, interruptible); | |
1115 | ||
1116 | counter(c_vm_fault_page_block_busy_kernel++); | |
1117 | ||
1118 | if (wait_result != THREAD_AWAKENED) { | |
1119 | vm_fault_cleanup(object, first_m); | |
1120 | thread_interrupt_level(interruptible_state); | |
1121 | ||
1122 | if (wait_result == THREAD_RESTART) { | |
1123 | return VM_FAULT_RETRY; | |
1124 | } else { | |
1125 | return VM_FAULT_INTERRUPTED; | |
1126 | } | |
1127 | } | |
1128 | continue; | |
1129 | } | |
1130 | if (m->vmp_laundry) { | |
1131 | m->vmp_free_when_done = FALSE; | |
1132 | ||
1133 | if (!m->vmp_cleaning) { | |
1134 | vm_pageout_steal_laundry(m, FALSE); | |
1135 | } | |
1136 | } | |
1137 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { | |
1138 | /* | |
1139 | * Guard page: off limits ! | |
1140 | */ | |
1141 | if (fault_type == VM_PROT_NONE) { | |
1142 | /* | |
1143 | * The fault is not requesting any | |
1144 | * access to the guard page, so it must | |
1145 | * be just to wire or unwire it. | |
1146 | * Let's pretend it succeeded... | |
1147 | */ | |
1148 | m->vmp_busy = TRUE; | |
1149 | *result_page = m; | |
1150 | assert(first_m == VM_PAGE_NULL); | |
1151 | *top_page = first_m; | |
1152 | if (type_of_fault) { | |
1153 | *type_of_fault = DBG_GUARD_FAULT; | |
1154 | } | |
1155 | thread_interrupt_level(interruptible_state); | |
1156 | return VM_FAULT_SUCCESS; | |
1157 | } else { | |
1158 | /* | |
1159 | * The fault requests access to the | |
1160 | * guard page: let's deny that ! | |
1161 | */ | |
1162 | vm_fault_cleanup(object, first_m); | |
1163 | thread_interrupt_level(interruptible_state); | |
1164 | return VM_FAULT_MEMORY_ERROR; | |
1165 | } | |
1166 | } | |
1167 | ||
1168 | if (m->vmp_error) { | |
1169 | /* | |
1170 | * The page is in error, give up now. | |
1171 | */ | |
1172 | #if TRACEFAULTPAGE | |
1173 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
1174 | #endif | |
1175 | if (error_code) { | |
1176 | *error_code = KERN_MEMORY_ERROR; | |
1177 | } | |
1178 | VM_PAGE_FREE(m); | |
1179 | ||
1180 | vm_fault_cleanup(object, first_m); | |
1181 | thread_interrupt_level(interruptible_state); | |
1182 | ||
1183 | return VM_FAULT_MEMORY_ERROR; | |
1184 | } | |
1185 | if (m->vmp_restart) { | |
1186 | /* | |
1187 | * The pager wants us to restart | |
1188 | * at the top of the chain, | |
1189 | * typically because it has moved the | |
1190 | * page to another pager, then do so. | |
1191 | */ | |
1192 | #if TRACEFAULTPAGE | |
1193 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1194 | #endif | |
1195 | VM_PAGE_FREE(m); | |
1196 | ||
1197 | vm_fault_cleanup(object, first_m); | |
1198 | thread_interrupt_level(interruptible_state); | |
1199 | ||
1200 | return VM_FAULT_RETRY; | |
1201 | } | |
1202 | if (m->vmp_absent) { | |
1203 | /* | |
1204 | * The page isn't busy, but is absent, | |
1205 | * therefore it's deemed "unavailable". | |
1206 | * | |
1207 | * Remove the non-existent page (unless it's | |
1208 | * in the top object) and move on down to the | |
1209 | * next object (if there is one). | |
1210 | */ | |
1211 | #if TRACEFAULTPAGE | |
1212 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
1213 | #endif | |
1214 | next_object = object->shadow; | |
1215 | ||
1216 | if (next_object == VM_OBJECT_NULL) { | |
1217 | /* | |
1218 | * Absent page at bottom of shadow | |
1219 | * chain; zero fill the page we left | |
1220 | * busy in the first object, and free | |
1221 | * the absent page. | |
1222 | */ | |
1223 | assert(!must_be_resident); | |
1224 | ||
1225 | /* | |
1226 | * check for any conditions that prevent | |
1227 | * us from creating a new zero-fill page | |
1228 | * vm_fault_check will do all of the | |
1229 | * fault cleanup in the case of an error condition | |
1230 | * including resetting the thread_interrupt_level | |
1231 | */ | |
1232 | error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); | |
1233 | ||
1234 | if (error != VM_FAULT_SUCCESS) { | |
1235 | return error; | |
1236 | } | |
1237 | ||
1238 | if (object != first_object) { | |
1239 | /* | |
1240 | * free the absent page we just found | |
1241 | */ | |
1242 | VM_PAGE_FREE(m); | |
1243 | ||
1244 | /* | |
1245 | * drop reference and lock on current object | |
1246 | */ | |
1247 | vm_object_paging_end(object); | |
1248 | vm_object_unlock(object); | |
1249 | ||
1250 | /* | |
1251 | * grab the original page we | |
1252 | * 'soldered' in place and | |
1253 | * retake lock on 'first_object' | |
1254 | */ | |
1255 | m = first_m; | |
1256 | first_m = VM_PAGE_NULL; | |
1257 | ||
1258 | object = first_object; | |
1259 | offset = first_offset; | |
1260 | ||
1261 | vm_object_lock(object); | |
1262 | } else { | |
1263 | /* | |
1264 | * we're going to use the absent page we just found | |
1265 | * so convert it to a 'busy' page | |
1266 | */ | |
1267 | m->vmp_absent = FALSE; | |
1268 | m->vmp_busy = TRUE; | |
1269 | } | |
1270 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { | |
1271 | m->vmp_absent = TRUE; | |
1272 | } | |
1273 | /* | |
1274 | * zero-fill the page and put it on | |
1275 | * the correct paging queue | |
1276 | */ | |
1277 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1278 | ||
1279 | break; | |
1280 | } else { | |
1281 | if (must_be_resident) { | |
1282 | vm_object_paging_end(object); | |
1283 | } else if (object != first_object) { | |
1284 | vm_object_paging_end(object); | |
1285 | VM_PAGE_FREE(m); | |
1286 | } else { | |
1287 | first_m = m; | |
1288 | m->vmp_absent = FALSE; | |
1289 | m->vmp_busy = TRUE; | |
1290 | ||
1291 | vm_page_lockspin_queues(); | |
1292 | vm_page_queues_remove(m, FALSE); | |
1293 | vm_page_unlock_queues(); | |
1294 | } | |
1295 | ||
1296 | offset += object->vo_shadow_offset; | |
1297 | fault_info->lo_offset += object->vo_shadow_offset; | |
1298 | fault_info->hi_offset += object->vo_shadow_offset; | |
1299 | access_required = VM_PROT_READ; | |
1300 | ||
1301 | vm_object_lock(next_object); | |
1302 | vm_object_unlock(object); | |
1303 | object = next_object; | |
1304 | vm_object_paging_begin(object); | |
1305 | ||
1306 | /* | |
1307 | * reset to default type of fault | |
1308 | */ | |
1309 | my_fault = DBG_CACHE_HIT_FAULT; | |
1310 | ||
1311 | continue; | |
1312 | } | |
1313 | } | |
1314 | if ((m->vmp_cleaning) | |
1315 | && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) | |
1316 | && (fault_type & VM_PROT_WRITE)) { | |
1317 | /* | |
1318 | * This is a copy-on-write fault that will | |
1319 | * cause us to revoke access to this page, but | |
1320 | * this page is in the process of being cleaned | |
1321 | * in a clustered pageout. We must wait until | |
1322 | * the cleaning operation completes before | |
1323 | * revoking access to the original page, | |
1324 | * otherwise we might attempt to remove a | |
1325 | * wired mapping. | |
1326 | */ | |
1327 | #if TRACEFAULTPAGE | |
1328 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
1329 | #endif | |
1330 | /* | |
1331 | * take an extra ref so that object won't die | |
1332 | */ | |
1333 | vm_object_reference_locked(object); | |
1334 | ||
1335 | vm_fault_cleanup(object, first_m); | |
1336 | ||
1337 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1338 | vm_object_lock(object); | |
1339 | assert(object->ref_count > 0); | |
1340 | ||
1341 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); | |
1342 | ||
1343 | if (m != VM_PAGE_NULL && m->vmp_cleaning) { | |
1344 | PAGE_ASSERT_WAIT(m, interruptible); | |
1345 | ||
1346 | vm_object_unlock(object); | |
1347 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1348 | vm_object_deallocate(object); | |
1349 | ||
1350 | goto backoff; | |
1351 | } else { | |
1352 | vm_object_unlock(object); | |
1353 | ||
1354 | vm_object_deallocate(object); | |
1355 | thread_interrupt_level(interruptible_state); | |
1356 | ||
1357 | return VM_FAULT_RETRY; | |
1358 | } | |
1359 | } | |
1360 | if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) && | |
1361 | !(fault_info != NULL && fault_info->stealth)) { | |
1362 | /* | |
1363 | * If we were passed a non-NULL pointer for | |
1364 | * "type_of_fault", than we came from | |
1365 | * vm_fault... we'll let it deal with | |
1366 | * this condition, since it | |
1367 | * needs to see m->vmp_speculative to correctly | |
1368 | * account the pageins, otherwise... | |
1369 | * take it off the speculative queue, we'll | |
1370 | * let the caller of vm_fault_page deal | |
1371 | * with getting it onto the correct queue | |
1372 | * | |
1373 | * If the caller specified in fault_info that | |
1374 | * it wants a "stealth" fault, we also leave | |
1375 | * the page in the speculative queue. | |
1376 | */ | |
1377 | vm_page_lockspin_queues(); | |
1378 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { | |
1379 | vm_page_queues_remove(m, FALSE); | |
1380 | } | |
1381 | vm_page_unlock_queues(); | |
1382 | } | |
1383 | assert(object == VM_PAGE_OBJECT(m)); | |
1384 | ||
1385 | if (object->code_signed) { | |
1386 | /* | |
1387 | * CODE SIGNING: | |
1388 | * We just paged in a page from a signed | |
1389 | * memory object but we don't need to | |
1390 | * validate it now. We'll validate it if | |
1391 | * when it gets mapped into a user address | |
1392 | * space for the first time or when the page | |
1393 | * gets copied to another object as a result | |
1394 | * of a copy-on-write. | |
1395 | */ | |
1396 | } | |
1397 | ||
1398 | /* | |
1399 | * We mark the page busy and leave it on | |
1400 | * the pageout queues. If the pageout | |
1401 | * deamon comes across it, then it will | |
1402 | * remove the page from the queue, but not the object | |
1403 | */ | |
1404 | #if TRACEFAULTPAGE | |
1405 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1406 | #endif | |
1407 | assert(!m->vmp_busy); | |
1408 | assert(!m->vmp_absent); | |
1409 | ||
1410 | m->vmp_busy = TRUE; | |
1411 | break; | |
1412 | } | |
1413 | ||
1414 | ||
1415 | /* | |
1416 | * we get here when there is no page present in the object at | |
1417 | * the offset we're interested in... we'll allocate a page | |
1418 | * at this point if the pager associated with | |
1419 | * this object can provide the data or we're the top object... | |
1420 | * object is locked; m == NULL | |
1421 | */ | |
1422 | ||
1423 | if (must_be_resident) { | |
1424 | if (fault_type == VM_PROT_NONE && | |
1425 | object == kernel_object) { | |
1426 | /* | |
1427 | * We've been called from vm_fault_unwire() | |
1428 | * while removing a map entry that was allocated | |
1429 | * with KMA_KOBJECT and KMA_VAONLY. This page | |
1430 | * is not present and there's nothing more to | |
1431 | * do here (nothing to unwire). | |
1432 | */ | |
1433 | vm_fault_cleanup(object, first_m); | |
1434 | thread_interrupt_level(interruptible_state); | |
1435 | ||
1436 | return VM_FAULT_MEMORY_ERROR; | |
1437 | } | |
1438 | ||
1439 | goto dont_look_for_page; | |
1440 | } | |
1441 | ||
1442 | /* Don't expect to fault pages into the kernel object. */ | |
1443 | assert(object != kernel_object); | |
1444 | ||
1445 | data_supply = FALSE; | |
1446 | ||
1447 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply); | |
1448 | ||
1449 | #if TRACEFAULTPAGE | |
1450 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1451 | #endif | |
1452 | if (!look_for_page && object == first_object && !object->phys_contiguous) { | |
1453 | /* | |
1454 | * Allocate a new page for this object/offset pair as a placeholder | |
1455 | */ | |
1456 | m = vm_page_grab_options(grab_options); | |
1457 | #if TRACEFAULTPAGE | |
1458 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1459 | #endif | |
1460 | if (m == VM_PAGE_NULL) { | |
1461 | vm_fault_cleanup(object, first_m); | |
1462 | thread_interrupt_level(interruptible_state); | |
1463 | ||
1464 | return VM_FAULT_MEMORY_SHORTAGE; | |
1465 | } | |
1466 | ||
1467 | if (fault_info && fault_info->batch_pmap_op == TRUE) { | |
1468 | vm_page_insert_internal(m, object, | |
1469 | vm_object_trunc_page(offset), | |
1470 | VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); | |
1471 | } else { | |
1472 | vm_page_insert(m, object, vm_object_trunc_page(offset)); | |
1473 | } | |
1474 | } | |
1475 | if (look_for_page) { | |
1476 | kern_return_t rc; | |
1477 | int my_fault_type; | |
1478 | ||
1479 | /* | |
1480 | * If the memory manager is not ready, we | |
1481 | * cannot make requests. | |
1482 | */ | |
1483 | if (!object->pager_ready) { | |
1484 | #if TRACEFAULTPAGE | |
1485 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1486 | #endif | |
1487 | if (m != VM_PAGE_NULL) { | |
1488 | VM_PAGE_FREE(m); | |
1489 | } | |
1490 | ||
1491 | /* | |
1492 | * take an extra ref so object won't die | |
1493 | */ | |
1494 | vm_object_reference_locked(object); | |
1495 | vm_fault_cleanup(object, first_m); | |
1496 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1497 | ||
1498 | vm_object_lock(object); | |
1499 | assert(object->ref_count > 0); | |
1500 | ||
1501 | if (!object->pager_ready) { | |
1502 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); | |
1503 | ||
1504 | vm_object_unlock(object); | |
1505 | if (wait_result == THREAD_WAITING) { | |
1506 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1507 | } | |
1508 | vm_object_deallocate(object); | |
1509 | ||
1510 | goto backoff; | |
1511 | } else { | |
1512 | vm_object_unlock(object); | |
1513 | vm_object_deallocate(object); | |
1514 | thread_interrupt_level(interruptible_state); | |
1515 | ||
1516 | return VM_FAULT_RETRY; | |
1517 | } | |
1518 | } | |
1519 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { | |
1520 | /* | |
1521 | * If there are too many outstanding page | |
1522 | * requests pending on this external object, we | |
1523 | * wait for them to be resolved now. | |
1524 | */ | |
1525 | #if TRACEFAULTPAGE | |
1526 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1527 | #endif | |
1528 | if (m != VM_PAGE_NULL) { | |
1529 | VM_PAGE_FREE(m); | |
1530 | } | |
1531 | /* | |
1532 | * take an extra ref so object won't die | |
1533 | */ | |
1534 | vm_object_reference_locked(object); | |
1535 | ||
1536 | vm_fault_cleanup(object, first_m); | |
1537 | ||
1538 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1539 | ||
1540 | vm_object_lock(object); | |
1541 | assert(object->ref_count > 0); | |
1542 | ||
1543 | if (object->paging_in_progress >= vm_object_pagein_throttle) { | |
1544 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); | |
1545 | ||
1546 | vm_object_unlock(object); | |
1547 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1548 | vm_object_deallocate(object); | |
1549 | ||
1550 | goto backoff; | |
1551 | } else { | |
1552 | vm_object_unlock(object); | |
1553 | vm_object_deallocate(object); | |
1554 | thread_interrupt_level(interruptible_state); | |
1555 | ||
1556 | return VM_FAULT_RETRY; | |
1557 | } | |
1558 | } | |
1559 | if (object->internal) { | |
1560 | int compressed_count_delta; | |
1561 | ||
1562 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
1563 | ||
1564 | if (m == VM_PAGE_NULL) { | |
1565 | /* | |
1566 | * Allocate a new page for this object/offset pair as a placeholder | |
1567 | */ | |
1568 | m = vm_page_grab_options(grab_options); | |
1569 | #if TRACEFAULTPAGE | |
1570 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1571 | #endif | |
1572 | if (m == VM_PAGE_NULL) { | |
1573 | vm_fault_cleanup(object, first_m); | |
1574 | thread_interrupt_level(interruptible_state); | |
1575 | ||
1576 | return VM_FAULT_MEMORY_SHORTAGE; | |
1577 | } | |
1578 | ||
1579 | m->vmp_absent = TRUE; | |
1580 | if (fault_info && fault_info->batch_pmap_op == TRUE) { | |
1581 | vm_page_insert_internal(m, object, vm_object_trunc_page(offset), VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); | |
1582 | } else { | |
1583 | vm_page_insert(m, object, vm_object_trunc_page(offset)); | |
1584 | } | |
1585 | } | |
1586 | assert(m->vmp_busy); | |
1587 | ||
1588 | m->vmp_absent = TRUE; | |
1589 | pager = object->pager; | |
1590 | ||
1591 | assert(object->paging_in_progress > 0); | |
1592 | vm_object_unlock(object); | |
1593 | ||
1594 | rc = vm_compressor_pager_get( | |
1595 | pager, | |
1596 | offset + object->paging_offset, | |
1597 | VM_PAGE_GET_PHYS_PAGE(m), | |
1598 | &my_fault_type, | |
1599 | 0, | |
1600 | &compressed_count_delta); | |
1601 | ||
1602 | if (type_of_fault == NULL) { | |
1603 | int throttle_delay; | |
1604 | ||
1605 | /* | |
1606 | * we weren't called from vm_fault, so we | |
1607 | * need to apply page creation throttling | |
1608 | * do it before we re-acquire any locks | |
1609 | */ | |
1610 | if (my_fault_type == DBG_COMPRESSOR_FAULT) { | |
1611 | if ((throttle_delay = vm_page_throttled(TRUE))) { | |
1612 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0); | |
1613 | delay(throttle_delay); | |
1614 | } | |
1615 | } | |
1616 | } | |
1617 | vm_object_lock(object); | |
1618 | assert(object->paging_in_progress > 0); | |
1619 | ||
1620 | vm_compressor_pager_count( | |
1621 | pager, | |
1622 | compressed_count_delta, | |
1623 | FALSE, /* shared_lock */ | |
1624 | object); | |
1625 | ||
1626 | switch (rc) { | |
1627 | case KERN_SUCCESS: | |
1628 | m->vmp_absent = FALSE; | |
1629 | m->vmp_dirty = TRUE; | |
1630 | if ((object->wimg_bits & | |
1631 | VM_WIMG_MASK) != | |
1632 | VM_WIMG_USE_DEFAULT) { | |
1633 | /* | |
1634 | * If the page is not cacheable, | |
1635 | * we can't let its contents | |
1636 | * linger in the data cache | |
1637 | * after the decompression. | |
1638 | */ | |
1639 | pmap_sync_page_attributes_phys( | |
1640 | VM_PAGE_GET_PHYS_PAGE(m)); | |
1641 | } else { | |
1642 | m->vmp_written_by_kernel = TRUE; | |
1643 | } | |
1644 | ||
1645 | /* | |
1646 | * If the object is purgeable, its | |
1647 | * owner's purgeable ledgers have been | |
1648 | * updated in vm_page_insert() but the | |
1649 | * page was also accounted for in a | |
1650 | * "compressed purgeable" ledger, so | |
1651 | * update that now. | |
1652 | */ | |
1653 | if (((object->purgable != | |
1654 | VM_PURGABLE_DENY) || | |
1655 | object->vo_ledger_tag) && | |
1656 | (object->vo_owner != | |
1657 | NULL)) { | |
1658 | /* | |
1659 | * One less compressed | |
1660 | * purgeable/tagged page. | |
1661 | */ | |
1662 | vm_object_owner_compressed_update( | |
1663 | object, | |
1664 | -1); | |
1665 | } | |
1666 | ||
1667 | break; | |
1668 | case KERN_MEMORY_FAILURE: | |
1669 | m->vmp_unusual = TRUE; | |
1670 | m->vmp_error = TRUE; | |
1671 | m->vmp_absent = FALSE; | |
1672 | break; | |
1673 | case KERN_MEMORY_ERROR: | |
1674 | assert(m->vmp_absent); | |
1675 | break; | |
1676 | default: | |
1677 | panic("vm_fault_page(): unexpected " | |
1678 | "error %d from " | |
1679 | "vm_compressor_pager_get()\n", | |
1680 | rc); | |
1681 | } | |
1682 | PAGE_WAKEUP_DONE(m); | |
1683 | ||
1684 | rc = KERN_SUCCESS; | |
1685 | goto data_requested; | |
1686 | } | |
1687 | my_fault_type = DBG_PAGEIN_FAULT; | |
1688 | ||
1689 | if (m != VM_PAGE_NULL) { | |
1690 | VM_PAGE_FREE(m); | |
1691 | m = VM_PAGE_NULL; | |
1692 | } | |
1693 | ||
1694 | #if TRACEFAULTPAGE | |
1695 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1696 | #endif | |
1697 | ||
1698 | /* | |
1699 | * It's possible someone called vm_object_destroy while we weren't | |
1700 | * holding the object lock. If that has happened, then bail out | |
1701 | * here. | |
1702 | */ | |
1703 | ||
1704 | pager = object->pager; | |
1705 | ||
1706 | if (pager == MEMORY_OBJECT_NULL) { | |
1707 | vm_fault_cleanup(object, first_m); | |
1708 | thread_interrupt_level(interruptible_state); | |
1709 | return VM_FAULT_MEMORY_ERROR; | |
1710 | } | |
1711 | ||
1712 | /* | |
1713 | * We have an absent page in place for the faulting offset, | |
1714 | * so we can release the object lock. | |
1715 | */ | |
1716 | ||
1717 | if (object->object_is_shared_cache) { | |
1718 | set_thread_rwlock_boost(); | |
1719 | } | |
1720 | ||
1721 | vm_object_unlock(object); | |
1722 | ||
1723 | /* | |
1724 | * If this object uses a copy_call strategy, | |
1725 | * and we are interested in a copy of this object | |
1726 | * (having gotten here only by following a | |
1727 | * shadow chain), then tell the memory manager | |
1728 | * via a flag added to the desired_access | |
1729 | * parameter, so that it can detect a race | |
1730 | * between our walking down the shadow chain | |
1731 | * and its pushing pages up into a copy of | |
1732 | * the object that it manages. | |
1733 | */ | |
1734 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) { | |
1735 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1736 | } else { | |
1737 | wants_copy_flag = VM_PROT_NONE; | |
1738 | } | |
1739 | ||
1740 | if (object->copy == first_object) { | |
1741 | /* | |
1742 | * if we issue the memory_object_data_request in | |
1743 | * this state, we are subject to a deadlock with | |
1744 | * the underlying filesystem if it is trying to | |
1745 | * shrink the file resulting in a push of pages | |
1746 | * into the copy object... that push will stall | |
1747 | * on the placeholder page, and if the pushing thread | |
1748 | * is holding a lock that is required on the pagein | |
1749 | * path (such as a truncate lock), we'll deadlock... | |
1750 | * to avoid this potential deadlock, we throw away | |
1751 | * our placeholder page before calling memory_object_data_request | |
1752 | * and force this thread to retry the vm_fault_page after | |
1753 | * we have issued the I/O. the second time through this path | |
1754 | * we will find the page already in the cache (presumably still | |
1755 | * busy waiting for the I/O to complete) and then complete | |
1756 | * the fault w/o having to go through memory_object_data_request again | |
1757 | */ | |
1758 | assert(first_m != VM_PAGE_NULL); | |
1759 | assert(VM_PAGE_OBJECT(first_m) == first_object); | |
1760 | ||
1761 | vm_object_lock(first_object); | |
1762 | VM_PAGE_FREE(first_m); | |
1763 | vm_object_paging_end(first_object); | |
1764 | vm_object_unlock(first_object); | |
1765 | ||
1766 | first_m = VM_PAGE_NULL; | |
1767 | force_fault_retry = TRUE; | |
1768 | ||
1769 | vm_fault_page_forced_retry++; | |
1770 | } | |
1771 | ||
1772 | if (data_already_requested == TRUE) { | |
1773 | orig_behavior = fault_info->behavior; | |
1774 | orig_cluster_size = fault_info->cluster_size; | |
1775 | ||
1776 | fault_info->behavior = VM_BEHAVIOR_RANDOM; | |
1777 | fault_info->cluster_size = PAGE_SIZE; | |
1778 | } | |
1779 | /* | |
1780 | * Call the memory manager to retrieve the data. | |
1781 | */ | |
1782 | rc = memory_object_data_request( | |
1783 | pager, | |
1784 | vm_object_trunc_page(offset) + object->paging_offset, | |
1785 | PAGE_SIZE, | |
1786 | access_required | wants_copy_flag, | |
1787 | (memory_object_fault_info_t)fault_info); | |
1788 | ||
1789 | if (data_already_requested == TRUE) { | |
1790 | fault_info->behavior = orig_behavior; | |
1791 | fault_info->cluster_size = orig_cluster_size; | |
1792 | } else { | |
1793 | data_already_requested = TRUE; | |
1794 | } | |
1795 | ||
1796 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); | |
1797 | #if TRACEFAULTPAGE | |
1798 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1799 | #endif | |
1800 | vm_object_lock(object); | |
1801 | ||
1802 | if (object->object_is_shared_cache) { | |
1803 | clear_thread_rwlock_boost(); | |
1804 | } | |
1805 | ||
1806 | data_requested: | |
1807 | if (rc != KERN_SUCCESS) { | |
1808 | vm_fault_cleanup(object, first_m); | |
1809 | thread_interrupt_level(interruptible_state); | |
1810 | ||
1811 | return (rc == MACH_SEND_INTERRUPTED) ? | |
1812 | VM_FAULT_INTERRUPTED : | |
1813 | VM_FAULT_MEMORY_ERROR; | |
1814 | } else { | |
1815 | clock_sec_t tv_sec; | |
1816 | clock_usec_t tv_usec; | |
1817 | ||
1818 | if (my_fault_type == DBG_PAGEIN_FAULT) { | |
1819 | clock_get_system_microtime(&tv_sec, &tv_usec); | |
1820 | current_thread()->t_page_creation_time = tv_sec; | |
1821 | current_thread()->t_page_creation_count = 0; | |
1822 | } | |
1823 | } | |
1824 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { | |
1825 | vm_fault_cleanup(object, first_m); | |
1826 | thread_interrupt_level(interruptible_state); | |
1827 | ||
1828 | return VM_FAULT_INTERRUPTED; | |
1829 | } | |
1830 | if (force_fault_retry == TRUE) { | |
1831 | vm_fault_cleanup(object, first_m); | |
1832 | thread_interrupt_level(interruptible_state); | |
1833 | ||
1834 | return VM_FAULT_RETRY; | |
1835 | } | |
1836 | if (m == VM_PAGE_NULL && object->phys_contiguous) { | |
1837 | /* | |
1838 | * No page here means that the object we | |
1839 | * initially looked up was "physically | |
1840 | * contiguous" (i.e. device memory). However, | |
1841 | * with Virtual VRAM, the object might not | |
1842 | * be backed by that device memory anymore, | |
1843 | * so we're done here only if the object is | |
1844 | * still "phys_contiguous". | |
1845 | * Otherwise, if the object is no longer | |
1846 | * "phys_contiguous", we need to retry the | |
1847 | * page fault against the object's new backing | |
1848 | * store (different memory object). | |
1849 | */ | |
1850 | phys_contig_object: | |
1851 | goto done; | |
1852 | } | |
1853 | /* | |
1854 | * potentially a pagein fault | |
1855 | * if we make it through the state checks | |
1856 | * above, than we'll count it as such | |
1857 | */ | |
1858 | my_fault = my_fault_type; | |
1859 | ||
1860 | /* | |
1861 | * Retry with same object/offset, since new data may | |
1862 | * be in a different page (i.e., m is meaningless at | |
1863 | * this point). | |
1864 | */ | |
1865 | continue; | |
1866 | } | |
1867 | dont_look_for_page: | |
1868 | /* | |
1869 | * We get here if the object has no pager, or an existence map | |
1870 | * exists and indicates the page isn't present on the pager | |
1871 | * or we're unwiring a page. If a pager exists, but there | |
1872 | * is no existence map, then the m->vmp_absent case above handles | |
1873 | * the ZF case when the pager can't provide the page | |
1874 | */ | |
1875 | #if TRACEFAULTPAGE | |
1876 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1877 | #endif | |
1878 | if (object == first_object) { | |
1879 | first_m = m; | |
1880 | } else { | |
1881 | assert(m == VM_PAGE_NULL); | |
1882 | } | |
1883 | ||
1884 | next_object = object->shadow; | |
1885 | ||
1886 | if (next_object == VM_OBJECT_NULL) { | |
1887 | /* | |
1888 | * we've hit the bottom of the shadown chain, | |
1889 | * fill the page in the top object with zeros. | |
1890 | */ | |
1891 | assert(!must_be_resident); | |
1892 | ||
1893 | if (object != first_object) { | |
1894 | vm_object_paging_end(object); | |
1895 | vm_object_unlock(object); | |
1896 | ||
1897 | object = first_object; | |
1898 | offset = first_offset; | |
1899 | vm_object_lock(object); | |
1900 | } | |
1901 | m = first_m; | |
1902 | assert(VM_PAGE_OBJECT(m) == object); | |
1903 | first_m = VM_PAGE_NULL; | |
1904 | ||
1905 | /* | |
1906 | * check for any conditions that prevent | |
1907 | * us from creating a new zero-fill page | |
1908 | * vm_fault_check will do all of the | |
1909 | * fault cleanup in the case of an error condition | |
1910 | * including resetting the thread_interrupt_level | |
1911 | */ | |
1912 | error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); | |
1913 | ||
1914 | if (error != VM_FAULT_SUCCESS) { | |
1915 | return error; | |
1916 | } | |
1917 | ||
1918 | if (m == VM_PAGE_NULL) { | |
1919 | m = vm_page_grab_options(grab_options); | |
1920 | ||
1921 | if (m == VM_PAGE_NULL) { | |
1922 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1923 | thread_interrupt_level(interruptible_state); | |
1924 | ||
1925 | return VM_FAULT_MEMORY_SHORTAGE; | |
1926 | } | |
1927 | vm_page_insert(m, object, vm_object_trunc_page(offset)); | |
1928 | } | |
1929 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { | |
1930 | m->vmp_absent = TRUE; | |
1931 | } | |
1932 | ||
1933 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1934 | ||
1935 | break; | |
1936 | } else { | |
1937 | /* | |
1938 | * Move on to the next object. Lock the next | |
1939 | * object before unlocking the current one. | |
1940 | */ | |
1941 | if ((object != first_object) || must_be_resident) { | |
1942 | vm_object_paging_end(object); | |
1943 | } | |
1944 | ||
1945 | offset += object->vo_shadow_offset; | |
1946 | fault_info->lo_offset += object->vo_shadow_offset; | |
1947 | fault_info->hi_offset += object->vo_shadow_offset; | |
1948 | access_required = VM_PROT_READ; | |
1949 | ||
1950 | vm_object_lock(next_object); | |
1951 | vm_object_unlock(object); | |
1952 | ||
1953 | object = next_object; | |
1954 | vm_object_paging_begin(object); | |
1955 | } | |
1956 | } | |
1957 | ||
1958 | /* | |
1959 | * PAGE HAS BEEN FOUND. | |
1960 | * | |
1961 | * This page (m) is: | |
1962 | * busy, so that we can play with it; | |
1963 | * not absent, so that nobody else will fill it; | |
1964 | * possibly eligible for pageout; | |
1965 | * | |
1966 | * The top-level page (first_m) is: | |
1967 | * VM_PAGE_NULL if the page was found in the | |
1968 | * top-level object; | |
1969 | * busy, not absent, and ineligible for pageout. | |
1970 | * | |
1971 | * The current object (object) is locked. A paging | |
1972 | * reference is held for the current and top-level | |
1973 | * objects. | |
1974 | */ | |
1975 | ||
1976 | #if TRACEFAULTPAGE | |
1977 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1978 | #endif | |
1979 | #if EXTRA_ASSERTIONS | |
1980 | assert(m->vmp_busy && !m->vmp_absent); | |
1981 | assert((first_m == VM_PAGE_NULL) || | |
1982 | (first_m->vmp_busy && !first_m->vmp_absent && | |
1983 | !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded)); | |
1984 | #endif /* EXTRA_ASSERTIONS */ | |
1985 | ||
1986 | /* | |
1987 | * If the page is being written, but isn't | |
1988 | * already owned by the top-level object, | |
1989 | * we have to copy it into a new page owned | |
1990 | * by the top-level object. | |
1991 | */ | |
1992 | if (object != first_object) { | |
1993 | #if TRACEFAULTPAGE | |
1994 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1995 | #endif | |
1996 | if (fault_type & VM_PROT_WRITE) { | |
1997 | vm_page_t copy_m; | |
1998 | ||
1999 | /* | |
2000 | * We only really need to copy if we | |
2001 | * want to write it. | |
2002 | */ | |
2003 | assert(!must_be_resident); | |
2004 | ||
2005 | /* | |
2006 | * If we try to collapse first_object at this | |
2007 | * point, we may deadlock when we try to get | |
2008 | * the lock on an intermediate object (since we | |
2009 | * have the bottom object locked). We can't | |
2010 | * unlock the bottom object, because the page | |
2011 | * we found may move (by collapse) if we do. | |
2012 | * | |
2013 | * Instead, we first copy the page. Then, when | |
2014 | * we have no more use for the bottom object, | |
2015 | * we unlock it and try to collapse. | |
2016 | * | |
2017 | * Note that we copy the page even if we didn't | |
2018 | * need to... that's the breaks. | |
2019 | */ | |
2020 | ||
2021 | /* | |
2022 | * Allocate a page for the copy | |
2023 | */ | |
2024 | copy_m = vm_page_grab_options(grab_options); | |
2025 | ||
2026 | if (copy_m == VM_PAGE_NULL) { | |
2027 | RELEASE_PAGE(m); | |
2028 | ||
2029 | vm_fault_cleanup(object, first_m); | |
2030 | thread_interrupt_level(interruptible_state); | |
2031 | ||
2032 | return VM_FAULT_MEMORY_SHORTAGE; | |
2033 | } | |
2034 | ||
2035 | vm_page_copy(m, copy_m); | |
2036 | ||
2037 | /* | |
2038 | * If another map is truly sharing this | |
2039 | * page with us, we have to flush all | |
2040 | * uses of the original page, since we | |
2041 | * can't distinguish those which want the | |
2042 | * original from those which need the | |
2043 | * new copy. | |
2044 | * | |
2045 | * XXXO If we know that only one map has | |
2046 | * access to this page, then we could | |
2047 | * avoid the pmap_disconnect() call. | |
2048 | */ | |
2049 | if (m->vmp_pmapped) { | |
2050 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
2051 | } | |
2052 | ||
2053 | if (m->vmp_clustered) { | |
2054 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2055 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2056 | } | |
2057 | assert(!m->vmp_cleaning); | |
2058 | ||
2059 | /* | |
2060 | * We no longer need the old page or object. | |
2061 | */ | |
2062 | RELEASE_PAGE(m); | |
2063 | ||
2064 | /* | |
2065 | * This check helps with marking the object as having a sequential pattern | |
2066 | * Normally we'll miss doing this below because this fault is about COW to | |
2067 | * the first_object i.e. bring page in from disk, push to object above but | |
2068 | * don't update the file object's sequential pattern. | |
2069 | */ | |
2070 | if (object->internal == FALSE) { | |
2071 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
2072 | } | |
2073 | ||
2074 | vm_object_paging_end(object); | |
2075 | vm_object_unlock(object); | |
2076 | ||
2077 | my_fault = DBG_COW_FAULT; | |
2078 | VM_STAT_INCR(cow_faults); | |
2079 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
2080 | current_task()->cow_faults++; | |
2081 | ||
2082 | object = first_object; | |
2083 | offset = first_offset; | |
2084 | ||
2085 | vm_object_lock(object); | |
2086 | /* | |
2087 | * get rid of the place holder | |
2088 | * page that we soldered in earlier | |
2089 | */ | |
2090 | VM_PAGE_FREE(first_m); | |
2091 | first_m = VM_PAGE_NULL; | |
2092 | ||
2093 | /* | |
2094 | * and replace it with the | |
2095 | * page we just copied into | |
2096 | */ | |
2097 | assert(copy_m->vmp_busy); | |
2098 | vm_page_insert(copy_m, object, vm_object_trunc_page(offset)); | |
2099 | SET_PAGE_DIRTY(copy_m, TRUE); | |
2100 | ||
2101 | m = copy_m; | |
2102 | /* | |
2103 | * Now that we've gotten the copy out of the | |
2104 | * way, let's try to collapse the top object. | |
2105 | * But we have to play ugly games with | |
2106 | * paging_in_progress to do that... | |
2107 | */ | |
2108 | vm_object_paging_end(object); | |
2109 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); | |
2110 | vm_object_paging_begin(object); | |
2111 | } else { | |
2112 | *protection &= (~VM_PROT_WRITE); | |
2113 | } | |
2114 | } | |
2115 | /* | |
2116 | * Now check whether the page needs to be pushed into the | |
2117 | * copy object. The use of asymmetric copy on write for | |
2118 | * shared temporary objects means that we may do two copies to | |
2119 | * satisfy the fault; one above to get the page from a | |
2120 | * shadowed object, and one here to push it into the copy. | |
2121 | */ | |
2122 | try_failed_count = 0; | |
2123 | ||
2124 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL) { | |
2125 | vm_object_offset_t copy_offset; | |
2126 | vm_page_t copy_m; | |
2127 | ||
2128 | #if TRACEFAULTPAGE | |
2129 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
2130 | #endif | |
2131 | /* | |
2132 | * If the page is being written, but hasn't been | |
2133 | * copied to the copy-object, we have to copy it there. | |
2134 | */ | |
2135 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2136 | *protection &= ~VM_PROT_WRITE; | |
2137 | break; | |
2138 | } | |
2139 | ||
2140 | /* | |
2141 | * If the page was guaranteed to be resident, | |
2142 | * we must have already performed the copy. | |
2143 | */ | |
2144 | if (must_be_resident) { | |
2145 | break; | |
2146 | } | |
2147 | ||
2148 | /* | |
2149 | * Try to get the lock on the copy_object. | |
2150 | */ | |
2151 | if (!vm_object_lock_try(copy_object)) { | |
2152 | vm_object_unlock(object); | |
2153 | try_failed_count++; | |
2154 | ||
2155 | mutex_pause(try_failed_count); /* wait a bit */ | |
2156 | vm_object_lock(object); | |
2157 | ||
2158 | continue; | |
2159 | } | |
2160 | try_failed_count = 0; | |
2161 | ||
2162 | /* | |
2163 | * Make another reference to the copy-object, | |
2164 | * to keep it from disappearing during the | |
2165 | * copy. | |
2166 | */ | |
2167 | vm_object_reference_locked(copy_object); | |
2168 | ||
2169 | /* | |
2170 | * Does the page exist in the copy? | |
2171 | */ | |
2172 | copy_offset = first_offset - copy_object->vo_shadow_offset; | |
2173 | copy_offset = vm_object_trunc_page(copy_offset); | |
2174 | ||
2175 | if (copy_object->vo_size <= copy_offset) { | |
2176 | /* | |
2177 | * Copy object doesn't cover this page -- do nothing. | |
2178 | */ | |
2179 | ; | |
2180 | } else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
2181 | /* | |
2182 | * Page currently exists in the copy object | |
2183 | */ | |
2184 | if (copy_m->vmp_busy) { | |
2185 | /* | |
2186 | * If the page is being brought | |
2187 | * in, wait for it and then retry. | |
2188 | */ | |
2189 | RELEASE_PAGE(m); | |
2190 | ||
2191 | /* | |
2192 | * take an extra ref so object won't die | |
2193 | */ | |
2194 | vm_object_reference_locked(copy_object); | |
2195 | vm_object_unlock(copy_object); | |
2196 | vm_fault_cleanup(object, first_m); | |
2197 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2198 | ||
2199 | vm_object_lock(copy_object); | |
2200 | assert(copy_object->ref_count > 0); | |
2201 | VM_OBJ_RES_DECR(copy_object); | |
2202 | vm_object_lock_assert_exclusive(copy_object); | |
2203 | copy_object->ref_count--; | |
2204 | assert(copy_object->ref_count > 0); | |
2205 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
2206 | ||
2207 | if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) { | |
2208 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
2209 | ||
2210 | vm_object_unlock(copy_object); | |
2211 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
2212 | vm_object_deallocate(copy_object); | |
2213 | ||
2214 | goto backoff; | |
2215 | } else { | |
2216 | vm_object_unlock(copy_object); | |
2217 | vm_object_deallocate(copy_object); | |
2218 | thread_interrupt_level(interruptible_state); | |
2219 | ||
2220 | return VM_FAULT_RETRY; | |
2221 | } | |
2222 | } | |
2223 | } else if (!PAGED_OUT(copy_object, copy_offset)) { | |
2224 | /* | |
2225 | * If PAGED_OUT is TRUE, then the page used to exist | |
2226 | * in the copy-object, and has already been paged out. | |
2227 | * We don't need to repeat this. If PAGED_OUT is | |
2228 | * FALSE, then either we don't know (!pager_created, | |
2229 | * for example) or it hasn't been paged out. | |
2230 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
2231 | * We must copy the page to the copy object. | |
2232 | * | |
2233 | * Allocate a page for the copy | |
2234 | */ | |
2235 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
2236 | ||
2237 | if (copy_m == VM_PAGE_NULL) { | |
2238 | RELEASE_PAGE(m); | |
2239 | ||
2240 | VM_OBJ_RES_DECR(copy_object); | |
2241 | vm_object_lock_assert_exclusive(copy_object); | |
2242 | copy_object->ref_count--; | |
2243 | assert(copy_object->ref_count > 0); | |
2244 | ||
2245 | vm_object_unlock(copy_object); | |
2246 | vm_fault_cleanup(object, first_m); | |
2247 | thread_interrupt_level(interruptible_state); | |
2248 | ||
2249 | return VM_FAULT_MEMORY_SHORTAGE; | |
2250 | } | |
2251 | /* | |
2252 | * Must copy page into copy-object. | |
2253 | */ | |
2254 | vm_page_copy(m, copy_m); | |
2255 | ||
2256 | /* | |
2257 | * If the old page was in use by any users | |
2258 | * of the copy-object, it must be removed | |
2259 | * from all pmaps. (We can't know which | |
2260 | * pmaps use it.) | |
2261 | */ | |
2262 | if (m->vmp_pmapped) { | |
2263 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
2264 | } | |
2265 | ||
2266 | if (m->vmp_clustered) { | |
2267 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2268 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2269 | } | |
2270 | /* | |
2271 | * If there's a pager, then immediately | |
2272 | * page out this page, using the "initialize" | |
2273 | * option. Else, we use the copy. | |
2274 | */ | |
2275 | if ((!copy_object->pager_ready) | |
2276 | || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT | |
2277 | ) { | |
2278 | vm_page_lockspin_queues(); | |
2279 | assert(!m->vmp_cleaning); | |
2280 | vm_page_activate(copy_m); | |
2281 | vm_page_unlock_queues(); | |
2282 | ||
2283 | SET_PAGE_DIRTY(copy_m, TRUE); | |
2284 | PAGE_WAKEUP_DONE(copy_m); | |
2285 | } else { | |
2286 | assert(copy_m->vmp_busy == TRUE); | |
2287 | assert(!m->vmp_cleaning); | |
2288 | ||
2289 | /* | |
2290 | * dirty is protected by the object lock | |
2291 | */ | |
2292 | SET_PAGE_DIRTY(copy_m, TRUE); | |
2293 | ||
2294 | /* | |
2295 | * The page is already ready for pageout: | |
2296 | * not on pageout queues and busy. | |
2297 | * Unlock everything except the | |
2298 | * copy_object itself. | |
2299 | */ | |
2300 | vm_object_unlock(object); | |
2301 | ||
2302 | /* | |
2303 | * Write the page to the copy-object, | |
2304 | * flushing it from the kernel. | |
2305 | */ | |
2306 | vm_pageout_initialize_page(copy_m); | |
2307 | ||
2308 | /* | |
2309 | * Since the pageout may have | |
2310 | * temporarily dropped the | |
2311 | * copy_object's lock, we | |
2312 | * check whether we'll have | |
2313 | * to deallocate the hard way. | |
2314 | */ | |
2315 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { | |
2316 | vm_object_unlock(copy_object); | |
2317 | vm_object_deallocate(copy_object); | |
2318 | vm_object_lock(object); | |
2319 | ||
2320 | continue; | |
2321 | } | |
2322 | /* | |
2323 | * Pick back up the old object's | |
2324 | * lock. [It is safe to do so, | |
2325 | * since it must be deeper in the | |
2326 | * object tree.] | |
2327 | */ | |
2328 | vm_object_lock(object); | |
2329 | } | |
2330 | ||
2331 | /* | |
2332 | * Because we're pushing a page upward | |
2333 | * in the object tree, we must restart | |
2334 | * any faults that are waiting here. | |
2335 | * [Note that this is an expansion of | |
2336 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
2337 | * wait result]. Can't turn off the page's | |
2338 | * busy bit because we're not done with it. | |
2339 | */ | |
2340 | if (m->vmp_wanted) { | |
2341 | m->vmp_wanted = FALSE; | |
2342 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); | |
2343 | } | |
2344 | } | |
2345 | /* | |
2346 | * The reference count on copy_object must be | |
2347 | * at least 2: one for our extra reference, | |
2348 | * and at least one from the outside world | |
2349 | * (we checked that when we last locked | |
2350 | * copy_object). | |
2351 | */ | |
2352 | vm_object_lock_assert_exclusive(copy_object); | |
2353 | copy_object->ref_count--; | |
2354 | assert(copy_object->ref_count > 0); | |
2355 | ||
2356 | VM_OBJ_RES_DECR(copy_object); | |
2357 | vm_object_unlock(copy_object); | |
2358 | ||
2359 | break; | |
2360 | } | |
2361 | ||
2362 | done: | |
2363 | *result_page = m; | |
2364 | *top_page = first_m; | |
2365 | ||
2366 | if (m != VM_PAGE_NULL) { | |
2367 | assert(VM_PAGE_OBJECT(m) == object); | |
2368 | ||
2369 | retval = VM_FAULT_SUCCESS; | |
2370 | ||
2371 | if (my_fault == DBG_PAGEIN_FAULT) { | |
2372 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2373 | ||
2374 | if (object->internal) { | |
2375 | my_fault = DBG_PAGEIND_FAULT; | |
2376 | } else { | |
2377 | my_fault = DBG_PAGEINV_FAULT; | |
2378 | } | |
2379 | ||
2380 | /* | |
2381 | * evaluate access pattern and update state | |
2382 | * vm_fault_deactivate_behind depends on the | |
2383 | * state being up to date | |
2384 | */ | |
2385 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
2386 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); | |
2387 | } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) { | |
2388 | /* | |
2389 | * we weren't called from vm_fault, so handle the | |
2390 | * accounting here for hits in the cache | |
2391 | */ | |
2392 | if (m->vmp_clustered) { | |
2393 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2394 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2395 | } | |
2396 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
2397 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); | |
2398 | } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { | |
2399 | VM_STAT_DECOMPRESSIONS(); | |
2400 | } | |
2401 | if (type_of_fault) { | |
2402 | *type_of_fault = my_fault; | |
2403 | } | |
2404 | } else { | |
2405 | retval = VM_FAULT_SUCCESS_NO_VM_PAGE; | |
2406 | assert(first_m == VM_PAGE_NULL); | |
2407 | assert(object == first_object); | |
2408 | } | |
2409 | ||
2410 | thread_interrupt_level(interruptible_state); | |
2411 | ||
2412 | #if TRACEFAULTPAGE | |
2413 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
2414 | #endif | |
2415 | return retval; | |
2416 | ||
2417 | backoff: | |
2418 | thread_interrupt_level(interruptible_state); | |
2419 | ||
2420 | if (wait_result == THREAD_INTERRUPTED) { | |
2421 | return VM_FAULT_INTERRUPTED; | |
2422 | } | |
2423 | return VM_FAULT_RETRY; | |
2424 | ||
2425 | #undef RELEASE_PAGE | |
2426 | } | |
2427 | ||
2428 | ||
2429 | extern int panic_on_cs_killed; | |
2430 | extern int proc_selfpid(void); | |
2431 | extern char *proc_name_address(void *p); | |
2432 | unsigned long cs_enter_tainted_rejected = 0; | |
2433 | unsigned long cs_enter_tainted_accepted = 0; | |
2434 | ||
2435 | /* | |
2436 | * CODE SIGNING: | |
2437 | * When soft faulting a page, we have to validate the page if: | |
2438 | * 1. the page is being mapped in user space | |
2439 | * 2. the page hasn't already been found to be "tainted" | |
2440 | * 3. the page belongs to a code-signed object | |
2441 | * 4. the page has not been validated yet or has been mapped for write. | |
2442 | */ | |
2443 | static bool | |
2444 | vm_fault_cs_need_validation( | |
2445 | pmap_t pmap, | |
2446 | vm_page_t page, | |
2447 | vm_object_t page_obj, | |
2448 | vm_map_size_t fault_page_size, | |
2449 | vm_map_offset_t fault_phys_offset) | |
2450 | { | |
2451 | if (pmap == kernel_pmap) { | |
2452 | /* 1 - not user space */ | |
2453 | return false; | |
2454 | } | |
2455 | if (!page_obj->code_signed) { | |
2456 | /* 3 - page does not belong to a code-signed object */ | |
2457 | return false; | |
2458 | } | |
2459 | if (fault_page_size == PAGE_SIZE) { | |
2460 | /* looking at the whole page */ | |
2461 | assertf(fault_phys_offset == 0, | |
2462 | "fault_page_size 0x%llx fault_phys_offset 0x%llx\n", | |
2463 | (uint64_t)fault_page_size, | |
2464 | (uint64_t)fault_phys_offset); | |
2465 | if (page->vmp_cs_tainted == VMP_CS_ALL_TRUE) { | |
2466 | /* 2 - page is all tainted */ | |
2467 | return false; | |
2468 | } | |
2469 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && | |
2470 | !page->vmp_wpmapped) { | |
2471 | /* 4 - already fully validated and never mapped writable */ | |
2472 | return false; | |
2473 | } | |
2474 | } else { | |
2475 | /* looking at a specific sub-page */ | |
2476 | if (VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) { | |
2477 | /* 2 - sub-page was already marked as tainted */ | |
2478 | return false; | |
2479 | } | |
2480 | if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) && | |
2481 | !page->vmp_wpmapped) { | |
2482 | /* 4 - already validated and never mapped writable */ | |
2483 | return false; | |
2484 | } | |
2485 | } | |
2486 | /* page needs to be validated */ | |
2487 | return true; | |
2488 | } | |
2489 | ||
2490 | ||
2491 | static bool | |
2492 | vm_fault_cs_page_immutable( | |
2493 | vm_page_t m, | |
2494 | vm_map_size_t fault_page_size, | |
2495 | vm_map_offset_t fault_phys_offset, | |
2496 | vm_prot_t prot __unused) | |
2497 | { | |
2498 | if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) | |
2499 | /*&& ((prot) & VM_PROT_EXECUTE)*/) { | |
2500 | return true; | |
2501 | } | |
2502 | return false; | |
2503 | } | |
2504 | ||
2505 | static bool | |
2506 | vm_fault_cs_page_nx( | |
2507 | vm_page_t m, | |
2508 | vm_map_size_t fault_page_size, | |
2509 | vm_map_offset_t fault_phys_offset) | |
2510 | { | |
2511 | return VMP_CS_NX(m, fault_page_size, fault_phys_offset); | |
2512 | } | |
2513 | ||
2514 | /* | |
2515 | * Check if the page being entered into the pmap violates code signing. | |
2516 | */ | |
2517 | static kern_return_t | |
2518 | vm_fault_cs_check_violation( | |
2519 | bool cs_bypass, | |
2520 | vm_object_t object, | |
2521 | vm_page_t m, | |
2522 | pmap_t pmap, | |
2523 | vm_prot_t prot, | |
2524 | vm_prot_t caller_prot, | |
2525 | vm_map_size_t fault_page_size, | |
2526 | vm_map_offset_t fault_phys_offset, | |
2527 | vm_object_fault_info_t fault_info, | |
2528 | bool map_is_switched, | |
2529 | bool map_is_switch_protected, | |
2530 | bool *cs_violation) | |
2531 | { | |
2532 | #if !PMAP_CS | |
2533 | #pragma unused(caller_prot) | |
2534 | #pragma unused(fault_info) | |
2535 | #endif /* !PMAP_CS */ | |
2536 | int cs_enforcement_enabled; | |
2537 | if (!cs_bypass && | |
2538 | vm_fault_cs_need_validation(pmap, m, object, | |
2539 | fault_page_size, fault_phys_offset)) { | |
2540 | vm_object_lock_assert_exclusive(object); | |
2541 | ||
2542 | if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset)) { | |
2543 | vm_cs_revalidates++; | |
2544 | } | |
2545 | ||
2546 | /* VM map is locked, so 1 ref will remain on VM object - | |
2547 | * so no harm if vm_page_validate_cs drops the object lock */ | |
2548 | ||
2549 | vm_page_validate_cs(m, fault_page_size, fault_phys_offset); | |
2550 | } | |
2551 | ||
2552 | /* If the map is switched, and is switch-protected, we must protect | |
2553 | * some pages from being write-faulted: immutable pages because by | |
2554 | * definition they may not be written, and executable pages because that | |
2555 | * would provide a way to inject unsigned code. | |
2556 | * If the page is immutable, we can simply return. However, we can't | |
2557 | * immediately determine whether a page is executable anywhere. But, | |
2558 | * we can disconnect it everywhere and remove the executable protection | |
2559 | * from the current map. We do that below right before we do the | |
2560 | * PMAP_ENTER. | |
2561 | */ | |
2562 | if (pmap == kernel_pmap) { | |
2563 | /* kernel fault: cs_enforcement does not apply */ | |
2564 | cs_enforcement_enabled = 0; | |
2565 | } else { | |
2566 | cs_enforcement_enabled = pmap_get_vm_map_cs_enforced(pmap); | |
2567 | } | |
2568 | ||
2569 | if (cs_enforcement_enabled && map_is_switched && | |
2570 | map_is_switch_protected && | |
2571 | vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && | |
2572 | (prot & VM_PROT_WRITE)) { | |
2573 | return KERN_CODESIGN_ERROR; | |
2574 | } | |
2575 | ||
2576 | if (cs_enforcement_enabled && | |
2577 | vm_fault_cs_page_nx(m, fault_page_size, fault_phys_offset) && | |
2578 | (prot & VM_PROT_EXECUTE)) { | |
2579 | if (cs_debug) { | |
2580 | printf("page marked to be NX, not letting it be mapped EXEC\n"); | |
2581 | } | |
2582 | return KERN_CODESIGN_ERROR; | |
2583 | } | |
2584 | ||
2585 | /* A page could be tainted, or pose a risk of being tainted later. | |
2586 | * Check whether the receiving process wants it, and make it feel | |
2587 | * the consequences (that hapens in cs_invalid_page()). | |
2588 | * For CS Enforcement, two other conditions will | |
2589 | * cause that page to be tainted as well: | |
2590 | * - pmapping an unsigned page executable - this means unsigned code; | |
2591 | * - writeable mapping of a validated page - the content of that page | |
2592 | * can be changed without the kernel noticing, therefore unsigned | |
2593 | * code can be created | |
2594 | */ | |
2595 | if (cs_bypass) { | |
2596 | /* code-signing is bypassed */ | |
2597 | *cs_violation = FALSE; | |
2598 | } else if (VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) { | |
2599 | /* tainted page */ | |
2600 | *cs_violation = TRUE; | |
2601 | } else if (!cs_enforcement_enabled) { | |
2602 | /* no further code-signing enforcement */ | |
2603 | *cs_violation = FALSE; | |
2604 | } else if (vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && | |
2605 | ((prot & VM_PROT_WRITE) || | |
2606 | m->vmp_wpmapped)) { | |
2607 | /* | |
2608 | * The page should be immutable, but is in danger of being | |
2609 | * modified. | |
2610 | * This is the case where we want policy from the code | |
2611 | * directory - is the page immutable or not? For now we have | |
2612 | * to assume that code pages will be immutable, data pages not. | |
2613 | * We'll assume a page is a code page if it has a code directory | |
2614 | * and we fault for execution. | |
2615 | * That is good enough since if we faulted the code page for | |
2616 | * writing in another map before, it is wpmapped; if we fault | |
2617 | * it for writing in this map later it will also be faulted for | |
2618 | * executing at the same time; and if we fault for writing in | |
2619 | * another map later, we will disconnect it from this pmap so | |
2620 | * we'll notice the change. | |
2621 | */ | |
2622 | *cs_violation = TRUE; | |
2623 | } else if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) && | |
2624 | (prot & VM_PROT_EXECUTE) | |
2625 | ) { | |
2626 | *cs_violation = TRUE; | |
2627 | } else { | |
2628 | *cs_violation = FALSE; | |
2629 | } | |
2630 | return KERN_SUCCESS; | |
2631 | } | |
2632 | ||
2633 | /* | |
2634 | * Handles a code signing violation by either rejecting the page or forcing a disconnect. | |
2635 | * @param must_disconnect This value will be set to true if the caller must disconnect | |
2636 | * this page. | |
2637 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. | |
2638 | */ | |
2639 | static kern_return_t | |
2640 | vm_fault_cs_handle_violation( | |
2641 | vm_object_t object, | |
2642 | vm_page_t m, | |
2643 | pmap_t pmap, | |
2644 | vm_prot_t prot, | |
2645 | vm_map_offset_t vaddr, | |
2646 | vm_map_size_t fault_page_size, | |
2647 | vm_map_offset_t fault_phys_offset, | |
2648 | bool map_is_switched, | |
2649 | bool map_is_switch_protected, | |
2650 | bool *must_disconnect) | |
2651 | { | |
2652 | #if !MACH_ASSERT | |
2653 | #pragma unused(pmap) | |
2654 | #pragma unused(map_is_switch_protected) | |
2655 | #endif /* !MACH_ASSERT */ | |
2656 | /* | |
2657 | * We will have a tainted page. Have to handle the special case | |
2658 | * of a switched map now. If the map is not switched, standard | |
2659 | * procedure applies - call cs_invalid_page(). | |
2660 | * If the map is switched, the real owner is invalid already. | |
2661 | * There is no point in invalidating the switching process since | |
2662 | * it will not be executing from the map. So we don't call | |
2663 | * cs_invalid_page() in that case. | |
2664 | */ | |
2665 | boolean_t reject_page, cs_killed; | |
2666 | kern_return_t kr; | |
2667 | if (map_is_switched) { | |
2668 | assert(pmap == vm_map_pmap(current_thread()->map)); | |
2669 | assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); | |
2670 | reject_page = FALSE; | |
2671 | } else { | |
2672 | if (cs_debug > 5) { | |
2673 | printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n", | |
2674 | object->code_signed ? "yes" : "no", | |
2675 | VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) ? "yes" : "no", | |
2676 | VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset) ? "yes" : "no", | |
2677 | m->vmp_wpmapped ? "yes" : "no", | |
2678 | (int)prot); | |
2679 | } | |
2680 | reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed); | |
2681 | } | |
2682 | ||
2683 | if (reject_page) { | |
2684 | /* reject the invalid page: abort the page fault */ | |
2685 | int pid; | |
2686 | const char *procname; | |
2687 | task_t task; | |
2688 | vm_object_t file_object, shadow; | |
2689 | vm_object_offset_t file_offset; | |
2690 | char *pathname, *filename; | |
2691 | vm_size_t pathname_len, filename_len; | |
2692 | boolean_t truncated_path; | |
2693 | #define __PATH_MAX 1024 | |
2694 | struct timespec mtime, cs_mtime; | |
2695 | int shadow_depth; | |
2696 | os_reason_t codesigning_exit_reason = OS_REASON_NULL; | |
2697 | ||
2698 | kr = KERN_CODESIGN_ERROR; | |
2699 | cs_enter_tainted_rejected++; | |
2700 | ||
2701 | /* get process name and pid */ | |
2702 | procname = "?"; | |
2703 | task = current_task(); | |
2704 | pid = proc_selfpid(); | |
2705 | if (task->bsd_info != NULL) { | |
2706 | procname = proc_name_address(task->bsd_info); | |
2707 | } | |
2708 | ||
2709 | /* get file's VM object */ | |
2710 | file_object = object; | |
2711 | file_offset = m->vmp_offset; | |
2712 | for (shadow = file_object->shadow, | |
2713 | shadow_depth = 0; | |
2714 | shadow != VM_OBJECT_NULL; | |
2715 | shadow = file_object->shadow, | |
2716 | shadow_depth++) { | |
2717 | vm_object_lock_shared(shadow); | |
2718 | if (file_object != object) { | |
2719 | vm_object_unlock(file_object); | |
2720 | } | |
2721 | file_offset += file_object->vo_shadow_offset; | |
2722 | file_object = shadow; | |
2723 | } | |
2724 | ||
2725 | mtime.tv_sec = 0; | |
2726 | mtime.tv_nsec = 0; | |
2727 | cs_mtime.tv_sec = 0; | |
2728 | cs_mtime.tv_nsec = 0; | |
2729 | ||
2730 | /* get file's pathname and/or filename */ | |
2731 | pathname = NULL; | |
2732 | filename = NULL; | |
2733 | pathname_len = 0; | |
2734 | filename_len = 0; | |
2735 | truncated_path = FALSE; | |
2736 | /* no pager -> no file -> no pathname, use "<nil>" in that case */ | |
2737 | if (file_object->pager != NULL) { | |
2738 | pathname = kheap_alloc(KHEAP_TEMP, __PATH_MAX * 2, Z_WAITOK); | |
2739 | if (pathname) { | |
2740 | pathname[0] = '\0'; | |
2741 | pathname_len = __PATH_MAX; | |
2742 | filename = pathname + pathname_len; | |
2743 | filename_len = __PATH_MAX; | |
2744 | ||
2745 | if (vnode_pager_get_object_name(file_object->pager, | |
2746 | pathname, | |
2747 | pathname_len, | |
2748 | filename, | |
2749 | filename_len, | |
2750 | &truncated_path) == KERN_SUCCESS) { | |
2751 | /* safety first... */ | |
2752 | pathname[__PATH_MAX - 1] = '\0'; | |
2753 | filename[__PATH_MAX - 1] = '\0'; | |
2754 | ||
2755 | vnode_pager_get_object_mtime(file_object->pager, | |
2756 | &mtime, | |
2757 | &cs_mtime); | |
2758 | } else { | |
2759 | kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2); | |
2760 | pathname = NULL; | |
2761 | filename = NULL; | |
2762 | pathname_len = 0; | |
2763 | filename_len = 0; | |
2764 | truncated_path = FALSE; | |
2765 | } | |
2766 | } | |
2767 | } | |
2768 | printf("CODE SIGNING: process %d[%s]: " | |
2769 | "rejecting invalid page at address 0x%llx " | |
2770 | "from offset 0x%llx in file \"%s%s%s\" " | |
2771 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " | |
2772 | "(signed:%d validated:%d tainted:%d nx:%d " | |
2773 | "wpmapped:%d dirty:%d depth:%d)\n", | |
2774 | pid, procname, (addr64_t) vaddr, | |
2775 | file_offset, | |
2776 | (pathname ? pathname : "<nil>"), | |
2777 | (truncated_path ? "/.../" : ""), | |
2778 | (truncated_path ? filename : ""), | |
2779 | cs_mtime.tv_sec, cs_mtime.tv_nsec, | |
2780 | ((cs_mtime.tv_sec == mtime.tv_sec && | |
2781 | cs_mtime.tv_nsec == mtime.tv_nsec) | |
2782 | ? "==" | |
2783 | : "!="), | |
2784 | mtime.tv_sec, mtime.tv_nsec, | |
2785 | object->code_signed, | |
2786 | VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset), | |
2787 | VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset), | |
2788 | VMP_CS_NX(m, fault_page_size, fault_phys_offset), | |
2789 | m->vmp_wpmapped, | |
2790 | m->vmp_dirty, | |
2791 | shadow_depth); | |
2792 | ||
2793 | /* | |
2794 | * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page | |
2795 | * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the | |
2796 | * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler | |
2797 | * will deal with the segmentation fault. | |
2798 | */ | |
2799 | if (cs_killed) { | |
2800 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
2801 | pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0); | |
2802 | ||
2803 | codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); | |
2804 | if (codesigning_exit_reason == NULL) { | |
2805 | printf("vm_fault_enter: failed to allocate codesigning exit reason\n"); | |
2806 | } else { | |
2807 | mach_vm_address_t data_addr = 0; | |
2808 | struct codesigning_exit_reason_info *ceri = NULL; | |
2809 | uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri)); | |
2810 | ||
2811 | if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) { | |
2812 | printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n"); | |
2813 | } else { | |
2814 | if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor, | |
2815 | EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) { | |
2816 | ceri = (struct codesigning_exit_reason_info *)data_addr; | |
2817 | static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname)); | |
2818 | ||
2819 | ceri->ceri_virt_addr = vaddr; | |
2820 | ceri->ceri_file_offset = file_offset; | |
2821 | if (pathname) { | |
2822 | strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname)); | |
2823 | } else { | |
2824 | ceri->ceri_pathname[0] = '\0'; | |
2825 | } | |
2826 | if (filename) { | |
2827 | strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename)); | |
2828 | } else { | |
2829 | ceri->ceri_filename[0] = '\0'; | |
2830 | } | |
2831 | ceri->ceri_path_truncated = (truncated_path ? 1 : 0); | |
2832 | ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec; | |
2833 | ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec; | |
2834 | ceri->ceri_page_modtime_secs = mtime.tv_sec; | |
2835 | ceri->ceri_page_modtime_nsecs = mtime.tv_nsec; | |
2836 | ceri->ceri_object_codesigned = (object->code_signed); | |
2837 | ceri->ceri_page_codesig_validated = VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset); | |
2838 | ceri->ceri_page_codesig_tainted = VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset); | |
2839 | ceri->ceri_page_codesig_nx = VMP_CS_NX(m, fault_page_size, fault_phys_offset); | |
2840 | ceri->ceri_page_wpmapped = (m->vmp_wpmapped); | |
2841 | ceri->ceri_page_slid = 0; | |
2842 | ceri->ceri_page_dirty = (m->vmp_dirty); | |
2843 | ceri->ceri_page_shadow_depth = shadow_depth; | |
2844 | } else { | |
2845 | #if DEBUG || DEVELOPMENT | |
2846 | panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason"); | |
2847 | #else | |
2848 | printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n"); | |
2849 | #endif /* DEBUG || DEVELOPMENT */ | |
2850 | /* Free the buffer */ | |
2851 | os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0); | |
2852 | } | |
2853 | } | |
2854 | } | |
2855 | ||
2856 | set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE); | |
2857 | } | |
2858 | if (panic_on_cs_killed && | |
2859 | object->object_is_shared_cache) { | |
2860 | char *tainted_contents; | |
2861 | vm_map_offset_t src_vaddr; | |
2862 | src_vaddr = (vm_map_offset_t) phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m) << PAGE_SHIFT); | |
2863 | tainted_contents = kalloc(PAGE_SIZE); | |
2864 | bcopy((const char *)src_vaddr, tainted_contents, PAGE_SIZE); | |
2865 | printf("CODE SIGNING: tainted page %p phys 0x%x phystokv 0x%llx copied to %p\n", m, VM_PAGE_GET_PHYS_PAGE(m), (uint64_t)src_vaddr, tainted_contents); | |
2866 | panic("CODE SIGNING: process %d[%s]: " | |
2867 | "rejecting invalid page (phys#0x%x) at address 0x%llx " | |
2868 | "from offset 0x%llx in file \"%s%s%s\" " | |
2869 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " | |
2870 | "(signed:%d validated:%d tainted:%d nx:%d" | |
2871 | "wpmapped:%d dirty:%d depth:%d)\n", | |
2872 | pid, procname, | |
2873 | VM_PAGE_GET_PHYS_PAGE(m), | |
2874 | (addr64_t) vaddr, | |
2875 | file_offset, | |
2876 | (pathname ? pathname : "<nil>"), | |
2877 | (truncated_path ? "/.../" : ""), | |
2878 | (truncated_path ? filename : ""), | |
2879 | cs_mtime.tv_sec, cs_mtime.tv_nsec, | |
2880 | ((cs_mtime.tv_sec == mtime.tv_sec && | |
2881 | cs_mtime.tv_nsec == mtime.tv_nsec) | |
2882 | ? "==" | |
2883 | : "!="), | |
2884 | mtime.tv_sec, mtime.tv_nsec, | |
2885 | object->code_signed, | |
2886 | VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset), | |
2887 | VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset), | |
2888 | VMP_CS_NX(m, fault_page_size, fault_phys_offset), | |
2889 | m->vmp_wpmapped, | |
2890 | m->vmp_dirty, | |
2891 | shadow_depth); | |
2892 | } | |
2893 | ||
2894 | if (file_object != object) { | |
2895 | vm_object_unlock(file_object); | |
2896 | } | |
2897 | if (pathname_len != 0) { | |
2898 | kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2); | |
2899 | pathname = NULL; | |
2900 | filename = NULL; | |
2901 | } | |
2902 | } else { | |
2903 | /* proceed with the invalid page */ | |
2904 | kr = KERN_SUCCESS; | |
2905 | if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) && | |
2906 | !object->code_signed) { | |
2907 | /* | |
2908 | * This page has not been (fully) validated but | |
2909 | * does not belong to a code-signed object | |
2910 | * so it should not be forcefully considered | |
2911 | * as tainted. | |
2912 | * We're just concerned about it here because | |
2913 | * we've been asked to "execute" it but that | |
2914 | * does not mean that it should cause other | |
2915 | * accesses to fail. | |
2916 | * This happens when a debugger sets a | |
2917 | * breakpoint and we then execute code in | |
2918 | * that page. Marking the page as "tainted" | |
2919 | * would cause any inspection tool ("leaks", | |
2920 | * "vmmap", "CrashReporter", ...) to get killed | |
2921 | * due to code-signing violation on that page, | |
2922 | * even though they're just reading it and not | |
2923 | * executing from it. | |
2924 | */ | |
2925 | } else { | |
2926 | /* | |
2927 | * Page might have been tainted before or not; | |
2928 | * now it definitively is. If the page wasn't | |
2929 | * tainted, we must disconnect it from all | |
2930 | * pmaps later, to force existing mappings | |
2931 | * through that code path for re-consideration | |
2932 | * of the validity of that page. | |
2933 | */ | |
2934 | if (!VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) { | |
2935 | *must_disconnect = TRUE; | |
2936 | VMP_CS_SET_TAINTED(m, fault_page_size, fault_phys_offset, TRUE); | |
2937 | } | |
2938 | } | |
2939 | cs_enter_tainted_accepted++; | |
2940 | } | |
2941 | if (kr != KERN_SUCCESS) { | |
2942 | if (cs_debug) { | |
2943 | printf("CODESIGNING: vm_fault_enter(0x%llx): " | |
2944 | "*** INVALID PAGE ***\n", | |
2945 | (long long)vaddr); | |
2946 | } | |
2947 | #if !SECURE_KERNEL | |
2948 | if (cs_enforcement_panic) { | |
2949 | panic("CODESIGNING: panicking on invalid page\n"); | |
2950 | } | |
2951 | #endif | |
2952 | } | |
2953 | return kr; | |
2954 | } | |
2955 | ||
2956 | /* | |
2957 | * Check that the code signature is valid for the given page being inserted into | |
2958 | * the pmap. | |
2959 | * | |
2960 | * @param must_disconnect This value will be set to true if the caller must disconnect | |
2961 | * this page. | |
2962 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. | |
2963 | */ | |
2964 | static kern_return_t | |
2965 | vm_fault_validate_cs( | |
2966 | bool cs_bypass, | |
2967 | vm_object_t object, | |
2968 | vm_page_t m, | |
2969 | pmap_t pmap, | |
2970 | vm_map_offset_t vaddr, | |
2971 | vm_prot_t prot, | |
2972 | vm_prot_t caller_prot, | |
2973 | vm_map_size_t fault_page_size, | |
2974 | vm_map_offset_t fault_phys_offset, | |
2975 | vm_object_fault_info_t fault_info, | |
2976 | bool *must_disconnect) | |
2977 | { | |
2978 | bool map_is_switched, map_is_switch_protected, cs_violation; | |
2979 | kern_return_t kr; | |
2980 | /* Validate code signature if necessary. */ | |
2981 | map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && | |
2982 | (pmap == vm_map_pmap(current_thread()->map))); | |
2983 | map_is_switch_protected = current_thread()->map->switch_protect; | |
2984 | kr = vm_fault_cs_check_violation(cs_bypass, object, m, pmap, | |
2985 | prot, caller_prot, fault_page_size, fault_phys_offset, fault_info, | |
2986 | map_is_switched, map_is_switch_protected, &cs_violation); | |
2987 | if (kr != KERN_SUCCESS) { | |
2988 | return kr; | |
2989 | } | |
2990 | if (cs_violation) { | |
2991 | kr = vm_fault_cs_handle_violation(object, m, pmap, prot, vaddr, | |
2992 | fault_page_size, fault_phys_offset, | |
2993 | map_is_switched, map_is_switch_protected, must_disconnect); | |
2994 | } | |
2995 | return kr; | |
2996 | } | |
2997 | ||
2998 | /* | |
2999 | * Enqueue the page on the appropriate paging queue. | |
3000 | */ | |
3001 | static void | |
3002 | vm_fault_enqueue_page( | |
3003 | vm_object_t object, | |
3004 | vm_page_t m, | |
3005 | bool wired, | |
3006 | bool change_wiring, | |
3007 | vm_tag_t wire_tag, | |
3008 | bool no_cache, | |
3009 | int *type_of_fault, | |
3010 | kern_return_t kr) | |
3011 | { | |
3012 | assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object); | |
3013 | boolean_t page_queues_locked = FALSE; | |
3014 | boolean_t previously_pmapped = m->vmp_pmapped; | |
3015 | #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ | |
3016 | MACRO_BEGIN \ | |
3017 | if (! page_queues_locked) { \ | |
3018 | page_queues_locked = TRUE; \ | |
3019 | vm_page_lockspin_queues(); \ | |
3020 | } \ | |
3021 | MACRO_END | |
3022 | #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ | |
3023 | MACRO_BEGIN \ | |
3024 | if (page_queues_locked) { \ | |
3025 | page_queues_locked = FALSE; \ | |
3026 | vm_page_unlock_queues(); \ | |
3027 | } \ | |
3028 | MACRO_END | |
3029 | ||
3030 | #if CONFIG_BACKGROUND_QUEUE | |
3031 | vm_page_update_background_state(m); | |
3032 | #endif | |
3033 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { | |
3034 | /* | |
3035 | * Compressor pages are neither wired | |
3036 | * nor pageable and should never change. | |
3037 | */ | |
3038 | assert(object == compressor_object); | |
3039 | } else if (change_wiring) { | |
3040 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
3041 | ||
3042 | if (wired) { | |
3043 | if (kr == KERN_SUCCESS) { | |
3044 | vm_page_wire(m, wire_tag, TRUE); | |
3045 | } | |
3046 | } else { | |
3047 | vm_page_unwire(m, TRUE); | |
3048 | } | |
3049 | /* we keep the page queues lock, if we need it later */ | |
3050 | } else { | |
3051 | if (object->internal == TRUE) { | |
3052 | /* | |
3053 | * don't allow anonymous pages on | |
3054 | * the speculative queues | |
3055 | */ | |
3056 | no_cache = FALSE; | |
3057 | } | |
3058 | if (kr != KERN_SUCCESS) { | |
3059 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
3060 | vm_page_deactivate(m); | |
3061 | /* we keep the page queues lock, if we need it later */ | |
3062 | } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || | |
3063 | (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || | |
3064 | (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || | |
3065 | ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) && | |
3066 | !VM_PAGE_WIRED(m)) { | |
3067 | if (vm_page_local_q && | |
3068 | (*type_of_fault == DBG_COW_FAULT || | |
3069 | *type_of_fault == DBG_ZERO_FILL_FAULT)) { | |
3070 | struct vpl *lq; | |
3071 | uint32_t lid; | |
3072 | ||
3073 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); | |
3074 | ||
3075 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); | |
3076 | vm_object_lock_assert_exclusive(object); | |
3077 | ||
3078 | /* | |
3079 | * we got a local queue to stuff this | |
3080 | * new page on... | |
3081 | * its safe to manipulate local and | |
3082 | * local_id at this point since we're | |
3083 | * behind an exclusive object lock and | |
3084 | * the page is not on any global queue. | |
3085 | * | |
3086 | * we'll use the current cpu number to | |
3087 | * select the queue note that we don't | |
3088 | * need to disable preemption... we're | |
3089 | * going to be behind the local queue's | |
3090 | * lock to do the real work | |
3091 | */ | |
3092 | lid = cpu_number(); | |
3093 | ||
3094 | lq = zpercpu_get_cpu(vm_page_local_q, lid); | |
3095 | ||
3096 | VPL_LOCK(&lq->vpl_lock); | |
3097 | ||
3098 | vm_page_check_pageable_safe(m); | |
3099 | vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq); | |
3100 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q; | |
3101 | m->vmp_local_id = lid; | |
3102 | lq->vpl_count++; | |
3103 | ||
3104 | if (object->internal) { | |
3105 | lq->vpl_internal_count++; | |
3106 | } else { | |
3107 | lq->vpl_external_count++; | |
3108 | } | |
3109 | ||
3110 | VPL_UNLOCK(&lq->vpl_lock); | |
3111 | ||
3112 | if (lq->vpl_count > vm_page_local_q_soft_limit) { | |
3113 | /* | |
3114 | * we're beyond the soft limit | |
3115 | * for the local queue | |
3116 | * vm_page_reactivate_local will | |
3117 | * 'try' to take the global page | |
3118 | * queue lock... if it can't | |
3119 | * that's ok... we'll let the | |
3120 | * queue continue to grow up | |
3121 | * to the hard limit... at that | |
3122 | * point we'll wait for the | |
3123 | * lock... once we've got the | |
3124 | * lock, we'll transfer all of | |
3125 | * the pages from the local | |
3126 | * queue to the global active | |
3127 | * queue | |
3128 | */ | |
3129 | vm_page_reactivate_local(lid, FALSE, FALSE); | |
3130 | } | |
3131 | } else { | |
3132 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
3133 | ||
3134 | /* | |
3135 | * test again now that we hold the | |
3136 | * page queue lock | |
3137 | */ | |
3138 | if (!VM_PAGE_WIRED(m)) { | |
3139 | if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { | |
3140 | vm_page_queues_remove(m, FALSE); | |
3141 | ||
3142 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); | |
3143 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1); | |
3144 | } | |
3145 | ||
3146 | if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) || | |
3147 | no_cache) { | |
3148 | /* | |
3149 | * If this is a no_cache mapping | |
3150 | * and the page has never been | |
3151 | * mapped before or was | |
3152 | * previously a no_cache page, | |
3153 | * then we want to leave pages | |
3154 | * in the speculative state so | |
3155 | * that they can be readily | |
3156 | * recycled if free memory runs | |
3157 | * low. Otherwise the page is | |
3158 | * activated as normal. | |
3159 | */ | |
3160 | ||
3161 | if (no_cache && | |
3162 | (!previously_pmapped || | |
3163 | m->vmp_no_cache)) { | |
3164 | m->vmp_no_cache = TRUE; | |
3165 | ||
3166 | if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) { | |
3167 | vm_page_speculate(m, FALSE); | |
3168 | } | |
3169 | } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) { | |
3170 | vm_page_activate(m); | |
3171 | } | |
3172 | } | |
3173 | } | |
3174 | /* we keep the page queues lock, if we need it later */ | |
3175 | } | |
3176 | } | |
3177 | } | |
3178 | /* we're done with the page queues lock, if we ever took it */ | |
3179 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); | |
3180 | } | |
3181 | ||
3182 | /* | |
3183 | * Sets the pmmpped, xpmapped, and wpmapped bits on the vm_page_t and updates accounting. | |
3184 | * @return true if the page needs to be sync'ed via pmap_sync-page_data_physo | |
3185 | * before being inserted into the pmap. | |
3186 | */ | |
3187 | static bool | |
3188 | vm_fault_enter_set_mapped( | |
3189 | vm_object_t object, | |
3190 | vm_page_t m, | |
3191 | vm_prot_t prot, | |
3192 | vm_prot_t fault_type) | |
3193 | { | |
3194 | bool page_needs_sync = false; | |
3195 | /* | |
3196 | * NOTE: we may only hold the vm_object lock SHARED | |
3197 | * at this point, so we need the phys_page lock to | |
3198 | * properly serialize updating the pmapped and | |
3199 | * xpmapped bits | |
3200 | */ | |
3201 | if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) { | |
3202 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); | |
3203 | ||
3204 | pmap_lock_phys_page(phys_page); | |
3205 | m->vmp_pmapped = TRUE; | |
3206 | ||
3207 | if (!m->vmp_xpmapped) { | |
3208 | m->vmp_xpmapped = TRUE; | |
3209 | ||
3210 | pmap_unlock_phys_page(phys_page); | |
3211 | ||
3212 | if (!object->internal) { | |
3213 | OSAddAtomic(1, &vm_page_xpmapped_external_count); | |
3214 | } | |
3215 | ||
3216 | #if defined(__arm__) || defined(__arm64__) | |
3217 | page_needs_sync = true; | |
3218 | #else | |
3219 | if (object->internal && | |
3220 | object->pager != NULL) { | |
3221 | /* | |
3222 | * This page could have been | |
3223 | * uncompressed by the | |
3224 | * compressor pager and its | |
3225 | * contents might be only in | |
3226 | * the data cache. | |
3227 | * Since it's being mapped for | |
3228 | * "execute" for the fist time, | |
3229 | * make sure the icache is in | |
3230 | * sync. | |
3231 | */ | |
3232 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
3233 | page_needs_sync = true; | |
3234 | } | |
3235 | #endif | |
3236 | } else { | |
3237 | pmap_unlock_phys_page(phys_page); | |
3238 | } | |
3239 | } else { | |
3240 | if (m->vmp_pmapped == FALSE) { | |
3241 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); | |
3242 | ||
3243 | pmap_lock_phys_page(phys_page); | |
3244 | m->vmp_pmapped = TRUE; | |
3245 | pmap_unlock_phys_page(phys_page); | |
3246 | } | |
3247 | } | |
3248 | ||
3249 | if (fault_type & VM_PROT_WRITE) { | |
3250 | if (m->vmp_wpmapped == FALSE) { | |
3251 | vm_object_lock_assert_exclusive(object); | |
3252 | if (!object->internal && object->pager) { | |
3253 | task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager)); | |
3254 | } | |
3255 | m->vmp_wpmapped = TRUE; | |
3256 | } | |
3257 | } | |
3258 | return page_needs_sync; | |
3259 | } | |
3260 | ||
3261 | /* | |
3262 | * Try to enter the given page into the pmap. | |
3263 | * Will retry without execute permission iff PMAP_CS is enabled and we encounter | |
3264 | * a codesigning failure on a non-execute fault. | |
3265 | */ | |
3266 | static kern_return_t | |
3267 | vm_fault_attempt_pmap_enter( | |
3268 | pmap_t pmap, | |
3269 | vm_map_offset_t vaddr, | |
3270 | vm_map_size_t fault_page_size, | |
3271 | vm_map_offset_t fault_phys_offset, | |
3272 | vm_page_t m, | |
3273 | vm_prot_t *prot, | |
3274 | vm_prot_t caller_prot, | |
3275 | vm_prot_t fault_type, | |
3276 | bool wired, | |
3277 | int pmap_options) | |
3278 | { | |
3279 | #if !PMAP_CS | |
3280 | #pragma unused(caller_prot) | |
3281 | #endif /* !PMAP_CS */ | |
3282 | kern_return_t kr; | |
3283 | if (fault_page_size != PAGE_SIZE) { | |
3284 | DEBUG4K_FAULT("pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x fault_type 0x%x\n", pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, *prot, fault_type); | |
3285 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && | |
3286 | fault_phys_offset < PAGE_SIZE), | |
3287 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
3288 | } else { | |
3289 | assertf(fault_phys_offset == 0, | |
3290 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
3291 | } | |
3292 | ||
3293 | PMAP_ENTER_OPTIONS(pmap, vaddr, | |
3294 | fault_phys_offset, | |
3295 | m, *prot, fault_type, 0, | |
3296 | wired, | |
3297 | pmap_options, | |
3298 | kr); | |
3299 | return kr; | |
3300 | } | |
3301 | ||
3302 | /* | |
3303 | * Enter the given page into the pmap. | |
3304 | * The map must be locked shared. | |
3305 | * The vm object must NOT be locked. | |
3306 | * | |
3307 | * @param need_retry if not null, avoid making a (potentially) blocking call into | |
3308 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. | |
3309 | */ | |
3310 | static kern_return_t | |
3311 | vm_fault_pmap_enter( | |
3312 | pmap_t pmap, | |
3313 | vm_map_offset_t vaddr, | |
3314 | vm_map_size_t fault_page_size, | |
3315 | vm_map_offset_t fault_phys_offset, | |
3316 | vm_page_t m, | |
3317 | vm_prot_t *prot, | |
3318 | vm_prot_t caller_prot, | |
3319 | vm_prot_t fault_type, | |
3320 | bool wired, | |
3321 | int pmap_options, | |
3322 | boolean_t *need_retry) | |
3323 | { | |
3324 | kern_return_t kr; | |
3325 | if (need_retry != NULL) { | |
3326 | /* | |
3327 | * Although we don't hold a lock on this object, we hold a lock | |
3328 | * on the top object in the chain. To prevent a deadlock, we | |
3329 | * can't allow the pmap layer to block. | |
3330 | */ | |
3331 | pmap_options |= PMAP_OPTIONS_NOWAIT; | |
3332 | } | |
3333 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, | |
3334 | fault_page_size, fault_phys_offset, | |
3335 | m, prot, caller_prot, fault_type, wired, pmap_options); | |
3336 | if (kr == KERN_RESOURCE_SHORTAGE) { | |
3337 | if (need_retry) { | |
3338 | /* | |
3339 | * There's nothing we can do here since we hold the | |
3340 | * lock on the top object in the chain. The caller | |
3341 | * will need to deal with this by dropping that lock and retrying. | |
3342 | */ | |
3343 | *need_retry = TRUE; | |
3344 | vm_pmap_enter_retried++; | |
3345 | } | |
3346 | } | |
3347 | return kr; | |
3348 | } | |
3349 | ||
3350 | /* | |
3351 | * Enter the given page into the pmap. | |
3352 | * The vm map must be locked shared. | |
3353 | * The vm object must be locked exclusive, unless this is a soft fault. | |
3354 | * For a soft fault, the object must be locked shared or exclusive. | |
3355 | * | |
3356 | * @param need_retry if not null, avoid making a (potentially) blocking call into | |
3357 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. | |
3358 | */ | |
3359 | static kern_return_t | |
3360 | vm_fault_pmap_enter_with_object_lock( | |
3361 | vm_object_t object, | |
3362 | pmap_t pmap, | |
3363 | vm_map_offset_t vaddr, | |
3364 | vm_map_size_t fault_page_size, | |
3365 | vm_map_offset_t fault_phys_offset, | |
3366 | vm_page_t m, | |
3367 | vm_prot_t *prot, | |
3368 | vm_prot_t caller_prot, | |
3369 | vm_prot_t fault_type, | |
3370 | bool wired, | |
3371 | int pmap_options, | |
3372 | boolean_t *need_retry) | |
3373 | { | |
3374 | kern_return_t kr; | |
3375 | /* | |
3376 | * Prevent a deadlock by not | |
3377 | * holding the object lock if we need to wait for a page in | |
3378 | * pmap_enter() - <rdar://problem/7138958> | |
3379 | */ | |
3380 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, | |
3381 | fault_page_size, fault_phys_offset, | |
3382 | m, prot, caller_prot, fault_type, wired, pmap_options | PMAP_OPTIONS_NOWAIT); | |
3383 | #if __x86_64__ | |
3384 | if (kr == KERN_INVALID_ARGUMENT && | |
3385 | pmap == PMAP_NULL && | |
3386 | wired) { | |
3387 | /* | |
3388 | * Wiring a page in a pmap-less VM map: | |
3389 | * VMware's "vmmon" kernel extension does this | |
3390 | * to grab pages. | |
3391 | * Let it proceed even though the PMAP_ENTER() failed. | |
3392 | */ | |
3393 | kr = KERN_SUCCESS; | |
3394 | } | |
3395 | #endif /* __x86_64__ */ | |
3396 | ||
3397 | if (kr == KERN_RESOURCE_SHORTAGE) { | |
3398 | if (need_retry) { | |
3399 | /* | |
3400 | * this will be non-null in the case where we hold the lock | |
3401 | * on the top-object in this chain... we can't just drop | |
3402 | * the lock on the object we're inserting the page into | |
3403 | * and recall the PMAP_ENTER since we can still cause | |
3404 | * a deadlock if one of the critical paths tries to | |
3405 | * acquire the lock on the top-object and we're blocked | |
3406 | * in PMAP_ENTER waiting for memory... our only recourse | |
3407 | * is to deal with it at a higher level where we can | |
3408 | * drop both locks. | |
3409 | */ | |
3410 | *need_retry = TRUE; | |
3411 | vm_pmap_enter_retried++; | |
3412 | goto done; | |
3413 | } | |
3414 | /* | |
3415 | * The nonblocking version of pmap_enter did not succeed. | |
3416 | * and we don't need to drop other locks and retry | |
3417 | * at the level above us, so | |
3418 | * use the blocking version instead. Requires marking | |
3419 | * the page busy and unlocking the object | |
3420 | */ | |
3421 | boolean_t was_busy = m->vmp_busy; | |
3422 | ||
3423 | vm_object_lock_assert_exclusive(object); | |
3424 | ||
3425 | m->vmp_busy = TRUE; | |
3426 | vm_object_unlock(object); | |
3427 | ||
3428 | PMAP_ENTER_OPTIONS(pmap, vaddr, | |
3429 | fault_phys_offset, | |
3430 | m, *prot, fault_type, | |
3431 | 0, wired, | |
3432 | pmap_options, kr); | |
3433 | ||
3434 | assert(VM_PAGE_OBJECT(m) == object); | |
3435 | ||
3436 | /* Take the object lock again. */ | |
3437 | vm_object_lock(object); | |
3438 | ||
3439 | /* If the page was busy, someone else will wake it up. | |
3440 | * Otherwise, we have to do it now. */ | |
3441 | assert(m->vmp_busy); | |
3442 | if (!was_busy) { | |
3443 | PAGE_WAKEUP_DONE(m); | |
3444 | } | |
3445 | vm_pmap_enter_blocked++; | |
3446 | } | |
3447 | ||
3448 | done: | |
3449 | return kr; | |
3450 | } | |
3451 | ||
3452 | /* | |
3453 | * Prepare to enter a page into the pmap by checking CS, protection bits, | |
3454 | * and setting mapped bits on the page_t. | |
3455 | * Does not modify the page's paging queue. | |
3456 | * | |
3457 | * page queue lock must NOT be held | |
3458 | * m->vmp_object must be locked | |
3459 | * | |
3460 | * NOTE: m->vmp_object could be locked "shared" only if we are called | |
3461 | * from vm_fault() as part of a soft fault. | |
3462 | */ | |
3463 | static kern_return_t | |
3464 | vm_fault_enter_prepare( | |
3465 | vm_page_t m, | |
3466 | pmap_t pmap, | |
3467 | vm_map_offset_t vaddr, | |
3468 | vm_prot_t *prot, | |
3469 | vm_prot_t caller_prot, | |
3470 | vm_map_size_t fault_page_size, | |
3471 | vm_map_offset_t fault_phys_offset, | |
3472 | boolean_t change_wiring, | |
3473 | vm_prot_t fault_type, | |
3474 | vm_object_fault_info_t fault_info, | |
3475 | int *type_of_fault, | |
3476 | bool *page_needs_data_sync) | |
3477 | { | |
3478 | kern_return_t kr; | |
3479 | bool is_tainted = false; | |
3480 | vm_object_t object; | |
3481 | boolean_t cs_bypass = fault_info->cs_bypass; | |
3482 | ||
3483 | object = VM_PAGE_OBJECT(m); | |
3484 | ||
3485 | vm_object_lock_assert_held(object); | |
3486 | ||
3487 | #if KASAN | |
3488 | if (pmap == kernel_pmap) { | |
3489 | kasan_notify_address(vaddr, PAGE_SIZE); | |
3490 | } | |
3491 | #endif | |
3492 | ||
3493 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
3494 | ||
3495 | if (*type_of_fault == DBG_ZERO_FILL_FAULT) { | |
3496 | vm_object_lock_assert_exclusive(object); | |
3497 | } else if ((fault_type & VM_PROT_WRITE) == 0 && | |
3498 | !change_wiring && | |
3499 | (!m->vmp_wpmapped | |
3500 | #if VM_OBJECT_ACCESS_TRACKING | |
3501 | || object->access_tracking | |
3502 | #endif /* VM_OBJECT_ACCESS_TRACKING */ | |
3503 | )) { | |
3504 | /* | |
3505 | * This is not a "write" fault, so we | |
3506 | * might not have taken the object lock | |
3507 | * exclusively and we might not be able | |
3508 | * to update the "wpmapped" bit in | |
3509 | * vm_fault_enter(). | |
3510 | * Let's just grant read access to | |
3511 | * the page for now and we'll | |
3512 | * soft-fault again if we need write | |
3513 | * access later... | |
3514 | */ | |
3515 | ||
3516 | /* This had better not be a JIT page. */ | |
3517 | if (!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot)) { | |
3518 | *prot &= ~VM_PROT_WRITE; | |
3519 | } else { | |
3520 | assert(cs_bypass); | |
3521 | } | |
3522 | } | |
3523 | if (m->vmp_pmapped == FALSE) { | |
3524 | if (m->vmp_clustered) { | |
3525 | if (*type_of_fault == DBG_CACHE_HIT_FAULT) { | |
3526 | /* | |
3527 | * found it in the cache, but this | |
3528 | * is the first fault-in of the page (m->vmp_pmapped == FALSE) | |
3529 | * so it must have come in as part of | |
3530 | * a cluster... account 1 pagein against it | |
3531 | */ | |
3532 | if (object->internal) { | |
3533 | *type_of_fault = DBG_PAGEIND_FAULT; | |
3534 | } else { | |
3535 | *type_of_fault = DBG_PAGEINV_FAULT; | |
3536 | } | |
3537 | ||
3538 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
3539 | } | |
3540 | VM_PAGE_CONSUME_CLUSTERED(m); | |
3541 | } | |
3542 | } | |
3543 | ||
3544 | if (*type_of_fault != DBG_COW_FAULT) { | |
3545 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); | |
3546 | ||
3547 | if (pmap == kernel_pmap) { | |
3548 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); | |
3549 | } | |
3550 | } | |
3551 | ||
3552 | kr = vm_fault_validate_cs(cs_bypass, object, m, pmap, vaddr, | |
3553 | *prot, caller_prot, fault_page_size, fault_phys_offset, | |
3554 | fault_info, &is_tainted); | |
3555 | if (kr == KERN_SUCCESS) { | |
3556 | /* | |
3557 | * We either have a good page, or a tainted page that has been accepted by the process. | |
3558 | * In both cases the page will be entered into the pmap. | |
3559 | */ | |
3560 | *page_needs_data_sync = vm_fault_enter_set_mapped(object, m, *prot, fault_type); | |
3561 | if ((fault_type & VM_PROT_WRITE) && is_tainted) { | |
3562 | /* | |
3563 | * This page is tainted but we're inserting it anyways. | |
3564 | * Since it's writeable, we need to disconnect it from other pmaps | |
3565 | * now so those processes can take note. | |
3566 | */ | |
3567 | ||
3568 | /* | |
3569 | * We can only get here | |
3570 | * because of the CSE logic | |
3571 | */ | |
3572 | assert(pmap_get_vm_map_cs_enforced(pmap)); | |
3573 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
3574 | /* | |
3575 | * If we are faulting for a write, we can clear | |
3576 | * the execute bit - that will ensure the page is | |
3577 | * checked again before being executable, which | |
3578 | * protects against a map switch. | |
3579 | * This only happens the first time the page | |
3580 | * gets tainted, so we won't get stuck here | |
3581 | * to make an already writeable page executable. | |
3582 | */ | |
3583 | if (!cs_bypass) { | |
3584 | assert(!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot)); | |
3585 | *prot &= ~VM_PROT_EXECUTE; | |
3586 | } | |
3587 | } | |
3588 | assert(VM_PAGE_OBJECT(m) == object); | |
3589 | ||
3590 | #if VM_OBJECT_ACCESS_TRACKING | |
3591 | if (object->access_tracking) { | |
3592 | DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type); | |
3593 | if (fault_type & VM_PROT_WRITE) { | |
3594 | object->access_tracking_writes++; | |
3595 | vm_object_access_tracking_writes++; | |
3596 | } else { | |
3597 | object->access_tracking_reads++; | |
3598 | vm_object_access_tracking_reads++; | |
3599 | } | |
3600 | } | |
3601 | #endif /* VM_OBJECT_ACCESS_TRACKING */ | |
3602 | } | |
3603 | ||
3604 | return kr; | |
3605 | } | |
3606 | ||
3607 | /* | |
3608 | * page queue lock must NOT be held | |
3609 | * m->vmp_object must be locked | |
3610 | * | |
3611 | * NOTE: m->vmp_object could be locked "shared" only if we are called | |
3612 | * from vm_fault() as part of a soft fault. If so, we must be | |
3613 | * careful not to modify the VM object in any way that is not | |
3614 | * legal under a shared lock... | |
3615 | */ | |
3616 | kern_return_t | |
3617 | vm_fault_enter( | |
3618 | vm_page_t m, | |
3619 | pmap_t pmap, | |
3620 | vm_map_offset_t vaddr, | |
3621 | vm_map_size_t fault_page_size, | |
3622 | vm_map_offset_t fault_phys_offset, | |
3623 | vm_prot_t prot, | |
3624 | vm_prot_t caller_prot, | |
3625 | boolean_t wired, | |
3626 | boolean_t change_wiring, | |
3627 | vm_tag_t wire_tag, | |
3628 | vm_object_fault_info_t fault_info, | |
3629 | boolean_t *need_retry, | |
3630 | int *type_of_fault) | |
3631 | { | |
3632 | kern_return_t kr; | |
3633 | vm_object_t object; | |
3634 | bool page_needs_data_sync; | |
3635 | vm_prot_t fault_type; | |
3636 | int pmap_options = fault_info->pmap_options; | |
3637 | ||
3638 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { | |
3639 | assert(m->vmp_fictitious); | |
3640 | return KERN_SUCCESS; | |
3641 | } | |
3642 | ||
3643 | fault_type = change_wiring ? VM_PROT_NONE : caller_prot; | |
3644 | ||
3645 | kr = vm_fault_enter_prepare(m, pmap, vaddr, &prot, caller_prot, | |
3646 | fault_page_size, fault_phys_offset, change_wiring, fault_type, | |
3647 | fault_info, type_of_fault, &page_needs_data_sync); | |
3648 | object = VM_PAGE_OBJECT(m); | |
3649 | ||
3650 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info->no_cache, type_of_fault, kr); | |
3651 | ||
3652 | if (kr == KERN_SUCCESS) { | |
3653 | if (page_needs_data_sync) { | |
3654 | pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m)); | |
3655 | } | |
3656 | ||
3657 | kr = vm_fault_pmap_enter_with_object_lock(object, pmap, vaddr, | |
3658 | fault_page_size, fault_phys_offset, m, | |
3659 | &prot, caller_prot, fault_type, wired, pmap_options, need_retry); | |
3660 | } | |
3661 | ||
3662 | return kr; | |
3663 | } | |
3664 | ||
3665 | void | |
3666 | vm_pre_fault(vm_map_offset_t vaddr, vm_prot_t prot) | |
3667 | { | |
3668 | if (pmap_find_phys(current_map()->pmap, vaddr) == 0) { | |
3669 | vm_fault(current_map(), /* map */ | |
3670 | vaddr, /* vaddr */ | |
3671 | prot, /* fault_type */ | |
3672 | FALSE, /* change_wiring */ | |
3673 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ | |
3674 | THREAD_UNINT, /* interruptible */ | |
3675 | NULL, /* caller_pmap */ | |
3676 | 0 /* caller_pmap_addr */); | |
3677 | } | |
3678 | } | |
3679 | ||
3680 | ||
3681 | /* | |
3682 | * Routine: vm_fault | |
3683 | * Purpose: | |
3684 | * Handle page faults, including pseudo-faults | |
3685 | * used to change the wiring status of pages. | |
3686 | * Returns: | |
3687 | * Explicit continuations have been removed. | |
3688 | * Implementation: | |
3689 | * vm_fault and vm_fault_page save mucho state | |
3690 | * in the moral equivalent of a closure. The state | |
3691 | * structure is allocated when first entering vm_fault | |
3692 | * and deallocated when leaving vm_fault. | |
3693 | */ | |
3694 | ||
3695 | extern uint64_t get_current_unique_pid(void); | |
3696 | ||
3697 | unsigned long vm_fault_collapse_total = 0; | |
3698 | unsigned long vm_fault_collapse_skipped = 0; | |
3699 | ||
3700 | ||
3701 | kern_return_t | |
3702 | vm_fault_external( | |
3703 | vm_map_t map, | |
3704 | vm_map_offset_t vaddr, | |
3705 | vm_prot_t fault_type, | |
3706 | boolean_t change_wiring, | |
3707 | int interruptible, | |
3708 | pmap_t caller_pmap, | |
3709 | vm_map_offset_t caller_pmap_addr) | |
3710 | { | |
3711 | return vm_fault_internal(map, vaddr, fault_type, change_wiring, | |
3712 | change_wiring ? vm_tag_bt() : VM_KERN_MEMORY_NONE, | |
3713 | interruptible, caller_pmap, caller_pmap_addr, | |
3714 | NULL); | |
3715 | } | |
3716 | ||
3717 | kern_return_t | |
3718 | vm_fault( | |
3719 | vm_map_t map, | |
3720 | vm_map_offset_t vaddr, | |
3721 | vm_prot_t fault_type, | |
3722 | boolean_t change_wiring, | |
3723 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ | |
3724 | int interruptible, | |
3725 | pmap_t caller_pmap, | |
3726 | vm_map_offset_t caller_pmap_addr) | |
3727 | { | |
3728 | return vm_fault_internal(map, vaddr, fault_type, change_wiring, wire_tag, | |
3729 | interruptible, caller_pmap, caller_pmap_addr, | |
3730 | NULL); | |
3731 | } | |
3732 | ||
3733 | static boolean_t | |
3734 | current_proc_is_privileged(void) | |
3735 | { | |
3736 | return csproc_get_platform_binary(current_proc()); | |
3737 | } | |
3738 | ||
3739 | uint64_t vm_copied_on_read = 0; | |
3740 | ||
3741 | /* | |
3742 | * Cleanup after a vm_fault_enter. | |
3743 | * At this point, the fault should either have failed (kr != KERN_SUCCESS) | |
3744 | * or the page should be in the pmap and on the correct paging queue. | |
3745 | * | |
3746 | * Precondition: | |
3747 | * map must be locked shared. | |
3748 | * m_object must be locked. | |
3749 | * If top_object != VM_OBJECT_NULL, it must be locked. | |
3750 | * real_map must be locked. | |
3751 | * | |
3752 | * Postcondition: | |
3753 | * map will be unlocked | |
3754 | * m_object will be unlocked | |
3755 | * top_object will be unlocked | |
3756 | * If real_map != map, it will be unlocked | |
3757 | */ | |
3758 | static void | |
3759 | vm_fault_complete( | |
3760 | vm_map_t map, | |
3761 | vm_map_t real_map, | |
3762 | vm_object_t object, | |
3763 | vm_object_t m_object, | |
3764 | vm_page_t m, | |
3765 | vm_map_offset_t offset, | |
3766 | vm_map_offset_t trace_real_vaddr, | |
3767 | vm_object_fault_info_t fault_info, | |
3768 | vm_prot_t caller_prot, | |
3769 | #if CONFIG_DTRACE | |
3770 | vm_map_offset_t real_vaddr, | |
3771 | #else | |
3772 | __unused vm_map_offset_t real_vaddr, | |
3773 | #endif /* CONFIG_DTRACE */ | |
3774 | int type_of_fault, | |
3775 | boolean_t need_retry, | |
3776 | kern_return_t kr, | |
3777 | ppnum_t *physpage_p, | |
3778 | vm_prot_t prot, | |
3779 | vm_object_t top_object, | |
3780 | boolean_t need_collapse, | |
3781 | vm_map_offset_t cur_offset, | |
3782 | vm_prot_t fault_type, | |
3783 | vm_object_t *written_on_object, | |
3784 | memory_object_t *written_on_pager, | |
3785 | vm_object_offset_t *written_on_offset) | |
3786 | { | |
3787 | int event_code = 0; | |
3788 | vm_map_lock_assert_shared(map); | |
3789 | vm_object_lock_assert_held(m_object); | |
3790 | if (top_object != VM_OBJECT_NULL) { | |
3791 | vm_object_lock_assert_held(top_object); | |
3792 | } | |
3793 | vm_map_lock_assert_held(real_map); | |
3794 | ||
3795 | if (m_object->internal) { | |
3796 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); | |
3797 | } else if (m_object->object_is_shared_cache) { | |
3798 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); | |
3799 | } else { | |
3800 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); | |
3801 | } | |
3802 | ||
3803 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info->user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0); | |
3804 | if (need_retry == FALSE) { | |
3805 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_FAST), get_current_unique_pid(), 0, 0, 0, 0); | |
3806 | } | |
3807 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info->user_tag); | |
3808 | if (kr == KERN_SUCCESS && | |
3809 | physpage_p != NULL) { | |
3810 | /* for vm_map_wire_and_extract() */ | |
3811 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); | |
3812 | if (prot & VM_PROT_WRITE) { | |
3813 | vm_object_lock_assert_exclusive(m_object); | |
3814 | m->vmp_dirty = TRUE; | |
3815 | } | |
3816 | } | |
3817 | ||
3818 | if (top_object != VM_OBJECT_NULL) { | |
3819 | /* | |
3820 | * It's safe to drop the top object | |
3821 | * now that we've done our | |
3822 | * vm_fault_enter(). Any other fault | |
3823 | * in progress for that virtual | |
3824 | * address will either find our page | |
3825 | * and translation or put in a new page | |
3826 | * and translation. | |
3827 | */ | |
3828 | vm_object_unlock(top_object); | |
3829 | top_object = VM_OBJECT_NULL; | |
3830 | } | |
3831 | ||
3832 | if (need_collapse == TRUE) { | |
3833 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); | |
3834 | } | |
3835 | ||
3836 | if (need_retry == FALSE && | |
3837 | (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { | |
3838 | /* | |
3839 | * evaluate access pattern and update state | |
3840 | * vm_fault_deactivate_behind depends on the | |
3841 | * state being up to date | |
3842 | */ | |
3843 | vm_fault_is_sequential(m_object, cur_offset, fault_info->behavior); | |
3844 | ||
3845 | vm_fault_deactivate_behind(m_object, cur_offset, fault_info->behavior); | |
3846 | } | |
3847 | /* | |
3848 | * That's it, clean up and return. | |
3849 | */ | |
3850 | if (m->vmp_busy) { | |
3851 | vm_object_lock_assert_exclusive(m_object); | |
3852 | PAGE_WAKEUP_DONE(m); | |
3853 | } | |
3854 | ||
3855 | if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) { | |
3856 | vm_object_paging_begin(m_object); | |
3857 | ||
3858 | assert(*written_on_object == VM_OBJECT_NULL); | |
3859 | *written_on_object = m_object; | |
3860 | *written_on_pager = m_object->pager; | |
3861 | *written_on_offset = m_object->paging_offset + m->vmp_offset; | |
3862 | } | |
3863 | vm_object_unlock(object); | |
3864 | ||
3865 | vm_map_unlock_read(map); | |
3866 | if (real_map != map) { | |
3867 | vm_map_unlock(real_map); | |
3868 | } | |
3869 | } | |
3870 | ||
3871 | static inline int | |
3872 | vm_fault_type_for_tracing(boolean_t need_copy_on_read, int type_of_fault) | |
3873 | { | |
3874 | if (need_copy_on_read && type_of_fault == DBG_COW_FAULT) { | |
3875 | return DBG_COR_FAULT; | |
3876 | } | |
3877 | return type_of_fault; | |
3878 | } | |
3879 | ||
3880 | kern_return_t | |
3881 | vm_fault_internal( | |
3882 | vm_map_t map, | |
3883 | vm_map_offset_t vaddr, | |
3884 | vm_prot_t caller_prot, | |
3885 | boolean_t change_wiring, | |
3886 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ | |
3887 | int interruptible, | |
3888 | pmap_t caller_pmap, | |
3889 | vm_map_offset_t caller_pmap_addr, | |
3890 | ppnum_t *physpage_p) | |
3891 | { | |
3892 | vm_map_version_t version; /* Map version for verificiation */ | |
3893 | boolean_t wired; /* Should mapping be wired down? */ | |
3894 | vm_object_t object; /* Top-level object */ | |
3895 | vm_object_offset_t offset; /* Top-level offset */ | |
3896 | vm_prot_t prot; /* Protection for mapping */ | |
3897 | vm_object_t old_copy_object; /* Saved copy object */ | |
3898 | vm_page_t result_page; /* Result of vm_fault_page */ | |
3899 | vm_page_t top_page; /* Placeholder page */ | |
3900 | kern_return_t kr; | |
3901 | ||
3902 | vm_page_t m; /* Fast access to result_page */ | |
3903 | kern_return_t error_code; | |
3904 | vm_object_t cur_object; | |
3905 | vm_object_t m_object = NULL; | |
3906 | vm_object_offset_t cur_offset; | |
3907 | vm_page_t cur_m; | |
3908 | vm_object_t new_object; | |
3909 | int type_of_fault; | |
3910 | pmap_t pmap; | |
3911 | wait_interrupt_t interruptible_state; | |
3912 | vm_map_t real_map = map; | |
3913 | vm_map_t original_map = map; | |
3914 | bool object_locks_dropped = FALSE; | |
3915 | vm_prot_t fault_type; | |
3916 | vm_prot_t original_fault_type; | |
3917 | struct vm_object_fault_info fault_info = {}; | |
3918 | bool need_collapse = FALSE; | |
3919 | boolean_t need_retry = FALSE; | |
3920 | boolean_t *need_retry_ptr = NULL; | |
3921 | uint8_t object_lock_type = 0; | |
3922 | uint8_t cur_object_lock_type; | |
3923 | vm_object_t top_object = VM_OBJECT_NULL; | |
3924 | vm_object_t written_on_object = VM_OBJECT_NULL; | |
3925 | memory_object_t written_on_pager = NULL; | |
3926 | vm_object_offset_t written_on_offset = 0; | |
3927 | int throttle_delay; | |
3928 | int compressed_count_delta; | |
3929 | uint8_t grab_options; | |
3930 | bool need_copy; | |
3931 | bool need_copy_on_read; | |
3932 | vm_map_offset_t trace_vaddr; | |
3933 | vm_map_offset_t trace_real_vaddr; | |
3934 | vm_map_size_t fault_page_size; | |
3935 | vm_map_size_t fault_page_mask; | |
3936 | vm_map_offset_t fault_phys_offset; | |
3937 | vm_map_offset_t real_vaddr; | |
3938 | bool resilient_media_retry = FALSE; | |
3939 | vm_object_t resilient_media_object = VM_OBJECT_NULL; | |
3940 | vm_object_offset_t resilient_media_offset = (vm_object_offset_t)-1; | |
3941 | bool page_needs_data_sync = false; | |
3942 | /* | |
3943 | * Was the VM object contended when vm_map_lookup_locked locked it? | |
3944 | * If so, the zero fill path will drop the lock | |
3945 | * NB: Ideally we would always drop the lock rather than rely on | |
3946 | * this heuristic, but vm_object_unlock currently takes > 30 cycles. | |
3947 | */ | |
3948 | bool object_is_contended = false; | |
3949 | ||
3950 | real_vaddr = vaddr; | |
3951 | trace_real_vaddr = vaddr; | |
3952 | ||
3953 | if (VM_MAP_PAGE_SIZE(original_map) < PAGE_SIZE) { | |
3954 | fault_phys_offset = (vm_map_offset_t)-1; | |
3955 | fault_page_size = VM_MAP_PAGE_SIZE(original_map); | |
3956 | fault_page_mask = VM_MAP_PAGE_MASK(original_map); | |
3957 | if (fault_page_size < PAGE_SIZE) { | |
3958 | DEBUG4K_FAULT("map %p vaddr 0x%llx caller_prot 0x%x\n", map, (uint64_t)trace_real_vaddr, caller_prot); | |
3959 | vaddr = vm_map_trunc_page(vaddr, fault_page_mask); | |
3960 | } | |
3961 | } else { | |
3962 | fault_phys_offset = 0; | |
3963 | fault_page_size = PAGE_SIZE; | |
3964 | fault_page_mask = PAGE_MASK; | |
3965 | vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); | |
3966 | } | |
3967 | ||
3968 | if (map == kernel_map) { | |
3969 | trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr); | |
3970 | trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr); | |
3971 | } else { | |
3972 | trace_vaddr = vaddr; | |
3973 | } | |
3974 | ||
3975 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
3976 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, | |
3977 | ((uint64_t)trace_vaddr >> 32), | |
3978 | trace_vaddr, | |
3979 | (map == kernel_map), | |
3980 | 0, | |
3981 | 0); | |
3982 | ||
3983 | if (get_preemption_level() != 0) { | |
3984 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
3985 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, | |
3986 | ((uint64_t)trace_vaddr >> 32), | |
3987 | trace_vaddr, | |
3988 | KERN_FAILURE, | |
3989 | 0, | |
3990 | 0); | |
3991 | ||
3992 | return KERN_FAILURE; | |
3993 | } | |
3994 | ||
3995 | thread_t cthread = current_thread(); | |
3996 | bool rtfault = (cthread->sched_mode == TH_MODE_REALTIME); | |
3997 | uint64_t fstart = 0; | |
3998 | ||
3999 | if (rtfault) { | |
4000 | fstart = mach_continuous_time(); | |
4001 | } | |
4002 | ||
4003 | interruptible_state = thread_interrupt_level(interruptible); | |
4004 | ||
4005 | fault_type = (change_wiring ? VM_PROT_NONE : caller_prot); | |
4006 | ||
4007 | VM_STAT_INCR(faults); | |
4008 | current_task()->faults++; | |
4009 | original_fault_type = fault_type; | |
4010 | ||
4011 | need_copy = FALSE; | |
4012 | if (fault_type & VM_PROT_WRITE) { | |
4013 | need_copy = TRUE; | |
4014 | } | |
4015 | ||
4016 | if (need_copy || change_wiring) { | |
4017 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4018 | } else { | |
4019 | object_lock_type = OBJECT_LOCK_SHARED; | |
4020 | } | |
4021 | ||
4022 | cur_object_lock_type = OBJECT_LOCK_SHARED; | |
4023 | ||
4024 | if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) { | |
4025 | if (compressor_map) { | |
4026 | if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) { | |
4027 | panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p", (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map)); | |
4028 | } | |
4029 | } | |
4030 | } | |
4031 | RetryFault: | |
4032 | assert(written_on_object == VM_OBJECT_NULL); | |
4033 | ||
4034 | /* | |
4035 | * assume we will hit a page in the cache | |
4036 | * otherwise, explicitly override with | |
4037 | * the real fault type once we determine it | |
4038 | */ | |
4039 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
4040 | ||
4041 | /* | |
4042 | * Find the backing store object and offset into | |
4043 | * it to begin the search. | |
4044 | */ | |
4045 | fault_type = original_fault_type; | |
4046 | map = original_map; | |
4047 | vm_map_lock_read(map); | |
4048 | ||
4049 | if (resilient_media_retry) { | |
4050 | /* | |
4051 | * If we have to insert a fake zero-filled page to hide | |
4052 | * a media failure to provide the real page, we need to | |
4053 | * resolve any pending copy-on-write on this mapping. | |
4054 | * VM_PROT_COPY tells vm_map_lookup_locked() to deal | |
4055 | * with that even if this is not a "write" fault. | |
4056 | */ | |
4057 | need_copy = TRUE; | |
4058 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4059 | } | |
4060 | ||
4061 | kr = vm_map_lookup_locked(&map, vaddr, | |
4062 | (fault_type | (need_copy ? VM_PROT_COPY : 0)), | |
4063 | object_lock_type, &version, | |
4064 | &object, &offset, &prot, &wired, | |
4065 | &fault_info, | |
4066 | &real_map, | |
4067 | &object_is_contended); | |
4068 | ||
4069 | if (kr != KERN_SUCCESS) { | |
4070 | vm_map_unlock_read(map); | |
4071 | goto done; | |
4072 | } | |
4073 | ||
4074 | ||
4075 | pmap = real_map->pmap; | |
4076 | fault_info.interruptible = interruptible; | |
4077 | fault_info.stealth = FALSE; | |
4078 | fault_info.io_sync = FALSE; | |
4079 | fault_info.mark_zf_absent = FALSE; | |
4080 | fault_info.batch_pmap_op = FALSE; | |
4081 | ||
4082 | if (resilient_media_retry) { | |
4083 | /* | |
4084 | * We're retrying this fault after having detected a media | |
4085 | * failure from a "resilient_media" mapping. | |
4086 | * Check that the mapping is still pointing at the object | |
4087 | * that just failed to provide a page. | |
4088 | */ | |
4089 | assert(resilient_media_object != VM_OBJECT_NULL); | |
4090 | assert(resilient_media_offset != (vm_object_offset_t)-1); | |
4091 | if (object != VM_OBJECT_NULL && | |
4092 | object == resilient_media_object && | |
4093 | offset == resilient_media_offset && | |
4094 | fault_info.resilient_media) { | |
4095 | /* | |
4096 | * This mapping still points at the same object | |
4097 | * and is still "resilient_media": proceed in | |
4098 | * "recovery-from-media-failure" mode, where we'll | |
4099 | * insert a zero-filled page in the top object. | |
4100 | */ | |
4101 | // printf("RESILIENT_MEDIA %s:%d recovering for object %p offset 0x%llx\n", __FUNCTION__, __LINE__, object, offset); | |
4102 | } else { | |
4103 | /* not recovering: reset state */ | |
4104 | // printf("RESILIENT_MEDIA %s:%d no recovery resilient %d object %p/%p offset 0x%llx/0x%llx\n", __FUNCTION__, __LINE__, fault_info.resilient_media, object, resilient_media_object, offset, resilient_media_offset); | |
4105 | resilient_media_retry = FALSE; | |
4106 | /* release our extra reference on failed object */ | |
4107 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); | |
4108 | vm_object_deallocate(resilient_media_object); | |
4109 | resilient_media_object = VM_OBJECT_NULL; | |
4110 | resilient_media_offset = (vm_object_offset_t)-1; | |
4111 | } | |
4112 | } else { | |
4113 | assert(resilient_media_object == VM_OBJECT_NULL); | |
4114 | resilient_media_offset = (vm_object_offset_t)-1; | |
4115 | } | |
4116 | ||
4117 | /* | |
4118 | * If the page is wired, we must fault for the current protection | |
4119 | * value, to avoid further faults. | |
4120 | */ | |
4121 | if (wired) { | |
4122 | fault_type = prot | VM_PROT_WRITE; | |
4123 | } | |
4124 | if (wired || need_copy) { | |
4125 | /* | |
4126 | * since we're treating this fault as a 'write' | |
4127 | * we must hold the top object lock exclusively | |
4128 | */ | |
4129 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4130 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4131 | ||
4132 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4133 | /* | |
4134 | * couldn't upgrade, so explictly | |
4135 | * take the lock exclusively | |
4136 | */ | |
4137 | vm_object_lock(object); | |
4138 | } | |
4139 | } | |
4140 | } | |
4141 | ||
4142 | #if VM_FAULT_CLASSIFY | |
4143 | /* | |
4144 | * Temporary data gathering code | |
4145 | */ | |
4146 | vm_fault_classify(object, offset, fault_type); | |
4147 | #endif | |
4148 | /* | |
4149 | * Fast fault code. The basic idea is to do as much as | |
4150 | * possible while holding the map lock and object locks. | |
4151 | * Busy pages are not used until the object lock has to | |
4152 | * be dropped to do something (copy, zero fill, pmap enter). | |
4153 | * Similarly, paging references aren't acquired until that | |
4154 | * point, and object references aren't used. | |
4155 | * | |
4156 | * If we can figure out what to do | |
4157 | * (zero fill, copy on write, pmap enter) while holding | |
4158 | * the locks, then it gets done. Otherwise, we give up, | |
4159 | * and use the original fault path (which doesn't hold | |
4160 | * the map lock, and relies on busy pages). | |
4161 | * The give up cases include: | |
4162 | * - Have to talk to pager. | |
4163 | * - Page is busy, absent or in error. | |
4164 | * - Pager has locked out desired access. | |
4165 | * - Fault needs to be restarted. | |
4166 | * - Have to push page into copy object. | |
4167 | * | |
4168 | * The code is an infinite loop that moves one level down | |
4169 | * the shadow chain each time. cur_object and cur_offset | |
4170 | * refer to the current object being examined. object and offset | |
4171 | * are the original object from the map. The loop is at the | |
4172 | * top level if and only if object and cur_object are the same. | |
4173 | * | |
4174 | * Invariants: Map lock is held throughout. Lock is held on | |
4175 | * original object and cur_object (if different) when | |
4176 | * continuing or exiting loop. | |
4177 | * | |
4178 | */ | |
4179 | ||
4180 | #if defined(__arm64__) | |
4181 | /* | |
4182 | * Fail if reading an execute-only page in a | |
4183 | * pmap that enforces execute-only protection. | |
4184 | */ | |
4185 | if (fault_type == VM_PROT_READ && | |
4186 | (prot & VM_PROT_EXECUTE) && | |
4187 | !(prot & VM_PROT_READ) && | |
4188 | pmap_enforces_execute_only(pmap)) { | |
4189 | vm_object_unlock(object); | |
4190 | vm_map_unlock_read(map); | |
4191 | if (real_map != map) { | |
4192 | vm_map_unlock(real_map); | |
4193 | } | |
4194 | kr = KERN_PROTECTION_FAILURE; | |
4195 | goto done; | |
4196 | } | |
4197 | #endif | |
4198 | ||
4199 | fault_phys_offset = (vm_map_offset_t)offset - vm_map_trunc_page((vm_map_offset_t)offset, PAGE_MASK); | |
4200 | ||
4201 | /* | |
4202 | * If this page is to be inserted in a copy delay object | |
4203 | * for writing, and if the object has a copy, then the | |
4204 | * copy delay strategy is implemented in the slow fault page. | |
4205 | */ | |
4206 | if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && | |
4207 | object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) { | |
4208 | goto handle_copy_delay; | |
4209 | } | |
4210 | ||
4211 | cur_object = object; | |
4212 | cur_offset = offset; | |
4213 | ||
4214 | grab_options = 0; | |
4215 | #if CONFIG_SECLUDED_MEMORY | |
4216 | if (object->can_grab_secluded) { | |
4217 | grab_options |= VM_PAGE_GRAB_SECLUDED; | |
4218 | } | |
4219 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
4220 | ||
4221 | while (TRUE) { | |
4222 | if (!cur_object->pager_created && | |
4223 | cur_object->phys_contiguous) { /* superpage */ | |
4224 | break; | |
4225 | } | |
4226 | ||
4227 | if (cur_object->blocked_access) { | |
4228 | /* | |
4229 | * Access to this VM object has been blocked. | |
4230 | * Let the slow path handle it. | |
4231 | */ | |
4232 | break; | |
4233 | } | |
4234 | ||
4235 | m = vm_page_lookup(cur_object, vm_object_trunc_page(cur_offset)); | |
4236 | m_object = NULL; | |
4237 | ||
4238 | if (m != VM_PAGE_NULL) { | |
4239 | m_object = cur_object; | |
4240 | ||
4241 | if (m->vmp_busy) { | |
4242 | wait_result_t result; | |
4243 | ||
4244 | /* | |
4245 | * in order to do the PAGE_ASSERT_WAIT, we must | |
4246 | * have object that 'm' belongs to locked exclusively | |
4247 | */ | |
4248 | if (object != cur_object) { | |
4249 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
4250 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4251 | ||
4252 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
4253 | /* | |
4254 | * couldn't upgrade so go do a full retry | |
4255 | * immediately since we can no longer be | |
4256 | * certain about cur_object (since we | |
4257 | * don't hold a reference on it)... | |
4258 | * first drop the top object lock | |
4259 | */ | |
4260 | vm_object_unlock(object); | |
4261 | ||
4262 | vm_map_unlock_read(map); | |
4263 | if (real_map != map) { | |
4264 | vm_map_unlock(real_map); | |
4265 | } | |
4266 | ||
4267 | goto RetryFault; | |
4268 | } | |
4269 | } | |
4270 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4271 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4272 | ||
4273 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4274 | /* | |
4275 | * couldn't upgrade, so explictly take the lock | |
4276 | * exclusively and go relookup the page since we | |
4277 | * will have dropped the object lock and | |
4278 | * a different thread could have inserted | |
4279 | * a page at this offset | |
4280 | * no need for a full retry since we're | |
4281 | * at the top level of the object chain | |
4282 | */ | |
4283 | vm_object_lock(object); | |
4284 | ||
4285 | continue; | |
4286 | } | |
4287 | } | |
4288 | if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) { | |
4289 | /* | |
4290 | * m->vmp_busy == TRUE and the object is locked exclusively | |
4291 | * if m->pageout_queue == TRUE after we acquire the | |
4292 | * queues lock, we are guaranteed that it is stable on | |
4293 | * the pageout queue and therefore reclaimable | |
4294 | * | |
4295 | * NOTE: this is only true for the internal pageout queue | |
4296 | * in the compressor world | |
4297 | */ | |
4298 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
4299 | ||
4300 | vm_page_lock_queues(); | |
4301 | ||
4302 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { | |
4303 | vm_pageout_throttle_up(m); | |
4304 | vm_page_unlock_queues(); | |
4305 | ||
4306 | PAGE_WAKEUP_DONE(m); | |
4307 | goto reclaimed_from_pageout; | |
4308 | } | |
4309 | vm_page_unlock_queues(); | |
4310 | } | |
4311 | if (object != cur_object) { | |
4312 | vm_object_unlock(object); | |
4313 | } | |
4314 | ||
4315 | vm_map_unlock_read(map); | |
4316 | if (real_map != map) { | |
4317 | vm_map_unlock(real_map); | |
4318 | } | |
4319 | ||
4320 | result = PAGE_ASSERT_WAIT(m, interruptible); | |
4321 | ||
4322 | vm_object_unlock(cur_object); | |
4323 | ||
4324 | if (result == THREAD_WAITING) { | |
4325 | result = thread_block(THREAD_CONTINUE_NULL); | |
4326 | ||
4327 | counter(c_vm_fault_page_block_busy_kernel++); | |
4328 | } | |
4329 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) { | |
4330 | goto RetryFault; | |
4331 | } | |
4332 | ||
4333 | kr = KERN_ABORTED; | |
4334 | goto done; | |
4335 | } | |
4336 | reclaimed_from_pageout: | |
4337 | if (m->vmp_laundry) { | |
4338 | if (object != cur_object) { | |
4339 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
4340 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4341 | ||
4342 | vm_object_unlock(object); | |
4343 | vm_object_unlock(cur_object); | |
4344 | ||
4345 | vm_map_unlock_read(map); | |
4346 | if (real_map != map) { | |
4347 | vm_map_unlock(real_map); | |
4348 | } | |
4349 | ||
4350 | goto RetryFault; | |
4351 | } | |
4352 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4353 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4354 | ||
4355 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4356 | /* | |
4357 | * couldn't upgrade, so explictly take the lock | |
4358 | * exclusively and go relookup the page since we | |
4359 | * will have dropped the object lock and | |
4360 | * a different thread could have inserted | |
4361 | * a page at this offset | |
4362 | * no need for a full retry since we're | |
4363 | * at the top level of the object chain | |
4364 | */ | |
4365 | vm_object_lock(object); | |
4366 | ||
4367 | continue; | |
4368 | } | |
4369 | } | |
4370 | vm_pageout_steal_laundry(m, FALSE); | |
4371 | } | |
4372 | ||
4373 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { | |
4374 | /* | |
4375 | * Guard page: let the slow path deal with it | |
4376 | */ | |
4377 | break; | |
4378 | } | |
4379 | if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) { | |
4380 | /* | |
4381 | * Unusual case... let the slow path deal with it | |
4382 | */ | |
4383 | break; | |
4384 | } | |
4385 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) { | |
4386 | if (object != cur_object) { | |
4387 | vm_object_unlock(object); | |
4388 | } | |
4389 | vm_map_unlock_read(map); | |
4390 | if (real_map != map) { | |
4391 | vm_map_unlock(real_map); | |
4392 | } | |
4393 | vm_object_unlock(cur_object); | |
4394 | kr = KERN_MEMORY_ERROR; | |
4395 | goto done; | |
4396 | } | |
4397 | assert(m_object == VM_PAGE_OBJECT(m)); | |
4398 | ||
4399 | if (vm_fault_cs_need_validation(map->pmap, m, m_object, | |
4400 | PAGE_SIZE, 0) || | |
4401 | (physpage_p != NULL && (prot & VM_PROT_WRITE))) { | |
4402 | upgrade_lock_and_retry: | |
4403 | /* | |
4404 | * We might need to validate this page | |
4405 | * against its code signature, so we | |
4406 | * want to hold the VM object exclusively. | |
4407 | */ | |
4408 | if (object != cur_object) { | |
4409 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
4410 | vm_object_unlock(object); | |
4411 | vm_object_unlock(cur_object); | |
4412 | ||
4413 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4414 | ||
4415 | vm_map_unlock_read(map); | |
4416 | if (real_map != map) { | |
4417 | vm_map_unlock(real_map); | |
4418 | } | |
4419 | ||
4420 | goto RetryFault; | |
4421 | } | |
4422 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4423 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4424 | ||
4425 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4426 | /* | |
4427 | * couldn't upgrade, so explictly take the lock | |
4428 | * exclusively and go relookup the page since we | |
4429 | * will have dropped the object lock and | |
4430 | * a different thread could have inserted | |
4431 | * a page at this offset | |
4432 | * no need for a full retry since we're | |
4433 | * at the top level of the object chain | |
4434 | */ | |
4435 | vm_object_lock(object); | |
4436 | ||
4437 | continue; | |
4438 | } | |
4439 | } | |
4440 | } | |
4441 | /* | |
4442 | * Two cases of map in faults: | |
4443 | * - At top level w/o copy object. | |
4444 | * - Read fault anywhere. | |
4445 | * --> must disallow write. | |
4446 | */ | |
4447 | ||
4448 | if (object == cur_object && object->copy == VM_OBJECT_NULL) { | |
4449 | goto FastPmapEnter; | |
4450 | } | |
4451 | ||
4452 | if (!need_copy && | |
4453 | !fault_info.no_copy_on_read && | |
4454 | cur_object != object && | |
4455 | !cur_object->internal && | |
4456 | !cur_object->pager_trusted && | |
4457 | vm_protect_privileged_from_untrusted && | |
4458 | !((prot & VM_PROT_EXECUTE) && | |
4459 | cur_object->code_signed && | |
4460 | pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) && | |
4461 | current_proc_is_privileged()) { | |
4462 | /* | |
4463 | * We're faulting on a page in "object" and | |
4464 | * went down the shadow chain to "cur_object" | |
4465 | * to find out that "cur_object"'s pager | |
4466 | * is not "trusted", i.e. we can not trust it | |
4467 | * to always return the same contents. | |
4468 | * Since the target is a "privileged" process, | |
4469 | * let's treat this as a copy-on-read fault, as | |
4470 | * if it was a copy-on-write fault. | |
4471 | * Once "object" gets a copy of this page, it | |
4472 | * won't have to rely on "cur_object" to | |
4473 | * provide the contents again. | |
4474 | * | |
4475 | * This is done by setting "need_copy" and | |
4476 | * retrying the fault from the top with the | |
4477 | * appropriate locking. | |
4478 | * | |
4479 | * Special case: if the mapping is executable | |
4480 | * and the untrusted object is code-signed and | |
4481 | * the process is "cs_enforced", we do not | |
4482 | * copy-on-read because that would break | |
4483 | * code-signing enforcement expectations (an | |
4484 | * executable page must belong to a code-signed | |
4485 | * object) and we can rely on code-signing | |
4486 | * to re-validate the page if it gets evicted | |
4487 | * and paged back in. | |
4488 | */ | |
4489 | // printf("COPY-ON-READ %s:%d map %p va 0x%llx page %p object %p offset 0x%llx UNTRUSTED: need copy-on-read!\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, m, VM_PAGE_OBJECT(m), m->vmp_offset); | |
4490 | vm_copied_on_read++; | |
4491 | need_copy = TRUE; | |
4492 | ||
4493 | vm_object_unlock(object); | |
4494 | vm_object_unlock(cur_object); | |
4495 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4496 | vm_map_unlock_read(map); | |
4497 | if (real_map != map) { | |
4498 | vm_map_unlock(real_map); | |
4499 | } | |
4500 | goto RetryFault; | |
4501 | } | |
4502 | ||
4503 | if (!(fault_type & VM_PROT_WRITE) && !need_copy) { | |
4504 | if (!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { | |
4505 | prot &= ~VM_PROT_WRITE; | |
4506 | } else { | |
4507 | /* | |
4508 | * For a protection that the pmap cares | |
4509 | * about, we must hand over the full | |
4510 | * set of protections (so that the pmap | |
4511 | * layer can apply any desired policy). | |
4512 | * This means that cs_bypass must be | |
4513 | * set, as this can force us to pass | |
4514 | * RWX. | |
4515 | */ | |
4516 | assert(fault_info.cs_bypass); | |
4517 | } | |
4518 | ||
4519 | if (object != cur_object) { | |
4520 | /* | |
4521 | * We still need to hold the top object | |
4522 | * lock here to prevent a race between | |
4523 | * a read fault (taking only "shared" | |
4524 | * locks) and a write fault (taking | |
4525 | * an "exclusive" lock on the top | |
4526 | * object. | |
4527 | * Otherwise, as soon as we release the | |
4528 | * top lock, the write fault could | |
4529 | * proceed and actually complete before | |
4530 | * the read fault, and the copied page's | |
4531 | * translation could then be overwritten | |
4532 | * by the read fault's translation for | |
4533 | * the original page. | |
4534 | * | |
4535 | * Let's just record what the top object | |
4536 | * is and we'll release it later. | |
4537 | */ | |
4538 | top_object = object; | |
4539 | ||
4540 | /* | |
4541 | * switch to the object that has the new page | |
4542 | */ | |
4543 | object = cur_object; | |
4544 | object_lock_type = cur_object_lock_type; | |
4545 | } | |
4546 | FastPmapEnter: | |
4547 | assert(m_object == VM_PAGE_OBJECT(m)); | |
4548 | ||
4549 | /* | |
4550 | * prepare for the pmap_enter... | |
4551 | * object and map are both locked | |
4552 | * m contains valid data | |
4553 | * object == m->vmp_object | |
4554 | * cur_object == NULL or it's been unlocked | |
4555 | * no paging references on either object or cur_object | |
4556 | */ | |
4557 | if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
4558 | need_retry_ptr = &need_retry; | |
4559 | } else { | |
4560 | need_retry_ptr = NULL; | |
4561 | } | |
4562 | ||
4563 | if (fault_page_size < PAGE_SIZE) { | |
4564 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx caller pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, caller_pmap, (uint64_t)caller_pmap_addr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); | |
4565 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && | |
4566 | fault_phys_offset < PAGE_SIZE), | |
4567 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
4568 | } else { | |
4569 | assertf(fault_phys_offset == 0, | |
4570 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
4571 | } | |
4572 | ||
4573 | if (caller_pmap) { | |
4574 | kr = vm_fault_enter(m, | |
4575 | caller_pmap, | |
4576 | caller_pmap_addr, | |
4577 | fault_page_size, | |
4578 | fault_phys_offset, | |
4579 | prot, | |
4580 | caller_prot, | |
4581 | wired, | |
4582 | change_wiring, | |
4583 | wire_tag, | |
4584 | &fault_info, | |
4585 | need_retry_ptr, | |
4586 | &type_of_fault); | |
4587 | } else { | |
4588 | kr = vm_fault_enter(m, | |
4589 | pmap, | |
4590 | vaddr, | |
4591 | fault_page_size, | |
4592 | fault_phys_offset, | |
4593 | prot, | |
4594 | caller_prot, | |
4595 | wired, | |
4596 | change_wiring, | |
4597 | wire_tag, | |
4598 | &fault_info, | |
4599 | need_retry_ptr, | |
4600 | &type_of_fault); | |
4601 | } | |
4602 | ||
4603 | vm_fault_complete( | |
4604 | map, | |
4605 | real_map, | |
4606 | object, | |
4607 | m_object, | |
4608 | m, | |
4609 | offset, | |
4610 | trace_real_vaddr, | |
4611 | &fault_info, | |
4612 | caller_prot, | |
4613 | real_vaddr, | |
4614 | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), | |
4615 | need_retry, | |
4616 | kr, | |
4617 | physpage_p, | |
4618 | prot, | |
4619 | top_object, | |
4620 | need_collapse, | |
4621 | cur_offset, | |
4622 | fault_type, | |
4623 | &written_on_object, | |
4624 | &written_on_pager, | |
4625 | &written_on_offset); | |
4626 | top_object = VM_OBJECT_NULL; | |
4627 | if (need_retry == TRUE) { | |
4628 | /* | |
4629 | * vm_fault_enter couldn't complete the PMAP_ENTER... | |
4630 | * at this point we don't hold any locks so it's safe | |
4631 | * to ask the pmap layer to expand the page table to | |
4632 | * accommodate this mapping... once expanded, we'll | |
4633 | * re-drive the fault which should result in vm_fault_enter | |
4634 | * being able to successfully enter the mapping this time around | |
4635 | */ | |
4636 | (void)pmap_enter_options( | |
4637 | pmap, vaddr, 0, 0, 0, 0, 0, | |
4638 | PMAP_OPTIONS_NOENTER, NULL); | |
4639 | ||
4640 | need_retry = FALSE; | |
4641 | goto RetryFault; | |
4642 | } | |
4643 | goto done; | |
4644 | } | |
4645 | /* | |
4646 | * COPY ON WRITE FAULT | |
4647 | */ | |
4648 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); | |
4649 | ||
4650 | /* | |
4651 | * If objects match, then | |
4652 | * object->copy must not be NULL (else control | |
4653 | * would be in previous code block), and we | |
4654 | * have a potential push into the copy object | |
4655 | * with which we can't cope with here. | |
4656 | */ | |
4657 | if (cur_object == object) { | |
4658 | /* | |
4659 | * must take the slow path to | |
4660 | * deal with the copy push | |
4661 | */ | |
4662 | break; | |
4663 | } | |
4664 | ||
4665 | /* | |
4666 | * This is now a shadow based copy on write | |
4667 | * fault -- it requires a copy up the shadow | |
4668 | * chain. | |
4669 | */ | |
4670 | assert(m_object == VM_PAGE_OBJECT(m)); | |
4671 | ||
4672 | if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && | |
4673 | vm_fault_cs_need_validation(NULL, m, m_object, | |
4674 | PAGE_SIZE, 0)) { | |
4675 | goto upgrade_lock_and_retry; | |
4676 | } | |
4677 | ||
4678 | /* | |
4679 | * Allocate a page in the original top level | |
4680 | * object. Give up if allocate fails. Also | |
4681 | * need to remember current page, as it's the | |
4682 | * source of the copy. | |
4683 | * | |
4684 | * at this point we hold locks on both | |
4685 | * object and cur_object... no need to take | |
4686 | * paging refs or mark pages BUSY since | |
4687 | * we don't drop either object lock until | |
4688 | * the page has been copied and inserted | |
4689 | */ | |
4690 | cur_m = m; | |
4691 | m = vm_page_grab_options(grab_options); | |
4692 | m_object = NULL; | |
4693 | ||
4694 | if (m == VM_PAGE_NULL) { | |
4695 | /* | |
4696 | * no free page currently available... | |
4697 | * must take the slow path | |
4698 | */ | |
4699 | break; | |
4700 | } | |
4701 | /* | |
4702 | * Now do the copy. Mark the source page busy... | |
4703 | * | |
4704 | * NOTE: This code holds the map lock across | |
4705 | * the page copy. | |
4706 | */ | |
4707 | vm_page_copy(cur_m, m); | |
4708 | vm_page_insert(m, object, vm_object_trunc_page(offset)); | |
4709 | if (VM_MAP_PAGE_MASK(map) != PAGE_MASK) { | |
4710 | DEBUG4K_FAULT("map %p vaddr 0x%llx page %p [%p 0x%llx] copied to %p [%p 0x%llx]\n", map, (uint64_t)vaddr, cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); | |
4711 | } | |
4712 | m_object = object; | |
4713 | SET_PAGE_DIRTY(m, FALSE); | |
4714 | ||
4715 | /* | |
4716 | * Now cope with the source page and object | |
4717 | */ | |
4718 | if (object->ref_count > 1 && cur_m->vmp_pmapped) { | |
4719 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m)); | |
4720 | } else if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) { | |
4721 | /* | |
4722 | * We've copied the full 16K page but we're | |
4723 | * about to call vm_fault_enter() only for | |
4724 | * the 4K chunk we're faulting on. The other | |
4725 | * three 4K chunks in that page could still | |
4726 | * be pmapped in this pmap. | |
4727 | * Since the VM object layer thinks that the | |
4728 | * entire page has been dealt with and the | |
4729 | * original page might no longer be needed, | |
4730 | * it might collapse/bypass the original VM | |
4731 | * object and free its pages, which would be | |
4732 | * bad (and would trigger pmap_verify_free() | |
4733 | * assertions) if the other 4K chunks are still | |
4734 | * pmapped. | |
4735 | */ | |
4736 | /* | |
4737 | * XXX FBDP TODO4K: to be revisisted | |
4738 | * Technically, we need to pmap_disconnect() | |
4739 | * only the target pmap's mappings for the 4K | |
4740 | * chunks of this 16K VM page. If other pmaps | |
4741 | * have PTEs on these chunks, that means that | |
4742 | * the associated VM map must have a reference | |
4743 | * on the VM object, so no need to worry about | |
4744 | * those. | |
4745 | * pmap_protect() for each 4K chunk would be | |
4746 | * better but we'd have to check which chunks | |
4747 | * are actually mapped before and after this | |
4748 | * one. | |
4749 | * A full-blown pmap_disconnect() is easier | |
4750 | * for now but not efficient. | |
4751 | */ | |
4752 | DEBUG4K_FAULT("pmap_disconnect() page %p object %p offset 0x%llx phys 0x%x\n", cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, VM_PAGE_GET_PHYS_PAGE(cur_m)); | |
4753 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m)); | |
4754 | } | |
4755 | ||
4756 | if (cur_m->vmp_clustered) { | |
4757 | VM_PAGE_COUNT_AS_PAGEIN(cur_m); | |
4758 | VM_PAGE_CONSUME_CLUSTERED(cur_m); | |
4759 | vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior); | |
4760 | } | |
4761 | need_collapse = TRUE; | |
4762 | ||
4763 | if (!cur_object->internal && | |
4764 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
4765 | /* | |
4766 | * The object from which we've just | |
4767 | * copied a page is most probably backed | |
4768 | * by a vnode. We don't want to waste too | |
4769 | * much time trying to collapse the VM objects | |
4770 | * and create a bottleneck when several tasks | |
4771 | * map the same file. | |
4772 | */ | |
4773 | if (cur_object->copy == object) { | |
4774 | /* | |
4775 | * Shared mapping or no COW yet. | |
4776 | * We can never collapse a copy | |
4777 | * object into its backing object. | |
4778 | */ | |
4779 | need_collapse = FALSE; | |
4780 | } else if (cur_object->copy == object->shadow && | |
4781 | object->shadow->resident_page_count == 0) { | |
4782 | /* | |
4783 | * Shared mapping after a COW occurred. | |
4784 | */ | |
4785 | need_collapse = FALSE; | |
4786 | } | |
4787 | } | |
4788 | vm_object_unlock(cur_object); | |
4789 | ||
4790 | if (need_collapse == FALSE) { | |
4791 | vm_fault_collapse_skipped++; | |
4792 | } | |
4793 | vm_fault_collapse_total++; | |
4794 | ||
4795 | type_of_fault = DBG_COW_FAULT; | |
4796 | VM_STAT_INCR(cow_faults); | |
4797 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
4798 | current_task()->cow_faults++; | |
4799 | ||
4800 | goto FastPmapEnter; | |
4801 | } else { | |
4802 | /* | |
4803 | * No page at cur_object, cur_offset... m == NULL | |
4804 | */ | |
4805 | if (cur_object->pager_created) { | |
4806 | vm_external_state_t compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; | |
4807 | ||
4808 | if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { | |
4809 | int my_fault_type; | |
4810 | uint8_t c_flags = C_DONT_BLOCK; | |
4811 | bool insert_cur_object = FALSE; | |
4812 | ||
4813 | /* | |
4814 | * May have to talk to a pager... | |
4815 | * if so, take the slow path by | |
4816 | * doing a 'break' from the while (TRUE) loop | |
4817 | * | |
4818 | * external_state will only be set to VM_EXTERNAL_STATE_EXISTS | |
4819 | * if the compressor is active and the page exists there | |
4820 | */ | |
4821 | if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) { | |
4822 | break; | |
4823 | } | |
4824 | ||
4825 | if (map == kernel_map || real_map == kernel_map) { | |
4826 | /* | |
4827 | * can't call into the compressor with the kernel_map | |
4828 | * lock held, since the compressor may try to operate | |
4829 | * on the kernel map in order to return an empty c_segment | |
4830 | */ | |
4831 | break; | |
4832 | } | |
4833 | if (object != cur_object) { | |
4834 | if (fault_type & VM_PROT_WRITE) { | |
4835 | c_flags |= C_KEEP; | |
4836 | } else { | |
4837 | insert_cur_object = TRUE; | |
4838 | } | |
4839 | } | |
4840 | if (insert_cur_object == TRUE) { | |
4841 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
4842 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4843 | ||
4844 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
4845 | /* | |
4846 | * couldn't upgrade so go do a full retry | |
4847 | * immediately since we can no longer be | |
4848 | * certain about cur_object (since we | |
4849 | * don't hold a reference on it)... | |
4850 | * first drop the top object lock | |
4851 | */ | |
4852 | vm_object_unlock(object); | |
4853 | ||
4854 | vm_map_unlock_read(map); | |
4855 | if (real_map != map) { | |
4856 | vm_map_unlock(real_map); | |
4857 | } | |
4858 | ||
4859 | goto RetryFault; | |
4860 | } | |
4861 | } | |
4862 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4863 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4864 | ||
4865 | if (object != cur_object) { | |
4866 | /* | |
4867 | * we can't go for the upgrade on the top | |
4868 | * lock since the upgrade may block waiting | |
4869 | * for readers to drain... since we hold | |
4870 | * cur_object locked at this point, waiting | |
4871 | * for the readers to drain would represent | |
4872 | * a lock order inversion since the lock order | |
4873 | * for objects is the reference order in the | |
4874 | * shadown chain | |
4875 | */ | |
4876 | vm_object_unlock(object); | |
4877 | vm_object_unlock(cur_object); | |
4878 | ||
4879 | vm_map_unlock_read(map); | |
4880 | if (real_map != map) { | |
4881 | vm_map_unlock(real_map); | |
4882 | } | |
4883 | ||
4884 | goto RetryFault; | |
4885 | } | |
4886 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4887 | /* | |
4888 | * couldn't upgrade, so explictly take the lock | |
4889 | * exclusively and go relookup the page since we | |
4890 | * will have dropped the object lock and | |
4891 | * a different thread could have inserted | |
4892 | * a page at this offset | |
4893 | * no need for a full retry since we're | |
4894 | * at the top level of the object chain | |
4895 | */ | |
4896 | vm_object_lock(object); | |
4897 | ||
4898 | continue; | |
4899 | } | |
4900 | } | |
4901 | m = vm_page_grab_options(grab_options); | |
4902 | m_object = NULL; | |
4903 | ||
4904 | if (m == VM_PAGE_NULL) { | |
4905 | /* | |
4906 | * no free page currently available... | |
4907 | * must take the slow path | |
4908 | */ | |
4909 | break; | |
4910 | } | |
4911 | ||
4912 | /* | |
4913 | * The object is and remains locked | |
4914 | * so no need to take a | |
4915 | * "paging_in_progress" reference. | |
4916 | */ | |
4917 | bool shared_lock; | |
4918 | if ((object == cur_object && | |
4919 | object_lock_type == OBJECT_LOCK_EXCLUSIVE) || | |
4920 | (object != cur_object && | |
4921 | cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { | |
4922 | shared_lock = FALSE; | |
4923 | } else { | |
4924 | shared_lock = TRUE; | |
4925 | } | |
4926 | ||
4927 | kr = vm_compressor_pager_get( | |
4928 | cur_object->pager, | |
4929 | (vm_object_trunc_page(cur_offset) | |
4930 | + cur_object->paging_offset), | |
4931 | VM_PAGE_GET_PHYS_PAGE(m), | |
4932 | &my_fault_type, | |
4933 | c_flags, | |
4934 | &compressed_count_delta); | |
4935 | ||
4936 | vm_compressor_pager_count( | |
4937 | cur_object->pager, | |
4938 | compressed_count_delta, | |
4939 | shared_lock, | |
4940 | cur_object); | |
4941 | ||
4942 | if (kr != KERN_SUCCESS) { | |
4943 | vm_page_release(m, FALSE); | |
4944 | m = VM_PAGE_NULL; | |
4945 | } | |
4946 | /* | |
4947 | * If vm_compressor_pager_get() returns | |
4948 | * KERN_MEMORY_FAILURE, then the | |
4949 | * compressed data is permanently lost, | |
4950 | * so return this error immediately. | |
4951 | */ | |
4952 | if (kr == KERN_MEMORY_FAILURE) { | |
4953 | if (object != cur_object) { | |
4954 | vm_object_unlock(cur_object); | |
4955 | } | |
4956 | vm_object_unlock(object); | |
4957 | vm_map_unlock_read(map); | |
4958 | if (real_map != map) { | |
4959 | vm_map_unlock(real_map); | |
4960 | } | |
4961 | goto done; | |
4962 | } else if (kr != KERN_SUCCESS) { | |
4963 | break; | |
4964 | } | |
4965 | m->vmp_dirty = TRUE; | |
4966 | ||
4967 | /* | |
4968 | * If the object is purgeable, its | |
4969 | * owner's purgeable ledgers will be | |
4970 | * updated in vm_page_insert() but the | |
4971 | * page was also accounted for in a | |
4972 | * "compressed purgeable" ledger, so | |
4973 | * update that now. | |
4974 | */ | |
4975 | if (object != cur_object && | |
4976 | !insert_cur_object) { | |
4977 | /* | |
4978 | * We're not going to insert | |
4979 | * the decompressed page into | |
4980 | * the object it came from. | |
4981 | * | |
4982 | * We're dealing with a | |
4983 | * copy-on-write fault on | |
4984 | * "object". | |
4985 | * We're going to decompress | |
4986 | * the page directly into the | |
4987 | * target "object" while | |
4988 | * keepin the compressed | |
4989 | * page for "cur_object", so | |
4990 | * no ledger update in that | |
4991 | * case. | |
4992 | */ | |
4993 | } else if (((cur_object->purgable == | |
4994 | VM_PURGABLE_DENY) && | |
4995 | (!cur_object->vo_ledger_tag)) || | |
4996 | (cur_object->vo_owner == | |
4997 | NULL)) { | |
4998 | /* | |
4999 | * "cur_object" is not purgeable | |
5000 | * and is not ledger-taged, or | |
5001 | * there's no owner for it, | |
5002 | * so no owner's ledgers to | |
5003 | * update. | |
5004 | */ | |
5005 | } else { | |
5006 | /* | |
5007 | * One less compressed | |
5008 | * purgeable/tagged page for | |
5009 | * cur_object's owner. | |
5010 | */ | |
5011 | vm_object_owner_compressed_update( | |
5012 | cur_object, | |
5013 | -1); | |
5014 | } | |
5015 | ||
5016 | if (insert_cur_object) { | |
5017 | vm_page_insert(m, cur_object, vm_object_trunc_page(cur_offset)); | |
5018 | m_object = cur_object; | |
5019 | } else { | |
5020 | vm_page_insert(m, object, vm_object_trunc_page(offset)); | |
5021 | m_object = object; | |
5022 | } | |
5023 | ||
5024 | if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { | |
5025 | /* | |
5026 | * If the page is not cacheable, | |
5027 | * we can't let its contents | |
5028 | * linger in the data cache | |
5029 | * after the decompression. | |
5030 | */ | |
5031 | pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m)); | |
5032 | } | |
5033 | ||
5034 | type_of_fault = my_fault_type; | |
5035 | ||
5036 | VM_STAT_DECOMPRESSIONS(); | |
5037 | ||
5038 | if (cur_object != object) { | |
5039 | if (insert_cur_object) { | |
5040 | top_object = object; | |
5041 | /* | |
5042 | * switch to the object that has the new page | |
5043 | */ | |
5044 | object = cur_object; | |
5045 | object_lock_type = cur_object_lock_type; | |
5046 | } else { | |
5047 | vm_object_unlock(cur_object); | |
5048 | cur_object = object; | |
5049 | } | |
5050 | } | |
5051 | goto FastPmapEnter; | |
5052 | } | |
5053 | /* | |
5054 | * existence map present and indicates | |
5055 | * that the pager doesn't have this page | |
5056 | */ | |
5057 | } | |
5058 | if (cur_object->shadow == VM_OBJECT_NULL || | |
5059 | resilient_media_retry) { | |
5060 | /* | |
5061 | * Zero fill fault. Page gets | |
5062 | * inserted into the original object. | |
5063 | */ | |
5064 | if (cur_object->shadow_severed || | |
5065 | VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) || | |
5066 | cur_object == compressor_object || | |
5067 | cur_object == kernel_object || | |
5068 | cur_object == vm_submap_object) { | |
5069 | if (object != cur_object) { | |
5070 | vm_object_unlock(cur_object); | |
5071 | } | |
5072 | vm_object_unlock(object); | |
5073 | ||
5074 | vm_map_unlock_read(map); | |
5075 | if (real_map != map) { | |
5076 | vm_map_unlock(real_map); | |
5077 | } | |
5078 | ||
5079 | kr = KERN_MEMORY_ERROR; | |
5080 | goto done; | |
5081 | } | |
5082 | if (cur_object != object) { | |
5083 | vm_object_unlock(cur_object); | |
5084 | ||
5085 | cur_object = object; | |
5086 | } | |
5087 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
5088 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5089 | ||
5090 | if (vm_object_lock_upgrade(object) == FALSE) { | |
5091 | /* | |
5092 | * couldn't upgrade so do a full retry on the fault | |
5093 | * since we dropped the object lock which | |
5094 | * could allow another thread to insert | |
5095 | * a page at this offset | |
5096 | */ | |
5097 | vm_map_unlock_read(map); | |
5098 | if (real_map != map) { | |
5099 | vm_map_unlock(real_map); | |
5100 | } | |
5101 | ||
5102 | goto RetryFault; | |
5103 | } | |
5104 | } | |
5105 | if (!object->internal) { | |
5106 | panic("%s:%d should not zero-fill page at offset 0x%llx in external object %p", __FUNCTION__, __LINE__, (uint64_t)offset, object); | |
5107 | } | |
5108 | m = vm_page_alloc(object, vm_object_trunc_page(offset)); | |
5109 | m_object = NULL; | |
5110 | ||
5111 | if (m == VM_PAGE_NULL) { | |
5112 | /* | |
5113 | * no free page currently available... | |
5114 | * must take the slow path | |
5115 | */ | |
5116 | break; | |
5117 | } | |
5118 | m_object = object; | |
5119 | ||
5120 | /* | |
5121 | * Zeroing the page and entering into it into the pmap | |
5122 | * represents a significant amount of the zero fill fault handler's work. | |
5123 | * | |
5124 | * To improve fault scalability, we'll drop the object lock, if it appears contended, | |
5125 | * now that we've inserted the page into the vm object. | |
5126 | * Before dropping the lock, we need to check protection bits and set the | |
5127 | * mapped bits on the page. Then we can mark the page busy, drop the lock, | |
5128 | * zero it, and do the pmap enter. We'll need to reacquire the lock | |
5129 | * to clear the busy bit and wake up any waiters. | |
5130 | */ | |
5131 | vm_fault_cs_clear(m); | |
5132 | m->vmp_pmapped = TRUE; | |
5133 | if (map->no_zero_fill) { | |
5134 | type_of_fault = DBG_NZF_PAGE_FAULT; | |
5135 | } else { | |
5136 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
5137 | } | |
5138 | { | |
5139 | pmap_t destination_pmap; | |
5140 | vm_map_offset_t destination_pmap_vaddr; | |
5141 | vm_prot_t enter_fault_type; | |
5142 | if (caller_pmap) { | |
5143 | destination_pmap = caller_pmap; | |
5144 | destination_pmap_vaddr = caller_pmap_addr; | |
5145 | } else { | |
5146 | destination_pmap = pmap; | |
5147 | destination_pmap_vaddr = vaddr; | |
5148 | } | |
5149 | if (change_wiring) { | |
5150 | enter_fault_type = VM_PROT_NONE; | |
5151 | } else { | |
5152 | enter_fault_type = caller_prot; | |
5153 | } | |
5154 | kr = vm_fault_enter_prepare(m, | |
5155 | destination_pmap, | |
5156 | destination_pmap_vaddr, | |
5157 | &prot, | |
5158 | caller_prot, | |
5159 | fault_page_size, | |
5160 | fault_phys_offset, | |
5161 | change_wiring, | |
5162 | enter_fault_type, | |
5163 | &fault_info, | |
5164 | &type_of_fault, | |
5165 | &page_needs_data_sync); | |
5166 | if (kr != KERN_SUCCESS) { | |
5167 | goto zero_fill_cleanup; | |
5168 | } | |
5169 | ||
5170 | if (object_is_contended) { | |
5171 | /* | |
5172 | * At this point the page is in the vm object, but not on a paging queue. | |
5173 | * Since it's accessible to another thread but its contents are invalid | |
5174 | * (it hasn't been zeroed) mark it busy before dropping the object lock. | |
5175 | */ | |
5176 | m->vmp_busy = TRUE; | |
5177 | vm_object_unlock(object); | |
5178 | } | |
5179 | if (type_of_fault == DBG_ZERO_FILL_FAULT) { | |
5180 | /* | |
5181 | * Now zero fill page... | |
5182 | * the page is probably going to | |
5183 | * be written soon, so don't bother | |
5184 | * to clear the modified bit | |
5185 | * | |
5186 | * NOTE: This code holds the map | |
5187 | * lock across the zero fill. | |
5188 | */ | |
5189 | vm_page_zero_fill(m); | |
5190 | VM_STAT_INCR(zero_fill_count); | |
5191 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
5192 | } | |
5193 | if (page_needs_data_sync) { | |
5194 | pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m)); | |
5195 | } | |
5196 | ||
5197 | if (top_object != VM_OBJECT_NULL) { | |
5198 | need_retry_ptr = &need_retry; | |
5199 | } else { | |
5200 | need_retry_ptr = NULL; | |
5201 | } | |
5202 | if (object_is_contended) { | |
5203 | kr = vm_fault_pmap_enter(destination_pmap, destination_pmap_vaddr, | |
5204 | fault_page_size, fault_phys_offset, | |
5205 | m, &prot, caller_prot, enter_fault_type, wired, | |
5206 | fault_info.pmap_options, need_retry_ptr); | |
5207 | vm_object_lock(object); | |
5208 | } else { | |
5209 | kr = vm_fault_pmap_enter_with_object_lock(object, destination_pmap, destination_pmap_vaddr, | |
5210 | fault_page_size, fault_phys_offset, | |
5211 | m, &prot, caller_prot, enter_fault_type, wired, | |
5212 | fault_info.pmap_options, need_retry_ptr); | |
5213 | } | |
5214 | } | |
5215 | zero_fill_cleanup: | |
5216 | if (!VM_DYNAMIC_PAGING_ENABLED() && | |
5217 | (object->purgable == VM_PURGABLE_DENY || | |
5218 | object->purgable == VM_PURGABLE_NONVOLATILE || | |
5219 | object->purgable == VM_PURGABLE_VOLATILE)) { | |
5220 | vm_page_lockspin_queues(); | |
5221 | if (!VM_DYNAMIC_PAGING_ENABLED()) { | |
5222 | vm_fault_enqueue_throttled_locked(m); | |
5223 | } | |
5224 | vm_page_unlock_queues(); | |
5225 | } | |
5226 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info.no_cache, &type_of_fault, kr); | |
5227 | ||
5228 | vm_fault_complete( | |
5229 | map, | |
5230 | real_map, | |
5231 | object, | |
5232 | m_object, | |
5233 | m, | |
5234 | offset, | |
5235 | trace_real_vaddr, | |
5236 | &fault_info, | |
5237 | caller_prot, | |
5238 | real_vaddr, | |
5239 | type_of_fault, | |
5240 | need_retry, | |
5241 | kr, | |
5242 | physpage_p, | |
5243 | prot, | |
5244 | top_object, | |
5245 | need_collapse, | |
5246 | cur_offset, | |
5247 | fault_type, | |
5248 | &written_on_object, | |
5249 | &written_on_pager, | |
5250 | &written_on_offset); | |
5251 | top_object = VM_OBJECT_NULL; | |
5252 | if (need_retry == TRUE) { | |
5253 | /* | |
5254 | * vm_fault_enter couldn't complete the PMAP_ENTER... | |
5255 | * at this point we don't hold any locks so it's safe | |
5256 | * to ask the pmap layer to expand the page table to | |
5257 | * accommodate this mapping... once expanded, we'll | |
5258 | * re-drive the fault which should result in vm_fault_enter | |
5259 | * being able to successfully enter the mapping this time around | |
5260 | */ | |
5261 | (void)pmap_enter_options( | |
5262 | pmap, vaddr, 0, 0, 0, 0, 0, | |
5263 | PMAP_OPTIONS_NOENTER, NULL); | |
5264 | ||
5265 | need_retry = FALSE; | |
5266 | goto RetryFault; | |
5267 | } | |
5268 | goto done; | |
5269 | } | |
5270 | /* | |
5271 | * On to the next level in the shadow chain | |
5272 | */ | |
5273 | cur_offset += cur_object->vo_shadow_offset; | |
5274 | new_object = cur_object->shadow; | |
5275 | fault_phys_offset = cur_offset - vm_object_trunc_page(cur_offset); | |
5276 | ||
5277 | /* | |
5278 | * take the new_object's lock with the indicated state | |
5279 | */ | |
5280 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
5281 | vm_object_lock_shared(new_object); | |
5282 | } else { | |
5283 | vm_object_lock(new_object); | |
5284 | } | |
5285 | ||
5286 | if (cur_object != object) { | |
5287 | vm_object_unlock(cur_object); | |
5288 | } | |
5289 | ||
5290 | cur_object = new_object; | |
5291 | ||
5292 | continue; | |
5293 | } | |
5294 | } | |
5295 | /* | |
5296 | * Cleanup from fast fault failure. Drop any object | |
5297 | * lock other than original and drop map lock. | |
5298 | */ | |
5299 | if (object != cur_object) { | |
5300 | vm_object_unlock(cur_object); | |
5301 | } | |
5302 | ||
5303 | /* | |
5304 | * must own the object lock exclusively at this point | |
5305 | */ | |
5306 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
5307 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5308 | ||
5309 | if (vm_object_lock_upgrade(object) == FALSE) { | |
5310 | /* | |
5311 | * couldn't upgrade, so explictly | |
5312 | * take the lock exclusively | |
5313 | * no need to retry the fault at this | |
5314 | * point since "vm_fault_page" will | |
5315 | * completely re-evaluate the state | |
5316 | */ | |
5317 | vm_object_lock(object); | |
5318 | } | |
5319 | } | |
5320 | ||
5321 | handle_copy_delay: | |
5322 | vm_map_unlock_read(map); | |
5323 | if (real_map != map) { | |
5324 | vm_map_unlock(real_map); | |
5325 | } | |
5326 | ||
5327 | if (__improbable(object == compressor_object || | |
5328 | object == kernel_object || | |
5329 | object == vm_submap_object)) { | |
5330 | /* | |
5331 | * These objects are explicitly managed and populated by the | |
5332 | * kernel. The virtual ranges backed by these objects should | |
5333 | * either have wired pages or "holes" that are not supposed to | |
5334 | * be accessed at all until they get explicitly populated. | |
5335 | * We should never have to resolve a fault on a mapping backed | |
5336 | * by one of these VM objects and providing a zero-filled page | |
5337 | * would be wrong here, so let's fail the fault and let the | |
5338 | * caller crash or recover. | |
5339 | */ | |
5340 | vm_object_unlock(object); | |
5341 | kr = KERN_MEMORY_ERROR; | |
5342 | goto done; | |
5343 | } | |
5344 | ||
5345 | assert(object != compressor_object); | |
5346 | assert(object != kernel_object); | |
5347 | assert(object != vm_submap_object); | |
5348 | ||
5349 | if (resilient_media_retry) { | |
5350 | /* | |
5351 | * We could get here if we failed to get a free page | |
5352 | * to zero-fill and had to take the slow path again. | |
5353 | * Reset our "recovery-from-failed-media" state. | |
5354 | */ | |
5355 | assert(resilient_media_object != VM_OBJECT_NULL); | |
5356 | assert(resilient_media_offset != (vm_object_offset_t)-1); | |
5357 | /* release our extra reference on failed object */ | |
5358 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); | |
5359 | vm_object_deallocate(resilient_media_object); | |
5360 | resilient_media_object = VM_OBJECT_NULL; | |
5361 | resilient_media_offset = (vm_object_offset_t)-1; | |
5362 | resilient_media_retry = FALSE; | |
5363 | } | |
5364 | ||
5365 | /* | |
5366 | * Make a reference to this object to | |
5367 | * prevent its disposal while we are messing with | |
5368 | * it. Once we have the reference, the map is free | |
5369 | * to be diddled. Since objects reference their | |
5370 | * shadows (and copies), they will stay around as well. | |
5371 | */ | |
5372 | vm_object_reference_locked(object); | |
5373 | vm_object_paging_begin(object); | |
5374 | ||
5375 | set_thread_pagein_error(cthread, 0); | |
5376 | error_code = 0; | |
5377 | ||
5378 | result_page = VM_PAGE_NULL; | |
5379 | kr = vm_fault_page(object, offset, fault_type, | |
5380 | (change_wiring && !wired), | |
5381 | FALSE, /* page not looked up */ | |
5382 | &prot, &result_page, &top_page, | |
5383 | &type_of_fault, | |
5384 | &error_code, map->no_zero_fill, | |
5385 | FALSE, &fault_info); | |
5386 | ||
5387 | /* | |
5388 | * if kr != VM_FAULT_SUCCESS, then the paging reference | |
5389 | * has been dropped and the object unlocked... the ref_count | |
5390 | * is still held | |
5391 | * | |
5392 | * if kr == VM_FAULT_SUCCESS, then the paging reference | |
5393 | * is still held along with the ref_count on the original object | |
5394 | * | |
5395 | * the object is returned locked with a paging reference | |
5396 | * | |
5397 | * if top_page != NULL, then it's BUSY and the | |
5398 | * object it belongs to has a paging reference | |
5399 | * but is returned unlocked | |
5400 | */ | |
5401 | if (kr != VM_FAULT_SUCCESS && | |
5402 | kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { | |
5403 | if (kr == VM_FAULT_MEMORY_ERROR && | |
5404 | fault_info.resilient_media) { | |
5405 | assertf(object->internal, "object %p", object); | |
5406 | /* | |
5407 | * This fault failed but the mapping was | |
5408 | * "media resilient", so we'll retry the fault in | |
5409 | * recovery mode to get a zero-filled page in the | |
5410 | * top object. | |
5411 | * Keep the reference on the failing object so | |
5412 | * that we can check that the mapping is still | |
5413 | * pointing to it when we retry the fault. | |
5414 | */ | |
5415 | // printf("RESILIENT_MEDIA %s:%d: object %p offset 0x%llx recover from media error 0x%x kr 0x%x top_page %p result_page %p\n", __FUNCTION__, __LINE__, object, offset, error_code, kr, top_page, result_page); | |
5416 | assert(!resilient_media_retry); /* no double retry */ | |
5417 | assert(resilient_media_object == VM_OBJECT_NULL); | |
5418 | assert(resilient_media_offset == (vm_object_offset_t)-1); | |
5419 | resilient_media_retry = TRUE; | |
5420 | resilient_media_object = object; | |
5421 | resilient_media_offset = offset; | |
5422 | // printf("FBDP %s:%d resilient_media_object %p offset 0x%llx kept reference\n", __FUNCTION__, __LINE__, resilient_media_object, resilient_mmedia_offset); | |
5423 | goto RetryFault; | |
5424 | } else { | |
5425 | /* | |
5426 | * we didn't succeed, lose the object reference | |
5427 | * immediately. | |
5428 | */ | |
5429 | vm_object_deallocate(object); | |
5430 | object = VM_OBJECT_NULL; /* no longer valid */ | |
5431 | } | |
5432 | ||
5433 | /* | |
5434 | * See why we failed, and take corrective action. | |
5435 | */ | |
5436 | switch (kr) { | |
5437 | case VM_FAULT_MEMORY_SHORTAGE: | |
5438 | if (vm_page_wait((change_wiring) ? | |
5439 | THREAD_UNINT : | |
5440 | THREAD_ABORTSAFE)) { | |
5441 | goto RetryFault; | |
5442 | } | |
5443 | OS_FALLTHROUGH; | |
5444 | case VM_FAULT_INTERRUPTED: | |
5445 | kr = KERN_ABORTED; | |
5446 | goto done; | |
5447 | case VM_FAULT_RETRY: | |
5448 | goto RetryFault; | |
5449 | case VM_FAULT_MEMORY_ERROR: | |
5450 | if (error_code) { | |
5451 | kr = error_code; | |
5452 | } else { | |
5453 | kr = KERN_MEMORY_ERROR; | |
5454 | } | |
5455 | goto done; | |
5456 | default: | |
5457 | panic("vm_fault: unexpected error 0x%x from " | |
5458 | "vm_fault_page()\n", kr); | |
5459 | } | |
5460 | } | |
5461 | m = result_page; | |
5462 | m_object = NULL; | |
5463 | ||
5464 | if (m != VM_PAGE_NULL) { | |
5465 | m_object = VM_PAGE_OBJECT(m); | |
5466 | assert((change_wiring && !wired) ? | |
5467 | (top_page == VM_PAGE_NULL) : | |
5468 | ((top_page == VM_PAGE_NULL) == (m_object == object))); | |
5469 | } | |
5470 | ||
5471 | /* | |
5472 | * What to do with the resulting page from vm_fault_page | |
5473 | * if it doesn't get entered into the physical map: | |
5474 | */ | |
5475 | #define RELEASE_PAGE(m) \ | |
5476 | MACRO_BEGIN \ | |
5477 | PAGE_WAKEUP_DONE(m); \ | |
5478 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
5479 | vm_page_lockspin_queues(); \ | |
5480 | if ( !VM_PAGE_PAGEABLE(m)) \ | |
5481 | vm_page_activate(m); \ | |
5482 | vm_page_unlock_queues(); \ | |
5483 | } \ | |
5484 | MACRO_END | |
5485 | ||
5486 | ||
5487 | object_locks_dropped = FALSE; | |
5488 | /* | |
5489 | * We must verify that the maps have not changed | |
5490 | * since our last lookup. vm_map_verify() needs the | |
5491 | * map lock (shared) but we are holding object locks. | |
5492 | * So we do a try_lock() first and, if that fails, we | |
5493 | * drop the object locks and go in for the map lock again. | |
5494 | */ | |
5495 | if (!vm_map_try_lock_read(original_map)) { | |
5496 | if (m != VM_PAGE_NULL) { | |
5497 | old_copy_object = m_object->copy; | |
5498 | vm_object_unlock(m_object); | |
5499 | } else { | |
5500 | old_copy_object = VM_OBJECT_NULL; | |
5501 | vm_object_unlock(object); | |
5502 | } | |
5503 | ||
5504 | object_locks_dropped = TRUE; | |
5505 | ||
5506 | vm_map_lock_read(original_map); | |
5507 | } | |
5508 | ||
5509 | if ((map != original_map) || !vm_map_verify(map, &version)) { | |
5510 | if (object_locks_dropped == FALSE) { | |
5511 | if (m != VM_PAGE_NULL) { | |
5512 | old_copy_object = m_object->copy; | |
5513 | vm_object_unlock(m_object); | |
5514 | } else { | |
5515 | old_copy_object = VM_OBJECT_NULL; | |
5516 | vm_object_unlock(object); | |
5517 | } | |
5518 | ||
5519 | object_locks_dropped = TRUE; | |
5520 | } | |
5521 | ||
5522 | /* | |
5523 | * no object locks are held at this point | |
5524 | */ | |
5525 | vm_object_t retry_object; | |
5526 | vm_object_offset_t retry_offset; | |
5527 | vm_prot_t retry_prot; | |
5528 | ||
5529 | /* | |
5530 | * To avoid trying to write_lock the map while another | |
5531 | * thread has it read_locked (in vm_map_pageable), we | |
5532 | * do not try for write permission. If the page is | |
5533 | * still writable, we will get write permission. If it | |
5534 | * is not, or has been marked needs_copy, we enter the | |
5535 | * mapping without write permission, and will merely | |
5536 | * take another fault. | |
5537 | */ | |
5538 | map = original_map; | |
5539 | ||
5540 | kr = vm_map_lookup_locked(&map, vaddr, | |
5541 | fault_type & ~VM_PROT_WRITE, | |
5542 | OBJECT_LOCK_EXCLUSIVE, &version, | |
5543 | &retry_object, &retry_offset, &retry_prot, | |
5544 | &wired, | |
5545 | &fault_info, | |
5546 | &real_map, | |
5547 | NULL); | |
5548 | pmap = real_map->pmap; | |
5549 | ||
5550 | if (kr != KERN_SUCCESS) { | |
5551 | vm_map_unlock_read(map); | |
5552 | ||
5553 | if (m != VM_PAGE_NULL) { | |
5554 | assert(VM_PAGE_OBJECT(m) == m_object); | |
5555 | ||
5556 | /* | |
5557 | * retake the lock so that | |
5558 | * we can drop the paging reference | |
5559 | * in vm_fault_cleanup and do the | |
5560 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
5561 | */ | |
5562 | vm_object_lock(m_object); | |
5563 | ||
5564 | RELEASE_PAGE(m); | |
5565 | ||
5566 | vm_fault_cleanup(m_object, top_page); | |
5567 | } else { | |
5568 | /* | |
5569 | * retake the lock so that | |
5570 | * we can drop the paging reference | |
5571 | * in vm_fault_cleanup | |
5572 | */ | |
5573 | vm_object_lock(object); | |
5574 | ||
5575 | vm_fault_cleanup(object, top_page); | |
5576 | } | |
5577 | vm_object_deallocate(object); | |
5578 | ||
5579 | goto done; | |
5580 | } | |
5581 | vm_object_unlock(retry_object); | |
5582 | ||
5583 | if ((retry_object != object) || (retry_offset != offset)) { | |
5584 | vm_map_unlock_read(map); | |
5585 | if (real_map != map) { | |
5586 | vm_map_unlock(real_map); | |
5587 | } | |
5588 | ||
5589 | if (m != VM_PAGE_NULL) { | |
5590 | assert(VM_PAGE_OBJECT(m) == m_object); | |
5591 | ||
5592 | /* | |
5593 | * retake the lock so that | |
5594 | * we can drop the paging reference | |
5595 | * in vm_fault_cleanup and do the | |
5596 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
5597 | */ | |
5598 | vm_object_lock(m_object); | |
5599 | ||
5600 | RELEASE_PAGE(m); | |
5601 | ||
5602 | vm_fault_cleanup(m_object, top_page); | |
5603 | } else { | |
5604 | /* | |
5605 | * retake the lock so that | |
5606 | * we can drop the paging reference | |
5607 | * in vm_fault_cleanup | |
5608 | */ | |
5609 | vm_object_lock(object); | |
5610 | ||
5611 | vm_fault_cleanup(object, top_page); | |
5612 | } | |
5613 | vm_object_deallocate(object); | |
5614 | ||
5615 | goto RetryFault; | |
5616 | } | |
5617 | /* | |
5618 | * Check whether the protection has changed or the object | |
5619 | * has been copied while we left the map unlocked. | |
5620 | */ | |
5621 | if (pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, retry_prot)) { | |
5622 | /* If the pmap layer cares, pass the full set. */ | |
5623 | prot = retry_prot; | |
5624 | } else { | |
5625 | prot &= retry_prot; | |
5626 | } | |
5627 | } | |
5628 | ||
5629 | if (object_locks_dropped == TRUE) { | |
5630 | if (m != VM_PAGE_NULL) { | |
5631 | vm_object_lock(m_object); | |
5632 | ||
5633 | if (m_object->copy != old_copy_object) { | |
5634 | /* | |
5635 | * The copy object changed while the top-level object | |
5636 | * was unlocked, so take away write permission. | |
5637 | */ | |
5638 | assert(!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)); | |
5639 | prot &= ~VM_PROT_WRITE; | |
5640 | } | |
5641 | } else { | |
5642 | vm_object_lock(object); | |
5643 | } | |
5644 | ||
5645 | object_locks_dropped = FALSE; | |
5646 | } | |
5647 | ||
5648 | if (!need_copy && | |
5649 | !fault_info.no_copy_on_read && | |
5650 | m != VM_PAGE_NULL && | |
5651 | VM_PAGE_OBJECT(m) != object && | |
5652 | !VM_PAGE_OBJECT(m)->pager_trusted && | |
5653 | vm_protect_privileged_from_untrusted && | |
5654 | !((prot & VM_PROT_EXECUTE) && | |
5655 | VM_PAGE_OBJECT(m)->code_signed && | |
5656 | pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) && | |
5657 | current_proc_is_privileged()) { | |
5658 | /* | |
5659 | * We found the page we want in an "untrusted" VM object | |
5660 | * down the shadow chain. Since the target is "privileged" | |
5661 | * we want to perform a copy-on-read of that page, so that the | |
5662 | * mapped object gets a stable copy and does not have to | |
5663 | * rely on the "untrusted" object to provide the same | |
5664 | * contents if the page gets reclaimed and has to be paged | |
5665 | * in again later on. | |
5666 | * | |
5667 | * Special case: if the mapping is executable and the untrusted | |
5668 | * object is code-signed and the process is "cs_enforced", we | |
5669 | * do not copy-on-read because that would break code-signing | |
5670 | * enforcement expectations (an executable page must belong | |
5671 | * to a code-signed object) and we can rely on code-signing | |
5672 | * to re-validate the page if it gets evicted and paged back in. | |
5673 | */ | |
5674 | // printf("COPY-ON-READ %s:%d map %p vaddr 0x%llx obj %p offset 0x%llx found page %p (obj %p offset 0x%llx) UNTRUSTED -> need copy-on-read\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, object, offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); | |
5675 | vm_copied_on_read++; | |
5676 | need_copy_on_read = TRUE; | |
5677 | need_copy = TRUE; | |
5678 | } else { | |
5679 | need_copy_on_read = FALSE; | |
5680 | } | |
5681 | ||
5682 | /* | |
5683 | * If we want to wire down this page, but no longer have | |
5684 | * adequate permissions, we must start all over. | |
5685 | * If we decided to copy-on-read, we must also start all over. | |
5686 | */ | |
5687 | if ((wired && (fault_type != (prot | VM_PROT_WRITE))) || | |
5688 | need_copy_on_read) { | |
5689 | vm_map_unlock_read(map); | |
5690 | if (real_map != map) { | |
5691 | vm_map_unlock(real_map); | |
5692 | } | |
5693 | ||
5694 | if (m != VM_PAGE_NULL) { | |
5695 | assert(VM_PAGE_OBJECT(m) == m_object); | |
5696 | ||
5697 | RELEASE_PAGE(m); | |
5698 | ||
5699 | vm_fault_cleanup(m_object, top_page); | |
5700 | } else { | |
5701 | vm_fault_cleanup(object, top_page); | |
5702 | } | |
5703 | ||
5704 | vm_object_deallocate(object); | |
5705 | ||
5706 | goto RetryFault; | |
5707 | } | |
5708 | if (m != VM_PAGE_NULL) { | |
5709 | /* | |
5710 | * Put this page into the physical map. | |
5711 | * We had to do the unlock above because pmap_enter | |
5712 | * may cause other faults. The page may be on | |
5713 | * the pageout queues. If the pageout daemon comes | |
5714 | * across the page, it will remove it from the queues. | |
5715 | */ | |
5716 | if (fault_page_size < PAGE_SIZE) { | |
5717 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx pa 0x%llx(0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); | |
5718 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && | |
5719 | fault_phys_offset < PAGE_SIZE), | |
5720 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
5721 | } else { | |
5722 | assertf(fault_phys_offset == 0, | |
5723 | "0x%llx\n", (uint64_t)fault_phys_offset); | |
5724 | } | |
5725 | if (caller_pmap) { | |
5726 | kr = vm_fault_enter(m, | |
5727 | caller_pmap, | |
5728 | caller_pmap_addr, | |
5729 | fault_page_size, | |
5730 | fault_phys_offset, | |
5731 | prot, | |
5732 | caller_prot, | |
5733 | wired, | |
5734 | change_wiring, | |
5735 | wire_tag, | |
5736 | &fault_info, | |
5737 | NULL, | |
5738 | &type_of_fault); | |
5739 | } else { | |
5740 | kr = vm_fault_enter(m, | |
5741 | pmap, | |
5742 | vaddr, | |
5743 | fault_page_size, | |
5744 | fault_phys_offset, | |
5745 | prot, | |
5746 | caller_prot, | |
5747 | wired, | |
5748 | change_wiring, | |
5749 | wire_tag, | |
5750 | &fault_info, | |
5751 | NULL, | |
5752 | &type_of_fault); | |
5753 | } | |
5754 | assert(VM_PAGE_OBJECT(m) == m_object); | |
5755 | ||
5756 | { | |
5757 | int event_code = 0; | |
5758 | ||
5759 | if (m_object->internal) { | |
5760 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); | |
5761 | } else if (m_object->object_is_shared_cache) { | |
5762 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); | |
5763 | } else { | |
5764 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); | |
5765 | } | |
5766 | ||
5767 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), m->vmp_offset, get_current_unique_pid(), 0); | |
5768 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_SLOW), get_current_unique_pid(), 0, 0, 0, 0); | |
5769 | ||
5770 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); | |
5771 | } | |
5772 | if (kr != KERN_SUCCESS) { | |
5773 | /* abort this page fault */ | |
5774 | vm_map_unlock_read(map); | |
5775 | if (real_map != map) { | |
5776 | vm_map_unlock(real_map); | |
5777 | } | |
5778 | PAGE_WAKEUP_DONE(m); | |
5779 | vm_fault_cleanup(m_object, top_page); | |
5780 | vm_object_deallocate(object); | |
5781 | goto done; | |
5782 | } | |
5783 | if (physpage_p != NULL) { | |
5784 | /* for vm_map_wire_and_extract() */ | |
5785 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); | |
5786 | if (prot & VM_PROT_WRITE) { | |
5787 | vm_object_lock_assert_exclusive(m_object); | |
5788 | m->vmp_dirty = TRUE; | |
5789 | } | |
5790 | } | |
5791 | } else { | |
5792 | vm_map_entry_t entry; | |
5793 | vm_map_offset_t laddr; | |
5794 | vm_map_offset_t ldelta, hdelta; | |
5795 | ||
5796 | /* | |
5797 | * do a pmap block mapping from the physical address | |
5798 | * in the object | |
5799 | */ | |
5800 | ||
5801 | if (real_map != map) { | |
5802 | vm_map_unlock(real_map); | |
5803 | } | |
5804 | ||
5805 | if (original_map != map) { | |
5806 | vm_map_unlock_read(map); | |
5807 | vm_map_lock_read(original_map); | |
5808 | map = original_map; | |
5809 | } | |
5810 | real_map = map; | |
5811 | ||
5812 | laddr = vaddr; | |
5813 | hdelta = 0xFFFFF000; | |
5814 | ldelta = 0xFFFFF000; | |
5815 | ||
5816 | while (vm_map_lookup_entry(map, laddr, &entry)) { | |
5817 | if (ldelta > (laddr - entry->vme_start)) { | |
5818 | ldelta = laddr - entry->vme_start; | |
5819 | } | |
5820 | if (hdelta > (entry->vme_end - laddr)) { | |
5821 | hdelta = entry->vme_end - laddr; | |
5822 | } | |
5823 | if (entry->is_sub_map) { | |
5824 | laddr = ((laddr - entry->vme_start) | |
5825 | + VME_OFFSET(entry)); | |
5826 | vm_map_lock_read(VME_SUBMAP(entry)); | |
5827 | ||
5828 | if (map != real_map) { | |
5829 | vm_map_unlock_read(map); | |
5830 | } | |
5831 | if (entry->use_pmap) { | |
5832 | vm_map_unlock_read(real_map); | |
5833 | real_map = VME_SUBMAP(entry); | |
5834 | } | |
5835 | map = VME_SUBMAP(entry); | |
5836 | } else { | |
5837 | break; | |
5838 | } | |
5839 | } | |
5840 | ||
5841 | if (vm_map_lookup_entry(map, laddr, &entry) && | |
5842 | (VME_OBJECT(entry) != NULL) && | |
5843 | (VME_OBJECT(entry) == object)) { | |
5844 | uint16_t superpage; | |
5845 | ||
5846 | if (!object->pager_created && | |
5847 | object->phys_contiguous && | |
5848 | VME_OFFSET(entry) == 0 && | |
5849 | (entry->vme_end - entry->vme_start == object->vo_size) && | |
5850 | VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) { | |
5851 | superpage = VM_MEM_SUPERPAGE; | |
5852 | } else { | |
5853 | superpage = 0; | |
5854 | } | |
5855 | ||
5856 | if (superpage && physpage_p) { | |
5857 | /* for vm_map_wire_and_extract() */ | |
5858 | *physpage_p = (ppnum_t) | |
5859 | ((((vm_map_offset_t) | |
5860 | object->vo_shadow_offset) | |
5861 | + VME_OFFSET(entry) | |
5862 | + (laddr - entry->vme_start)) | |
5863 | >> PAGE_SHIFT); | |
5864 | } | |
5865 | ||
5866 | if (caller_pmap) { | |
5867 | /* | |
5868 | * Set up a block mapped area | |
5869 | */ | |
5870 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); | |
5871 | kr = pmap_map_block(caller_pmap, | |
5872 | (addr64_t)(caller_pmap_addr - ldelta), | |
5873 | (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) + | |
5874 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), | |
5875 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
5876 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); | |
5877 | ||
5878 | if (kr != KERN_SUCCESS) { | |
5879 | goto cleanup; | |
5880 | } | |
5881 | } else { | |
5882 | /* | |
5883 | * Set up a block mapped area | |
5884 | */ | |
5885 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); | |
5886 | kr = pmap_map_block(real_map->pmap, | |
5887 | (addr64_t)(vaddr - ldelta), | |
5888 | (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) + | |
5889 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), | |
5890 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
5891 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); | |
5892 | ||
5893 | if (kr != KERN_SUCCESS) { | |
5894 | goto cleanup; | |
5895 | } | |
5896 | } | |
5897 | } | |
5898 | } | |
5899 | ||
5900 | /* | |
5901 | * Success | |
5902 | */ | |
5903 | kr = KERN_SUCCESS; | |
5904 | ||
5905 | /* | |
5906 | * TODO: could most of the done cases just use cleanup? | |
5907 | */ | |
5908 | cleanup: | |
5909 | /* | |
5910 | * Unlock everything, and return | |
5911 | */ | |
5912 | vm_map_unlock_read(map); | |
5913 | if (real_map != map) { | |
5914 | vm_map_unlock(real_map); | |
5915 | } | |
5916 | ||
5917 | if (m != VM_PAGE_NULL) { | |
5918 | assert(VM_PAGE_OBJECT(m) == m_object); | |
5919 | ||
5920 | if (!m_object->internal && (fault_type & VM_PROT_WRITE)) { | |
5921 | vm_object_paging_begin(m_object); | |
5922 | ||
5923 | assert(written_on_object == VM_OBJECT_NULL); | |
5924 | written_on_object = m_object; | |
5925 | written_on_pager = m_object->pager; | |
5926 | written_on_offset = m_object->paging_offset + m->vmp_offset; | |
5927 | } | |
5928 | PAGE_WAKEUP_DONE(m); | |
5929 | ||
5930 | vm_fault_cleanup(m_object, top_page); | |
5931 | } else { | |
5932 | vm_fault_cleanup(object, top_page); | |
5933 | } | |
5934 | ||
5935 | vm_object_deallocate(object); | |
5936 | ||
5937 | #undef RELEASE_PAGE | |
5938 | ||
5939 | done: | |
5940 | thread_interrupt_level(interruptible_state); | |
5941 | ||
5942 | if (resilient_media_object != VM_OBJECT_NULL) { | |
5943 | assert(resilient_media_retry); | |
5944 | assert(resilient_media_offset != (vm_object_offset_t)-1); | |
5945 | /* release extra reference on failed object */ | |
5946 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); | |
5947 | vm_object_deallocate(resilient_media_object); | |
5948 | resilient_media_object = VM_OBJECT_NULL; | |
5949 | resilient_media_offset = (vm_object_offset_t)-1; | |
5950 | resilient_media_retry = FALSE; | |
5951 | } | |
5952 | assert(!resilient_media_retry); | |
5953 | ||
5954 | /* | |
5955 | * Only I/O throttle on faults which cause a pagein/swapin. | |
5956 | */ | |
5957 | if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { | |
5958 | throttle_lowpri_io(1); | |
5959 | } else { | |
5960 | if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) { | |
5961 | if ((throttle_delay = vm_page_throttled(TRUE))) { | |
5962 | if (vm_debug_events) { | |
5963 | if (type_of_fault == DBG_COMPRESSOR_FAULT) { | |
5964 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); | |
5965 | } else if (type_of_fault == DBG_COW_FAULT) { | |
5966 | VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); | |
5967 | } else { | |
5968 | VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); | |
5969 | } | |
5970 | } | |
5971 | delay(throttle_delay); | |
5972 | } | |
5973 | } | |
5974 | } | |
5975 | ||
5976 | if (written_on_object) { | |
5977 | vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64); | |
5978 | ||
5979 | vm_object_lock(written_on_object); | |
5980 | vm_object_paging_end(written_on_object); | |
5981 | vm_object_unlock(written_on_object); | |
5982 | ||
5983 | written_on_object = VM_OBJECT_NULL; | |
5984 | } | |
5985 | ||
5986 | if (rtfault) { | |
5987 | vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault); | |
5988 | } | |
5989 | ||
5990 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
5991 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, | |
5992 | ((uint64_t)trace_vaddr >> 32), | |
5993 | trace_vaddr, | |
5994 | kr, | |
5995 | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), | |
5996 | 0); | |
5997 | ||
5998 | if (fault_page_size < PAGE_SIZE && kr != KERN_SUCCESS) { | |
5999 | DEBUG4K_FAULT("map %p original %p vaddr 0x%llx -> 0x%x\n", map, original_map, (uint64_t)trace_real_vaddr, kr); | |
6000 | } | |
6001 | ||
6002 | return kr; | |
6003 | } | |
6004 | ||
6005 | /* | |
6006 | * vm_fault_wire: | |
6007 | * | |
6008 | * Wire down a range of virtual addresses in a map. | |
6009 | */ | |
6010 | kern_return_t | |
6011 | vm_fault_wire( | |
6012 | vm_map_t map, | |
6013 | vm_map_entry_t entry, | |
6014 | vm_prot_t prot, | |
6015 | vm_tag_t wire_tag, | |
6016 | pmap_t pmap, | |
6017 | vm_map_offset_t pmap_addr, | |
6018 | ppnum_t *physpage_p) | |
6019 | { | |
6020 | vm_map_offset_t va; | |
6021 | vm_map_offset_t end_addr = entry->vme_end; | |
6022 | kern_return_t rc; | |
6023 | vm_map_size_t effective_page_size; | |
6024 | ||
6025 | assert(entry->in_transition); | |
6026 | ||
6027 | if ((VME_OBJECT(entry) != NULL) && | |
6028 | !entry->is_sub_map && | |
6029 | VME_OBJECT(entry)->phys_contiguous) { | |
6030 | return KERN_SUCCESS; | |
6031 | } | |
6032 | ||
6033 | /* | |
6034 | * Inform the physical mapping system that the | |
6035 | * range of addresses may not fault, so that | |
6036 | * page tables and such can be locked down as well. | |
6037 | */ | |
6038 | ||
6039 | pmap_pageable(pmap, pmap_addr, | |
6040 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
6041 | ||
6042 | /* | |
6043 | * We simulate a fault to get the page and enter it | |
6044 | * in the physical map. | |
6045 | */ | |
6046 | ||
6047 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); | |
6048 | for (va = entry->vme_start; | |
6049 | va < end_addr; | |
6050 | va += effective_page_size) { | |
6051 | rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap, | |
6052 | pmap_addr + (va - entry->vme_start), | |
6053 | physpage_p); | |
6054 | if (rc != KERN_SUCCESS) { | |
6055 | rc = vm_fault_internal(map, va, prot, TRUE, wire_tag, | |
6056 | ((pmap == kernel_pmap) | |
6057 | ? THREAD_UNINT | |
6058 | : THREAD_ABORTSAFE), | |
6059 | pmap, | |
6060 | (pmap_addr + | |
6061 | (va - entry->vme_start)), | |
6062 | physpage_p); | |
6063 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); | |
6064 | } | |
6065 | ||
6066 | if (rc != KERN_SUCCESS) { | |
6067 | struct vm_map_entry tmp_entry = *entry; | |
6068 | ||
6069 | /* unwire wired pages */ | |
6070 | tmp_entry.vme_end = va; | |
6071 | vm_fault_unwire(map, | |
6072 | &tmp_entry, FALSE, pmap, pmap_addr); | |
6073 | ||
6074 | return rc; | |
6075 | } | |
6076 | } | |
6077 | return KERN_SUCCESS; | |
6078 | } | |
6079 | ||
6080 | /* | |
6081 | * vm_fault_unwire: | |
6082 | * | |
6083 | * Unwire a range of virtual addresses in a map. | |
6084 | */ | |
6085 | void | |
6086 | vm_fault_unwire( | |
6087 | vm_map_t map, | |
6088 | vm_map_entry_t entry, | |
6089 | boolean_t deallocate, | |
6090 | pmap_t pmap, | |
6091 | vm_map_offset_t pmap_addr) | |
6092 | { | |
6093 | vm_map_offset_t va; | |
6094 | vm_map_offset_t end_addr = entry->vme_end; | |
6095 | vm_object_t object; | |
6096 | struct vm_object_fault_info fault_info = {}; | |
6097 | unsigned int unwired_pages; | |
6098 | vm_map_size_t effective_page_size; | |
6099 | ||
6100 | object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry); | |
6101 | ||
6102 | /* | |
6103 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually | |
6104 | * do anything since such memory is wired by default. So we don't have | |
6105 | * anything to undo here. | |
6106 | */ | |
6107 | ||
6108 | if (object != VM_OBJECT_NULL && object->phys_contiguous) { | |
6109 | return; | |
6110 | } | |
6111 | ||
6112 | fault_info.interruptible = THREAD_UNINT; | |
6113 | fault_info.behavior = entry->behavior; | |
6114 | fault_info.user_tag = VME_ALIAS(entry); | |
6115 | if (entry->iokit_acct || | |
6116 | (!entry->is_sub_map && !entry->use_pmap)) { | |
6117 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
6118 | } | |
6119 | fault_info.lo_offset = VME_OFFSET(entry); | |
6120 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); | |
6121 | fault_info.no_cache = entry->no_cache; | |
6122 | fault_info.stealth = TRUE; | |
6123 | ||
6124 | unwired_pages = 0; | |
6125 | ||
6126 | /* | |
6127 | * Since the pages are wired down, we must be able to | |
6128 | * get their mappings from the physical map system. | |
6129 | */ | |
6130 | ||
6131 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); | |
6132 | for (va = entry->vme_start; | |
6133 | va < end_addr; | |
6134 | va += effective_page_size) { | |
6135 | if (object == VM_OBJECT_NULL) { | |
6136 | if (pmap) { | |
6137 | pmap_change_wiring(pmap, | |
6138 | pmap_addr + (va - entry->vme_start), FALSE); | |
6139 | } | |
6140 | (void) vm_fault(map, va, VM_PROT_NONE, | |
6141 | TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, pmap, pmap_addr); | |
6142 | } else { | |
6143 | vm_prot_t prot; | |
6144 | vm_page_t result_page; | |
6145 | vm_page_t top_page; | |
6146 | vm_object_t result_object; | |
6147 | vm_fault_return_t result; | |
6148 | ||
6149 | /* cap cluster size at maximum UPL size */ | |
6150 | upl_size_t cluster_size; | |
6151 | if (os_sub_overflow(end_addr, va, &cluster_size)) { | |
6152 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
6153 | } | |
6154 | fault_info.cluster_size = cluster_size; | |
6155 | ||
6156 | do { | |
6157 | prot = VM_PROT_NONE; | |
6158 | ||
6159 | vm_object_lock(object); | |
6160 | vm_object_paging_begin(object); | |
6161 | result_page = VM_PAGE_NULL; | |
6162 | result = vm_fault_page( | |
6163 | object, | |
6164 | (VME_OFFSET(entry) + | |
6165 | (va - entry->vme_start)), | |
6166 | VM_PROT_NONE, TRUE, | |
6167 | FALSE, /* page not looked up */ | |
6168 | &prot, &result_page, &top_page, | |
6169 | (int *)0, | |
6170 | NULL, map->no_zero_fill, | |
6171 | FALSE, &fault_info); | |
6172 | } while (result == VM_FAULT_RETRY); | |
6173 | ||
6174 | /* | |
6175 | * If this was a mapping to a file on a device that has been forcibly | |
6176 | * unmounted, then we won't get a page back from vm_fault_page(). Just | |
6177 | * move on to the next one in case the remaining pages are mapped from | |
6178 | * different objects. During a forced unmount, the object is terminated | |
6179 | * so the alive flag will be false if this happens. A forced unmount will | |
6180 | * will occur when an external disk is unplugged before the user does an | |
6181 | * eject, so we don't want to panic in that situation. | |
6182 | */ | |
6183 | ||
6184 | if (result == VM_FAULT_MEMORY_ERROR && !object->alive) { | |
6185 | continue; | |
6186 | } | |
6187 | ||
6188 | if (result == VM_FAULT_MEMORY_ERROR && | |
6189 | object == kernel_object) { | |
6190 | /* | |
6191 | * This must have been allocated with | |
6192 | * KMA_KOBJECT and KMA_VAONLY and there's | |
6193 | * no physical page at this offset. | |
6194 | * We're done (no page to free). | |
6195 | */ | |
6196 | assert(deallocate); | |
6197 | continue; | |
6198 | } | |
6199 | ||
6200 | if (result != VM_FAULT_SUCCESS) { | |
6201 | panic("vm_fault_unwire: failure"); | |
6202 | } | |
6203 | ||
6204 | result_object = VM_PAGE_OBJECT(result_page); | |
6205 | ||
6206 | if (deallocate) { | |
6207 | assert(VM_PAGE_GET_PHYS_PAGE(result_page) != | |
6208 | vm_page_fictitious_addr); | |
6209 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page)); | |
6210 | if (VM_PAGE_WIRED(result_page)) { | |
6211 | unwired_pages++; | |
6212 | } | |
6213 | VM_PAGE_FREE(result_page); | |
6214 | } else { | |
6215 | if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr)) { | |
6216 | pmap_change_wiring(pmap, | |
6217 | pmap_addr + (va - entry->vme_start), FALSE); | |
6218 | } | |
6219 | ||
6220 | ||
6221 | if (VM_PAGE_WIRED(result_page)) { | |
6222 | vm_page_lockspin_queues(); | |
6223 | vm_page_unwire(result_page, TRUE); | |
6224 | vm_page_unlock_queues(); | |
6225 | unwired_pages++; | |
6226 | } | |
6227 | if (entry->zero_wired_pages) { | |
6228 | pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page)); | |
6229 | entry->zero_wired_pages = FALSE; | |
6230 | } | |
6231 | ||
6232 | PAGE_WAKEUP_DONE(result_page); | |
6233 | } | |
6234 | vm_fault_cleanup(result_object, top_page); | |
6235 | } | |
6236 | } | |
6237 | ||
6238 | /* | |
6239 | * Inform the physical mapping system that the range | |
6240 | * of addresses may fault, so that page tables and | |
6241 | * such may be unwired themselves. | |
6242 | */ | |
6243 | ||
6244 | pmap_pageable(pmap, pmap_addr, | |
6245 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
6246 | ||
6247 | if (kernel_object == object) { | |
6248 | /* | |
6249 | * Would like to make user_tag in vm_object_fault_info | |
6250 | * vm_tag_t (unsigned short) but user_tag derives its value from | |
6251 | * VME_ALIAS(entry) at a few places and VME_ALIAS, in turn, casts | |
6252 | * to an _unsigned int_ which is used by non-fault_info paths throughout the | |
6253 | * code at many places. | |
6254 | * | |
6255 | * So, for now, an explicit truncation to unsigned short (vm_tag_t). | |
6256 | */ | |
6257 | assertf((fault_info.user_tag & VME_ALIAS_MASK) == fault_info.user_tag, | |
6258 | "VM Tag truncated from 0x%x to 0x%x\n", fault_info.user_tag, (fault_info.user_tag & VME_ALIAS_MASK)); | |
6259 | vm_tag_update_size((vm_tag_t) fault_info.user_tag, -ptoa_64(unwired_pages)); | |
6260 | } | |
6261 | } | |
6262 | ||
6263 | /* | |
6264 | * vm_fault_wire_fast: | |
6265 | * | |
6266 | * Handle common case of a wire down page fault at the given address. | |
6267 | * If successful, the page is inserted into the associated physical map. | |
6268 | * The map entry is passed in to avoid the overhead of a map lookup. | |
6269 | * | |
6270 | * NOTE: the given address should be truncated to the | |
6271 | * proper page address. | |
6272 | * | |
6273 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
6274 | * a standard error specifying why the fault is fatal is returned. | |
6275 | * | |
6276 | * The map in question must be referenced, and remains so. | |
6277 | * Caller has a read lock on the map. | |
6278 | * | |
6279 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
6280 | * other than the common case will return KERN_FAILURE, and the caller | |
6281 | * is expected to call vm_fault(). | |
6282 | */ | |
6283 | static kern_return_t | |
6284 | vm_fault_wire_fast( | |
6285 | __unused vm_map_t map, | |
6286 | vm_map_offset_t va, | |
6287 | __unused vm_prot_t caller_prot, | |
6288 | vm_tag_t wire_tag, | |
6289 | vm_map_entry_t entry, | |
6290 | pmap_t pmap, | |
6291 | vm_map_offset_t pmap_addr, | |
6292 | ppnum_t *physpage_p) | |
6293 | { | |
6294 | vm_object_t object; | |
6295 | vm_object_offset_t offset; | |
6296 | vm_page_t m; | |
6297 | vm_prot_t prot; | |
6298 | thread_t thread = current_thread(); | |
6299 | int type_of_fault; | |
6300 | kern_return_t kr; | |
6301 | vm_map_size_t fault_page_size; | |
6302 | vm_map_offset_t fault_phys_offset; | |
6303 | struct vm_object_fault_info fault_info = {}; | |
6304 | ||
6305 | VM_STAT_INCR(faults); | |
6306 | ||
6307 | if (thread != THREAD_NULL && thread->task != TASK_NULL) { | |
6308 | thread->task->faults++; | |
6309 | } | |
6310 | ||
6311 | /* | |
6312 | * Recovery actions | |
6313 | */ | |
6314 | ||
6315 | #undef RELEASE_PAGE | |
6316 | #define RELEASE_PAGE(m) { \ | |
6317 | PAGE_WAKEUP_DONE(m); \ | |
6318 | vm_page_lockspin_queues(); \ | |
6319 | vm_page_unwire(m, TRUE); \ | |
6320 | vm_page_unlock_queues(); \ | |
6321 | } | |
6322 | ||
6323 | ||
6324 | #undef UNLOCK_THINGS | |
6325 | #define UNLOCK_THINGS { \ | |
6326 | vm_object_paging_end(object); \ | |
6327 | vm_object_unlock(object); \ | |
6328 | } | |
6329 | ||
6330 | #undef UNLOCK_AND_DEALLOCATE | |
6331 | #define UNLOCK_AND_DEALLOCATE { \ | |
6332 | UNLOCK_THINGS; \ | |
6333 | vm_object_deallocate(object); \ | |
6334 | } | |
6335 | /* | |
6336 | * Give up and have caller do things the hard way. | |
6337 | */ | |
6338 | ||
6339 | #define GIVE_UP { \ | |
6340 | UNLOCK_AND_DEALLOCATE; \ | |
6341 | return(KERN_FAILURE); \ | |
6342 | } | |
6343 | ||
6344 | ||
6345 | /* | |
6346 | * If this entry is not directly to a vm_object, bail out. | |
6347 | */ | |
6348 | if (entry->is_sub_map) { | |
6349 | assert(physpage_p == NULL); | |
6350 | return KERN_FAILURE; | |
6351 | } | |
6352 | ||
6353 | /* | |
6354 | * Find the backing store object and offset into it. | |
6355 | */ | |
6356 | ||
6357 | object = VME_OBJECT(entry); | |
6358 | offset = (va - entry->vme_start) + VME_OFFSET(entry); | |
6359 | prot = entry->protection; | |
6360 | ||
6361 | /* | |
6362 | * Make a reference to this object to prevent its | |
6363 | * disposal while we are messing with it. | |
6364 | */ | |
6365 | ||
6366 | vm_object_lock(object); | |
6367 | vm_object_reference_locked(object); | |
6368 | vm_object_paging_begin(object); | |
6369 | ||
6370 | /* | |
6371 | * INVARIANTS (through entire routine): | |
6372 | * | |
6373 | * 1) At all times, we must either have the object | |
6374 | * lock or a busy page in some object to prevent | |
6375 | * some other thread from trying to bring in | |
6376 | * the same page. | |
6377 | * | |
6378 | * 2) Once we have a busy page, we must remove it from | |
6379 | * the pageout queues, so that the pageout daemon | |
6380 | * will not grab it away. | |
6381 | * | |
6382 | */ | |
6383 | ||
6384 | /* | |
6385 | * Look for page in top-level object. If it's not there or | |
6386 | * there's something going on, give up. | |
6387 | */ | |
6388 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); | |
6389 | if ((m == VM_PAGE_NULL) || (m->vmp_busy) || | |
6390 | (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) { | |
6391 | GIVE_UP; | |
6392 | } | |
6393 | if (m->vmp_fictitious && | |
6394 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { | |
6395 | /* | |
6396 | * Guard pages are fictitious pages and are never | |
6397 | * entered into a pmap, so let's say it's been wired... | |
6398 | */ | |
6399 | kr = KERN_SUCCESS; | |
6400 | goto done; | |
6401 | } | |
6402 | ||
6403 | /* | |
6404 | * Wire the page down now. All bail outs beyond this | |
6405 | * point must unwire the page. | |
6406 | */ | |
6407 | ||
6408 | vm_page_lockspin_queues(); | |
6409 | vm_page_wire(m, wire_tag, TRUE); | |
6410 | vm_page_unlock_queues(); | |
6411 | ||
6412 | /* | |
6413 | * Mark page busy for other threads. | |
6414 | */ | |
6415 | assert(!m->vmp_busy); | |
6416 | m->vmp_busy = TRUE; | |
6417 | assert(!m->vmp_absent); | |
6418 | ||
6419 | /* | |
6420 | * Give up if the page is being written and there's a copy object | |
6421 | */ | |
6422 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
6423 | RELEASE_PAGE(m); | |
6424 | GIVE_UP; | |
6425 | } | |
6426 | ||
6427 | fault_info.user_tag = VME_ALIAS(entry); | |
6428 | fault_info.pmap_options = 0; | |
6429 | if (entry->iokit_acct || | |
6430 | (!entry->is_sub_map && !entry->use_pmap)) { | |
6431 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
6432 | } | |
6433 | ||
6434 | fault_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); | |
6435 | fault_phys_offset = offset - vm_object_trunc_page(offset); | |
6436 | ||
6437 | /* | |
6438 | * Put this page into the physical map. | |
6439 | */ | |
6440 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
6441 | kr = vm_fault_enter(m, | |
6442 | pmap, | |
6443 | pmap_addr, | |
6444 | fault_page_size, | |
6445 | fault_phys_offset, | |
6446 | prot, | |
6447 | prot, | |
6448 | TRUE, /* wired */ | |
6449 | FALSE, /* change_wiring */ | |
6450 | wire_tag, | |
6451 | &fault_info, | |
6452 | NULL, | |
6453 | &type_of_fault); | |
6454 | if (kr != KERN_SUCCESS) { | |
6455 | RELEASE_PAGE(m); | |
6456 | GIVE_UP; | |
6457 | } | |
6458 | ||
6459 | done: | |
6460 | /* | |
6461 | * Unlock everything, and return | |
6462 | */ | |
6463 | ||
6464 | if (physpage_p) { | |
6465 | /* for vm_map_wire_and_extract() */ | |
6466 | if (kr == KERN_SUCCESS) { | |
6467 | assert(object == VM_PAGE_OBJECT(m)); | |
6468 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); | |
6469 | if (prot & VM_PROT_WRITE) { | |
6470 | vm_object_lock_assert_exclusive(object); | |
6471 | m->vmp_dirty = TRUE; | |
6472 | } | |
6473 | } else { | |
6474 | *physpage_p = 0; | |
6475 | } | |
6476 | } | |
6477 | ||
6478 | PAGE_WAKEUP_DONE(m); | |
6479 | UNLOCK_AND_DEALLOCATE; | |
6480 | ||
6481 | return kr; | |
6482 | } | |
6483 | ||
6484 | /* | |
6485 | * Routine: vm_fault_copy_cleanup | |
6486 | * Purpose: | |
6487 | * Release a page used by vm_fault_copy. | |
6488 | */ | |
6489 | ||
6490 | static void | |
6491 | vm_fault_copy_cleanup( | |
6492 | vm_page_t page, | |
6493 | vm_page_t top_page) | |
6494 | { | |
6495 | vm_object_t object = VM_PAGE_OBJECT(page); | |
6496 | ||
6497 | vm_object_lock(object); | |
6498 | PAGE_WAKEUP_DONE(page); | |
6499 | if (!VM_PAGE_PAGEABLE(page)) { | |
6500 | vm_page_lockspin_queues(); | |
6501 | if (!VM_PAGE_PAGEABLE(page)) { | |
6502 | vm_page_activate(page); | |
6503 | } | |
6504 | vm_page_unlock_queues(); | |
6505 | } | |
6506 | vm_fault_cleanup(object, top_page); | |
6507 | } | |
6508 | ||
6509 | static void | |
6510 | vm_fault_copy_dst_cleanup( | |
6511 | vm_page_t page) | |
6512 | { | |
6513 | vm_object_t object; | |
6514 | ||
6515 | if (page != VM_PAGE_NULL) { | |
6516 | object = VM_PAGE_OBJECT(page); | |
6517 | vm_object_lock(object); | |
6518 | vm_page_lockspin_queues(); | |
6519 | vm_page_unwire(page, TRUE); | |
6520 | vm_page_unlock_queues(); | |
6521 | vm_object_paging_end(object); | |
6522 | vm_object_unlock(object); | |
6523 | } | |
6524 | } | |
6525 | ||
6526 | /* | |
6527 | * Routine: vm_fault_copy | |
6528 | * | |
6529 | * Purpose: | |
6530 | * Copy pages from one virtual memory object to another -- | |
6531 | * neither the source nor destination pages need be resident. | |
6532 | * | |
6533 | * Before actually copying a page, the version associated with | |
6534 | * the destination address map wil be verified. | |
6535 | * | |
6536 | * In/out conditions: | |
6537 | * The caller must hold a reference, but not a lock, to | |
6538 | * each of the source and destination objects and to the | |
6539 | * destination map. | |
6540 | * | |
6541 | * Results: | |
6542 | * Returns KERN_SUCCESS if no errors were encountered in | |
6543 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
6544 | * the operation was interrupted (only possible if the | |
6545 | * "interruptible" argument is asserted). Other return values | |
6546 | * indicate a permanent error in copying the data. | |
6547 | * | |
6548 | * The actual amount of data copied will be returned in the | |
6549 | * "copy_size" argument. In the event that the destination map | |
6550 | * verification failed, this amount may be less than the amount | |
6551 | * requested. | |
6552 | */ | |
6553 | kern_return_t | |
6554 | vm_fault_copy( | |
6555 | vm_object_t src_object, | |
6556 | vm_object_offset_t src_offset, | |
6557 | vm_map_size_t *copy_size, /* INOUT */ | |
6558 | vm_object_t dst_object, | |
6559 | vm_object_offset_t dst_offset, | |
6560 | vm_map_t dst_map, | |
6561 | vm_map_version_t *dst_version, | |
6562 | int interruptible) | |
6563 | { | |
6564 | vm_page_t result_page; | |
6565 | ||
6566 | vm_page_t src_page; | |
6567 | vm_page_t src_top_page; | |
6568 | vm_prot_t src_prot; | |
6569 | ||
6570 | vm_page_t dst_page; | |
6571 | vm_page_t dst_top_page; | |
6572 | vm_prot_t dst_prot; | |
6573 | ||
6574 | vm_map_size_t amount_left; | |
6575 | vm_object_t old_copy_object; | |
6576 | vm_object_t result_page_object = NULL; | |
6577 | kern_return_t error = 0; | |
6578 | vm_fault_return_t result; | |
6579 | ||
6580 | vm_map_size_t part_size; | |
6581 | struct vm_object_fault_info fault_info_src = {}; | |
6582 | struct vm_object_fault_info fault_info_dst = {}; | |
6583 | ||
6584 | /* | |
6585 | * In order not to confuse the clustered pageins, align | |
6586 | * the different offsets on a page boundary. | |
6587 | */ | |
6588 | ||
6589 | #define RETURN(x) \ | |
6590 | MACRO_BEGIN \ | |
6591 | *copy_size -= amount_left; \ | |
6592 | MACRO_RETURN(x); \ | |
6593 | MACRO_END | |
6594 | ||
6595 | amount_left = *copy_size; | |
6596 | ||
6597 | fault_info_src.interruptible = interruptible; | |
6598 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6599 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); | |
6600 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; | |
6601 | fault_info_src.stealth = TRUE; | |
6602 | ||
6603 | fault_info_dst.interruptible = interruptible; | |
6604 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6605 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); | |
6606 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; | |
6607 | fault_info_dst.stealth = TRUE; | |
6608 | ||
6609 | do { /* while (amount_left > 0) */ | |
6610 | /* | |
6611 | * There may be a deadlock if both source and destination | |
6612 | * pages are the same. To avoid this deadlock, the copy must | |
6613 | * start by getting the destination page in order to apply | |
6614 | * COW semantics if any. | |
6615 | */ | |
6616 | ||
6617 | RetryDestinationFault:; | |
6618 | ||
6619 | dst_prot = VM_PROT_WRITE | VM_PROT_READ; | |
6620 | ||
6621 | vm_object_lock(dst_object); | |
6622 | vm_object_paging_begin(dst_object); | |
6623 | ||
6624 | /* cap cluster size at maximum UPL size */ | |
6625 | upl_size_t cluster_size; | |
6626 | if (os_convert_overflow(amount_left, &cluster_size)) { | |
6627 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
6628 | } | |
6629 | fault_info_dst.cluster_size = cluster_size; | |
6630 | ||
6631 | dst_page = VM_PAGE_NULL; | |
6632 | result = vm_fault_page(dst_object, | |
6633 | vm_object_trunc_page(dst_offset), | |
6634 | VM_PROT_WRITE | VM_PROT_READ, | |
6635 | FALSE, | |
6636 | FALSE, /* page not looked up */ | |
6637 | &dst_prot, &dst_page, &dst_top_page, | |
6638 | (int *)0, | |
6639 | &error, | |
6640 | dst_map->no_zero_fill, | |
6641 | FALSE, &fault_info_dst); | |
6642 | switch (result) { | |
6643 | case VM_FAULT_SUCCESS: | |
6644 | break; | |
6645 | case VM_FAULT_RETRY: | |
6646 | goto RetryDestinationFault; | |
6647 | case VM_FAULT_MEMORY_SHORTAGE: | |
6648 | if (vm_page_wait(interruptible)) { | |
6649 | goto RetryDestinationFault; | |
6650 | } | |
6651 | OS_FALLTHROUGH; | |
6652 | case VM_FAULT_INTERRUPTED: | |
6653 | RETURN(MACH_SEND_INTERRUPTED); | |
6654 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
6655 | /* success but no VM page: fail the copy */ | |
6656 | vm_object_paging_end(dst_object); | |
6657 | vm_object_unlock(dst_object); | |
6658 | OS_FALLTHROUGH; | |
6659 | case VM_FAULT_MEMORY_ERROR: | |
6660 | if (error) { | |
6661 | return error; | |
6662 | } else { | |
6663 | return KERN_MEMORY_ERROR; | |
6664 | } | |
6665 | default: | |
6666 | panic("vm_fault_copy: unexpected error 0x%x from " | |
6667 | "vm_fault_page()\n", result); | |
6668 | } | |
6669 | assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
6670 | ||
6671 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); | |
6672 | old_copy_object = dst_object->copy; | |
6673 | ||
6674 | /* | |
6675 | * There exists the possiblity that the source and | |
6676 | * destination page are the same. But we can't | |
6677 | * easily determine that now. If they are the | |
6678 | * same, the call to vm_fault_page() for the | |
6679 | * destination page will deadlock. To prevent this we | |
6680 | * wire the page so we can drop busy without having | |
6681 | * the page daemon steal the page. We clean up the | |
6682 | * top page but keep the paging reference on the object | |
6683 | * holding the dest page so it doesn't go away. | |
6684 | */ | |
6685 | ||
6686 | vm_page_lockspin_queues(); | |
6687 | vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE); | |
6688 | vm_page_unlock_queues(); | |
6689 | PAGE_WAKEUP_DONE(dst_page); | |
6690 | vm_object_unlock(dst_object); | |
6691 | ||
6692 | if (dst_top_page != VM_PAGE_NULL) { | |
6693 | vm_object_lock(dst_object); | |
6694 | VM_PAGE_FREE(dst_top_page); | |
6695 | vm_object_paging_end(dst_object); | |
6696 | vm_object_unlock(dst_object); | |
6697 | } | |
6698 | ||
6699 | RetrySourceFault:; | |
6700 | ||
6701 | if (src_object == VM_OBJECT_NULL) { | |
6702 | /* | |
6703 | * No source object. We will just | |
6704 | * zero-fill the page in dst_object. | |
6705 | */ | |
6706 | src_page = VM_PAGE_NULL; | |
6707 | result_page = VM_PAGE_NULL; | |
6708 | } else { | |
6709 | vm_object_lock(src_object); | |
6710 | src_page = vm_page_lookup(src_object, | |
6711 | vm_object_trunc_page(src_offset)); | |
6712 | if (src_page == dst_page) { | |
6713 | src_prot = dst_prot; | |
6714 | result_page = VM_PAGE_NULL; | |
6715 | } else { | |
6716 | src_prot = VM_PROT_READ; | |
6717 | vm_object_paging_begin(src_object); | |
6718 | ||
6719 | /* cap cluster size at maximum UPL size */ | |
6720 | if (os_convert_overflow(amount_left, &cluster_size)) { | |
6721 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
6722 | } | |
6723 | fault_info_src.cluster_size = cluster_size; | |
6724 | ||
6725 | result_page = VM_PAGE_NULL; | |
6726 | result = vm_fault_page( | |
6727 | src_object, | |
6728 | vm_object_trunc_page(src_offset), | |
6729 | VM_PROT_READ, FALSE, | |
6730 | FALSE, /* page not looked up */ | |
6731 | &src_prot, | |
6732 | &result_page, &src_top_page, | |
6733 | (int *)0, &error, FALSE, | |
6734 | FALSE, &fault_info_src); | |
6735 | ||
6736 | switch (result) { | |
6737 | case VM_FAULT_SUCCESS: | |
6738 | break; | |
6739 | case VM_FAULT_RETRY: | |
6740 | goto RetrySourceFault; | |
6741 | case VM_FAULT_MEMORY_SHORTAGE: | |
6742 | if (vm_page_wait(interruptible)) { | |
6743 | goto RetrySourceFault; | |
6744 | } | |
6745 | OS_FALLTHROUGH; | |
6746 | case VM_FAULT_INTERRUPTED: | |
6747 | vm_fault_copy_dst_cleanup(dst_page); | |
6748 | RETURN(MACH_SEND_INTERRUPTED); | |
6749 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
6750 | /* success but no VM page: fail */ | |
6751 | vm_object_paging_end(src_object); | |
6752 | vm_object_unlock(src_object); | |
6753 | OS_FALLTHROUGH; | |
6754 | case VM_FAULT_MEMORY_ERROR: | |
6755 | vm_fault_copy_dst_cleanup(dst_page); | |
6756 | if (error) { | |
6757 | return error; | |
6758 | } else { | |
6759 | return KERN_MEMORY_ERROR; | |
6760 | } | |
6761 | default: | |
6762 | panic("vm_fault_copy(2): unexpected " | |
6763 | "error 0x%x from " | |
6764 | "vm_fault_page()\n", result); | |
6765 | } | |
6766 | ||
6767 | result_page_object = VM_PAGE_OBJECT(result_page); | |
6768 | assert((src_top_page == VM_PAGE_NULL) == | |
6769 | (result_page_object == src_object)); | |
6770 | } | |
6771 | assert((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
6772 | vm_object_unlock(result_page_object); | |
6773 | } | |
6774 | ||
6775 | vm_map_lock_read(dst_map); | |
6776 | ||
6777 | if (!vm_map_verify(dst_map, dst_version)) { | |
6778 | vm_map_unlock_read(dst_map); | |
6779 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { | |
6780 | vm_fault_copy_cleanup(result_page, src_top_page); | |
6781 | } | |
6782 | vm_fault_copy_dst_cleanup(dst_page); | |
6783 | break; | |
6784 | } | |
6785 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); | |
6786 | ||
6787 | vm_object_lock(dst_object); | |
6788 | ||
6789 | if (dst_object->copy != old_copy_object) { | |
6790 | vm_object_unlock(dst_object); | |
6791 | vm_map_unlock_read(dst_map); | |
6792 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { | |
6793 | vm_fault_copy_cleanup(result_page, src_top_page); | |
6794 | } | |
6795 | vm_fault_copy_dst_cleanup(dst_page); | |
6796 | break; | |
6797 | } | |
6798 | vm_object_unlock(dst_object); | |
6799 | ||
6800 | /* | |
6801 | * Copy the page, and note that it is dirty | |
6802 | * immediately. | |
6803 | */ | |
6804 | ||
6805 | if (!page_aligned(src_offset) || | |
6806 | !page_aligned(dst_offset) || | |
6807 | !page_aligned(amount_left)) { | |
6808 | vm_object_offset_t src_po, | |
6809 | dst_po; | |
6810 | ||
6811 | src_po = src_offset - vm_object_trunc_page(src_offset); | |
6812 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); | |
6813 | ||
6814 | if (dst_po > src_po) { | |
6815 | part_size = PAGE_SIZE - dst_po; | |
6816 | } else { | |
6817 | part_size = PAGE_SIZE - src_po; | |
6818 | } | |
6819 | if (part_size > (amount_left)) { | |
6820 | part_size = amount_left; | |
6821 | } | |
6822 | ||
6823 | if (result_page == VM_PAGE_NULL) { | |
6824 | assert((vm_offset_t) dst_po == dst_po); | |
6825 | assert((vm_size_t) part_size == part_size); | |
6826 | vm_page_part_zero_fill(dst_page, | |
6827 | (vm_offset_t) dst_po, | |
6828 | (vm_size_t) part_size); | |
6829 | } else { | |
6830 | assert((vm_offset_t) src_po == src_po); | |
6831 | assert((vm_offset_t) dst_po == dst_po); | |
6832 | assert((vm_size_t) part_size == part_size); | |
6833 | vm_page_part_copy(result_page, | |
6834 | (vm_offset_t) src_po, | |
6835 | dst_page, | |
6836 | (vm_offset_t) dst_po, | |
6837 | (vm_size_t)part_size); | |
6838 | if (!dst_page->vmp_dirty) { | |
6839 | vm_object_lock(dst_object); | |
6840 | SET_PAGE_DIRTY(dst_page, TRUE); | |
6841 | vm_object_unlock(dst_object); | |
6842 | } | |
6843 | } | |
6844 | } else { | |
6845 | part_size = PAGE_SIZE; | |
6846 | ||
6847 | if (result_page == VM_PAGE_NULL) { | |
6848 | vm_page_zero_fill(dst_page); | |
6849 | } else { | |
6850 | vm_object_lock(result_page_object); | |
6851 | vm_page_copy(result_page, dst_page); | |
6852 | vm_object_unlock(result_page_object); | |
6853 | ||
6854 | if (!dst_page->vmp_dirty) { | |
6855 | vm_object_lock(dst_object); | |
6856 | SET_PAGE_DIRTY(dst_page, TRUE); | |
6857 | vm_object_unlock(dst_object); | |
6858 | } | |
6859 | } | |
6860 | } | |
6861 | ||
6862 | /* | |
6863 | * Unlock everything, and return | |
6864 | */ | |
6865 | ||
6866 | vm_map_unlock_read(dst_map); | |
6867 | ||
6868 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { | |
6869 | vm_fault_copy_cleanup(result_page, src_top_page); | |
6870 | } | |
6871 | vm_fault_copy_dst_cleanup(dst_page); | |
6872 | ||
6873 | amount_left -= part_size; | |
6874 | src_offset += part_size; | |
6875 | dst_offset += part_size; | |
6876 | } while (amount_left > 0); | |
6877 | ||
6878 | RETURN(KERN_SUCCESS); | |
6879 | #undef RETURN | |
6880 | ||
6881 | /*NOTREACHED*/ | |
6882 | } | |
6883 | ||
6884 | #if VM_FAULT_CLASSIFY | |
6885 | /* | |
6886 | * Temporary statistics gathering support. | |
6887 | */ | |
6888 | ||
6889 | /* | |
6890 | * Statistics arrays: | |
6891 | */ | |
6892 | #define VM_FAULT_TYPES_MAX 5 | |
6893 | #define VM_FAULT_LEVEL_MAX 8 | |
6894 | ||
6895 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
6896 | ||
6897 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
6898 | #define VM_FAULT_TYPE_MAP_IN 1 | |
6899 | #define VM_FAULT_TYPE_PAGER 2 | |
6900 | #define VM_FAULT_TYPE_COPY 3 | |
6901 | #define VM_FAULT_TYPE_OTHER 4 | |
6902 | ||
6903 | ||
6904 | void | |
6905 | vm_fault_classify(vm_object_t object, | |
6906 | vm_object_offset_t offset, | |
6907 | vm_prot_t fault_type) | |
6908 | { | |
6909 | int type, level = 0; | |
6910 | vm_page_t m; | |
6911 | ||
6912 | while (TRUE) { | |
6913 | m = vm_page_lookup(object, offset); | |
6914 | if (m != VM_PAGE_NULL) { | |
6915 | if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) { | |
6916 | type = VM_FAULT_TYPE_OTHER; | |
6917 | break; | |
6918 | } | |
6919 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
6920 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
6921 | type = VM_FAULT_TYPE_MAP_IN; | |
6922 | break; | |
6923 | } | |
6924 | type = VM_FAULT_TYPE_COPY; | |
6925 | break; | |
6926 | } else { | |
6927 | if (object->pager_created) { | |
6928 | type = VM_FAULT_TYPE_PAGER; | |
6929 | break; | |
6930 | } | |
6931 | if (object->shadow == VM_OBJECT_NULL) { | |
6932 | type = VM_FAULT_TYPE_ZERO_FILL; | |
6933 | break; | |
6934 | } | |
6935 | ||
6936 | offset += object->vo_shadow_offset; | |
6937 | object = object->shadow; | |
6938 | level++; | |
6939 | continue; | |
6940 | } | |
6941 | } | |
6942 | ||
6943 | if (level > VM_FAULT_LEVEL_MAX) { | |
6944 | level = VM_FAULT_LEVEL_MAX; | |
6945 | } | |
6946 | ||
6947 | vm_fault_stats[type][level] += 1; | |
6948 | ||
6949 | return; | |
6950 | } | |
6951 | ||
6952 | /* cleanup routine to call from debugger */ | |
6953 | ||
6954 | void | |
6955 | vm_fault_classify_init(void) | |
6956 | { | |
6957 | int type, level; | |
6958 | ||
6959 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
6960 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
6961 | vm_fault_stats[type][level] = 0; | |
6962 | } | |
6963 | } | |
6964 | ||
6965 | return; | |
6966 | } | |
6967 | #endif /* VM_FAULT_CLASSIFY */ | |
6968 | ||
6969 | vm_offset_t | |
6970 | kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr) | |
6971 | { | |
6972 | vm_map_entry_t entry; | |
6973 | vm_object_t object; | |
6974 | vm_offset_t object_offset; | |
6975 | vm_page_t m; | |
6976 | int compressor_external_state, compressed_count_delta; | |
6977 | int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP); | |
6978 | int my_fault_type = VM_PROT_READ; | |
6979 | kern_return_t kr; | |
6980 | int effective_page_mask, effective_page_size; | |
6981 | ||
6982 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { | |
6983 | effective_page_mask = VM_MAP_PAGE_MASK(map); | |
6984 | effective_page_size = VM_MAP_PAGE_SIZE(map); | |
6985 | } else { | |
6986 | effective_page_mask = PAGE_MASK; | |
6987 | effective_page_size = PAGE_SIZE; | |
6988 | } | |
6989 | ||
6990 | if (not_in_kdp) { | |
6991 | panic("kdp_lightweight_fault called from outside of debugger context"); | |
6992 | } | |
6993 | ||
6994 | assert(map != VM_MAP_NULL); | |
6995 | ||
6996 | assert((cur_target_addr & effective_page_mask) == 0); | |
6997 | if ((cur_target_addr & effective_page_mask) != 0) { | |
6998 | return 0; | |
6999 | } | |
7000 | ||
7001 | if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) { | |
7002 | return 0; | |
7003 | } | |
7004 | ||
7005 | if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) { | |
7006 | return 0; | |
7007 | } | |
7008 | ||
7009 | if (entry->is_sub_map) { | |
7010 | return 0; | |
7011 | } | |
7012 | ||
7013 | object = VME_OBJECT(entry); | |
7014 | if (object == VM_OBJECT_NULL) { | |
7015 | return 0; | |
7016 | } | |
7017 | ||
7018 | object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry); | |
7019 | ||
7020 | while (TRUE) { | |
7021 | if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) { | |
7022 | return 0; | |
7023 | } | |
7024 | ||
7025 | if (object->pager_created && (object->paging_in_progress || | |
7026 | object->activity_in_progress)) { | |
7027 | return 0; | |
7028 | } | |
7029 | ||
7030 | m = kdp_vm_page_lookup(object, vm_object_trunc_page(object_offset)); | |
7031 | ||
7032 | if (m != VM_PAGE_NULL) { | |
7033 | if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { | |
7034 | return 0; | |
7035 | } | |
7036 | ||
7037 | if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || m->vmp_error || m->vmp_cleaning || | |
7038 | m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) { | |
7039 | return 0; | |
7040 | } | |
7041 | ||
7042 | assert(!m->vmp_private); | |
7043 | if (m->vmp_private) { | |
7044 | return 0; | |
7045 | } | |
7046 | ||
7047 | assert(!m->vmp_fictitious); | |
7048 | if (m->vmp_fictitious) { | |
7049 | return 0; | |
7050 | } | |
7051 | ||
7052 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); | |
7053 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { | |
7054 | return 0; | |
7055 | } | |
7056 | ||
7057 | return ptoa(VM_PAGE_GET_PHYS_PAGE(m)); | |
7058 | } | |
7059 | ||
7060 | compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; | |
7061 | ||
7062 | if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) { | |
7063 | if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) { | |
7064 | kr = vm_compressor_pager_get(object->pager, | |
7065 | vm_object_trunc_page(object_offset + object->paging_offset), | |
7066 | kdp_compressor_decompressed_page_ppnum, &my_fault_type, | |
7067 | compressor_flags, &compressed_count_delta); | |
7068 | if (kr == KERN_SUCCESS) { | |
7069 | return kdp_compressor_decompressed_page_paddr; | |
7070 | } else { | |
7071 | return 0; | |
7072 | } | |
7073 | } | |
7074 | } | |
7075 | ||
7076 | if (object->shadow == VM_OBJECT_NULL) { | |
7077 | return 0; | |
7078 | } | |
7079 | ||
7080 | object_offset += object->vo_shadow_offset; | |
7081 | object = object->shadow; | |
7082 | } | |
7083 | } | |
7084 | ||
7085 | /* | |
7086 | * vm_page_validate_cs_fast(): | |
7087 | * Performs a few quick checks to determine if the page's code signature | |
7088 | * really needs to be fully validated. It could: | |
7089 | * 1. have been modified (i.e. automatically tainted), | |
7090 | * 2. have already been validated, | |
7091 | * 3. have already been found to be tainted, | |
7092 | * 4. no longer have a backing store. | |
7093 | * Returns FALSE if the page needs to be fully validated. | |
7094 | */ | |
7095 | static boolean_t | |
7096 | vm_page_validate_cs_fast( | |
7097 | vm_page_t page, | |
7098 | vm_map_size_t fault_page_size, | |
7099 | vm_map_offset_t fault_phys_offset) | |
7100 | { | |
7101 | vm_object_t object; | |
7102 | ||
7103 | object = VM_PAGE_OBJECT(page); | |
7104 | vm_object_lock_assert_held(object); | |
7105 | ||
7106 | if (page->vmp_wpmapped && | |
7107 | !VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) { | |
7108 | /* | |
7109 | * This page was mapped for "write" access sometime in the | |
7110 | * past and could still be modifiable in the future. | |
7111 | * Consider it tainted. | |
7112 | * [ If the page was already found to be "tainted", no | |
7113 | * need to re-validate. ] | |
7114 | */ | |
7115 | vm_object_lock_assert_exclusive(object); | |
7116 | VMP_CS_SET_VALIDATED(page, fault_page_size, fault_phys_offset, TRUE); | |
7117 | VMP_CS_SET_TAINTED(page, fault_page_size, fault_phys_offset, TRUE); | |
7118 | if (cs_debug) { | |
7119 | printf("CODESIGNING: %s: " | |
7120 | "page %p obj %p off 0x%llx " | |
7121 | "was modified\n", | |
7122 | __FUNCTION__, | |
7123 | page, object, page->vmp_offset); | |
7124 | } | |
7125 | vm_cs_validated_dirtied++; | |
7126 | } | |
7127 | ||
7128 | if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) || | |
7129 | VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) { | |
7130 | return TRUE; | |
7131 | } | |
7132 | vm_object_lock_assert_exclusive(object); | |
7133 | ||
7134 | #if CHECK_CS_VALIDATION_BITMAP | |
7135 | kern_return_t kr; | |
7136 | ||
7137 | kr = vnode_pager_cs_check_validation_bitmap( | |
7138 | object->pager, | |
7139 | page->vmp_offset + object->paging_offset, | |
7140 | CS_BITMAP_CHECK); | |
7141 | if (kr == KERN_SUCCESS) { | |
7142 | page->vmp_cs_validated = VMP_CS_ALL_TRUE; | |
7143 | page->vmp_cs_tainted = VMP_CS_ALL_FALSE; | |
7144 | vm_cs_bitmap_validated++; | |
7145 | return TRUE; | |
7146 | } | |
7147 | #endif /* CHECK_CS_VALIDATION_BITMAP */ | |
7148 | ||
7149 | if (!object->alive || object->terminating || object->pager == NULL) { | |
7150 | /* | |
7151 | * The object is terminating and we don't have its pager | |
7152 | * so we can't validate the data... | |
7153 | */ | |
7154 | return TRUE; | |
7155 | } | |
7156 | ||
7157 | /* we need to really validate this page */ | |
7158 | vm_object_lock_assert_exclusive(object); | |
7159 | return FALSE; | |
7160 | } | |
7161 | ||
7162 | void | |
7163 | vm_page_validate_cs_mapped_slow( | |
7164 | vm_page_t page, | |
7165 | const void *kaddr) | |
7166 | { | |
7167 | vm_object_t object; | |
7168 | memory_object_offset_t mo_offset; | |
7169 | memory_object_t pager; | |
7170 | struct vnode *vnode; | |
7171 | int validated, tainted, nx; | |
7172 | ||
7173 | assert(page->vmp_busy); | |
7174 | object = VM_PAGE_OBJECT(page); | |
7175 | vm_object_lock_assert_exclusive(object); | |
7176 | ||
7177 | vm_cs_validates++; | |
7178 | ||
7179 | /* | |
7180 | * Since we get here to validate a page that was brought in by | |
7181 | * the pager, we know that this pager is all setup and ready | |
7182 | * by now. | |
7183 | */ | |
7184 | assert(object->code_signed); | |
7185 | assert(!object->internal); | |
7186 | assert(object->pager != NULL); | |
7187 | assert(object->pager_ready); | |
7188 | ||
7189 | pager = object->pager; | |
7190 | assert(object->paging_in_progress); | |
7191 | vnode = vnode_pager_lookup_vnode(pager); | |
7192 | mo_offset = page->vmp_offset + object->paging_offset; | |
7193 | ||
7194 | /* verify the SHA1 hash for this page */ | |
7195 | validated = 0; | |
7196 | tainted = 0; | |
7197 | nx = 0; | |
7198 | cs_validate_page(vnode, | |
7199 | pager, | |
7200 | mo_offset, | |
7201 | (const void *)((const char *)kaddr), | |
7202 | &validated, | |
7203 | &tainted, | |
7204 | &nx); | |
7205 | ||
7206 | page->vmp_cs_validated |= validated; | |
7207 | page->vmp_cs_tainted |= tainted; | |
7208 | page->vmp_cs_nx |= nx; | |
7209 | ||
7210 | #if CHECK_CS_VALIDATION_BITMAP | |
7211 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && | |
7212 | page->vmp_cs_tainted == VMP_CS_ALL_FALSE) { | |
7213 | vnode_pager_cs_check_validation_bitmap(object->pager, | |
7214 | mo_offset, | |
7215 | CS_BITMAP_SET); | |
7216 | } | |
7217 | #endif /* CHECK_CS_VALIDATION_BITMAP */ | |
7218 | } | |
7219 | ||
7220 | void | |
7221 | vm_page_validate_cs_mapped( | |
7222 | vm_page_t page, | |
7223 | vm_map_size_t fault_page_size, | |
7224 | vm_map_offset_t fault_phys_offset, | |
7225 | const void *kaddr) | |
7226 | { | |
7227 | if (!vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { | |
7228 | vm_page_validate_cs_mapped_slow(page, kaddr); | |
7229 | } | |
7230 | } | |
7231 | ||
7232 | void | |
7233 | vm_page_validate_cs( | |
7234 | vm_page_t page, | |
7235 | vm_map_size_t fault_page_size, | |
7236 | vm_map_offset_t fault_phys_offset) | |
7237 | { | |
7238 | vm_object_t object; | |
7239 | vm_object_offset_t offset; | |
7240 | vm_map_offset_t koffset; | |
7241 | vm_map_size_t ksize; | |
7242 | vm_offset_t kaddr; | |
7243 | kern_return_t kr; | |
7244 | boolean_t busy_page; | |
7245 | boolean_t need_unmap; | |
7246 | ||
7247 | object = VM_PAGE_OBJECT(page); | |
7248 | vm_object_lock_assert_held(object); | |
7249 | ||
7250 | if (vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { | |
7251 | return; | |
7252 | } | |
7253 | vm_object_lock_assert_exclusive(object); | |
7254 | ||
7255 | assert(object->code_signed); | |
7256 | offset = page->vmp_offset; | |
7257 | ||
7258 | busy_page = page->vmp_busy; | |
7259 | if (!busy_page) { | |
7260 | /* keep page busy while we map (and unlock) the VM object */ | |
7261 | page->vmp_busy = TRUE; | |
7262 | } | |
7263 | ||
7264 | /* | |
7265 | * Take a paging reference on the VM object | |
7266 | * to protect it from collapse or bypass, | |
7267 | * and keep it from disappearing too. | |
7268 | */ | |
7269 | vm_object_paging_begin(object); | |
7270 | ||
7271 | /* map the page in the kernel address space */ | |
7272 | ksize = PAGE_SIZE_64; | |
7273 | koffset = 0; | |
7274 | need_unmap = FALSE; | |
7275 | kr = vm_paging_map_object(page, | |
7276 | object, | |
7277 | offset, | |
7278 | VM_PROT_READ, | |
7279 | FALSE, /* can't unlock object ! */ | |
7280 | &ksize, | |
7281 | &koffset, | |
7282 | &need_unmap); | |
7283 | if (kr != KERN_SUCCESS) { | |
7284 | panic("%s: could not map page: 0x%x\n", __FUNCTION__, kr); | |
7285 | } | |
7286 | kaddr = CAST_DOWN(vm_offset_t, koffset); | |
7287 | ||
7288 | /* validate the mapped page */ | |
7289 | vm_page_validate_cs_mapped_slow(page, (const void *) kaddr); | |
7290 | ||
7291 | assert(page->vmp_busy); | |
7292 | assert(object == VM_PAGE_OBJECT(page)); | |
7293 | vm_object_lock_assert_exclusive(object); | |
7294 | ||
7295 | if (!busy_page) { | |
7296 | PAGE_WAKEUP_DONE(page); | |
7297 | } | |
7298 | if (need_unmap) { | |
7299 | /* unmap the map from the kernel address space */ | |
7300 | vm_paging_unmap_object(object, koffset, koffset + ksize); | |
7301 | koffset = 0; | |
7302 | ksize = 0; | |
7303 | kaddr = 0; | |
7304 | } | |
7305 | vm_object_paging_end(object); | |
7306 | } | |
7307 | ||
7308 | void | |
7309 | vm_page_validate_cs_mapped_chunk( | |
7310 | vm_page_t page, | |
7311 | const void *kaddr, | |
7312 | vm_offset_t chunk_offset, | |
7313 | vm_size_t chunk_size, | |
7314 | boolean_t *validated_p, | |
7315 | unsigned *tainted_p) | |
7316 | { | |
7317 | vm_object_t object; | |
7318 | vm_object_offset_t offset, offset_in_page; | |
7319 | memory_object_t pager; | |
7320 | struct vnode *vnode; | |
7321 | boolean_t validated; | |
7322 | unsigned tainted; | |
7323 | ||
7324 | *validated_p = FALSE; | |
7325 | *tainted_p = 0; | |
7326 | ||
7327 | assert(page->vmp_busy); | |
7328 | object = VM_PAGE_OBJECT(page); | |
7329 | vm_object_lock_assert_exclusive(object); | |
7330 | ||
7331 | assert(object->code_signed); | |
7332 | offset = page->vmp_offset; | |
7333 | ||
7334 | if (!object->alive || object->terminating || object->pager == NULL) { | |
7335 | /* | |
7336 | * The object is terminating and we don't have its pager | |
7337 | * so we can't validate the data... | |
7338 | */ | |
7339 | return; | |
7340 | } | |
7341 | /* | |
7342 | * Since we get here to validate a page that was brought in by | |
7343 | * the pager, we know that this pager is all setup and ready | |
7344 | * by now. | |
7345 | */ | |
7346 | assert(!object->internal); | |
7347 | assert(object->pager != NULL); | |
7348 | assert(object->pager_ready); | |
7349 | ||
7350 | pager = object->pager; | |
7351 | assert(object->paging_in_progress); | |
7352 | vnode = vnode_pager_lookup_vnode(pager); | |
7353 | ||
7354 | /* verify the signature for this chunk */ | |
7355 | offset_in_page = chunk_offset; | |
7356 | assert(offset_in_page < PAGE_SIZE); | |
7357 | ||
7358 | tainted = 0; | |
7359 | validated = cs_validate_range(vnode, | |
7360 | pager, | |
7361 | (object->paging_offset + | |
7362 | offset + | |
7363 | offset_in_page), | |
7364 | (const void *)((const char *)kaddr | |
7365 | + offset_in_page), | |
7366 | chunk_size, | |
7367 | &tainted); | |
7368 | if (validated) { | |
7369 | *validated_p = TRUE; | |
7370 | } | |
7371 | if (tainted) { | |
7372 | *tainted_p = tainted; | |
7373 | } | |
7374 | } | |
7375 | ||
7376 | static void | |
7377 | vm_rtfrecord_lock(void) | |
7378 | { | |
7379 | lck_spin_lock(&vm_rtfr_slock); | |
7380 | } | |
7381 | ||
7382 | static void | |
7383 | vm_rtfrecord_unlock(void) | |
7384 | { | |
7385 | lck_spin_unlock(&vm_rtfr_slock); | |
7386 | } | |
7387 | ||
7388 | unsigned int | |
7389 | vmrtfaultinfo_bufsz(void) | |
7390 | { | |
7391 | return vmrtf_num_records * sizeof(vm_rtfault_record_t); | |
7392 | } | |
7393 | ||
7394 | #include <kern/backtrace.h> | |
7395 | ||
7396 | __attribute__((noinline)) | |
7397 | static void | |
7398 | vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault) | |
7399 | { | |
7400 | uint64_t fend = mach_continuous_time(); | |
7401 | ||
7402 | uint64_t cfpc = 0; | |
7403 | uint64_t ctid = cthread->thread_id; | |
7404 | uint64_t cupid = get_current_unique_pid(); | |
7405 | ||
7406 | uintptr_t bpc = 0; | |
7407 | int btr = 0; | |
7408 | bool u64 = false; | |
7409 | ||
7410 | /* Capture a single-frame backtrace; this extracts just the program | |
7411 | * counter at the point of the fault into "bpc", and should perform no | |
7412 | * further user stack traversals, thus avoiding copyin()s and further | |
7413 | * faults. | |
7414 | */ | |
7415 | unsigned int bfrs = backtrace_thread_user(cthread, &bpc, 1U, &btr, &u64, NULL, false); | |
7416 | ||
7417 | if ((btr == 0) && (bfrs > 0)) { | |
7418 | cfpc = bpc; | |
7419 | } | |
7420 | ||
7421 | assert((fstart != 0) && fend >= fstart); | |
7422 | vm_rtfrecord_lock(); | |
7423 | assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi); | |
7424 | ||
7425 | vmrtfrs.vmrtf_total++; | |
7426 | vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++]; | |
7427 | ||
7428 | cvmr->rtfabstime = fstart; | |
7429 | cvmr->rtfduration = fend - fstart; | |
7430 | cvmr->rtfaddr = fault_vaddr; | |
7431 | cvmr->rtfpc = cfpc; | |
7432 | cvmr->rtftype = type_of_fault; | |
7433 | cvmr->rtfupid = cupid; | |
7434 | cvmr->rtftid = ctid; | |
7435 | ||
7436 | if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) { | |
7437 | vmrtfrs.vmrtfr_curi = 0; | |
7438 | } | |
7439 | ||
7440 | vm_rtfrecord_unlock(); | |
7441 | } | |
7442 | ||
7443 | int | |
7444 | vmrtf_extract(uint64_t cupid, __unused boolean_t isroot, unsigned long vrecordsz, void *vrecords, unsigned long *vmrtfrv) | |
7445 | { | |
7446 | vm_rtfault_record_t *cvmrd = vrecords; | |
7447 | size_t residue = vrecordsz; | |
7448 | size_t numextracted = 0; | |
7449 | boolean_t early_exit = FALSE; | |
7450 | ||
7451 | vm_rtfrecord_lock(); | |
7452 | ||
7453 | for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) { | |
7454 | if (residue < sizeof(vm_rtfault_record_t)) { | |
7455 | early_exit = TRUE; | |
7456 | break; | |
7457 | } | |
7458 | ||
7459 | if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) { | |
7460 | #if DEVELOPMENT || DEBUG | |
7461 | if (isroot == FALSE) { | |
7462 | continue; | |
7463 | } | |
7464 | #else | |
7465 | continue; | |
7466 | #endif /* DEVDEBUG */ | |
7467 | } | |
7468 | ||
7469 | *cvmrd = vmrtfrs.vm_rtf_records[vmfi]; | |
7470 | cvmrd++; | |
7471 | residue -= sizeof(vm_rtfault_record_t); | |
7472 | numextracted++; | |
7473 | } | |
7474 | ||
7475 | vm_rtfrecord_unlock(); | |
7476 | ||
7477 | *vmrtfrv = numextracted; | |
7478 | return early_exit; | |
7479 | } |