]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2003 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | ||
23 | #include <sys/appleapiopts.h> | |
24 | #include <ppc/asm.h> | |
25 | #include <ppc/proc_reg.h> | |
26 | #include <machine/cpu_capabilities.h> | |
27 | #include <machine/commpage.h> | |
28 | ||
29 | ||
30 | // commpage_time_dcba() uses a stack frame as follows: | |
31 | ||
32 | #define kBufSiz 1024 // Size of the buffer we use to do DCBA timing on G4 | |
33 | #define kSFSize (kBufSiz+128+16) // Stack frame size, which contains the 128-byte-aligned buffer | |
34 | #define kLoopCnt 5 // Iterations of the timing loop | |
35 | #define kDCBA 22 // Bit in cr5 used as a flag in timing loop | |
36 | ||
37 | ||
38 | // commpage_set_timestamp() uses the red zone for temporary storage: | |
39 | ||
40 | #define rzSaveF1 -8 // caller's FPR1 | |
41 | #define rzSaveF2 -16 // caller's FPR2 | |
42 | #define rzSaveF3 -24 // caller's FPR3 | |
43 | #define rzSaveF4 -32 // caller's FPR4 | |
44 | #define rzSaveF5 -40 // caller's FPR5 | |
45 | #define rzNewTimeBase -48 // used to load 64-bit TBR into a FPR | |
46 | ||
47 | ||
48 | // commpage_set_timestamp() uses the following data. kkTicksPerSec remembers | |
49 | // the number used to compute _COMM_PAGE_SEC_PER_TICK. Since this constant | |
50 | // rarely changes, we use it to avoid needless recomputation. It is a double | |
51 | // value, pre-initialize with an exponent of 2**52. | |
52 | ||
53 | #define kkBinary0 0 // offset in data to long long 0 (a constant) | |
54 | #define kkDouble1 8 // offset in data to double 1.0 (a constant) | |
55 | #define kkTicksPerSec 16 // offset in data to double(ticks_per_sec) | |
56 | ||
57 | .data | |
58 | .align 3 // three doubleword fields | |
59 | Ldata: | |
60 | .long 0 // kkBinary0 | |
61 | .long 0 | |
62 | .double 1.0e0 // kkDouble1 | |
63 | .long 0x43300000 // kkTicksPerSec (plus 2**52) | |
64 | .long 0 // this is where we store ticks_per_sec, to float | |
65 | ||
66 | .text | |
67 | .align 2 | |
68 | .globl EXT(commpage_time_dcba) | |
69 | .globl EXT(commpage_set_timestamp) | |
70 | ||
71 | ||
72 | /* *********************************************** | |
73 | * * C O M M P A G E _ S E T _ T I M E S T A M P * | |
74 | * *********************************************** | |
75 | * | |
76 | * Update the gettimeofday() shared data on the commpage, as follows: | |
77 | * _COMM_PAGE_TIMESTAMP = a BSD-style pair of uint_32's for secs and usecs | |
78 | * _COMM_PAGE_TIMEBASE = the timebase at which the timestamp was valid | |
79 | * _COMM_PAGE_SEC_PER_TICK = multiply timebase ticks by this to get seconds (double) | |
80 | * The convention is that if the timebase is 0, the data is invalid. Because other | |
81 | * CPUs are reading the three values asynchronously and must get a consistent set, | |
82 | * it is critical that we update them with the following protocol: | |
83 | * 1. set timebase to 0 (atomically), to invalidate all three values | |
84 | * 2. eieio (to create a barrier in stores to cacheable memory) | |
85 | * 3. change timestamp and "secs per tick" | |
86 | * 4. eieio | |
87 | * 5. set timebase nonzero (atomically) | |
88 | * This works because readers read the timebase, then the timestamp and divisor, sync | |
89 | * if MP, then read the timebase a second time and check to be sure it is equal to the first. | |
90 | * | |
91 | * We could save a few cycles on 64-bit machines by special casing them, but it probably | |
92 | * isn't necessary because this routine shouldn't be called very often. | |
93 | * | |
94 | * When called: | |
95 | * r3 = upper half of timebase (timebase is disabled if 0) | |
96 | * r4 = lower half of timebase | |
97 | * r5 = seconds part of timestamp | |
98 | * r6 = useconds part of timestamp | |
99 | * r7 = divisor (ie, timebase ticks per sec) | |
100 | * We set up: | |
101 | * r8 = ptr to our static data (kkBinary0, kkDouble1, kkTicksPerSec) | |
102 | * r9 = ptr to comm page in kernel map | |
103 | * | |
104 | * --> Interrupts must be disabled and rtclock locked when called. <-- | |
105 | */ | |
106 | ||
107 | .align 5 | |
108 | LEXT(commpage_set_timestamp) // void commpage_set_timestamp(tbr,secs,usecs,divisor) | |
109 | mfmsr r11 // get MSR | |
110 | ori r2,r11,MASK(MSR_FP) // turn FP on | |
111 | mtmsr r2 | |
112 | isync // wait until MSR changes take effect | |
113 | ||
114 | or. r0,r3,r4 // is timebase 0? (thus disabled) | |
115 | lis r8,hi16(Ldata) // point to our data | |
116 | lis r9,ha16(EXT(commPagePtr)) // get ptr to address of commpage in kernel map | |
117 | stfd f1,rzSaveF1(r1) // save a FPR in the red zone | |
118 | ori r8,r8,lo16(Ldata) | |
119 | lwz r9,lo16(EXT(commPagePtr))(r9) // r9 <- commPagePtr | |
120 | lfd f1,kkBinary0(r8) // get fixed 0s | |
121 | li r0,_COMM_PAGE_BASE_ADDRESS // get va in user space of commpage | |
122 | cmpwi cr1,r9,0 // is commpage allocated yet? | |
123 | sub r9,r9,r0 // r9 <- commpage address, biased by user va | |
124 | beq-- cr1,3f // skip if not allocated | |
125 | stfd f1,_COMM_PAGE_TIMEBASE(r9) // turn off the timestamp (atomically) | |
126 | eieio // make sure all CPUs see it is off | |
127 | beq 3f // all we had to do is turn off timestamp | |
128 | ||
129 | lwz r0,kkTicksPerSec+4(r8) // get last ticks_per_sec (or 0 if first) | |
130 | stw r3,rzNewTimeBase(r1) // store new timebase so we can lfd | |
131 | stw r4,rzNewTimeBase+4(r1) | |
132 | cmpw r0,r7 // do we need to recompute _COMM_PAGE_SEC_PER_TICK? | |
133 | stw r5,_COMM_PAGE_TIMESTAMP(r9) // store the new timestamp | |
134 | stw r6,_COMM_PAGE_TIMESTAMP+4(r9) | |
135 | lfd f1,rzNewTimeBase(r1) // get timebase in a FPR so we can store atomically | |
136 | beq++ 2f // same ticks_per_sec, no need to recompute | |
137 | ||
138 | stw r7,kkTicksPerSec+4(r8) // must recompute SEC_PER_TICK | |
139 | stfd f2,rzSaveF2(r1) // we'll need a few more temp FPRs | |
140 | stfd f3,rzSaveF3(r1) | |
141 | stfd f4,rzSaveF4(r1) | |
142 | stfd f5,rzSaveF5(r1) | |
143 | lfd f2,_COMM_PAGE_2_TO_52(r9) // f2 <- double(2**52) | |
144 | lfd f3,kkTicksPerSec(r8) // float new ticks_per_sec + 2**52 | |
145 | lfd f4,kkDouble1(r8) // f4 <- double(1.0) | |
146 | mffs f5 // save caller's FPSCR | |
147 | mtfsfi 7,0 // clear Inexeact Exception bit, set round-to-nearest | |
148 | fsub f3,f3,f2 // get ticks_per_sec | |
149 | fdiv f3,f4,f3 // divide 1 by ticks_per_sec to get SEC_PER_TICK | |
150 | stfd f3,_COMM_PAGE_SEC_PER_TICK(r9) | |
151 | mtfsf 0xFF,f5 // restore FPSCR | |
152 | lfd f2,rzSaveF2(r1) // restore FPRs | |
153 | lfd f3,rzSaveF3(r1) | |
154 | lfd f4,rzSaveF4(r1) | |
155 | lfd f5,rzSaveF5(r1) | |
156 | 2: // f1 == new timestamp | |
157 | eieio // wait until the stores take | |
158 | stfd f1,_COMM_PAGE_TIMEBASE(r9) // then turn the timestamp back on (atomically) | |
159 | 3: // here once all fields updated | |
160 | lfd f1,rzSaveF1(r1) // restore last FPR | |
161 | mtmsr r11 // turn FP back off | |
162 | isync | |
163 | blr | |
164 | ||
165 | ||
166 | /* *************************************** | |
167 | * * C O M M P A G E _ T I M E _ D C B A * | |
168 | * *************************************** | |
169 | * | |
170 | * Not all processors that support the DCBA opcode actually benefit from it. | |
171 | * Some store-gather and read-cancel well enough that there is no need to use | |
172 | * DCBA to avoid fetching cache lines that will be completely overwritten, while | |
173 | * others have this feature disabled (to work around errata etc), and so benefit | |
174 | * from DCBA. Since it is hard to tell the one group from the other, we just | |
175 | * time loops with and without DCBA, and pick the fastest. Thus we avoid | |
176 | * delicate dependence on processor and/or platform revisions. | |
177 | * | |
178 | * We return either kDcbaRecommended or zero. | |
179 | * | |
180 | * int commpage_time_dcba( void ); | |
181 | */ | |
182 | ||
183 | LEXT(commpage_time_dcba) | |
184 | mflr r12 // get return | |
185 | stw r12,8(r1) // save | |
186 | stwu r1,-kSFSize(r1) // carve our temp buffer from the stack | |
187 | addi r11,r1,127+16 // get base address... | |
188 | rlwinm r11,r11,0,0,24 // ...of our buffer, 128-byte aligned | |
189 | crset kDCBA // first, use DCBA | |
190 | bl LTest // time it with DCBA | |
191 | srwi r0,r3,3 // bias 12 pct in favor of not using DCBA... | |
192 | add r10,r3,r0 // ...because DCBA is always slower with warm cache | |
193 | crclr kDCBA | |
194 | bl LTest // time without DCBA | |
195 | cmplw r10,r3 // which is better? | |
196 | mtlr r12 // restore return | |
197 | lwz r1,0(r1) // pop off our stack frame | |
198 | li r3,kDcbaRecommended // assume using DCBA is faster | |
199 | bltlr | |
200 | li r3,0 // no DCBA is faster | |
201 | blr | |
202 | ||
203 | ||
204 | // Subroutine to time a loop with or without DCBA. | |
205 | // kDCBA = set if we should use DCBA | |
206 | // r11 = base of buffer to use for test (kBufSiz bytes) | |
207 | // | |
208 | // We return TBR ticks in r3. | |
209 | // We use r0,r3-r9. | |
210 | ||
211 | LTest: | |
212 | li r4,kLoopCnt // number of times to loop | |
213 | li r3,-1 // initialize fastest time | |
214 | 1: | |
215 | mr r6,r11 // initialize buffer ptr | |
216 | li r0,kBufSiz/32 // r0 <- cache blocks to test | |
217 | mtctr r0 | |
218 | 2: | |
219 | dcbf 0,r6 // first, force the blocks out of the cache | |
220 | addi r6,r6,32 | |
221 | bdnz 2b | |
222 | sync // make sure all the flushes take | |
223 | mr r6,r11 // re-initialize buffer ptr | |
224 | mtctr r0 // reset cache-block count | |
225 | mftbu r7 // remember upper half so we can check for carry | |
226 | mftb r8 // start the timer | |
227 | 3: // loop over cache blocks | |
228 | bf kDCBA,4f // should we DCBA? | |
229 | dcba 0,r6 | |
230 | 4: | |
231 | stw r0,0(r6) // store the entire cache block | |
232 | stw r0,4(r6) | |
233 | stw r0,8(r6) | |
234 | stw r0,12(r6) | |
235 | stw r0,16(r6) | |
236 | stw r0,20(r6) | |
237 | stw r0,24(r6) | |
238 | stw r0,28(r6) | |
239 | addi r6,r6,32 | |
240 | bdnz 3b | |
241 | mftb r9 | |
242 | mftbu r0 | |
243 | cmpw r0,r7 // did timebase carry? | |
244 | bne 1b // yes, retest rather than fuss | |
245 | sub r9,r9,r8 // r9 <- time for this loop | |
246 | cmplw r9,r3 // faster than current best? | |
247 | bge 5f // no | |
248 | mr r3,r9 // remember fastest time through loop | |
249 | 5: | |
250 | subi r4,r4,1 // decrement outer loop count | |
251 | cmpwi r4,0 // more to go? | |
252 | bne 1b // loop if so | |
253 | blr // return fastest time in r3 |