]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2012-2017, 2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <string.h> | |
30 | #include <sys/types.h> | |
31 | #include <sys/syslog.h> | |
32 | #include <sys/queue.h> | |
33 | #include <sys/malloc.h> | |
34 | #include <sys/socket.h> | |
35 | #include <sys/kpi_mbuf.h> | |
36 | #include <sys/mbuf.h> | |
37 | #include <sys/domain.h> | |
38 | #include <sys/protosw.h> | |
39 | #include <sys/socketvar.h> | |
40 | #include <sys/kernel.h> | |
41 | #include <sys/systm.h> | |
42 | #include <sys/kern_control.h> | |
43 | #include <sys/ubc.h> | |
44 | #include <sys/codesign.h> | |
45 | #include <libkern/tree.h> | |
46 | #include <kern/locks.h> | |
47 | #include <kern/debug.h> | |
48 | #include <kern/task.h> | |
49 | #include <mach/task_info.h> | |
50 | #include <net/if_var.h> | |
51 | #include <net/route.h> | |
52 | #include <net/flowhash.h> | |
53 | #include <net/ntstat.h> | |
54 | #include <net/content_filter.h> | |
55 | #include <net/necp.h> | |
56 | #include <netinet/in.h> | |
57 | #include <netinet/in_var.h> | |
58 | #include <netinet/tcp.h> | |
59 | #include <netinet/tcp_var.h> | |
60 | #include <netinet/tcp_fsm.h> | |
61 | #include <netinet/flow_divert.h> | |
62 | #include <netinet/flow_divert_proto.h> | |
63 | #include <netinet6/in6_pcb.h> | |
64 | #include <netinet6/ip6protosw.h> | |
65 | #include <dev/random/randomdev.h> | |
66 | #include <libkern/crypto/sha1.h> | |
67 | #include <libkern/crypto/crypto_internal.h> | |
68 | #include <os/log.h> | |
69 | #include <corecrypto/cc.h> | |
70 | #if CONTENT_FILTER | |
71 | #include <net/content_filter.h> | |
72 | #endif /* CONTENT_FILTER */ | |
73 | ||
74 | #define FLOW_DIVERT_CONNECT_STARTED 0x00000001 | |
75 | #define FLOW_DIVERT_READ_CLOSED 0x00000002 | |
76 | #define FLOW_DIVERT_WRITE_CLOSED 0x00000004 | |
77 | #define FLOW_DIVERT_TUNNEL_RD_CLOSED 0x00000008 | |
78 | #define FLOW_DIVERT_TUNNEL_WR_CLOSED 0x00000010 | |
79 | #define FLOW_DIVERT_HAS_HMAC 0x00000040 | |
80 | #define FLOW_DIVERT_NOTIFY_ON_RECEIVED 0x00000080 | |
81 | #define FLOW_DIVERT_IMPLICIT_CONNECT 0x00000100 | |
82 | #define FLOW_DIVERT_DID_SET_LOCAL_ADDR 0x00000200 | |
83 | ||
84 | #define FDLOG(level, pcb, format, ...) \ | |
85 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " format "\n", (pcb)->hash, __VA_ARGS__) | |
86 | ||
87 | #define FDLOG0(level, pcb, msg) \ | |
88 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " msg "\n", (pcb)->hash) | |
89 | ||
90 | #define FDRETAIN(pcb) if ((pcb) != NULL) OSIncrementAtomic(&(pcb)->ref_count) | |
91 | #define FDRELEASE(pcb) \ | |
92 | do { \ | |
93 | if ((pcb) != NULL && 1 == OSDecrementAtomic(&(pcb)->ref_count)) { \ | |
94 | flow_divert_pcb_destroy(pcb); \ | |
95 | } \ | |
96 | } while (0) | |
97 | ||
98 | #define FDLOCK(pcb) lck_mtx_lock(&(pcb)->mtx) | |
99 | #define FDUNLOCK(pcb) lck_mtx_unlock(&(pcb)->mtx) | |
100 | ||
101 | #define FD_CTL_SENDBUFF_SIZE (128 * 1024) | |
102 | #define FD_CTL_RCVBUFF_SIZE (128 * 1024) | |
103 | ||
104 | #define GROUP_BIT_CTL_ENQUEUE_BLOCKED 0 | |
105 | ||
106 | #define GROUP_COUNT_MAX 31 | |
107 | #define FLOW_DIVERT_MAX_NAME_SIZE 4096 | |
108 | #define FLOW_DIVERT_MAX_KEY_SIZE 1024 | |
109 | #define FLOW_DIVERT_MAX_TRIE_MEMORY (1024 * 1024) | |
110 | ||
111 | struct flow_divert_trie_node { | |
112 | uint16_t start; | |
113 | uint16_t length; | |
114 | uint16_t child_map; | |
115 | }; | |
116 | ||
117 | #define CHILD_MAP_SIZE 256 | |
118 | #define NULL_TRIE_IDX 0xffff | |
119 | #define TRIE_NODE(t, i) ((t)->nodes[(i)]) | |
120 | #define TRIE_CHILD(t, i, b) (((t)->child_maps + (CHILD_MAP_SIZE * TRIE_NODE(t, i).child_map))[(b)]) | |
121 | #define TRIE_BYTE(t, i) ((t)->bytes[(i)]) | |
122 | ||
123 | static struct flow_divert_pcb nil_pcb; | |
124 | ||
125 | decl_lck_rw_data(static, g_flow_divert_group_lck); | |
126 | static struct flow_divert_group **g_flow_divert_groups = NULL; | |
127 | static uint32_t g_active_group_count = 0; | |
128 | ||
129 | static lck_grp_attr_t *flow_divert_grp_attr = NULL; | |
130 | static lck_attr_t *flow_divert_mtx_attr = NULL; | |
131 | static lck_grp_t *flow_divert_mtx_grp = NULL; | |
132 | static errno_t g_init_result = 0; | |
133 | ||
134 | static kern_ctl_ref g_flow_divert_kctl_ref = NULL; | |
135 | ||
136 | static struct protosw g_flow_divert_in_protosw; | |
137 | static struct pr_usrreqs g_flow_divert_in_usrreqs; | |
138 | static struct protosw g_flow_divert_in_udp_protosw; | |
139 | static struct pr_usrreqs g_flow_divert_in_udp_usrreqs; | |
140 | static struct ip6protosw g_flow_divert_in6_protosw; | |
141 | static struct pr_usrreqs g_flow_divert_in6_usrreqs; | |
142 | static struct ip6protosw g_flow_divert_in6_udp_protosw; | |
143 | static struct pr_usrreqs g_flow_divert_in6_udp_usrreqs; | |
144 | ||
145 | static struct protosw *g_tcp_protosw = NULL; | |
146 | static struct ip6protosw *g_tcp6_protosw = NULL; | |
147 | static struct protosw *g_udp_protosw = NULL; | |
148 | static struct ip6protosw *g_udp6_protosw = NULL; | |
149 | ||
150 | ZONE_DECLARE(flow_divert_group_zone, "flow_divert_group", | |
151 | sizeof(struct flow_divert_group), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); | |
152 | ZONE_DECLARE(flow_divert_pcb_zone, "flow_divert_pcb", | |
153 | sizeof(struct flow_divert_pcb), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); | |
154 | ||
155 | static errno_t | |
156 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, struct sockaddr **dup); | |
157 | ||
158 | static boolean_t | |
159 | flow_divert_is_sockaddr_valid(struct sockaddr *addr); | |
160 | ||
161 | static int | |
162 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr); | |
163 | ||
164 | struct sockaddr * | |
165 | flow_divert_get_buffered_target_address(mbuf_t buffer); | |
166 | ||
167 | static void | |
168 | flow_divert_disconnect_socket(struct socket *so); | |
169 | ||
170 | static inline uint8_t | |
171 | flow_divert_syslog_type_to_oslog_type(int syslog_type) | |
172 | { | |
173 | switch (syslog_type) { | |
174 | case LOG_ERR: return OS_LOG_TYPE_ERROR; | |
175 | case LOG_INFO: return OS_LOG_TYPE_INFO; | |
176 | case LOG_DEBUG: return OS_LOG_TYPE_DEBUG; | |
177 | default: return OS_LOG_TYPE_DEFAULT; | |
178 | } | |
179 | } | |
180 | ||
181 | static inline int | |
182 | flow_divert_pcb_cmp(const struct flow_divert_pcb *pcb_a, const struct flow_divert_pcb *pcb_b) | |
183 | { | |
184 | return memcmp(&pcb_a->hash, &pcb_b->hash, sizeof(pcb_a->hash)); | |
185 | } | |
186 | ||
187 | RB_PROTOTYPE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
188 | RB_GENERATE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
189 | ||
190 | static const char * | |
191 | flow_divert_packet_type2str(uint8_t packet_type) | |
192 | { | |
193 | switch (packet_type) { | |
194 | case FLOW_DIVERT_PKT_CONNECT: | |
195 | return "connect"; | |
196 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
197 | return "connect result"; | |
198 | case FLOW_DIVERT_PKT_DATA: | |
199 | return "data"; | |
200 | case FLOW_DIVERT_PKT_CLOSE: | |
201 | return "close"; | |
202 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
203 | return "read notification"; | |
204 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
205 | return "properties update"; | |
206 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
207 | return "app map create"; | |
208 | default: | |
209 | return "unknown"; | |
210 | } | |
211 | } | |
212 | ||
213 | static struct flow_divert_pcb * | |
214 | flow_divert_pcb_lookup(uint32_t hash, struct flow_divert_group *group) | |
215 | { | |
216 | struct flow_divert_pcb key_item; | |
217 | struct flow_divert_pcb *fd_cb = NULL; | |
218 | ||
219 | key_item.hash = hash; | |
220 | ||
221 | lck_rw_lock_shared(&group->lck); | |
222 | fd_cb = RB_FIND(fd_pcb_tree, &group->pcb_tree, &key_item); | |
223 | FDRETAIN(fd_cb); | |
224 | lck_rw_done(&group->lck); | |
225 | ||
226 | return fd_cb; | |
227 | } | |
228 | ||
229 | static errno_t | |
230 | flow_divert_pcb_insert(struct flow_divert_pcb *fd_cb, uint32_t ctl_unit) | |
231 | { | |
232 | errno_t error = 0; | |
233 | struct flow_divert_pcb *exist = NULL; | |
234 | struct flow_divert_group *group; | |
235 | static uint32_t g_nextkey = 1; | |
236 | static uint32_t g_hash_seed = 0; | |
237 | int try_count = 0; | |
238 | ||
239 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
240 | return EINVAL; | |
241 | } | |
242 | ||
243 | socket_unlock(fd_cb->so, 0); | |
244 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
245 | ||
246 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
247 | FDLOG0(LOG_ERR, &nil_pcb, "No active groups, flow divert cannot be used for this socket"); | |
248 | error = ENETUNREACH; | |
249 | goto done; | |
250 | } | |
251 | ||
252 | group = g_flow_divert_groups[ctl_unit]; | |
253 | if (group == NULL) { | |
254 | FDLOG(LOG_ERR, &nil_pcb, "Group for control unit %u is NULL, flow divert cannot be used for this socket", ctl_unit); | |
255 | error = ENETUNREACH; | |
256 | goto done; | |
257 | } | |
258 | ||
259 | socket_lock(fd_cb->so, 0); | |
260 | ||
261 | do { | |
262 | uint32_t key[2]; | |
263 | uint32_t idx; | |
264 | ||
265 | key[0] = g_nextkey++; | |
266 | key[1] = RandomULong(); | |
267 | ||
268 | if (g_hash_seed == 0) { | |
269 | g_hash_seed = RandomULong(); | |
270 | } | |
271 | ||
272 | fd_cb->hash = net_flowhash(key, sizeof(key), g_hash_seed); | |
273 | ||
274 | for (idx = 1; idx < GROUP_COUNT_MAX; idx++) { | |
275 | struct flow_divert_group *curr_group = g_flow_divert_groups[idx]; | |
276 | if (curr_group != NULL && curr_group != group) { | |
277 | lck_rw_lock_shared(&curr_group->lck); | |
278 | exist = RB_FIND(fd_pcb_tree, &curr_group->pcb_tree, fd_cb); | |
279 | lck_rw_done(&curr_group->lck); | |
280 | if (exist != NULL) { | |
281 | break; | |
282 | } | |
283 | } | |
284 | } | |
285 | ||
286 | if (exist == NULL) { | |
287 | lck_rw_lock_exclusive(&group->lck); | |
288 | exist = RB_INSERT(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
289 | lck_rw_done(&group->lck); | |
290 | } | |
291 | } while (exist != NULL && try_count++ < 3); | |
292 | ||
293 | if (exist == NULL) { | |
294 | fd_cb->group = group; | |
295 | FDRETAIN(fd_cb); /* The group now has a reference */ | |
296 | } else { | |
297 | fd_cb->hash = 0; | |
298 | error = EEXIST; | |
299 | } | |
300 | ||
301 | socket_unlock(fd_cb->so, 0); | |
302 | ||
303 | done: | |
304 | lck_rw_done(&g_flow_divert_group_lck); | |
305 | socket_lock(fd_cb->so, 0); | |
306 | ||
307 | return error; | |
308 | } | |
309 | ||
310 | static struct flow_divert_pcb * | |
311 | flow_divert_pcb_create(socket_t so) | |
312 | { | |
313 | struct flow_divert_pcb *new_pcb = NULL; | |
314 | ||
315 | new_pcb = zalloc_flags(flow_divert_pcb_zone, Z_WAITOK | Z_ZERO); | |
316 | lck_mtx_init(&new_pcb->mtx, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
317 | new_pcb->so = so; | |
318 | new_pcb->log_level = nil_pcb.log_level; | |
319 | ||
320 | FDRETAIN(new_pcb); /* Represents the socket's reference */ | |
321 | ||
322 | return new_pcb; | |
323 | } | |
324 | ||
325 | static void | |
326 | flow_divert_pcb_destroy(struct flow_divert_pcb *fd_cb) | |
327 | { | |
328 | FDLOG(LOG_INFO, fd_cb, "Destroying, app tx %u, tunnel tx %u, tunnel rx %u", | |
329 | fd_cb->bytes_written_by_app, fd_cb->bytes_sent, fd_cb->bytes_received); | |
330 | ||
331 | if (fd_cb->connect_token != NULL) { | |
332 | mbuf_freem(fd_cb->connect_token); | |
333 | } | |
334 | if (fd_cb->connect_packet != NULL) { | |
335 | mbuf_freem(fd_cb->connect_packet); | |
336 | } | |
337 | if (fd_cb->app_data != NULL) { | |
338 | FREE(fd_cb->app_data, M_TEMP); | |
339 | } | |
340 | if (fd_cb->original_remote_endpoint != NULL) { | |
341 | FREE(fd_cb->original_remote_endpoint, M_SONAME); | |
342 | } | |
343 | zfree(flow_divert_pcb_zone, fd_cb); | |
344 | } | |
345 | ||
346 | static void | |
347 | flow_divert_pcb_remove(struct flow_divert_pcb *fd_cb) | |
348 | { | |
349 | if (fd_cb->group != NULL) { | |
350 | struct flow_divert_group *group = fd_cb->group; | |
351 | lck_rw_lock_exclusive(&group->lck); | |
352 | FDLOG(LOG_INFO, fd_cb, "Removing from group %d, ref count = %d", group->ctl_unit, fd_cb->ref_count); | |
353 | RB_REMOVE(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
354 | fd_cb->group = NULL; | |
355 | FDRELEASE(fd_cb); /* Release the group's reference */ | |
356 | lck_rw_done(&group->lck); | |
357 | } | |
358 | } | |
359 | ||
360 | static int | |
361 | flow_divert_packet_init(struct flow_divert_pcb *fd_cb, uint8_t packet_type, mbuf_t *packet) | |
362 | { | |
363 | struct flow_divert_packet_header hdr; | |
364 | int error = 0; | |
365 | ||
366 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, packet); | |
367 | if (error) { | |
368 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
369 | return error; | |
370 | } | |
371 | ||
372 | hdr.packet_type = packet_type; | |
373 | hdr.conn_id = htonl(fd_cb->hash); | |
374 | ||
375 | /* Lay down the header */ | |
376 | error = mbuf_copyback(*packet, 0, sizeof(hdr), &hdr, MBUF_DONTWAIT); | |
377 | if (error) { | |
378 | FDLOG(LOG_ERR, fd_cb, "mbuf_copyback(hdr) failed: %d", error); | |
379 | mbuf_freem(*packet); | |
380 | *packet = NULL; | |
381 | return error; | |
382 | } | |
383 | ||
384 | return 0; | |
385 | } | |
386 | ||
387 | static int | |
388 | flow_divert_packet_append_tlv(mbuf_t packet, uint8_t type, uint32_t length, const void *value) | |
389 | { | |
390 | uint32_t net_length = htonl(length); | |
391 | int error = 0; | |
392 | ||
393 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(type), &type, MBUF_DONTWAIT); | |
394 | if (error) { | |
395 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the type (%d)", type); | |
396 | return error; | |
397 | } | |
398 | ||
399 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(net_length), &net_length, MBUF_DONTWAIT); | |
400 | if (error) { | |
401 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the length (%u)", length); | |
402 | return error; | |
403 | } | |
404 | ||
405 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), length, value, MBUF_DONTWAIT); | |
406 | if (error) { | |
407 | FDLOG0(LOG_ERR, &nil_pcb, "failed to append the value"); | |
408 | return error; | |
409 | } | |
410 | ||
411 | return error; | |
412 | } | |
413 | ||
414 | static int | |
415 | flow_divert_packet_find_tlv(mbuf_t packet, int offset, uint8_t type, int *err, int next) | |
416 | { | |
417 | size_t cursor = offset; | |
418 | int error = 0; | |
419 | uint32_t curr_length; | |
420 | uint8_t curr_type; | |
421 | ||
422 | *err = 0; | |
423 | ||
424 | do { | |
425 | if (!next) { | |
426 | error = mbuf_copydata(packet, cursor, sizeof(curr_type), &curr_type); | |
427 | if (error) { | |
428 | *err = ENOENT; | |
429 | return -1; | |
430 | } | |
431 | } else { | |
432 | next = 0; | |
433 | curr_type = FLOW_DIVERT_TLV_NIL; | |
434 | } | |
435 | ||
436 | if (curr_type != type) { | |
437 | cursor += sizeof(curr_type); | |
438 | error = mbuf_copydata(packet, cursor, sizeof(curr_length), &curr_length); | |
439 | if (error) { | |
440 | *err = error; | |
441 | return -1; | |
442 | } | |
443 | ||
444 | cursor += (sizeof(curr_length) + ntohl(curr_length)); | |
445 | } | |
446 | } while (curr_type != type); | |
447 | ||
448 | return (int)cursor; | |
449 | } | |
450 | ||
451 | static int | |
452 | flow_divert_packet_get_tlv(mbuf_t packet, int offset, uint8_t type, size_t buff_len, void *buff, uint32_t *val_size) | |
453 | { | |
454 | int error = 0; | |
455 | uint32_t length; | |
456 | int tlv_offset; | |
457 | ||
458 | tlv_offset = flow_divert_packet_find_tlv(packet, offset, type, &error, 0); | |
459 | if (tlv_offset < 0) { | |
460 | return error; | |
461 | } | |
462 | ||
463 | error = mbuf_copydata(packet, tlv_offset + sizeof(type), sizeof(length), &length); | |
464 | if (error) { | |
465 | return error; | |
466 | } | |
467 | ||
468 | length = ntohl(length); | |
469 | ||
470 | uint32_t data_offset = tlv_offset + sizeof(type) + sizeof(length); | |
471 | ||
472 | if (length > (mbuf_pkthdr_len(packet) - data_offset)) { | |
473 | FDLOG(LOG_ERR, &nil_pcb, "Length of %u TLV (%u) is larger than remaining packet data (%lu)", type, length, (mbuf_pkthdr_len(packet) - data_offset)); | |
474 | return EINVAL; | |
475 | } | |
476 | ||
477 | if (val_size != NULL) { | |
478 | *val_size = length; | |
479 | } | |
480 | ||
481 | if (buff != NULL && buff_len > 0) { | |
482 | memset(buff, 0, buff_len); | |
483 | size_t to_copy = (length < buff_len) ? length : buff_len; | |
484 | error = mbuf_copydata(packet, data_offset, to_copy, buff); | |
485 | if (error) { | |
486 | return error; | |
487 | } | |
488 | } | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
493 | static int | |
494 | flow_divert_packet_compute_hmac(mbuf_t packet, struct flow_divert_group *group, uint8_t *hmac) | |
495 | { | |
496 | mbuf_t curr_mbuf = packet; | |
497 | ||
498 | if (g_crypto_funcs == NULL || group->token_key == NULL) { | |
499 | return ENOPROTOOPT; | |
500 | } | |
501 | ||
502 | cchmac_di_decl(g_crypto_funcs->ccsha1_di, hmac_ctx); | |
503 | g_crypto_funcs->cchmac_init_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, group->token_key_size, group->token_key); | |
504 | ||
505 | while (curr_mbuf != NULL) { | |
506 | g_crypto_funcs->cchmac_update_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, mbuf_len(curr_mbuf), mbuf_data(curr_mbuf)); | |
507 | curr_mbuf = mbuf_next(curr_mbuf); | |
508 | } | |
509 | ||
510 | g_crypto_funcs->cchmac_final_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, hmac); | |
511 | ||
512 | return 0; | |
513 | } | |
514 | ||
515 | static int | |
516 | flow_divert_packet_verify_hmac(mbuf_t packet, uint32_t ctl_unit) | |
517 | { | |
518 | int error = 0; | |
519 | struct flow_divert_group *group = NULL; | |
520 | int hmac_offset; | |
521 | uint8_t packet_hmac[SHA_DIGEST_LENGTH]; | |
522 | uint8_t computed_hmac[SHA_DIGEST_LENGTH]; | |
523 | mbuf_t tail; | |
524 | ||
525 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
526 | ||
527 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
528 | group = g_flow_divert_groups[ctl_unit]; | |
529 | } | |
530 | ||
531 | if (group == NULL) { | |
532 | lck_rw_done(&g_flow_divert_group_lck); | |
533 | return ENOPROTOOPT; | |
534 | } | |
535 | ||
536 | lck_rw_lock_shared(&group->lck); | |
537 | ||
538 | if (group->token_key == NULL) { | |
539 | error = ENOPROTOOPT; | |
540 | goto done; | |
541 | } | |
542 | ||
543 | hmac_offset = flow_divert_packet_find_tlv(packet, 0, FLOW_DIVERT_TLV_HMAC, &error, 0); | |
544 | if (hmac_offset < 0) { | |
545 | goto done; | |
546 | } | |
547 | ||
548 | error = flow_divert_packet_get_tlv(packet, hmac_offset, FLOW_DIVERT_TLV_HMAC, sizeof(packet_hmac), packet_hmac, NULL); | |
549 | if (error) { | |
550 | goto done; | |
551 | } | |
552 | ||
553 | /* Chop off the HMAC TLV */ | |
554 | error = mbuf_split(packet, hmac_offset, MBUF_WAITOK, &tail); | |
555 | if (error) { | |
556 | goto done; | |
557 | } | |
558 | ||
559 | mbuf_free(tail); | |
560 | ||
561 | error = flow_divert_packet_compute_hmac(packet, group, computed_hmac); | |
562 | if (error) { | |
563 | goto done; | |
564 | } | |
565 | ||
566 | if (cc_cmp_safe(sizeof(packet_hmac), packet_hmac, computed_hmac)) { | |
567 | FDLOG0(LOG_WARNING, &nil_pcb, "HMAC in token does not match computed HMAC"); | |
568 | error = EINVAL; | |
569 | goto done; | |
570 | } | |
571 | ||
572 | done: | |
573 | lck_rw_done(&group->lck); | |
574 | lck_rw_done(&g_flow_divert_group_lck); | |
575 | return error; | |
576 | } | |
577 | ||
578 | static void | |
579 | flow_divert_add_data_statistics(struct flow_divert_pcb *fd_cb, size_t data_len, Boolean send) | |
580 | { | |
581 | struct inpcb *inp = NULL; | |
582 | struct ifnet *ifp = NULL; | |
583 | Boolean cell = FALSE; | |
584 | Boolean wifi = FALSE; | |
585 | Boolean wired = FALSE; | |
586 | ||
587 | inp = sotoinpcb(fd_cb->so); | |
588 | if (inp == NULL) { | |
589 | return; | |
590 | } | |
591 | ||
592 | if (inp->inp_vflag & INP_IPV4) { | |
593 | ifp = inp->inp_last_outifp; | |
594 | } else if (inp->inp_vflag & INP_IPV6) { | |
595 | ifp = inp->in6p_last_outifp; | |
596 | } | |
597 | if (ifp != NULL) { | |
598 | cell = IFNET_IS_CELLULAR(ifp); | |
599 | wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
600 | wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
601 | } | |
602 | ||
603 | if (send) { | |
604 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); | |
605 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, data_len); | |
606 | } else { | |
607 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); | |
608 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, data_len); | |
609 | } | |
610 | inp_set_activity_bitmap(inp); | |
611 | } | |
612 | ||
613 | static errno_t | |
614 | flow_divert_check_no_cellular(struct flow_divert_pcb *fd_cb) | |
615 | { | |
616 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
617 | if (INP_NO_CELLULAR(inp)) { | |
618 | struct ifnet *ifp = NULL; | |
619 | if (inp->inp_vflag & INP_IPV4) { | |
620 | ifp = inp->inp_last_outifp; | |
621 | } else if (inp->inp_vflag & INP_IPV6) { | |
622 | ifp = inp->in6p_last_outifp; | |
623 | } | |
624 | if (ifp != NULL && IFNET_IS_CELLULAR(ifp)) { | |
625 | FDLOG0(LOG_ERR, fd_cb, "Cellular is denied"); | |
626 | return EHOSTUNREACH; | |
627 | } | |
628 | } | |
629 | return 0; | |
630 | } | |
631 | ||
632 | static errno_t | |
633 | flow_divert_check_no_expensive(struct flow_divert_pcb *fd_cb) | |
634 | { | |
635 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
636 | if (INP_NO_EXPENSIVE(inp)) { | |
637 | struct ifnet *ifp = NULL; | |
638 | if (inp->inp_vflag & INP_IPV4) { | |
639 | ifp = inp->inp_last_outifp; | |
640 | } else if (inp->inp_vflag & INP_IPV6) { | |
641 | ifp = inp->in6p_last_outifp; | |
642 | } | |
643 | if (ifp != NULL && IFNET_IS_EXPENSIVE(ifp)) { | |
644 | FDLOG0(LOG_ERR, fd_cb, "Expensive is denied"); | |
645 | return EHOSTUNREACH; | |
646 | } | |
647 | } | |
648 | return 0; | |
649 | } | |
650 | ||
651 | static errno_t | |
652 | flow_divert_check_no_constrained(struct flow_divert_pcb *fd_cb) | |
653 | { | |
654 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
655 | if (INP_NO_CONSTRAINED(inp)) { | |
656 | struct ifnet *ifp = NULL; | |
657 | if (inp->inp_vflag & INP_IPV4) { | |
658 | ifp = inp->inp_last_outifp; | |
659 | } else if (inp->inp_vflag & INP_IPV6) { | |
660 | ifp = inp->in6p_last_outifp; | |
661 | } | |
662 | if (ifp != NULL && IFNET_IS_CONSTRAINED(ifp)) { | |
663 | FDLOG0(LOG_ERR, fd_cb, "Constrained is denied"); | |
664 | return EHOSTUNREACH; | |
665 | } | |
666 | } | |
667 | return 0; | |
668 | } | |
669 | ||
670 | static void | |
671 | flow_divert_update_closed_state(struct flow_divert_pcb *fd_cb, int how, Boolean tunnel) | |
672 | { | |
673 | if (how != SHUT_RD) { | |
674 | fd_cb->flags |= FLOW_DIVERT_WRITE_CLOSED; | |
675 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
676 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
677 | /* If the tunnel is not accepting writes any more, then flush the send buffer */ | |
678 | sbflush(&fd_cb->so->so_snd); | |
679 | } | |
680 | } | |
681 | if (how != SHUT_WR) { | |
682 | fd_cb->flags |= FLOW_DIVERT_READ_CLOSED; | |
683 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
684 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
685 | } | |
686 | } | |
687 | } | |
688 | ||
689 | static uint16_t | |
690 | trie_node_alloc(struct flow_divert_trie *trie) | |
691 | { | |
692 | if (trie->nodes_free_next < trie->nodes_count) { | |
693 | uint16_t node_idx = trie->nodes_free_next++; | |
694 | TRIE_NODE(trie, node_idx).child_map = NULL_TRIE_IDX; | |
695 | return node_idx; | |
696 | } else { | |
697 | return NULL_TRIE_IDX; | |
698 | } | |
699 | } | |
700 | ||
701 | static uint16_t | |
702 | trie_child_map_alloc(struct flow_divert_trie *trie) | |
703 | { | |
704 | if (trie->child_maps_free_next < trie->child_maps_count) { | |
705 | return trie->child_maps_free_next++; | |
706 | } else { | |
707 | return NULL_TRIE_IDX; | |
708 | } | |
709 | } | |
710 | ||
711 | static uint16_t | |
712 | trie_bytes_move(struct flow_divert_trie *trie, uint16_t bytes_idx, size_t bytes_size) | |
713 | { | |
714 | uint16_t start = trie->bytes_free_next; | |
715 | if (start + bytes_size <= trie->bytes_count) { | |
716 | if (start != bytes_idx) { | |
717 | memmove(&TRIE_BYTE(trie, start), &TRIE_BYTE(trie, bytes_idx), bytes_size); | |
718 | } | |
719 | trie->bytes_free_next += bytes_size; | |
720 | return start; | |
721 | } else { | |
722 | return NULL_TRIE_IDX; | |
723 | } | |
724 | } | |
725 | ||
726 | static uint16_t | |
727 | flow_divert_trie_insert(struct flow_divert_trie *trie, uint16_t string_start, size_t string_len) | |
728 | { | |
729 | uint16_t current = trie->root; | |
730 | uint16_t child = trie->root; | |
731 | uint16_t string_end = string_start + (uint16_t)string_len; | |
732 | uint16_t string_idx = string_start; | |
733 | uint16_t string_remainder = (uint16_t)string_len; | |
734 | ||
735 | while (child != NULL_TRIE_IDX) { | |
736 | uint16_t parent = current; | |
737 | uint16_t node_idx; | |
738 | uint16_t current_end; | |
739 | ||
740 | current = child; | |
741 | child = NULL_TRIE_IDX; | |
742 | ||
743 | current_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
744 | ||
745 | for (node_idx = TRIE_NODE(trie, current).start; | |
746 | node_idx < current_end && | |
747 | string_idx < string_end && | |
748 | TRIE_BYTE(trie, node_idx) == TRIE_BYTE(trie, string_idx); | |
749 | node_idx++, string_idx++) { | |
750 | ; | |
751 | } | |
752 | ||
753 | string_remainder = string_end - string_idx; | |
754 | ||
755 | if (node_idx < (TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length)) { | |
756 | /* | |
757 | * We did not reach the end of the current node's string. | |
758 | * We need to split the current node into two: | |
759 | * 1. A new node that contains the prefix of the node that matches | |
760 | * the prefix of the string being inserted. | |
761 | * 2. The current node modified to point to the remainder | |
762 | * of the current node's string. | |
763 | */ | |
764 | uint16_t prefix = trie_node_alloc(trie); | |
765 | if (prefix == NULL_TRIE_IDX) { | |
766 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while splitting an existing node"); | |
767 | return NULL_TRIE_IDX; | |
768 | } | |
769 | ||
770 | /* | |
771 | * Prefix points to the portion of the current nodes's string that has matched | |
772 | * the input string thus far. | |
773 | */ | |
774 | TRIE_NODE(trie, prefix).start = TRIE_NODE(trie, current).start; | |
775 | TRIE_NODE(trie, prefix).length = (node_idx - TRIE_NODE(trie, current).start); | |
776 | ||
777 | /* | |
778 | * Prefix has the current node as the child corresponding to the first byte | |
779 | * after the split. | |
780 | */ | |
781 | TRIE_NODE(trie, prefix).child_map = trie_child_map_alloc(trie); | |
782 | if (TRIE_NODE(trie, prefix).child_map == NULL_TRIE_IDX) { | |
783 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while splitting an existing node"); | |
784 | return NULL_TRIE_IDX; | |
785 | } | |
786 | TRIE_CHILD(trie, prefix, TRIE_BYTE(trie, node_idx)) = current; | |
787 | ||
788 | /* Parent has the prefix as the child correspoding to the first byte in the prefix */ | |
789 | TRIE_CHILD(trie, parent, TRIE_BYTE(trie, TRIE_NODE(trie, prefix).start)) = prefix; | |
790 | ||
791 | /* Current node is adjusted to point to the remainder */ | |
792 | TRIE_NODE(trie, current).start = node_idx; | |
793 | TRIE_NODE(trie, current).length -= TRIE_NODE(trie, prefix).length; | |
794 | ||
795 | /* We want to insert the new leaf (if any) as a child of the prefix */ | |
796 | current = prefix; | |
797 | } | |
798 | ||
799 | if (string_remainder > 0) { | |
800 | /* | |
801 | * We still have bytes in the string that have not been matched yet. | |
802 | * If the current node has children, iterate to the child corresponding | |
803 | * to the next byte in the string. | |
804 | */ | |
805 | if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
806 | child = TRIE_CHILD(trie, current, TRIE_BYTE(trie, string_idx)); | |
807 | } | |
808 | } | |
809 | } /* while (child != NULL_TRIE_IDX) */ | |
810 | ||
811 | if (string_remainder > 0) { | |
812 | /* Add a new leaf containing the remainder of the string */ | |
813 | uint16_t leaf = trie_node_alloc(trie); | |
814 | if (leaf == NULL_TRIE_IDX) { | |
815 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while inserting a new leaf"); | |
816 | return NULL_TRIE_IDX; | |
817 | } | |
818 | ||
819 | TRIE_NODE(trie, leaf).start = trie_bytes_move(trie, string_idx, string_remainder); | |
820 | if (TRIE_NODE(trie, leaf).start == NULL_TRIE_IDX) { | |
821 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of bytes while inserting a new leaf"); | |
822 | return NULL_TRIE_IDX; | |
823 | } | |
824 | TRIE_NODE(trie, leaf).length = string_remainder; | |
825 | ||
826 | /* Set the new leaf as the child of the current node */ | |
827 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
828 | TRIE_NODE(trie, current).child_map = trie_child_map_alloc(trie); | |
829 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
830 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while inserting a new leaf"); | |
831 | return NULL_TRIE_IDX; | |
832 | } | |
833 | } | |
834 | TRIE_CHILD(trie, current, TRIE_BYTE(trie, TRIE_NODE(trie, leaf).start)) = leaf; | |
835 | current = leaf; | |
836 | } /* else duplicate or this string is a prefix of one of the existing strings */ | |
837 | ||
838 | return current; | |
839 | } | |
840 | ||
841 | #define APPLE_WEBCLIP_ID_PREFIX "com.apple.webapp" | |
842 | static uint16_t | |
843 | flow_divert_trie_search(struct flow_divert_trie *trie, const uint8_t *string_bytes) | |
844 | { | |
845 | uint16_t current = trie->root; | |
846 | uint16_t string_idx = 0; | |
847 | ||
848 | while (current != NULL_TRIE_IDX) { | |
849 | uint16_t next = NULL_TRIE_IDX; | |
850 | uint16_t node_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
851 | uint16_t node_idx; | |
852 | ||
853 | for (node_idx = TRIE_NODE(trie, current).start; | |
854 | node_idx < node_end && string_bytes[string_idx] != '\0' && string_bytes[string_idx] == TRIE_BYTE(trie, node_idx); | |
855 | node_idx++, string_idx++) { | |
856 | ; | |
857 | } | |
858 | ||
859 | if (node_idx == node_end) { | |
860 | if (string_bytes[string_idx] == '\0') { | |
861 | return current; /* Got an exact match */ | |
862 | } else if (string_idx == strlen(APPLE_WEBCLIP_ID_PREFIX) && | |
863 | 0 == strncmp((const char *)string_bytes, APPLE_WEBCLIP_ID_PREFIX, string_idx)) { | |
864 | return current; /* Got an apple webclip id prefix match */ | |
865 | } else if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
866 | next = TRIE_CHILD(trie, current, string_bytes[string_idx]); | |
867 | } | |
868 | } | |
869 | current = next; | |
870 | } | |
871 | ||
872 | return NULL_TRIE_IDX; | |
873 | } | |
874 | ||
875 | struct uuid_search_info { | |
876 | uuid_t target_uuid; | |
877 | char *found_signing_id; | |
878 | boolean_t found_multiple_signing_ids; | |
879 | proc_t found_proc; | |
880 | }; | |
881 | ||
882 | static int | |
883 | flow_divert_find_proc_by_uuid_callout(proc_t p, void *arg) | |
884 | { | |
885 | struct uuid_search_info *info = (struct uuid_search_info *)arg; | |
886 | int result = PROC_RETURNED_DONE; /* By default, we didn't find the process */ | |
887 | ||
888 | if (info->found_signing_id != NULL) { | |
889 | if (!info->found_multiple_signing_ids) { | |
890 | /* All processes that were found had the same signing identifier, so just claim this first one and be done. */ | |
891 | info->found_proc = p; | |
892 | result = PROC_CLAIMED_DONE; | |
893 | } else { | |
894 | uuid_string_t uuid_str; | |
895 | uuid_unparse(info->target_uuid, uuid_str); | |
896 | FDLOG(LOG_WARNING, &nil_pcb, "Found multiple processes with UUID %s with different signing identifiers", uuid_str); | |
897 | } | |
898 | FREE(info->found_signing_id, M_TEMP); | |
899 | info->found_signing_id = NULL; | |
900 | } | |
901 | ||
902 | if (result == PROC_RETURNED_DONE) { | |
903 | uuid_string_t uuid_str; | |
904 | uuid_unparse(info->target_uuid, uuid_str); | |
905 | FDLOG(LOG_WARNING, &nil_pcb, "Failed to find a process with UUID %s", uuid_str); | |
906 | } | |
907 | ||
908 | return result; | |
909 | } | |
910 | ||
911 | static int | |
912 | flow_divert_find_proc_by_uuid_filter(proc_t p, void *arg) | |
913 | { | |
914 | struct uuid_search_info *info = (struct uuid_search_info *)arg; | |
915 | int include = 0; | |
916 | ||
917 | if (info->found_multiple_signing_ids) { | |
918 | return include; | |
919 | } | |
920 | ||
921 | include = (uuid_compare(p->p_uuid, info->target_uuid) == 0); | |
922 | if (include) { | |
923 | const char *signing_id = cs_identity_get(p); | |
924 | if (signing_id != NULL) { | |
925 | FDLOG(LOG_INFO, &nil_pcb, "Found process %d with signing identifier %s", p->p_pid, signing_id); | |
926 | size_t signing_id_size = strlen(signing_id) + 1; | |
927 | if (info->found_signing_id == NULL) { | |
928 | MALLOC(info->found_signing_id, char *, signing_id_size, M_TEMP, M_WAITOK); | |
929 | memcpy(info->found_signing_id, signing_id, signing_id_size); | |
930 | } else if (memcmp(signing_id, info->found_signing_id, signing_id_size)) { | |
931 | info->found_multiple_signing_ids = TRUE; | |
932 | } | |
933 | } else { | |
934 | info->found_multiple_signing_ids = TRUE; | |
935 | } | |
936 | include = !info->found_multiple_signing_ids; | |
937 | } | |
938 | ||
939 | return include; | |
940 | } | |
941 | ||
942 | static proc_t | |
943 | flow_divert_find_proc_by_uuid(uuid_t uuid) | |
944 | { | |
945 | struct uuid_search_info info; | |
946 | ||
947 | if (LOG_INFO <= nil_pcb.log_level) { | |
948 | uuid_string_t uuid_str; | |
949 | uuid_unparse(uuid, uuid_str); | |
950 | FDLOG(LOG_INFO, &nil_pcb, "Looking for process with UUID %s", uuid_str); | |
951 | } | |
952 | ||
953 | memset(&info, 0, sizeof(info)); | |
954 | info.found_proc = PROC_NULL; | |
955 | uuid_copy(info.target_uuid, uuid); | |
956 | ||
957 | proc_iterate(PROC_ALLPROCLIST, flow_divert_find_proc_by_uuid_callout, &info, flow_divert_find_proc_by_uuid_filter, &info); | |
958 | ||
959 | return info.found_proc; | |
960 | } | |
961 | ||
962 | static int | |
963 | flow_divert_add_proc_info(struct flow_divert_pcb *fd_cb, proc_t proc, const char *signing_id, mbuf_t connect_packet, bool is_effective) | |
964 | { | |
965 | int error = 0; | |
966 | uint8_t *cdhash = NULL; | |
967 | audit_token_t audit_token = {}; | |
968 | const char *proc_cs_id = signing_id; | |
969 | ||
970 | proc_lock(proc); | |
971 | ||
972 | if (proc_cs_id == NULL) { | |
973 | if (proc->p_csflags & (CS_VALID | CS_DEBUGGED)) { | |
974 | proc_cs_id = cs_identity_get(proc); | |
975 | } else { | |
976 | FDLOG0(LOG_ERR, fd_cb, "Signature of proc is invalid"); | |
977 | } | |
978 | } | |
979 | ||
980 | if (is_effective) { | |
981 | lck_rw_lock_shared(&fd_cb->group->lck); | |
982 | if (!(fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP)) { | |
983 | if (proc_cs_id != NULL) { | |
984 | uint16_t result = flow_divert_trie_search(&fd_cb->group->signing_id_trie, (const uint8_t *)proc_cs_id); | |
985 | if (result == NULL_TRIE_IDX) { | |
986 | FDLOG(LOG_WARNING, fd_cb, "%s did not match", proc_cs_id); | |
987 | error = EPERM; | |
988 | } else { | |
989 | FDLOG(LOG_INFO, fd_cb, "%s matched", proc_cs_id); | |
990 | } | |
991 | } else { | |
992 | error = EPERM; | |
993 | } | |
994 | } | |
995 | lck_rw_done(&fd_cb->group->lck); | |
996 | } | |
997 | ||
998 | if (error != 0) { | |
999 | goto done; | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * If signing_id is not NULL then it came from the flow divert token and will be added | |
1004 | * as part of the token, so there is no need to add it here. | |
1005 | */ | |
1006 | if (signing_id == NULL && proc_cs_id != NULL) { | |
1007 | error = flow_divert_packet_append_tlv(connect_packet, | |
1008 | (is_effective ? FLOW_DIVERT_TLV_SIGNING_ID : FLOW_DIVERT_TLV_APP_REAL_SIGNING_ID), | |
1009 | (uint32_t)strlen(proc_cs_id), | |
1010 | proc_cs_id); | |
1011 | if (error != 0) { | |
1012 | FDLOG(LOG_ERR, fd_cb, "failed to append the signing ID: %d", error); | |
1013 | goto done; | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | cdhash = cs_get_cdhash(proc); | |
1018 | if (cdhash != NULL) { | |
1019 | error = flow_divert_packet_append_tlv(connect_packet, | |
1020 | (is_effective ? FLOW_DIVERT_TLV_CDHASH : FLOW_DIVERT_TLV_APP_REAL_CDHASH), | |
1021 | SHA1_RESULTLEN, | |
1022 | cdhash); | |
1023 | if (error) { | |
1024 | FDLOG(LOG_ERR, fd_cb, "failed to append the cdhash: %d", error); | |
1025 | goto done; | |
1026 | } | |
1027 | } else { | |
1028 | FDLOG0(LOG_ERR, fd_cb, "failed to get the cdhash"); | |
1029 | } | |
1030 | ||
1031 | task_t task = proc_task(proc); | |
1032 | if (task != TASK_NULL) { | |
1033 | mach_msg_type_number_t count = TASK_AUDIT_TOKEN_COUNT; | |
1034 | kern_return_t rc = task_info(task, TASK_AUDIT_TOKEN, (task_info_t)&audit_token, &count); | |
1035 | if (rc == KERN_SUCCESS) { | |
1036 | int append_error = flow_divert_packet_append_tlv(connect_packet, | |
1037 | (is_effective ? FLOW_DIVERT_TLV_APP_AUDIT_TOKEN : FLOW_DIVERT_TLV_APP_REAL_AUDIT_TOKEN), | |
1038 | sizeof(audit_token_t), | |
1039 | &audit_token); | |
1040 | if (append_error) { | |
1041 | FDLOG(LOG_ERR, fd_cb, "failed to append app audit token: %d", append_error); | |
1042 | } | |
1043 | } | |
1044 | } | |
1045 | ||
1046 | done: | |
1047 | proc_unlock(proc); | |
1048 | ||
1049 | return error; | |
1050 | } | |
1051 | ||
1052 | static int | |
1053 | flow_divert_add_all_proc_info(struct flow_divert_pcb *fd_cb, struct socket *so, proc_t proc, const char *signing_id, mbuf_t connect_packet) | |
1054 | { | |
1055 | int error = 0; | |
1056 | proc_t effective_proc = PROC_NULL; | |
1057 | proc_t responsible_proc = PROC_NULL; | |
1058 | proc_t real_proc = proc_find(so->last_pid); | |
1059 | bool release_real_proc = true; | |
1060 | ||
1061 | proc_t src_proc = PROC_NULL; | |
1062 | proc_t real_src_proc = PROC_NULL; | |
1063 | ||
1064 | if (real_proc == PROC_NULL) { | |
1065 | FDLOG(LOG_ERR, fd_cb, "failed to find the real proc record for %d", so->last_pid); | |
1066 | release_real_proc = false; | |
1067 | real_proc = proc; | |
1068 | if (real_proc == PROC_NULL) { | |
1069 | real_proc = current_proc(); | |
1070 | } | |
1071 | } | |
1072 | ||
1073 | if (so->so_flags & SOF_DELEGATED) { | |
1074 | if (real_proc->p_pid != so->e_pid) { | |
1075 | effective_proc = proc_find(so->e_pid); | |
1076 | } else if (uuid_compare(real_proc->p_uuid, so->e_uuid)) { | |
1077 | effective_proc = flow_divert_find_proc_by_uuid(so->e_uuid); | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | #if defined(XNU_TARGET_OS_OSX) | |
1082 | lck_rw_lock_shared(&fd_cb->group->lck); | |
1083 | if (!(fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP)) { | |
1084 | if (so->so_rpid > 0) { | |
1085 | responsible_proc = proc_find(so->so_rpid); | |
1086 | } | |
1087 | } | |
1088 | lck_rw_done(&fd_cb->group->lck); | |
1089 | #endif | |
1090 | ||
1091 | real_src_proc = real_proc; | |
1092 | ||
1093 | if (responsible_proc != PROC_NULL) { | |
1094 | src_proc = responsible_proc; | |
1095 | if (effective_proc != NULL) { | |
1096 | real_src_proc = effective_proc; | |
1097 | } | |
1098 | } else if (effective_proc != PROC_NULL) { | |
1099 | src_proc = effective_proc; | |
1100 | } else { | |
1101 | src_proc = real_proc; | |
1102 | } | |
1103 | ||
1104 | error = flow_divert_add_proc_info(fd_cb, src_proc, signing_id, connect_packet, true); | |
1105 | if (error != 0) { | |
1106 | goto done; | |
1107 | } | |
1108 | ||
1109 | if (real_src_proc != NULL && real_src_proc != src_proc) { | |
1110 | error = flow_divert_add_proc_info(fd_cb, real_src_proc, NULL, connect_packet, false); | |
1111 | if (error != 0) { | |
1112 | goto done; | |
1113 | } | |
1114 | } | |
1115 | ||
1116 | done: | |
1117 | if (responsible_proc != PROC_NULL) { | |
1118 | proc_rele(responsible_proc); | |
1119 | } | |
1120 | ||
1121 | if (effective_proc != PROC_NULL) { | |
1122 | proc_rele(effective_proc); | |
1123 | } | |
1124 | ||
1125 | if (real_proc != PROC_NULL && release_real_proc) { | |
1126 | proc_rele(real_proc); | |
1127 | } | |
1128 | ||
1129 | return error; | |
1130 | } | |
1131 | ||
1132 | static int | |
1133 | flow_divert_send_packet(struct flow_divert_pcb *fd_cb, mbuf_t packet, Boolean enqueue) | |
1134 | { | |
1135 | int error; | |
1136 | ||
1137 | if (fd_cb->group == NULL) { | |
1138 | fd_cb->so->so_error = ECONNABORTED; | |
1139 | flow_divert_disconnect_socket(fd_cb->so); | |
1140 | return ECONNABORTED; | |
1141 | } | |
1142 | ||
1143 | lck_rw_lock_shared(&fd_cb->group->lck); | |
1144 | ||
1145 | if (MBUFQ_EMPTY(&fd_cb->group->send_queue)) { | |
1146 | error = ctl_enqueuembuf(g_flow_divert_kctl_ref, fd_cb->group->ctl_unit, packet, CTL_DATA_EOR); | |
1147 | } else { | |
1148 | error = ENOBUFS; | |
1149 | } | |
1150 | ||
1151 | if (error == ENOBUFS) { | |
1152 | if (enqueue) { | |
1153 | if (!lck_rw_lock_shared_to_exclusive(&fd_cb->group->lck)) { | |
1154 | lck_rw_lock_exclusive(&fd_cb->group->lck); | |
1155 | } | |
1156 | MBUFQ_ENQUEUE(&fd_cb->group->send_queue, packet); | |
1157 | error = 0; | |
1158 | } | |
1159 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &fd_cb->group->atomic_bits); | |
1160 | } | |
1161 | ||
1162 | lck_rw_done(&fd_cb->group->lck); | |
1163 | ||
1164 | return error; | |
1165 | } | |
1166 | ||
1167 | static int | |
1168 | flow_divert_create_connect_packet(struct flow_divert_pcb *fd_cb, struct sockaddr *to, struct socket *so, proc_t p, mbuf_t *out_connect_packet) | |
1169 | { | |
1170 | int error = 0; | |
1171 | int flow_type = 0; | |
1172 | char *signing_id = NULL; | |
1173 | mbuf_t connect_packet = NULL; | |
1174 | cfil_sock_id_t cfil_sock_id = CFIL_SOCK_ID_NONE; | |
1175 | const void *cfil_id = NULL; | |
1176 | size_t cfil_id_size = 0; | |
1177 | struct inpcb *inp = sotoinpcb(so); | |
1178 | struct ifnet *ifp = NULL; | |
1179 | uint32_t flags = 0; | |
1180 | ||
1181 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT, &connect_packet); | |
1182 | if (error) { | |
1183 | goto done; | |
1184 | } | |
1185 | ||
1186 | if (fd_cb->connect_token != NULL && (fd_cb->flags & FLOW_DIVERT_HAS_HMAC)) { | |
1187 | uint32_t sid_size = 0; | |
1188 | int find_error = flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1189 | if (find_error == 0 && sid_size > 0) { | |
1190 | MALLOC(signing_id, char *, sid_size + 1, M_TEMP, M_WAITOK | M_ZERO); | |
1191 | if (signing_id != NULL) { | |
1192 | flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, signing_id, NULL); | |
1193 | FDLOG(LOG_INFO, fd_cb, "Got %s from token", signing_id); | |
1194 | } | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | socket_unlock(so, 0); | |
1199 | ||
1200 | error = flow_divert_add_all_proc_info(fd_cb, so, p, signing_id, connect_packet); | |
1201 | ||
1202 | socket_lock(so, 0); | |
1203 | ||
1204 | if (signing_id != NULL) { | |
1205 | FREE(signing_id, M_TEMP); | |
1206 | } | |
1207 | ||
1208 | if (error) { | |
1209 | FDLOG(LOG_ERR, fd_cb, "Failed to add source proc info: %d", error); | |
1210 | goto done; | |
1211 | } | |
1212 | ||
1213 | error = flow_divert_packet_append_tlv(connect_packet, | |
1214 | FLOW_DIVERT_TLV_TRAFFIC_CLASS, | |
1215 | sizeof(fd_cb->so->so_traffic_class), | |
1216 | &fd_cb->so->so_traffic_class); | |
1217 | if (error) { | |
1218 | goto done; | |
1219 | } | |
1220 | ||
1221 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1222 | flow_type = FLOW_DIVERT_FLOW_TYPE_TCP; | |
1223 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1224 | flow_type = FLOW_DIVERT_FLOW_TYPE_UDP; | |
1225 | } else { | |
1226 | error = EINVAL; | |
1227 | goto done; | |
1228 | } | |
1229 | error = flow_divert_packet_append_tlv(connect_packet, | |
1230 | FLOW_DIVERT_TLV_FLOW_TYPE, | |
1231 | sizeof(flow_type), | |
1232 | &flow_type); | |
1233 | ||
1234 | if (error) { | |
1235 | goto done; | |
1236 | } | |
1237 | ||
1238 | if (fd_cb->connect_token != NULL) { | |
1239 | unsigned int token_len = m_length(fd_cb->connect_token); | |
1240 | mbuf_concatenate(connect_packet, fd_cb->connect_token); | |
1241 | mbuf_pkthdr_adjustlen(connect_packet, token_len); | |
1242 | fd_cb->connect_token = NULL; | |
1243 | } else { | |
1244 | error = flow_divert_append_target_endpoint_tlv(connect_packet, to); | |
1245 | if (error) { | |
1246 | goto done; | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | if (fd_cb->local_endpoint.sa.sa_family == AF_INET || fd_cb->local_endpoint.sa.sa_family == AF_INET6) { | |
1251 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_LOCAL_ADDR, fd_cb->local_endpoint.sa.sa_len, &(fd_cb->local_endpoint.sa)); | |
1252 | if (error) { | |
1253 | goto done; | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | if (inp->inp_vflag & INP_IPV4) { | |
1258 | ifp = inp->inp_last_outifp; | |
1259 | } else if (inp->inp_vflag & INP_IPV6) { | |
1260 | ifp = inp->in6p_last_outifp; | |
1261 | } | |
1262 | if (ifp != NULL) { | |
1263 | uint32_t flow_if_index = ifp->if_index; | |
1264 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_OUT_IF_INDEX, | |
1265 | sizeof(flow_if_index), &flow_if_index); | |
1266 | if (error) { | |
1267 | goto done; | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { | |
1272 | flags |= FLOW_DIVERT_TOKEN_FLAG_TFO; | |
1273 | } | |
1274 | ||
1275 | if ((inp->inp_flags & INP_BOUND_IF) || | |
1276 | ((inp->inp_vflag & INP_IPV6) && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) || | |
1277 | ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr != INADDR_ANY)) { | |
1278 | flags |= FLOW_DIVERT_TOKEN_FLAG_BOUND; | |
1279 | } | |
1280 | ||
1281 | if (flags != 0) { | |
1282 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_FLAGS, sizeof(flags), &flags); | |
1283 | if (error) { | |
1284 | goto done; | |
1285 | } | |
1286 | } | |
1287 | ||
1288 | if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
1289 | cfil_sock_id = cfil_sock_id_from_datagram_socket(so, NULL, to); | |
1290 | } else { | |
1291 | cfil_sock_id = cfil_sock_id_from_socket(so); | |
1292 | } | |
1293 | ||
1294 | if (cfil_sock_id != CFIL_SOCK_ID_NONE) { | |
1295 | cfil_id = &cfil_sock_id; | |
1296 | cfil_id_size = sizeof(cfil_sock_id); | |
1297 | } else if (so->so_flags1 & SOF1_CONTENT_FILTER_SKIP) { | |
1298 | cfil_id = &inp->necp_client_uuid; | |
1299 | cfil_id_size = sizeof(inp->necp_client_uuid); | |
1300 | } | |
1301 | ||
1302 | if (cfil_id != NULL && cfil_id_size > 0 && cfil_id_size <= sizeof(uuid_t)) { | |
1303 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CFIL_ID, (uint32_t)cfil_id_size, cfil_id); | |
1304 | if (error) { | |
1305 | goto done; | |
1306 | } | |
1307 | } | |
1308 | ||
1309 | done: | |
1310 | if (!error) { | |
1311 | *out_connect_packet = connect_packet; | |
1312 | } else if (connect_packet != NULL) { | |
1313 | mbuf_freem(connect_packet); | |
1314 | } | |
1315 | ||
1316 | return error; | |
1317 | } | |
1318 | ||
1319 | static int | |
1320 | flow_divert_send_connect_packet(struct flow_divert_pcb *fd_cb) | |
1321 | { | |
1322 | int error = 0; | |
1323 | mbuf_t connect_packet = fd_cb->connect_packet; | |
1324 | mbuf_t saved_connect_packet = NULL; | |
1325 | ||
1326 | if (connect_packet != NULL) { | |
1327 | error = mbuf_copym(connect_packet, 0, mbuf_pkthdr_len(connect_packet), MBUF_DONTWAIT, &saved_connect_packet); | |
1328 | if (error) { | |
1329 | FDLOG0(LOG_ERR, fd_cb, "Failed to copy the connect packet"); | |
1330 | goto done; | |
1331 | } | |
1332 | ||
1333 | error = flow_divert_send_packet(fd_cb, connect_packet, TRUE); | |
1334 | if (error) { | |
1335 | goto done; | |
1336 | } | |
1337 | ||
1338 | fd_cb->connect_packet = saved_connect_packet; | |
1339 | saved_connect_packet = NULL; | |
1340 | } else { | |
1341 | error = ENOENT; | |
1342 | } | |
1343 | done: | |
1344 | if (saved_connect_packet != NULL) { | |
1345 | mbuf_freem(saved_connect_packet); | |
1346 | } | |
1347 | ||
1348 | return error; | |
1349 | } | |
1350 | ||
1351 | static int | |
1352 | flow_divert_send_connect_result(struct flow_divert_pcb *fd_cb) | |
1353 | { | |
1354 | int error = 0; | |
1355 | mbuf_t packet = NULL; | |
1356 | int rbuff_space = 0; | |
1357 | ||
1358 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT_RESULT, &packet); | |
1359 | if (error) { | |
1360 | FDLOG(LOG_ERR, fd_cb, "failed to create a connect result packet: %d", error); | |
1361 | goto done; | |
1362 | } | |
1363 | ||
1364 | rbuff_space = fd_cb->so->so_rcv.sb_hiwat; | |
1365 | if (rbuff_space < 0) { | |
1366 | rbuff_space = 0; | |
1367 | } | |
1368 | rbuff_space = htonl(rbuff_space); | |
1369 | error = flow_divert_packet_append_tlv(packet, | |
1370 | FLOW_DIVERT_TLV_SPACE_AVAILABLE, | |
1371 | sizeof(rbuff_space), | |
1372 | &rbuff_space); | |
1373 | if (error) { | |
1374 | goto done; | |
1375 | } | |
1376 | ||
1377 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1378 | if (error) { | |
1379 | goto done; | |
1380 | } | |
1381 | ||
1382 | done: | |
1383 | if (error && packet != NULL) { | |
1384 | mbuf_freem(packet); | |
1385 | } | |
1386 | ||
1387 | return error; | |
1388 | } | |
1389 | ||
1390 | static int | |
1391 | flow_divert_send_close(struct flow_divert_pcb *fd_cb, int how) | |
1392 | { | |
1393 | int error = 0; | |
1394 | mbuf_t packet = NULL; | |
1395 | uint32_t zero = 0; | |
1396 | ||
1397 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CLOSE, &packet); | |
1398 | if (error) { | |
1399 | FDLOG(LOG_ERR, fd_cb, "failed to create a close packet: %d", error); | |
1400 | goto done; | |
1401 | } | |
1402 | ||
1403 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(zero), &zero); | |
1404 | if (error) { | |
1405 | FDLOG(LOG_ERR, fd_cb, "failed to add the error code TLV: %d", error); | |
1406 | goto done; | |
1407 | } | |
1408 | ||
1409 | how = htonl(how); | |
1410 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_HOW, sizeof(how), &how); | |
1411 | if (error) { | |
1412 | FDLOG(LOG_ERR, fd_cb, "failed to add the how flag: %d", error); | |
1413 | goto done; | |
1414 | } | |
1415 | ||
1416 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1417 | if (error) { | |
1418 | goto done; | |
1419 | } | |
1420 | ||
1421 | done: | |
1422 | if (error && packet != NULL) { | |
1423 | mbuf_free(packet); | |
1424 | } | |
1425 | ||
1426 | return error; | |
1427 | } | |
1428 | ||
1429 | static int | |
1430 | flow_divert_tunnel_how_closed(struct flow_divert_pcb *fd_cb) | |
1431 | { | |
1432 | if ((fd_cb->flags & (FLOW_DIVERT_TUNNEL_RD_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) == | |
1433 | (FLOW_DIVERT_TUNNEL_RD_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) { | |
1434 | return SHUT_RDWR; | |
1435 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_RD_CLOSED) { | |
1436 | return SHUT_RD; | |
1437 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) { | |
1438 | return SHUT_WR; | |
1439 | } | |
1440 | ||
1441 | return -1; | |
1442 | } | |
1443 | ||
1444 | /* | |
1445 | * Determine what close messages if any need to be sent to the tunnel. Returns TRUE if the tunnel is closed for both reads and | |
1446 | * writes. Returns FALSE otherwise. | |
1447 | */ | |
1448 | static void | |
1449 | flow_divert_send_close_if_needed(struct flow_divert_pcb *fd_cb) | |
1450 | { | |
1451 | int how = -1; | |
1452 | ||
1453 | /* Do not send any close messages if there is still data in the send buffer */ | |
1454 | if (fd_cb->so->so_snd.sb_cc == 0) { | |
1455 | if ((fd_cb->flags & (FLOW_DIVERT_READ_CLOSED | FLOW_DIVERT_TUNNEL_RD_CLOSED)) == FLOW_DIVERT_READ_CLOSED) { | |
1456 | /* Socket closed reads, but tunnel did not. Tell tunnel to close reads */ | |
1457 | how = SHUT_RD; | |
1458 | } | |
1459 | if ((fd_cb->flags & (FLOW_DIVERT_WRITE_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) == FLOW_DIVERT_WRITE_CLOSED) { | |
1460 | /* Socket closed writes, but tunnel did not. Tell tunnel to close writes */ | |
1461 | if (how == SHUT_RD) { | |
1462 | how = SHUT_RDWR; | |
1463 | } else { | |
1464 | how = SHUT_WR; | |
1465 | } | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | if (how != -1) { | |
1470 | FDLOG(LOG_INFO, fd_cb, "sending close, how = %d", how); | |
1471 | if (flow_divert_send_close(fd_cb, how) != ENOBUFS) { | |
1472 | /* Successfully sent the close packet. Record the ways in which the tunnel has been closed */ | |
1473 | if (how != SHUT_RD) { | |
1474 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
1475 | } | |
1476 | if (how != SHUT_WR) { | |
1477 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
1478 | } | |
1479 | } | |
1480 | } | |
1481 | ||
1482 | if (flow_divert_tunnel_how_closed(fd_cb) == SHUT_RDWR) { | |
1483 | flow_divert_disconnect_socket(fd_cb->so); | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | static errno_t | |
1488 | flow_divert_send_data_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len, struct sockaddr *toaddr, Boolean force) | |
1489 | { | |
1490 | mbuf_t packet = NULL; | |
1491 | mbuf_t last = NULL; | |
1492 | int error = 0; | |
1493 | ||
1494 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, &packet); | |
1495 | if (error || packet == NULL) { | |
1496 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d", error); | |
1497 | goto done; | |
1498 | } | |
1499 | ||
1500 | if (toaddr != NULL) { | |
1501 | error = flow_divert_append_target_endpoint_tlv(packet, toaddr); | |
1502 | if (error) { | |
1503 | FDLOG(LOG_ERR, fd_cb, "flow_divert_append_target_endpoint_tlv() failed: %d", error); | |
1504 | goto done; | |
1505 | } | |
1506 | } | |
1507 | ||
1508 | if (data_len > 0 && data_len <= INT_MAX && data != NULL) { | |
1509 | last = m_last(packet); | |
1510 | mbuf_setnext(last, data); | |
1511 | mbuf_pkthdr_adjustlen(packet, (int)data_len); | |
1512 | } else { | |
1513 | data_len = 0; | |
1514 | } | |
1515 | error = flow_divert_send_packet(fd_cb, packet, force); | |
1516 | if (error == 0 && data_len > 0) { | |
1517 | fd_cb->bytes_sent += data_len; | |
1518 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); | |
1519 | } | |
1520 | ||
1521 | done: | |
1522 | if (error) { | |
1523 | if (last != NULL) { | |
1524 | mbuf_setnext(last, NULL); | |
1525 | } | |
1526 | if (packet != NULL) { | |
1527 | mbuf_freem(packet); | |
1528 | } | |
1529 | } | |
1530 | ||
1531 | return error; | |
1532 | } | |
1533 | ||
1534 | static void | |
1535 | flow_divert_send_buffered_data(struct flow_divert_pcb *fd_cb, Boolean force) | |
1536 | { | |
1537 | size_t to_send; | |
1538 | size_t sent = 0; | |
1539 | int error = 0; | |
1540 | mbuf_t buffer; | |
1541 | ||
1542 | to_send = fd_cb->so->so_snd.sb_cc; | |
1543 | buffer = fd_cb->so->so_snd.sb_mb; | |
1544 | ||
1545 | if (buffer == NULL && to_send > 0) { | |
1546 | FDLOG(LOG_ERR, fd_cb, "Send buffer is NULL, but size is supposed to be %lu", to_send); | |
1547 | return; | |
1548 | } | |
1549 | ||
1550 | /* Ignore the send window if force is enabled */ | |
1551 | if (!force && (to_send > fd_cb->send_window)) { | |
1552 | to_send = fd_cb->send_window; | |
1553 | } | |
1554 | ||
1555 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1556 | while (sent < to_send) { | |
1557 | mbuf_t data; | |
1558 | size_t data_len; | |
1559 | ||
1560 | data_len = to_send - sent; | |
1561 | if (data_len > FLOW_DIVERT_CHUNK_SIZE) { | |
1562 | data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1563 | } | |
1564 | ||
1565 | error = mbuf_copym(buffer, sent, data_len, MBUF_DONTWAIT, &data); | |
1566 | if (error) { | |
1567 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1568 | break; | |
1569 | } | |
1570 | ||
1571 | error = flow_divert_send_data_packet(fd_cb, data, data_len, NULL, force); | |
1572 | if (error) { | |
1573 | if (data != NULL) { | |
1574 | mbuf_freem(data); | |
1575 | } | |
1576 | break; | |
1577 | } | |
1578 | ||
1579 | sent += data_len; | |
1580 | } | |
1581 | sbdrop(&fd_cb->so->so_snd, (int)sent); | |
1582 | sowwakeup(fd_cb->so); | |
1583 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1584 | mbuf_t data; | |
1585 | mbuf_t m; | |
1586 | size_t data_len; | |
1587 | ||
1588 | while (buffer) { | |
1589 | struct sockaddr *toaddr = flow_divert_get_buffered_target_address(buffer); | |
1590 | ||
1591 | m = buffer; | |
1592 | if (toaddr != NULL) { | |
1593 | /* look for data in the chain */ | |
1594 | do { | |
1595 | m = m->m_next; | |
1596 | if (m != NULL && m->m_type == MT_DATA) { | |
1597 | break; | |
1598 | } | |
1599 | } while (m); | |
1600 | if (m == NULL) { | |
1601 | /* unexpected */ | |
1602 | FDLOG0(LOG_ERR, fd_cb, "failed to find type MT_DATA in the mbuf chain."); | |
1603 | goto move_on; | |
1604 | } | |
1605 | } | |
1606 | data_len = mbuf_pkthdr_len(m); | |
1607 | if (data_len > 0) { | |
1608 | FDLOG(LOG_DEBUG, fd_cb, "mbuf_copym() data_len = %lu", data_len); | |
1609 | error = mbuf_copym(m, 0, data_len, MBUF_DONTWAIT, &data); | |
1610 | if (error) { | |
1611 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1612 | break; | |
1613 | } | |
1614 | } else { | |
1615 | data = NULL; | |
1616 | } | |
1617 | error = flow_divert_send_data_packet(fd_cb, data, data_len, toaddr, force); | |
1618 | if (error) { | |
1619 | if (data != NULL) { | |
1620 | mbuf_freem(data); | |
1621 | } | |
1622 | break; | |
1623 | } | |
1624 | sent += data_len; | |
1625 | move_on: | |
1626 | buffer = buffer->m_nextpkt; | |
1627 | (void) sbdroprecord(&(fd_cb->so->so_snd)); | |
1628 | } | |
1629 | } | |
1630 | ||
1631 | if (sent > 0) { | |
1632 | FDLOG(LOG_DEBUG, fd_cb, "sent %lu bytes of buffered data", sent); | |
1633 | if (fd_cb->send_window >= sent) { | |
1634 | fd_cb->send_window -= sent; | |
1635 | } else { | |
1636 | fd_cb->send_window = 0; | |
1637 | } | |
1638 | } | |
1639 | } | |
1640 | ||
1641 | static int | |
1642 | flow_divert_send_app_data(struct flow_divert_pcb *fd_cb, mbuf_t data, struct sockaddr *toaddr) | |
1643 | { | |
1644 | size_t to_send = mbuf_pkthdr_len(data); | |
1645 | int error = 0; | |
1646 | ||
1647 | if (to_send > fd_cb->send_window) { | |
1648 | to_send = fd_cb->send_window; | |
1649 | } | |
1650 | ||
1651 | if (fd_cb->so->so_snd.sb_cc > 0) { | |
1652 | to_send = 0; /* If the send buffer is non-empty, then we can't send anything */ | |
1653 | } | |
1654 | ||
1655 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1656 | size_t sent = 0; | |
1657 | mbuf_t remaining_data = data; | |
1658 | mbuf_t pkt_data = NULL; | |
1659 | while (sent < to_send && remaining_data != NULL) { | |
1660 | size_t pkt_data_len; | |
1661 | ||
1662 | pkt_data = remaining_data; | |
1663 | ||
1664 | if ((to_send - sent) > FLOW_DIVERT_CHUNK_SIZE) { | |
1665 | pkt_data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1666 | } else { | |
1667 | pkt_data_len = to_send - sent; | |
1668 | } | |
1669 | ||
1670 | if (pkt_data_len < mbuf_pkthdr_len(pkt_data)) { | |
1671 | error = mbuf_split(pkt_data, pkt_data_len, MBUF_DONTWAIT, &remaining_data); | |
1672 | if (error) { | |
1673 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1674 | pkt_data = NULL; | |
1675 | break; | |
1676 | } | |
1677 | } else { | |
1678 | remaining_data = NULL; | |
1679 | } | |
1680 | ||
1681 | error = flow_divert_send_data_packet(fd_cb, pkt_data, pkt_data_len, NULL, FALSE); | |
1682 | ||
1683 | if (error) { | |
1684 | break; | |
1685 | } | |
1686 | ||
1687 | pkt_data = NULL; | |
1688 | sent += pkt_data_len; | |
1689 | } | |
1690 | ||
1691 | fd_cb->send_window -= sent; | |
1692 | ||
1693 | error = 0; | |
1694 | ||
1695 | if (pkt_data != NULL) { | |
1696 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1697 | if (!sbappendstream(&fd_cb->so->so_snd, pkt_data)) { | |
1698 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with pkt_data, send buffer size = %u, send_window = %u\n", | |
1699 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1700 | } | |
1701 | } else { | |
1702 | mbuf_freem(pkt_data); | |
1703 | error = ENOBUFS; | |
1704 | } | |
1705 | } | |
1706 | ||
1707 | if (remaining_data != NULL) { | |
1708 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1709 | if (!sbappendstream(&fd_cb->so->so_snd, remaining_data)) { | |
1710 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with remaining_data, send buffer size = %u, send_window = %u\n", | |
1711 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1712 | } | |
1713 | } else { | |
1714 | mbuf_freem(remaining_data); | |
1715 | error = ENOBUFS; | |
1716 | } | |
1717 | } | |
1718 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1719 | if (to_send || mbuf_pkthdr_len(data) == 0) { | |
1720 | error = flow_divert_send_data_packet(fd_cb, data, to_send, toaddr, FALSE); | |
1721 | if (error) { | |
1722 | FDLOG(LOG_ERR, fd_cb, "flow_divert_send_data_packet failed. send data size = %lu", to_send); | |
1723 | if (data != NULL) { | |
1724 | mbuf_freem(data); | |
1725 | } | |
1726 | } else { | |
1727 | fd_cb->send_window -= to_send; | |
1728 | } | |
1729 | } else { | |
1730 | /* buffer it */ | |
1731 | if (sbspace(&fd_cb->so->so_snd) >= (int)mbuf_pkthdr_len(data)) { | |
1732 | if (toaddr != NULL) { | |
1733 | if (!sbappendaddr(&fd_cb->so->so_snd, toaddr, data, NULL, &error)) { | |
1734 | FDLOG(LOG_ERR, fd_cb, | |
1735 | "sbappendaddr failed. send buffer size = %u, send_window = %u, error = %d\n", | |
1736 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window, error); | |
1737 | } | |
1738 | error = 0; | |
1739 | } else { | |
1740 | if (!sbappendrecord(&fd_cb->so->so_snd, data)) { | |
1741 | FDLOG(LOG_ERR, fd_cb, | |
1742 | "sbappendrecord failed. send buffer size = %u, send_window = %u, error = %d\n", | |
1743 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window, error); | |
1744 | } | |
1745 | } | |
1746 | } else { | |
1747 | if (data != NULL) { | |
1748 | mbuf_freem(data); | |
1749 | } | |
1750 | error = ENOBUFS; | |
1751 | } | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | return error; | |
1756 | } | |
1757 | ||
1758 | static int | |
1759 | flow_divert_send_read_notification(struct flow_divert_pcb *fd_cb) | |
1760 | { | |
1761 | int error = 0; | |
1762 | mbuf_t packet = NULL; | |
1763 | ||
1764 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_READ_NOTIFY, &packet); | |
1765 | if (error) { | |
1766 | FDLOG(LOG_ERR, fd_cb, "failed to create a read notification packet: %d", error); | |
1767 | goto done; | |
1768 | } | |
1769 | ||
1770 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1771 | if (error) { | |
1772 | goto done; | |
1773 | } | |
1774 | ||
1775 | done: | |
1776 | if (error && packet != NULL) { | |
1777 | mbuf_free(packet); | |
1778 | } | |
1779 | ||
1780 | return error; | |
1781 | } | |
1782 | ||
1783 | static int | |
1784 | flow_divert_send_traffic_class_update(struct flow_divert_pcb *fd_cb, int traffic_class) | |
1785 | { | |
1786 | int error = 0; | |
1787 | mbuf_t packet = NULL; | |
1788 | ||
1789 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_PROPERTIES_UPDATE, &packet); | |
1790 | if (error) { | |
1791 | FDLOG(LOG_ERR, fd_cb, "failed to create a properties update packet: %d", error); | |
1792 | goto done; | |
1793 | } | |
1794 | ||
1795 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TRAFFIC_CLASS, sizeof(traffic_class), &traffic_class); | |
1796 | if (error) { | |
1797 | FDLOG(LOG_ERR, fd_cb, "failed to add the traffic class: %d", error); | |
1798 | goto done; | |
1799 | } | |
1800 | ||
1801 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1802 | if (error) { | |
1803 | goto done; | |
1804 | } | |
1805 | ||
1806 | done: | |
1807 | if (error && packet != NULL) { | |
1808 | mbuf_free(packet); | |
1809 | } | |
1810 | ||
1811 | return error; | |
1812 | } | |
1813 | ||
1814 | static void | |
1815 | flow_divert_set_local_endpoint(struct flow_divert_pcb *fd_cb, struct sockaddr *local_endpoint, bool port_only) | |
1816 | { | |
1817 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
1818 | ||
1819 | if (local_endpoint->sa_family == AF_INET6) { | |
1820 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && !port_only) { | |
1821 | fd_cb->flags |= FLOW_DIVERT_DID_SET_LOCAL_ADDR; | |
1822 | inp->in6p_laddr = (satosin6(local_endpoint))->sin6_addr; | |
1823 | } | |
1824 | if (inp->inp_lport == 0) { | |
1825 | inp->inp_lport = (satosin6(local_endpoint))->sin6_port; | |
1826 | } | |
1827 | } else if (local_endpoint->sa_family == AF_INET) { | |
1828 | if (inp->inp_laddr.s_addr == INADDR_ANY && !port_only) { | |
1829 | fd_cb->flags |= FLOW_DIVERT_DID_SET_LOCAL_ADDR; | |
1830 | inp->inp_laddr = (satosin(local_endpoint))->sin_addr; | |
1831 | } | |
1832 | if (inp->inp_lport == 0) { | |
1833 | inp->inp_lport = (satosin(local_endpoint))->sin_port; | |
1834 | } | |
1835 | } | |
1836 | } | |
1837 | ||
1838 | static void | |
1839 | flow_divert_set_remote_endpoint(struct flow_divert_pcb *fd_cb, struct sockaddr *remote_endpoint) | |
1840 | { | |
1841 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
1842 | ||
1843 | if (remote_endpoint->sa_family == AF_INET6) { | |
1844 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { | |
1845 | inp->in6p_faddr = (satosin6(remote_endpoint))->sin6_addr; | |
1846 | } | |
1847 | if (inp->inp_fport == 0) { | |
1848 | inp->inp_fport = (satosin6(remote_endpoint))->sin6_port; | |
1849 | } | |
1850 | } else if (remote_endpoint->sa_family == AF_INET) { | |
1851 | if (inp->inp_laddr.s_addr == INADDR_ANY) { | |
1852 | inp->inp_faddr = (satosin(remote_endpoint))->sin_addr; | |
1853 | } | |
1854 | if (inp->inp_fport == 0) { | |
1855 | inp->inp_fport = (satosin(remote_endpoint))->sin_port; | |
1856 | } | |
1857 | } | |
1858 | } | |
1859 | ||
1860 | static uint32_t | |
1861 | flow_divert_derive_kernel_control_unit(uint32_t ctl_unit, uint32_t *aggregate_unit) | |
1862 | { | |
1863 | if (aggregate_unit != NULL && *aggregate_unit != 0) { | |
1864 | uint32_t counter; | |
1865 | for (counter = 0; counter < (GROUP_COUNT_MAX - 1); counter++) { | |
1866 | if ((*aggregate_unit) & (1 << counter)) { | |
1867 | break; | |
1868 | } | |
1869 | } | |
1870 | if (counter < (GROUP_COUNT_MAX - 1)) { | |
1871 | *aggregate_unit &= ~(1 << counter); | |
1872 | return counter + 1; | |
1873 | } else { | |
1874 | return ctl_unit; | |
1875 | } | |
1876 | } else { | |
1877 | return ctl_unit; | |
1878 | } | |
1879 | } | |
1880 | ||
1881 | static int | |
1882 | flow_divert_try_next(struct flow_divert_pcb *fd_cb) | |
1883 | { | |
1884 | uint32_t current_ctl_unit = 0; | |
1885 | uint32_t next_ctl_unit = 0; | |
1886 | struct flow_divert_group *current_group = NULL; | |
1887 | struct flow_divert_group *next_group = NULL; | |
1888 | int error = 0; | |
1889 | ||
1890 | next_ctl_unit = flow_divert_derive_kernel_control_unit(fd_cb->policy_control_unit, &(fd_cb->aggregate_unit)); | |
1891 | current_ctl_unit = fd_cb->control_group_unit; | |
1892 | ||
1893 | if (current_ctl_unit == next_ctl_unit) { | |
1894 | FDLOG0(LOG_NOTICE, fd_cb, "Next control unit is the same as the current control unit, disabling flow divert"); | |
1895 | error = EALREADY; | |
1896 | goto done; | |
1897 | } | |
1898 | ||
1899 | if (next_ctl_unit == 0 || next_ctl_unit >= GROUP_COUNT_MAX) { | |
1900 | FDLOG0(LOG_NOTICE, fd_cb, "No more valid control units, disabling flow divert"); | |
1901 | error = ENOENT; | |
1902 | goto done; | |
1903 | } | |
1904 | ||
1905 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
1906 | FDLOG0(LOG_NOTICE, fd_cb, "No active groups, disabling flow divert"); | |
1907 | error = ENOENT; | |
1908 | goto done; | |
1909 | } | |
1910 | ||
1911 | next_group = g_flow_divert_groups[next_ctl_unit]; | |
1912 | if (next_group == NULL) { | |
1913 | FDLOG(LOG_NOTICE, fd_cb, "Group for control unit %u does not exist", next_ctl_unit); | |
1914 | error = ENOENT; | |
1915 | goto done; | |
1916 | } | |
1917 | ||
1918 | current_group = fd_cb->group; | |
1919 | ||
1920 | lck_rw_lock_exclusive(&(current_group->lck)); | |
1921 | lck_rw_lock_exclusive(&(next_group->lck)); | |
1922 | ||
1923 | FDLOG(LOG_NOTICE, fd_cb, "Moving from %u to %u", current_ctl_unit, next_ctl_unit); | |
1924 | ||
1925 | RB_REMOVE(fd_pcb_tree, &(current_group->pcb_tree), fd_cb); | |
1926 | if (RB_INSERT(fd_pcb_tree, &(next_group->pcb_tree), fd_cb) != NULL) { | |
1927 | panic("group with unit %u already contains a connection with hash %u", next_ctl_unit, fd_cb->hash); | |
1928 | } | |
1929 | ||
1930 | fd_cb->group = next_group; | |
1931 | fd_cb->control_group_unit = next_ctl_unit; | |
1932 | ||
1933 | lck_rw_done(&(next_group->lck)); | |
1934 | lck_rw_done(&(current_group->lck)); | |
1935 | ||
1936 | error = flow_divert_send_connect_packet(fd_cb); | |
1937 | if (error) { | |
1938 | FDLOG(LOG_NOTICE, fd_cb, "Failed to send the connect packet to %u, disabling flow divert", next_ctl_unit); | |
1939 | error = ENOENT; | |
1940 | goto done; | |
1941 | } | |
1942 | ||
1943 | done: | |
1944 | return error; | |
1945 | } | |
1946 | ||
1947 | static void | |
1948 | flow_divert_disable(struct flow_divert_pcb *fd_cb) | |
1949 | { | |
1950 | struct socket *so = NULL; | |
1951 | mbuf_t buffer; | |
1952 | int error = 0; | |
1953 | proc_t last_proc = NULL; | |
1954 | struct sockaddr *remote_endpoint = fd_cb->original_remote_endpoint; | |
1955 | bool do_connect = !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT); | |
1956 | struct inpcb *inp = NULL; | |
1957 | ||
1958 | so = fd_cb->so; | |
1959 | if (so == NULL) { | |
1960 | goto done; | |
1961 | } | |
1962 | ||
1963 | FDLOG0(LOG_NOTICE, fd_cb, "Skipped all flow divert services, disabling flow divert"); | |
1964 | ||
1965 | /* Restore the IP state */ | |
1966 | inp = sotoinpcb(so); | |
1967 | inp->inp_vflag = fd_cb->original_vflag; | |
1968 | inp->inp_faddr.s_addr = INADDR_ANY; | |
1969 | inp->inp_fport = 0; | |
1970 | memset(&(inp->in6p_faddr), 0, sizeof(inp->in6p_faddr)); | |
1971 | inp->in6p_fport = 0; | |
1972 | /* If flow divert set the local address, clear it out */ | |
1973 | if (fd_cb->flags & FLOW_DIVERT_DID_SET_LOCAL_ADDR) { | |
1974 | inp->inp_laddr.s_addr = INADDR_ANY; | |
1975 | memset(&(inp->in6p_laddr), 0, sizeof(inp->in6p_laddr)); | |
1976 | } | |
1977 | inp->inp_last_outifp = fd_cb->original_last_outifp; | |
1978 | inp->in6p_last_outifp = fd_cb->original_last_outifp6; | |
1979 | ||
1980 | /* Dis-associate the socket */ | |
1981 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
1982 | so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; | |
1983 | so->so_fd_pcb = NULL; | |
1984 | fd_cb->so = NULL; | |
1985 | ||
1986 | /* Remove from the group */ | |
1987 | flow_divert_pcb_remove(fd_cb); | |
1988 | ||
1989 | FDRELEASE(fd_cb); /* Release the socket's reference */ | |
1990 | ||
1991 | /* Revert back to the original protocol */ | |
1992 | so->so_proto = pffindproto(SOCK_DOM(so), SOCK_PROTO(so), SOCK_TYPE(so)); | |
1993 | ||
1994 | last_proc = proc_find(so->last_pid); | |
1995 | ||
1996 | if (do_connect) { | |
1997 | /* Connect using the original protocol */ | |
1998 | error = (*so->so_proto->pr_usrreqs->pru_connect)(so, remote_endpoint, (last_proc != NULL ? last_proc : current_proc())); | |
1999 | if (error) { | |
2000 | FDLOG(LOG_ERR, fd_cb, "Failed to connect using the socket's original protocol: %d", error); | |
2001 | goto done; | |
2002 | } | |
2003 | } | |
2004 | ||
2005 | buffer = so->so_snd.sb_mb; | |
2006 | if (buffer == NULL) { | |
2007 | /* No buffered data, done */ | |
2008 | goto done; | |
2009 | } | |
2010 | ||
2011 | /* Send any buffered data using the original protocol */ | |
2012 | if (SOCK_TYPE(so) == SOCK_STREAM) { | |
2013 | mbuf_t data_to_send = NULL; | |
2014 | size_t data_len = so->so_snd.sb_cc; | |
2015 | ||
2016 | error = mbuf_copym(buffer, 0, data_len, MBUF_DONTWAIT, &data_to_send); | |
2017 | if (error) { | |
2018 | FDLOG0(LOG_ERR, fd_cb, "Failed to copy the mbuf chain in the socket's send buffer"); | |
2019 | goto done; | |
2020 | } | |
2021 | ||
2022 | sbflush(&so->so_snd); | |
2023 | ||
2024 | if (data_to_send->m_flags & M_PKTHDR) { | |
2025 | mbuf_pkthdr_setlen(data_to_send, data_len); | |
2026 | } | |
2027 | ||
2028 | error = (*so->so_proto->pr_usrreqs->pru_send)(so, | |
2029 | 0, | |
2030 | data_to_send, | |
2031 | NULL, | |
2032 | NULL, | |
2033 | (last_proc != NULL ? last_proc : current_proc())); | |
2034 | ||
2035 | if (error) { | |
2036 | FDLOG(LOG_ERR, fd_cb, "Failed to send queued data using the socket's original protocol: %d", error); | |
2037 | } | |
2038 | } else if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
2039 | struct sockbuf *sb = &so->so_snd; | |
2040 | MBUFQ_HEAD(send_queue_head) send_queue; | |
2041 | MBUFQ_INIT(&send_queue); | |
2042 | ||
2043 | /* Flush the send buffer, moving all records to a temporary queue */ | |
2044 | while (sb->sb_mb != NULL) { | |
2045 | mbuf_t record = sb->sb_mb; | |
2046 | mbuf_t m = record; | |
2047 | sb->sb_mb = sb->sb_mb->m_nextpkt; | |
2048 | while (m != NULL) { | |
2049 | sbfree(sb, m); | |
2050 | m = m->m_next; | |
2051 | } | |
2052 | record->m_nextpkt = NULL; | |
2053 | MBUFQ_ENQUEUE(&send_queue, record); | |
2054 | } | |
2055 | SB_EMPTY_FIXUP(sb); | |
2056 | ||
2057 | while (!MBUFQ_EMPTY(&send_queue)) { | |
2058 | mbuf_t next_record = MBUFQ_FIRST(&send_queue); | |
2059 | mbuf_t addr = NULL; | |
2060 | mbuf_t control = NULL; | |
2061 | mbuf_t last_control = NULL; | |
2062 | mbuf_t data = NULL; | |
2063 | mbuf_t m = next_record; | |
2064 | struct sockaddr *to_endpoint = NULL; | |
2065 | ||
2066 | MBUFQ_DEQUEUE(&send_queue, next_record); | |
2067 | ||
2068 | while (m != NULL) { | |
2069 | if (m->m_type == MT_SONAME) { | |
2070 | addr = m; | |
2071 | } else if (m->m_type == MT_CONTROL) { | |
2072 | if (control == NULL) { | |
2073 | control = m; | |
2074 | } | |
2075 | last_control = m; | |
2076 | } else if (m->m_type == MT_DATA) { | |
2077 | data = m; | |
2078 | break; | |
2079 | } | |
2080 | m = m->m_next; | |
2081 | } | |
2082 | ||
2083 | if (addr != NULL) { | |
2084 | to_endpoint = flow_divert_get_buffered_target_address(addr); | |
2085 | if (to_endpoint == NULL) { | |
2086 | FDLOG0(LOG_NOTICE, fd_cb, "Failed to get the remote address from the buffer"); | |
2087 | } | |
2088 | } | |
2089 | ||
2090 | if (data == NULL) { | |
2091 | FDLOG0(LOG_ERR, fd_cb, "Buffered record does not contain any data"); | |
2092 | mbuf_freem(next_record); | |
2093 | continue; | |
2094 | } | |
2095 | ||
2096 | if (!(data->m_flags & M_PKTHDR)) { | |
2097 | FDLOG0(LOG_ERR, fd_cb, "Buffered data does not have a packet header"); | |
2098 | mbuf_freem(next_record); | |
2099 | continue; | |
2100 | } | |
2101 | ||
2102 | if (addr != NULL) { | |
2103 | addr->m_next = NULL; | |
2104 | } | |
2105 | ||
2106 | if (last_control != NULL) { | |
2107 | last_control->m_next = NULL; | |
2108 | } | |
2109 | ||
2110 | error = (*so->so_proto->pr_usrreqs->pru_send)(so, | |
2111 | 0, | |
2112 | data, | |
2113 | to_endpoint, | |
2114 | control, | |
2115 | (last_proc != NULL ? last_proc : current_proc())); | |
2116 | ||
2117 | if (addr != NULL) { | |
2118 | mbuf_freem(addr); | |
2119 | } | |
2120 | ||
2121 | if (error) { | |
2122 | FDLOG(LOG_ERR, fd_cb, "Failed to send queued data using the socket's original protocol: %d", error); | |
2123 | } | |
2124 | } | |
2125 | } | |
2126 | done: | |
2127 | if (last_proc != NULL) { | |
2128 | proc_rele(last_proc); | |
2129 | } | |
2130 | ||
2131 | if (error) { | |
2132 | so->so_error = (uint16_t)error; | |
2133 | flow_divert_disconnect_socket(so); | |
2134 | } | |
2135 | } | |
2136 | ||
2137 | static void | |
2138 | flow_divert_handle_connect_result(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2139 | { | |
2140 | uint32_t connect_error = 0; | |
2141 | uint32_t ctl_unit = 0; | |
2142 | int error = 0; | |
2143 | struct flow_divert_group *grp = NULL; | |
2144 | union sockaddr_in_4_6 local_endpoint = {}; | |
2145 | union sockaddr_in_4_6 remote_endpoint = {}; | |
2146 | int out_if_index = 0; | |
2147 | uint32_t send_window; | |
2148 | uint32_t app_data_length = 0; | |
2149 | ||
2150 | memset(&local_endpoint, 0, sizeof(local_endpoint)); | |
2151 | memset(&remote_endpoint, 0, sizeof(remote_endpoint)); | |
2152 | ||
2153 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(connect_error), &connect_error, NULL); | |
2154 | if (error) { | |
2155 | FDLOG(LOG_ERR, fd_cb, "failed to get the connect result: %d", error); | |
2156 | return; | |
2157 | } | |
2158 | ||
2159 | connect_error = ntohl(connect_error); | |
2160 | FDLOG(LOG_INFO, fd_cb, "received connect result %u", connect_error); | |
2161 | ||
2162 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_SPACE_AVAILABLE, sizeof(send_window), &send_window, NULL); | |
2163 | if (error) { | |
2164 | FDLOG(LOG_ERR, fd_cb, "failed to get the send window: %d", error); | |
2165 | return; | |
2166 | } | |
2167 | ||
2168 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit, NULL); | |
2169 | if (error) { | |
2170 | FDLOG0(LOG_INFO, fd_cb, "No control unit provided in the connect result"); | |
2171 | } | |
2172 | ||
2173 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_endpoint), &(local_endpoint.sa), NULL); | |
2174 | if (error) { | |
2175 | FDLOG0(LOG_INFO, fd_cb, "No local address provided"); | |
2176 | } | |
2177 | ||
2178 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_endpoint), &(remote_endpoint.sa), NULL); | |
2179 | if (error) { | |
2180 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
2181 | } | |
2182 | ||
2183 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
2184 | if (error) { | |
2185 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided"); | |
2186 | } | |
2187 | ||
2188 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, 0, NULL, &app_data_length); | |
2189 | if (error) { | |
2190 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in connect result"); | |
2191 | } | |
2192 | ||
2193 | error = 0; | |
2194 | ctl_unit = ntohl(ctl_unit); | |
2195 | ||
2196 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2197 | ||
2198 | if (connect_error == 0 && ctl_unit > 0) { | |
2199 | if (ctl_unit >= GROUP_COUNT_MAX) { | |
2200 | FDLOG(LOG_ERR, fd_cb, "Connect result contains an invalid control unit: %u", ctl_unit); | |
2201 | error = EINVAL; | |
2202 | } else if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
2203 | FDLOG0(LOG_ERR, fd_cb, "No active groups, dropping connection"); | |
2204 | error = EINVAL; | |
2205 | } else { | |
2206 | grp = g_flow_divert_groups[ctl_unit]; | |
2207 | if (grp == NULL) { | |
2208 | error = ECONNRESET; | |
2209 | } | |
2210 | } | |
2211 | } | |
2212 | ||
2213 | FDLOCK(fd_cb); | |
2214 | if (fd_cb->so != NULL) { | |
2215 | struct inpcb *inp = NULL; | |
2216 | struct ifnet *ifp = NULL; | |
2217 | struct flow_divert_group *old_group; | |
2218 | struct socket *so = fd_cb->so; | |
2219 | ||
2220 | socket_lock(so, 0); | |
2221 | ||
2222 | if (SOCK_TYPE(so) == SOCK_STREAM && !(so->so_state & SS_ISCONNECTING)) { | |
2223 | FDLOG0(LOG_ERR, fd_cb, "TCP socket is not in the connecting state, ignoring connect result"); | |
2224 | goto done; | |
2225 | } | |
2226 | ||
2227 | inp = sotoinpcb(so); | |
2228 | ||
2229 | if (connect_error || error) { | |
2230 | goto set_socket_state; | |
2231 | } | |
2232 | ||
2233 | if (flow_divert_is_sockaddr_valid(&(local_endpoint.sa))) { | |
2234 | if (local_endpoint.sa.sa_family == AF_INET) { | |
2235 | local_endpoint.sa.sa_len = sizeof(struct sockaddr_in); | |
2236 | } else if (local_endpoint.sa.sa_family == AF_INET6) { | |
2237 | local_endpoint.sa.sa_len = sizeof(struct sockaddr_in6); | |
2238 | } | |
2239 | fd_cb->local_endpoint = local_endpoint; | |
2240 | flow_divert_set_local_endpoint(fd_cb, &(local_endpoint.sa), (SOCK_TYPE(so) == SOCK_DGRAM)); | |
2241 | } | |
2242 | ||
2243 | if (flow_divert_is_sockaddr_valid(&(remote_endpoint.sa)) && SOCK_TYPE(so) == SOCK_STREAM) { | |
2244 | if (remote_endpoint.sa.sa_family == AF_INET) { | |
2245 | remote_endpoint.sa.sa_len = sizeof(struct sockaddr_in); | |
2246 | } else if (remote_endpoint.sa.sa_family == AF_INET6) { | |
2247 | remote_endpoint.sa.sa_len = sizeof(struct sockaddr_in6); | |
2248 | } | |
2249 | flow_divert_set_remote_endpoint(fd_cb, &(remote_endpoint.sa)); | |
2250 | } | |
2251 | ||
2252 | if (app_data_length > 0) { | |
2253 | uint8_t *app_data = NULL; | |
2254 | MALLOC(app_data, uint8_t *, app_data_length, M_TEMP, M_WAITOK); | |
2255 | if (app_data != NULL) { | |
2256 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, app_data_length, app_data, NULL); | |
2257 | if (error == 0) { | |
2258 | FDLOG(LOG_INFO, fd_cb, "Got %u bytes of app data from the connect result", app_data_length); | |
2259 | if (fd_cb->app_data != NULL) { | |
2260 | FREE(fd_cb->app_data, M_TEMP); | |
2261 | } | |
2262 | fd_cb->app_data = app_data; | |
2263 | fd_cb->app_data_length = app_data_length; | |
2264 | } else { | |
2265 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the connect result packet", app_data_length); | |
2266 | FREE(app_data, M_TEMP); | |
2267 | } | |
2268 | } else { | |
2269 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the connect result", app_data_length); | |
2270 | } | |
2271 | } | |
2272 | ||
2273 | ifnet_head_lock_shared(); | |
2274 | if (out_if_index > 0 && out_if_index <= if_index) { | |
2275 | ifp = ifindex2ifnet[out_if_index]; | |
2276 | } | |
2277 | ||
2278 | if (ifp != NULL) { | |
2279 | if (inp->inp_vflag & INP_IPV4) { | |
2280 | inp->inp_last_outifp = ifp; | |
2281 | } else if (inp->inp_vflag & INP_IPV6) { | |
2282 | inp->in6p_last_outifp = ifp; | |
2283 | } | |
2284 | } else { | |
2285 | error = EINVAL; | |
2286 | } | |
2287 | ifnet_head_done(); | |
2288 | ||
2289 | if (error) { | |
2290 | goto set_socket_state; | |
2291 | } | |
2292 | ||
2293 | if (fd_cb->group == NULL) { | |
2294 | error = EINVAL; | |
2295 | goto set_socket_state; | |
2296 | } | |
2297 | ||
2298 | if (grp != NULL) { | |
2299 | old_group = fd_cb->group; | |
2300 | ||
2301 | lck_rw_lock_exclusive(&old_group->lck); | |
2302 | lck_rw_lock_exclusive(&grp->lck); | |
2303 | ||
2304 | RB_REMOVE(fd_pcb_tree, &old_group->pcb_tree, fd_cb); | |
2305 | if (RB_INSERT(fd_pcb_tree, &grp->pcb_tree, fd_cb) != NULL) { | |
2306 | panic("group with unit %u already contains a connection with hash %u", grp->ctl_unit, fd_cb->hash); | |
2307 | } | |
2308 | ||
2309 | fd_cb->group = grp; | |
2310 | ||
2311 | lck_rw_done(&grp->lck); | |
2312 | lck_rw_done(&old_group->lck); | |
2313 | } | |
2314 | ||
2315 | fd_cb->send_window = ntohl(send_window); | |
2316 | ||
2317 | set_socket_state: | |
2318 | if (!connect_error && !error) { | |
2319 | FDLOG0(LOG_INFO, fd_cb, "sending connect result"); | |
2320 | error = flow_divert_send_connect_result(fd_cb); | |
2321 | } | |
2322 | ||
2323 | if (connect_error || error) { | |
2324 | if (connect_error && fd_cb->control_group_unit != fd_cb->policy_control_unit) { | |
2325 | error = flow_divert_try_next(fd_cb); | |
2326 | if (error) { | |
2327 | flow_divert_disable(fd_cb); | |
2328 | } | |
2329 | goto done; | |
2330 | } | |
2331 | ||
2332 | if (!connect_error) { | |
2333 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
2334 | so->so_error = (uint16_t)error; | |
2335 | flow_divert_send_close_if_needed(fd_cb); | |
2336 | } else { | |
2337 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
2338 | so->so_error = (uint16_t)connect_error; | |
2339 | } | |
2340 | flow_divert_disconnect_socket(so); | |
2341 | } else { | |
2342 | #if NECP | |
2343 | /* Update NECP client with connected five-tuple */ | |
2344 | if (!uuid_is_null(inp->necp_client_uuid)) { | |
2345 | socket_unlock(so, 0); | |
2346 | necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); | |
2347 | socket_lock(so, 0); | |
2348 | } | |
2349 | #endif /* NECP */ | |
2350 | ||
2351 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
2352 | soisconnected(so); | |
2353 | } | |
2354 | ||
2355 | /* We don't need the connect packet any more */ | |
2356 | if (fd_cb->connect_packet != NULL) { | |
2357 | mbuf_freem(fd_cb->connect_packet); | |
2358 | fd_cb->connect_packet = NULL; | |
2359 | } | |
2360 | ||
2361 | /* We don't need the original remote endpoint any more */ | |
2362 | if (fd_cb->original_remote_endpoint != NULL) { | |
2363 | FREE(fd_cb->original_remote_endpoint, M_SONAME); | |
2364 | fd_cb->original_remote_endpoint = NULL; | |
2365 | } | |
2366 | done: | |
2367 | socket_unlock(so, 0); | |
2368 | } | |
2369 | FDUNLOCK(fd_cb); | |
2370 | ||
2371 | lck_rw_done(&g_flow_divert_group_lck); | |
2372 | } | |
2373 | ||
2374 | static void | |
2375 | flow_divert_handle_close(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2376 | { | |
2377 | uint32_t close_error; | |
2378 | int error = 0; | |
2379 | int how; | |
2380 | ||
2381 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(close_error), &close_error, NULL); | |
2382 | if (error) { | |
2383 | FDLOG(LOG_ERR, fd_cb, "failed to get the close error: %d", error); | |
2384 | return; | |
2385 | } | |
2386 | ||
2387 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_HOW, sizeof(how), &how, NULL); | |
2388 | if (error) { | |
2389 | FDLOG(LOG_ERR, fd_cb, "failed to get the close how flag: %d", error); | |
2390 | return; | |
2391 | } | |
2392 | ||
2393 | how = ntohl(how); | |
2394 | ||
2395 | FDLOG(LOG_INFO, fd_cb, "close received, how = %d", how); | |
2396 | ||
2397 | FDLOCK(fd_cb); | |
2398 | if (fd_cb->so != NULL) { | |
2399 | socket_lock(fd_cb->so, 0); | |
2400 | ||
2401 | fd_cb->so->so_error = (uint16_t)ntohl(close_error); | |
2402 | ||
2403 | flow_divert_update_closed_state(fd_cb, how, TRUE); | |
2404 | ||
2405 | how = flow_divert_tunnel_how_closed(fd_cb); | |
2406 | if (how == SHUT_RDWR) { | |
2407 | flow_divert_disconnect_socket(fd_cb->so); | |
2408 | } else if (how == SHUT_RD) { | |
2409 | socantrcvmore(fd_cb->so); | |
2410 | } else if (how == SHUT_WR) { | |
2411 | socantsendmore(fd_cb->so); | |
2412 | } | |
2413 | ||
2414 | socket_unlock(fd_cb->so, 0); | |
2415 | } | |
2416 | FDUNLOCK(fd_cb); | |
2417 | } | |
2418 | ||
2419 | static mbuf_t | |
2420 | flow_divert_create_control_mbuf(struct flow_divert_pcb *fd_cb) | |
2421 | { | |
2422 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
2423 | bool is_cfil_enabled = false; | |
2424 | #if CONTENT_FILTER | |
2425 | /* Content Filter needs to see the local address */ | |
2426 | is_cfil_enabled = (inp->inp_socket && inp->inp_socket->so_cfil_db != NULL); | |
2427 | #endif | |
2428 | if ((inp->inp_vflag & INP_IPV4) && | |
2429 | fd_cb->local_endpoint.sa.sa_family == AF_INET && | |
2430 | ((inp->inp_flags & INP_RECVDSTADDR) || is_cfil_enabled)) { | |
2431 | return sbcreatecontrol((caddr_t)&(fd_cb->local_endpoint.sin.sin_addr), sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); | |
2432 | } else if ((inp->inp_vflag & INP_IPV6) && | |
2433 | fd_cb->local_endpoint.sa.sa_family == AF_INET6 && | |
2434 | ((inp->inp_flags & IN6P_PKTINFO) || is_cfil_enabled)) { | |
2435 | struct in6_pktinfo pi6; | |
2436 | memset(&pi6, 0, sizeof(pi6)); | |
2437 | pi6.ipi6_addr = fd_cb->local_endpoint.sin6.sin6_addr; | |
2438 | ||
2439 | return sbcreatecontrol((caddr_t)&pi6, sizeof(pi6), IPV6_PKTINFO, IPPROTO_IPV6); | |
2440 | } | |
2441 | return NULL; | |
2442 | } | |
2443 | ||
2444 | static int | |
2445 | flow_divert_handle_data(struct flow_divert_pcb *fd_cb, mbuf_t packet, size_t offset) | |
2446 | { | |
2447 | int error = 0; | |
2448 | ||
2449 | FDLOCK(fd_cb); | |
2450 | if (fd_cb->so != NULL) { | |
2451 | mbuf_t data = NULL; | |
2452 | size_t data_size; | |
2453 | struct sockaddr_storage remote_address; | |
2454 | boolean_t got_remote_sa = FALSE; | |
2455 | boolean_t appended = FALSE; | |
2456 | boolean_t append_success = FALSE; | |
2457 | ||
2458 | socket_lock(fd_cb->so, 0); | |
2459 | ||
2460 | if (sbspace(&fd_cb->so->so_rcv) == 0) { | |
2461 | error = ENOBUFS; | |
2462 | fd_cb->flags |= FLOW_DIVERT_NOTIFY_ON_RECEIVED; | |
2463 | FDLOG0(LOG_INFO, fd_cb, "Receive buffer is full, will send read notification when app reads some data"); | |
2464 | goto done; | |
2465 | } | |
2466 | ||
2467 | if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
2468 | uint32_t val_size = 0; | |
2469 | ||
2470 | /* check if we got remote address with data */ | |
2471 | memset(&remote_address, 0, sizeof(remote_address)); | |
2472 | error = flow_divert_packet_get_tlv(packet, (int)offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, &val_size); | |
2473 | if (error || val_size > sizeof(remote_address)) { | |
2474 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
2475 | error = 0; | |
2476 | } else { | |
2477 | if (remote_address.ss_len > sizeof(remote_address)) { | |
2478 | remote_address.ss_len = sizeof(remote_address); | |
2479 | } | |
2480 | /* validate the address */ | |
2481 | if (flow_divert_is_sockaddr_valid((struct sockaddr *)&remote_address)) { | |
2482 | got_remote_sa = TRUE; | |
2483 | } else { | |
2484 | FDLOG0(LOG_INFO, fd_cb, "Remote address is invalid"); | |
2485 | } | |
2486 | offset += (sizeof(uint8_t) + sizeof(uint32_t) + val_size); | |
2487 | } | |
2488 | } | |
2489 | ||
2490 | data_size = (mbuf_pkthdr_len(packet) - offset); | |
2491 | ||
2492 | if (fd_cb->so->so_state & SS_CANTRCVMORE) { | |
2493 | FDLOG(LOG_NOTICE, fd_cb, "app cannot receive any more data, dropping %lu bytes of data", data_size); | |
2494 | goto done; | |
2495 | } | |
2496 | ||
2497 | if (SOCK_TYPE(fd_cb->so) != SOCK_STREAM && SOCK_TYPE(fd_cb->so) != SOCK_DGRAM) { | |
2498 | FDLOG(LOG_ERR, fd_cb, "socket has an unsupported type: %d", SOCK_TYPE(fd_cb->so)); | |
2499 | goto done; | |
2500 | } | |
2501 | ||
2502 | FDLOG(LOG_DEBUG, fd_cb, "received %lu bytes of data", data_size); | |
2503 | ||
2504 | error = mbuf_split(packet, offset, MBUF_DONTWAIT, &data); | |
2505 | if (error || data == NULL) { | |
2506 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
2507 | goto done; | |
2508 | } | |
2509 | ||
2510 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
2511 | appended = (sbappendstream(&fd_cb->so->so_rcv, data) != 0); | |
2512 | append_success = TRUE; | |
2513 | } else { | |
2514 | struct sockaddr *append_sa = NULL; | |
2515 | mbuf_t mctl; | |
2516 | ||
2517 | if (got_remote_sa == TRUE) { | |
2518 | error = flow_divert_dup_addr(remote_address.ss_family, (struct sockaddr *)&remote_address, &append_sa); | |
2519 | } else { | |
2520 | if (fd_cb->so->so_proto->pr_domain->dom_family == AF_INET6) { | |
2521 | error = in6_mapped_peeraddr(fd_cb->so, &append_sa); | |
2522 | } else { | |
2523 | error = in_getpeeraddr(fd_cb->so, &append_sa); | |
2524 | } | |
2525 | } | |
2526 | if (error) { | |
2527 | FDLOG0(LOG_ERR, fd_cb, "failed to dup the socket address."); | |
2528 | } | |
2529 | ||
2530 | mctl = flow_divert_create_control_mbuf(fd_cb); | |
2531 | int append_error = 0; | |
2532 | if (sbappendaddr(&fd_cb->so->so_rcv, append_sa, data, mctl, &append_error) || append_error == EJUSTRETURN) { | |
2533 | append_success = TRUE; | |
2534 | appended = (append_error == 0); | |
2535 | } else { | |
2536 | FDLOG(LOG_ERR, fd_cb, "failed to append %lu bytes of data: %d", data_size, append_error); | |
2537 | } | |
2538 | ||
2539 | if (append_sa != NULL) { | |
2540 | FREE(append_sa, M_SONAME); | |
2541 | } | |
2542 | } | |
2543 | ||
2544 | if (append_success) { | |
2545 | fd_cb->bytes_received += data_size; | |
2546 | flow_divert_add_data_statistics(fd_cb, data_size, FALSE); | |
2547 | } | |
2548 | ||
2549 | if (appended) { | |
2550 | sorwakeup(fd_cb->so); | |
2551 | } | |
2552 | done: | |
2553 | socket_unlock(fd_cb->so, 0); | |
2554 | } | |
2555 | FDUNLOCK(fd_cb); | |
2556 | ||
2557 | return error; | |
2558 | } | |
2559 | ||
2560 | static void | |
2561 | flow_divert_handle_read_notification(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2562 | { | |
2563 | uint32_t read_count; | |
2564 | int error = 0; | |
2565 | ||
2566 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_READ_COUNT, sizeof(read_count), &read_count, NULL); | |
2567 | if (error) { | |
2568 | FDLOG(LOG_ERR, fd_cb, "failed to get the read count: %d", error); | |
2569 | return; | |
2570 | } | |
2571 | ||
2572 | FDLOG(LOG_DEBUG, fd_cb, "received a read notification for %u bytes", ntohl(read_count)); | |
2573 | ||
2574 | FDLOCK(fd_cb); | |
2575 | if (fd_cb->so != NULL) { | |
2576 | socket_lock(fd_cb->so, 0); | |
2577 | fd_cb->send_window += ntohl(read_count); | |
2578 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
2579 | socket_unlock(fd_cb->so, 0); | |
2580 | } | |
2581 | FDUNLOCK(fd_cb); | |
2582 | } | |
2583 | ||
2584 | static void | |
2585 | flow_divert_handle_group_init(struct flow_divert_group *group, mbuf_t packet, int offset) | |
2586 | { | |
2587 | int error = 0; | |
2588 | uint32_t key_size = 0; | |
2589 | int log_level; | |
2590 | uint32_t flags = 0; | |
2591 | ||
2592 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, 0, NULL, &key_size); | |
2593 | if (error) { | |
2594 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the key size: %d", error); | |
2595 | return; | |
2596 | } | |
2597 | ||
2598 | if (key_size == 0 || key_size > FLOW_DIVERT_MAX_KEY_SIZE) { | |
2599 | FDLOG(LOG_ERR, &nil_pcb, "Invalid key size: %u", key_size); | |
2600 | return; | |
2601 | } | |
2602 | ||
2603 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOG_LEVEL, sizeof(log_level), &log_level, NULL); | |
2604 | if (!error) { | |
2605 | nil_pcb.log_level = (uint8_t)log_level; | |
2606 | } | |
2607 | ||
2608 | lck_rw_lock_exclusive(&group->lck); | |
2609 | ||
2610 | if (group->token_key != NULL) { | |
2611 | FREE(group->token_key, M_TEMP); | |
2612 | group->token_key = NULL; | |
2613 | } | |
2614 | ||
2615 | MALLOC(group->token_key, uint8_t *, key_size, M_TEMP, M_WAITOK); | |
2616 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, key_size, group->token_key, NULL); | |
2617 | if (error) { | |
2618 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the token key: %d", error); | |
2619 | FREE(group->token_key, M_TEMP); | |
2620 | group->token_key = NULL; | |
2621 | lck_rw_done(&group->lck); | |
2622 | return; | |
2623 | } | |
2624 | ||
2625 | group->token_key_size = key_size; | |
2626 | ||
2627 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_FLAGS, sizeof(flags), &flags, NULL); | |
2628 | if (!error) { | |
2629 | group->flags = flags; | |
2630 | } | |
2631 | ||
2632 | lck_rw_done(&group->lck); | |
2633 | } | |
2634 | ||
2635 | static void | |
2636 | flow_divert_handle_properties_update(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2637 | { | |
2638 | int error = 0; | |
2639 | int out_if_index = 0; | |
2640 | uint32_t app_data_length = 0; | |
2641 | ||
2642 | FDLOG0(LOG_INFO, fd_cb, "received a properties update"); | |
2643 | ||
2644 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
2645 | if (error) { | |
2646 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided in properties update"); | |
2647 | } | |
2648 | ||
2649 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, 0, NULL, &app_data_length); | |
2650 | if (error) { | |
2651 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in properties update"); | |
2652 | } | |
2653 | ||
2654 | FDLOCK(fd_cb); | |
2655 | if (fd_cb->so != NULL) { | |
2656 | socket_lock(fd_cb->so, 0); | |
2657 | ||
2658 | if (out_if_index > 0) { | |
2659 | struct inpcb *inp = NULL; | |
2660 | struct ifnet *ifp = NULL; | |
2661 | ||
2662 | inp = sotoinpcb(fd_cb->so); | |
2663 | ||
2664 | ifnet_head_lock_shared(); | |
2665 | if (out_if_index <= if_index) { | |
2666 | ifp = ifindex2ifnet[out_if_index]; | |
2667 | } | |
2668 | ||
2669 | if (ifp != NULL) { | |
2670 | if (inp->inp_vflag & INP_IPV4) { | |
2671 | inp->inp_last_outifp = ifp; | |
2672 | } else if (inp->inp_vflag & INP_IPV6) { | |
2673 | inp->in6p_last_outifp = ifp; | |
2674 | } | |
2675 | } | |
2676 | ifnet_head_done(); | |
2677 | } | |
2678 | ||
2679 | if (app_data_length > 0) { | |
2680 | uint8_t *app_data = NULL; | |
2681 | MALLOC(app_data, uint8_t *, app_data_length, M_TEMP, M_WAITOK); | |
2682 | if (app_data != NULL) { | |
2683 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, app_data_length, app_data, NULL); | |
2684 | if (error == 0) { | |
2685 | if (fd_cb->app_data != NULL) { | |
2686 | FREE(fd_cb->app_data, M_TEMP); | |
2687 | } | |
2688 | fd_cb->app_data = app_data; | |
2689 | fd_cb->app_data_length = app_data_length; | |
2690 | } else { | |
2691 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the properties update packet", app_data_length); | |
2692 | FREE(app_data, M_TEMP); | |
2693 | } | |
2694 | } else { | |
2695 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the properties update", app_data_length); | |
2696 | } | |
2697 | } | |
2698 | ||
2699 | socket_unlock(fd_cb->so, 0); | |
2700 | } | |
2701 | FDUNLOCK(fd_cb); | |
2702 | } | |
2703 | ||
2704 | static void | |
2705 | flow_divert_handle_app_map_create(struct flow_divert_group *group, mbuf_t packet, int offset) | |
2706 | { | |
2707 | size_t bytes_mem_size; | |
2708 | size_t child_maps_mem_size; | |
2709 | size_t nodes_mem_size; | |
2710 | size_t trie_memory_size = 0; | |
2711 | int cursor; | |
2712 | int error = 0; | |
2713 | struct flow_divert_trie new_trie; | |
2714 | int insert_error = 0; | |
2715 | int prefix_count = -1; | |
2716 | int signing_id_count = 0; | |
2717 | size_t bytes_count = 0; | |
2718 | size_t nodes_count = 0; | |
2719 | size_t maps_count = 0; | |
2720 | ||
2721 | lck_rw_lock_exclusive(&group->lck); | |
2722 | ||
2723 | /* Re-set the current trie */ | |
2724 | if (group->signing_id_trie.memory != NULL) { | |
2725 | FREE(group->signing_id_trie.memory, M_TEMP); | |
2726 | } | |
2727 | memset(&group->signing_id_trie, 0, sizeof(group->signing_id_trie)); | |
2728 | group->signing_id_trie.root = NULL_TRIE_IDX; | |
2729 | ||
2730 | memset(&new_trie, 0, sizeof(new_trie)); | |
2731 | ||
2732 | /* Get the number of shared prefixes in the new set of signing ID strings */ | |
2733 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_PREFIX_COUNT, sizeof(prefix_count), &prefix_count, NULL); | |
2734 | ||
2735 | if (prefix_count < 0 || error) { | |
2736 | FDLOG(LOG_ERR, &nil_pcb, "Invalid prefix count (%d) or an error occurred while reading the prefix count: %d", prefix_count, error); | |
2737 | lck_rw_done(&group->lck); | |
2738 | return; | |
2739 | } | |
2740 | ||
2741 | /* Compute the number of signing IDs and the total amount of bytes needed to store them */ | |
2742 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
2743 | cursor >= 0; | |
2744 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) { | |
2745 | uint32_t sid_size = 0; | |
2746 | error = flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
2747 | if (error || sid_size == 0) { | |
2748 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the length of the signing identifier at offset %d: %d", cursor, error); | |
2749 | signing_id_count = 0; | |
2750 | break; | |
2751 | } | |
2752 | if (os_add_overflow(bytes_count, sid_size, &bytes_count)) { | |
2753 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while incrementing number of bytes"); | |
2754 | signing_id_count = 0; | |
2755 | break; | |
2756 | } | |
2757 | signing_id_count++; | |
2758 | } | |
2759 | ||
2760 | if (signing_id_count == 0) { | |
2761 | lck_rw_done(&group->lck); | |
2762 | FDLOG0(LOG_NOTICE, &nil_pcb, "No signing identifiers"); | |
2763 | return; | |
2764 | } | |
2765 | ||
2766 | if (os_add3_overflow(prefix_count, signing_id_count, 1, &nodes_count)) { /* + 1 for the root node */ | |
2767 | lck_rw_done(&group->lck); | |
2768 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing the number of nodes"); | |
2769 | return; | |
2770 | } | |
2771 | ||
2772 | if (os_add_overflow(prefix_count, 1, &maps_count)) { /* + 1 for the root node */ | |
2773 | lck_rw_done(&group->lck); | |
2774 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing the number of maps"); | |
2775 | return; | |
2776 | } | |
2777 | ||
2778 | if (bytes_count > UINT16_MAX || nodes_count > UINT16_MAX || maps_count > UINT16_MAX) { | |
2779 | lck_rw_done(&group->lck); | |
2780 | FDLOG(LOG_NOTICE, &nil_pcb, "Invalid bytes count (%lu), nodes count (%lu) or maps count (%lu)", bytes_count, nodes_count, maps_count); | |
2781 | return; | |
2782 | } | |
2783 | ||
2784 | FDLOG(LOG_INFO, &nil_pcb, "Nodes count = %lu, child maps count = %lu, bytes_count = %lu", | |
2785 | nodes_count, maps_count, bytes_count); | |
2786 | ||
2787 | if (os_mul_overflow(sizeof(*new_trie.nodes), (size_t)nodes_count, &nodes_mem_size) || | |
2788 | os_mul3_overflow(sizeof(*new_trie.child_maps), CHILD_MAP_SIZE, (size_t)maps_count, &child_maps_mem_size) || | |
2789 | os_mul_overflow(sizeof(*new_trie.bytes), (size_t)bytes_count, &bytes_mem_size) || | |
2790 | os_add3_overflow(nodes_mem_size, child_maps_mem_size, bytes_mem_size, &trie_memory_size)) { | |
2791 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing trie memory sizes"); | |
2792 | lck_rw_done(&group->lck); | |
2793 | return; | |
2794 | } | |
2795 | ||
2796 | if (trie_memory_size > FLOW_DIVERT_MAX_TRIE_MEMORY) { | |
2797 | FDLOG(LOG_ERR, &nil_pcb, "Trie memory size (%lu) is too big (maximum is %u)", trie_memory_size, FLOW_DIVERT_MAX_TRIE_MEMORY); | |
2798 | lck_rw_done(&group->lck); | |
2799 | return; | |
2800 | } | |
2801 | ||
2802 | MALLOC(new_trie.memory, void *, trie_memory_size, M_TEMP, M_WAITOK); | |
2803 | if (new_trie.memory == NULL) { | |
2804 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate %lu bytes of memory for the signing ID trie", | |
2805 | nodes_mem_size + child_maps_mem_size + bytes_mem_size); | |
2806 | lck_rw_done(&group->lck); | |
2807 | return; | |
2808 | } | |
2809 | ||
2810 | new_trie.bytes_count = (uint16_t)bytes_count; | |
2811 | new_trie.nodes_count = (uint16_t)nodes_count; | |
2812 | new_trie.child_maps_count = (uint16_t)maps_count; | |
2813 | ||
2814 | /* Initialize the free lists */ | |
2815 | new_trie.nodes = (struct flow_divert_trie_node *)new_trie.memory; | |
2816 | new_trie.nodes_free_next = 0; | |
2817 | memset(new_trie.nodes, 0, nodes_mem_size); | |
2818 | ||
2819 | new_trie.child_maps = (uint16_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size); | |
2820 | new_trie.child_maps_free_next = 0; | |
2821 | memset(new_trie.child_maps, 0xff, child_maps_mem_size); | |
2822 | ||
2823 | new_trie.bytes = (uint8_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size + child_maps_mem_size); | |
2824 | new_trie.bytes_free_next = 0; | |
2825 | memset(new_trie.bytes, 0, bytes_mem_size); | |
2826 | ||
2827 | /* The root is an empty node */ | |
2828 | new_trie.root = trie_node_alloc(&new_trie); | |
2829 | ||
2830 | /* Add each signing ID to the trie */ | |
2831 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
2832 | cursor >= 0; | |
2833 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) { | |
2834 | uint32_t sid_size = 0; | |
2835 | error = flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
2836 | if (error || sid_size == 0) { | |
2837 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the length of the signing identifier at offset %d while building: %d", cursor, error); | |
2838 | insert_error = EINVAL; | |
2839 | break; | |
2840 | } | |
2841 | if (sid_size <= UINT16_MAX && new_trie.bytes_free_next + (uint16_t)sid_size <= new_trie.bytes_count) { | |
2842 | uint16_t new_node_idx; | |
2843 | error = flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, &TRIE_BYTE(&new_trie, new_trie.bytes_free_next), NULL); | |
2844 | if (error) { | |
2845 | FDLOG(LOG_ERR, &nil_pcb, "Failed to read the signing identifier at offset %d: %d", cursor, error); | |
2846 | insert_error = EINVAL; | |
2847 | break; | |
2848 | } | |
2849 | new_node_idx = flow_divert_trie_insert(&new_trie, new_trie.bytes_free_next, sid_size); | |
2850 | if (new_node_idx == NULL_TRIE_IDX) { | |
2851 | insert_error = EINVAL; | |
2852 | break; | |
2853 | } | |
2854 | } else { | |
2855 | FDLOG0(LOG_ERR, &nil_pcb, "No place to put signing ID for insertion"); | |
2856 | insert_error = ENOBUFS; | |
2857 | break; | |
2858 | } | |
2859 | } | |
2860 | ||
2861 | if (!insert_error) { | |
2862 | group->signing_id_trie = new_trie; | |
2863 | } else { | |
2864 | FREE(new_trie.memory, M_TEMP); | |
2865 | } | |
2866 | ||
2867 | lck_rw_done(&group->lck); | |
2868 | } | |
2869 | ||
2870 | static int | |
2871 | flow_divert_input(mbuf_t packet, struct flow_divert_group *group) | |
2872 | { | |
2873 | struct flow_divert_packet_header hdr; | |
2874 | int error = 0; | |
2875 | struct flow_divert_pcb *fd_cb; | |
2876 | ||
2877 | if (mbuf_pkthdr_len(packet) < sizeof(hdr)) { | |
2878 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) < sizeof hdr (%lu)", mbuf_pkthdr_len(packet), sizeof(hdr)); | |
2879 | error = EINVAL; | |
2880 | goto done; | |
2881 | } | |
2882 | ||
2883 | if (mbuf_pkthdr_len(packet) > FD_CTL_RCVBUFF_SIZE) { | |
2884 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) > %d", mbuf_pkthdr_len(packet), FD_CTL_RCVBUFF_SIZE); | |
2885 | error = EINVAL; | |
2886 | goto done; | |
2887 | } | |
2888 | ||
2889 | error = mbuf_copydata(packet, 0, sizeof(hdr), &hdr); | |
2890 | if (error) { | |
2891 | FDLOG(LOG_ERR, &nil_pcb, "mbuf_copydata failed for the header: %d", error); | |
2892 | error = ENOBUFS; | |
2893 | goto done; | |
2894 | } | |
2895 | ||
2896 | hdr.conn_id = ntohl(hdr.conn_id); | |
2897 | ||
2898 | if (hdr.conn_id == 0) { | |
2899 | switch (hdr.packet_type) { | |
2900 | case FLOW_DIVERT_PKT_GROUP_INIT: | |
2901 | flow_divert_handle_group_init(group, packet, sizeof(hdr)); | |
2902 | break; | |
2903 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
2904 | flow_divert_handle_app_map_create(group, packet, sizeof(hdr)); | |
2905 | break; | |
2906 | default: | |
2907 | FDLOG(LOG_WARNING, &nil_pcb, "got an unknown message type: %d", hdr.packet_type); | |
2908 | break; | |
2909 | } | |
2910 | goto done; | |
2911 | } | |
2912 | ||
2913 | fd_cb = flow_divert_pcb_lookup(hdr.conn_id, group); /* This retains the PCB */ | |
2914 | if (fd_cb == NULL) { | |
2915 | if (hdr.packet_type != FLOW_DIVERT_PKT_CLOSE && hdr.packet_type != FLOW_DIVERT_PKT_READ_NOTIFY) { | |
2916 | FDLOG(LOG_NOTICE, &nil_pcb, "got a %s message from group %d for an unknown pcb: %u", flow_divert_packet_type2str(hdr.packet_type), group->ctl_unit, hdr.conn_id); | |
2917 | } | |
2918 | goto done; | |
2919 | } | |
2920 | ||
2921 | switch (hdr.packet_type) { | |
2922 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
2923 | flow_divert_handle_connect_result(fd_cb, packet, sizeof(hdr)); | |
2924 | break; | |
2925 | case FLOW_DIVERT_PKT_CLOSE: | |
2926 | flow_divert_handle_close(fd_cb, packet, sizeof(hdr)); | |
2927 | break; | |
2928 | case FLOW_DIVERT_PKT_DATA: | |
2929 | error = flow_divert_handle_data(fd_cb, packet, sizeof(hdr)); | |
2930 | break; | |
2931 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
2932 | flow_divert_handle_read_notification(fd_cb, packet, sizeof(hdr)); | |
2933 | break; | |
2934 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
2935 | flow_divert_handle_properties_update(fd_cb, packet, sizeof(hdr)); | |
2936 | break; | |
2937 | default: | |
2938 | FDLOG(LOG_WARNING, fd_cb, "got an unknown message type: %d", hdr.packet_type); | |
2939 | break; | |
2940 | } | |
2941 | ||
2942 | FDRELEASE(fd_cb); | |
2943 | ||
2944 | done: | |
2945 | mbuf_freem(packet); | |
2946 | return error; | |
2947 | } | |
2948 | ||
2949 | static void | |
2950 | flow_divert_close_all(struct flow_divert_group *group) | |
2951 | { | |
2952 | struct flow_divert_pcb *fd_cb; | |
2953 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
2954 | ||
2955 | SLIST_INIT(&tmp_list); | |
2956 | ||
2957 | lck_rw_lock_exclusive(&group->lck); | |
2958 | ||
2959 | MBUFQ_DRAIN(&group->send_queue); | |
2960 | ||
2961 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
2962 | FDRETAIN(fd_cb); | |
2963 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
2964 | } | |
2965 | ||
2966 | lck_rw_done(&group->lck); | |
2967 | ||
2968 | while (!SLIST_EMPTY(&tmp_list)) { | |
2969 | fd_cb = SLIST_FIRST(&tmp_list); | |
2970 | FDLOCK(fd_cb); | |
2971 | SLIST_REMOVE_HEAD(&tmp_list, tmp_list_entry); | |
2972 | if (fd_cb->so != NULL) { | |
2973 | socket_lock(fd_cb->so, 0); | |
2974 | flow_divert_pcb_remove(fd_cb); | |
2975 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
2976 | fd_cb->so->so_error = ECONNABORTED; | |
2977 | flow_divert_disconnect_socket(fd_cb->so); | |
2978 | socket_unlock(fd_cb->so, 0); | |
2979 | } | |
2980 | FDUNLOCK(fd_cb); | |
2981 | FDRELEASE(fd_cb); | |
2982 | } | |
2983 | } | |
2984 | ||
2985 | void | |
2986 | flow_divert_detach(struct socket *so) | |
2987 | { | |
2988 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2989 | ||
2990 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2991 | ||
2992 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
2993 | so->so_fd_pcb = NULL; | |
2994 | ||
2995 | FDLOG(LOG_INFO, fd_cb, "Detaching, ref count = %d", fd_cb->ref_count); | |
2996 | ||
2997 | if (fd_cb->group != NULL) { | |
2998 | /* Last-ditch effort to send any buffered data */ | |
2999 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
3000 | ||
3001 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
3002 | flow_divert_send_close_if_needed(fd_cb); | |
3003 | /* Remove from the group */ | |
3004 | flow_divert_pcb_remove(fd_cb); | |
3005 | } | |
3006 | ||
3007 | socket_unlock(so, 0); | |
3008 | FDLOCK(fd_cb); | |
3009 | fd_cb->so = NULL; | |
3010 | FDUNLOCK(fd_cb); | |
3011 | socket_lock(so, 0); | |
3012 | ||
3013 | FDRELEASE(fd_cb); /* Release the socket's reference */ | |
3014 | } | |
3015 | ||
3016 | static int | |
3017 | flow_divert_close(struct socket *so) | |
3018 | { | |
3019 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3020 | ||
3021 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3022 | ||
3023 | FDLOG0(LOG_INFO, fd_cb, "Closing"); | |
3024 | ||
3025 | if (SOCK_TYPE(so) == SOCK_STREAM) { | |
3026 | soisdisconnecting(so); | |
3027 | sbflush(&so->so_rcv); | |
3028 | } | |
3029 | ||
3030 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
3031 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
3032 | flow_divert_send_close_if_needed(fd_cb); | |
3033 | ||
3034 | /* Remove from the group */ | |
3035 | flow_divert_pcb_remove(fd_cb); | |
3036 | ||
3037 | return 0; | |
3038 | } | |
3039 | ||
3040 | static int | |
3041 | flow_divert_disconnectx(struct socket *so, sae_associd_t aid, | |
3042 | sae_connid_t cid __unused) | |
3043 | { | |
3044 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { | |
3045 | return EINVAL; | |
3046 | } | |
3047 | ||
3048 | return flow_divert_close(so); | |
3049 | } | |
3050 | ||
3051 | static int | |
3052 | flow_divert_shutdown(struct socket *so) | |
3053 | { | |
3054 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3055 | ||
3056 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3057 | ||
3058 | FDLOG0(LOG_INFO, fd_cb, "Can't send more"); | |
3059 | ||
3060 | socantsendmore(so); | |
3061 | ||
3062 | flow_divert_update_closed_state(fd_cb, SHUT_WR, FALSE); | |
3063 | flow_divert_send_close_if_needed(fd_cb); | |
3064 | ||
3065 | return 0; | |
3066 | } | |
3067 | ||
3068 | static int | |
3069 | flow_divert_rcvd(struct socket *so, int flags __unused) | |
3070 | { | |
3071 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3072 | int space = sbspace(&so->so_rcv); | |
3073 | ||
3074 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3075 | ||
3076 | FDLOG(LOG_DEBUG, fd_cb, "app read bytes, space = %d", space); | |
3077 | if ((fd_cb->flags & FLOW_DIVERT_NOTIFY_ON_RECEIVED) && | |
3078 | (space > 0) && | |
3079 | flow_divert_send_read_notification(fd_cb) == 0) { | |
3080 | FDLOG0(LOG_INFO, fd_cb, "Sent a read notification"); | |
3081 | fd_cb->flags &= ~FLOW_DIVERT_NOTIFY_ON_RECEIVED; | |
3082 | } | |
3083 | ||
3084 | return 0; | |
3085 | } | |
3086 | ||
3087 | static int | |
3088 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr) | |
3089 | { | |
3090 | int error = 0; | |
3091 | int port = 0; | |
3092 | ||
3093 | if (!flow_divert_is_sockaddr_valid(toaddr)) { | |
3094 | FDLOG(LOG_ERR, &nil_pcb, "Invalid target address, family = %u, length = %u", toaddr->sa_family, toaddr->sa_len); | |
3095 | error = EINVAL; | |
3096 | goto done; | |
3097 | } | |
3098 | ||
3099 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_ADDRESS, toaddr->sa_len, toaddr); | |
3100 | if (error) { | |
3101 | goto done; | |
3102 | } | |
3103 | ||
3104 | if (toaddr->sa_family == AF_INET) { | |
3105 | port = ntohs((satosin(toaddr))->sin_port); | |
3106 | } else { | |
3107 | port = ntohs((satosin6(toaddr))->sin6_port); | |
3108 | } | |
3109 | ||
3110 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_PORT, sizeof(port), &port); | |
3111 | if (error) { | |
3112 | goto done; | |
3113 | } | |
3114 | ||
3115 | done: | |
3116 | return error; | |
3117 | } | |
3118 | ||
3119 | struct sockaddr * | |
3120 | flow_divert_get_buffered_target_address(mbuf_t buffer) | |
3121 | { | |
3122 | if (buffer != NULL && buffer->m_type == MT_SONAME) { | |
3123 | struct sockaddr *toaddr = mtod(buffer, struct sockaddr *); | |
3124 | if (toaddr != NULL && flow_divert_is_sockaddr_valid(toaddr)) { | |
3125 | return toaddr; | |
3126 | } | |
3127 | } | |
3128 | return NULL; | |
3129 | } | |
3130 | ||
3131 | static boolean_t | |
3132 | flow_divert_is_sockaddr_valid(struct sockaddr *addr) | |
3133 | { | |
3134 | switch (addr->sa_family) { | |
3135 | case AF_INET: | |
3136 | if (addr->sa_len < sizeof(struct sockaddr_in)) { | |
3137 | return FALSE; | |
3138 | } | |
3139 | break; | |
3140 | case AF_INET6: | |
3141 | if (addr->sa_len < sizeof(struct sockaddr_in6)) { | |
3142 | return FALSE; | |
3143 | } | |
3144 | break; | |
3145 | default: | |
3146 | return FALSE; | |
3147 | } | |
3148 | return TRUE; | |
3149 | } | |
3150 | ||
3151 | static errno_t | |
3152 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, | |
3153 | struct sockaddr **dup) | |
3154 | { | |
3155 | int error = 0; | |
3156 | struct sockaddr *result; | |
3157 | struct sockaddr_storage ss; | |
3158 | ||
3159 | if (addr != NULL) { | |
3160 | result = addr; | |
3161 | } else { | |
3162 | memset(&ss, 0, sizeof(ss)); | |
3163 | ss.ss_family = family; | |
3164 | if (ss.ss_family == AF_INET) { | |
3165 | ss.ss_len = sizeof(struct sockaddr_in); | |
3166 | } else if (ss.ss_family == AF_INET6) { | |
3167 | ss.ss_len = sizeof(struct sockaddr_in6); | |
3168 | } else { | |
3169 | error = EINVAL; | |
3170 | } | |
3171 | result = (struct sockaddr *)&ss; | |
3172 | } | |
3173 | ||
3174 | if (!error) { | |
3175 | *dup = dup_sockaddr(result, 1); | |
3176 | if (*dup == NULL) { | |
3177 | error = ENOBUFS; | |
3178 | } | |
3179 | } | |
3180 | ||
3181 | return error; | |
3182 | } | |
3183 | ||
3184 | static void | |
3185 | flow_divert_disconnect_socket(struct socket *so) | |
3186 | { | |
3187 | soisdisconnected(so); | |
3188 | if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
3189 | struct inpcb *inp = NULL; | |
3190 | ||
3191 | inp = sotoinpcb(so); | |
3192 | if (inp != NULL) { | |
3193 | if (SOCK_CHECK_DOM(so, PF_INET6)) { | |
3194 | in6_pcbdetach(inp); | |
3195 | } else { | |
3196 | in_pcbdetach(inp); | |
3197 | } | |
3198 | } | |
3199 | } | |
3200 | } | |
3201 | ||
3202 | static errno_t | |
3203 | flow_divert_ctloutput(struct socket *so, struct sockopt *sopt) | |
3204 | { | |
3205 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3206 | ||
3207 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3208 | ||
3209 | if (sopt->sopt_name == SO_TRAFFIC_CLASS) { | |
3210 | if (sopt->sopt_dir == SOPT_SET && fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { | |
3211 | flow_divert_send_traffic_class_update(fd_cb, so->so_traffic_class); | |
3212 | } | |
3213 | } | |
3214 | ||
3215 | if (SOCK_DOM(so) == PF_INET) { | |
3216 | return g_tcp_protosw->pr_ctloutput(so, sopt); | |
3217 | } else if (SOCK_DOM(so) == PF_INET6) { | |
3218 | return g_tcp6_protosw->pr_ctloutput(so, sopt); | |
3219 | } | |
3220 | return 0; | |
3221 | } | |
3222 | ||
3223 | static errno_t | |
3224 | flow_divert_connect_out_internal(struct socket *so, struct sockaddr *to, proc_t p, bool implicit) | |
3225 | { | |
3226 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3227 | int error = 0; | |
3228 | struct inpcb *inp = sotoinpcb(so); | |
3229 | struct sockaddr_in *sinp; | |
3230 | mbuf_t connect_packet = NULL; | |
3231 | int do_send = 1; | |
3232 | ||
3233 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3234 | ||
3235 | if (fd_cb->group == NULL) { | |
3236 | error = ENETUNREACH; | |
3237 | goto done; | |
3238 | } | |
3239 | ||
3240 | if (inp == NULL) { | |
3241 | error = EINVAL; | |
3242 | goto done; | |
3243 | } else if (inp->inp_state == INPCB_STATE_DEAD) { | |
3244 | if (so->so_error) { | |
3245 | error = so->so_error; | |
3246 | so->so_error = 0; | |
3247 | } else { | |
3248 | error = EINVAL; | |
3249 | } | |
3250 | goto done; | |
3251 | } | |
3252 | ||
3253 | if (fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { | |
3254 | error = EALREADY; | |
3255 | goto done; | |
3256 | } | |
3257 | ||
3258 | FDLOG0(LOG_INFO, fd_cb, "Connecting"); | |
3259 | ||
3260 | if (fd_cb->connect_packet == NULL) { | |
3261 | struct sockaddr_in sin = {}; | |
3262 | struct ifnet *ifp = NULL; | |
3263 | ||
3264 | if (to == NULL) { | |
3265 | FDLOG0(LOG_ERR, fd_cb, "No destination address available when creating connect packet"); | |
3266 | error = EINVAL; | |
3267 | goto done; | |
3268 | } | |
3269 | ||
3270 | fd_cb->original_remote_endpoint = dup_sockaddr(to, 0); | |
3271 | if (fd_cb->original_remote_endpoint == NULL) { | |
3272 | FDLOG0(LOG_ERR, fd_cb, "Failed to dup the remote endpoint"); | |
3273 | error = ENOMEM; | |
3274 | goto done; | |
3275 | } | |
3276 | fd_cb->original_vflag = inp->inp_vflag; | |
3277 | fd_cb->original_last_outifp = inp->inp_last_outifp; | |
3278 | fd_cb->original_last_outifp6 = inp->in6p_last_outifp; | |
3279 | ||
3280 | sinp = (struct sockaddr_in *)(void *)to; | |
3281 | if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { | |
3282 | error = EAFNOSUPPORT; | |
3283 | goto done; | |
3284 | } | |
3285 | ||
3286 | if (to->sa_family == AF_INET6 && !(inp->inp_flags & IN6P_IPV6_V6ONLY)) { | |
3287 | struct sockaddr_in6 sin6 = {}; | |
3288 | sin6.sin6_family = AF_INET6; | |
3289 | sin6.sin6_len = sizeof(struct sockaddr_in6); | |
3290 | sin6.sin6_port = satosin6(to)->sin6_port; | |
3291 | sin6.sin6_addr = satosin6(to)->sin6_addr; | |
3292 | if (IN6_IS_ADDR_V4MAPPED(&(sin6.sin6_addr))) { | |
3293 | in6_sin6_2_sin(&sin, &sin6); | |
3294 | to = (struct sockaddr *)&sin; | |
3295 | } | |
3296 | } | |
3297 | ||
3298 | if (to->sa_family == AF_INET6) { | |
3299 | inp->inp_vflag &= ~INP_IPV4; | |
3300 | inp->inp_vflag |= INP_IPV6; | |
3301 | fd_cb->local_endpoint.sin6.sin6_len = sizeof(struct sockaddr_in6); | |
3302 | fd_cb->local_endpoint.sin6.sin6_family = AF_INET6; | |
3303 | fd_cb->local_endpoint.sin6.sin6_port = inp->inp_lport; | |
3304 | error = in6_pcbladdr(inp, to, &(fd_cb->local_endpoint.sin6.sin6_addr), &ifp); | |
3305 | if (error) { | |
3306 | FDLOG(LOG_WARNING, fd_cb, "failed to get a local IPv6 address: %d", error); | |
3307 | error = 0; | |
3308 | } | |
3309 | if (ifp != NULL) { | |
3310 | inp->in6p_last_outifp = ifp; | |
3311 | ifnet_release(ifp); | |
3312 | } | |
3313 | } else if (to->sa_family == AF_INET) { | |
3314 | inp->inp_vflag |= INP_IPV4; | |
3315 | inp->inp_vflag &= ~INP_IPV6; | |
3316 | fd_cb->local_endpoint.sin.sin_len = sizeof(struct sockaddr_in); | |
3317 | fd_cb->local_endpoint.sin.sin_family = AF_INET; | |
3318 | fd_cb->local_endpoint.sin.sin_port = inp->inp_lport; | |
3319 | error = in_pcbladdr(inp, to, &(fd_cb->local_endpoint.sin.sin_addr), IFSCOPE_NONE, &ifp, 0); | |
3320 | if (error) { | |
3321 | FDLOG(LOG_WARNING, fd_cb, "failed to get a local IPv4 address: %d", error); | |
3322 | error = 0; | |
3323 | } | |
3324 | if (ifp != NULL) { | |
3325 | inp->inp_last_outifp = ifp; | |
3326 | ifnet_release(ifp); | |
3327 | } | |
3328 | } else { | |
3329 | FDLOG(LOG_WARNING, fd_cb, "target address has an unsupported family: %d", to->sa_family); | |
3330 | } | |
3331 | ||
3332 | error = flow_divert_check_no_cellular(fd_cb) || | |
3333 | flow_divert_check_no_expensive(fd_cb) || | |
3334 | flow_divert_check_no_constrained(fd_cb); | |
3335 | if (error) { | |
3336 | goto done; | |
3337 | } | |
3338 | ||
3339 | error = flow_divert_create_connect_packet(fd_cb, to, so, p, &connect_packet); | |
3340 | if (error) { | |
3341 | goto done; | |
3342 | } | |
3343 | ||
3344 | if (!implicit || SOCK_TYPE(so) == SOCK_STREAM) { | |
3345 | flow_divert_set_remote_endpoint(fd_cb, to); | |
3346 | flow_divert_set_local_endpoint(fd_cb, &(fd_cb->local_endpoint.sa), false); | |
3347 | } | |
3348 | ||
3349 | if (implicit) { | |
3350 | fd_cb->flags |= FLOW_DIVERT_IMPLICIT_CONNECT; | |
3351 | } | |
3352 | ||
3353 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) { | |
3354 | FDLOG0(LOG_INFO, fd_cb, "Delaying sending the connect packet until send or receive"); | |
3355 | do_send = 0; | |
3356 | } | |
3357 | ||
3358 | fd_cb->connect_packet = connect_packet; | |
3359 | connect_packet = NULL; | |
3360 | } else { | |
3361 | FDLOG0(LOG_INFO, fd_cb, "Sending saved connect packet"); | |
3362 | } | |
3363 | ||
3364 | if (do_send) { | |
3365 | error = flow_divert_send_connect_packet(fd_cb); | |
3366 | if (error) { | |
3367 | goto done; | |
3368 | } | |
3369 | ||
3370 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
3371 | } | |
3372 | ||
3373 | if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
3374 | soisconnected(so); | |
3375 | } else { | |
3376 | soisconnecting(so); | |
3377 | } | |
3378 | ||
3379 | done: | |
3380 | return error; | |
3381 | } | |
3382 | ||
3383 | errno_t | |
3384 | flow_divert_connect_out(struct socket *so, struct sockaddr *to, proc_t p) | |
3385 | { | |
3386 | #if CONTENT_FILTER | |
3387 | if (SOCK_TYPE(so) == SOCK_STREAM && !(so->so_flags & SOF_CONTENT_FILTER)) { | |
3388 | int error = cfil_sock_attach(so, NULL, to, CFS_CONNECTION_DIR_OUT); | |
3389 | if (error != 0) { | |
3390 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3391 | FDLOG(LOG_ERR, fd_cb, "Failed to attach cfil: %d", error); | |
3392 | return error; | |
3393 | } | |
3394 | } | |
3395 | #endif /* CONTENT_FILTER */ | |
3396 | ||
3397 | return flow_divert_connect_out_internal(so, to, p, false); | |
3398 | } | |
3399 | ||
3400 | static int | |
3401 | flow_divert_connectx_out_common(struct socket *so, struct sockaddr *dst, | |
3402 | struct proc *p, sae_connid_t *pcid, struct uio *auio, user_ssize_t *bytes_written) | |
3403 | { | |
3404 | struct inpcb *inp = sotoinpcb(so); | |
3405 | int error; | |
3406 | ||
3407 | if (inp == NULL) { | |
3408 | return EINVAL; | |
3409 | } | |
3410 | ||
3411 | VERIFY(dst != NULL); | |
3412 | ||
3413 | error = flow_divert_connect_out(so, dst, p); | |
3414 | ||
3415 | if (error != 0) { | |
3416 | return error; | |
3417 | } | |
3418 | ||
3419 | /* if there is data, send it */ | |
3420 | if (auio != NULL) { | |
3421 | user_ssize_t datalen = 0; | |
3422 | ||
3423 | socket_unlock(so, 0); | |
3424 | ||
3425 | VERIFY(bytes_written != NULL); | |
3426 | ||
3427 | datalen = uio_resid(auio); | |
3428 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, (uio_t)auio, NULL, NULL, 0); | |
3429 | socket_lock(so, 0); | |
3430 | ||
3431 | if (error == 0 || error == EWOULDBLOCK) { | |
3432 | *bytes_written = datalen - uio_resid(auio); | |
3433 | } | |
3434 | ||
3435 | /* | |
3436 | * sosend returns EWOULDBLOCK if it's a non-blocking | |
3437 | * socket or a timeout occured (this allows to return | |
3438 | * the amount of queued data through sendit()). | |
3439 | * | |
3440 | * However, connectx() returns EINPROGRESS in case of a | |
3441 | * blocking socket. So we change the return value here. | |
3442 | */ | |
3443 | if (error == EWOULDBLOCK) { | |
3444 | error = EINPROGRESS; | |
3445 | } | |
3446 | } | |
3447 | ||
3448 | if (error == 0 && pcid != NULL) { | |
3449 | *pcid = 1; /* there is only 1 connection for a TCP */ | |
3450 | } | |
3451 | ||
3452 | return error; | |
3453 | } | |
3454 | ||
3455 | static int | |
3456 | flow_divert_connectx_out(struct socket *so, struct sockaddr *src __unused, | |
3457 | struct sockaddr *dst, struct proc *p, uint32_t ifscope __unused, | |
3458 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
3459 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) | |
3460 | { | |
3461 | return flow_divert_connectx_out_common(so, dst, p, pcid, uio, bytes_written); | |
3462 | } | |
3463 | ||
3464 | static int | |
3465 | flow_divert_connectx6_out(struct socket *so, struct sockaddr *src __unused, | |
3466 | struct sockaddr *dst, struct proc *p, uint32_t ifscope __unused, | |
3467 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
3468 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) | |
3469 | { | |
3470 | return flow_divert_connectx_out_common(so, dst, p, pcid, uio, bytes_written); | |
3471 | } | |
3472 | ||
3473 | static errno_t | |
3474 | flow_divert_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) | |
3475 | { | |
3476 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3477 | int error = 0; | |
3478 | struct inpcb *inp; | |
3479 | #if CONTENT_FILTER | |
3480 | struct m_tag *cfil_tag = NULL; | |
3481 | #endif | |
3482 | ||
3483 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3484 | ||
3485 | inp = sotoinpcb(so); | |
3486 | if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { | |
3487 | error = ECONNRESET; | |
3488 | goto done; | |
3489 | } | |
3490 | ||
3491 | if (control && mbuf_len(control) > 0) { | |
3492 | error = EINVAL; | |
3493 | goto done; | |
3494 | } | |
3495 | ||
3496 | if (flags & MSG_OOB) { | |
3497 | error = EINVAL; | |
3498 | goto done; /* We don't support OOB data */ | |
3499 | } | |
3500 | ||
3501 | #if CONTENT_FILTER | |
3502 | /* | |
3503 | * If the socket is subject to a UDP Content Filter and no remote address is passed in, | |
3504 | * retrieve the CFIL saved remote address from the mbuf and use it. | |
3505 | */ | |
3506 | if (to == NULL && so->so_cfil_db) { | |
3507 | struct sockaddr *cfil_faddr = NULL; | |
3508 | cfil_tag = cfil_dgram_get_socket_state(data, NULL, NULL, &cfil_faddr, NULL); | |
3509 | if (cfil_tag) { | |
3510 | to = (struct sockaddr *)(void *)cfil_faddr; | |
3511 | } | |
3512 | FDLOG(LOG_INFO, fd_cb, "Using remote address from CFIL saved state: %p", to); | |
3513 | } | |
3514 | #endif | |
3515 | ||
3516 | /* Implicit connect */ | |
3517 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
3518 | FDLOG0(LOG_INFO, fd_cb, "implicit connect"); | |
3519 | ||
3520 | error = flow_divert_connect_out_internal(so, to, p, true); | |
3521 | if (error) { | |
3522 | goto done; | |
3523 | } | |
3524 | ||
3525 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { | |
3526 | /* Open up the send window so that the data will get sent right away */ | |
3527 | fd_cb->send_window = (uint32_t)mbuf_pkthdr_len(data); | |
3528 | } | |
3529 | } else { | |
3530 | error = flow_divert_check_no_cellular(fd_cb) || | |
3531 | flow_divert_check_no_expensive(fd_cb) || | |
3532 | flow_divert_check_no_constrained(fd_cb); | |
3533 | if (error) { | |
3534 | goto done; | |
3535 | } | |
3536 | } | |
3537 | ||
3538 | FDLOG(LOG_DEBUG, fd_cb, "app wrote %lu bytes", mbuf_pkthdr_len(data)); | |
3539 | ||
3540 | fd_cb->bytes_written_by_app += mbuf_pkthdr_len(data); | |
3541 | error = flow_divert_send_app_data(fd_cb, data, to); | |
3542 | ||
3543 | data = NULL; | |
3544 | ||
3545 | if (error) { | |
3546 | goto done; | |
3547 | } | |
3548 | ||
3549 | if (flags & PRUS_EOF) { | |
3550 | flow_divert_shutdown(so); | |
3551 | } | |
3552 | ||
3553 | done: | |
3554 | if (data) { | |
3555 | mbuf_freem(data); | |
3556 | } | |
3557 | if (control) { | |
3558 | mbuf_free(control); | |
3559 | } | |
3560 | #if CONTENT_FILTER | |
3561 | if (cfil_tag) { | |
3562 | m_tag_free(cfil_tag); | |
3563 | } | |
3564 | #endif | |
3565 | ||
3566 | return error; | |
3567 | } | |
3568 | ||
3569 | static int | |
3570 | flow_divert_preconnect(struct socket *so) | |
3571 | { | |
3572 | int error = 0; | |
3573 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3574 | ||
3575 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3576 | ||
3577 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
3578 | FDLOG0(LOG_INFO, fd_cb, "Pre-connect read: sending saved connect packet"); | |
3579 | error = flow_divert_send_connect_packet(so->so_fd_pcb); | |
3580 | if (error) { | |
3581 | return error; | |
3582 | } | |
3583 | ||
3584 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
3585 | } | |
3586 | ||
3587 | soclearfastopen(so); | |
3588 | ||
3589 | return error; | |
3590 | } | |
3591 | ||
3592 | static void | |
3593 | flow_divert_set_protosw(struct socket *so) | |
3594 | { | |
3595 | if (SOCK_DOM(so) == PF_INET) { | |
3596 | so->so_proto = &g_flow_divert_in_protosw; | |
3597 | } else { | |
3598 | so->so_proto = (struct protosw *)&g_flow_divert_in6_protosw; | |
3599 | } | |
3600 | } | |
3601 | ||
3602 | static void | |
3603 | flow_divert_set_udp_protosw(struct socket *so) | |
3604 | { | |
3605 | if (SOCK_DOM(so) == PF_INET) { | |
3606 | so->so_proto = &g_flow_divert_in_udp_protosw; | |
3607 | } else { | |
3608 | so->so_proto = (struct protosw *)&g_flow_divert_in6_udp_protosw; | |
3609 | } | |
3610 | } | |
3611 | ||
3612 | errno_t | |
3613 | flow_divert_implicit_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) | |
3614 | { | |
3615 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3616 | struct inpcb *inp; | |
3617 | int error = 0; | |
3618 | ||
3619 | inp = sotoinpcb(so); | |
3620 | if (inp == NULL) { | |
3621 | return EINVAL; | |
3622 | } | |
3623 | ||
3624 | if (fd_cb == NULL) { | |
3625 | error = flow_divert_pcb_init(so); | |
3626 | fd_cb = so->so_fd_pcb; | |
3627 | if (error != 0 || fd_cb == NULL) { | |
3628 | goto done; | |
3629 | } | |
3630 | } | |
3631 | return flow_divert_data_out(so, flags, data, to, control, p); | |
3632 | ||
3633 | done: | |
3634 | if (data) { | |
3635 | mbuf_freem(data); | |
3636 | } | |
3637 | if (control) { | |
3638 | mbuf_free(control); | |
3639 | } | |
3640 | ||
3641 | return error; | |
3642 | } | |
3643 | ||
3644 | static errno_t | |
3645 | flow_divert_pcb_init_internal(struct socket *so, uint32_t ctl_unit, uint32_t aggregate_unit) | |
3646 | { | |
3647 | errno_t error = 0; | |
3648 | struct flow_divert_pcb *fd_cb; | |
3649 | uint32_t agg_unit = aggregate_unit; | |
3650 | uint32_t group_unit = flow_divert_derive_kernel_control_unit(ctl_unit, &agg_unit); | |
3651 | ||
3652 | if (group_unit == 0) { | |
3653 | return EINVAL; | |
3654 | } | |
3655 | ||
3656 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
3657 | return EALREADY; | |
3658 | } | |
3659 | ||
3660 | fd_cb = flow_divert_pcb_create(so); | |
3661 | if (fd_cb != NULL) { | |
3662 | so->so_fd_pcb = fd_cb; | |
3663 | so->so_flags |= SOF_FLOW_DIVERT; | |
3664 | fd_cb->control_group_unit = group_unit; | |
3665 | fd_cb->policy_control_unit = ctl_unit; | |
3666 | fd_cb->aggregate_unit = agg_unit; | |
3667 | ||
3668 | error = flow_divert_pcb_insert(fd_cb, group_unit); | |
3669 | if (error) { | |
3670 | FDLOG(LOG_ERR, fd_cb, "pcb insert failed: %d", error); | |
3671 | so->so_fd_pcb = NULL; | |
3672 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
3673 | FDRELEASE(fd_cb); | |
3674 | } else { | |
3675 | if (SOCK_TYPE(so) == SOCK_STREAM) { | |
3676 | flow_divert_set_protosw(so); | |
3677 | } else if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
3678 | flow_divert_set_udp_protosw(so); | |
3679 | } | |
3680 | ||
3681 | FDLOG0(LOG_INFO, fd_cb, "Created"); | |
3682 | } | |
3683 | } else { | |
3684 | error = ENOMEM; | |
3685 | } | |
3686 | ||
3687 | return error; | |
3688 | } | |
3689 | ||
3690 | errno_t | |
3691 | flow_divert_pcb_init(struct socket *so) | |
3692 | { | |
3693 | struct inpcb *inp = sotoinpcb(so); | |
3694 | uint32_t aggregate_units = 0; | |
3695 | uint32_t ctl_unit = necp_socket_get_flow_divert_control_unit(inp, &aggregate_units); | |
3696 | return flow_divert_pcb_init_internal(so, ctl_unit, aggregate_units); | |
3697 | } | |
3698 | ||
3699 | errno_t | |
3700 | flow_divert_token_set(struct socket *so, struct sockopt *sopt) | |
3701 | { | |
3702 | uint32_t ctl_unit = 0; | |
3703 | uint32_t key_unit = 0; | |
3704 | uint32_t aggregate_unit = 0; | |
3705 | int error = 0; | |
3706 | int hmac_error = 0; | |
3707 | mbuf_t token = NULL; | |
3708 | ||
3709 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
3710 | error = EALREADY; | |
3711 | goto done; | |
3712 | } | |
3713 | ||
3714 | if (g_init_result) { | |
3715 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_init failed (%d), cannot use flow divert", g_init_result); | |
3716 | error = ENOPROTOOPT; | |
3717 | goto done; | |
3718 | } | |
3719 | ||
3720 | if ((SOCK_TYPE(so) != SOCK_STREAM && SOCK_TYPE(so) != SOCK_DGRAM) || | |
3721 | (SOCK_PROTO(so) != IPPROTO_TCP && SOCK_PROTO(so) != IPPROTO_UDP) || | |
3722 | (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6)) { | |
3723 | error = EINVAL; | |
3724 | goto done; | |
3725 | } else { | |
3726 | if (SOCK_TYPE(so) == SOCK_STREAM && SOCK_PROTO(so) == IPPROTO_TCP) { | |
3727 | struct tcpcb *tp = sototcpcb(so); | |
3728 | if (tp == NULL || tp->t_state != TCPS_CLOSED) { | |
3729 | error = EINVAL; | |
3730 | goto done; | |
3731 | } | |
3732 | } | |
3733 | } | |
3734 | ||
3735 | error = soopt_getm(sopt, &token); | |
3736 | if (error) { | |
3737 | token = NULL; | |
3738 | goto done; | |
3739 | } | |
3740 | ||
3741 | error = soopt_mcopyin(sopt, token); | |
3742 | if (error) { | |
3743 | token = NULL; | |
3744 | goto done; | |
3745 | } | |
3746 | ||
3747 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(key_unit), (void *)&key_unit, NULL); | |
3748 | if (!error) { | |
3749 | key_unit = ntohl(key_unit); | |
3750 | if (key_unit >= GROUP_COUNT_MAX) { | |
3751 | key_unit = 0; | |
3752 | } | |
3753 | } else if (error != ENOENT) { | |
3754 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the key unit from the token: %d", error); | |
3755 | goto done; | |
3756 | } else { | |
3757 | key_unit = 0; | |
3758 | } | |
3759 | ||
3760 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), (void *)&ctl_unit, NULL); | |
3761 | if (error) { | |
3762 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the control socket unit from the token: %d", error); | |
3763 | goto done; | |
3764 | } | |
3765 | ||
3766 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_AGGREGATE_UNIT, sizeof(aggregate_unit), (void *)&aggregate_unit, NULL); | |
3767 | if (error && error != ENOENT) { | |
3768 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the aggregate unit from the token: %d", error); | |
3769 | goto done; | |
3770 | } | |
3771 | ||
3772 | /* A valid kernel control unit is required */ | |
3773 | ctl_unit = ntohl(ctl_unit); | |
3774 | aggregate_unit = ntohl(aggregate_unit); | |
3775 | ||
3776 | if (ctl_unit > 0 && ctl_unit < GROUP_COUNT_MAX) { | |
3777 | socket_unlock(so, 0); | |
3778 | hmac_error = flow_divert_packet_verify_hmac(token, (key_unit != 0 ? key_unit : ctl_unit)); | |
3779 | socket_lock(so, 0); | |
3780 | ||
3781 | if (hmac_error && hmac_error != ENOENT) { | |
3782 | FDLOG(LOG_ERR, &nil_pcb, "HMAC verfication failed: %d", hmac_error); | |
3783 | error = hmac_error; | |
3784 | goto done; | |
3785 | } | |
3786 | } | |
3787 | ||
3788 | error = flow_divert_pcb_init_internal(so, ctl_unit, aggregate_unit); | |
3789 | if (error == 0) { | |
3790 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3791 | int log_level = LOG_NOTICE; | |
3792 | ||
3793 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_LOG_LEVEL, sizeof(log_level), &log_level, NULL); | |
3794 | if (error == 0) { | |
3795 | fd_cb->log_level = (uint8_t)log_level; | |
3796 | } | |
3797 | error = 0; | |
3798 | ||
3799 | fd_cb->connect_token = token; | |
3800 | token = NULL; | |
3801 | } | |
3802 | ||
3803 | if (hmac_error == 0) { | |
3804 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3805 | if (fd_cb != NULL) { | |
3806 | fd_cb->flags |= FLOW_DIVERT_HAS_HMAC; | |
3807 | } | |
3808 | } | |
3809 | ||
3810 | done: | |
3811 | if (token != NULL) { | |
3812 | mbuf_freem(token); | |
3813 | } | |
3814 | ||
3815 | return error; | |
3816 | } | |
3817 | ||
3818 | errno_t | |
3819 | flow_divert_token_get(struct socket *so, struct sockopt *sopt) | |
3820 | { | |
3821 | uint32_t ctl_unit; | |
3822 | int error = 0; | |
3823 | uint8_t hmac[SHA_DIGEST_LENGTH]; | |
3824 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3825 | mbuf_t token = NULL; | |
3826 | struct flow_divert_group *control_group = NULL; | |
3827 | ||
3828 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { | |
3829 | error = EINVAL; | |
3830 | goto done; | |
3831 | } | |
3832 | ||
3833 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3834 | ||
3835 | if (fd_cb->group == NULL) { | |
3836 | error = EINVAL; | |
3837 | goto done; | |
3838 | } | |
3839 | ||
3840 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &token); | |
3841 | if (error) { | |
3842 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
3843 | goto done; | |
3844 | } | |
3845 | ||
3846 | ctl_unit = htonl(fd_cb->group->ctl_unit); | |
3847 | ||
3848 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
3849 | if (error) { | |
3850 | goto done; | |
3851 | } | |
3852 | ||
3853 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_FLOW_ID, sizeof(fd_cb->hash), &fd_cb->hash); | |
3854 | if (error) { | |
3855 | goto done; | |
3856 | } | |
3857 | ||
3858 | if (fd_cb->app_data != NULL) { | |
3859 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_APP_DATA, (uint32_t)fd_cb->app_data_length, fd_cb->app_data); | |
3860 | if (error) { | |
3861 | goto done; | |
3862 | } | |
3863 | } | |
3864 | ||
3865 | socket_unlock(so, 0); | |
3866 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3867 | ||
3868 | if (g_flow_divert_groups != NULL && g_active_group_count > 0 && | |
3869 | fd_cb->control_group_unit > 0 && fd_cb->control_group_unit < GROUP_COUNT_MAX) { | |
3870 | control_group = g_flow_divert_groups[fd_cb->control_group_unit]; | |
3871 | } | |
3872 | ||
3873 | if (control_group != NULL) { | |
3874 | lck_rw_lock_shared(&control_group->lck); | |
3875 | ctl_unit = htonl(control_group->ctl_unit); | |
3876 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(ctl_unit), &ctl_unit); | |
3877 | if (!error) { | |
3878 | error = flow_divert_packet_compute_hmac(token, control_group, hmac); | |
3879 | } | |
3880 | lck_rw_done(&control_group->lck); | |
3881 | } else { | |
3882 | error = ENOPROTOOPT; | |
3883 | } | |
3884 | ||
3885 | lck_rw_done(&g_flow_divert_group_lck); | |
3886 | socket_lock(so, 0); | |
3887 | ||
3888 | if (error) { | |
3889 | goto done; | |
3890 | } | |
3891 | ||
3892 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_HMAC, sizeof(hmac), hmac); | |
3893 | if (error) { | |
3894 | goto done; | |
3895 | } | |
3896 | ||
3897 | if (sopt->sopt_val == USER_ADDR_NULL) { | |
3898 | /* If the caller passed NULL to getsockopt, just set the size of the token and return */ | |
3899 | sopt->sopt_valsize = mbuf_pkthdr_len(token); | |
3900 | goto done; | |
3901 | } | |
3902 | ||
3903 | error = soopt_mcopyout(sopt, token); | |
3904 | if (error) { | |
3905 | token = NULL; /* For some reason, soopt_mcopyout() frees the mbuf if it fails */ | |
3906 | goto done; | |
3907 | } | |
3908 | ||
3909 | done: | |
3910 | if (token != NULL) { | |
3911 | mbuf_freem(token); | |
3912 | } | |
3913 | ||
3914 | return error; | |
3915 | } | |
3916 | ||
3917 | static errno_t | |
3918 | flow_divert_kctl_connect(kern_ctl_ref kctlref __unused, struct sockaddr_ctl *sac, void **unitinfo) | |
3919 | { | |
3920 | struct flow_divert_group *new_group = NULL; | |
3921 | int error = 0; | |
3922 | ||
3923 | if (sac->sc_unit >= GROUP_COUNT_MAX) { | |
3924 | error = EINVAL; | |
3925 | goto done; | |
3926 | } | |
3927 | ||
3928 | *unitinfo = NULL; | |
3929 | ||
3930 | new_group = zalloc_flags(flow_divert_group_zone, Z_WAITOK | Z_ZERO); | |
3931 | lck_rw_init(&new_group->lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
3932 | RB_INIT(&new_group->pcb_tree); | |
3933 | new_group->ctl_unit = sac->sc_unit; | |
3934 | MBUFQ_INIT(&new_group->send_queue); | |
3935 | new_group->signing_id_trie.root = NULL_TRIE_IDX; | |
3936 | ||
3937 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3938 | ||
3939 | if (g_flow_divert_groups == NULL) { | |
3940 | MALLOC(g_flow_divert_groups, | |
3941 | struct flow_divert_group **, | |
3942 | GROUP_COUNT_MAX * sizeof(struct flow_divert_group *), | |
3943 | M_TEMP, | |
3944 | M_WAITOK | M_ZERO); | |
3945 | } | |
3946 | ||
3947 | if (g_flow_divert_groups == NULL) { | |
3948 | error = ENOBUFS; | |
3949 | } else if (g_flow_divert_groups[sac->sc_unit] != NULL) { | |
3950 | error = EALREADY; | |
3951 | } else { | |
3952 | g_flow_divert_groups[sac->sc_unit] = new_group; | |
3953 | g_active_group_count++; | |
3954 | } | |
3955 | ||
3956 | lck_rw_done(&g_flow_divert_group_lck); | |
3957 | ||
3958 | done: | |
3959 | if (error == 0) { | |
3960 | *unitinfo = new_group; | |
3961 | } else if (new_group != NULL) { | |
3962 | zfree(flow_divert_group_zone, new_group); | |
3963 | } | |
3964 | return error; | |
3965 | } | |
3966 | ||
3967 | static errno_t | |
3968 | flow_divert_kctl_disconnect(kern_ctl_ref kctlref __unused, uint32_t unit, void *unitinfo) | |
3969 | { | |
3970 | struct flow_divert_group *group = NULL; | |
3971 | errno_t error = 0; | |
3972 | ||
3973 | if (unit >= GROUP_COUNT_MAX) { | |
3974 | return EINVAL; | |
3975 | } | |
3976 | ||
3977 | if (unitinfo == NULL) { | |
3978 | return 0; | |
3979 | } | |
3980 | ||
3981 | FDLOG(LOG_INFO, &nil_pcb, "disconnecting group %d", unit); | |
3982 | ||
3983 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3984 | ||
3985 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
3986 | panic("flow divert group %u is disconnecting, but no groups are active (groups = %p, active count = %u", unit, | |
3987 | g_flow_divert_groups, g_active_group_count); | |
3988 | } | |
3989 | ||
3990 | group = g_flow_divert_groups[unit]; | |
3991 | ||
3992 | if (group != (struct flow_divert_group *)unitinfo) { | |
3993 | panic("group with unit %d (%p) != unit info (%p)", unit, group, unitinfo); | |
3994 | } | |
3995 | ||
3996 | g_flow_divert_groups[unit] = NULL; | |
3997 | g_active_group_count--; | |
3998 | ||
3999 | if (g_active_group_count == 0) { | |
4000 | FREE(g_flow_divert_groups, M_TEMP); | |
4001 | g_flow_divert_groups = NULL; | |
4002 | } | |
4003 | ||
4004 | lck_rw_done(&g_flow_divert_group_lck); | |
4005 | ||
4006 | if (group != NULL) { | |
4007 | flow_divert_close_all(group); | |
4008 | ||
4009 | lck_rw_lock_exclusive(&group->lck); | |
4010 | ||
4011 | if (group->token_key != NULL) { | |
4012 | memset(group->token_key, 0, group->token_key_size); | |
4013 | FREE(group->token_key, M_TEMP); | |
4014 | group->token_key = NULL; | |
4015 | group->token_key_size = 0; | |
4016 | } | |
4017 | ||
4018 | /* Re-set the current trie */ | |
4019 | if (group->signing_id_trie.memory != NULL) { | |
4020 | FREE(group->signing_id_trie.memory, M_TEMP); | |
4021 | } | |
4022 | memset(&group->signing_id_trie, 0, sizeof(group->signing_id_trie)); | |
4023 | group->signing_id_trie.root = NULL_TRIE_IDX; | |
4024 | ||
4025 | lck_rw_done(&group->lck); | |
4026 | ||
4027 | zfree(flow_divert_group_zone, group); | |
4028 | } else { | |
4029 | error = EINVAL; | |
4030 | } | |
4031 | ||
4032 | return error; | |
4033 | } | |
4034 | ||
4035 | static errno_t | |
4036 | flow_divert_kctl_send(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, mbuf_t m, int flags __unused) | |
4037 | { | |
4038 | return flow_divert_input(m, (struct flow_divert_group *)unitinfo); | |
4039 | } | |
4040 | ||
4041 | static void | |
4042 | flow_divert_kctl_rcvd(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, int flags __unused) | |
4043 | { | |
4044 | struct flow_divert_group *group = (struct flow_divert_group *)unitinfo; | |
4045 | ||
4046 | if (!OSTestAndClear(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits)) { | |
4047 | struct flow_divert_pcb *fd_cb; | |
4048 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
4049 | ||
4050 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
4051 | lck_rw_lock_exclusive(&group->lck); | |
4052 | ||
4053 | while (!MBUFQ_EMPTY(&group->send_queue)) { | |
4054 | mbuf_t next_packet; | |
4055 | FDLOG0(LOG_DEBUG, &nil_pcb, "trying ctl_enqueuembuf again"); | |
4056 | next_packet = MBUFQ_FIRST(&group->send_queue); | |
4057 | int error = ctl_enqueuembuf(g_flow_divert_kctl_ref, group->ctl_unit, next_packet, CTL_DATA_EOR); | |
4058 | if (error) { | |
4059 | FDLOG(LOG_DEBUG, &nil_pcb, "ctl_enqueuembuf returned an error: %d", error); | |
4060 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits); | |
4061 | lck_rw_done(&group->lck); | |
4062 | lck_rw_done(&g_flow_divert_group_lck); | |
4063 | return; | |
4064 | } | |
4065 | MBUFQ_DEQUEUE(&group->send_queue, next_packet); | |
4066 | } | |
4067 | ||
4068 | SLIST_INIT(&tmp_list); | |
4069 | ||
4070 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
4071 | FDRETAIN(fd_cb); | |
4072 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
4073 | } | |
4074 | ||
4075 | lck_rw_done(&group->lck); | |
4076 | ||
4077 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { | |
4078 | FDLOCK(fd_cb); | |
4079 | if (fd_cb->so != NULL) { | |
4080 | socket_lock(fd_cb->so, 0); | |
4081 | if (fd_cb->group != NULL) { | |
4082 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
4083 | } | |
4084 | socket_unlock(fd_cb->so, 0); | |
4085 | } | |
4086 | FDUNLOCK(fd_cb); | |
4087 | FDRELEASE(fd_cb); | |
4088 | } | |
4089 | ||
4090 | lck_rw_done(&g_flow_divert_group_lck); | |
4091 | } | |
4092 | } | |
4093 | ||
4094 | static int | |
4095 | flow_divert_kctl_init(void) | |
4096 | { | |
4097 | struct kern_ctl_reg ctl_reg; | |
4098 | int result; | |
4099 | ||
4100 | memset(&ctl_reg, 0, sizeof(ctl_reg)); | |
4101 | ||
4102 | strlcpy(ctl_reg.ctl_name, FLOW_DIVERT_CONTROL_NAME, sizeof(ctl_reg.ctl_name)); | |
4103 | ctl_reg.ctl_name[sizeof(ctl_reg.ctl_name) - 1] = '\0'; | |
4104 | ctl_reg.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_EXTENDED; | |
4105 | ctl_reg.ctl_sendsize = FD_CTL_SENDBUFF_SIZE; | |
4106 | ctl_reg.ctl_recvsize = FD_CTL_RCVBUFF_SIZE; | |
4107 | ||
4108 | ctl_reg.ctl_connect = flow_divert_kctl_connect; | |
4109 | ctl_reg.ctl_disconnect = flow_divert_kctl_disconnect; | |
4110 | ctl_reg.ctl_send = flow_divert_kctl_send; | |
4111 | ctl_reg.ctl_rcvd = flow_divert_kctl_rcvd; | |
4112 | ||
4113 | result = ctl_register(&ctl_reg, &g_flow_divert_kctl_ref); | |
4114 | ||
4115 | if (result) { | |
4116 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_kctl_init - ctl_register failed: %d\n", result); | |
4117 | return result; | |
4118 | } | |
4119 | ||
4120 | return 0; | |
4121 | } | |
4122 | ||
4123 | void | |
4124 | flow_divert_init(void) | |
4125 | { | |
4126 | memset(&nil_pcb, 0, sizeof(nil_pcb)); | |
4127 | nil_pcb.log_level = LOG_NOTICE; | |
4128 | ||
4129 | g_tcp_protosw = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM); | |
4130 | ||
4131 | VERIFY(g_tcp_protosw != NULL); | |
4132 | ||
4133 | memcpy(&g_flow_divert_in_protosw, g_tcp_protosw, sizeof(g_flow_divert_in_protosw)); | |
4134 | memcpy(&g_flow_divert_in_usrreqs, g_tcp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_usrreqs)); | |
4135 | ||
4136 | g_flow_divert_in_usrreqs.pru_connect = flow_divert_connect_out; | |
4137 | g_flow_divert_in_usrreqs.pru_connectx = flow_divert_connectx_out; | |
4138 | g_flow_divert_in_usrreqs.pru_disconnect = flow_divert_close; | |
4139 | g_flow_divert_in_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
4140 | g_flow_divert_in_usrreqs.pru_rcvd = flow_divert_rcvd; | |
4141 | g_flow_divert_in_usrreqs.pru_send = flow_divert_data_out; | |
4142 | g_flow_divert_in_usrreqs.pru_shutdown = flow_divert_shutdown; | |
4143 | g_flow_divert_in_usrreqs.pru_preconnect = flow_divert_preconnect; | |
4144 | ||
4145 | g_flow_divert_in_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
4146 | g_flow_divert_in_protosw.pr_ctloutput = flow_divert_ctloutput; | |
4147 | ||
4148 | /* | |
4149 | * Socket filters shouldn't attach/detach to/from this protosw | |
4150 | * since pr_protosw is to be used instead, which points to the | |
4151 | * real protocol; if they do, it is a bug and we should panic. | |
4152 | */ | |
4153 | g_flow_divert_in_protosw.pr_filter_head.tqh_first = | |
4154 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
4155 | g_flow_divert_in_protosw.pr_filter_head.tqh_last = | |
4156 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
4157 | ||
4158 | /* UDP */ | |
4159 | g_udp_protosw = pffindproto(AF_INET, IPPROTO_UDP, SOCK_DGRAM); | |
4160 | VERIFY(g_udp_protosw != NULL); | |
4161 | ||
4162 | memcpy(&g_flow_divert_in_udp_protosw, g_udp_protosw, sizeof(g_flow_divert_in_udp_protosw)); | |
4163 | memcpy(&g_flow_divert_in_udp_usrreqs, g_udp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_udp_usrreqs)); | |
4164 | ||
4165 | g_flow_divert_in_udp_usrreqs.pru_connect = flow_divert_connect_out; | |
4166 | g_flow_divert_in_udp_usrreqs.pru_connectx = flow_divert_connectx_out; | |
4167 | g_flow_divert_in_udp_usrreqs.pru_disconnect = flow_divert_close; | |
4168 | g_flow_divert_in_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
4169 | g_flow_divert_in_udp_usrreqs.pru_rcvd = flow_divert_rcvd; | |
4170 | g_flow_divert_in_udp_usrreqs.pru_send = flow_divert_data_out; | |
4171 | g_flow_divert_in_udp_usrreqs.pru_shutdown = flow_divert_shutdown; | |
4172 | g_flow_divert_in_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; | |
4173 | g_flow_divert_in_udp_usrreqs.pru_soreceive_list = pru_soreceive_list_notsupp; | |
4174 | g_flow_divert_in_udp_usrreqs.pru_preconnect = flow_divert_preconnect; | |
4175 | ||
4176 | g_flow_divert_in_udp_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
4177 | g_flow_divert_in_udp_protosw.pr_ctloutput = flow_divert_ctloutput; | |
4178 | ||
4179 | /* | |
4180 | * Socket filters shouldn't attach/detach to/from this protosw | |
4181 | * since pr_protosw is to be used instead, which points to the | |
4182 | * real protocol; if they do, it is a bug and we should panic. | |
4183 | */ | |
4184 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_first = | |
4185 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
4186 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_last = | |
4187 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
4188 | ||
4189 | g_tcp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_TCP, SOCK_STREAM); | |
4190 | ||
4191 | VERIFY(g_tcp6_protosw != NULL); | |
4192 | ||
4193 | memcpy(&g_flow_divert_in6_protosw, g_tcp6_protosw, sizeof(g_flow_divert_in6_protosw)); | |
4194 | memcpy(&g_flow_divert_in6_usrreqs, g_tcp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_usrreqs)); | |
4195 | ||
4196 | g_flow_divert_in6_usrreqs.pru_connect = flow_divert_connect_out; | |
4197 | g_flow_divert_in6_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
4198 | g_flow_divert_in6_usrreqs.pru_disconnect = flow_divert_close; | |
4199 | g_flow_divert_in6_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
4200 | g_flow_divert_in6_usrreqs.pru_rcvd = flow_divert_rcvd; | |
4201 | g_flow_divert_in6_usrreqs.pru_send = flow_divert_data_out; | |
4202 | g_flow_divert_in6_usrreqs.pru_shutdown = flow_divert_shutdown; | |
4203 | g_flow_divert_in6_usrreqs.pru_preconnect = flow_divert_preconnect; | |
4204 | ||
4205 | g_flow_divert_in6_protosw.pr_usrreqs = &g_flow_divert_in6_usrreqs; | |
4206 | g_flow_divert_in6_protosw.pr_ctloutput = flow_divert_ctloutput; | |
4207 | /* | |
4208 | * Socket filters shouldn't attach/detach to/from this protosw | |
4209 | * since pr_protosw is to be used instead, which points to the | |
4210 | * real protocol; if they do, it is a bug and we should panic. | |
4211 | */ | |
4212 | g_flow_divert_in6_protosw.pr_filter_head.tqh_first = | |
4213 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
4214 | g_flow_divert_in6_protosw.pr_filter_head.tqh_last = | |
4215 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
4216 | ||
4217 | /* UDP6 */ | |
4218 | g_udp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_UDP, SOCK_DGRAM); | |
4219 | ||
4220 | VERIFY(g_udp6_protosw != NULL); | |
4221 | ||
4222 | memcpy(&g_flow_divert_in6_udp_protosw, g_udp6_protosw, sizeof(g_flow_divert_in6_udp_protosw)); | |
4223 | memcpy(&g_flow_divert_in6_udp_usrreqs, g_udp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_udp_usrreqs)); | |
4224 | ||
4225 | g_flow_divert_in6_udp_usrreqs.pru_connect = flow_divert_connect_out; | |
4226 | g_flow_divert_in6_udp_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
4227 | g_flow_divert_in6_udp_usrreqs.pru_disconnect = flow_divert_close; | |
4228 | g_flow_divert_in6_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
4229 | g_flow_divert_in6_udp_usrreqs.pru_rcvd = flow_divert_rcvd; | |
4230 | g_flow_divert_in6_udp_usrreqs.pru_send = flow_divert_data_out; | |
4231 | g_flow_divert_in6_udp_usrreqs.pru_shutdown = flow_divert_shutdown; | |
4232 | g_flow_divert_in6_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; | |
4233 | g_flow_divert_in6_udp_usrreqs.pru_soreceive_list = pru_soreceive_list_notsupp; | |
4234 | g_flow_divert_in6_udp_usrreqs.pru_preconnect = flow_divert_preconnect; | |
4235 | ||
4236 | g_flow_divert_in6_udp_protosw.pr_usrreqs = &g_flow_divert_in6_udp_usrreqs; | |
4237 | g_flow_divert_in6_udp_protosw.pr_ctloutput = flow_divert_ctloutput; | |
4238 | /* | |
4239 | * Socket filters shouldn't attach/detach to/from this protosw | |
4240 | * since pr_protosw is to be used instead, which points to the | |
4241 | * real protocol; if they do, it is a bug and we should panic. | |
4242 | */ | |
4243 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_first = | |
4244 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
4245 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_last = | |
4246 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
4247 | ||
4248 | flow_divert_grp_attr = lck_grp_attr_alloc_init(); | |
4249 | if (flow_divert_grp_attr == NULL) { | |
4250 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_attr_alloc_init failed"); | |
4251 | g_init_result = ENOMEM; | |
4252 | goto done; | |
4253 | } | |
4254 | ||
4255 | flow_divert_mtx_grp = lck_grp_alloc_init(FLOW_DIVERT_CONTROL_NAME, flow_divert_grp_attr); | |
4256 | if (flow_divert_mtx_grp == NULL) { | |
4257 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_alloc_init failed"); | |
4258 | g_init_result = ENOMEM; | |
4259 | goto done; | |
4260 | } | |
4261 | ||
4262 | flow_divert_mtx_attr = lck_attr_alloc_init(); | |
4263 | if (flow_divert_mtx_attr == NULL) { | |
4264 | FDLOG0(LOG_ERR, &nil_pcb, "lck_attr_alloc_init failed"); | |
4265 | g_init_result = ENOMEM; | |
4266 | goto done; | |
4267 | } | |
4268 | ||
4269 | g_init_result = flow_divert_kctl_init(); | |
4270 | if (g_init_result) { | |
4271 | goto done; | |
4272 | } | |
4273 | ||
4274 | lck_rw_init(&g_flow_divert_group_lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
4275 | ||
4276 | done: | |
4277 | if (g_init_result != 0) { | |
4278 | if (flow_divert_mtx_attr != NULL) { | |
4279 | lck_attr_free(flow_divert_mtx_attr); | |
4280 | flow_divert_mtx_attr = NULL; | |
4281 | } | |
4282 | if (flow_divert_mtx_grp != NULL) { | |
4283 | lck_grp_free(flow_divert_mtx_grp); | |
4284 | flow_divert_mtx_grp = NULL; | |
4285 | } | |
4286 | if (flow_divert_grp_attr != NULL) { | |
4287 | lck_grp_attr_free(flow_divert_grp_attr); | |
4288 | flow_divert_grp_attr = NULL; | |
4289 | } | |
4290 | ||
4291 | if (g_flow_divert_kctl_ref != NULL) { | |
4292 | ctl_deregister(g_flow_divert_kctl_ref); | |
4293 | g_flow_divert_kctl_ref = NULL; | |
4294 | } | |
4295 | } | |
4296 | } |