]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * Copyright (c) 1991, 1993 | |
24 | * The Regents of the University of California. All rights reserved. | |
25 | * | |
26 | * Redistribution and use in source and binary forms, with or without | |
27 | * modification, are permitted provided that the following conditions | |
28 | * are met: | |
29 | * 1. Redistributions of source code must retain the above copyright | |
30 | * notice, this list of conditions and the following disclaimer. | |
31 | * 2. Redistributions in binary form must reproduce the above copyright | |
32 | * notice, this list of conditions and the following disclaimer in the | |
33 | * documentation and/or other materials provided with the distribution. | |
34 | * 3. All advertising materials mentioning features or use of this software | |
35 | * must display the following acknowledgement: | |
36 | * This product includes software developed by the University of | |
37 | * California, Berkeley and its contributors. | |
38 | * 4. Neither the name of the University nor the names of its contributors | |
39 | * may be used to endorse or promote products derived from this software | |
40 | * without specific prior written permission. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | * | |
54 | * @(#)queue.h 8.5 (Berkeley) 8/20/94 | |
55 | */ | |
56 | ||
57 | #ifndef _SYS_QUEUE_H_ | |
58 | #define _SYS_QUEUE_H_ | |
59 | ||
60 | /* | |
61 | * This file defines five types of data structures: singly-linked lists, | |
62 | * slingly-linked tail queues, lists, tail queues, and circular queues. | |
63 | * | |
64 | * A singly-linked list is headed by a single forward pointer. The elements | |
65 | * are singly linked for minimum space and pointer manipulation overhead at | |
66 | * the expense of O(n) removal for arbitrary elements. New elements can be | |
67 | * added to the list after an existing element or at the head of the list. | |
68 | * Elements being removed from the head of the list should use the explicit | |
69 | * macro for this purpose for optimum efficiency. A singly-linked list may | |
70 | * only be traversed in the forward direction. Singly-linked lists are ideal | |
71 | * for applications with large datasets and few or no removals or for | |
72 | * implementing a LIFO queue. | |
73 | * | |
74 | * A singly-linked tail queue is headed by a pair of pointers, one to the | |
75 | * head of the list and the other to the tail of the list. The elements are | |
76 | * singly linked for minimum space and pointer manipulation overhead at the | |
77 | * expense of O(n) removal for arbitrary elements. New elements can be added | |
78 | * to the list after an existing element, at the head of the list, or at the | |
79 | * end of the list. Elements being removed from the head of the tail queue | |
80 | * should use the explicit macro for this purpose for optimum efficiency. | |
81 | * A singly-linked tail queue may only be traversed in the forward direction. | |
82 | * Singly-linked tail queues are ideal for applications with large datasets | |
83 | * and few or no removals or for implementing a FIFO queue. | |
84 | * | |
85 | * A list is headed by a single forward pointer (or an array of forward | |
86 | * pointers for a hash table header). The elements are doubly linked | |
87 | * so that an arbitrary element can be removed without a need to | |
88 | * traverse the list. New elements can be added to the list before | |
89 | * or after an existing element or at the head of the list. A list | |
90 | * may only be traversed in the forward direction. | |
91 | * | |
92 | * A tail queue is headed by a pair of pointers, one to the head of the | |
93 | * list and the other to the tail of the list. The elements are doubly | |
94 | * linked so that an arbitrary element can be removed without a need to | |
95 | * traverse the list. New elements can be added to the list before or | |
96 | * after an existing element, at the head of the list, or at the end of | |
97 | * the list. A tail queue may only be traversed in the forward direction. | |
98 | * | |
99 | * A circle queue is headed by a pair of pointers, one to the head of the | |
100 | * list and the other to the tail of the list. The elements are doubly | |
101 | * linked so that an arbitrary element can be removed without a need to | |
102 | * traverse the list. New elements can be added to the list before or after | |
103 | * an existing element, at the head of the list, or at the end of the list. | |
104 | * A circle queue may be traversed in either direction, but has a more | |
105 | * complex end of list detection. | |
106 | * | |
107 | * For details on the use of these macros, see the queue(3) manual page. | |
108 | * | |
109 | * | |
110 | * SLIST LIST STAILQ TAILQ CIRCLEQ | |
111 | * _HEAD + + + + + | |
112 | * _ENTRY + + + + + | |
113 | * _INIT + + + + + | |
114 | * _EMPTY + + + + + | |
115 | * _FIRST + + + + + | |
116 | * _NEXT + + + + + | |
117 | * _PREV - - - + + | |
118 | * _LAST - - + + + | |
119 | * _FOREACH + + - + + | |
120 | * _INSERT_HEAD + + + + + | |
121 | * _INSERT_BEFORE - + - + + | |
122 | * _INSERT_AFTER + + + + + | |
123 | * _INSERT_TAIL - - + + + | |
124 | * _REMOVE_HEAD + - + - - | |
125 | * _REMOVE + + + + + | |
126 | * | |
127 | */ | |
128 | ||
129 | /* | |
130 | * Singly-linked List definitions. | |
131 | */ | |
132 | #define SLIST_HEAD(name, type) \ | |
133 | struct name { \ | |
134 | struct type *slh_first; /* first element */ \ | |
135 | } | |
136 | ||
137 | #define SLIST_ENTRY(type) \ | |
138 | struct { \ | |
139 | struct type *sle_next; /* next element */ \ | |
140 | } | |
141 | ||
142 | /* | |
143 | * Singly-linked List functions. | |
144 | */ | |
145 | #define SLIST_EMPTY(head) ((head)->slh_first == NULL) | |
146 | ||
147 | #define SLIST_FIRST(head) ((head)->slh_first) | |
148 | ||
149 | #define SLIST_FOREACH(var, head, field) \ | |
150 | for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next) | |
151 | ||
152 | #define SLIST_INIT(head) { \ | |
153 | (head)->slh_first = NULL; \ | |
154 | } | |
155 | ||
156 | #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ | |
157 | (elm)->field.sle_next = (slistelm)->field.sle_next; \ | |
158 | (slistelm)->field.sle_next = (elm); \ | |
159 | } while (0) | |
160 | ||
161 | #define SLIST_INSERT_HEAD(head, elm, field) do { \ | |
162 | (elm)->field.sle_next = (head)->slh_first; \ | |
163 | (head)->slh_first = (elm); \ | |
164 | } while (0) | |
165 | ||
166 | #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) | |
167 | ||
168 | #define SLIST_REMOVE_HEAD(head, field) do { \ | |
169 | (head)->slh_first = (head)->slh_first->field.sle_next; \ | |
170 | } while (0) | |
171 | ||
172 | #define SLIST_REMOVE(head, elm, type, field) do { \ | |
173 | if ((head)->slh_first == (elm)) { \ | |
174 | SLIST_REMOVE_HEAD((head), field); \ | |
175 | } \ | |
176 | else { \ | |
177 | struct type *curelm = (head)->slh_first; \ | |
178 | while( curelm->field.sle_next != (elm) ) \ | |
179 | curelm = curelm->field.sle_next; \ | |
180 | curelm->field.sle_next = \ | |
181 | curelm->field.sle_next->field.sle_next; \ | |
182 | } \ | |
183 | } while (0) | |
184 | ||
185 | /* | |
186 | * Singly-linked Tail queue definitions. | |
187 | */ | |
188 | #define STAILQ_HEAD(name, type) \ | |
189 | struct name { \ | |
190 | struct type *stqh_first;/* first element */ \ | |
191 | struct type **stqh_last;/* addr of last next element */ \ | |
192 | } | |
193 | ||
194 | #define STAILQ_HEAD_INITIALIZER(head) \ | |
195 | { NULL, &(head).stqh_first } | |
196 | ||
197 | #define STAILQ_ENTRY(type) \ | |
198 | struct { \ | |
199 | struct type *stqe_next; /* next element */ \ | |
200 | } | |
201 | ||
202 | /* | |
203 | * Singly-linked Tail queue functions. | |
204 | */ | |
205 | #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) | |
206 | ||
207 | #define STAILQ_INIT(head) do { \ | |
208 | (head)->stqh_first = NULL; \ | |
209 | (head)->stqh_last = &(head)->stqh_first; \ | |
210 | } while (0) | |
211 | ||
212 | #define STAILQ_FIRST(head) ((head)->stqh_first) | |
213 | #define STAILQ_LAST(head) (*(head)->stqh_last) | |
214 | ||
215 | #define STAILQ_INSERT_HEAD(head, elm, field) do { \ | |
216 | if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \ | |
217 | (head)->stqh_last = &(elm)->field.stqe_next; \ | |
218 | (head)->stqh_first = (elm); \ | |
219 | } while (0) | |
220 | ||
221 | #define STAILQ_INSERT_TAIL(head, elm, field) do { \ | |
222 | (elm)->field.stqe_next = NULL; \ | |
223 | *(head)->stqh_last = (elm); \ | |
224 | (head)->stqh_last = &(elm)->field.stqe_next; \ | |
225 | } while (0) | |
226 | ||
227 | #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ | |
228 | if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\ | |
229 | (head)->stqh_last = &(elm)->field.stqe_next; \ | |
230 | (tqelm)->field.stqe_next = (elm); \ | |
231 | } while (0) | |
232 | ||
233 | #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) | |
234 | ||
235 | #define STAILQ_REMOVE_HEAD(head, field) do { \ | |
236 | if (((head)->stqh_first = \ | |
237 | (head)->stqh_first->field.stqe_next) == NULL) \ | |
238 | (head)->stqh_last = &(head)->stqh_first; \ | |
239 | } while (0) | |
240 | ||
241 | #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \ | |
242 | if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \ | |
243 | (head)->stqh_last = &(head)->stqh_first; \ | |
244 | } while (0) | |
245 | ||
246 | ||
247 | #define STAILQ_REMOVE(head, elm, type, field) do { \ | |
248 | if ((head)->stqh_first == (elm)) { \ | |
249 | STAILQ_REMOVE_HEAD(head, field); \ | |
250 | } \ | |
251 | else { \ | |
252 | struct type *curelm = (head)->stqh_first; \ | |
253 | while( curelm->field.stqe_next != (elm) ) \ | |
254 | curelm = curelm->field.stqe_next; \ | |
255 | if((curelm->field.stqe_next = \ | |
256 | curelm->field.stqe_next->field.stqe_next) == NULL) \ | |
257 | (head)->stqh_last = &(curelm)->field.stqe_next; \ | |
258 | } \ | |
259 | } while (0) | |
260 | ||
261 | /* | |
262 | * List definitions. | |
263 | */ | |
264 | #define LIST_HEAD(name, type) \ | |
265 | struct name { \ | |
266 | struct type *lh_first; /* first element */ \ | |
267 | } | |
268 | ||
269 | #define LIST_HEAD_INITIALIZER(head) \ | |
270 | { NULL } | |
271 | ||
272 | #define LIST_ENTRY(type) \ | |
273 | struct { \ | |
274 | struct type *le_next; /* next element */ \ | |
275 | struct type **le_prev; /* address of previous next element */ \ | |
276 | } | |
277 | ||
278 | /* | |
279 | * List functions. | |
280 | */ | |
281 | ||
282 | #define LIST_EMPTY(head) ((head)->lh_first == NULL) | |
283 | ||
284 | #define LIST_FIRST(head) ((head)->lh_first) | |
285 | ||
286 | #define LIST_FOREACH(var, head, field) \ | |
287 | for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next) | |
288 | ||
289 | #define LIST_INIT(head) do { \ | |
290 | (head)->lh_first = NULL; \ | |
291 | } while (0) | |
292 | ||
293 | #define LIST_INSERT_AFTER(listelm, elm, field) do { \ | |
294 | if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ | |
295 | (listelm)->field.le_next->field.le_prev = \ | |
296 | &(elm)->field.le_next; \ | |
297 | (listelm)->field.le_next = (elm); \ | |
298 | (elm)->field.le_prev = &(listelm)->field.le_next; \ | |
299 | } while (0) | |
300 | ||
301 | #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ | |
302 | (elm)->field.le_prev = (listelm)->field.le_prev; \ | |
303 | (elm)->field.le_next = (listelm); \ | |
304 | *(listelm)->field.le_prev = (elm); \ | |
305 | (listelm)->field.le_prev = &(elm)->field.le_next; \ | |
306 | } while (0) | |
307 | ||
308 | #define LIST_INSERT_HEAD(head, elm, field) do { \ | |
309 | if (((elm)->field.le_next = (head)->lh_first) != NULL) \ | |
310 | (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ | |
311 | (head)->lh_first = (elm); \ | |
312 | (elm)->field.le_prev = &(head)->lh_first; \ | |
313 | } while (0) | |
314 | ||
315 | #define LIST_NEXT(elm, field) ((elm)->field.le_next) | |
316 | ||
317 | #define LIST_REMOVE(elm, field) do { \ | |
318 | if ((elm)->field.le_next != NULL) \ | |
319 | (elm)->field.le_next->field.le_prev = \ | |
320 | (elm)->field.le_prev; \ | |
321 | *(elm)->field.le_prev = (elm)->field.le_next; \ | |
322 | } while (0) | |
323 | ||
324 | /* | |
325 | * Tail queue definitions. | |
326 | */ | |
327 | #define TAILQ_HEAD(name, type) \ | |
328 | struct name { \ | |
329 | struct type *tqh_first; /* first element */ \ | |
330 | struct type **tqh_last; /* addr of last next element */ \ | |
331 | } | |
332 | ||
333 | #define TAILQ_HEAD_INITIALIZER(head) \ | |
334 | { NULL, &(head).tqh_first } | |
335 | ||
336 | #define TAILQ_ENTRY(type) \ | |
337 | struct { \ | |
338 | struct type *tqe_next; /* next element */ \ | |
339 | struct type **tqe_prev; /* address of previous next element */ \ | |
340 | } | |
341 | ||
342 | /* | |
343 | * Tail queue functions. | |
344 | */ | |
345 | #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) | |
346 | ||
347 | #define TAILQ_FOREACH(var, head, field) \ | |
348 | for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field)) | |
349 | ||
350 | #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \ | |
351 | for (var = TAILQ_LAST(head, headname); \ | |
352 | var; var = TAILQ_PREV(var, headname, field)) | |
353 | ||
354 | #define TAILQ_FIRST(head) ((head)->tqh_first) | |
355 | ||
356 | #define TAILQ_LAST(head, headname) \ | |
357 | (*(((struct headname *)((head)->tqh_last))->tqh_last)) | |
358 | ||
359 | #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) | |
360 | ||
361 | #define TAILQ_PREV(elm, headname, field) \ | |
362 | (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) | |
363 | ||
364 | #define TAILQ_INIT(head) do { \ | |
365 | (head)->tqh_first = NULL; \ | |
366 | (head)->tqh_last = &(head)->tqh_first; \ | |
367 | } while (0) | |
368 | ||
369 | #define TAILQ_INSERT_HEAD(head, elm, field) do { \ | |
370 | if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ | |
371 | (head)->tqh_first->field.tqe_prev = \ | |
372 | &(elm)->field.tqe_next; \ | |
373 | else \ | |
374 | (head)->tqh_last = &(elm)->field.tqe_next; \ | |
375 | (head)->tqh_first = (elm); \ | |
376 | (elm)->field.tqe_prev = &(head)->tqh_first; \ | |
377 | } while (0) | |
378 | ||
379 | #define TAILQ_INSERT_TAIL(head, elm, field) do { \ | |
380 | (elm)->field.tqe_next = NULL; \ | |
381 | (elm)->field.tqe_prev = (head)->tqh_last; \ | |
382 | *(head)->tqh_last = (elm); \ | |
383 | (head)->tqh_last = &(elm)->field.tqe_next; \ | |
384 | } while (0) | |
385 | ||
386 | #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ | |
387 | if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ | |
388 | (elm)->field.tqe_next->field.tqe_prev = \ | |
389 | &(elm)->field.tqe_next; \ | |
390 | else \ | |
391 | (head)->tqh_last = &(elm)->field.tqe_next; \ | |
392 | (listelm)->field.tqe_next = (elm); \ | |
393 | (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ | |
394 | } while (0) | |
395 | ||
396 | #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ | |
397 | (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ | |
398 | (elm)->field.tqe_next = (listelm); \ | |
399 | *(listelm)->field.tqe_prev = (elm); \ | |
400 | (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ | |
401 | } while (0) | |
402 | ||
403 | #define TAILQ_REMOVE(head, elm, field) do { \ | |
404 | if (((elm)->field.tqe_next) != NULL) \ | |
405 | (elm)->field.tqe_next->field.tqe_prev = \ | |
406 | (elm)->field.tqe_prev; \ | |
407 | else \ | |
408 | (head)->tqh_last = (elm)->field.tqe_prev; \ | |
409 | *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ | |
410 | } while (0) | |
411 | ||
412 | /* | |
413 | * Circular queue definitions. | |
414 | */ | |
415 | #define CIRCLEQ_HEAD(name, type) \ | |
416 | struct name { \ | |
417 | struct type *cqh_first; /* first element */ \ | |
418 | struct type *cqh_last; /* last element */ \ | |
419 | } | |
420 | ||
421 | #define CIRCLEQ_ENTRY(type) \ | |
422 | struct { \ | |
423 | struct type *cqe_next; /* next element */ \ | |
424 | struct type *cqe_prev; /* previous element */ \ | |
425 | } | |
426 | ||
427 | /* | |
428 | * Circular queue functions. | |
429 | */ | |
430 | #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) | |
431 | ||
432 | #define CIRCLEQ_FIRST(head) ((head)->cqh_first) | |
433 | ||
434 | #define CIRCLEQ_FOREACH(var, head, field) \ | |
435 | for((var) = (head)->cqh_first; \ | |
436 | (var) != (void *)(head); \ | |
437 | (var) = (var)->field.cqe_next) | |
438 | ||
439 | #define CIRCLEQ_INIT(head) do { \ | |
440 | (head)->cqh_first = (void *)(head); \ | |
441 | (head)->cqh_last = (void *)(head); \ | |
442 | } while (0) | |
443 | ||
444 | #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ | |
445 | (elm)->field.cqe_next = (listelm)->field.cqe_next; \ | |
446 | (elm)->field.cqe_prev = (listelm); \ | |
447 | if ((listelm)->field.cqe_next == (void *)(head)) \ | |
448 | (head)->cqh_last = (elm); \ | |
449 | else \ | |
450 | (listelm)->field.cqe_next->field.cqe_prev = (elm); \ | |
451 | (listelm)->field.cqe_next = (elm); \ | |
452 | } while (0) | |
453 | ||
454 | #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ | |
455 | (elm)->field.cqe_next = (listelm); \ | |
456 | (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ | |
457 | if ((listelm)->field.cqe_prev == (void *)(head)) \ | |
458 | (head)->cqh_first = (elm); \ | |
459 | else \ | |
460 | (listelm)->field.cqe_prev->field.cqe_next = (elm); \ | |
461 | (listelm)->field.cqe_prev = (elm); \ | |
462 | } while (0) | |
463 | ||
464 | #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ | |
465 | (elm)->field.cqe_next = (head)->cqh_first; \ | |
466 | (elm)->field.cqe_prev = (void *)(head); \ | |
467 | if ((head)->cqh_last == (void *)(head)) \ | |
468 | (head)->cqh_last = (elm); \ | |
469 | else \ | |
470 | (head)->cqh_first->field.cqe_prev = (elm); \ | |
471 | (head)->cqh_first = (elm); \ | |
472 | } while (0) | |
473 | ||
474 | #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ | |
475 | (elm)->field.cqe_next = (void *)(head); \ | |
476 | (elm)->field.cqe_prev = (head)->cqh_last; \ | |
477 | if ((head)->cqh_first == (void *)(head)) \ | |
478 | (head)->cqh_first = (elm); \ | |
479 | else \ | |
480 | (head)->cqh_last->field.cqe_next = (elm); \ | |
481 | (head)->cqh_last = (elm); \ | |
482 | } while (0) | |
483 | ||
484 | #define CIRCLEQ_LAST(head) ((head)->cqh_last) | |
485 | ||
486 | #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next) | |
487 | ||
488 | #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev) | |
489 | ||
490 | #define CIRCLEQ_REMOVE(head, elm, field) do { \ | |
491 | if ((elm)->field.cqe_next == (void *)(head)) \ | |
492 | (head)->cqh_last = (elm)->field.cqe_prev; \ | |
493 | else \ | |
494 | (elm)->field.cqe_next->field.cqe_prev = \ | |
495 | (elm)->field.cqe_prev; \ | |
496 | if ((elm)->field.cqe_prev == (void *)(head)) \ | |
497 | (head)->cqh_first = (elm)->field.cqe_next; \ | |
498 | else \ | |
499 | (elm)->field.cqe_prev->field.cqe_next = \ | |
500 | (elm)->field.cqe_next; \ | |
501 | } while (0) | |
502 | ||
503 | #ifdef KERNEL | |
504 | ||
505 | #if NOTFB31 | |
506 | ||
507 | /* | |
508 | * XXX insque() and remque() are an old way of handling certain queues. | |
509 | * They bogusly assumes that all queue heads look alike. | |
510 | */ | |
511 | ||
512 | struct quehead { | |
513 | struct quehead *qh_link; | |
514 | struct quehead *qh_rlink; | |
515 | }; | |
516 | ||
517 | #ifdef __GNUC__ | |
518 | ||
519 | static __inline void | |
520 | insque(void *a, void *b) | |
521 | { | |
522 | struct quehead *element = a, *head = b; | |
523 | ||
524 | element->qh_link = head->qh_link; | |
525 | element->qh_rlink = head; | |
526 | head->qh_link = element; | |
527 | element->qh_link->qh_rlink = element; | |
528 | } | |
529 | ||
530 | static __inline void | |
531 | remque(void *a) | |
532 | { | |
533 | struct quehead *element = a; | |
534 | ||
535 | element->qh_link->qh_rlink = element->qh_rlink; | |
536 | element->qh_rlink->qh_link = element->qh_link; | |
537 | element->qh_rlink = 0; | |
538 | } | |
539 | ||
540 | #else /* !__GNUC__ */ | |
541 | ||
542 | void insque __P((void *a, void *b)); | |
543 | void remque __P((void *a)); | |
544 | ||
545 | #endif /* __GNUC__ */ | |
546 | ||
547 | #endif | |
548 | #endif /* KERNEL */ | |
549 | ||
550 | #endif /* !_SYS_QUEUE_H_ */ |