]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa | |
30 | * Portions Copyright (c) 2000 Akamba Corp. | |
31 | * All rights reserved | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | * | |
54 | * $FreeBSD: src/sys/netinet/ip_dummynet.h,v 1.32 2004/08/17 22:05:54 andre Exp $ | |
55 | */ | |
56 | ||
57 | #ifndef _IP_DUMMYNET_H | |
58 | #define _IP_DUMMYNET_H | |
59 | ||
60 | #include <sys/appleapiopts.h> | |
61 | ||
62 | #ifdef PRIVATE | |
63 | #include <netinet/ip_flowid.h> | |
64 | ||
65 | /* Apply ipv6 mask on ipv6 addr */ | |
66 | #define APPLY_MASK(addr, mask) \ | |
67 | (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \ | |
68 | (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \ | |
69 | (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \ | |
70 | (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; | |
71 | ||
72 | /* | |
73 | * Definition of dummynet data structures. In the structures, I decided | |
74 | * not to use the macros in <sys/queue.h> in the hope of making the code | |
75 | * easier to port to other architectures. The type of lists and queue we | |
76 | * use here is pretty simple anyways. | |
77 | */ | |
78 | ||
79 | /* | |
80 | * We start with a heap, which is used in the scheduler to decide when | |
81 | * to transmit packets etc. | |
82 | * | |
83 | * The key for the heap is used for two different values: | |
84 | * | |
85 | * 1. timer ticks- max 10K/second, so 32 bits are enough; | |
86 | * | |
87 | * 2. virtual times. These increase in steps of len/x, where len is the | |
88 | * packet length, and x is either the weight of the flow, or the | |
89 | * sum of all weights. | |
90 | * If we limit to max 1000 flows and a max weight of 100, then | |
91 | * x needs 17 bits. The packet size is 16 bits, so we can easily | |
92 | * overflow if we do not allow errors. | |
93 | * So we use a key "dn_key" which is 64 bits. Some macros are used to | |
94 | * compare key values and handle wraparounds. | |
95 | * MAX64 returns the largest of two key values. | |
96 | * MY_M is used as a shift count when doing fixed point arithmetic | |
97 | * (a better name would be useful...). | |
98 | */ | |
99 | typedef u_int64_t dn_key; /* sorting key */ | |
100 | #define DN_KEY_LT(a, b) ((int64_t)((a)-(b)) < 0) | |
101 | #define DN_KEY_LEQ(a, b) ((int64_t)((a)-(b)) <= 0) | |
102 | #define DN_KEY_GT(a, b) ((int64_t)((a)-(b)) > 0) | |
103 | #define DN_KEY_GEQ(a, b) ((int64_t)((a)-(b)) >= 0) | |
104 | #define MAX64(x, y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x) | |
105 | #define MY_M 16 /* number of left shift to obtain a larger precision */ | |
106 | ||
107 | /* | |
108 | * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the | |
109 | * virtual time wraps every 15 days. | |
110 | */ | |
111 | ||
112 | /* | |
113 | * The maximum hash table size for queues. This value must be a power | |
114 | * of 2. | |
115 | */ | |
116 | #define DN_MAX_HASH_SIZE 65536 | |
117 | ||
118 | /* | |
119 | * A heap entry is made of a key and a pointer to the actual | |
120 | * object stored in the heap. | |
121 | * The heap is an array of dn_heap_entry entries, dynamically allocated. | |
122 | * Current size is "size", with "elements" actually in use. | |
123 | * The heap normally supports only ordered insert and extract from the top. | |
124 | * If we want to extract an object from the middle of the heap, we | |
125 | * have to know where the object itself is located in the heap (or we | |
126 | * need to scan the whole array). To this purpose, an object has a | |
127 | * field (int) which contains the index of the object itself into the | |
128 | * heap. When the object is moved, the field must also be updated. | |
129 | * The offset of the index in the object is stored in the 'offset' | |
130 | * field in the heap descriptor. The assumption is that this offset | |
131 | * is non-zero if we want to support extract from the middle. | |
132 | */ | |
133 | struct dn_heap_entry { | |
134 | dn_key key; /* sorting key. Topmost element is smallest one */ | |
135 | void *object; /* object pointer */ | |
136 | }; | |
137 | ||
138 | struct dn_heap { | |
139 | int size; | |
140 | int elements; | |
141 | int offset; /* XXX if > 0 this is the offset of direct ptr to obj */ | |
142 | struct dn_heap_entry *p; /* really an array of "size" entries */ | |
143 | }; | |
144 | ||
145 | /* | |
146 | * Packets processed by dummynet have an mbuf tag associated with | |
147 | * them that carries their dummynet state. This is used within | |
148 | * the dummynet code as well as outside when checking for special | |
149 | * processing requirements. | |
150 | */ | |
151 | #ifdef KERNEL | |
152 | #include <net/if_var.h> | |
153 | #include <net/route.h> | |
154 | #include <netinet/ip_var.h> /* for ip_out_args */ | |
155 | #include <netinet/ip6.h> /* for ip6_out_args */ | |
156 | #include <netinet/in.h> | |
157 | #include <netinet6/ip6_var.h> /* for ip6_out_args */ | |
158 | ||
159 | struct dn_pkt_tag { | |
160 | void *dn_pf_rule; /* matching PF rule */ | |
161 | int dn_dir; /* action when packet comes out. */ | |
162 | #define DN_TO_IP_OUT 1 | |
163 | #define DN_TO_IP_IN 2 | |
164 | #define DN_TO_BDG_FWD 3 | |
165 | #define DN_TO_IP6_IN 4 | |
166 | #define DN_TO_IP6_OUT 5 | |
167 | dn_key dn_output_time; /* when the pkt is due for delivery */ | |
168 | struct ifnet *dn_ifp; /* interface, for ip[6]_output */ | |
169 | union { | |
170 | struct sockaddr_in _dn_dst; | |
171 | struct sockaddr_in6 _dn_dst6; | |
172 | } dn_dst_; | |
173 | #define dn_dst dn_dst_._dn_dst | |
174 | #define dn_dst6 dn_dst_._dn_dst6 | |
175 | union { | |
176 | struct route _dn_ro; /* route, for ip_output. MUST COPY */ | |
177 | struct route_in6 _dn_ro6;/* route, for ip6_output. MUST COPY */ | |
178 | } dn_ro_; | |
179 | #define dn_ro dn_ro_._dn_ro | |
180 | #define dn_ro6 dn_ro_._dn_ro6 | |
181 | struct route_in6 dn_ro6_pmtu; /* for ip6_output */ | |
182 | struct ifnet *dn_origifp; /* for ip6_output */ | |
183 | u_int32_t dn_mtu; /* for ip6_output */ | |
184 | u_int32_t dn_unfragpartlen; /* for ip6_output */ | |
185 | struct ip6_exthdrs dn_exthdrs; /* for ip6_output */ | |
186 | int dn_flags; /* flags, for ip[6]_output */ | |
187 | union { | |
188 | struct ip_out_args _dn_ipoa;/* output args, for ip_output. MUST COPY */ | |
189 | struct ip6_out_args _dn_ip6oa;/* output args, for ip_output. MUST COPY */ | |
190 | } dn_ipoa_; | |
191 | #define dn_ipoa dn_ipoa_._dn_ipoa | |
192 | #define dn_ip6oa dn_ipoa_._dn_ip6oa | |
193 | }; | |
194 | #else | |
195 | struct dn_pkt; | |
196 | #endif /* KERNEL */ | |
197 | ||
198 | /* | |
199 | * Overall structure of dummynet (with WF2Q+): | |
200 | * | |
201 | * In dummynet, packets are selected with the firewall rules, and passed | |
202 | * to two different objects: PIPE or QUEUE. | |
203 | * | |
204 | * A QUEUE is just a queue with configurable size and queue management | |
205 | * policy. It is also associated with a mask (to discriminate among | |
206 | * different flows), a weight (used to give different shares of the | |
207 | * bandwidth to different flows) and a "pipe", which essentially | |
208 | * supplies the transmit clock for all queues associated with that | |
209 | * pipe. | |
210 | * | |
211 | * A PIPE emulates a fixed-bandwidth link, whose bandwidth is | |
212 | * configurable. The "clock" for a pipe can come from either an | |
213 | * internal timer, or from the transmit interrupt of an interface. | |
214 | * A pipe is also associated with one (or more, if masks are used) | |
215 | * queue, where all packets for that pipe are stored. | |
216 | * | |
217 | * The bandwidth available on the pipe is shared by the queues | |
218 | * associated with that pipe (only one in case the packet is sent | |
219 | * to a PIPE) according to the WF2Q+ scheduling algorithm and the | |
220 | * configured weights. | |
221 | * | |
222 | * In general, incoming packets are stored in the appropriate queue, | |
223 | * which is then placed into one of a few heaps managed by a scheduler | |
224 | * to decide when the packet should be extracted. | |
225 | * The scheduler (a function called dummynet()) is run at every timer | |
226 | * tick, and grabs queues from the head of the heaps when they are | |
227 | * ready for processing. | |
228 | * | |
229 | * There are three data structures definining a pipe and associated queues: | |
230 | * | |
231 | + dn_pipe, which contains the main configuration parameters related | |
232 | + to delay and bandwidth; | |
233 | + dn_flow_set, which contains WF2Q+ configuration, flow | |
234 | + masks, plr and RED configuration; | |
235 | + dn_flow_queue, which is the per-flow queue (containing the packets) | |
236 | + | |
237 | + Multiple dn_flow_set can be linked to the same pipe, and multiple | |
238 | + dn_flow_queue can be linked to the same dn_flow_set. | |
239 | + All data structures are linked in a linear list which is used for | |
240 | + housekeeping purposes. | |
241 | + | |
242 | + During configuration, we create and initialize the dn_flow_set | |
243 | + and dn_pipe structures (a dn_pipe also contains a dn_flow_set). | |
244 | + | |
245 | + At runtime: packets are sent to the appropriate dn_flow_set (either | |
246 | + WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows), | |
247 | + which in turn dispatches them to the appropriate dn_flow_queue | |
248 | + (created dynamically according to the masks). | |
249 | + | |
250 | + The transmit clock for fixed rate flows (ready_event()) selects the | |
251 | + dn_flow_queue to be used to transmit the next packet. For WF2Q, | |
252 | + wfq_ready_event() extract a pipe which in turn selects the right | |
253 | + flow using a number of heaps defined into the pipe itself. | |
254 | + | |
255 | * | |
256 | */ | |
257 | ||
258 | /* | |
259 | * per flow queue. This contains the flow identifier, the queue | |
260 | * of packets, counters, and parameters used to support both RED and | |
261 | * WF2Q+. | |
262 | * | |
263 | * A dn_flow_queue is created and initialized whenever a packet for | |
264 | * a new flow arrives. | |
265 | */ | |
266 | struct dn_flow_queue { | |
267 | struct dn_flow_queue *next; | |
268 | struct ip_flow_id id; | |
269 | ||
270 | struct mbuf *head, *tail; /* queue of packets */ | |
271 | u_int len; | |
272 | u_int len_bytes; | |
273 | u_int32_t numbytes; /* credit for transmission (dynamic queues) */ | |
274 | ||
275 | u_int64_t tot_pkts; /* statistics counters */ | |
276 | u_int64_t tot_bytes; | |
277 | u_int32_t drops; | |
278 | ||
279 | int hash_slot; /* debugging/diagnostic */ | |
280 | ||
281 | /* RED parameters */ | |
282 | int avg; /* average queue length est. (scaled) */ | |
283 | int count; /* arrivals since last RED drop */ | |
284 | int random; /* random value (scaled) */ | |
285 | u_int32_t q_time; /* start of queue idle time */ | |
286 | ||
287 | /* WF2Q+ support */ | |
288 | struct dn_flow_set *fs; /* parent flow set */ | |
289 | int heap_pos; /* position (index) of struct in heap */ | |
290 | dn_key sched_time; /* current time when queue enters ready_heap */ | |
291 | ||
292 | dn_key S, F; /* start time, finish time */ | |
293 | /* | |
294 | * Setting F < S means the timestamp is invalid. We only need | |
295 | * to test this when the queue is empty. | |
296 | */ | |
297 | }; | |
298 | ||
299 | /* | |
300 | * flow_set descriptor. Contains the "template" parameters for the | |
301 | * queue configuration, and pointers to the hash table of dn_flow_queue's. | |
302 | * | |
303 | * The hash table is an array of lists -- we identify the slot by | |
304 | * hashing the flow-id, then scan the list looking for a match. | |
305 | * The size of the hash table (buckets) is configurable on a per-queue | |
306 | * basis. | |
307 | * | |
308 | * A dn_flow_set is created whenever a new queue or pipe is created (in the | |
309 | * latter case, the structure is located inside the struct dn_pipe). | |
310 | */ | |
311 | struct dn_flow_set { | |
312 | SLIST_ENTRY(dn_flow_set) next;/* linked list in a hash slot */ | |
313 | ||
314 | u_short fs_nr; /* flow_set number */ | |
315 | u_short flags_fs; | |
316 | #define DN_HAVE_FLOW_MASK 0x0001 | |
317 | #define DN_IS_RED 0x0002 | |
318 | #define DN_IS_GENTLE_RED 0x0004 | |
319 | #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */ | |
320 | #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */ | |
321 | #define DN_IS_PIPE 0x4000 | |
322 | #define DN_IS_QUEUE 0x8000 | |
323 | ||
324 | struct dn_pipe *pipe; /* pointer to parent pipe */ | |
325 | u_short parent_nr; /* parent pipe#, 0 if local to a pipe */ | |
326 | ||
327 | int weight; /* WFQ queue weight */ | |
328 | int qsize; /* queue size in slots or bytes */ | |
329 | int plr; /* pkt loss rate (2^31-1 means 100%) */ | |
330 | ||
331 | struct ip_flow_id flow_mask; | |
332 | ||
333 | /* hash table of queues onto this flow_set */ | |
334 | int rq_size; /* number of slots */ | |
335 | int rq_elements; /* active elements */ | |
336 | struct dn_flow_queue **rq; /* array of rq_size entries */ | |
337 | ||
338 | u_int32_t last_expired; /* do not expire too frequently */ | |
339 | int backlogged; /* #active queues for this flowset */ | |
340 | ||
341 | /* RED parameters */ | |
342 | #define SCALE_RED 16 | |
343 | #define SCALE(x) ( (x) << SCALE_RED ) | |
344 | #define SCALE_VAL(x) ( (x) >> SCALE_RED ) | |
345 | #define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED ) | |
346 | int w_q; /* queue weight (scaled) */ | |
347 | int max_th; /* maximum threshold for queue (scaled) */ | |
348 | int min_th; /* minimum threshold for queue (scaled) */ | |
349 | int max_p; /* maximum value for p_b (scaled) */ | |
350 | u_int c_1; /* max_p/(max_th-min_th) (scaled) */ | |
351 | u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */ | |
352 | u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */ | |
353 | u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */ | |
354 | u_int * w_q_lookup; /* lookup table for computing (1-w_q)^t */ | |
355 | u_int lookup_depth; /* depth of lookup table */ | |
356 | int lookup_step; /* granularity inside the lookup table */ | |
357 | int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */ | |
358 | int avg_pkt_size; /* medium packet size */ | |
359 | int max_pkt_size; /* max packet size */ | |
360 | }; | |
361 | ||
362 | SLIST_HEAD(dn_flow_set_head, dn_flow_set); | |
363 | ||
364 | /* | |
365 | * Pipe descriptor. Contains global parameters, delay-line queue, | |
366 | * and the flow_set used for fixed-rate queues. | |
367 | * | |
368 | * For WF2Q+ support it also has 3 heaps holding dn_flow_queue: | |
369 | * not_eligible_heap, for queues whose start time is higher | |
370 | * than the virtual time. Sorted by start time. | |
371 | * scheduler_heap, for queues eligible for scheduling. Sorted by | |
372 | * finish time. | |
373 | * idle_heap, all flows that are idle and can be removed. We | |
374 | * do that on each tick so we do not slow down too much | |
375 | * operations during forwarding. | |
376 | * | |
377 | */ | |
378 | struct dn_pipe { /* a pipe */ | |
379 | SLIST_ENTRY(dn_pipe) next;/* linked list in a hash slot */ | |
380 | ||
381 | int pipe_nr; /* number */ | |
382 | int bandwidth; /* really, bytes/tick. */ | |
383 | int delay; /* really, ticks */ | |
384 | ||
385 | struct mbuf *head, *tail; /* packets in delay line */ | |
386 | ||
387 | /* WF2Q+ */ | |
388 | struct dn_heap scheduler_heap; /* top extract - key Finish time*/ | |
389 | struct dn_heap not_eligible_heap; /* top extract- key Start time */ | |
390 | struct dn_heap idle_heap; /* random extract - key Start=Finish time */ | |
391 | ||
392 | dn_key V; /* virtual time */ | |
393 | int sum; /* sum of weights of all active sessions */ | |
394 | int numbytes; /* bits I can transmit (more or less). */ | |
395 | ||
396 | dn_key sched_time; /* time pipe was scheduled in ready_heap */ | |
397 | ||
398 | /* | |
399 | * When the tx clock come from an interface (if_name[0] != '\0'), its name | |
400 | * is stored below, whereas the ifp is filled when the rule is configured. | |
401 | */ | |
402 | char if_name[IFNAMSIZ]; | |
403 | struct ifnet *ifp; | |
404 | int ready; /* set if ifp != NULL and we got a signal from it */ | |
405 | ||
406 | struct dn_flow_set fs; /* used with fixed-rate flows */ | |
407 | }; | |
408 | ||
409 | SLIST_HEAD(dn_pipe_head, dn_pipe); | |
410 | ||
411 | #ifdef BSD_KERNEL_PRIVATE | |
412 | extern uint32_t my_random(void); | |
413 | void ip_dn_init(void); | |
414 | ||
415 | typedef int ip_dn_ctl_t(struct sockopt *); /* raw_ip.c */ | |
416 | typedef int ip_dn_io_t(struct mbuf *m, int pipe_nr, int dir, | |
417 | struct ip_fw_args *fwa); | |
418 | extern ip_dn_ctl_t *ip_dn_ctl_ptr; | |
419 | extern ip_dn_io_t *ip_dn_io_ptr; | |
420 | #define DUMMYNET_LOADED (ip_dn_io_ptr != NULL) | |
421 | ||
422 | #pragma pack(4) | |
423 | ||
424 | struct dn_heap_32 { | |
425 | int size; | |
426 | int elements; | |
427 | int offset; /* XXX if > 0 this is the offset of direct ptr to obj */ | |
428 | user32_addr_t p; /* really an array of "size" entries */ | |
429 | }; | |
430 | ||
431 | struct dn_flow_queue_32 { | |
432 | user32_addr_t next; | |
433 | struct ip_flow_id id; | |
434 | ||
435 | user32_addr_t head, tail; /* queue of packets */ | |
436 | u_int len; | |
437 | u_int len_bytes; | |
438 | u_int32_t numbytes; /* credit for transmission (dynamic queues) */ | |
439 | ||
440 | u_int64_t tot_pkts; /* statistics counters */ | |
441 | u_int64_t tot_bytes; | |
442 | u_int32_t drops; | |
443 | ||
444 | int hash_slot; /* debugging/diagnostic */ | |
445 | ||
446 | /* RED parameters */ | |
447 | int avg; /* average queue length est. (scaled) */ | |
448 | int count; /* arrivals since last RED drop */ | |
449 | int random; /* random value (scaled) */ | |
450 | u_int32_t q_time; /* start of queue idle time */ | |
451 | ||
452 | /* WF2Q+ support */ | |
453 | user32_addr_t fs; /* parent flow set */ | |
454 | int heap_pos; /* position (index) of struct in heap */ | |
455 | dn_key sched_time; /* current time when queue enters ready_heap */ | |
456 | ||
457 | dn_key S, F; /* start time, finish time */ | |
458 | /* | |
459 | * Setting F < S means the timestamp is invalid. We only need | |
460 | * to test this when the queue is empty. | |
461 | */ | |
462 | }; | |
463 | ||
464 | struct dn_flow_set_32 { | |
465 | user32_addr_t next;/* next flow set in all_flow_sets list */ | |
466 | ||
467 | u_short fs_nr; /* flow_set number */ | |
468 | u_short flags_fs; | |
469 | #define DN_HAVE_FLOW_MASK 0x0001 | |
470 | #define DN_IS_RED 0x0002 | |
471 | #define DN_IS_GENTLE_RED 0x0004 | |
472 | #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */ | |
473 | #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */ | |
474 | #define DN_IS_PIPE 0x4000 | |
475 | #define DN_IS_QUEUE 0x8000 | |
476 | ||
477 | user32_addr_t pipe; /* pointer to parent pipe */ | |
478 | u_short parent_nr; /* parent pipe#, 0 if local to a pipe */ | |
479 | ||
480 | int weight; /* WFQ queue weight */ | |
481 | int qsize; /* queue size in slots or bytes */ | |
482 | int plr; /* pkt loss rate (2^31-1 means 100%) */ | |
483 | ||
484 | struct ip_flow_id flow_mask; | |
485 | ||
486 | /* hash table of queues onto this flow_set */ | |
487 | int rq_size; /* number of slots */ | |
488 | int rq_elements; /* active elements */ | |
489 | user32_addr_t rq; /* array of rq_size entries */ | |
490 | ||
491 | u_int32_t last_expired; /* do not expire too frequently */ | |
492 | int backlogged; /* #active queues for this flowset */ | |
493 | ||
494 | /* RED parameters */ | |
495 | #define SCALE_RED 16 | |
496 | #define SCALE(x) ( (x) << SCALE_RED ) | |
497 | #define SCALE_VAL(x) ( (x) >> SCALE_RED ) | |
498 | #define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED ) | |
499 | int w_q; /* queue weight (scaled) */ | |
500 | int max_th; /* maximum threshold for queue (scaled) */ | |
501 | int min_th; /* minimum threshold for queue (scaled) */ | |
502 | int max_p; /* maximum value for p_b (scaled) */ | |
503 | u_int c_1; /* max_p/(max_th-min_th) (scaled) */ | |
504 | u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */ | |
505 | u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */ | |
506 | u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */ | |
507 | user32_addr_t w_q_lookup; /* lookup table for computing (1-w_q)^t */ | |
508 | u_int lookup_depth; /* depth of lookup table */ | |
509 | int lookup_step; /* granularity inside the lookup table */ | |
510 | int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */ | |
511 | int avg_pkt_size; /* medium packet size */ | |
512 | int max_pkt_size; /* max packet size */ | |
513 | }; | |
514 | ||
515 | struct dn_pipe_32 { /* a pipe */ | |
516 | user32_addr_t next; | |
517 | ||
518 | int pipe_nr; /* number */ | |
519 | int bandwidth; /* really, bytes/tick. */ | |
520 | int delay; /* really, ticks */ | |
521 | ||
522 | user32_addr_t head, tail; /* packets in delay line */ | |
523 | ||
524 | /* WF2Q+ */ | |
525 | struct dn_heap_32 scheduler_heap; /* top extract - key Finish time*/ | |
526 | struct dn_heap_32 not_eligible_heap; /* top extract- key Start time */ | |
527 | struct dn_heap_32 idle_heap; /* random extract - key Start=Finish time */ | |
528 | ||
529 | dn_key V; /* virtual time */ | |
530 | int sum; /* sum of weights of all active sessions */ | |
531 | int numbytes; /* bits I can transmit (more or less). */ | |
532 | ||
533 | dn_key sched_time; /* time pipe was scheduled in ready_heap */ | |
534 | ||
535 | /* | |
536 | * When the tx clock come from an interface (if_name[0] != '\0'), its name | |
537 | * is stored below, whereas the ifp is filled when the rule is configured. | |
538 | */ | |
539 | char if_name[IFNAMSIZ]; | |
540 | user32_addr_t ifp; | |
541 | int ready; /* set if ifp != NULL and we got a signal from it */ | |
542 | ||
543 | struct dn_flow_set_32 fs; /* used with fixed-rate flows */ | |
544 | }; | |
545 | #pragma pack() | |
546 | ||
547 | ||
548 | struct dn_heap_64 { | |
549 | int size; | |
550 | int elements; | |
551 | int offset; /* XXX if > 0 this is the offset of direct ptr to obj */ | |
552 | user64_addr_t p; /* really an array of "size" entries */ | |
553 | }; | |
554 | ||
555 | ||
556 | struct dn_flow_queue_64 { | |
557 | user64_addr_t next; | |
558 | struct ip_flow_id id; | |
559 | ||
560 | user64_addr_t head, tail; /* queue of packets */ | |
561 | u_int len; | |
562 | u_int len_bytes; | |
563 | u_int32_t numbytes; /* credit for transmission (dynamic queues) */ | |
564 | ||
565 | u_int64_t tot_pkts; /* statistics counters */ | |
566 | u_int64_t tot_bytes; | |
567 | u_int32_t drops; | |
568 | ||
569 | int hash_slot; /* debugging/diagnostic */ | |
570 | ||
571 | /* RED parameters */ | |
572 | int avg; /* average queue length est. (scaled) */ | |
573 | int count; /* arrivals since last RED drop */ | |
574 | int random; /* random value (scaled) */ | |
575 | u_int32_t q_time; /* start of queue idle time */ | |
576 | ||
577 | /* WF2Q+ support */ | |
578 | user64_addr_t fs; /* parent flow set */ | |
579 | int heap_pos; /* position (index) of struct in heap */ | |
580 | dn_key sched_time; /* current time when queue enters ready_heap */ | |
581 | ||
582 | dn_key S, F; /* start time, finish time */ | |
583 | /* | |
584 | * Setting F < S means the timestamp is invalid. We only need | |
585 | * to test this when the queue is empty. | |
586 | */ | |
587 | }; | |
588 | ||
589 | struct dn_flow_set_64 { | |
590 | user64_addr_t next; /* next flow set in all_flow_sets list */ | |
591 | ||
592 | u_short fs_nr; /* flow_set number */ | |
593 | u_short flags_fs; | |
594 | #define DN_HAVE_FLOW_MASK 0x0001 | |
595 | #define DN_IS_RED 0x0002 | |
596 | #define DN_IS_GENTLE_RED 0x0004 | |
597 | #define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */ | |
598 | #define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */ | |
599 | #define DN_IS_PIPE 0x4000 | |
600 | #define DN_IS_QUEUE 0x8000 | |
601 | ||
602 | user64_addr_t pipe; /* pointer to parent pipe */ | |
603 | u_short parent_nr; /* parent pipe#, 0 if local to a pipe */ | |
604 | ||
605 | int weight; /* WFQ queue weight */ | |
606 | int qsize; /* queue size in slots or bytes */ | |
607 | int plr; /* pkt loss rate (2^31-1 means 100%) */ | |
608 | ||
609 | struct ip_flow_id flow_mask; | |
610 | ||
611 | /* hash table of queues onto this flow_set */ | |
612 | int rq_size; /* number of slots */ | |
613 | int rq_elements; /* active elements */ | |
614 | user64_addr_t rq; /* array of rq_size entries */ | |
615 | ||
616 | u_int32_t last_expired; /* do not expire too frequently */ | |
617 | int backlogged; /* #active queues for this flowset */ | |
618 | ||
619 | /* RED parameters */ | |
620 | #define SCALE_RED 16 | |
621 | #define SCALE(x) ( (x) << SCALE_RED ) | |
622 | #define SCALE_VAL(x) ( (x) >> SCALE_RED ) | |
623 | #define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED ) | |
624 | int w_q; /* queue weight (scaled) */ | |
625 | int max_th; /* maximum threshold for queue (scaled) */ | |
626 | int min_th; /* minimum threshold for queue (scaled) */ | |
627 | int max_p; /* maximum value for p_b (scaled) */ | |
628 | u_int c_1; /* max_p/(max_th-min_th) (scaled) */ | |
629 | u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */ | |
630 | u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */ | |
631 | u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */ | |
632 | user64_addr_t w_q_lookup; /* lookup table for computing (1-w_q)^t */ | |
633 | u_int lookup_depth; /* depth of lookup table */ | |
634 | int lookup_step; /* granularity inside the lookup table */ | |
635 | int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */ | |
636 | int avg_pkt_size; /* medium packet size */ | |
637 | int max_pkt_size; /* max packet size */ | |
638 | }; | |
639 | ||
640 | struct dn_pipe_64 { /* a pipe */ | |
641 | user64_addr_t next; | |
642 | ||
643 | int pipe_nr; /* number */ | |
644 | int bandwidth; /* really, bytes/tick. */ | |
645 | int delay; /* really, ticks */ | |
646 | ||
647 | user64_addr_t head, tail; /* packets in delay line */ | |
648 | ||
649 | /* WF2Q+ */ | |
650 | struct dn_heap_64 scheduler_heap; /* top extract - key Finish time*/ | |
651 | struct dn_heap_64 not_eligible_heap; /* top extract- key Start time */ | |
652 | struct dn_heap_64 idle_heap; /* random extract - key Start=Finish time */ | |
653 | ||
654 | dn_key V; /* virtual time */ | |
655 | int sum; /* sum of weights of all active sessions */ | |
656 | int numbytes; /* bits I can transmit (more or less). */ | |
657 | ||
658 | dn_key sched_time; /* time pipe was scheduled in ready_heap */ | |
659 | ||
660 | /* | |
661 | * When the tx clock come from an interface (if_name[0] != '\0'), its name | |
662 | * is stored below, whereas the ifp is filled when the rule is configured. | |
663 | */ | |
664 | char if_name[IFNAMSIZ]; | |
665 | user64_addr_t ifp; | |
666 | int ready; /* set if ifp != NULL and we got a signal from it */ | |
667 | ||
668 | struct dn_flow_set_64 fs; /* used with fixed-rate flows */ | |
669 | }; | |
670 | ||
671 | #include <sys/eventhandler.h> | |
672 | /* Dummynet event handling declarations */ | |
673 | extern struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt; | |
674 | extern void dummynet_init(void); | |
675 | ||
676 | struct dn_pipe_mini_config { | |
677 | uint32_t bandwidth; | |
678 | uint32_t delay; | |
679 | uint32_t plr; | |
680 | }; | |
681 | ||
682 | struct dn_rule_mini_config { | |
683 | uint32_t dir; | |
684 | uint32_t af; | |
685 | uint32_t proto; | |
686 | /* | |
687 | * XXX PF rules actually define ranges of ports and | |
688 | * along with range goes an opcode ((not) equal to, less than | |
689 | * greater than, etc. | |
690 | * For now the following works assuming there's no port range | |
691 | * and the rule is for specific port. | |
692 | * Also the operation is assumed as equal to. | |
693 | */ | |
694 | uint32_t src_port; | |
695 | uint32_t dst_port; | |
696 | char ifname[IFXNAMSIZ]; | |
697 | }; | |
698 | ||
699 | struct dummynet_event { | |
700 | uint32_t dn_event_code; | |
701 | union { | |
702 | struct dn_pipe_mini_config _dnev_pipe_config; | |
703 | struct dn_rule_mini_config _dnev_rule_config; | |
704 | } dn_event; | |
705 | }; | |
706 | ||
707 | #define dn_event_pipe_config dn_event._dnev_pipe_config | |
708 | #define dn_event_rule_config dn_event._dnev_rule_config | |
709 | ||
710 | extern void dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *); | |
711 | ||
712 | enum { | |
713 | DUMMYNET_RULE_CONFIG, | |
714 | DUMMYNET_RULE_DELETE, | |
715 | DUMMYNET_PIPE_CONFIG, | |
716 | DUMMYNET_PIPE_DELETE, | |
717 | DUMMYNET_NLC_DISABLED, | |
718 | }; | |
719 | ||
720 | enum { DN_INOUT, DN_IN, DN_OUT }; | |
721 | /* | |
722 | * The signature for the callback is: | |
723 | * eventhandler_entry_arg __unused | |
724 | * dummynet_event pointer to dummynet event object | |
725 | */ | |
726 | typedef void (*dummynet_event_fn) (struct eventhandler_entry_arg, struct dummynet_event *); | |
727 | EVENTHANDLER_DECLARE(dummynet_event, dummynet_event_fn); | |
728 | #endif /* BSD_KERNEL_PRIVATE */ | |
729 | #endif /* PRIVATE */ | |
730 | #endif /* _IP_DUMMYNET_H */ |