]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_FREE_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: kern/thread.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub | |
55 | * Date: 1986 | |
56 | * | |
57 | * Thread/thread_shuttle management primitives implementation. | |
58 | */ | |
59 | /* | |
60 | * Copyright (c) 1993 The University of Utah and | |
61 | * the Computer Systems Laboratory (CSL). All rights reserved. | |
62 | * | |
63 | * Permission to use, copy, modify and distribute this software and its | |
64 | * documentation is hereby granted, provided that both the copyright | |
65 | * notice and this permission notice appear in all copies of the | |
66 | * software, derivative works or modified versions, and any portions | |
67 | * thereof, and that both notices appear in supporting documentation. | |
68 | * | |
69 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS | |
70 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF | |
71 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
72 | * | |
73 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any | |
74 | * improvements that they make and grant CSL redistribution rights. | |
75 | * | |
76 | */ | |
77 | ||
78 | #include <cpus.h> | |
79 | #include <mach_host.h> | |
80 | #include <simple_clock.h> | |
81 | #include <mach_debug.h> | |
82 | #include <mach_prof.h> | |
83 | ||
84 | #include <mach/boolean.h> | |
85 | #include <mach/policy.h> | |
86 | #include <mach/thread_info.h> | |
87 | #include <mach/thread_special_ports.h> | |
88 | #include <mach/thread_status.h> | |
89 | #include <mach/time_value.h> | |
90 | #include <mach/vm_param.h> | |
91 | #include <kern/ast.h> | |
92 | #include <kern/cpu_data.h> | |
93 | #include <kern/counters.h> | |
94 | #include <kern/etap_macros.h> | |
95 | #include <kern/ipc_mig.h> | |
96 | #include <kern/ipc_tt.h> | |
97 | #include <kern/mach_param.h> | |
98 | #include <kern/machine.h> | |
99 | #include <kern/misc_protos.h> | |
100 | #include <kern/processor.h> | |
101 | #include <kern/queue.h> | |
102 | #include <kern/sched.h> | |
103 | #include <kern/sched_prim.h> | |
104 | #include <kern/mk_sp.h> /*** ??? fix so this can be removed ***/ | |
105 | #include <kern/task.h> | |
106 | #include <kern/thread.h> | |
107 | #include <kern/thread_act.h> | |
108 | #include <kern/thread_swap.h> | |
109 | #include <kern/host.h> | |
110 | #include <kern/zalloc.h> | |
111 | #include <vm/vm_kern.h> | |
112 | #include <ipc/ipc_kmsg.h> | |
113 | #include <ipc/ipc_port.h> | |
114 | #include <machine/thread.h> /* for MACHINE_STACK */ | |
115 | #include <kern/profile.h> | |
116 | #include <kern/assert.h> | |
117 | #include <sys/kdebug.h> | |
118 | ||
119 | /* | |
120 | * Exported interfaces | |
121 | */ | |
122 | ||
123 | #include <mach/thread_act_server.h> | |
124 | #include <mach/mach_host_server.h> | |
125 | ||
126 | static struct zone *thread_zone; | |
127 | ||
128 | static queue_head_t reaper_queue; | |
129 | decl_simple_lock_data(static,reaper_lock) | |
130 | ||
131 | extern int tick; | |
132 | ||
133 | /* private */ | |
134 | static struct thread thread_template, init_thread; | |
135 | ||
136 | #if MACH_DEBUG | |
137 | ||
138 | #ifdef MACHINE_STACK | |
139 | extern void stack_statistics( | |
140 | unsigned int *totalp, | |
141 | vm_size_t *maxusagep); | |
142 | #endif /* MACHINE_STACK */ | |
143 | #endif /* MACH_DEBUG */ | |
144 | ||
145 | #ifdef MACHINE_STACK | |
146 | /* | |
147 | * Machine-dependent code must define: | |
148 | * stack_alloc_try | |
149 | * stack_alloc | |
150 | * stack_free | |
151 | * stack_free_stack | |
152 | * stack_collect | |
153 | * and if MACH_DEBUG: | |
154 | * stack_statistics | |
155 | */ | |
156 | #else /* MACHINE_STACK */ | |
157 | /* | |
158 | * We allocate stacks from generic kernel VM. | |
159 | * Machine-dependent code must define: | |
160 | * machine_kernel_stack_init | |
161 | * | |
162 | * The stack_free_list can only be accessed at splsched, | |
163 | * because stack_alloc_try/thread_invoke operate at splsched. | |
164 | */ | |
165 | ||
166 | decl_simple_lock_data(static,stack_lock_data) | |
167 | #define stack_lock() simple_lock(&stack_lock_data) | |
168 | #define stack_unlock() simple_unlock(&stack_lock_data) | |
169 | ||
170 | static vm_map_t stack_map; | |
171 | static vm_offset_t stack_free_list; | |
172 | ||
173 | static vm_offset_t stack_free_cache[NCPUS]; | |
174 | ||
175 | unsigned int stack_free_max = 0; | |
176 | unsigned int stack_free_count = 0; /* splsched only */ | |
177 | unsigned int stack_free_limit = 1; /* Arbitrary */ | |
178 | ||
179 | unsigned int stack_cache_hits = 0; /* debugging */ | |
180 | ||
181 | unsigned int stack_alloc_hits = 0; /* debugging */ | |
182 | unsigned int stack_alloc_misses = 0; /* debugging */ | |
183 | ||
184 | unsigned int stack_alloc_total = 0; | |
185 | unsigned int stack_alloc_hiwater = 0; | |
186 | unsigned int stack_alloc_bndry = 0; | |
187 | ||
188 | ||
189 | /* | |
190 | * The next field is at the base of the stack, | |
191 | * so the low end is left unsullied. | |
192 | */ | |
193 | ||
194 | #define stack_next(stack) (*((vm_offset_t *)((stack) + KERNEL_STACK_SIZE) - 1)) | |
195 | ||
196 | /* | |
197 | * stack_alloc: | |
198 | * | |
199 | * Allocate a kernel stack for a thread. | |
200 | * May block. | |
201 | */ | |
202 | vm_offset_t | |
203 | stack_alloc( | |
204 | thread_t thread, | |
205 | void (*start_pos)(thread_t)) | |
206 | { | |
207 | vm_offset_t stack = thread->kernel_stack; | |
208 | spl_t s; | |
209 | ||
210 | if (stack) | |
211 | return (stack); | |
212 | ||
213 | s = splsched(); | |
214 | stack_lock(); | |
215 | stack = stack_free_list; | |
216 | if (stack != 0) { | |
217 | stack_free_list = stack_next(stack); | |
218 | stack_free_count--; | |
219 | } | |
220 | stack_unlock(); | |
221 | splx(s); | |
222 | ||
223 | if (stack != 0) { | |
224 | machine_stack_attach(thread, stack, start_pos); | |
225 | return (stack); | |
226 | } | |
227 | ||
228 | if (kernel_memory_allocate( | |
229 | stack_map, &stack, | |
230 | KERNEL_STACK_SIZE, stack_alloc_bndry - 1, | |
231 | KMA_KOBJECT) != KERN_SUCCESS) | |
232 | panic("stack_alloc: no space left for stack maps"); | |
233 | ||
234 | stack_alloc_total++; | |
235 | if (stack_alloc_total > stack_alloc_hiwater) | |
236 | stack_alloc_hiwater = stack_alloc_total; | |
237 | ||
238 | machine_stack_attach(thread, stack, start_pos); | |
239 | return (stack); | |
240 | } | |
241 | ||
242 | /* | |
243 | * stack_free: | |
244 | * | |
245 | * Free a kernel stack. | |
246 | */ | |
247 | ||
248 | void | |
249 | stack_free( | |
250 | thread_t thread) | |
251 | { | |
252 | vm_offset_t stack = machine_stack_detach(thread); | |
253 | ||
254 | assert(stack); | |
255 | if (stack != thread->reserved_stack) { | |
256 | spl_t s = splsched(); | |
257 | vm_offset_t *cache; | |
258 | ||
259 | cache = &stack_free_cache[cpu_number()]; | |
260 | if (*cache == 0) { | |
261 | *cache = stack; | |
262 | splx(s); | |
263 | ||
264 | return; | |
265 | } | |
266 | ||
267 | stack_lock(); | |
268 | stack_next(stack) = stack_free_list; | |
269 | stack_free_list = stack; | |
270 | if (++stack_free_count > stack_free_max) | |
271 | stack_free_max = stack_free_count; | |
272 | stack_unlock(); | |
273 | splx(s); | |
274 | } | |
275 | } | |
276 | ||
277 | void | |
278 | stack_free_stack( | |
279 | vm_offset_t stack) | |
280 | { | |
281 | spl_t s = splsched(); | |
282 | vm_offset_t *cache; | |
283 | ||
284 | cache = &stack_free_cache[cpu_number()]; | |
285 | if (*cache == 0) { | |
286 | *cache = stack; | |
287 | splx(s); | |
288 | ||
289 | return; | |
290 | } | |
291 | ||
292 | stack_lock(); | |
293 | stack_next(stack) = stack_free_list; | |
294 | stack_free_list = stack; | |
295 | if (++stack_free_count > stack_free_max) | |
296 | stack_free_max = stack_free_count; | |
297 | stack_unlock(); | |
298 | splx(s); | |
299 | } | |
300 | ||
301 | /* | |
302 | * stack_collect: | |
303 | * | |
304 | * Free excess kernel stacks. | |
305 | * May block. | |
306 | */ | |
307 | ||
308 | void | |
309 | stack_collect(void) | |
310 | { | |
311 | spl_t s = splsched(); | |
312 | ||
313 | stack_lock(); | |
314 | while (stack_free_count > stack_free_limit) { | |
315 | vm_offset_t stack = stack_free_list; | |
316 | ||
317 | stack_free_list = stack_next(stack); | |
318 | stack_free_count--; | |
319 | stack_unlock(); | |
320 | splx(s); | |
321 | ||
322 | if (vm_map_remove( | |
323 | stack_map, stack, stack + KERNEL_STACK_SIZE, | |
324 | VM_MAP_REMOVE_KUNWIRE) != KERN_SUCCESS) | |
325 | panic("stack_collect: vm_map_remove failed"); | |
326 | ||
327 | s = splsched(); | |
328 | stack_lock(); | |
329 | stack_alloc_total--; | |
330 | } | |
331 | stack_unlock(); | |
332 | splx(s); | |
333 | } | |
334 | ||
335 | /* | |
336 | * stack_alloc_try: | |
337 | * | |
338 | * Non-blocking attempt to allocate a kernel stack. | |
339 | * Called at splsched with the thread locked. | |
340 | */ | |
341 | ||
342 | boolean_t stack_alloc_try( | |
343 | thread_t thread, | |
344 | void (*start)(thread_t)) | |
345 | { | |
346 | register vm_offset_t stack, *cache; | |
347 | ||
348 | cache = &stack_free_cache[cpu_number()]; | |
349 | if (stack = *cache) { | |
350 | *cache = 0; | |
351 | machine_stack_attach(thread, stack, start); | |
352 | stack_cache_hits++; | |
353 | ||
354 | return (TRUE); | |
355 | } | |
356 | ||
357 | stack_lock(); | |
358 | stack = stack_free_list; | |
359 | if (stack != (vm_offset_t)0) { | |
360 | stack_free_list = stack_next(stack); | |
361 | stack_free_count--; | |
362 | } | |
363 | stack_unlock(); | |
364 | ||
365 | if (stack == 0) | |
366 | stack = thread->reserved_stack; | |
367 | ||
368 | if (stack != 0) { | |
369 | machine_stack_attach(thread, stack, start); | |
370 | stack_alloc_hits++; | |
371 | ||
372 | return (TRUE); | |
373 | } | |
374 | else { | |
375 | stack_alloc_misses++; | |
376 | ||
377 | return (FALSE); | |
378 | } | |
379 | } | |
380 | ||
381 | #if MACH_DEBUG | |
382 | /* | |
383 | * stack_statistics: | |
384 | * | |
385 | * Return statistics on cached kernel stacks. | |
386 | * *maxusagep must be initialized by the caller. | |
387 | */ | |
388 | ||
389 | void | |
390 | stack_statistics( | |
391 | unsigned int *totalp, | |
392 | vm_size_t *maxusagep) | |
393 | { | |
394 | spl_t s; | |
395 | ||
396 | s = splsched(); | |
397 | stack_lock(); | |
398 | ||
399 | *totalp = stack_free_count; | |
400 | *maxusagep = 0; | |
401 | ||
402 | stack_unlock(); | |
403 | splx(s); | |
404 | } | |
405 | #endif /* MACH_DEBUG */ | |
406 | ||
407 | #endif /* MACHINE_STACK */ | |
408 | ||
409 | ||
410 | stack_fake_zone_info(int *count, vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, | |
411 | vm_size_t *alloc_size, int *collectable, int *exhaustable) | |
412 | { | |
413 | *count = stack_alloc_total - stack_free_count; | |
414 | *cur_size = KERNEL_STACK_SIZE * stack_alloc_total; | |
415 | *max_size = KERNEL_STACK_SIZE * stack_alloc_hiwater; | |
416 | *elem_size = KERNEL_STACK_SIZE; | |
417 | *alloc_size = KERNEL_STACK_SIZE; | |
418 | *collectable = 1; | |
419 | *exhaustable = 0; | |
420 | } | |
421 | ||
422 | void | |
423 | stack_privilege( | |
424 | register thread_t thread) | |
425 | { | |
426 | /* OBSOLETE */ | |
427 | } | |
428 | ||
429 | void | |
430 | thread_bootstrap(void) | |
431 | { | |
432 | /* | |
433 | * Fill in a template thread for fast initialization. | |
434 | */ | |
435 | ||
436 | thread_template.runq = RUN_QUEUE_NULL; | |
437 | ||
438 | thread_template.ref_count = 1; | |
439 | ||
440 | thread_template.reason = AST_NONE; | |
441 | thread_template.at_safe_point = FALSE; | |
442 | thread_template.wait_event = NO_EVENT64; | |
443 | thread_template.wait_queue = WAIT_QUEUE_NULL; | |
444 | thread_template.wait_result = THREAD_WAITING; | |
445 | thread_template.interrupt_level = THREAD_ABORTSAFE; | |
446 | thread_template.state = TH_STACK_HANDOFF | TH_WAIT | TH_UNINT; | |
447 | thread_template.wake_active = FALSE; | |
448 | thread_template.active_callout = FALSE; | |
449 | thread_template.continuation = (void (*)(void))0; | |
450 | thread_template.top_act = THR_ACT_NULL; | |
451 | ||
452 | thread_template.importance = 0; | |
453 | thread_template.sched_mode = 0; | |
454 | thread_template.safe_mode = 0; | |
455 | ||
456 | thread_template.priority = 0; | |
457 | thread_template.sched_pri = 0; | |
458 | thread_template.max_priority = 0; | |
459 | thread_template.task_priority = 0; | |
460 | thread_template.promotions = 0; | |
461 | thread_template.pending_promoter_index = 0; | |
462 | thread_template.pending_promoter[0] = | |
463 | thread_template.pending_promoter[1] = NULL; | |
464 | ||
465 | thread_template.realtime.deadline = UINT64_MAX; | |
466 | ||
467 | thread_template.current_quantum = 0; | |
468 | ||
469 | thread_template.computation_metered = 0; | |
470 | thread_template.computation_epoch = 0; | |
471 | ||
472 | thread_template.cpu_usage = 0; | |
473 | thread_template.cpu_delta = 0; | |
474 | thread_template.sched_usage = 0; | |
475 | thread_template.sched_delta = 0; | |
476 | thread_template.sched_stamp = 0; | |
477 | thread_template.sleep_stamp = 0; | |
478 | thread_template.safe_release = 0; | |
479 | ||
480 | thread_template.bound_processor = PROCESSOR_NULL; | |
481 | thread_template.last_processor = PROCESSOR_NULL; | |
482 | thread_template.last_switch = 0; | |
483 | ||
484 | thread_template.vm_privilege = FALSE; | |
485 | ||
486 | timer_init(&(thread_template.user_timer)); | |
487 | timer_init(&(thread_template.system_timer)); | |
488 | thread_template.user_timer_save.low = 0; | |
489 | thread_template.user_timer_save.high = 0; | |
490 | thread_template.system_timer_save.low = 0; | |
491 | thread_template.system_timer_save.high = 0; | |
492 | ||
493 | thread_template.processor_set = PROCESSOR_SET_NULL; | |
494 | ||
495 | thread_template.act_ref_count = 2; | |
496 | ||
497 | thread_template.special_handler.handler = special_handler; | |
498 | thread_template.special_handler.next = 0; | |
499 | ||
500 | #if MACH_HOST | |
501 | thread_template.may_assign = TRUE; | |
502 | thread_template.assign_active = FALSE; | |
503 | #endif /* MACH_HOST */ | |
504 | thread_template.funnel_lock = THR_FUNNEL_NULL; | |
505 | thread_template.funnel_state = 0; | |
506 | #if MACH_LDEBUG | |
507 | thread_template.mutex_count = 0; | |
508 | #endif /* MACH_LDEBUG */ | |
509 | ||
510 | init_thread = thread_template; | |
511 | ||
512 | init_thread.top_act = &init_thread; | |
513 | init_thread.thread = &init_thread; | |
514 | machine_thread_set_current(&init_thread); | |
515 | } | |
516 | ||
517 | void | |
518 | thread_init(void) | |
519 | { | |
520 | kern_return_t ret; | |
521 | unsigned int stack; | |
522 | ||
523 | thread_zone = zinit( | |
524 | sizeof(struct thread), | |
525 | THREAD_MAX * sizeof(struct thread), | |
526 | THREAD_CHUNK * sizeof(struct thread), | |
527 | "threads"); | |
528 | ||
529 | /* | |
530 | * Initialize other data structures used in | |
531 | * this module. | |
532 | */ | |
533 | ||
534 | queue_init(&reaper_queue); | |
535 | simple_lock_init(&reaper_lock, ETAP_THREAD_REAPER); | |
536 | ||
537 | #ifndef MACHINE_STACK | |
538 | simple_lock_init(&stack_lock_data, ETAP_THREAD_STACK); /* Initialize the stack lock */ | |
539 | ||
540 | if (KERNEL_STACK_SIZE < round_page_32(KERNEL_STACK_SIZE)) { /* Kernel stacks must be multiples of pages */ | |
541 | panic("thread_init: kernel stack size (%08X) must be a multiple of page size (%08X)\n", | |
542 | KERNEL_STACK_SIZE, PAGE_SIZE); | |
543 | } | |
544 | ||
545 | for(stack_alloc_bndry = PAGE_SIZE; stack_alloc_bndry <= KERNEL_STACK_SIZE; stack_alloc_bndry <<= 1); /* Find next power of 2 above stack size */ | |
546 | ||
547 | ret = kmem_suballoc(kernel_map, /* Suballocate from the kernel map */ | |
548 | ||
549 | &stack, | |
550 | (stack_alloc_bndry * (2*THREAD_MAX + 64)), /* Allocate enough for all of it */ | |
551 | FALSE, /* Say not pageable so that it is wired */ | |
552 | TRUE, /* Allocate from anywhere */ | |
553 | &stack_map); /* Allocate a submap */ | |
554 | ||
555 | if(ret != KERN_SUCCESS) { /* Did we get one? */ | |
556 | panic("thread_init: kmem_suballoc for stacks failed - ret = %d\n", ret); /* Die */ | |
557 | } | |
558 | stack = vm_map_min(stack_map); /* Make sure we skip the first hunk */ | |
559 | ret = vm_map_enter(stack_map, &stack, PAGE_SIZE, 0, /* Make sure there is nothing at the start */ | |
560 | 0, /* Force it at start */ | |
561 | VM_OBJECT_NULL, 0, /* No object yet */ | |
562 | FALSE, /* No copy */ | |
563 | VM_PROT_NONE, /* Allow no access */ | |
564 | VM_PROT_NONE, /* Allow no access */ | |
565 | VM_INHERIT_DEFAULT); /* Just be normal */ | |
566 | ||
567 | if(ret != KERN_SUCCESS) { /* Did it work? */ | |
568 | panic("thread_init: dummy alignment allocation failed; ret = %d\n", ret); | |
569 | } | |
570 | ||
571 | #endif /* MACHINE_STACK */ | |
572 | ||
573 | /* | |
574 | * Initialize any machine-dependent | |
575 | * per-thread structures necessary. | |
576 | */ | |
577 | machine_thread_init(); | |
578 | } | |
579 | ||
580 | /* | |
581 | * Called at splsched. | |
582 | */ | |
583 | void | |
584 | thread_reaper_enqueue( | |
585 | thread_t thread) | |
586 | { | |
587 | simple_lock(&reaper_lock); | |
588 | enqueue_tail(&reaper_queue, (queue_entry_t)thread); | |
589 | simple_unlock(&reaper_lock); | |
590 | ||
591 | thread_wakeup((event_t)&reaper_queue); | |
592 | } | |
593 | ||
594 | void | |
595 | thread_termination_continue(void) | |
596 | { | |
597 | panic("thread_termination_continue"); | |
598 | /*NOTREACHED*/ | |
599 | } | |
600 | ||
601 | /* | |
602 | * Routine: thread_terminate_self | |
603 | * | |
604 | * This routine is called by a thread which has unwound from | |
605 | * its current RPC and kernel contexts and found that it's | |
606 | * root activation has been marked for extinction. This lets | |
607 | * it clean up the last few things that can only be cleaned | |
608 | * up in this context and then impale itself on the reaper | |
609 | * queue. | |
610 | * | |
611 | * When the reaper gets the thread, it will deallocate the | |
612 | * thread_act's reference on itself, which in turn will release | |
613 | * its own reference on this thread. By doing things in that | |
614 | * order, a thread_act will always have a valid thread - but the | |
615 | * thread may persist beyond having a thread_act (but must never | |
616 | * run like that). | |
617 | */ | |
618 | void | |
619 | thread_terminate_self(void) | |
620 | { | |
621 | thread_act_t thr_act = current_act(); | |
622 | thread_t thread; | |
623 | task_t task = thr_act->task; | |
624 | long active_acts; | |
625 | spl_t s; | |
626 | ||
627 | /* | |
628 | * We should be at the base of the inheritance chain. | |
629 | */ | |
630 | thread = act_lock_thread(thr_act); | |
631 | assert(thr_act->thread == thread); | |
632 | ||
633 | /* This will allow no more control ops on this thr_act. */ | |
634 | ipc_thr_act_disable(thr_act); | |
635 | ||
636 | /* Clean-up any ulocks that are still owned by the thread | |
637 | * activation (acquired but not released or handed-off). | |
638 | */ | |
639 | act_ulock_release_all(thr_act); | |
640 | ||
641 | act_unlock_thread(thr_act); | |
642 | ||
643 | _mk_sp_thread_depress_abort(thread, TRUE); | |
644 | ||
645 | /* | |
646 | * Check to see if this is the last active activation. By | |
647 | * this we mean the last activation to call thread_terminate_self. | |
648 | * If so, and the task is associated with a BSD process, we | |
649 | * need to call BSD and let them clean up. | |
650 | */ | |
651 | active_acts = hw_atomic_sub(&task->active_thread_count, 1); | |
652 | ||
653 | if (active_acts == 0 && task->bsd_info) | |
654 | proc_exit(task->bsd_info); | |
655 | ||
656 | /* JMM - for now, no migration */ | |
657 | assert(!thr_act->lower); | |
658 | ||
659 | thread_timer_terminate(); | |
660 | ||
661 | ipc_thread_terminate(thread); | |
662 | ||
663 | s = splsched(); | |
664 | thread_lock(thread); | |
665 | thread->state |= TH_TERMINATE; | |
666 | assert((thread->state & TH_UNINT) == 0); | |
667 | thread_mark_wait_locked(thread, THREAD_UNINT); | |
668 | assert(thread->promotions == 0); | |
669 | thread_unlock(thread); | |
670 | /* splx(s); */ | |
671 | ||
672 | ETAP_SET_REASON(thread, BLOCKED_ON_TERMINATION); | |
673 | thread_block(thread_termination_continue); | |
674 | /*NOTREACHED*/ | |
675 | } | |
676 | ||
677 | /* | |
678 | * Create a new thread. | |
679 | * Doesn't start the thread running. | |
680 | */ | |
681 | static kern_return_t | |
682 | thread_create_internal( | |
683 | task_t parent_task, | |
684 | integer_t priority, | |
685 | void (*start)(void), | |
686 | thread_t *out_thread) | |
687 | { | |
688 | thread_t new_thread; | |
689 | processor_set_t pset; | |
690 | static thread_t first_thread; | |
691 | ||
692 | /* | |
693 | * Allocate a thread and initialize static fields | |
694 | */ | |
695 | if (first_thread == NULL) | |
696 | new_thread = first_thread = current_act(); | |
697 | else | |
698 | new_thread = (thread_t)zalloc(thread_zone); | |
699 | if (new_thread == NULL) | |
700 | return (KERN_RESOURCE_SHORTAGE); | |
701 | ||
702 | if (new_thread != first_thread) | |
703 | *new_thread = thread_template; | |
704 | ||
705 | #ifdef MACH_BSD | |
706 | { | |
707 | extern void *uthread_alloc(task_t, thread_act_t); | |
708 | ||
709 | new_thread->uthread = uthread_alloc(parent_task, new_thread); | |
710 | if (new_thread->uthread == NULL) { | |
711 | zfree(thread_zone, (vm_offset_t)new_thread); | |
712 | return (KERN_RESOURCE_SHORTAGE); | |
713 | } | |
714 | } | |
715 | #endif /* MACH_BSD */ | |
716 | ||
717 | if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) { | |
718 | #ifdef MACH_BSD | |
719 | { | |
720 | extern void uthread_free(task_t, void *, void *, void *); | |
721 | void *ut = new_thread->uthread; | |
722 | ||
723 | new_thread->uthread = NULL; | |
724 | uthread_free(parent_task, (void *)new_thread, ut, parent_task->bsd_info); | |
725 | } | |
726 | #endif /* MACH_BSD */ | |
727 | zfree(thread_zone, (vm_offset_t)new_thread); | |
728 | return (KERN_FAILURE); | |
729 | } | |
730 | ||
731 | new_thread->task = parent_task; | |
732 | ||
733 | thread_lock_init(new_thread); | |
734 | wake_lock_init(new_thread); | |
735 | ||
736 | mutex_init(&new_thread->lock, ETAP_THREAD_ACT); | |
737 | ||
738 | ipc_thr_act_init(parent_task, new_thread); | |
739 | ||
740 | ipc_thread_init(new_thread); | |
741 | queue_init(&new_thread->held_ulocks); | |
742 | act_prof_init(new_thread, parent_task); | |
743 | ||
744 | new_thread->continuation = start; | |
745 | new_thread->sleep_stamp = sched_tick; | |
746 | ||
747 | pset = parent_task->processor_set; | |
748 | assert(pset == &default_pset); | |
749 | pset_lock(pset); | |
750 | ||
751 | task_lock(parent_task); | |
752 | assert(parent_task->processor_set == pset); | |
753 | ||
754 | if ( !parent_task->active || | |
755 | (parent_task->thread_count >= THREAD_MAX && | |
756 | parent_task != kernel_task)) { | |
757 | task_unlock(parent_task); | |
758 | pset_unlock(pset); | |
759 | ||
760 | #ifdef MACH_BSD | |
761 | { | |
762 | extern void uthread_free(task_t, void *, void *, void *); | |
763 | void *ut = new_thread->uthread; | |
764 | ||
765 | new_thread->uthread = NULL; | |
766 | uthread_free(parent_task, (void *)new_thread, ut, parent_task->bsd_info); | |
767 | } | |
768 | #endif /* MACH_BSD */ | |
769 | act_prof_deallocate(new_thread); | |
770 | ipc_thr_act_terminate(new_thread); | |
771 | machine_thread_destroy(new_thread); | |
772 | zfree(thread_zone, (vm_offset_t) new_thread); | |
773 | return (KERN_FAILURE); | |
774 | } | |
775 | ||
776 | act_attach(new_thread, new_thread); | |
777 | ||
778 | task_reference_locked(parent_task); | |
779 | ||
780 | /* Cache the task's map */ | |
781 | new_thread->map = parent_task->map; | |
782 | ||
783 | /* Chain the thread onto the task's list */ | |
784 | queue_enter(&parent_task->threads, new_thread, thread_act_t, task_threads); | |
785 | parent_task->thread_count++; | |
786 | parent_task->res_thread_count++; | |
787 | ||
788 | /* So terminating threads don't need to take the task lock to decrement */ | |
789 | hw_atomic_add(&parent_task->active_thread_count, 1); | |
790 | ||
791 | /* Associate the thread with the processor set */ | |
792 | pset_add_thread(pset, new_thread); | |
793 | ||
794 | thread_timer_setup(new_thread); | |
795 | ||
796 | /* Set the thread's scheduling parameters */ | |
797 | if (parent_task != kernel_task) | |
798 | new_thread->sched_mode |= TH_MODE_TIMESHARE; | |
799 | new_thread->max_priority = parent_task->max_priority; | |
800 | new_thread->task_priority = parent_task->priority; | |
801 | new_thread->priority = (priority < 0)? parent_task->priority: priority; | |
802 | if (new_thread->priority > new_thread->max_priority) | |
803 | new_thread->priority = new_thread->max_priority; | |
804 | new_thread->importance = | |
805 | new_thread->priority - new_thread->task_priority; | |
806 | new_thread->sched_stamp = sched_tick; | |
807 | compute_priority(new_thread, FALSE); | |
808 | ||
809 | #if ETAP_EVENT_MONITOR | |
810 | new_thread->etap_reason = 0; | |
811 | new_thread->etap_trace = FALSE; | |
812 | #endif /* ETAP_EVENT_MONITOR */ | |
813 | ||
814 | new_thread->active = TRUE; | |
815 | ||
816 | *out_thread = new_thread; | |
817 | ||
818 | { | |
819 | long dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4; | |
820 | ||
821 | kdbg_trace_data(parent_task->bsd_info, &dbg_arg2); | |
822 | ||
823 | KERNEL_DEBUG_CONSTANT( | |
824 | TRACEDBG_CODE(DBG_TRACE_DATA, 1) | DBG_FUNC_NONE, | |
825 | (vm_address_t)new_thread, dbg_arg2, 0, 0, 0); | |
826 | ||
827 | kdbg_trace_string(parent_task->bsd_info, | |
828 | &dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4); | |
829 | ||
830 | KERNEL_DEBUG_CONSTANT( | |
831 | TRACEDBG_CODE(DBG_TRACE_STRING, 1) | DBG_FUNC_NONE, | |
832 | dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0); | |
833 | } | |
834 | ||
835 | return (KERN_SUCCESS); | |
836 | } | |
837 | ||
838 | extern void thread_bootstrap_return(void); | |
839 | ||
840 | kern_return_t | |
841 | thread_create( | |
842 | task_t task, | |
843 | thread_act_t *new_thread) | |
844 | { | |
845 | kern_return_t result; | |
846 | thread_t thread; | |
847 | ||
848 | if (task == TASK_NULL || task == kernel_task) | |
849 | return (KERN_INVALID_ARGUMENT); | |
850 | ||
851 | result = thread_create_internal(task, -1, thread_bootstrap_return, &thread); | |
852 | if (result != KERN_SUCCESS) | |
853 | return (result); | |
854 | ||
855 | thread->user_stop_count = 1; | |
856 | thread_hold(thread); | |
857 | if (task->suspend_count > 0) | |
858 | thread_hold(thread); | |
859 | ||
860 | pset_unlock(task->processor_set); | |
861 | task_unlock(task); | |
862 | ||
863 | *new_thread = thread; | |
864 | ||
865 | return (KERN_SUCCESS); | |
866 | } | |
867 | ||
868 | kern_return_t | |
869 | thread_create_running( | |
870 | register task_t task, | |
871 | int flavor, | |
872 | thread_state_t new_state, | |
873 | mach_msg_type_number_t new_state_count, | |
874 | thread_act_t *new_thread) | |
875 | { | |
876 | register kern_return_t result; | |
877 | thread_t thread; | |
878 | ||
879 | if (task == TASK_NULL || task == kernel_task) | |
880 | return (KERN_INVALID_ARGUMENT); | |
881 | ||
882 | result = thread_create_internal(task, -1, thread_bootstrap_return, &thread); | |
883 | if (result != KERN_SUCCESS) | |
884 | return (result); | |
885 | ||
886 | result = machine_thread_set_state(thread, flavor, new_state, new_state_count); | |
887 | if (result != KERN_SUCCESS) { | |
888 | pset_unlock(task->processor_set); | |
889 | task_unlock(task); | |
890 | ||
891 | thread_terminate(thread); | |
892 | act_deallocate(thread); | |
893 | return (result); | |
894 | } | |
895 | ||
896 | act_lock(thread); | |
897 | clear_wait(thread, THREAD_AWAKENED); | |
898 | thread->started = TRUE; | |
899 | act_unlock(thread); | |
900 | pset_unlock(task->processor_set); | |
901 | task_unlock(task); | |
902 | ||
903 | *new_thread = thread; | |
904 | ||
905 | return (result); | |
906 | } | |
907 | ||
908 | /* | |
909 | * kernel_thread: | |
910 | * | |
911 | * Create a thread in the kernel task | |
912 | * to execute in kernel context. | |
913 | */ | |
914 | thread_t | |
915 | kernel_thread_create( | |
916 | void (*start)(void), | |
917 | integer_t priority) | |
918 | { | |
919 | kern_return_t result; | |
920 | task_t task = kernel_task; | |
921 | thread_t thread; | |
922 | ||
923 | result = thread_create_internal(task, priority, start, &thread); | |
924 | if (result != KERN_SUCCESS) | |
925 | return (THREAD_NULL); | |
926 | ||
927 | pset_unlock(task->processor_set); | |
928 | task_unlock(task); | |
929 | ||
930 | thread_doswapin(thread); | |
931 | assert(thread->kernel_stack != 0); | |
932 | thread->reserved_stack = thread->kernel_stack; | |
933 | ||
934 | act_deallocate(thread); | |
935 | ||
936 | return (thread); | |
937 | } | |
938 | ||
939 | thread_t | |
940 | kernel_thread_with_priority( | |
941 | void (*start)(void), | |
942 | integer_t priority) | |
943 | { | |
944 | thread_t thread; | |
945 | ||
946 | thread = kernel_thread_create(start, priority); | |
947 | if (thread == THREAD_NULL) | |
948 | return (THREAD_NULL); | |
949 | ||
950 | act_lock(thread); | |
951 | clear_wait(thread, THREAD_AWAKENED); | |
952 | thread->started = TRUE; | |
953 | act_unlock(thread); | |
954 | ||
955 | #ifdef i386 | |
956 | thread_bind(thread, master_processor); | |
957 | #endif /* i386 */ | |
958 | return (thread); | |
959 | } | |
960 | ||
961 | thread_t | |
962 | kernel_thread( | |
963 | task_t task, | |
964 | void (*start)(void)) | |
965 | { | |
966 | if (task != kernel_task) | |
967 | panic("kernel_thread"); | |
968 | ||
969 | return kernel_thread_with_priority(start, -1); | |
970 | } | |
971 | ||
972 | unsigned int c_weird_pset_ref_exit = 0; /* pset code raced us */ | |
973 | ||
974 | #if MACH_HOST | |
975 | /* Preclude thread processor set assignement */ | |
976 | #define thread_freeze(thread) assert((thread)->processor_set == &default_pset) | |
977 | ||
978 | /* Allow thread processor set assignement */ | |
979 | #define thread_unfreeze(thread) assert((thread)->processor_set == &default_pset) | |
980 | ||
981 | #endif /* MACH_HOST */ | |
982 | ||
983 | void | |
984 | thread_deallocate( | |
985 | thread_t thread) | |
986 | { | |
987 | task_t task; | |
988 | processor_set_t pset; | |
989 | int refs; | |
990 | spl_t s; | |
991 | ||
992 | if (thread == THREAD_NULL) | |
993 | return; | |
994 | ||
995 | /* | |
996 | * First, check for new count > 0 (the common case). | |
997 | * Only the thread needs to be locked. | |
998 | */ | |
999 | s = splsched(); | |
1000 | thread_lock(thread); | |
1001 | refs = --thread->ref_count; | |
1002 | thread_unlock(thread); | |
1003 | splx(s); | |
1004 | ||
1005 | if (refs > 0) | |
1006 | return; | |
1007 | ||
1008 | if (thread == current_thread()) | |
1009 | panic("thread_deallocate"); | |
1010 | ||
1011 | /* | |
1012 | * There is a dangling pointer to the thread from the | |
1013 | * processor_set. To clean it up, we freeze the thread | |
1014 | * in the pset (because pset destruction can cause even | |
1015 | * reference-less threads to be reassigned to the default | |
1016 | * pset) and then remove it. | |
1017 | */ | |
1018 | ||
1019 | #if MACH_HOST | |
1020 | thread_freeze(thread); | |
1021 | #endif | |
1022 | ||
1023 | pset = thread->processor_set; | |
1024 | pset_lock(pset); | |
1025 | pset_remove_thread(pset, thread); | |
1026 | pset_unlock(pset); | |
1027 | ||
1028 | #if MACH_HOST | |
1029 | thread_unfreeze(thread); | |
1030 | #endif | |
1031 | ||
1032 | pset_deallocate(pset); | |
1033 | ||
1034 | if (thread->reserved_stack != 0) { | |
1035 | if (thread->reserved_stack != thread->kernel_stack) | |
1036 | stack_free_stack(thread->reserved_stack); | |
1037 | thread->reserved_stack = 0; | |
1038 | } | |
1039 | ||
1040 | if (thread->kernel_stack != 0) | |
1041 | stack_free(thread); | |
1042 | ||
1043 | machine_thread_destroy(thread); | |
1044 | ||
1045 | zfree(thread_zone, (vm_offset_t) thread); | |
1046 | } | |
1047 | ||
1048 | void | |
1049 | thread_reference( | |
1050 | thread_t thread) | |
1051 | { | |
1052 | spl_t s; | |
1053 | ||
1054 | if (thread == THREAD_NULL) | |
1055 | return; | |
1056 | ||
1057 | s = splsched(); | |
1058 | thread_lock(thread); | |
1059 | thread_reference_locked(thread); | |
1060 | thread_unlock(thread); | |
1061 | splx(s); | |
1062 | } | |
1063 | ||
1064 | /* | |
1065 | * Called with "appropriate" thread-related locks held on | |
1066 | * thread and its top_act for synchrony with RPC (see | |
1067 | * act_lock_thread()). | |
1068 | */ | |
1069 | kern_return_t | |
1070 | thread_info_shuttle( | |
1071 | register thread_act_t thr_act, | |
1072 | thread_flavor_t flavor, | |
1073 | thread_info_t thread_info_out, /* ptr to OUT array */ | |
1074 | mach_msg_type_number_t *thread_info_count) /*IN/OUT*/ | |
1075 | { | |
1076 | register thread_t thread = thr_act->thread; | |
1077 | int state, flags; | |
1078 | spl_t s; | |
1079 | ||
1080 | if (thread == THREAD_NULL) | |
1081 | return (KERN_INVALID_ARGUMENT); | |
1082 | ||
1083 | if (flavor == THREAD_BASIC_INFO) { | |
1084 | register thread_basic_info_t basic_info; | |
1085 | ||
1086 | if (*thread_info_count < THREAD_BASIC_INFO_COUNT) | |
1087 | return (KERN_INVALID_ARGUMENT); | |
1088 | ||
1089 | basic_info = (thread_basic_info_t) thread_info_out; | |
1090 | ||
1091 | s = splsched(); | |
1092 | thread_lock(thread); | |
1093 | ||
1094 | /* fill in info */ | |
1095 | ||
1096 | thread_read_times(thread, &basic_info->user_time, | |
1097 | &basic_info->system_time); | |
1098 | ||
1099 | /* | |
1100 | * Update lazy-evaluated scheduler info because someone wants it. | |
1101 | */ | |
1102 | if (thread->sched_stamp != sched_tick) | |
1103 | update_priority(thread); | |
1104 | ||
1105 | basic_info->sleep_time = 0; | |
1106 | ||
1107 | /* | |
1108 | * To calculate cpu_usage, first correct for timer rate, | |
1109 | * then for 5/8 ageing. The correction factor [3/5] is | |
1110 | * (1/(5/8) - 1). | |
1111 | */ | |
1112 | basic_info->cpu_usage = (thread->cpu_usage << SCHED_TICK_SHIFT) / | |
1113 | (TIMER_RATE / TH_USAGE_SCALE); | |
1114 | basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5; | |
1115 | #if SIMPLE_CLOCK | |
1116 | /* | |
1117 | * Clock drift compensation. | |
1118 | */ | |
1119 | basic_info->cpu_usage = (basic_info->cpu_usage * 1000000) / sched_usec; | |
1120 | #endif /* SIMPLE_CLOCK */ | |
1121 | ||
1122 | basic_info->policy = ((thread->sched_mode & TH_MODE_TIMESHARE)? | |
1123 | POLICY_TIMESHARE: POLICY_RR); | |
1124 | ||
1125 | flags = 0; | |
1126 | if (thread->state & TH_IDLE) | |
1127 | flags |= TH_FLAGS_IDLE; | |
1128 | ||
1129 | if (thread->state & TH_STACK_HANDOFF) | |
1130 | flags |= TH_FLAGS_SWAPPED; | |
1131 | ||
1132 | state = 0; | |
1133 | if (thread->state & TH_TERMINATE) | |
1134 | state = TH_STATE_HALTED; | |
1135 | else | |
1136 | if (thread->state & TH_RUN) | |
1137 | state = TH_STATE_RUNNING; | |
1138 | else | |
1139 | if (thread->state & TH_UNINT) | |
1140 | state = TH_STATE_UNINTERRUPTIBLE; | |
1141 | else | |
1142 | if (thread->state & TH_SUSP) | |
1143 | state = TH_STATE_STOPPED; | |
1144 | else | |
1145 | if (thread->state & TH_WAIT) | |
1146 | state = TH_STATE_WAITING; | |
1147 | ||
1148 | basic_info->run_state = state; | |
1149 | basic_info->flags = flags; | |
1150 | ||
1151 | basic_info->suspend_count = thr_act->user_stop_count; | |
1152 | ||
1153 | thread_unlock(thread); | |
1154 | splx(s); | |
1155 | ||
1156 | *thread_info_count = THREAD_BASIC_INFO_COUNT; | |
1157 | ||
1158 | return (KERN_SUCCESS); | |
1159 | } | |
1160 | else | |
1161 | if (flavor == THREAD_SCHED_TIMESHARE_INFO) { | |
1162 | policy_timeshare_info_t ts_info; | |
1163 | ||
1164 | if (*thread_info_count < POLICY_TIMESHARE_INFO_COUNT) | |
1165 | return (KERN_INVALID_ARGUMENT); | |
1166 | ||
1167 | ts_info = (policy_timeshare_info_t)thread_info_out; | |
1168 | ||
1169 | s = splsched(); | |
1170 | thread_lock(thread); | |
1171 | ||
1172 | if (!(thread->sched_mode & TH_MODE_TIMESHARE)) { | |
1173 | thread_unlock(thread); | |
1174 | splx(s); | |
1175 | ||
1176 | return (KERN_INVALID_POLICY); | |
1177 | } | |
1178 | ||
1179 | ts_info->depressed = (thread->sched_mode & TH_MODE_ISDEPRESSED) != 0; | |
1180 | if (ts_info->depressed) { | |
1181 | ts_info->base_priority = DEPRESSPRI; | |
1182 | ts_info->depress_priority = thread->priority; | |
1183 | } | |
1184 | else { | |
1185 | ts_info->base_priority = thread->priority; | |
1186 | ts_info->depress_priority = -1; | |
1187 | } | |
1188 | ||
1189 | ts_info->cur_priority = thread->sched_pri; | |
1190 | ts_info->max_priority = thread->max_priority; | |
1191 | ||
1192 | thread_unlock(thread); | |
1193 | splx(s); | |
1194 | ||
1195 | *thread_info_count = POLICY_TIMESHARE_INFO_COUNT; | |
1196 | ||
1197 | return (KERN_SUCCESS); | |
1198 | } | |
1199 | else | |
1200 | if (flavor == THREAD_SCHED_FIFO_INFO) { | |
1201 | if (*thread_info_count < POLICY_FIFO_INFO_COUNT) | |
1202 | return (KERN_INVALID_ARGUMENT); | |
1203 | ||
1204 | return (KERN_INVALID_POLICY); | |
1205 | } | |
1206 | else | |
1207 | if (flavor == THREAD_SCHED_RR_INFO) { | |
1208 | policy_rr_info_t rr_info; | |
1209 | ||
1210 | if (*thread_info_count < POLICY_RR_INFO_COUNT) | |
1211 | return (KERN_INVALID_ARGUMENT); | |
1212 | ||
1213 | rr_info = (policy_rr_info_t) thread_info_out; | |
1214 | ||
1215 | s = splsched(); | |
1216 | thread_lock(thread); | |
1217 | ||
1218 | if (thread->sched_mode & TH_MODE_TIMESHARE) { | |
1219 | thread_unlock(thread); | |
1220 | splx(s); | |
1221 | ||
1222 | return (KERN_INVALID_POLICY); | |
1223 | } | |
1224 | ||
1225 | rr_info->depressed = (thread->sched_mode & TH_MODE_ISDEPRESSED) != 0; | |
1226 | if (rr_info->depressed) { | |
1227 | rr_info->base_priority = DEPRESSPRI; | |
1228 | rr_info->depress_priority = thread->priority; | |
1229 | } | |
1230 | else { | |
1231 | rr_info->base_priority = thread->priority; | |
1232 | rr_info->depress_priority = -1; | |
1233 | } | |
1234 | ||
1235 | rr_info->max_priority = thread->max_priority; | |
1236 | rr_info->quantum = std_quantum_us / 1000; | |
1237 | ||
1238 | thread_unlock(thread); | |
1239 | splx(s); | |
1240 | ||
1241 | *thread_info_count = POLICY_RR_INFO_COUNT; | |
1242 | ||
1243 | return (KERN_SUCCESS); | |
1244 | } | |
1245 | ||
1246 | return (KERN_INVALID_ARGUMENT); | |
1247 | } | |
1248 | ||
1249 | void | |
1250 | thread_doreap( | |
1251 | register thread_t thread) | |
1252 | { | |
1253 | thread_act_t thr_act; | |
1254 | ||
1255 | ||
1256 | thr_act = thread_lock_act(thread); | |
1257 | assert(thr_act && thr_act->thread == thread); | |
1258 | ||
1259 | act_reference_locked(thr_act); | |
1260 | ||
1261 | /* | |
1262 | * Replace `act_unlock_thread()' with individual | |
1263 | * calls. (`act_detach()' can change fields used | |
1264 | * to determine which locks are held, confusing | |
1265 | * `act_unlock_thread()'.) | |
1266 | */ | |
1267 | act_unlock(thr_act); | |
1268 | ||
1269 | /* Remove the reference held by a rooted thread */ | |
1270 | act_deallocate(thr_act); | |
1271 | ||
1272 | /* Remove the reference held by the thread: */ | |
1273 | act_deallocate(thr_act); | |
1274 | } | |
1275 | ||
1276 | /* | |
1277 | * reaper_thread: | |
1278 | * | |
1279 | * This kernel thread runs forever looking for terminating | |
1280 | * threads, releasing their "self" references. | |
1281 | */ | |
1282 | static void | |
1283 | reaper_thread_continue(void) | |
1284 | { | |
1285 | register thread_t thread; | |
1286 | ||
1287 | (void)splsched(); | |
1288 | simple_lock(&reaper_lock); | |
1289 | ||
1290 | while ((thread = (thread_t) dequeue_head(&reaper_queue)) != THREAD_NULL) { | |
1291 | simple_unlock(&reaper_lock); | |
1292 | (void)spllo(); | |
1293 | ||
1294 | thread_doreap(thread); | |
1295 | ||
1296 | (void)splsched(); | |
1297 | simple_lock(&reaper_lock); | |
1298 | } | |
1299 | ||
1300 | assert_wait((event_t)&reaper_queue, THREAD_UNINT); | |
1301 | simple_unlock(&reaper_lock); | |
1302 | (void)spllo(); | |
1303 | ||
1304 | thread_block(reaper_thread_continue); | |
1305 | /*NOTREACHED*/ | |
1306 | } | |
1307 | ||
1308 | static void | |
1309 | reaper_thread(void) | |
1310 | { | |
1311 | reaper_thread_continue(); | |
1312 | /*NOTREACHED*/ | |
1313 | } | |
1314 | ||
1315 | void | |
1316 | thread_reaper_init(void) | |
1317 | { | |
1318 | kernel_thread_with_priority(reaper_thread, MINPRI_KERNEL); | |
1319 | } | |
1320 | ||
1321 | kern_return_t | |
1322 | thread_assign( | |
1323 | thread_act_t thr_act, | |
1324 | processor_set_t new_pset) | |
1325 | { | |
1326 | return(KERN_FAILURE); | |
1327 | } | |
1328 | ||
1329 | /* | |
1330 | * thread_assign_default: | |
1331 | * | |
1332 | * Special version of thread_assign for assigning threads to default | |
1333 | * processor set. | |
1334 | */ | |
1335 | kern_return_t | |
1336 | thread_assign_default( | |
1337 | thread_act_t thr_act) | |
1338 | { | |
1339 | return (thread_assign(thr_act, &default_pset)); | |
1340 | } | |
1341 | ||
1342 | /* | |
1343 | * thread_get_assignment | |
1344 | * | |
1345 | * Return current assignment for this thread. | |
1346 | */ | |
1347 | kern_return_t | |
1348 | thread_get_assignment( | |
1349 | thread_act_t thr_act, | |
1350 | processor_set_t *pset) | |
1351 | { | |
1352 | thread_t thread; | |
1353 | ||
1354 | if (thr_act == THR_ACT_NULL) | |
1355 | return(KERN_INVALID_ARGUMENT); | |
1356 | thread = act_lock_thread(thr_act); | |
1357 | if (thread == THREAD_NULL) { | |
1358 | act_unlock_thread(thr_act); | |
1359 | return(KERN_INVALID_ARGUMENT); | |
1360 | } | |
1361 | *pset = thread->processor_set; | |
1362 | act_unlock_thread(thr_act); | |
1363 | pset_reference(*pset); | |
1364 | return(KERN_SUCCESS); | |
1365 | } | |
1366 | ||
1367 | /* | |
1368 | * thread_wire_internal: | |
1369 | * | |
1370 | * Specify that the target thread must always be able | |
1371 | * to run and to allocate memory. | |
1372 | */ | |
1373 | kern_return_t | |
1374 | thread_wire_internal( | |
1375 | host_priv_t host_priv, | |
1376 | thread_act_t thr_act, | |
1377 | boolean_t wired, | |
1378 | boolean_t *prev_state) | |
1379 | { | |
1380 | spl_t s; | |
1381 | thread_t thread; | |
1382 | extern void vm_page_free_reserve(int pages); | |
1383 | ||
1384 | if (thr_act == THR_ACT_NULL || host_priv == HOST_PRIV_NULL) | |
1385 | return (KERN_INVALID_ARGUMENT); | |
1386 | ||
1387 | assert(host_priv == &realhost); | |
1388 | ||
1389 | thread = act_lock_thread(thr_act); | |
1390 | if (thread ==THREAD_NULL) { | |
1391 | act_unlock_thread(thr_act); | |
1392 | return(KERN_INVALID_ARGUMENT); | |
1393 | } | |
1394 | ||
1395 | /* | |
1396 | * This implementation only works for the current thread. | |
1397 | */ | |
1398 | if (thr_act != current_act()) | |
1399 | return KERN_INVALID_ARGUMENT; | |
1400 | ||
1401 | s = splsched(); | |
1402 | thread_lock(thread); | |
1403 | ||
1404 | if (prev_state) { | |
1405 | *prev_state = thread->vm_privilege; | |
1406 | } | |
1407 | ||
1408 | if (wired) { | |
1409 | if (thread->vm_privilege == FALSE) | |
1410 | vm_page_free_reserve(1); /* XXX */ | |
1411 | thread->vm_privilege = TRUE; | |
1412 | } else { | |
1413 | if (thread->vm_privilege == TRUE) | |
1414 | vm_page_free_reserve(-1); /* XXX */ | |
1415 | thread->vm_privilege = FALSE; | |
1416 | } | |
1417 | ||
1418 | thread_unlock(thread); | |
1419 | splx(s); | |
1420 | act_unlock_thread(thr_act); | |
1421 | ||
1422 | return KERN_SUCCESS; | |
1423 | } | |
1424 | ||
1425 | ||
1426 | /* | |
1427 | * thread_wire: | |
1428 | * | |
1429 | * User-api wrapper for thread_wire_internal() | |
1430 | */ | |
1431 | kern_return_t | |
1432 | thread_wire( | |
1433 | host_priv_t host_priv, | |
1434 | thread_act_t thr_act, | |
1435 | boolean_t wired) | |
1436 | ||
1437 | { | |
1438 | return thread_wire_internal(host_priv, thr_act, wired, NULL); | |
1439 | } | |
1440 | ||
1441 | kern_return_t | |
1442 | host_stack_usage( | |
1443 | host_t host, | |
1444 | vm_size_t *reservedp, | |
1445 | unsigned int *totalp, | |
1446 | vm_size_t *spacep, | |
1447 | vm_size_t *residentp, | |
1448 | vm_size_t *maxusagep, | |
1449 | vm_offset_t *maxstackp) | |
1450 | { | |
1451 | #if !MACH_DEBUG | |
1452 | return KERN_NOT_SUPPORTED; | |
1453 | #else | |
1454 | unsigned int total; | |
1455 | vm_size_t maxusage; | |
1456 | ||
1457 | if (host == HOST_NULL) | |
1458 | return KERN_INVALID_HOST; | |
1459 | ||
1460 | maxusage = 0; | |
1461 | ||
1462 | stack_statistics(&total, &maxusage); | |
1463 | ||
1464 | *reservedp = 0; | |
1465 | *totalp = total; | |
1466 | *spacep = *residentp = total * round_page_32(KERNEL_STACK_SIZE); | |
1467 | *maxusagep = maxusage; | |
1468 | *maxstackp = 0; | |
1469 | return KERN_SUCCESS; | |
1470 | ||
1471 | #endif /* MACH_DEBUG */ | |
1472 | } | |
1473 | ||
1474 | /* | |
1475 | * Return info on stack usage for threads in a specific processor set | |
1476 | */ | |
1477 | kern_return_t | |
1478 | processor_set_stack_usage( | |
1479 | processor_set_t pset, | |
1480 | unsigned int *totalp, | |
1481 | vm_size_t *spacep, | |
1482 | vm_size_t *residentp, | |
1483 | vm_size_t *maxusagep, | |
1484 | vm_offset_t *maxstackp) | |
1485 | { | |
1486 | #if !MACH_DEBUG | |
1487 | return KERN_NOT_SUPPORTED; | |
1488 | #else | |
1489 | unsigned int total; | |
1490 | vm_size_t maxusage; | |
1491 | vm_offset_t maxstack; | |
1492 | ||
1493 | register thread_t *threads; | |
1494 | register thread_t thread; | |
1495 | ||
1496 | unsigned int actual; /* this many things */ | |
1497 | unsigned int i; | |
1498 | ||
1499 | vm_size_t size, size_needed; | |
1500 | vm_offset_t addr; | |
1501 | ||
1502 | spl_t s; | |
1503 | ||
1504 | if (pset == PROCESSOR_SET_NULL) | |
1505 | return KERN_INVALID_ARGUMENT; | |
1506 | ||
1507 | size = 0; addr = 0; | |
1508 | ||
1509 | for (;;) { | |
1510 | pset_lock(pset); | |
1511 | if (!pset->active) { | |
1512 | pset_unlock(pset); | |
1513 | return KERN_INVALID_ARGUMENT; | |
1514 | } | |
1515 | ||
1516 | actual = pset->thread_count; | |
1517 | ||
1518 | /* do we have the memory we need? */ | |
1519 | ||
1520 | size_needed = actual * sizeof(thread_t); | |
1521 | if (size_needed <= size) | |
1522 | break; | |
1523 | ||
1524 | /* unlock the pset and allocate more memory */ | |
1525 | pset_unlock(pset); | |
1526 | ||
1527 | if (size != 0) | |
1528 | kfree(addr, size); | |
1529 | ||
1530 | assert(size_needed > 0); | |
1531 | size = size_needed; | |
1532 | ||
1533 | addr = kalloc(size); | |
1534 | if (addr == 0) | |
1535 | return KERN_RESOURCE_SHORTAGE; | |
1536 | } | |
1537 | ||
1538 | /* OK, have memory and the processor_set is locked & active */ | |
1539 | s = splsched(); | |
1540 | threads = (thread_t *) addr; | |
1541 | for (i = 0, thread = (thread_t) queue_first(&pset->threads); | |
1542 | !queue_end(&pset->threads, (queue_entry_t) thread); | |
1543 | thread = (thread_t) queue_next(&thread->pset_threads)) { | |
1544 | thread_lock(thread); | |
1545 | if (thread->ref_count > 0) { | |
1546 | thread_reference_locked(thread); | |
1547 | threads[i++] = thread; | |
1548 | } | |
1549 | thread_unlock(thread); | |
1550 | } | |
1551 | splx(s); | |
1552 | assert(i <= actual); | |
1553 | ||
1554 | /* can unlock processor set now that we have the thread refs */ | |
1555 | pset_unlock(pset); | |
1556 | ||
1557 | /* calculate maxusage and free thread references */ | |
1558 | ||
1559 | total = 0; | |
1560 | maxusage = 0; | |
1561 | maxstack = 0; | |
1562 | while (i > 0) { | |
1563 | thread_t thread = threads[--i]; | |
1564 | ||
1565 | if (thread->kernel_stack != 0) | |
1566 | total++; | |
1567 | ||
1568 | thread_deallocate(thread); | |
1569 | } | |
1570 | ||
1571 | if (size != 0) | |
1572 | kfree(addr, size); | |
1573 | ||
1574 | *totalp = total; | |
1575 | *residentp = *spacep = total * round_page_32(KERNEL_STACK_SIZE); | |
1576 | *maxusagep = maxusage; | |
1577 | *maxstackp = maxstack; | |
1578 | return KERN_SUCCESS; | |
1579 | ||
1580 | #endif /* MACH_DEBUG */ | |
1581 | } | |
1582 | ||
1583 | int split_funnel_off = 0; | |
1584 | funnel_t * | |
1585 | funnel_alloc( | |
1586 | int type) | |
1587 | { | |
1588 | mutex_t *m; | |
1589 | funnel_t * fnl; | |
1590 | if ((fnl = (funnel_t *)kalloc(sizeof(funnel_t))) != 0){ | |
1591 | bzero((void *)fnl, sizeof(funnel_t)); | |
1592 | if ((m = mutex_alloc(0)) == (mutex_t *)NULL) { | |
1593 | kfree((vm_offset_t)fnl, sizeof(funnel_t)); | |
1594 | return(THR_FUNNEL_NULL); | |
1595 | } | |
1596 | fnl->fnl_mutex = m; | |
1597 | fnl->fnl_type = type; | |
1598 | } | |
1599 | return(fnl); | |
1600 | } | |
1601 | ||
1602 | void | |
1603 | funnel_free( | |
1604 | funnel_t * fnl) | |
1605 | { | |
1606 | mutex_free(fnl->fnl_mutex); | |
1607 | if (fnl->fnl_oldmutex) | |
1608 | mutex_free(fnl->fnl_oldmutex); | |
1609 | kfree((vm_offset_t)fnl, sizeof(funnel_t)); | |
1610 | } | |
1611 | ||
1612 | void | |
1613 | funnel_lock( | |
1614 | funnel_t * fnl) | |
1615 | { | |
1616 | mutex_t * m; | |
1617 | ||
1618 | m = fnl->fnl_mutex; | |
1619 | restart: | |
1620 | mutex_lock(m); | |
1621 | fnl->fnl_mtxholder = current_thread(); | |
1622 | if (split_funnel_off && (m != fnl->fnl_mutex)) { | |
1623 | mutex_unlock(m); | |
1624 | m = fnl->fnl_mutex; | |
1625 | goto restart; | |
1626 | } | |
1627 | } | |
1628 | ||
1629 | void | |
1630 | funnel_unlock( | |
1631 | funnel_t * fnl) | |
1632 | { | |
1633 | mutex_unlock(fnl->fnl_mutex); | |
1634 | fnl->fnl_mtxrelease = current_thread(); | |
1635 | } | |
1636 | ||
1637 | int refunnel_hint_enabled = 0; | |
1638 | ||
1639 | boolean_t | |
1640 | refunnel_hint( | |
1641 | thread_t thread, | |
1642 | wait_result_t wresult) | |
1643 | { | |
1644 | if ( !(thread->funnel_state & TH_FN_REFUNNEL) || | |
1645 | wresult != THREAD_AWAKENED ) | |
1646 | return (FALSE); | |
1647 | ||
1648 | if (!refunnel_hint_enabled) | |
1649 | return (FALSE); | |
1650 | ||
1651 | return (mutex_preblock(thread->funnel_lock->fnl_mutex, thread)); | |
1652 | } | |
1653 | ||
1654 | funnel_t * | |
1655 | thread_funnel_get( | |
1656 | void) | |
1657 | { | |
1658 | thread_t th = current_thread(); | |
1659 | ||
1660 | if (th->funnel_state & TH_FN_OWNED) { | |
1661 | return(th->funnel_lock); | |
1662 | } | |
1663 | return(THR_FUNNEL_NULL); | |
1664 | } | |
1665 | ||
1666 | boolean_t | |
1667 | thread_funnel_set( | |
1668 | funnel_t * fnl, | |
1669 | boolean_t funneled) | |
1670 | { | |
1671 | thread_t cur_thread; | |
1672 | boolean_t funnel_state_prev; | |
1673 | boolean_t intr; | |
1674 | ||
1675 | cur_thread = current_thread(); | |
1676 | funnel_state_prev = ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED); | |
1677 | ||
1678 | if (funnel_state_prev != funneled) { | |
1679 | intr = ml_set_interrupts_enabled(FALSE); | |
1680 | ||
1681 | if (funneled == TRUE) { | |
1682 | if (cur_thread->funnel_lock) | |
1683 | panic("Funnel lock called when holding one %x", cur_thread->funnel_lock); | |
1684 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1685 | fnl, 1, 0, 0, 0); | |
1686 | funnel_lock(fnl); | |
1687 | KERNEL_DEBUG(0x6032434 | DBG_FUNC_NONE, | |
1688 | fnl, 1, 0, 0, 0); | |
1689 | cur_thread->funnel_state |= TH_FN_OWNED; | |
1690 | cur_thread->funnel_lock = fnl; | |
1691 | } else { | |
1692 | if(cur_thread->funnel_lock->fnl_mutex != fnl->fnl_mutex) | |
1693 | panic("Funnel unlock when not holding funnel"); | |
1694 | cur_thread->funnel_state &= ~TH_FN_OWNED; | |
1695 | KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE, | |
1696 | fnl, 1, 0, 0, 0); | |
1697 | ||
1698 | cur_thread->funnel_lock = THR_FUNNEL_NULL; | |
1699 | funnel_unlock(fnl); | |
1700 | } | |
1701 | (void)ml_set_interrupts_enabled(intr); | |
1702 | } else { | |
1703 | /* if we are trying to acquire funnel recursively | |
1704 | * check for funnel to be held already | |
1705 | */ | |
1706 | if (funneled && (fnl->fnl_mutex != cur_thread->funnel_lock->fnl_mutex)) { | |
1707 | panic("thread_funnel_set: already holding a different funnel"); | |
1708 | } | |
1709 | } | |
1710 | return(funnel_state_prev); | |
1711 | } | |
1712 | ||
1713 | boolean_t | |
1714 | thread_funnel_merge( | |
1715 | funnel_t * fnl, | |
1716 | funnel_t * otherfnl) | |
1717 | { | |
1718 | mutex_t * m; | |
1719 | mutex_t * otherm; | |
1720 | funnel_t * gfnl; | |
1721 | extern int disable_funnel; | |
1722 | ||
1723 | if ((gfnl = thread_funnel_get()) == THR_FUNNEL_NULL) | |
1724 | panic("thread_funnel_merge called with no funnels held"); | |
1725 | ||
1726 | if (gfnl->fnl_type != 1) | |
1727 | panic("thread_funnel_merge called from non kernel funnel"); | |
1728 | ||
1729 | if (gfnl != fnl) | |
1730 | panic("thread_funnel_merge incorrect invocation"); | |
1731 | ||
1732 | if (disable_funnel || split_funnel_off) | |
1733 | return (KERN_FAILURE); | |
1734 | ||
1735 | m = fnl->fnl_mutex; | |
1736 | otherm = otherfnl->fnl_mutex; | |
1737 | ||
1738 | /* Acquire other funnel mutex */ | |
1739 | mutex_lock(otherm); | |
1740 | split_funnel_off = 1; | |
1741 | disable_funnel = 1; | |
1742 | otherfnl->fnl_mutex = m; | |
1743 | otherfnl->fnl_type = fnl->fnl_type; | |
1744 | otherfnl->fnl_oldmutex = otherm; /* save this for future use */ | |
1745 | ||
1746 | mutex_unlock(otherm); | |
1747 | return(KERN_SUCCESS); | |
1748 | } | |
1749 | ||
1750 | void | |
1751 | thread_set_cont_arg( | |
1752 | int arg) | |
1753 | { | |
1754 | thread_t self = current_thread(); | |
1755 | ||
1756 | self->saved.misc = arg; | |
1757 | } | |
1758 | ||
1759 | int | |
1760 | thread_get_cont_arg(void) | |
1761 | { | |
1762 | thread_t self = current_thread(); | |
1763 | ||
1764 | return (self->saved.misc); | |
1765 | } | |
1766 | ||
1767 | /* | |
1768 | * Export routines to other components for things that are done as macros | |
1769 | * within the osfmk component. | |
1770 | */ | |
1771 | #undef thread_should_halt | |
1772 | boolean_t | |
1773 | thread_should_halt( | |
1774 | thread_t th) | |
1775 | { | |
1776 | return(thread_should_halt_fast(th)); | |
1777 | } | |
1778 | ||
1779 | vm_offset_t min_valid_stack_address(void) | |
1780 | { | |
1781 | return vm_map_min(stack_map); | |
1782 | } | |
1783 | ||
1784 | vm_offset_t max_valid_stack_address(void) | |
1785 | { | |
1786 | return vm_map_max(stack_map); | |
1787 | } |