]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2012-2017 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <string.h> | |
30 | #include <sys/types.h> | |
31 | #include <sys/syslog.h> | |
32 | #include <sys/queue.h> | |
33 | #include <sys/malloc.h> | |
34 | #include <sys/socket.h> | |
35 | #include <sys/kpi_mbuf.h> | |
36 | #include <sys/mbuf.h> | |
37 | #include <sys/domain.h> | |
38 | #include <sys/protosw.h> | |
39 | #include <sys/socketvar.h> | |
40 | #include <sys/kernel.h> | |
41 | #include <sys/systm.h> | |
42 | #include <sys/kern_control.h> | |
43 | #include <sys/ubc.h> | |
44 | #include <sys/codesign.h> | |
45 | #include <libkern/tree.h> | |
46 | #include <kern/locks.h> | |
47 | #include <kern/debug.h> | |
48 | #include <net/if_var.h> | |
49 | #include <net/route.h> | |
50 | #include <net/flowhash.h> | |
51 | #include <net/ntstat.h> | |
52 | #include <netinet/in.h> | |
53 | #include <netinet/in_var.h> | |
54 | #include <netinet/tcp.h> | |
55 | #include <netinet/tcp_var.h> | |
56 | #include <netinet/tcp_fsm.h> | |
57 | #include <netinet/flow_divert.h> | |
58 | #include <netinet/flow_divert_proto.h> | |
59 | #if INET6 | |
60 | #include <netinet6/in6_pcb.h> | |
61 | #include <netinet6/ip6protosw.h> | |
62 | #endif /* INET6 */ | |
63 | #include <dev/random/randomdev.h> | |
64 | #include <libkern/crypto/sha1.h> | |
65 | #include <libkern/crypto/crypto_internal.h> | |
66 | #include <os/log.h> | |
67 | ||
68 | #define FLOW_DIVERT_CONNECT_STARTED 0x00000001 | |
69 | #define FLOW_DIVERT_READ_CLOSED 0x00000002 | |
70 | #define FLOW_DIVERT_WRITE_CLOSED 0x00000004 | |
71 | #define FLOW_DIVERT_TUNNEL_RD_CLOSED 0x00000008 | |
72 | #define FLOW_DIVERT_TUNNEL_WR_CLOSED 0x00000010 | |
73 | #define FLOW_DIVERT_TRANSFERRED 0x00000020 | |
74 | #define FLOW_DIVERT_HAS_HMAC 0x00000040 | |
75 | ||
76 | #define FDLOG(level, pcb, format, ...) \ | |
77 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " format "\n", (pcb)->hash, __VA_ARGS__) | |
78 | ||
79 | #define FDLOG0(level, pcb, msg) \ | |
80 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " msg "\n", (pcb)->hash) | |
81 | ||
82 | #define FDRETAIN(pcb) if ((pcb) != NULL) OSIncrementAtomic(&(pcb)->ref_count) | |
83 | #define FDRELEASE(pcb) \ | |
84 | do { \ | |
85 | if ((pcb) != NULL && 1 == OSDecrementAtomic(&(pcb)->ref_count)) { \ | |
86 | flow_divert_pcb_destroy(pcb); \ | |
87 | } \ | |
88 | } while (0) | |
89 | ||
90 | #define FDLOCK(pcb) lck_mtx_lock(&(pcb)->mtx) | |
91 | #define FDUNLOCK(pcb) lck_mtx_unlock(&(pcb)->mtx) | |
92 | ||
93 | #define FD_CTL_SENDBUFF_SIZE (128 * 1024) | |
94 | #define FD_CTL_RCVBUFF_SIZE (128 * 1024) | |
95 | ||
96 | #define GROUP_BIT_CTL_ENQUEUE_BLOCKED 0 | |
97 | ||
98 | #define GROUP_COUNT_MAX 32 | |
99 | #define FLOW_DIVERT_MAX_NAME_SIZE 4096 | |
100 | #define FLOW_DIVERT_MAX_KEY_SIZE 1024 | |
101 | #define FLOW_DIVERT_MAX_TRIE_MEMORY (1024 * 1024) | |
102 | ||
103 | struct flow_divert_trie_node | |
104 | { | |
105 | uint16_t start; | |
106 | uint16_t length; | |
107 | uint16_t child_map; | |
108 | }; | |
109 | ||
110 | #define CHILD_MAP_SIZE 256 | |
111 | #define NULL_TRIE_IDX 0xffff | |
112 | #define TRIE_NODE(t, i) ((t)->nodes[(i)]) | |
113 | #define TRIE_CHILD(t, i, b) (((t)->child_maps + (CHILD_MAP_SIZE * TRIE_NODE(t, i).child_map))[(b)]) | |
114 | #define TRIE_BYTE(t, i) ((t)->bytes[(i)]) | |
115 | ||
116 | static struct flow_divert_pcb nil_pcb; | |
117 | ||
118 | decl_lck_rw_data(static, g_flow_divert_group_lck); | |
119 | static struct flow_divert_group **g_flow_divert_groups = NULL; | |
120 | static uint32_t g_active_group_count = 0; | |
121 | ||
122 | static lck_grp_attr_t *flow_divert_grp_attr = NULL; | |
123 | static lck_attr_t *flow_divert_mtx_attr = NULL; | |
124 | static lck_grp_t *flow_divert_mtx_grp = NULL; | |
125 | static errno_t g_init_result = 0; | |
126 | ||
127 | static kern_ctl_ref g_flow_divert_kctl_ref = NULL; | |
128 | ||
129 | static struct protosw g_flow_divert_in_protosw; | |
130 | static struct pr_usrreqs g_flow_divert_in_usrreqs; | |
131 | static struct protosw g_flow_divert_in_udp_protosw; | |
132 | static struct pr_usrreqs g_flow_divert_in_udp_usrreqs; | |
133 | #if INET6 | |
134 | static struct ip6protosw g_flow_divert_in6_protosw; | |
135 | static struct pr_usrreqs g_flow_divert_in6_usrreqs; | |
136 | static struct ip6protosw g_flow_divert_in6_udp_protosw; | |
137 | static struct pr_usrreqs g_flow_divert_in6_udp_usrreqs; | |
138 | #endif /* INET6 */ | |
139 | ||
140 | static struct protosw *g_tcp_protosw = NULL; | |
141 | static struct ip6protosw *g_tcp6_protosw = NULL; | |
142 | static struct protosw *g_udp_protosw = NULL; | |
143 | static struct ip6protosw *g_udp6_protosw = NULL; | |
144 | ||
145 | static errno_t | |
146 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, struct sockaddr **dup); | |
147 | ||
148 | static errno_t | |
149 | flow_divert_inp_to_sockaddr(const struct inpcb *inp, struct sockaddr **local_socket); | |
150 | ||
151 | static boolean_t | |
152 | flow_divert_is_sockaddr_valid(struct sockaddr *addr); | |
153 | ||
154 | static int | |
155 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr); | |
156 | ||
157 | struct sockaddr * | |
158 | flow_divert_get_buffered_target_address(mbuf_t buffer); | |
159 | ||
160 | static boolean_t | |
161 | flow_divert_has_pcb_local_address(const struct inpcb *inp); | |
162 | ||
163 | static void | |
164 | flow_divert_disconnect_socket(struct socket *so); | |
165 | ||
166 | static inline uint8_t | |
167 | flow_divert_syslog_type_to_oslog_type(int syslog_type) | |
168 | { | |
169 | switch (syslog_type) { | |
170 | case LOG_ERR: return OS_LOG_TYPE_ERROR; | |
171 | case LOG_INFO: return OS_LOG_TYPE_INFO; | |
172 | case LOG_DEBUG: return OS_LOG_TYPE_DEBUG; | |
173 | default: return OS_LOG_TYPE_DEFAULT; | |
174 | } | |
175 | } | |
176 | ||
177 | static inline int | |
178 | flow_divert_pcb_cmp(const struct flow_divert_pcb *pcb_a, const struct flow_divert_pcb *pcb_b) | |
179 | { | |
180 | return memcmp(&pcb_a->hash, &pcb_b->hash, sizeof(pcb_a->hash)); | |
181 | } | |
182 | ||
183 | RB_PROTOTYPE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
184 | RB_GENERATE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
185 | ||
186 | static const char * | |
187 | flow_divert_packet_type2str(uint8_t packet_type) | |
188 | { | |
189 | switch (packet_type) { | |
190 | case FLOW_DIVERT_PKT_CONNECT: | |
191 | return "connect"; | |
192 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
193 | return "connect result"; | |
194 | case FLOW_DIVERT_PKT_DATA: | |
195 | return "data"; | |
196 | case FLOW_DIVERT_PKT_CLOSE: | |
197 | return "close"; | |
198 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
199 | return "read notification"; | |
200 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
201 | return "properties update"; | |
202 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
203 | return "app map create"; | |
204 | default: | |
205 | return "unknown"; | |
206 | } | |
207 | } | |
208 | ||
209 | static struct flow_divert_pcb * | |
210 | flow_divert_pcb_lookup(uint32_t hash, struct flow_divert_group *group) | |
211 | { | |
212 | struct flow_divert_pcb key_item; | |
213 | struct flow_divert_pcb *fd_cb = NULL; | |
214 | ||
215 | key_item.hash = hash; | |
216 | ||
217 | lck_rw_lock_shared(&group->lck); | |
218 | fd_cb = RB_FIND(fd_pcb_tree, &group->pcb_tree, &key_item); | |
219 | FDRETAIN(fd_cb); | |
220 | lck_rw_done(&group->lck); | |
221 | ||
222 | return fd_cb; | |
223 | } | |
224 | ||
225 | static errno_t | |
226 | flow_divert_pcb_insert(struct flow_divert_pcb *fd_cb, uint32_t ctl_unit) | |
227 | { | |
228 | errno_t error = 0; | |
229 | struct flow_divert_pcb *exist = NULL; | |
230 | struct flow_divert_group *group; | |
231 | static uint32_t g_nextkey = 1; | |
232 | static uint32_t g_hash_seed = 0; | |
233 | int try_count = 0; | |
234 | ||
235 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
236 | return EINVAL; | |
237 | } | |
238 | ||
239 | socket_unlock(fd_cb->so, 0); | |
240 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
241 | ||
242 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
243 | FDLOG0(LOG_ERR, &nil_pcb, "No active groups, flow divert cannot be used for this socket"); | |
244 | error = ENETUNREACH; | |
245 | goto done; | |
246 | } | |
247 | ||
248 | group = g_flow_divert_groups[ctl_unit]; | |
249 | if (group == NULL) { | |
250 | FDLOG(LOG_ERR, &nil_pcb, "Group for control unit %u is NULL, flow divert cannot be used for this socket", ctl_unit); | |
251 | error = ENETUNREACH; | |
252 | goto done; | |
253 | } | |
254 | ||
255 | socket_lock(fd_cb->so, 0); | |
256 | ||
257 | do { | |
258 | uint32_t key[2]; | |
259 | uint32_t idx; | |
260 | ||
261 | key[0] = g_nextkey++; | |
262 | key[1] = RandomULong(); | |
263 | ||
264 | if (g_hash_seed == 0) { | |
265 | g_hash_seed = RandomULong(); | |
266 | } | |
267 | ||
268 | fd_cb->hash = net_flowhash(key, sizeof(key), g_hash_seed); | |
269 | ||
270 | for (idx = 1; idx < GROUP_COUNT_MAX; idx++) { | |
271 | struct flow_divert_group *curr_group = g_flow_divert_groups[idx]; | |
272 | if (curr_group != NULL && curr_group != group) { | |
273 | lck_rw_lock_shared(&curr_group->lck); | |
274 | exist = RB_FIND(fd_pcb_tree, &curr_group->pcb_tree, fd_cb); | |
275 | lck_rw_done(&curr_group->lck); | |
276 | if (exist != NULL) { | |
277 | break; | |
278 | } | |
279 | } | |
280 | } | |
281 | ||
282 | if (exist == NULL) { | |
283 | lck_rw_lock_exclusive(&group->lck); | |
284 | exist = RB_INSERT(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
285 | lck_rw_done(&group->lck); | |
286 | } | |
287 | } while (exist != NULL && try_count++ < 3); | |
288 | ||
289 | if (exist == NULL) { | |
290 | fd_cb->group = group; | |
291 | FDRETAIN(fd_cb); /* The group now has a reference */ | |
292 | } else { | |
293 | fd_cb->hash = 0; | |
294 | error = EEXIST; | |
295 | } | |
296 | ||
297 | socket_unlock(fd_cb->so, 0); | |
298 | ||
299 | done: | |
300 | lck_rw_done(&g_flow_divert_group_lck); | |
301 | socket_lock(fd_cb->so, 0); | |
302 | ||
303 | return error; | |
304 | } | |
305 | ||
306 | static struct flow_divert_pcb * | |
307 | flow_divert_pcb_create(socket_t so) | |
308 | { | |
309 | struct flow_divert_pcb *new_pcb = NULL; | |
310 | ||
311 | MALLOC_ZONE(new_pcb, struct flow_divert_pcb *, sizeof(*new_pcb), M_FLOW_DIVERT_PCB, M_WAITOK); | |
312 | if (new_pcb == NULL) { | |
313 | FDLOG0(LOG_ERR, &nil_pcb, "failed to allocate a pcb"); | |
314 | return NULL; | |
315 | } | |
316 | ||
317 | memset(new_pcb, 0, sizeof(*new_pcb)); | |
318 | ||
319 | lck_mtx_init(&new_pcb->mtx, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
320 | new_pcb->so = so; | |
321 | new_pcb->log_level = nil_pcb.log_level; | |
322 | ||
323 | FDRETAIN(new_pcb); /* Represents the socket's reference */ | |
324 | ||
325 | return new_pcb; | |
326 | } | |
327 | ||
328 | static void | |
329 | flow_divert_pcb_destroy(struct flow_divert_pcb *fd_cb) | |
330 | { | |
331 | FDLOG(LOG_INFO, fd_cb, "Destroying, app tx %u, app rx %u, tunnel tx %u, tunnel rx %u", | |
332 | fd_cb->bytes_written_by_app, fd_cb->bytes_read_by_app, fd_cb->bytes_sent, fd_cb->bytes_received); | |
333 | ||
334 | if (fd_cb->local_address != NULL) { | |
335 | FREE(fd_cb->local_address, M_SONAME); | |
336 | } | |
337 | if (fd_cb->remote_address != NULL) { | |
338 | FREE(fd_cb->remote_address, M_SONAME); | |
339 | } | |
340 | if (fd_cb->connect_token != NULL) { | |
341 | mbuf_freem(fd_cb->connect_token); | |
342 | } | |
343 | if (fd_cb->connect_packet != NULL) { | |
344 | mbuf_freem(fd_cb->connect_packet); | |
345 | } | |
346 | if (fd_cb->app_data != NULL) { | |
347 | FREE(fd_cb->app_data, M_TEMP); | |
348 | } | |
349 | FREE_ZONE(fd_cb, sizeof(*fd_cb), M_FLOW_DIVERT_PCB); | |
350 | } | |
351 | ||
352 | static void | |
353 | flow_divert_pcb_remove(struct flow_divert_pcb *fd_cb) | |
354 | { | |
355 | if (fd_cb->group != NULL) { | |
356 | struct flow_divert_group *group = fd_cb->group; | |
357 | lck_rw_lock_exclusive(&group->lck); | |
358 | FDLOG(LOG_INFO, fd_cb, "Removing from group %d, ref count = %d", group->ctl_unit, fd_cb->ref_count); | |
359 | RB_REMOVE(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
360 | fd_cb->group = NULL; | |
361 | FDRELEASE(fd_cb); /* Release the group's reference */ | |
362 | lck_rw_done(&group->lck); | |
363 | } | |
364 | } | |
365 | ||
366 | static int | |
367 | flow_divert_packet_init(struct flow_divert_pcb *fd_cb, uint8_t packet_type, mbuf_t *packet) | |
368 | { | |
369 | struct flow_divert_packet_header hdr; | |
370 | int error = 0; | |
371 | ||
372 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, packet); | |
373 | if (error) { | |
374 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
375 | return error; | |
376 | } | |
377 | ||
378 | hdr.packet_type = packet_type; | |
379 | hdr.conn_id = htonl(fd_cb->hash); | |
380 | ||
381 | /* Lay down the header */ | |
382 | error = mbuf_copyback(*packet, 0, sizeof(hdr), &hdr, MBUF_DONTWAIT); | |
383 | if (error) { | |
384 | FDLOG(LOG_ERR, fd_cb, "mbuf_copyback(hdr) failed: %d", error); | |
385 | mbuf_freem(*packet); | |
386 | *packet = NULL; | |
387 | return error; | |
388 | } | |
389 | ||
390 | return 0; | |
391 | } | |
392 | ||
393 | static int | |
394 | flow_divert_packet_append_tlv(mbuf_t packet, uint8_t type, uint32_t length, const void *value) | |
395 | { | |
396 | uint32_t net_length = htonl(length); | |
397 | int error = 0; | |
398 | ||
399 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(type), &type, MBUF_DONTWAIT); | |
400 | if (error) { | |
401 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the type (%d)", type); | |
402 | return error; | |
403 | } | |
404 | ||
405 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(net_length), &net_length, MBUF_DONTWAIT); | |
406 | if (error) { | |
407 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the length (%u)", length); | |
408 | return error; | |
409 | } | |
410 | ||
411 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), length, value, MBUF_DONTWAIT); | |
412 | if (error) { | |
413 | FDLOG0(LOG_ERR, &nil_pcb, "failed to append the value"); | |
414 | return error; | |
415 | } | |
416 | ||
417 | return error; | |
418 | } | |
419 | ||
420 | static int | |
421 | flow_divert_packet_find_tlv(mbuf_t packet, int offset, uint8_t type, int *err, int next) | |
422 | { | |
423 | size_t cursor = offset; | |
424 | int error = 0; | |
425 | uint32_t curr_length; | |
426 | uint8_t curr_type; | |
427 | ||
428 | *err = 0; | |
429 | ||
430 | do { | |
431 | if (!next) { | |
432 | error = mbuf_copydata(packet, cursor, sizeof(curr_type), &curr_type); | |
433 | if (error) { | |
434 | *err = ENOENT; | |
435 | return -1; | |
436 | } | |
437 | } else { | |
438 | next = 0; | |
439 | curr_type = FLOW_DIVERT_TLV_NIL; | |
440 | } | |
441 | ||
442 | if (curr_type != type) { | |
443 | cursor += sizeof(curr_type); | |
444 | error = mbuf_copydata(packet, cursor, sizeof(curr_length), &curr_length); | |
445 | if (error) { | |
446 | *err = error; | |
447 | return -1; | |
448 | } | |
449 | ||
450 | cursor += (sizeof(curr_length) + ntohl(curr_length)); | |
451 | } | |
452 | } while (curr_type != type); | |
453 | ||
454 | return cursor; | |
455 | } | |
456 | ||
457 | static int | |
458 | flow_divert_packet_get_tlv(mbuf_t packet, int offset, uint8_t type, size_t buff_len, void *buff, uint32_t *val_size) | |
459 | { | |
460 | int error = 0; | |
461 | uint32_t length; | |
462 | int tlv_offset; | |
463 | ||
464 | tlv_offset = flow_divert_packet_find_tlv(packet, offset, type, &error, 0); | |
465 | if (tlv_offset < 0) { | |
466 | return error; | |
467 | } | |
468 | ||
469 | error = mbuf_copydata(packet, tlv_offset + sizeof(type), sizeof(length), &length); | |
470 | if (error) { | |
471 | return error; | |
472 | } | |
473 | ||
474 | length = ntohl(length); | |
475 | ||
476 | if (val_size != NULL) { | |
477 | *val_size = length; | |
478 | } | |
479 | ||
480 | if (buff != NULL && buff_len > 0) { | |
481 | size_t to_copy = (length < buff_len) ? length : buff_len; | |
482 | error = mbuf_copydata(packet, tlv_offset + sizeof(type) + sizeof(length), to_copy, buff); | |
483 | if (error) { | |
484 | return error; | |
485 | } | |
486 | } | |
487 | ||
488 | return 0; | |
489 | } | |
490 | ||
491 | static int | |
492 | flow_divert_packet_compute_hmac(mbuf_t packet, struct flow_divert_group *group, uint8_t *hmac) | |
493 | { | |
494 | mbuf_t curr_mbuf = packet; | |
495 | ||
496 | if (g_crypto_funcs == NULL || group->token_key == NULL) { | |
497 | return ENOPROTOOPT; | |
498 | } | |
499 | ||
500 | cchmac_di_decl(g_crypto_funcs->ccsha1_di, hmac_ctx); | |
501 | g_crypto_funcs->cchmac_init_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, group->token_key_size, group->token_key); | |
502 | ||
503 | while (curr_mbuf != NULL) { | |
504 | g_crypto_funcs->cchmac_update_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, mbuf_len(curr_mbuf), mbuf_data(curr_mbuf)); | |
505 | curr_mbuf = mbuf_next(curr_mbuf); | |
506 | } | |
507 | ||
508 | g_crypto_funcs->cchmac_final_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, hmac); | |
509 | ||
510 | return 0; | |
511 | } | |
512 | ||
513 | static int | |
514 | flow_divert_packet_verify_hmac(mbuf_t packet, uint32_t ctl_unit) | |
515 | { | |
516 | int error = 0; | |
517 | struct flow_divert_group *group = NULL; | |
518 | int hmac_offset; | |
519 | uint8_t packet_hmac[SHA_DIGEST_LENGTH]; | |
520 | uint8_t computed_hmac[SHA_DIGEST_LENGTH]; | |
521 | mbuf_t tail; | |
522 | ||
523 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
524 | ||
525 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
526 | group = g_flow_divert_groups[ctl_unit]; | |
527 | } | |
528 | ||
529 | if (group == NULL) { | |
530 | lck_rw_done(&g_flow_divert_group_lck); | |
531 | return ENOPROTOOPT; | |
532 | } | |
533 | ||
534 | lck_rw_lock_shared(&group->lck); | |
535 | ||
536 | if (group->token_key == NULL) { | |
537 | error = ENOPROTOOPT; | |
538 | goto done; | |
539 | } | |
540 | ||
541 | hmac_offset = flow_divert_packet_find_tlv(packet, 0, FLOW_DIVERT_TLV_HMAC, &error, 0); | |
542 | if (hmac_offset < 0) { | |
543 | goto done; | |
544 | } | |
545 | ||
546 | error = flow_divert_packet_get_tlv(packet, hmac_offset, FLOW_DIVERT_TLV_HMAC, sizeof(packet_hmac), packet_hmac, NULL); | |
547 | if (error) { | |
548 | goto done; | |
549 | } | |
550 | ||
551 | /* Chop off the HMAC TLV */ | |
552 | error = mbuf_split(packet, hmac_offset, MBUF_WAITOK, &tail); | |
553 | if (error) { | |
554 | goto done; | |
555 | } | |
556 | ||
557 | mbuf_free(tail); | |
558 | ||
559 | error = flow_divert_packet_compute_hmac(packet, group, computed_hmac); | |
560 | if (error) { | |
561 | goto done; | |
562 | } | |
563 | ||
564 | if (memcmp(packet_hmac, computed_hmac, sizeof(packet_hmac))) { | |
565 | FDLOG0(LOG_WARNING, &nil_pcb, "HMAC in token does not match computed HMAC"); | |
566 | error = EINVAL; | |
567 | goto done; | |
568 | } | |
569 | ||
570 | done: | |
571 | lck_rw_done(&group->lck); | |
572 | lck_rw_done(&g_flow_divert_group_lck); | |
573 | return error; | |
574 | } | |
575 | ||
576 | static void | |
577 | flow_divert_add_data_statistics(struct flow_divert_pcb *fd_cb, int data_len, Boolean send) | |
578 | { | |
579 | struct inpcb *inp = NULL; | |
580 | struct ifnet *ifp = NULL; | |
581 | Boolean cell = FALSE; | |
582 | Boolean wifi = FALSE; | |
583 | Boolean wired = FALSE; | |
584 | ||
585 | inp = sotoinpcb(fd_cb->so); | |
586 | if (inp == NULL) { | |
587 | return; | |
588 | } | |
589 | ||
590 | ifp = inp->inp_last_outifp; | |
591 | if (ifp != NULL) { | |
592 | cell = IFNET_IS_CELLULAR(ifp); | |
593 | wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
594 | wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
595 | } | |
596 | ||
597 | if (send) { | |
598 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); | |
599 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, data_len); | |
600 | } else { | |
601 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); | |
602 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, data_len); | |
603 | } | |
604 | inp_set_activity_bitmap(inp); | |
605 | } | |
606 | ||
607 | static errno_t | |
608 | flow_divert_check_no_cellular(struct flow_divert_pcb *fd_cb) | |
609 | { | |
610 | struct inpcb *inp = NULL; | |
611 | ||
612 | inp = sotoinpcb(fd_cb->so); | |
613 | if (inp && INP_NO_CELLULAR(inp) && inp->inp_last_outifp && | |
614 | IFNET_IS_CELLULAR(inp->inp_last_outifp)) | |
615 | return EHOSTUNREACH; | |
616 | ||
617 | return 0; | |
618 | } | |
619 | ||
620 | static errno_t | |
621 | flow_divert_check_no_expensive(struct flow_divert_pcb *fd_cb) | |
622 | { | |
623 | struct inpcb *inp = NULL; | |
624 | ||
625 | inp = sotoinpcb(fd_cb->so); | |
626 | if (inp && INP_NO_EXPENSIVE(inp) && inp->inp_last_outifp && | |
627 | IFNET_IS_EXPENSIVE(inp->inp_last_outifp)) | |
628 | return EHOSTUNREACH; | |
629 | ||
630 | return 0; | |
631 | } | |
632 | ||
633 | static void | |
634 | flow_divert_update_closed_state(struct flow_divert_pcb *fd_cb, int how, Boolean tunnel) | |
635 | { | |
636 | if (how != SHUT_RD) { | |
637 | fd_cb->flags |= FLOW_DIVERT_WRITE_CLOSED; | |
638 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
639 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
640 | /* If the tunnel is not accepting writes any more, then flush the send buffer */ | |
641 | sbflush(&fd_cb->so->so_snd); | |
642 | } | |
643 | } | |
644 | if (how != SHUT_WR) { | |
645 | fd_cb->flags |= FLOW_DIVERT_READ_CLOSED; | |
646 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
647 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
648 | } | |
649 | } | |
650 | } | |
651 | ||
652 | static uint16_t | |
653 | trie_node_alloc(struct flow_divert_trie *trie) | |
654 | { | |
655 | if (trie->nodes_free_next < trie->nodes_count) { | |
656 | uint16_t node_idx = trie->nodes_free_next++; | |
657 | TRIE_NODE(trie, node_idx).child_map = NULL_TRIE_IDX; | |
658 | return node_idx; | |
659 | } else { | |
660 | return NULL_TRIE_IDX; | |
661 | } | |
662 | } | |
663 | ||
664 | static uint16_t | |
665 | trie_child_map_alloc(struct flow_divert_trie *trie) | |
666 | { | |
667 | if (trie->child_maps_free_next < trie->child_maps_count) { | |
668 | return trie->child_maps_free_next++; | |
669 | } else { | |
670 | return NULL_TRIE_IDX; | |
671 | } | |
672 | } | |
673 | ||
674 | static uint16_t | |
675 | trie_bytes_move(struct flow_divert_trie *trie, uint16_t bytes_idx, size_t bytes_size) | |
676 | { | |
677 | uint16_t start = trie->bytes_free_next; | |
678 | if (start + bytes_size <= trie->bytes_count) { | |
679 | if (start != bytes_idx) { | |
680 | memmove(&TRIE_BYTE(trie, start), &TRIE_BYTE(trie, bytes_idx), bytes_size); | |
681 | } | |
682 | trie->bytes_free_next += bytes_size; | |
683 | return start; | |
684 | } else { | |
685 | return NULL_TRIE_IDX; | |
686 | } | |
687 | } | |
688 | ||
689 | static uint16_t | |
690 | flow_divert_trie_insert(struct flow_divert_trie *trie, uint16_t string_start, size_t string_len) | |
691 | { | |
692 | uint16_t current = trie->root; | |
693 | uint16_t child = trie->root; | |
694 | uint16_t string_end = string_start + string_len; | |
695 | uint16_t string_idx = string_start; | |
696 | uint16_t string_remainder = string_len; | |
697 | ||
698 | while (child != NULL_TRIE_IDX) { | |
699 | uint16_t parent = current; | |
700 | uint16_t node_idx; | |
701 | uint16_t current_end; | |
702 | ||
703 | current = child; | |
704 | child = NULL_TRIE_IDX; | |
705 | ||
706 | current_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
707 | ||
708 | for (node_idx = TRIE_NODE(trie, current).start; | |
709 | node_idx < current_end && | |
710 | string_idx < string_end && | |
711 | TRIE_BYTE(trie, node_idx) == TRIE_BYTE(trie, string_idx); | |
712 | node_idx++, string_idx++); | |
713 | ||
714 | string_remainder = string_end - string_idx; | |
715 | ||
716 | if (node_idx < (TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length)) { | |
717 | /* | |
718 | * We did not reach the end of the current node's string. | |
719 | * We need to split the current node into two: | |
720 | * 1. A new node that contains the prefix of the node that matches | |
721 | * the prefix of the string being inserted. | |
722 | * 2. The current node modified to point to the remainder | |
723 | * of the current node's string. | |
724 | */ | |
725 | uint16_t prefix = trie_node_alloc(trie); | |
726 | if (prefix == NULL_TRIE_IDX) { | |
727 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while splitting an existing node"); | |
728 | return NULL_TRIE_IDX; | |
729 | } | |
730 | ||
731 | /* | |
732 | * Prefix points to the portion of the current nodes's string that has matched | |
733 | * the input string thus far. | |
734 | */ | |
735 | TRIE_NODE(trie, prefix).start = TRIE_NODE(trie, current).start; | |
736 | TRIE_NODE(trie, prefix).length = (node_idx - TRIE_NODE(trie, current).start); | |
737 | ||
738 | /* | |
739 | * Prefix has the current node as the child corresponding to the first byte | |
740 | * after the split. | |
741 | */ | |
742 | TRIE_NODE(trie, prefix).child_map = trie_child_map_alloc(trie); | |
743 | if (TRIE_NODE(trie, prefix).child_map == NULL_TRIE_IDX) { | |
744 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while splitting an existing node"); | |
745 | return NULL_TRIE_IDX; | |
746 | } | |
747 | TRIE_CHILD(trie, prefix, TRIE_BYTE(trie, node_idx)) = current; | |
748 | ||
749 | /* Parent has the prefix as the child correspoding to the first byte in the prefix */ | |
750 | TRIE_CHILD(trie, parent, TRIE_BYTE(trie, TRIE_NODE(trie, prefix).start)) = prefix; | |
751 | ||
752 | /* Current node is adjusted to point to the remainder */ | |
753 | TRIE_NODE(trie, current).start = node_idx; | |
754 | TRIE_NODE(trie, current).length -= TRIE_NODE(trie, prefix).length; | |
755 | ||
756 | /* We want to insert the new leaf (if any) as a child of the prefix */ | |
757 | current = prefix; | |
758 | } | |
759 | ||
760 | if (string_remainder > 0) { | |
761 | /* | |
762 | * We still have bytes in the string that have not been matched yet. | |
763 | * If the current node has children, iterate to the child corresponding | |
764 | * to the next byte in the string. | |
765 | */ | |
766 | if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
767 | child = TRIE_CHILD(trie, current, TRIE_BYTE(trie, string_idx)); | |
768 | } | |
769 | } | |
770 | } /* while (child != NULL_TRIE_IDX) */ | |
771 | ||
772 | if (string_remainder > 0) { | |
773 | /* Add a new leaf containing the remainder of the string */ | |
774 | uint16_t leaf = trie_node_alloc(trie); | |
775 | if (leaf == NULL_TRIE_IDX) { | |
776 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while inserting a new leaf"); | |
777 | return NULL_TRIE_IDX; | |
778 | } | |
779 | ||
780 | TRIE_NODE(trie, leaf).start = trie_bytes_move(trie, string_idx, string_remainder); | |
781 | if (TRIE_NODE(trie, leaf).start == NULL_TRIE_IDX) { | |
782 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of bytes while inserting a new leaf"); | |
783 | return NULL_TRIE_IDX; | |
784 | } | |
785 | TRIE_NODE(trie, leaf).length = string_remainder; | |
786 | ||
787 | /* Set the new leaf as the child of the current node */ | |
788 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
789 | TRIE_NODE(trie, current).child_map = trie_child_map_alloc(trie); | |
790 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
791 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while inserting a new leaf"); | |
792 | return NULL_TRIE_IDX; | |
793 | } | |
794 | } | |
795 | TRIE_CHILD(trie, current, TRIE_BYTE(trie, TRIE_NODE(trie, leaf).start)) = leaf; | |
796 | current = leaf; | |
797 | } /* else duplicate or this string is a prefix of one of the existing strings */ | |
798 | ||
799 | return current; | |
800 | } | |
801 | ||
802 | #define APPLE_WEBCLIP_ID_PREFIX "com.apple.webapp" | |
803 | static uint16_t | |
804 | flow_divert_trie_search(struct flow_divert_trie *trie, uint8_t *string_bytes) | |
805 | { | |
806 | uint16_t current = trie->root; | |
807 | uint16_t string_idx = 0; | |
808 | ||
809 | while (current != NULL_TRIE_IDX) { | |
810 | uint16_t next = NULL_TRIE_IDX; | |
811 | uint16_t node_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
812 | uint16_t node_idx; | |
813 | ||
814 | for (node_idx = TRIE_NODE(trie, current).start; | |
815 | node_idx < node_end && string_bytes[string_idx] != '\0' && string_bytes[string_idx] == TRIE_BYTE(trie, node_idx); | |
816 | node_idx++, string_idx++); | |
817 | ||
818 | if (node_idx == node_end) { | |
819 | if (string_bytes[string_idx] == '\0') { | |
820 | return current; /* Got an exact match */ | |
821 | } else if (string_idx == strlen(APPLE_WEBCLIP_ID_PREFIX) && | |
822 | 0 == strncmp((const char *)string_bytes, APPLE_WEBCLIP_ID_PREFIX, string_idx)) { | |
823 | string_bytes[string_idx] = '\0'; | |
824 | return current; /* Got an apple webclip id prefix match */ | |
825 | } else if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
826 | next = TRIE_CHILD(trie, current, string_bytes[string_idx]); | |
827 | } | |
828 | } | |
829 | current = next; | |
830 | } | |
831 | ||
832 | return NULL_TRIE_IDX; | |
833 | } | |
834 | ||
835 | struct uuid_search_info { | |
836 | uuid_t target_uuid; | |
837 | char *found_signing_id; | |
838 | boolean_t found_multiple_signing_ids; | |
839 | proc_t found_proc; | |
840 | }; | |
841 | ||
842 | static int | |
843 | flow_divert_find_proc_by_uuid_callout(proc_t p, void *arg) | |
844 | { | |
845 | struct uuid_search_info *info = (struct uuid_search_info *)arg; | |
846 | int result = PROC_RETURNED_DONE; /* By default, we didn't find the process */ | |
847 | ||
848 | if (info->found_signing_id != NULL) { | |
849 | if (!info->found_multiple_signing_ids) { | |
850 | /* All processes that were found had the same signing identifier, so just claim this first one and be done. */ | |
851 | info->found_proc = p; | |
852 | result = PROC_CLAIMED_DONE; | |
853 | } else { | |
854 | uuid_string_t uuid_str; | |
855 | uuid_unparse(info->target_uuid, uuid_str); | |
856 | FDLOG(LOG_WARNING, &nil_pcb, "Found multiple processes with UUID %s with different signing identifiers", uuid_str); | |
857 | } | |
858 | FREE(info->found_signing_id, M_TEMP); | |
859 | info->found_signing_id = NULL; | |
860 | } | |
861 | ||
862 | if (result == PROC_RETURNED_DONE) { | |
863 | uuid_string_t uuid_str; | |
864 | uuid_unparse(info->target_uuid, uuid_str); | |
865 | FDLOG(LOG_WARNING, &nil_pcb, "Failed to find a process with UUID %s", uuid_str); | |
866 | } | |
867 | ||
868 | return result; | |
869 | } | |
870 | ||
871 | static int | |
872 | flow_divert_find_proc_by_uuid_filter(proc_t p, void *arg) | |
873 | { | |
874 | struct uuid_search_info *info = (struct uuid_search_info *)arg; | |
875 | int include = 0; | |
876 | ||
877 | if (info->found_multiple_signing_ids) { | |
878 | return include; | |
879 | } | |
880 | ||
881 | include = (uuid_compare(p->p_uuid, info->target_uuid) == 0); | |
882 | if (include) { | |
883 | const char *signing_id = cs_identity_get(p); | |
884 | if (signing_id != NULL) { | |
885 | FDLOG(LOG_INFO, &nil_pcb, "Found process %d with signing identifier %s", p->p_pid, signing_id); | |
886 | size_t signing_id_size = strlen(signing_id) + 1; | |
887 | if (info->found_signing_id == NULL) { | |
888 | MALLOC(info->found_signing_id, char *, signing_id_size, M_TEMP, M_WAITOK); | |
889 | memcpy(info->found_signing_id, signing_id, signing_id_size); | |
890 | } else if (memcmp(signing_id, info->found_signing_id, signing_id_size)) { | |
891 | info->found_multiple_signing_ids = TRUE; | |
892 | } | |
893 | } else { | |
894 | info->found_multiple_signing_ids = TRUE; | |
895 | } | |
896 | include = !info->found_multiple_signing_ids; | |
897 | } | |
898 | ||
899 | return include; | |
900 | } | |
901 | ||
902 | static proc_t | |
903 | flow_divert_find_proc_by_uuid(uuid_t uuid) | |
904 | { | |
905 | struct uuid_search_info info; | |
906 | ||
907 | if (LOG_INFO <= nil_pcb.log_level) { | |
908 | uuid_string_t uuid_str; | |
909 | uuid_unparse(uuid, uuid_str); | |
910 | FDLOG(LOG_INFO, &nil_pcb, "Looking for process with UUID %s", uuid_str); | |
911 | } | |
912 | ||
913 | memset(&info, 0, sizeof(info)); | |
914 | info.found_proc = PROC_NULL; | |
915 | uuid_copy(info.target_uuid, uuid); | |
916 | ||
917 | proc_iterate(PROC_ALLPROCLIST, flow_divert_find_proc_by_uuid_callout, &info, flow_divert_find_proc_by_uuid_filter, &info); | |
918 | ||
919 | return info.found_proc; | |
920 | } | |
921 | ||
922 | static int | |
923 | flow_divert_get_src_proc(struct socket *so, proc_t *proc) | |
924 | { | |
925 | int release = 0; | |
926 | ||
927 | if (so->so_flags & SOF_DELEGATED) { | |
928 | if ((*proc)->p_pid != so->e_pid) { | |
929 | *proc = proc_find(so->e_pid); | |
930 | release = 1; | |
931 | } else if (uuid_compare((*proc)->p_uuid, so->e_uuid)) { | |
932 | *proc = flow_divert_find_proc_by_uuid(so->e_uuid); | |
933 | release = 1; | |
934 | } | |
935 | } else if (*proc == PROC_NULL) { | |
936 | *proc = current_proc(); | |
937 | } | |
938 | ||
939 | if (*proc != PROC_NULL) { | |
940 | if ((*proc)->p_pid == 0) { | |
941 | if (release) { | |
942 | proc_rele(*proc); | |
943 | } | |
944 | release = 0; | |
945 | *proc = PROC_NULL; | |
946 | } | |
947 | } | |
948 | ||
949 | return release; | |
950 | } | |
951 | ||
952 | static int | |
953 | flow_divert_send_packet(struct flow_divert_pcb *fd_cb, mbuf_t packet, Boolean enqueue) | |
954 | { | |
955 | int error; | |
956 | ||
957 | if (fd_cb->group == NULL) { | |
958 | fd_cb->so->so_error = ECONNABORTED; | |
959 | flow_divert_disconnect_socket(fd_cb->so); | |
960 | return ECONNABORTED; | |
961 | } | |
962 | ||
963 | lck_rw_lock_shared(&fd_cb->group->lck); | |
964 | ||
965 | if (MBUFQ_EMPTY(&fd_cb->group->send_queue)) { | |
966 | error = ctl_enqueuembuf(g_flow_divert_kctl_ref, fd_cb->group->ctl_unit, packet, CTL_DATA_EOR); | |
967 | } else { | |
968 | error = ENOBUFS; | |
969 | } | |
970 | ||
971 | if (error == ENOBUFS) { | |
972 | if (enqueue) { | |
973 | if (!lck_rw_lock_shared_to_exclusive(&fd_cb->group->lck)) { | |
974 | lck_rw_lock_exclusive(&fd_cb->group->lck); | |
975 | } | |
976 | MBUFQ_ENQUEUE(&fd_cb->group->send_queue, packet); | |
977 | error = 0; | |
978 | } | |
979 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &fd_cb->group->atomic_bits); | |
980 | } | |
981 | ||
982 | lck_rw_done(&fd_cb->group->lck); | |
983 | ||
984 | return error; | |
985 | } | |
986 | ||
987 | static int | |
988 | flow_divert_create_connect_packet(struct flow_divert_pcb *fd_cb, struct sockaddr *to, struct socket *so, proc_t p, mbuf_t *out_connect_packet) | |
989 | { | |
990 | int error = 0; | |
991 | int flow_type = 0; | |
992 | char *signing_id = NULL; | |
993 | int free_signing_id = 0; | |
994 | mbuf_t connect_packet = NULL; | |
995 | proc_t src_proc = p; | |
996 | int release_proc = 0; | |
997 | ||
998 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT, &connect_packet); | |
999 | if (error) { | |
1000 | goto done; | |
1001 | } | |
1002 | ||
1003 | error = EPERM; | |
1004 | ||
1005 | if (fd_cb->connect_token != NULL && (fd_cb->flags & FLOW_DIVERT_HAS_HMAC)) { | |
1006 | uint32_t sid_size = 0; | |
1007 | int find_error = flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1008 | if (find_error == 0 && sid_size > 0) { | |
1009 | MALLOC(signing_id, char *, sid_size + 1, M_TEMP, M_WAITOK | M_ZERO); | |
1010 | if (signing_id != NULL) { | |
1011 | flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, signing_id, NULL); | |
1012 | FDLOG(LOG_INFO, fd_cb, "Got %s from token", signing_id); | |
1013 | free_signing_id = 1; | |
1014 | } | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | socket_unlock(so, 0); | |
1019 | ||
1020 | if (signing_id == NULL) { | |
1021 | release_proc = flow_divert_get_src_proc(so, &src_proc); | |
1022 | if (src_proc != PROC_NULL) { | |
1023 | proc_lock(src_proc); | |
1024 | if (src_proc->p_csflags & (CS_VALID|CS_DEBUGGED)) { | |
1025 | const char * cs_id; | |
1026 | cs_id = cs_identity_get(src_proc); | |
1027 | signing_id = __DECONST(char *, cs_id); | |
1028 | } else { | |
1029 | FDLOG0(LOG_WARNING, fd_cb, "Signature is invalid"); | |
1030 | } | |
1031 | } else { | |
1032 | FDLOG0(LOG_WARNING, fd_cb, "Failed to determine the current proc"); | |
1033 | } | |
1034 | } else { | |
1035 | src_proc = PROC_NULL; | |
1036 | } | |
1037 | ||
1038 | if (signing_id != NULL) { | |
1039 | uint16_t result = NULL_TRIE_IDX; | |
1040 | lck_rw_lock_shared(&fd_cb->group->lck); | |
1041 | if (fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP) { | |
1042 | result = 1; | |
1043 | } else { | |
1044 | result = flow_divert_trie_search(&fd_cb->group->signing_id_trie, (uint8_t *)signing_id); | |
1045 | } | |
1046 | lck_rw_done(&fd_cb->group->lck); | |
1047 | if (result != NULL_TRIE_IDX) { | |
1048 | error = 0; | |
1049 | FDLOG(LOG_INFO, fd_cb, "%s matched", signing_id); | |
1050 | ||
1051 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_SIGNING_ID, strlen(signing_id), signing_id); | |
1052 | if (error == 0) { | |
1053 | if (src_proc != PROC_NULL) { | |
1054 | unsigned char cdhash[SHA1_RESULTLEN]; | |
1055 | error = proc_getcdhash(src_proc, cdhash); | |
1056 | if (error == 0) { | |
1057 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CDHASH, sizeof(cdhash), cdhash); | |
1058 | if (error) { | |
1059 | FDLOG(LOG_ERR, fd_cb, "failed to append the cdhash: %d", error); | |
1060 | } | |
1061 | } else { | |
1062 | FDLOG(LOG_ERR, fd_cb, "failed to get the cdhash: %d", error); | |
1063 | } | |
1064 | } | |
1065 | } else { | |
1066 | FDLOG(LOG_ERR, fd_cb, "failed to append the signing ID: %d", error); | |
1067 | } | |
1068 | } else { | |
1069 | FDLOG(LOG_WARNING, fd_cb, "%s did not match", signing_id); | |
1070 | } | |
1071 | } else { | |
1072 | FDLOG0(LOG_WARNING, fd_cb, "Failed to get the code signing identity"); | |
1073 | if (fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP) { | |
1074 | error = 0; | |
1075 | } | |
1076 | } | |
1077 | ||
1078 | if (src_proc != PROC_NULL) { | |
1079 | proc_unlock(src_proc); | |
1080 | if (release_proc) { | |
1081 | proc_rele(src_proc); | |
1082 | } | |
1083 | } | |
1084 | socket_lock(so, 0); | |
1085 | ||
1086 | if (free_signing_id) { | |
1087 | FREE(signing_id, M_TEMP); | |
1088 | } | |
1089 | ||
1090 | if (error) { | |
1091 | goto done; | |
1092 | } | |
1093 | ||
1094 | error = flow_divert_packet_append_tlv(connect_packet, | |
1095 | FLOW_DIVERT_TLV_TRAFFIC_CLASS, | |
1096 | sizeof(fd_cb->so->so_traffic_class), | |
1097 | &fd_cb->so->so_traffic_class); | |
1098 | if (error) { | |
1099 | goto done; | |
1100 | } | |
1101 | ||
1102 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1103 | flow_type = FLOW_DIVERT_FLOW_TYPE_TCP; | |
1104 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1105 | flow_type = FLOW_DIVERT_FLOW_TYPE_UDP; | |
1106 | } else { | |
1107 | error = EINVAL; | |
1108 | goto done; | |
1109 | } | |
1110 | error = flow_divert_packet_append_tlv(connect_packet, | |
1111 | FLOW_DIVERT_TLV_FLOW_TYPE, | |
1112 | sizeof(flow_type), | |
1113 | &flow_type); | |
1114 | ||
1115 | if (error) { | |
1116 | goto done; | |
1117 | } | |
1118 | ||
1119 | if (fd_cb->so->so_flags & SOF_DELEGATED) { | |
1120 | error = flow_divert_packet_append_tlv(connect_packet, | |
1121 | FLOW_DIVERT_TLV_PID, | |
1122 | sizeof(fd_cb->so->e_pid), | |
1123 | &fd_cb->so->e_pid); | |
1124 | if (error) { | |
1125 | goto done; | |
1126 | } | |
1127 | ||
1128 | error = flow_divert_packet_append_tlv(connect_packet, | |
1129 | FLOW_DIVERT_TLV_UUID, | |
1130 | sizeof(fd_cb->so->e_uuid), | |
1131 | &fd_cb->so->e_uuid); | |
1132 | if (error) { | |
1133 | goto done; | |
1134 | } | |
1135 | } else { | |
1136 | error = flow_divert_packet_append_tlv(connect_packet, | |
1137 | FLOW_DIVERT_TLV_PID, | |
1138 | sizeof(fd_cb->so->e_pid), | |
1139 | &fd_cb->so->last_pid); | |
1140 | if (error) { | |
1141 | goto done; | |
1142 | } | |
1143 | ||
1144 | error = flow_divert_packet_append_tlv(connect_packet, | |
1145 | FLOW_DIVERT_TLV_UUID, | |
1146 | sizeof(fd_cb->so->e_uuid), | |
1147 | &fd_cb->so->last_uuid); | |
1148 | if (error) { | |
1149 | goto done; | |
1150 | } | |
1151 | } | |
1152 | ||
1153 | if (fd_cb->connect_token != NULL) { | |
1154 | unsigned int token_len = m_length(fd_cb->connect_token); | |
1155 | mbuf_concatenate(connect_packet, fd_cb->connect_token); | |
1156 | mbuf_pkthdr_adjustlen(connect_packet, token_len); | |
1157 | fd_cb->connect_token = NULL; | |
1158 | } else { | |
1159 | uint32_t ctl_unit = htonl(fd_cb->control_group_unit); | |
1160 | ||
1161 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
1162 | if (error) { | |
1163 | goto done; | |
1164 | } | |
1165 | ||
1166 | error = flow_divert_append_target_endpoint_tlv(connect_packet, to); | |
1167 | if (error) { | |
1168 | goto done; | |
1169 | } | |
1170 | } | |
1171 | ||
1172 | if (fd_cb->local_address != NULL) { | |
1173 | error = EALREADY; | |
1174 | goto done; | |
1175 | } else { | |
1176 | struct inpcb *inp = sotoinpcb(so); | |
1177 | if (flow_divert_has_pcb_local_address(inp)) { | |
1178 | error = flow_divert_inp_to_sockaddr(inp, &fd_cb->local_address); | |
1179 | if (error) { | |
1180 | FDLOG0(LOG_ERR, fd_cb, "failed to get the local socket address."); | |
1181 | goto done; | |
1182 | } | |
1183 | } | |
1184 | } | |
1185 | ||
1186 | if (fd_cb->local_address != NULL) { | |
1187 | /* socket is bound. */ | |
1188 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_LOCAL_ADDR, | |
1189 | sizeof(struct sockaddr_storage), fd_cb->local_address); | |
1190 | if (error) { | |
1191 | goto done; | |
1192 | } | |
1193 | } | |
1194 | ||
1195 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { | |
1196 | uint32_t flags = FLOW_DIVERT_TOKEN_FLAG_TFO; | |
1197 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_FLAGS, sizeof(flags), &flags); | |
1198 | if (error) { | |
1199 | goto done; | |
1200 | } | |
1201 | } | |
1202 | ||
1203 | done: | |
1204 | if (!error) { | |
1205 | *out_connect_packet = connect_packet; | |
1206 | } else if (connect_packet != NULL) { | |
1207 | mbuf_freem(connect_packet); | |
1208 | } | |
1209 | ||
1210 | return error; | |
1211 | } | |
1212 | ||
1213 | static int | |
1214 | flow_divert_send_connect_result(struct flow_divert_pcb *fd_cb) | |
1215 | { | |
1216 | int error = 0; | |
1217 | mbuf_t packet = NULL; | |
1218 | int rbuff_space = 0; | |
1219 | ||
1220 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT_RESULT, &packet); | |
1221 | if (error) { | |
1222 | FDLOG(LOG_ERR, fd_cb, "failed to create a connect result packet: %d", error); | |
1223 | goto done; | |
1224 | } | |
1225 | ||
1226 | rbuff_space = fd_cb->so->so_rcv.sb_hiwat; | |
1227 | if (rbuff_space < 0) { | |
1228 | rbuff_space = 0; | |
1229 | } | |
1230 | rbuff_space = htonl(rbuff_space); | |
1231 | error = flow_divert_packet_append_tlv(packet, | |
1232 | FLOW_DIVERT_TLV_SPACE_AVAILABLE, | |
1233 | sizeof(rbuff_space), | |
1234 | &rbuff_space); | |
1235 | if (error) { | |
1236 | goto done; | |
1237 | } | |
1238 | ||
1239 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1240 | if (error) { | |
1241 | goto done; | |
1242 | } | |
1243 | ||
1244 | done: | |
1245 | if (error && packet != NULL) { | |
1246 | mbuf_freem(packet); | |
1247 | } | |
1248 | ||
1249 | return error; | |
1250 | } | |
1251 | ||
1252 | static int | |
1253 | flow_divert_send_close(struct flow_divert_pcb *fd_cb, int how) | |
1254 | { | |
1255 | int error = 0; | |
1256 | mbuf_t packet = NULL; | |
1257 | uint32_t zero = 0; | |
1258 | ||
1259 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CLOSE, &packet); | |
1260 | if (error) { | |
1261 | FDLOG(LOG_ERR, fd_cb, "failed to create a close packet: %d", error); | |
1262 | goto done; | |
1263 | } | |
1264 | ||
1265 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(zero), &zero); | |
1266 | if (error) { | |
1267 | FDLOG(LOG_ERR, fd_cb, "failed to add the error code TLV: %d", error); | |
1268 | goto done; | |
1269 | } | |
1270 | ||
1271 | how = htonl(how); | |
1272 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_HOW, sizeof(how), &how); | |
1273 | if (error) { | |
1274 | FDLOG(LOG_ERR, fd_cb, "failed to add the how flag: %d", error); | |
1275 | goto done; | |
1276 | } | |
1277 | ||
1278 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1279 | if (error) { | |
1280 | goto done; | |
1281 | } | |
1282 | ||
1283 | done: | |
1284 | if (error && packet != NULL) { | |
1285 | mbuf_free(packet); | |
1286 | } | |
1287 | ||
1288 | return error; | |
1289 | } | |
1290 | ||
1291 | static int | |
1292 | flow_divert_tunnel_how_closed(struct flow_divert_pcb *fd_cb) | |
1293 | { | |
1294 | if ((fd_cb->flags & (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == | |
1295 | (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) | |
1296 | { | |
1297 | return SHUT_RDWR; | |
1298 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_RD_CLOSED) { | |
1299 | return SHUT_RD; | |
1300 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) { | |
1301 | return SHUT_WR; | |
1302 | } | |
1303 | ||
1304 | return -1; | |
1305 | } | |
1306 | ||
1307 | /* | |
1308 | * Determine what close messages if any need to be sent to the tunnel. Returns TRUE if the tunnel is closed for both reads and | |
1309 | * writes. Returns FALSE otherwise. | |
1310 | */ | |
1311 | static void | |
1312 | flow_divert_send_close_if_needed(struct flow_divert_pcb *fd_cb) | |
1313 | { | |
1314 | int how = -1; | |
1315 | ||
1316 | /* Do not send any close messages if there is still data in the send buffer */ | |
1317 | if (fd_cb->so->so_snd.sb_cc == 0) { | |
1318 | if ((fd_cb->flags & (FLOW_DIVERT_READ_CLOSED|FLOW_DIVERT_TUNNEL_RD_CLOSED)) == FLOW_DIVERT_READ_CLOSED) { | |
1319 | /* Socket closed reads, but tunnel did not. Tell tunnel to close reads */ | |
1320 | how = SHUT_RD; | |
1321 | } | |
1322 | if ((fd_cb->flags & (FLOW_DIVERT_WRITE_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == FLOW_DIVERT_WRITE_CLOSED) { | |
1323 | /* Socket closed writes, but tunnel did not. Tell tunnel to close writes */ | |
1324 | if (how == SHUT_RD) { | |
1325 | how = SHUT_RDWR; | |
1326 | } else { | |
1327 | how = SHUT_WR; | |
1328 | } | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | if (how != -1) { | |
1333 | FDLOG(LOG_INFO, fd_cb, "sending close, how = %d", how); | |
1334 | if (flow_divert_send_close(fd_cb, how) != ENOBUFS) { | |
1335 | /* Successfully sent the close packet. Record the ways in which the tunnel has been closed */ | |
1336 | if (how != SHUT_RD) { | |
1337 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
1338 | } | |
1339 | if (how != SHUT_WR) { | |
1340 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
1341 | } | |
1342 | } | |
1343 | } | |
1344 | ||
1345 | if (flow_divert_tunnel_how_closed(fd_cb) == SHUT_RDWR) { | |
1346 | flow_divert_disconnect_socket(fd_cb->so); | |
1347 | } | |
1348 | } | |
1349 | ||
1350 | static errno_t | |
1351 | flow_divert_send_data_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len, struct sockaddr *toaddr, Boolean force) | |
1352 | { | |
1353 | mbuf_t packet; | |
1354 | mbuf_t last; | |
1355 | int error = 0; | |
1356 | ||
1357 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, &packet); | |
1358 | if (error) { | |
1359 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d", error); | |
1360 | return error; | |
1361 | } | |
1362 | ||
1363 | if (toaddr != NULL) { | |
1364 | error = flow_divert_append_target_endpoint_tlv(packet, toaddr); | |
1365 | if (error) { | |
1366 | FDLOG(LOG_ERR, fd_cb, "flow_divert_append_target_endpoint_tlv() failed: %d", error); | |
1367 | return error; | |
1368 | } | |
1369 | } | |
1370 | ||
1371 | if (data_len > 0 && data != NULL) { | |
1372 | last = m_last(packet); | |
1373 | mbuf_setnext(last, data); | |
1374 | mbuf_pkthdr_adjustlen(packet, data_len); | |
1375 | } | |
1376 | error = flow_divert_send_packet(fd_cb, packet, force); | |
1377 | ||
1378 | if (error) { | |
1379 | mbuf_setnext(last, NULL); | |
1380 | mbuf_freem(packet); | |
1381 | } else { | |
1382 | fd_cb->bytes_sent += data_len; | |
1383 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); | |
1384 | } | |
1385 | ||
1386 | return error; | |
1387 | } | |
1388 | ||
1389 | static void | |
1390 | flow_divert_send_buffered_data(struct flow_divert_pcb *fd_cb, Boolean force) | |
1391 | { | |
1392 | size_t to_send; | |
1393 | size_t sent = 0; | |
1394 | int error = 0; | |
1395 | mbuf_t buffer; | |
1396 | ||
1397 | to_send = fd_cb->so->so_snd.sb_cc; | |
1398 | buffer = fd_cb->so->so_snd.sb_mb; | |
1399 | ||
1400 | if (buffer == NULL && to_send > 0) { | |
1401 | FDLOG(LOG_ERR, fd_cb, "Send buffer is NULL, but size is supposed to be %lu", to_send); | |
1402 | return; | |
1403 | } | |
1404 | ||
1405 | /* Ignore the send window if force is enabled */ | |
1406 | if (!force && (to_send > fd_cb->send_window)) { | |
1407 | to_send = fd_cb->send_window; | |
1408 | } | |
1409 | ||
1410 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1411 | while (sent < to_send) { | |
1412 | mbuf_t data; | |
1413 | size_t data_len; | |
1414 | ||
1415 | data_len = to_send - sent; | |
1416 | if (data_len > FLOW_DIVERT_CHUNK_SIZE) { | |
1417 | data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1418 | } | |
1419 | ||
1420 | error = mbuf_copym(buffer, sent, data_len, MBUF_DONTWAIT, &data); | |
1421 | if (error) { | |
1422 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1423 | break; | |
1424 | } | |
1425 | ||
1426 | error = flow_divert_send_data_packet(fd_cb, data, data_len, NULL, force); | |
1427 | if (error) { | |
1428 | mbuf_freem(data); | |
1429 | break; | |
1430 | } | |
1431 | ||
1432 | sent += data_len; | |
1433 | } | |
1434 | sbdrop(&fd_cb->so->so_snd, sent); | |
1435 | sowwakeup(fd_cb->so); | |
1436 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1437 | mbuf_t data; | |
1438 | mbuf_t m; | |
1439 | size_t data_len; | |
1440 | ||
1441 | while(buffer) { | |
1442 | struct sockaddr *toaddr = flow_divert_get_buffered_target_address(buffer); | |
1443 | ||
1444 | m = buffer; | |
1445 | if (toaddr != NULL) { | |
1446 | /* look for data in the chain */ | |
1447 | do { | |
1448 | m = m->m_next; | |
1449 | if (m != NULL && m->m_type == MT_DATA) { | |
1450 | break; | |
1451 | } | |
1452 | } while(m); | |
1453 | if (m == NULL) { | |
1454 | /* unexpected */ | |
1455 | FDLOG0(LOG_ERR, fd_cb, "failed to find type MT_DATA in the mbuf chain."); | |
1456 | goto move_on; | |
1457 | } | |
1458 | } | |
1459 | data_len = mbuf_pkthdr_len(m); | |
1460 | if (data_len > 0) { | |
1461 | FDLOG(LOG_DEBUG, fd_cb, "mbuf_copym() data_len = %lu", data_len); | |
1462 | error = mbuf_copym(m, 0, data_len, MBUF_DONTWAIT, &data); | |
1463 | if (error) { | |
1464 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1465 | break; | |
1466 | } | |
1467 | } else { | |
1468 | data = NULL; | |
1469 | } | |
1470 | error = flow_divert_send_data_packet(fd_cb, data, data_len, toaddr, force); | |
1471 | if (error) { | |
1472 | mbuf_freem(data); | |
1473 | break; | |
1474 | } | |
1475 | sent += data_len; | |
1476 | move_on: | |
1477 | buffer = buffer->m_nextpkt; | |
1478 | (void) sbdroprecord(&(fd_cb->so->so_snd)); | |
1479 | } | |
1480 | } | |
1481 | ||
1482 | if (sent > 0) { | |
1483 | FDLOG(LOG_DEBUG, fd_cb, "sent %lu bytes of buffered data", sent); | |
1484 | if (fd_cb->send_window >= sent) { | |
1485 | fd_cb->send_window -= sent; | |
1486 | } else { | |
1487 | fd_cb->send_window = 0; | |
1488 | } | |
1489 | } | |
1490 | } | |
1491 | ||
1492 | static int | |
1493 | flow_divert_send_app_data(struct flow_divert_pcb *fd_cb, mbuf_t data, struct sockaddr *toaddr) | |
1494 | { | |
1495 | size_t to_send = mbuf_pkthdr_len(data); | |
1496 | int error = 0; | |
1497 | ||
1498 | if (to_send > fd_cb->send_window) { | |
1499 | to_send = fd_cb->send_window; | |
1500 | } | |
1501 | ||
1502 | if (fd_cb->so->so_snd.sb_cc > 0) { | |
1503 | to_send = 0; /* If the send buffer is non-empty, then we can't send anything */ | |
1504 | } | |
1505 | ||
1506 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1507 | size_t sent = 0; | |
1508 | mbuf_t remaining_data = data; | |
1509 | mbuf_t pkt_data = NULL; | |
1510 | while (sent < to_send && remaining_data != NULL) { | |
1511 | size_t pkt_data_len; | |
1512 | ||
1513 | pkt_data = remaining_data; | |
1514 | ||
1515 | if ((to_send - sent) > FLOW_DIVERT_CHUNK_SIZE) { | |
1516 | pkt_data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1517 | } else { | |
1518 | pkt_data_len = to_send - sent; | |
1519 | } | |
1520 | ||
1521 | if (pkt_data_len < mbuf_pkthdr_len(pkt_data)) { | |
1522 | error = mbuf_split(pkt_data, pkt_data_len, MBUF_DONTWAIT, &remaining_data); | |
1523 | if (error) { | |
1524 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1525 | pkt_data = NULL; | |
1526 | break; | |
1527 | } | |
1528 | } else { | |
1529 | remaining_data = NULL; | |
1530 | } | |
1531 | ||
1532 | error = flow_divert_send_data_packet(fd_cb, pkt_data, pkt_data_len, NULL, FALSE); | |
1533 | ||
1534 | if (error) { | |
1535 | break; | |
1536 | } | |
1537 | ||
1538 | pkt_data = NULL; | |
1539 | sent += pkt_data_len; | |
1540 | } | |
1541 | ||
1542 | fd_cb->send_window -= sent; | |
1543 | ||
1544 | error = 0; | |
1545 | ||
1546 | if (pkt_data != NULL) { | |
1547 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1548 | if (!sbappendstream(&fd_cb->so->so_snd, pkt_data)) { | |
1549 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with pkt_data, send buffer size = %u, send_window = %u\n", | |
1550 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1551 | } | |
1552 | } else { | |
1553 | error = ENOBUFS; | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | if (remaining_data != NULL) { | |
1558 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1559 | if (!sbappendstream(&fd_cb->so->so_snd, remaining_data)) { | |
1560 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with remaining_data, send buffer size = %u, send_window = %u\n", | |
1561 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1562 | } | |
1563 | } else { | |
1564 | error = ENOBUFS; | |
1565 | } | |
1566 | } | |
1567 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1568 | if (to_send || mbuf_pkthdr_len(data) == 0) { | |
1569 | error = flow_divert_send_data_packet(fd_cb, data, to_send, toaddr, FALSE); | |
1570 | if (error) { | |
1571 | FDLOG(LOG_ERR, fd_cb, "flow_divert_send_data_packet failed. send data size = %lu", to_send); | |
1572 | } else { | |
1573 | fd_cb->send_window -= to_send; | |
1574 | } | |
1575 | } else { | |
1576 | /* buffer it */ | |
1577 | if (sbspace(&fd_cb->so->so_snd) >= (int)mbuf_pkthdr_len(data)) { | |
1578 | if (toaddr != NULL) { | |
1579 | if (!sbappendaddr(&fd_cb->so->so_snd, toaddr, data, NULL, &error)) { | |
1580 | FDLOG(LOG_ERR, fd_cb, | |
1581 | "sbappendaddr failed. send buffer size = %u, send_window = %u, error = %d\n", | |
1582 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window, error); | |
1583 | } | |
1584 | } else { | |
1585 | if (!sbappendrecord(&fd_cb->so->so_snd, data)) { | |
1586 | FDLOG(LOG_ERR, fd_cb, | |
1587 | "sbappendrecord failed. send buffer size = %u, send_window = %u, error = %d\n", | |
1588 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window, error); | |
1589 | } | |
1590 | } | |
1591 | } else { | |
1592 | error = ENOBUFS; | |
1593 | } | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | return error; | |
1598 | } | |
1599 | ||
1600 | static int | |
1601 | flow_divert_send_read_notification(struct flow_divert_pcb *fd_cb, uint32_t read_count) | |
1602 | { | |
1603 | int error = 0; | |
1604 | mbuf_t packet = NULL; | |
1605 | uint32_t net_read_count = htonl(read_count); | |
1606 | ||
1607 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_READ_NOTIFY, &packet); | |
1608 | if (error) { | |
1609 | FDLOG(LOG_ERR, fd_cb, "failed to create a read notification packet: %d", error); | |
1610 | goto done; | |
1611 | } | |
1612 | ||
1613 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_READ_COUNT, sizeof(net_read_count), &net_read_count); | |
1614 | if (error) { | |
1615 | FDLOG(LOG_ERR, fd_cb, "failed to add the read count: %d", error); | |
1616 | goto done; | |
1617 | } | |
1618 | ||
1619 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1620 | if (error) { | |
1621 | goto done; | |
1622 | } | |
1623 | ||
1624 | done: | |
1625 | if (error && packet != NULL) { | |
1626 | mbuf_free(packet); | |
1627 | } | |
1628 | ||
1629 | return error; | |
1630 | } | |
1631 | ||
1632 | static int | |
1633 | flow_divert_send_traffic_class_update(struct flow_divert_pcb *fd_cb, int traffic_class) | |
1634 | { | |
1635 | int error = 0; | |
1636 | mbuf_t packet = NULL; | |
1637 | ||
1638 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_PROPERTIES_UPDATE, &packet); | |
1639 | if (error) { | |
1640 | FDLOG(LOG_ERR, fd_cb, "failed to create a properties update packet: %d", error); | |
1641 | goto done; | |
1642 | } | |
1643 | ||
1644 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TRAFFIC_CLASS, sizeof(traffic_class), &traffic_class); | |
1645 | if (error) { | |
1646 | FDLOG(LOG_ERR, fd_cb, "failed to add the traffic class: %d", error); | |
1647 | goto done; | |
1648 | } | |
1649 | ||
1650 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1651 | if (error) { | |
1652 | goto done; | |
1653 | } | |
1654 | ||
1655 | done: | |
1656 | if (error && packet != NULL) { | |
1657 | mbuf_free(packet); | |
1658 | } | |
1659 | ||
1660 | return error; | |
1661 | } | |
1662 | ||
1663 | static void | |
1664 | flow_divert_handle_connect_result(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1665 | { | |
1666 | uint32_t connect_error; | |
1667 | uint32_t ctl_unit = 0; | |
1668 | int error = 0; | |
1669 | struct flow_divert_group *grp = NULL; | |
1670 | struct sockaddr_storage local_address; | |
1671 | int out_if_index = 0; | |
1672 | struct sockaddr_storage remote_address; | |
1673 | uint32_t send_window; | |
1674 | uint32_t app_data_length = 0; | |
1675 | ||
1676 | memset(&local_address, 0, sizeof(local_address)); | |
1677 | memset(&remote_address, 0, sizeof(remote_address)); | |
1678 | ||
1679 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(connect_error), &connect_error, NULL); | |
1680 | if (error) { | |
1681 | FDLOG(LOG_ERR, fd_cb, "failed to get the connect result: %d", error); | |
1682 | return; | |
1683 | } | |
1684 | ||
1685 | FDLOG(LOG_INFO, fd_cb, "received connect result %u", connect_error); | |
1686 | ||
1687 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_SPACE_AVAILABLE, sizeof(send_window), &send_window, NULL); | |
1688 | if (error) { | |
1689 | FDLOG(LOG_ERR, fd_cb, "failed to get the send window: %d", error); | |
1690 | return; | |
1691 | } | |
1692 | ||
1693 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit, NULL); | |
1694 | if (error) { | |
1695 | FDLOG0(LOG_INFO, fd_cb, "No control unit provided in the connect result"); | |
1696 | } | |
1697 | ||
1698 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
1699 | if (error) { | |
1700 | FDLOG0(LOG_INFO, fd_cb, "No local address provided"); | |
1701 | } | |
1702 | ||
1703 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
1704 | if (error) { | |
1705 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
1706 | } | |
1707 | ||
1708 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
1709 | if (error) { | |
1710 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided"); | |
1711 | } | |
1712 | ||
1713 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, 0, NULL, &app_data_length); | |
1714 | if (error) { | |
1715 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in connect result"); | |
1716 | } | |
1717 | ||
1718 | error = 0; | |
1719 | connect_error = ntohl(connect_error); | |
1720 | ctl_unit = ntohl(ctl_unit); | |
1721 | ||
1722 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
1723 | ||
1724 | if (connect_error == 0 && ctl_unit > 0) { | |
1725 | if (ctl_unit >= GROUP_COUNT_MAX) { | |
1726 | FDLOG(LOG_ERR, fd_cb, "Connect result contains an invalid control unit: %u", ctl_unit); | |
1727 | error = EINVAL; | |
1728 | } else if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
1729 | FDLOG0(LOG_ERR, fd_cb, "No active groups, dropping connection"); | |
1730 | error = EINVAL; | |
1731 | } else { | |
1732 | grp = g_flow_divert_groups[ctl_unit]; | |
1733 | if (grp == NULL) { | |
1734 | error = ECONNRESET; | |
1735 | } | |
1736 | } | |
1737 | } | |
1738 | ||
1739 | FDLOCK(fd_cb); | |
1740 | if (fd_cb->so != NULL) { | |
1741 | struct inpcb *inp = NULL; | |
1742 | struct ifnet *ifp = NULL; | |
1743 | struct flow_divert_group *old_group; | |
1744 | ||
1745 | socket_lock(fd_cb->so, 0); | |
1746 | ||
1747 | if (!(fd_cb->so->so_state & SS_ISCONNECTING)) { | |
1748 | goto done; | |
1749 | } | |
1750 | ||
1751 | inp = sotoinpcb(fd_cb->so); | |
1752 | ||
1753 | if (connect_error || error) { | |
1754 | goto set_socket_state; | |
1755 | } | |
1756 | ||
1757 | if (local_address.ss_family == 0 && fd_cb->local_address == NULL) { | |
1758 | error = EINVAL; | |
1759 | goto set_socket_state; | |
1760 | } | |
1761 | if (local_address.ss_family != 0 && fd_cb->local_address == NULL) { | |
1762 | if (local_address.ss_len > sizeof(local_address)) { | |
1763 | local_address.ss_len = sizeof(local_address); | |
1764 | } | |
1765 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
1766 | } | |
1767 | ||
1768 | if (remote_address.ss_family != 0) { | |
1769 | if (remote_address.ss_len > sizeof(remote_address)) { | |
1770 | remote_address.ss_len = sizeof(remote_address); | |
1771 | } | |
1772 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
1773 | } else { | |
1774 | error = EINVAL; | |
1775 | goto set_socket_state; | |
1776 | } | |
1777 | ||
1778 | if (app_data_length > 0) { | |
1779 | uint8_t *app_data = NULL; | |
1780 | MALLOC(app_data, uint8_t *, app_data_length, M_TEMP, M_WAITOK); | |
1781 | if (app_data != NULL) { | |
1782 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, app_data_length, app_data, NULL); | |
1783 | if (error == 0) { | |
1784 | FDLOG(LOG_INFO, fd_cb, "Got %u bytes of app data from the connect result", app_data_length); | |
1785 | if (fd_cb->app_data != NULL) { | |
1786 | FREE(fd_cb->app_data, M_TEMP); | |
1787 | } | |
1788 | fd_cb->app_data = app_data; | |
1789 | fd_cb->app_data_length = app_data_length; | |
1790 | } else { | |
1791 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the connect result packet", app_data_length); | |
1792 | FREE(app_data, M_TEMP); | |
1793 | } | |
1794 | } else { | |
1795 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the connect result", app_data_length); | |
1796 | } | |
1797 | } | |
1798 | ||
1799 | ifnet_head_lock_shared(); | |
1800 | if (out_if_index > 0 && out_if_index <= if_index) { | |
1801 | ifp = ifindex2ifnet[out_if_index]; | |
1802 | } | |
1803 | ||
1804 | if (ifp != NULL) { | |
1805 | inp->inp_last_outifp = ifp; | |
1806 | } else { | |
1807 | error = EINVAL; | |
1808 | } | |
1809 | ifnet_head_done(); | |
1810 | ||
1811 | if (error) { | |
1812 | goto set_socket_state; | |
1813 | } | |
1814 | ||
1815 | if (fd_cb->group == NULL) { | |
1816 | error = EINVAL; | |
1817 | goto set_socket_state; | |
1818 | } | |
1819 | ||
1820 | if (grp != NULL) { | |
1821 | old_group = fd_cb->group; | |
1822 | ||
1823 | lck_rw_lock_exclusive(&old_group->lck); | |
1824 | lck_rw_lock_exclusive(&grp->lck); | |
1825 | ||
1826 | RB_REMOVE(fd_pcb_tree, &old_group->pcb_tree, fd_cb); | |
1827 | if (RB_INSERT(fd_pcb_tree, &grp->pcb_tree, fd_cb) != NULL) { | |
1828 | panic("group with unit %u already contains a connection with hash %u", grp->ctl_unit, fd_cb->hash); | |
1829 | } | |
1830 | ||
1831 | fd_cb->group = grp; | |
1832 | ||
1833 | lck_rw_done(&grp->lck); | |
1834 | lck_rw_done(&old_group->lck); | |
1835 | } | |
1836 | ||
1837 | fd_cb->send_window = ntohl(send_window); | |
1838 | ||
1839 | set_socket_state: | |
1840 | if (!connect_error && !error) { | |
1841 | FDLOG0(LOG_INFO, fd_cb, "sending connect result"); | |
1842 | error = flow_divert_send_connect_result(fd_cb); | |
1843 | } | |
1844 | ||
1845 | if (connect_error || error) { | |
1846 | if (!connect_error) { | |
1847 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
1848 | fd_cb->so->so_error = error; | |
1849 | flow_divert_send_close_if_needed(fd_cb); | |
1850 | } else { | |
1851 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1852 | fd_cb->so->so_error = connect_error; | |
1853 | } | |
1854 | flow_divert_disconnect_socket(fd_cb->so); | |
1855 | } else { | |
1856 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
1857 | soisconnected(fd_cb->so); | |
1858 | } | |
1859 | ||
1860 | done: | |
1861 | socket_unlock(fd_cb->so, 0); | |
1862 | } | |
1863 | FDUNLOCK(fd_cb); | |
1864 | ||
1865 | lck_rw_done(&g_flow_divert_group_lck); | |
1866 | } | |
1867 | ||
1868 | static void | |
1869 | flow_divert_handle_close(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1870 | { | |
1871 | uint32_t close_error; | |
1872 | int error = 0; | |
1873 | int how; | |
1874 | ||
1875 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(close_error), &close_error, NULL); | |
1876 | if (error) { | |
1877 | FDLOG(LOG_ERR, fd_cb, "failed to get the close error: %d", error); | |
1878 | return; | |
1879 | } | |
1880 | ||
1881 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_HOW, sizeof(how), &how, NULL); | |
1882 | if (error) { | |
1883 | FDLOG(LOG_ERR, fd_cb, "failed to get the close how flag: %d", error); | |
1884 | return; | |
1885 | } | |
1886 | ||
1887 | how = ntohl(how); | |
1888 | ||
1889 | FDLOG(LOG_INFO, fd_cb, "close received, how = %d", how); | |
1890 | ||
1891 | FDLOCK(fd_cb); | |
1892 | if (fd_cb->so != NULL) { | |
1893 | socket_lock(fd_cb->so, 0); | |
1894 | ||
1895 | fd_cb->so->so_error = ntohl(close_error); | |
1896 | ||
1897 | flow_divert_update_closed_state(fd_cb, how, TRUE); | |
1898 | ||
1899 | how = flow_divert_tunnel_how_closed(fd_cb); | |
1900 | if (how == SHUT_RDWR) { | |
1901 | flow_divert_disconnect_socket(fd_cb->so); | |
1902 | } else if (how == SHUT_RD) { | |
1903 | socantrcvmore(fd_cb->so); | |
1904 | } else if (how == SHUT_WR) { | |
1905 | socantsendmore(fd_cb->so); | |
1906 | } | |
1907 | ||
1908 | socket_unlock(fd_cb->so, 0); | |
1909 | } | |
1910 | FDUNLOCK(fd_cb); | |
1911 | } | |
1912 | ||
1913 | static mbuf_t | |
1914 | flow_divert_get_control_mbuf(struct flow_divert_pcb *fd_cb) | |
1915 | { | |
1916 | struct inpcb *inp = sotoinpcb(fd_cb->so); | |
1917 | if (inp->inp_vflag & INP_IPV4 && inp->inp_flags & INP_RECVDSTADDR) { | |
1918 | struct sockaddr_in *sin = (struct sockaddr_in *)(void *)fd_cb->local_address; | |
1919 | ||
1920 | return sbcreatecontrol((caddr_t) &sin->sin_addr, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); | |
1921 | } else if (inp->inp_vflag & INP_IPV6 && (inp->inp_flags & IN6P_PKTINFO) != 0) { | |
1922 | struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)(void *)fd_cb->local_address; | |
1923 | struct in6_pktinfo pi6; | |
1924 | ||
1925 | bcopy(&sin6->sin6_addr, &pi6.ipi6_addr, sizeof (struct in6_addr)); | |
1926 | pi6.ipi6_ifindex = 0; | |
1927 | return sbcreatecontrol((caddr_t)&pi6, sizeof (struct in6_pktinfo), IPV6_PKTINFO, IPPROTO_IPV6); | |
1928 | } | |
1929 | return (NULL); | |
1930 | } | |
1931 | ||
1932 | static void | |
1933 | flow_divert_handle_data(struct flow_divert_pcb *fd_cb, mbuf_t packet, size_t offset) | |
1934 | { | |
1935 | FDLOCK(fd_cb); | |
1936 | if (fd_cb->so != NULL) { | |
1937 | int error = 0; | |
1938 | mbuf_t data = NULL; | |
1939 | size_t data_size; | |
1940 | struct sockaddr_storage remote_address; | |
1941 | boolean_t got_remote_sa = FALSE; | |
1942 | ||
1943 | socket_lock(fd_cb->so, 0); | |
1944 | ||
1945 | if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1946 | uint32_t val_size = 0; | |
1947 | ||
1948 | /* check if we got remote address with data */ | |
1949 | memset(&remote_address, 0, sizeof(remote_address)); | |
1950 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, &val_size); | |
1951 | if (error || val_size > sizeof(remote_address)) { | |
1952 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
1953 | error = 0; | |
1954 | } else { | |
1955 | /* validate the address */ | |
1956 | if (flow_divert_is_sockaddr_valid((struct sockaddr *)&remote_address)) { | |
1957 | got_remote_sa = TRUE; | |
1958 | } | |
1959 | offset += (sizeof(uint8_t) + sizeof(uint32_t) + val_size); | |
1960 | } | |
1961 | } | |
1962 | ||
1963 | data_size = (mbuf_pkthdr_len(packet) - offset); | |
1964 | ||
1965 | FDLOG(LOG_DEBUG, fd_cb, "received %lu bytes of data", data_size); | |
1966 | ||
1967 | error = mbuf_split(packet, offset, MBUF_DONTWAIT, &data); | |
1968 | if (error || data == NULL) { | |
1969 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1970 | } else { | |
1971 | if (flow_divert_check_no_cellular(fd_cb) || | |
1972 | flow_divert_check_no_expensive(fd_cb)) | |
1973 | { | |
1974 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1975 | flow_divert_send_close(fd_cb, SHUT_RDWR); | |
1976 | flow_divert_disconnect_socket(fd_cb->so); | |
1977 | } else if (!(fd_cb->so->so_state & SS_CANTRCVMORE)) { | |
1978 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { | |
1979 | if (sbappendstream(&fd_cb->so->so_rcv, data)) { | |
1980 | fd_cb->bytes_received += data_size; | |
1981 | flow_divert_add_data_statistics(fd_cb, data_size, FALSE); | |
1982 | fd_cb->sb_size = fd_cb->so->so_rcv.sb_cc; | |
1983 | sorwakeup(fd_cb->so); | |
1984 | data = NULL; | |
1985 | } else { | |
1986 | FDLOG0(LOG_ERR, fd_cb, "received data, but appendstream failed"); | |
1987 | } | |
1988 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { | |
1989 | struct sockaddr *append_sa; | |
1990 | mbuf_t mctl; | |
1991 | ||
1992 | if (got_remote_sa == TRUE) { | |
1993 | error = flow_divert_dup_addr(fd_cb->so->so_proto->pr_domain->dom_family, | |
1994 | (struct sockaddr *)&remote_address, &append_sa); | |
1995 | } else { | |
1996 | error = flow_divert_dup_addr(fd_cb->so->so_proto->pr_domain->dom_family, | |
1997 | fd_cb->remote_address, &append_sa); | |
1998 | } | |
1999 | if (error) { | |
2000 | FDLOG0(LOG_ERR, fd_cb, "failed to dup the socket address."); | |
2001 | } | |
2002 | ||
2003 | mctl = flow_divert_get_control_mbuf(fd_cb); | |
2004 | if (sbappendaddr(&fd_cb->so->so_rcv, append_sa, data, mctl, NULL)) { | |
2005 | fd_cb->bytes_received += data_size; | |
2006 | flow_divert_add_data_statistics(fd_cb, data_size, FALSE); | |
2007 | fd_cb->sb_size = fd_cb->so->so_rcv.sb_cc; | |
2008 | sorwakeup(fd_cb->so); | |
2009 | data = NULL; | |
2010 | } else { | |
2011 | FDLOG0(LOG_ERR, fd_cb, "received data, but sbappendaddr failed"); | |
2012 | } | |
2013 | if (!error) { | |
2014 | FREE(append_sa, M_TEMP); | |
2015 | } | |
2016 | } | |
2017 | } | |
2018 | } | |
2019 | socket_unlock(fd_cb->so, 0); | |
2020 | ||
2021 | if (data != NULL) { | |
2022 | mbuf_freem(data); | |
2023 | } | |
2024 | } | |
2025 | FDUNLOCK(fd_cb); | |
2026 | } | |
2027 | ||
2028 | static void | |
2029 | flow_divert_handle_read_notification(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2030 | { | |
2031 | uint32_t read_count; | |
2032 | int error = 0; | |
2033 | ||
2034 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_READ_COUNT, sizeof(read_count), &read_count, NULL); | |
2035 | if (error) { | |
2036 | FDLOG(LOG_ERR, fd_cb, "failed to get the read count: %d", error); | |
2037 | return; | |
2038 | } | |
2039 | ||
2040 | FDLOG(LOG_DEBUG, fd_cb, "received a read notification for %u bytes", ntohl(read_count)); | |
2041 | ||
2042 | FDLOCK(fd_cb); | |
2043 | if (fd_cb->so != NULL) { | |
2044 | socket_lock(fd_cb->so, 0); | |
2045 | fd_cb->send_window += ntohl(read_count); | |
2046 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
2047 | socket_unlock(fd_cb->so, 0); | |
2048 | } | |
2049 | FDUNLOCK(fd_cb); | |
2050 | } | |
2051 | ||
2052 | static void | |
2053 | flow_divert_handle_group_init(struct flow_divert_group *group, mbuf_t packet, int offset) | |
2054 | { | |
2055 | int error = 0; | |
2056 | uint32_t key_size = 0; | |
2057 | int log_level; | |
2058 | uint32_t flags = 0; | |
2059 | ||
2060 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, 0, NULL, &key_size); | |
2061 | if (error) { | |
2062 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the key size: %d", error); | |
2063 | return; | |
2064 | } | |
2065 | ||
2066 | if (key_size == 0 || key_size > FLOW_DIVERT_MAX_KEY_SIZE) { | |
2067 | FDLOG(LOG_ERR, &nil_pcb, "Invalid key size: %u", key_size); | |
2068 | return; | |
2069 | } | |
2070 | ||
2071 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOG_LEVEL, sizeof(log_level), &log_level, NULL); | |
2072 | if (!error) { | |
2073 | nil_pcb.log_level = log_level; | |
2074 | } | |
2075 | ||
2076 | lck_rw_lock_exclusive(&group->lck); | |
2077 | ||
2078 | MALLOC(group->token_key, uint8_t *, key_size, M_TEMP, M_WAITOK); | |
2079 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, key_size, group->token_key, NULL); | |
2080 | if (error) { | |
2081 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the token key: %d", error); | |
2082 | FREE(group->token_key, M_TEMP); | |
2083 | group->token_key = NULL; | |
2084 | lck_rw_done(&group->lck); | |
2085 | return; | |
2086 | } | |
2087 | ||
2088 | group->token_key_size = key_size; | |
2089 | ||
2090 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_FLAGS, sizeof(flags), &flags, NULL); | |
2091 | if (!error) { | |
2092 | group->flags = flags; | |
2093 | } | |
2094 | ||
2095 | lck_rw_done(&group->lck); | |
2096 | } | |
2097 | ||
2098 | static void | |
2099 | flow_divert_handle_properties_update(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
2100 | { | |
2101 | int error = 0; | |
2102 | struct sockaddr_storage local_address; | |
2103 | int out_if_index = 0; | |
2104 | struct sockaddr_storage remote_address; | |
2105 | uint32_t app_data_length = 0; | |
2106 | ||
2107 | FDLOG0(LOG_INFO, fd_cb, "received a properties update"); | |
2108 | ||
2109 | memset(&local_address, 0, sizeof(local_address)); | |
2110 | memset(&remote_address, 0, sizeof(remote_address)); | |
2111 | ||
2112 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
2113 | if (error) { | |
2114 | FDLOG0(LOG_INFO, fd_cb, "No local address provided in properties update"); | |
2115 | } | |
2116 | ||
2117 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
2118 | if (error) { | |
2119 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided in properties update"); | |
2120 | } | |
2121 | ||
2122 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
2123 | if (error) { | |
2124 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided in properties update"); | |
2125 | } | |
2126 | ||
2127 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, 0, NULL, &app_data_length); | |
2128 | if (error) { | |
2129 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in properties update"); | |
2130 | } | |
2131 | ||
2132 | FDLOCK(fd_cb); | |
2133 | if (fd_cb->so != NULL) { | |
2134 | socket_lock(fd_cb->so, 0); | |
2135 | ||
2136 | if (local_address.ss_family != 0) { | |
2137 | if (local_address.ss_len > sizeof(local_address)) { | |
2138 | local_address.ss_len = sizeof(local_address); | |
2139 | } | |
2140 | if (fd_cb->local_address != NULL) { | |
2141 | FREE(fd_cb->local_address, M_SONAME); | |
2142 | fd_cb->local_address = NULL; | |
2143 | } | |
2144 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
2145 | } | |
2146 | ||
2147 | if (remote_address.ss_family != 0) { | |
2148 | if (remote_address.ss_len > sizeof(remote_address)) { | |
2149 | remote_address.ss_len = sizeof(remote_address); | |
2150 | } | |
2151 | if (fd_cb->remote_address != NULL) { | |
2152 | FREE(fd_cb->remote_address, M_SONAME); | |
2153 | fd_cb->remote_address = NULL; | |
2154 | } | |
2155 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
2156 | } | |
2157 | ||
2158 | if (out_if_index > 0) { | |
2159 | struct inpcb *inp = NULL; | |
2160 | struct ifnet *ifp = NULL; | |
2161 | ||
2162 | inp = sotoinpcb(fd_cb->so); | |
2163 | ||
2164 | ifnet_head_lock_shared(); | |
2165 | if (out_if_index <= if_index) { | |
2166 | ifp = ifindex2ifnet[out_if_index]; | |
2167 | } | |
2168 | ||
2169 | if (ifp != NULL) { | |
2170 | inp->inp_last_outifp = ifp; | |
2171 | } | |
2172 | ifnet_head_done(); | |
2173 | } | |
2174 | ||
2175 | if (app_data_length > 0) { | |
2176 | uint8_t *app_data = NULL; | |
2177 | MALLOC(app_data, uint8_t *, app_data_length, M_TEMP, M_WAITOK); | |
2178 | if (app_data != NULL) { | |
2179 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, app_data_length, app_data, NULL); | |
2180 | if (error == 0) { | |
2181 | if (fd_cb->app_data != NULL) { | |
2182 | FREE(fd_cb->app_data, M_TEMP); | |
2183 | } | |
2184 | fd_cb->app_data = app_data; | |
2185 | fd_cb->app_data_length = app_data_length; | |
2186 | } else { | |
2187 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the properties update packet", app_data_length); | |
2188 | FREE(app_data, M_TEMP); | |
2189 | } | |
2190 | } else { | |
2191 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the properties update", app_data_length); | |
2192 | } | |
2193 | } | |
2194 | ||
2195 | socket_unlock(fd_cb->so, 0); | |
2196 | } | |
2197 | FDUNLOCK(fd_cb); | |
2198 | } | |
2199 | ||
2200 | static void | |
2201 | flow_divert_handle_app_map_create(struct flow_divert_group *group, mbuf_t packet, int offset) | |
2202 | { | |
2203 | size_t bytes_mem_size; | |
2204 | size_t child_maps_mem_size; | |
2205 | int cursor; | |
2206 | int error = 0; | |
2207 | struct flow_divert_trie new_trie; | |
2208 | int insert_error = 0; | |
2209 | size_t nodes_mem_size; | |
2210 | int prefix_count = 0; | |
2211 | int signing_id_count = 0; | |
2212 | size_t trie_memory_size = 0; | |
2213 | ||
2214 | lck_rw_lock_exclusive(&group->lck); | |
2215 | ||
2216 | /* Re-set the current trie */ | |
2217 | if (group->signing_id_trie.memory != NULL) { | |
2218 | FREE(group->signing_id_trie.memory, M_TEMP); | |
2219 | } | |
2220 | memset(&group->signing_id_trie, 0, sizeof(group->signing_id_trie)); | |
2221 | group->signing_id_trie.root = NULL_TRIE_IDX; | |
2222 | ||
2223 | memset(&new_trie, 0, sizeof(new_trie)); | |
2224 | ||
2225 | /* Get the number of shared prefixes in the new set of signing ID strings */ | |
2226 | flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_PREFIX_COUNT, sizeof(prefix_count), &prefix_count, NULL); | |
2227 | ||
2228 | if (prefix_count < 0) { | |
2229 | lck_rw_done(&group->lck); | |
2230 | return; | |
2231 | } | |
2232 | ||
2233 | /* Compute the number of signing IDs and the total amount of bytes needed to store them */ | |
2234 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
2235 | cursor >= 0; | |
2236 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
2237 | { | |
2238 | uint32_t sid_size = 0; | |
2239 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
2240 | new_trie.bytes_count += sid_size; | |
2241 | signing_id_count++; | |
2242 | } | |
2243 | ||
2244 | if (signing_id_count == 0) { | |
2245 | lck_rw_done(&group->lck); | |
2246 | return; | |
2247 | } | |
2248 | ||
2249 | new_trie.nodes_count = (prefix_count + signing_id_count + 1); /* + 1 for the root node */ | |
2250 | new_trie.child_maps_count = (prefix_count + 1); /* + 1 for the root node */ | |
2251 | ||
2252 | FDLOG(LOG_INFO, &nil_pcb, "Nodes count = %lu, child maps count = %lu, bytes_count = %lu", | |
2253 | new_trie.nodes_count, new_trie.child_maps_count, new_trie.bytes_count); | |
2254 | ||
2255 | nodes_mem_size = (sizeof(*new_trie.nodes) * new_trie.nodes_count); | |
2256 | child_maps_mem_size = (sizeof(*new_trie.child_maps) * CHILD_MAP_SIZE * new_trie.child_maps_count); | |
2257 | bytes_mem_size = (sizeof(*new_trie.bytes) * new_trie.bytes_count); | |
2258 | ||
2259 | trie_memory_size = nodes_mem_size + child_maps_mem_size + bytes_mem_size; | |
2260 | if (trie_memory_size > FLOW_DIVERT_MAX_TRIE_MEMORY) { | |
2261 | FDLOG(LOG_ERR, &nil_pcb, "Trie memory size (%lu) is too big (maximum is %u)", trie_memory_size, FLOW_DIVERT_MAX_TRIE_MEMORY); | |
2262 | lck_rw_done(&group->lck); | |
2263 | return; | |
2264 | } | |
2265 | ||
2266 | MALLOC(new_trie.memory, void *, trie_memory_size, M_TEMP, M_WAITOK); | |
2267 | if (new_trie.memory == NULL) { | |
2268 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate %lu bytes of memory for the signing ID trie", | |
2269 | nodes_mem_size + child_maps_mem_size + bytes_mem_size); | |
2270 | lck_rw_done(&group->lck); | |
2271 | return; | |
2272 | } | |
2273 | ||
2274 | /* Initialize the free lists */ | |
2275 | new_trie.nodes = (struct flow_divert_trie_node *)new_trie.memory; | |
2276 | new_trie.nodes_free_next = 0; | |
2277 | memset(new_trie.nodes, 0, nodes_mem_size); | |
2278 | ||
2279 | new_trie.child_maps = (uint16_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size); | |
2280 | new_trie.child_maps_free_next = 0; | |
2281 | memset(new_trie.child_maps, 0xff, child_maps_mem_size); | |
2282 | ||
2283 | new_trie.bytes = (uint8_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size + child_maps_mem_size); | |
2284 | new_trie.bytes_free_next = 0; | |
2285 | ||
2286 | /* The root is an empty node */ | |
2287 | new_trie.root = trie_node_alloc(&new_trie); | |
2288 | ||
2289 | /* Add each signing ID to the trie */ | |
2290 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
2291 | cursor >= 0; | |
2292 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
2293 | { | |
2294 | uint32_t sid_size = 0; | |
2295 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
2296 | if (new_trie.bytes_free_next + sid_size <= new_trie.bytes_count) { | |
2297 | uint16_t new_node_idx; | |
2298 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, &TRIE_BYTE(&new_trie, new_trie.bytes_free_next), NULL); | |
2299 | new_node_idx = flow_divert_trie_insert(&new_trie, new_trie.bytes_free_next, sid_size); | |
2300 | if (new_node_idx == NULL_TRIE_IDX) { | |
2301 | insert_error = EINVAL; | |
2302 | break; | |
2303 | } | |
2304 | } else { | |
2305 | FDLOG0(LOG_ERR, &nil_pcb, "No place to put signing ID for insertion"); | |
2306 | insert_error = ENOBUFS; | |
2307 | break; | |
2308 | } | |
2309 | } | |
2310 | ||
2311 | if (!insert_error) { | |
2312 | group->signing_id_trie = new_trie; | |
2313 | } else { | |
2314 | FREE(new_trie.memory, M_TEMP); | |
2315 | } | |
2316 | ||
2317 | lck_rw_done(&group->lck); | |
2318 | } | |
2319 | ||
2320 | static int | |
2321 | flow_divert_input(mbuf_t packet, struct flow_divert_group *group) | |
2322 | { | |
2323 | struct flow_divert_packet_header hdr; | |
2324 | int error = 0; | |
2325 | struct flow_divert_pcb *fd_cb; | |
2326 | ||
2327 | if (mbuf_pkthdr_len(packet) < sizeof(hdr)) { | |
2328 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) < sizeof hdr (%lu)", mbuf_pkthdr_len(packet), sizeof(hdr)); | |
2329 | error = EINVAL; | |
2330 | goto done; | |
2331 | } | |
2332 | ||
2333 | if (mbuf_pkthdr_len(packet) > FD_CTL_RCVBUFF_SIZE) { | |
2334 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) > %d", mbuf_pkthdr_len(packet), FD_CTL_RCVBUFF_SIZE); | |
2335 | error = EINVAL; | |
2336 | goto done; | |
2337 | } | |
2338 | ||
2339 | error = mbuf_copydata(packet, 0, sizeof(hdr), &hdr); | |
2340 | if (error) { | |
2341 | FDLOG(LOG_ERR, &nil_pcb, "mbuf_copydata failed for the header: %d", error); | |
2342 | error = ENOBUFS; | |
2343 | goto done; | |
2344 | } | |
2345 | ||
2346 | hdr.conn_id = ntohl(hdr.conn_id); | |
2347 | ||
2348 | if (hdr.conn_id == 0) { | |
2349 | switch (hdr.packet_type) { | |
2350 | case FLOW_DIVERT_PKT_GROUP_INIT: | |
2351 | flow_divert_handle_group_init(group, packet, sizeof(hdr)); | |
2352 | break; | |
2353 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
2354 | flow_divert_handle_app_map_create(group, packet, sizeof(hdr)); | |
2355 | break; | |
2356 | default: | |
2357 | FDLOG(LOG_WARNING, &nil_pcb, "got an unknown message type: %d", hdr.packet_type); | |
2358 | break; | |
2359 | } | |
2360 | goto done; | |
2361 | } | |
2362 | ||
2363 | fd_cb = flow_divert_pcb_lookup(hdr.conn_id, group); /* This retains the PCB */ | |
2364 | if (fd_cb == NULL) { | |
2365 | if (hdr.packet_type != FLOW_DIVERT_PKT_CLOSE && hdr.packet_type != FLOW_DIVERT_PKT_READ_NOTIFY) { | |
2366 | FDLOG(LOG_NOTICE, &nil_pcb, "got a %s message from group %d for an unknown pcb: %u", flow_divert_packet_type2str(hdr.packet_type), group->ctl_unit, hdr.conn_id); | |
2367 | } | |
2368 | goto done; | |
2369 | } | |
2370 | ||
2371 | switch (hdr.packet_type) { | |
2372 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
2373 | flow_divert_handle_connect_result(fd_cb, packet, sizeof(hdr)); | |
2374 | break; | |
2375 | case FLOW_DIVERT_PKT_CLOSE: | |
2376 | flow_divert_handle_close(fd_cb, packet, sizeof(hdr)); | |
2377 | break; | |
2378 | case FLOW_DIVERT_PKT_DATA: | |
2379 | flow_divert_handle_data(fd_cb, packet, sizeof(hdr)); | |
2380 | break; | |
2381 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
2382 | flow_divert_handle_read_notification(fd_cb, packet, sizeof(hdr)); | |
2383 | break; | |
2384 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
2385 | flow_divert_handle_properties_update(fd_cb, packet, sizeof(hdr)); | |
2386 | break; | |
2387 | default: | |
2388 | FDLOG(LOG_WARNING, fd_cb, "got an unknown message type: %d", hdr.packet_type); | |
2389 | break; | |
2390 | } | |
2391 | ||
2392 | FDRELEASE(fd_cb); | |
2393 | ||
2394 | done: | |
2395 | mbuf_freem(packet); | |
2396 | return error; | |
2397 | } | |
2398 | ||
2399 | static void | |
2400 | flow_divert_close_all(struct flow_divert_group *group) | |
2401 | { | |
2402 | struct flow_divert_pcb *fd_cb; | |
2403 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
2404 | ||
2405 | SLIST_INIT(&tmp_list); | |
2406 | ||
2407 | lck_rw_lock_exclusive(&group->lck); | |
2408 | ||
2409 | MBUFQ_DRAIN(&group->send_queue); | |
2410 | ||
2411 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
2412 | FDRETAIN(fd_cb); | |
2413 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
2414 | } | |
2415 | ||
2416 | lck_rw_done(&group->lck); | |
2417 | ||
2418 | while (!SLIST_EMPTY(&tmp_list)) { | |
2419 | fd_cb = SLIST_FIRST(&tmp_list); | |
2420 | FDLOCK(fd_cb); | |
2421 | SLIST_REMOVE_HEAD(&tmp_list, tmp_list_entry); | |
2422 | if (fd_cb->so != NULL) { | |
2423 | socket_lock(fd_cb->so, 0); | |
2424 | flow_divert_pcb_remove(fd_cb); | |
2425 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
2426 | fd_cb->so->so_error = ECONNABORTED; | |
2427 | flow_divert_disconnect_socket(fd_cb->so); | |
2428 | socket_unlock(fd_cb->so, 0); | |
2429 | } | |
2430 | FDUNLOCK(fd_cb); | |
2431 | FDRELEASE(fd_cb); | |
2432 | } | |
2433 | } | |
2434 | ||
2435 | void | |
2436 | flow_divert_detach(struct socket *so) | |
2437 | { | |
2438 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2439 | ||
2440 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2441 | ||
2442 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
2443 | so->so_fd_pcb = NULL; | |
2444 | ||
2445 | FDLOG(LOG_INFO, fd_cb, "Detaching, ref count = %d", fd_cb->ref_count); | |
2446 | ||
2447 | if (fd_cb->group != NULL) { | |
2448 | /* Last-ditch effort to send any buffered data */ | |
2449 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2450 | ||
2451 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
2452 | flow_divert_send_close_if_needed(fd_cb); | |
2453 | /* Remove from the group */ | |
2454 | flow_divert_pcb_remove(fd_cb); | |
2455 | } | |
2456 | ||
2457 | socket_unlock(so, 0); | |
2458 | FDLOCK(fd_cb); | |
2459 | fd_cb->so = NULL; | |
2460 | FDUNLOCK(fd_cb); | |
2461 | socket_lock(so, 0); | |
2462 | ||
2463 | FDRELEASE(fd_cb); /* Release the socket's reference */ | |
2464 | } | |
2465 | ||
2466 | static int | |
2467 | flow_divert_close(struct socket *so) | |
2468 | { | |
2469 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2470 | ||
2471 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2472 | ||
2473 | FDLOG0(LOG_INFO, fd_cb, "Closing"); | |
2474 | ||
2475 | if (SOCK_TYPE(so) == SOCK_STREAM) { | |
2476 | soisdisconnecting(so); | |
2477 | sbflush(&so->so_rcv); | |
2478 | } | |
2479 | ||
2480 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2481 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
2482 | flow_divert_send_close_if_needed(fd_cb); | |
2483 | ||
2484 | /* Remove from the group */ | |
2485 | flow_divert_pcb_remove(fd_cb); | |
2486 | ||
2487 | return 0; | |
2488 | } | |
2489 | ||
2490 | static int | |
2491 | flow_divert_disconnectx(struct socket *so, sae_associd_t aid, | |
2492 | sae_connid_t cid __unused) | |
2493 | { | |
2494 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { | |
2495 | return (EINVAL); | |
2496 | } | |
2497 | ||
2498 | return (flow_divert_close(so)); | |
2499 | } | |
2500 | ||
2501 | static int | |
2502 | flow_divert_shutdown(struct socket *so) | |
2503 | { | |
2504 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2505 | ||
2506 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2507 | ||
2508 | FDLOG0(LOG_INFO, fd_cb, "Can't send more"); | |
2509 | ||
2510 | socantsendmore(so); | |
2511 | ||
2512 | flow_divert_update_closed_state(fd_cb, SHUT_WR, FALSE); | |
2513 | flow_divert_send_close_if_needed(fd_cb); | |
2514 | ||
2515 | return 0; | |
2516 | } | |
2517 | ||
2518 | static int | |
2519 | flow_divert_rcvd(struct socket *so, int flags __unused) | |
2520 | { | |
2521 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2522 | uint32_t latest_sb_size; | |
2523 | uint32_t read_count; | |
2524 | ||
2525 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2526 | ||
2527 | latest_sb_size = fd_cb->so->so_rcv.sb_cc; | |
2528 | ||
2529 | if (fd_cb->sb_size < latest_sb_size) { | |
2530 | panic("flow divert rcvd event handler (%u): saved rcv buffer size (%u) is less than latest rcv buffer size (%u)", | |
2531 | fd_cb->hash, fd_cb->sb_size, latest_sb_size); | |
2532 | } | |
2533 | ||
2534 | read_count = fd_cb->sb_size - latest_sb_size; | |
2535 | ||
2536 | FDLOG(LOG_DEBUG, fd_cb, "app read %u bytes", read_count); | |
2537 | ||
2538 | if (read_count > 0 && flow_divert_send_read_notification(fd_cb, read_count) == 0) { | |
2539 | fd_cb->bytes_read_by_app += read_count; | |
2540 | fd_cb->sb_size = latest_sb_size; | |
2541 | } | |
2542 | ||
2543 | return 0; | |
2544 | } | |
2545 | ||
2546 | static int | |
2547 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr) | |
2548 | { | |
2549 | int error = 0; | |
2550 | int port = 0; | |
2551 | ||
2552 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_ADDRESS, toaddr->sa_len, toaddr); | |
2553 | if (error) { | |
2554 | goto done; | |
2555 | } | |
2556 | ||
2557 | if (toaddr->sa_family == AF_INET) { | |
2558 | port = ntohs((satosin(toaddr))->sin_port); | |
2559 | } | |
2560 | #if INET6 | |
2561 | else { | |
2562 | port = ntohs((satosin6(toaddr))->sin6_port); | |
2563 | } | |
2564 | #endif | |
2565 | ||
2566 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_PORT, sizeof(port), &port); | |
2567 | if (error) { | |
2568 | goto done; | |
2569 | } | |
2570 | ||
2571 | done: | |
2572 | return error; | |
2573 | } | |
2574 | ||
2575 | struct sockaddr * | |
2576 | flow_divert_get_buffered_target_address(mbuf_t buffer) | |
2577 | { | |
2578 | if (buffer != NULL && buffer->m_type == MT_SONAME) { | |
2579 | struct sockaddr *toaddr = mtod(buffer, struct sockaddr *); | |
2580 | if (toaddr != NULL && flow_divert_is_sockaddr_valid(toaddr)) { | |
2581 | return toaddr; | |
2582 | } | |
2583 | } | |
2584 | return NULL; | |
2585 | } | |
2586 | ||
2587 | static boolean_t | |
2588 | flow_divert_is_sockaddr_valid(struct sockaddr *addr) | |
2589 | { | |
2590 | switch(addr->sa_family) | |
2591 | { | |
2592 | case AF_INET: | |
2593 | if (addr->sa_len != sizeof(struct sockaddr_in)) { | |
2594 | return FALSE; | |
2595 | } | |
2596 | break; | |
2597 | #if INET6 | |
2598 | case AF_INET6: | |
2599 | if (addr->sa_len != sizeof(struct sockaddr_in6)) { | |
2600 | return FALSE; | |
2601 | } | |
2602 | break; | |
2603 | #endif /* INET6 */ | |
2604 | default: | |
2605 | return FALSE; | |
2606 | } | |
2607 | return TRUE; | |
2608 | } | |
2609 | ||
2610 | static errno_t | |
2611 | flow_divert_inp_to_sockaddr(const struct inpcb *inp, struct sockaddr **local_socket) | |
2612 | { | |
2613 | int error = 0; | |
2614 | union sockaddr_in_4_6 sin46; | |
2615 | ||
2616 | bzero(&sin46, sizeof(sin46)); | |
2617 | if (inp->inp_vflag & INP_IPV4) { | |
2618 | struct sockaddr_in *sin = &sin46.sin; | |
2619 | ||
2620 | sin->sin_family = AF_INET; | |
2621 | sin->sin_len = sizeof(*sin); | |
2622 | sin->sin_port = inp->inp_lport; | |
2623 | sin->sin_addr = inp->inp_laddr; | |
2624 | } else if (inp->inp_vflag & INP_IPV6) { | |
2625 | struct sockaddr_in6 *sin6 = &sin46.sin6; | |
2626 | ||
2627 | sin6->sin6_len = sizeof(*sin6); | |
2628 | sin6->sin6_family = AF_INET6; | |
2629 | sin6->sin6_port = inp->inp_lport; | |
2630 | sin6->sin6_addr = inp->in6p_laddr; | |
2631 | } | |
2632 | *local_socket = dup_sockaddr((struct sockaddr *)&sin46, 1); | |
2633 | if (*local_socket == NULL) { | |
2634 | error = ENOBUFS; | |
2635 | } | |
2636 | return (error); | |
2637 | } | |
2638 | ||
2639 | static boolean_t | |
2640 | flow_divert_has_pcb_local_address(const struct inpcb *inp) | |
2641 | { | |
2642 | return (inp->inp_lport != 0 | |
2643 | && (inp->inp_laddr.s_addr != INADDR_ANY || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))); | |
2644 | } | |
2645 | ||
2646 | static errno_t | |
2647 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, | |
2648 | struct sockaddr **dup) | |
2649 | { | |
2650 | int error = 0; | |
2651 | struct sockaddr *result; | |
2652 | struct sockaddr_storage ss; | |
2653 | ||
2654 | if (addr != NULL) { | |
2655 | result = addr; | |
2656 | } else { | |
2657 | memset(&ss, 0, sizeof(ss)); | |
2658 | ss.ss_family = family; | |
2659 | if (ss.ss_family == AF_INET) { | |
2660 | ss.ss_len = sizeof(struct sockaddr_in); | |
2661 | } | |
2662 | #if INET6 | |
2663 | else if (ss.ss_family == AF_INET6) { | |
2664 | ss.ss_len = sizeof(struct sockaddr_in6); | |
2665 | } | |
2666 | #endif /* INET6 */ | |
2667 | else { | |
2668 | error = EINVAL; | |
2669 | } | |
2670 | result = (struct sockaddr *)&ss; | |
2671 | } | |
2672 | ||
2673 | if (!error) { | |
2674 | *dup = dup_sockaddr(result, 1); | |
2675 | if (*dup == NULL) { | |
2676 | error = ENOBUFS; | |
2677 | } | |
2678 | } | |
2679 | ||
2680 | return error; | |
2681 | } | |
2682 | ||
2683 | static void | |
2684 | flow_divert_disconnect_socket(struct socket *so) | |
2685 | { | |
2686 | soisdisconnected(so); | |
2687 | if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
2688 | struct inpcb *inp = NULL; | |
2689 | ||
2690 | inp = sotoinpcb(so); | |
2691 | if (inp != NULL) { | |
2692 | #if INET6 | |
2693 | if (SOCK_CHECK_DOM(so, PF_INET6)) | |
2694 | in6_pcbdetach(inp); | |
2695 | else | |
2696 | #endif /* INET6 */ | |
2697 | in_pcbdetach(inp); | |
2698 | } | |
2699 | } | |
2700 | } | |
2701 | ||
2702 | static errno_t | |
2703 | flow_divert_getpeername(struct socket *so, struct sockaddr **sa) | |
2704 | { | |
2705 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2706 | ||
2707 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2708 | ||
2709 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2710 | fd_cb->remote_address, | |
2711 | sa); | |
2712 | } | |
2713 | ||
2714 | static errno_t | |
2715 | flow_divert_getsockaddr(struct socket *so, struct sockaddr **sa) | |
2716 | { | |
2717 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2718 | ||
2719 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2720 | ||
2721 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2722 | fd_cb->local_address, | |
2723 | sa); | |
2724 | } | |
2725 | ||
2726 | static errno_t | |
2727 | flow_divert_ctloutput(struct socket *so, struct sockopt *sopt) | |
2728 | { | |
2729 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2730 | ||
2731 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2732 | ||
2733 | if (sopt->sopt_name == SO_TRAFFIC_CLASS) { | |
2734 | if (sopt->sopt_dir == SOPT_SET && fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { | |
2735 | flow_divert_send_traffic_class_update(fd_cb, so->so_traffic_class); | |
2736 | } | |
2737 | } | |
2738 | ||
2739 | if (SOCK_DOM(so) == PF_INET) { | |
2740 | return g_tcp_protosw->pr_ctloutput(so, sopt); | |
2741 | } | |
2742 | #if INET6 | |
2743 | else if (SOCK_DOM(so) == PF_INET6) { | |
2744 | return g_tcp6_protosw->pr_ctloutput(so, sopt); | |
2745 | } | |
2746 | #endif | |
2747 | return 0; | |
2748 | } | |
2749 | ||
2750 | errno_t | |
2751 | flow_divert_connect_out(struct socket *so, struct sockaddr *to, proc_t p) | |
2752 | { | |
2753 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2754 | int error = 0; | |
2755 | struct inpcb *inp = sotoinpcb(so); | |
2756 | struct sockaddr_in *sinp; | |
2757 | mbuf_t connect_packet = NULL; | |
2758 | int do_send = 1; | |
2759 | ||
2760 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2761 | ||
2762 | if (fd_cb->group == NULL) { | |
2763 | error = ENETUNREACH; | |
2764 | goto done; | |
2765 | } | |
2766 | ||
2767 | if (inp == NULL) { | |
2768 | error = EINVAL; | |
2769 | goto done; | |
2770 | } else if (inp->inp_state == INPCB_STATE_DEAD) { | |
2771 | if (so->so_error) { | |
2772 | error = so->so_error; | |
2773 | so->so_error = 0; | |
2774 | } else { | |
2775 | error = EINVAL; | |
2776 | } | |
2777 | goto done; | |
2778 | } | |
2779 | ||
2780 | if ((fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) && !(fd_cb->flags & FLOW_DIVERT_TRANSFERRED)) { | |
2781 | error = EALREADY; | |
2782 | goto done; | |
2783 | } | |
2784 | ||
2785 | if (fd_cb->flags & FLOW_DIVERT_TRANSFERRED) { | |
2786 | FDLOG0(LOG_INFO, fd_cb, "fully transferred"); | |
2787 | fd_cb->flags &= ~FLOW_DIVERT_TRANSFERRED; | |
2788 | if (fd_cb->remote_address != NULL) { | |
2789 | soisconnected(fd_cb->so); | |
2790 | goto done; | |
2791 | } | |
2792 | } | |
2793 | ||
2794 | FDLOG0(LOG_INFO, fd_cb, "Connecting"); | |
2795 | ||
2796 | if (fd_cb->connect_packet == NULL) { | |
2797 | if (to == NULL) { | |
2798 | FDLOG0(LOG_ERR, fd_cb, "No destination address available when creating connect packet"); | |
2799 | error = EINVAL; | |
2800 | goto done; | |
2801 | } | |
2802 | ||
2803 | sinp = (struct sockaddr_in *)(void *)to; | |
2804 | if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { | |
2805 | error = EAFNOSUPPORT; | |
2806 | goto done; | |
2807 | } | |
2808 | ||
2809 | error = flow_divert_create_connect_packet(fd_cb, to, so, p, &connect_packet); | |
2810 | if (error) { | |
2811 | goto done; | |
2812 | } | |
2813 | ||
2814 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) { | |
2815 | FDLOG0(LOG_INFO, fd_cb, "Delaying sending the connect packet until send or receive"); | |
2816 | do_send = 0; | |
2817 | } | |
2818 | } else { | |
2819 | FDLOG0(LOG_INFO, fd_cb, "Sending saved connect packet"); | |
2820 | connect_packet = fd_cb->connect_packet; | |
2821 | fd_cb->connect_packet = NULL; | |
2822 | } | |
2823 | ||
2824 | if (do_send) { | |
2825 | error = flow_divert_send_packet(fd_cb, connect_packet, TRUE); | |
2826 | if (error) { | |
2827 | goto done; | |
2828 | } | |
2829 | ||
2830 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
2831 | } else { | |
2832 | fd_cb->connect_packet = connect_packet; | |
2833 | connect_packet = NULL; | |
2834 | } | |
2835 | ||
2836 | soisconnecting(so); | |
2837 | ||
2838 | done: | |
2839 | if (error && connect_packet != NULL) { | |
2840 | mbuf_freem(connect_packet); | |
2841 | } | |
2842 | return error; | |
2843 | } | |
2844 | ||
2845 | static int | |
2846 | flow_divert_connectx_out_common(struct socket *so, struct sockaddr *dst, | |
2847 | struct proc *p, sae_connid_t *pcid, struct uio *auio, user_ssize_t *bytes_written) | |
2848 | { | |
2849 | struct inpcb *inp = sotoinpcb(so); | |
2850 | int error; | |
2851 | ||
2852 | if (inp == NULL) { | |
2853 | return (EINVAL); | |
2854 | } | |
2855 | ||
2856 | VERIFY(dst != NULL); | |
2857 | ||
2858 | error = flow_divert_connect_out(so, dst, p); | |
2859 | ||
2860 | if (error != 0) { | |
2861 | return error; | |
2862 | } | |
2863 | ||
2864 | /* if there is data, send it */ | |
2865 | if (auio != NULL) { | |
2866 | user_ssize_t datalen = 0; | |
2867 | ||
2868 | socket_unlock(so, 0); | |
2869 | ||
2870 | VERIFY(bytes_written != NULL); | |
2871 | ||
2872 | datalen = uio_resid(auio); | |
2873 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, (uio_t)auio, NULL, NULL, 0); | |
2874 | socket_lock(so, 0); | |
2875 | ||
2876 | if (error == 0 || error == EWOULDBLOCK) { | |
2877 | *bytes_written = datalen - uio_resid(auio); | |
2878 | } | |
2879 | ||
2880 | /* | |
2881 | * sosend returns EWOULDBLOCK if it's a non-blocking | |
2882 | * socket or a timeout occured (this allows to return | |
2883 | * the amount of queued data through sendit()). | |
2884 | * | |
2885 | * However, connectx() returns EINPROGRESS in case of a | |
2886 | * blocking socket. So we change the return value here. | |
2887 | */ | |
2888 | if (error == EWOULDBLOCK) { | |
2889 | error = EINPROGRESS; | |
2890 | } | |
2891 | } | |
2892 | ||
2893 | if (error == 0 && pcid != NULL) { | |
2894 | *pcid = 1; /* there is only 1 connection for a TCP */ | |
2895 | } | |
2896 | ||
2897 | return (error); | |
2898 | } | |
2899 | ||
2900 | static int | |
2901 | flow_divert_connectx_out(struct socket *so, struct sockaddr *src __unused, | |
2902 | struct sockaddr *dst, struct proc *p, uint32_t ifscope __unused, | |
2903 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
2904 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) | |
2905 | { | |
2906 | return (flow_divert_connectx_out_common(so, dst, p, pcid, uio, bytes_written)); | |
2907 | } | |
2908 | ||
2909 | #if INET6 | |
2910 | static int | |
2911 | flow_divert_connectx6_out(struct socket *so, struct sockaddr *src __unused, | |
2912 | struct sockaddr *dst, struct proc *p, uint32_t ifscope __unused, | |
2913 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
2914 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) | |
2915 | { | |
2916 | return (flow_divert_connectx_out_common(so, dst, p, pcid, uio, bytes_written)); | |
2917 | } | |
2918 | #endif /* INET6 */ | |
2919 | ||
2920 | static int | |
2921 | flow_divert_getconninfo(struct socket *so, sae_connid_t cid, uint32_t *flags, | |
2922 | uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len, | |
2923 | user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type, | |
2924 | user_addr_t aux_data __unused, uint32_t *aux_len) | |
2925 | { | |
2926 | int error = 0; | |
2927 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2928 | struct ifnet *ifp = NULL; | |
2929 | struct inpcb *inp = sotoinpcb(so); | |
2930 | ||
2931 | VERIFY((so->so_flags & SOF_FLOW_DIVERT)); | |
2932 | ||
2933 | if (so->so_fd_pcb == NULL || inp == NULL) { | |
2934 | error = EINVAL; | |
2935 | goto out; | |
2936 | } | |
2937 | ||
2938 | if (cid != SAE_CONNID_ANY && cid != SAE_CONNID_ALL && cid != 1) { | |
2939 | error = EINVAL; | |
2940 | goto out; | |
2941 | } | |
2942 | ||
2943 | ifp = inp->inp_last_outifp; | |
2944 | *ifindex = ((ifp != NULL) ? ifp->if_index : 0); | |
2945 | *soerror = so->so_error; | |
2946 | *flags = 0; | |
2947 | ||
2948 | if (so->so_state & SS_ISCONNECTED) { | |
2949 | *flags |= (CIF_CONNECTED | CIF_PREFERRED); | |
2950 | } | |
2951 | ||
2952 | if (fd_cb->local_address == NULL) { | |
2953 | struct sockaddr_in sin; | |
2954 | bzero(&sin, sizeof(sin)); | |
2955 | sin.sin_len = sizeof(sin); | |
2956 | sin.sin_family = AF_INET; | |
2957 | *src_len = sin.sin_len; | |
2958 | if (src != USER_ADDR_NULL) { | |
2959 | error = copyout(&sin, src, sin.sin_len); | |
2960 | if (error != 0) { | |
2961 | goto out; | |
2962 | } | |
2963 | } | |
2964 | } else { | |
2965 | *src_len = fd_cb->local_address->sa_len; | |
2966 | if (src != USER_ADDR_NULL) { | |
2967 | error = copyout(fd_cb->local_address, src, fd_cb->local_address->sa_len); | |
2968 | if (error != 0) { | |
2969 | goto out; | |
2970 | } | |
2971 | } | |
2972 | } | |
2973 | ||
2974 | if (fd_cb->remote_address == NULL) { | |
2975 | struct sockaddr_in sin; | |
2976 | bzero(&sin, sizeof(sin)); | |
2977 | sin.sin_len = sizeof(sin); | |
2978 | sin.sin_family = AF_INET; | |
2979 | *dst_len = sin.sin_len; | |
2980 | if (dst != USER_ADDR_NULL) { | |
2981 | error = copyout(&sin, dst, sin.sin_len); | |
2982 | if (error != 0) { | |
2983 | goto out; | |
2984 | } | |
2985 | } | |
2986 | } else { | |
2987 | *dst_len = fd_cb->remote_address->sa_len; | |
2988 | if (dst != USER_ADDR_NULL) { | |
2989 | error = copyout(fd_cb->remote_address, dst, fd_cb->remote_address->sa_len); | |
2990 | if (error != 0) { | |
2991 | goto out; | |
2992 | } | |
2993 | } | |
2994 | } | |
2995 | ||
2996 | *aux_type = 0; | |
2997 | *aux_len = 0; | |
2998 | ||
2999 | out: | |
3000 | return error; | |
3001 | } | |
3002 | ||
3003 | static int | |
3004 | flow_divert_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp __unused, struct proc *p __unused) | |
3005 | { | |
3006 | int error = 0; | |
3007 | ||
3008 | switch (cmd) { | |
3009 | case SIOCGCONNINFO32: { | |
3010 | struct so_cinforeq32 cifr; | |
3011 | bcopy(data, &cifr, sizeof (cifr)); | |
3012 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
3013 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
3014 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
3015 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
3016 | &cifr.scir_aux_len); | |
3017 | if (error == 0) { | |
3018 | bcopy(&cifr, data, sizeof (cifr)); | |
3019 | } | |
3020 | break; | |
3021 | } | |
3022 | ||
3023 | case SIOCGCONNINFO64: { | |
3024 | struct so_cinforeq64 cifr; | |
3025 | bcopy(data, &cifr, sizeof (cifr)); | |
3026 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
3027 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
3028 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
3029 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
3030 | &cifr.scir_aux_len); | |
3031 | if (error == 0) { | |
3032 | bcopy(&cifr, data, sizeof (cifr)); | |
3033 | } | |
3034 | break; | |
3035 | } | |
3036 | ||
3037 | default: | |
3038 | error = EOPNOTSUPP; | |
3039 | } | |
3040 | ||
3041 | return error; | |
3042 | } | |
3043 | ||
3044 | static int | |
3045 | flow_divert_in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
3046 | { | |
3047 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
3048 | ||
3049 | if (error == EOPNOTSUPP) { | |
3050 | error = in_control(so, cmd, data, ifp, p); | |
3051 | } | |
3052 | ||
3053 | return error; | |
3054 | } | |
3055 | ||
3056 | static int | |
3057 | flow_divert_in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
3058 | { | |
3059 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
3060 | ||
3061 | if (error == EOPNOTSUPP) { | |
3062 | error = in6_control(so, cmd, data, ifp, p); | |
3063 | } | |
3064 | ||
3065 | return error; | |
3066 | } | |
3067 | ||
3068 | static errno_t | |
3069 | flow_divert_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) | |
3070 | { | |
3071 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3072 | int error = 0; | |
3073 | struct inpcb *inp; | |
3074 | ||
3075 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3076 | ||
3077 | inp = sotoinpcb(so); | |
3078 | if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { | |
3079 | error = ECONNRESET; | |
3080 | goto done; | |
3081 | } | |
3082 | ||
3083 | if (control && mbuf_len(control) > 0) { | |
3084 | error = EINVAL; | |
3085 | goto done; | |
3086 | } | |
3087 | ||
3088 | if (flags & MSG_OOB) { | |
3089 | error = EINVAL; | |
3090 | goto done; /* We don't support OOB data */ | |
3091 | } | |
3092 | ||
3093 | error = flow_divert_check_no_cellular(fd_cb) || | |
3094 | flow_divert_check_no_expensive(fd_cb); | |
3095 | if (error) { | |
3096 | goto done; | |
3097 | } | |
3098 | ||
3099 | /* Implicit connect */ | |
3100 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
3101 | FDLOG0(LOG_INFO, fd_cb, "implicit connect"); | |
3102 | error = flow_divert_connect_out(so, to, p); | |
3103 | if (error) { | |
3104 | goto done; | |
3105 | } | |
3106 | ||
3107 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { | |
3108 | /* Open up the send window so that the data will get sent right away */ | |
3109 | fd_cb->send_window = mbuf_pkthdr_len(data); | |
3110 | } | |
3111 | } | |
3112 | ||
3113 | FDLOG(LOG_DEBUG, fd_cb, "app wrote %lu bytes", mbuf_pkthdr_len(data)); | |
3114 | ||
3115 | fd_cb->bytes_written_by_app += mbuf_pkthdr_len(data); | |
3116 | error = flow_divert_send_app_data(fd_cb, data, to); | |
3117 | if (error) { | |
3118 | goto done; | |
3119 | } | |
3120 | ||
3121 | data = NULL; | |
3122 | ||
3123 | if (flags & PRUS_EOF) { | |
3124 | flow_divert_shutdown(so); | |
3125 | } | |
3126 | ||
3127 | done: | |
3128 | if (data) { | |
3129 | mbuf_freem(data); | |
3130 | } | |
3131 | if (control) { | |
3132 | mbuf_free(control); | |
3133 | } | |
3134 | return error; | |
3135 | } | |
3136 | ||
3137 | static int | |
3138 | flow_divert_preconnect(struct socket *so) | |
3139 | { | |
3140 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3141 | int error = 0; | |
3142 | ||
3143 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) && fd_cb->connect_packet != NULL) { | |
3144 | FDLOG0(LOG_INFO, fd_cb, "Pre-connect read: sending saved connect packet"); | |
3145 | mbuf_t connect_packet = fd_cb->connect_packet; | |
3146 | fd_cb->connect_packet = NULL; | |
3147 | ||
3148 | error = flow_divert_send_packet(fd_cb, connect_packet, TRUE); | |
3149 | if (error) { | |
3150 | mbuf_freem(connect_packet); | |
3151 | } | |
3152 | ||
3153 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
3154 | } | |
3155 | ||
3156 | soclearfastopen(so); | |
3157 | ||
3158 | return error; | |
3159 | } | |
3160 | ||
3161 | static void | |
3162 | flow_divert_set_protosw(struct socket *so) | |
3163 | { | |
3164 | so->so_flags |= SOF_FLOW_DIVERT; | |
3165 | if (SOCK_DOM(so) == PF_INET) { | |
3166 | so->so_proto = &g_flow_divert_in_protosw; | |
3167 | } | |
3168 | #if INET6 | |
3169 | else { | |
3170 | so->so_proto = (struct protosw *)&g_flow_divert_in6_protosw; | |
3171 | } | |
3172 | #endif /* INET6 */ | |
3173 | } | |
3174 | ||
3175 | static void | |
3176 | flow_divert_set_udp_protosw(struct socket *so) | |
3177 | { | |
3178 | so->so_flags |= SOF_FLOW_DIVERT; | |
3179 | if (SOCK_DOM(so) == PF_INET) { | |
3180 | so->so_proto = &g_flow_divert_in_udp_protosw; | |
3181 | } | |
3182 | #if INET6 | |
3183 | else { | |
3184 | so->so_proto = (struct protosw *)&g_flow_divert_in6_udp_protosw; | |
3185 | } | |
3186 | #endif /* INET6 */ | |
3187 | } | |
3188 | ||
3189 | static errno_t | |
3190 | flow_divert_attach(struct socket *so, uint32_t flow_id, uint32_t ctl_unit) | |
3191 | { | |
3192 | int error = 0; | |
3193 | struct flow_divert_pcb *fd_cb = NULL; | |
3194 | struct ifnet *ifp = NULL; | |
3195 | struct inpcb *inp = NULL; | |
3196 | struct socket *old_so; | |
3197 | mbuf_t recv_data = NULL; | |
3198 | ||
3199 | socket_unlock(so, 0); | |
3200 | ||
3201 | FDLOG(LOG_INFO, &nil_pcb, "Attaching socket to flow %u", flow_id); | |
3202 | ||
3203 | /* Find the flow divert control block */ | |
3204 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3205 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
3206 | struct flow_divert_group *group = g_flow_divert_groups[ctl_unit]; | |
3207 | if (group != NULL) { | |
3208 | fd_cb = flow_divert_pcb_lookup(flow_id, group); | |
3209 | } | |
3210 | } | |
3211 | lck_rw_done(&g_flow_divert_group_lck); | |
3212 | ||
3213 | if (fd_cb == NULL) { | |
3214 | error = ENOENT; | |
3215 | goto done; | |
3216 | } | |
3217 | ||
3218 | FDLOCK(fd_cb); | |
3219 | ||
3220 | /* Dis-associate the flow divert control block from its current socket */ | |
3221 | old_so = fd_cb->so; | |
3222 | ||
3223 | inp = sotoinpcb(old_so); | |
3224 | ||
3225 | VERIFY(inp != NULL); | |
3226 | ||
3227 | socket_lock(old_so, 0); | |
3228 | flow_divert_disconnect_socket(old_so); | |
3229 | old_so->so_flags &= ~SOF_FLOW_DIVERT; | |
3230 | old_so->so_fd_pcb = NULL; | |
3231 | if (SOCK_TYPE(old_so) == SOCK_STREAM) { | |
3232 | old_so->so_proto = pffindproto(SOCK_DOM(old_so), IPPROTO_TCP, SOCK_STREAM); | |
3233 | } else if (SOCK_TYPE(old_so) == SOCK_DGRAM) { | |
3234 | old_so->so_proto = pffindproto(SOCK_DOM(old_so), IPPROTO_UDP, SOCK_DGRAM); | |
3235 | } | |
3236 | fd_cb->so = NULL; | |
3237 | /* Save the output interface */ | |
3238 | ifp = inp->inp_last_outifp; | |
3239 | if (old_so->so_rcv.sb_cc > 0) { | |
3240 | error = mbuf_dup(old_so->so_rcv.sb_mb, MBUF_DONTWAIT, &recv_data); | |
3241 | sbflush(&old_so->so_rcv); | |
3242 | } | |
3243 | socket_unlock(old_so, 0); | |
3244 | ||
3245 | /* Associate the new socket with the flow divert control block */ | |
3246 | socket_lock(so, 0); | |
3247 | so->so_fd_pcb = fd_cb; | |
3248 | inp = sotoinpcb(so); | |
3249 | inp->inp_last_outifp = ifp; | |
3250 | if (recv_data != NULL) { | |
3251 | if (sbappendstream(&so->so_rcv, recv_data)) { | |
3252 | sorwakeup(so); | |
3253 | } | |
3254 | } | |
3255 | flow_divert_set_protosw(so); | |
3256 | socket_unlock(so, 0); | |
3257 | ||
3258 | fd_cb->so = so; | |
3259 | fd_cb->flags |= FLOW_DIVERT_TRANSFERRED; | |
3260 | ||
3261 | FDUNLOCK(fd_cb); | |
3262 | ||
3263 | done: | |
3264 | socket_lock(so, 0); | |
3265 | ||
3266 | if (fd_cb != NULL) { | |
3267 | FDRELEASE(fd_cb); /* Release the reference obtained via flow_divert_pcb_lookup */ | |
3268 | } | |
3269 | ||
3270 | return error; | |
3271 | } | |
3272 | ||
3273 | errno_t | |
3274 | flow_divert_implicit_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) | |
3275 | { | |
3276 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3277 | struct inpcb *inp; | |
3278 | int error = 0; | |
3279 | ||
3280 | inp = sotoinpcb(so); | |
3281 | if (inp == NULL) { | |
3282 | return (EINVAL); | |
3283 | } | |
3284 | ||
3285 | if (fd_cb == NULL) { | |
3286 | uint32_t fd_ctl_unit = necp_socket_get_flow_divert_control_unit(inp); | |
3287 | if (fd_ctl_unit > 0) { | |
3288 | error = flow_divert_pcb_init(so, fd_ctl_unit); | |
3289 | fd_cb = so->so_fd_pcb; | |
3290 | if (error != 0 || fd_cb == NULL) { | |
3291 | goto done; | |
3292 | } | |
3293 | } else { | |
3294 | error = ENETDOWN; | |
3295 | goto done; | |
3296 | } | |
3297 | } | |
3298 | return flow_divert_data_out(so, flags, data, to, control, p); | |
3299 | ||
3300 | done: | |
3301 | if (data) { | |
3302 | mbuf_freem(data); | |
3303 | } | |
3304 | if (control) { | |
3305 | mbuf_free(control); | |
3306 | } | |
3307 | ||
3308 | return error; | |
3309 | } | |
3310 | ||
3311 | errno_t | |
3312 | flow_divert_pcb_init(struct socket *so, uint32_t ctl_unit) | |
3313 | { | |
3314 | errno_t error = 0; | |
3315 | struct flow_divert_pcb *fd_cb; | |
3316 | ||
3317 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
3318 | return EALREADY; | |
3319 | } | |
3320 | ||
3321 | fd_cb = flow_divert_pcb_create(so); | |
3322 | if (fd_cb != NULL) { | |
3323 | error = flow_divert_pcb_insert(fd_cb, ctl_unit); | |
3324 | if (error) { | |
3325 | FDLOG(LOG_ERR, fd_cb, "pcb insert failed: %d", error); | |
3326 | FDRELEASE(fd_cb); | |
3327 | } else { | |
3328 | fd_cb->control_group_unit = ctl_unit; | |
3329 | so->so_fd_pcb = fd_cb; | |
3330 | ||
3331 | if (SOCK_TYPE(so) == SOCK_STREAM) { | |
3332 | flow_divert_set_protosw(so); | |
3333 | } else if (SOCK_TYPE(so) == SOCK_DGRAM) { | |
3334 | flow_divert_set_udp_protosw(so); | |
3335 | } | |
3336 | ||
3337 | FDLOG0(LOG_INFO, fd_cb, "Created"); | |
3338 | } | |
3339 | } else { | |
3340 | error = ENOMEM; | |
3341 | } | |
3342 | ||
3343 | return error; | |
3344 | } | |
3345 | ||
3346 | errno_t | |
3347 | flow_divert_token_set(struct socket *so, struct sockopt *sopt) | |
3348 | { | |
3349 | uint32_t ctl_unit = 0; | |
3350 | uint32_t key_unit = 0; | |
3351 | uint32_t flow_id = 0; | |
3352 | int error = 0; | |
3353 | int hmac_error = 0; | |
3354 | mbuf_t token = NULL; | |
3355 | ||
3356 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
3357 | error = EALREADY; | |
3358 | goto done; | |
3359 | } | |
3360 | ||
3361 | if (g_init_result) { | |
3362 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_init failed (%d), cannot use flow divert", g_init_result); | |
3363 | error = ENOPROTOOPT; | |
3364 | goto done; | |
3365 | } | |
3366 | ||
3367 | if ((SOCK_TYPE(so) != SOCK_STREAM && SOCK_TYPE(so) != SOCK_DGRAM) || | |
3368 | (SOCK_PROTO(so) != IPPROTO_TCP && SOCK_PROTO(so) != IPPROTO_UDP) || | |
3369 | (SOCK_DOM(so) != PF_INET | |
3370 | #if INET6 | |
3371 | && SOCK_DOM(so) != PF_INET6 | |
3372 | #endif | |
3373 | )) | |
3374 | { | |
3375 | error = EINVAL; | |
3376 | goto done; | |
3377 | } else { | |
3378 | if (SOCK_TYPE(so) == SOCK_STREAM && SOCK_PROTO(so) == IPPROTO_TCP) { | |
3379 | struct tcpcb *tp = sototcpcb(so); | |
3380 | if (tp == NULL || tp->t_state != TCPS_CLOSED) { | |
3381 | error = EINVAL; | |
3382 | goto done; | |
3383 | } | |
3384 | } | |
3385 | } | |
3386 | ||
3387 | error = soopt_getm(sopt, &token); | |
3388 | if (error) { | |
3389 | token = NULL; | |
3390 | goto done; | |
3391 | } | |
3392 | ||
3393 | error = soopt_mcopyin(sopt, token); | |
3394 | if (error) { | |
3395 | token = NULL; | |
3396 | goto done; | |
3397 | } | |
3398 | ||
3399 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(key_unit), (void *)&key_unit, NULL); | |
3400 | if (!error) { | |
3401 | key_unit = ntohl(key_unit); | |
3402 | if (key_unit >= GROUP_COUNT_MAX) { | |
3403 | key_unit = 0; | |
3404 | } | |
3405 | } else if (error != ENOENT) { | |
3406 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the key unit from the token: %d", error); | |
3407 | goto done; | |
3408 | } else { | |
3409 | key_unit = 0; | |
3410 | } | |
3411 | ||
3412 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), (void *)&ctl_unit, NULL); | |
3413 | if (error) { | |
3414 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the control socket unit from the token: %d", error); | |
3415 | goto done; | |
3416 | } | |
3417 | ||
3418 | /* A valid kernel control unit is required */ | |
3419 | ctl_unit = ntohl(ctl_unit); | |
3420 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
3421 | FDLOG(LOG_ERR, &nil_pcb, "Got an invalid control socket unit: %u", ctl_unit); | |
3422 | error = EINVAL; | |
3423 | goto done; | |
3424 | } | |
3425 | ||
3426 | socket_unlock(so, 0); | |
3427 | hmac_error = flow_divert_packet_verify_hmac(token, (key_unit != 0 ? key_unit : ctl_unit)); | |
3428 | socket_lock(so, 0); | |
3429 | ||
3430 | if (hmac_error && hmac_error != ENOENT) { | |
3431 | FDLOG(LOG_ERR, &nil_pcb, "HMAC verfication failed: %d", hmac_error); | |
3432 | error = hmac_error; | |
3433 | goto done; | |
3434 | } | |
3435 | ||
3436 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_FLOW_ID, sizeof(flow_id), (void *)&flow_id, NULL); | |
3437 | if (error && error != ENOENT) { | |
3438 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the flow ID from the token: %d", error); | |
3439 | goto done; | |
3440 | } | |
3441 | ||
3442 | if (flow_id == 0) { | |
3443 | error = flow_divert_pcb_init(so, ctl_unit); | |
3444 | if (error == 0) { | |
3445 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3446 | int log_level = LOG_NOTICE; | |
3447 | ||
3448 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_LOG_LEVEL, | |
3449 | sizeof(log_level), &log_level, NULL); | |
3450 | if (error == 0) { | |
3451 | fd_cb->log_level = log_level; | |
3452 | } | |
3453 | error = 0; | |
3454 | ||
3455 | fd_cb->connect_token = token; | |
3456 | token = NULL; | |
3457 | } | |
3458 | } else { | |
3459 | error = flow_divert_attach(so, flow_id, ctl_unit); | |
3460 | } | |
3461 | ||
3462 | if (hmac_error == 0) { | |
3463 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3464 | if (fd_cb != NULL) { | |
3465 | fd_cb->flags |= FLOW_DIVERT_HAS_HMAC; | |
3466 | } | |
3467 | } | |
3468 | ||
3469 | done: | |
3470 | if (token != NULL) { | |
3471 | mbuf_freem(token); | |
3472 | } | |
3473 | ||
3474 | return error; | |
3475 | } | |
3476 | ||
3477 | errno_t | |
3478 | flow_divert_token_get(struct socket *so, struct sockopt *sopt) | |
3479 | { | |
3480 | uint32_t ctl_unit; | |
3481 | int error = 0; | |
3482 | uint8_t hmac[SHA_DIGEST_LENGTH]; | |
3483 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
3484 | mbuf_t token = NULL; | |
3485 | struct flow_divert_group *control_group = NULL; | |
3486 | ||
3487 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { | |
3488 | error = EINVAL; | |
3489 | goto done; | |
3490 | } | |
3491 | ||
3492 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
3493 | ||
3494 | if (fd_cb->group == NULL) { | |
3495 | error = EINVAL; | |
3496 | goto done; | |
3497 | } | |
3498 | ||
3499 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &token); | |
3500 | if (error) { | |
3501 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
3502 | goto done; | |
3503 | } | |
3504 | ||
3505 | ctl_unit = htonl(fd_cb->group->ctl_unit); | |
3506 | ||
3507 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
3508 | if (error) { | |
3509 | goto done; | |
3510 | } | |
3511 | ||
3512 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_FLOW_ID, sizeof(fd_cb->hash), &fd_cb->hash); | |
3513 | if (error) { | |
3514 | goto done; | |
3515 | } | |
3516 | ||
3517 | if (fd_cb->app_data != NULL) { | |
3518 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_APP_DATA, fd_cb->app_data_length, fd_cb->app_data); | |
3519 | if (error) { | |
3520 | goto done; | |
3521 | } | |
3522 | } | |
3523 | ||
3524 | socket_unlock(so, 0); | |
3525 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3526 | ||
3527 | if (g_flow_divert_groups != NULL && g_active_group_count > 0 && | |
3528 | fd_cb->control_group_unit > 0 && fd_cb->control_group_unit < GROUP_COUNT_MAX) | |
3529 | { | |
3530 | control_group = g_flow_divert_groups[fd_cb->control_group_unit]; | |
3531 | } | |
3532 | ||
3533 | if (control_group != NULL) { | |
3534 | lck_rw_lock_shared(&control_group->lck); | |
3535 | ctl_unit = htonl(control_group->ctl_unit); | |
3536 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(ctl_unit), &ctl_unit); | |
3537 | if (!error) { | |
3538 | error = flow_divert_packet_compute_hmac(token, control_group, hmac); | |
3539 | } | |
3540 | lck_rw_done(&control_group->lck); | |
3541 | } else { | |
3542 | error = ENOPROTOOPT; | |
3543 | } | |
3544 | ||
3545 | lck_rw_done(&g_flow_divert_group_lck); | |
3546 | socket_lock(so, 0); | |
3547 | ||
3548 | if (error) { | |
3549 | goto done; | |
3550 | } | |
3551 | ||
3552 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_HMAC, sizeof(hmac), hmac); | |
3553 | if (error) { | |
3554 | goto done; | |
3555 | } | |
3556 | ||
3557 | if (sopt->sopt_val == USER_ADDR_NULL) { | |
3558 | /* If the caller passed NULL to getsockopt, just set the size of the token and return */ | |
3559 | sopt->sopt_valsize = mbuf_pkthdr_len(token); | |
3560 | goto done; | |
3561 | } | |
3562 | ||
3563 | error = soopt_mcopyout(sopt, token); | |
3564 | if (error) { | |
3565 | token = NULL; /* For some reason, soopt_mcopyout() frees the mbuf if it fails */ | |
3566 | goto done; | |
3567 | } | |
3568 | ||
3569 | done: | |
3570 | if (token != NULL) { | |
3571 | mbuf_freem(token); | |
3572 | } | |
3573 | ||
3574 | return error; | |
3575 | } | |
3576 | ||
3577 | static errno_t | |
3578 | flow_divert_kctl_connect(kern_ctl_ref kctlref __unused, struct sockaddr_ctl *sac, void **unitinfo) | |
3579 | { | |
3580 | struct flow_divert_group *new_group = NULL; | |
3581 | int error = 0; | |
3582 | ||
3583 | if (sac->sc_unit >= GROUP_COUNT_MAX) { | |
3584 | error = EINVAL; | |
3585 | goto done; | |
3586 | } | |
3587 | ||
3588 | *unitinfo = NULL; | |
3589 | ||
3590 | MALLOC_ZONE(new_group, struct flow_divert_group *, sizeof(*new_group), M_FLOW_DIVERT_GROUP, M_WAITOK); | |
3591 | if (new_group == NULL) { | |
3592 | error = ENOBUFS; | |
3593 | goto done; | |
3594 | } | |
3595 | ||
3596 | memset(new_group, 0, sizeof(*new_group)); | |
3597 | ||
3598 | lck_rw_init(&new_group->lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
3599 | RB_INIT(&new_group->pcb_tree); | |
3600 | new_group->ctl_unit = sac->sc_unit; | |
3601 | MBUFQ_INIT(&new_group->send_queue); | |
3602 | new_group->signing_id_trie.root = NULL_TRIE_IDX; | |
3603 | ||
3604 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3605 | ||
3606 | if (g_flow_divert_groups == NULL) { | |
3607 | MALLOC(g_flow_divert_groups, | |
3608 | struct flow_divert_group **, | |
3609 | GROUP_COUNT_MAX * sizeof(struct flow_divert_group *), | |
3610 | M_TEMP, | |
3611 | M_WAITOK | M_ZERO); | |
3612 | } | |
3613 | ||
3614 | if (g_flow_divert_groups == NULL) { | |
3615 | error = ENOBUFS; | |
3616 | } else if (g_flow_divert_groups[sac->sc_unit] != NULL) { | |
3617 | error = EALREADY; | |
3618 | } else { | |
3619 | g_flow_divert_groups[sac->sc_unit] = new_group; | |
3620 | g_active_group_count++; | |
3621 | } | |
3622 | ||
3623 | lck_rw_done(&g_flow_divert_group_lck); | |
3624 | ||
3625 | *unitinfo = new_group; | |
3626 | ||
3627 | done: | |
3628 | if (error != 0 && new_group != NULL) { | |
3629 | FREE_ZONE(new_group, sizeof(*new_group), M_FLOW_DIVERT_GROUP); | |
3630 | } | |
3631 | return error; | |
3632 | } | |
3633 | ||
3634 | static errno_t | |
3635 | flow_divert_kctl_disconnect(kern_ctl_ref kctlref __unused, uint32_t unit, void *unitinfo) | |
3636 | { | |
3637 | struct flow_divert_group *group = NULL; | |
3638 | errno_t error = 0; | |
3639 | ||
3640 | if (unit >= GROUP_COUNT_MAX) { | |
3641 | return EINVAL; | |
3642 | } | |
3643 | ||
3644 | FDLOG(LOG_INFO, &nil_pcb, "disconnecting group %d", unit); | |
3645 | ||
3646 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3647 | ||
3648 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
3649 | panic("flow divert group %u is disconnecting, but no groups are active (groups = %p, active count = %u", unit, | |
3650 | g_flow_divert_groups, g_active_group_count); | |
3651 | } | |
3652 | ||
3653 | group = g_flow_divert_groups[unit]; | |
3654 | ||
3655 | if (group != (struct flow_divert_group *)unitinfo) { | |
3656 | panic("group with unit %d (%p) != unit info (%p)", unit, group, unitinfo); | |
3657 | } | |
3658 | ||
3659 | if (group != NULL) { | |
3660 | flow_divert_close_all(group); | |
3661 | if (group->token_key != NULL) { | |
3662 | memset(group->token_key, 0, group->token_key_size); | |
3663 | FREE(group->token_key, M_TEMP); | |
3664 | group->token_key = NULL; | |
3665 | group->token_key_size = 0; | |
3666 | } | |
3667 | ||
3668 | /* Re-set the current trie */ | |
3669 | if (group->signing_id_trie.memory != NULL) { | |
3670 | FREE(group->signing_id_trie.memory, M_TEMP); | |
3671 | } | |
3672 | memset(&group->signing_id_trie, 0, sizeof(group->signing_id_trie)); | |
3673 | group->signing_id_trie.root = NULL_TRIE_IDX; | |
3674 | ||
3675 | FREE_ZONE(group, sizeof(*group), M_FLOW_DIVERT_GROUP); | |
3676 | g_flow_divert_groups[unit] = NULL; | |
3677 | g_active_group_count--; | |
3678 | } else { | |
3679 | error = EINVAL; | |
3680 | } | |
3681 | ||
3682 | if (g_active_group_count == 0) { | |
3683 | FREE(g_flow_divert_groups, M_TEMP); | |
3684 | g_flow_divert_groups = NULL; | |
3685 | } | |
3686 | ||
3687 | lck_rw_done(&g_flow_divert_group_lck); | |
3688 | ||
3689 | return error; | |
3690 | } | |
3691 | ||
3692 | static errno_t | |
3693 | flow_divert_kctl_send(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, mbuf_t m, int flags __unused) | |
3694 | { | |
3695 | return flow_divert_input(m, (struct flow_divert_group *)unitinfo); | |
3696 | } | |
3697 | ||
3698 | static void | |
3699 | flow_divert_kctl_rcvd(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, int flags __unused) | |
3700 | { | |
3701 | struct flow_divert_group *group = (struct flow_divert_group *)unitinfo; | |
3702 | ||
3703 | if (!OSTestAndClear(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits)) { | |
3704 | struct flow_divert_pcb *fd_cb; | |
3705 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
3706 | ||
3707 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3708 | lck_rw_lock_exclusive(&group->lck); | |
3709 | ||
3710 | while (!MBUFQ_EMPTY(&group->send_queue)) { | |
3711 | mbuf_t next_packet; | |
3712 | FDLOG0(LOG_DEBUG, &nil_pcb, "trying ctl_enqueuembuf again"); | |
3713 | next_packet = MBUFQ_FIRST(&group->send_queue); | |
3714 | int error = ctl_enqueuembuf(g_flow_divert_kctl_ref, group->ctl_unit, next_packet, CTL_DATA_EOR); | |
3715 | if (error) { | |
3716 | FDLOG(LOG_DEBUG, &nil_pcb, "ctl_enqueuembuf returned an error: %d", error); | |
3717 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits); | |
3718 | lck_rw_done(&group->lck); | |
3719 | lck_rw_done(&g_flow_divert_group_lck); | |
3720 | return; | |
3721 | } | |
3722 | MBUFQ_DEQUEUE(&group->send_queue, next_packet); | |
3723 | } | |
3724 | ||
3725 | SLIST_INIT(&tmp_list); | |
3726 | ||
3727 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
3728 | FDRETAIN(fd_cb); | |
3729 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
3730 | } | |
3731 | ||
3732 | lck_rw_done(&group->lck); | |
3733 | ||
3734 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { | |
3735 | FDLOCK(fd_cb); | |
3736 | if (fd_cb->so != NULL) { | |
3737 | socket_lock(fd_cb->so, 0); | |
3738 | if (fd_cb->group != NULL) { | |
3739 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
3740 | } | |
3741 | socket_unlock(fd_cb->so, 0); | |
3742 | } | |
3743 | FDUNLOCK(fd_cb); | |
3744 | FDRELEASE(fd_cb); | |
3745 | } | |
3746 | ||
3747 | lck_rw_done(&g_flow_divert_group_lck); | |
3748 | } | |
3749 | } | |
3750 | ||
3751 | static int | |
3752 | flow_divert_kctl_init(void) | |
3753 | { | |
3754 | struct kern_ctl_reg ctl_reg; | |
3755 | int result; | |
3756 | ||
3757 | memset(&ctl_reg, 0, sizeof(ctl_reg)); | |
3758 | ||
3759 | strlcpy(ctl_reg.ctl_name, FLOW_DIVERT_CONTROL_NAME, sizeof(ctl_reg.ctl_name)); | |
3760 | ctl_reg.ctl_name[sizeof(ctl_reg.ctl_name)-1] = '\0'; | |
3761 | ctl_reg.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_EXTENDED; | |
3762 | ctl_reg.ctl_sendsize = FD_CTL_SENDBUFF_SIZE; | |
3763 | ctl_reg.ctl_recvsize = FD_CTL_RCVBUFF_SIZE; | |
3764 | ||
3765 | ctl_reg.ctl_connect = flow_divert_kctl_connect; | |
3766 | ctl_reg.ctl_disconnect = flow_divert_kctl_disconnect; | |
3767 | ctl_reg.ctl_send = flow_divert_kctl_send; | |
3768 | ctl_reg.ctl_rcvd = flow_divert_kctl_rcvd; | |
3769 | ||
3770 | result = ctl_register(&ctl_reg, &g_flow_divert_kctl_ref); | |
3771 | ||
3772 | if (result) { | |
3773 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_kctl_init - ctl_register failed: %d\n", result); | |
3774 | return result; | |
3775 | } | |
3776 | ||
3777 | return 0; | |
3778 | } | |
3779 | ||
3780 | void | |
3781 | flow_divert_init(void) | |
3782 | { | |
3783 | memset(&nil_pcb, 0, sizeof(nil_pcb)); | |
3784 | nil_pcb.log_level = LOG_NOTICE; | |
3785 | ||
3786 | g_tcp_protosw = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM); | |
3787 | ||
3788 | VERIFY(g_tcp_protosw != NULL); | |
3789 | ||
3790 | memcpy(&g_flow_divert_in_protosw, g_tcp_protosw, sizeof(g_flow_divert_in_protosw)); | |
3791 | memcpy(&g_flow_divert_in_usrreqs, g_tcp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_usrreqs)); | |
3792 | ||
3793 | g_flow_divert_in_usrreqs.pru_connect = flow_divert_connect_out; | |
3794 | g_flow_divert_in_usrreqs.pru_connectx = flow_divert_connectx_out; | |
3795 | g_flow_divert_in_usrreqs.pru_control = flow_divert_in_control; | |
3796 | g_flow_divert_in_usrreqs.pru_disconnect = flow_divert_close; | |
3797 | g_flow_divert_in_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3798 | g_flow_divert_in_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3799 | g_flow_divert_in_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3800 | g_flow_divert_in_usrreqs.pru_send = flow_divert_data_out; | |
3801 | g_flow_divert_in_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3802 | g_flow_divert_in_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3803 | g_flow_divert_in_usrreqs.pru_preconnect = flow_divert_preconnect; | |
3804 | ||
3805 | g_flow_divert_in_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
3806 | g_flow_divert_in_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3807 | ||
3808 | /* | |
3809 | * Socket filters shouldn't attach/detach to/from this protosw | |
3810 | * since pr_protosw is to be used instead, which points to the | |
3811 | * real protocol; if they do, it is a bug and we should panic. | |
3812 | */ | |
3813 | g_flow_divert_in_protosw.pr_filter_head.tqh_first = | |
3814 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3815 | g_flow_divert_in_protosw.pr_filter_head.tqh_last = | |
3816 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3817 | ||
3818 | /* UDP */ | |
3819 | g_udp_protosw = pffindproto(AF_INET, IPPROTO_UDP, SOCK_DGRAM); | |
3820 | VERIFY(g_udp_protosw != NULL); | |
3821 | ||
3822 | memcpy(&g_flow_divert_in_udp_protosw, g_udp_protosw, sizeof(g_flow_divert_in_udp_protosw)); | |
3823 | memcpy(&g_flow_divert_in_udp_usrreqs, g_udp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_udp_usrreqs)); | |
3824 | ||
3825 | g_flow_divert_in_udp_usrreqs.pru_connect = flow_divert_connect_out; | |
3826 | g_flow_divert_in_udp_usrreqs.pru_connectx = flow_divert_connectx_out; | |
3827 | g_flow_divert_in_udp_usrreqs.pru_control = flow_divert_in_control; | |
3828 | g_flow_divert_in_udp_usrreqs.pru_disconnect = flow_divert_close; | |
3829 | g_flow_divert_in_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3830 | g_flow_divert_in_udp_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3831 | g_flow_divert_in_udp_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3832 | g_flow_divert_in_udp_usrreqs.pru_send = flow_divert_data_out; | |
3833 | g_flow_divert_in_udp_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3834 | g_flow_divert_in_udp_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3835 | g_flow_divert_in_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; | |
3836 | g_flow_divert_in_udp_usrreqs.pru_soreceive_list = pru_soreceive_list_notsupp; | |
3837 | g_flow_divert_in_udp_usrreqs.pru_preconnect = flow_divert_preconnect; | |
3838 | ||
3839 | g_flow_divert_in_udp_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
3840 | g_flow_divert_in_udp_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3841 | ||
3842 | /* | |
3843 | * Socket filters shouldn't attach/detach to/from this protosw | |
3844 | * since pr_protosw is to be used instead, which points to the | |
3845 | * real protocol; if they do, it is a bug and we should panic. | |
3846 | */ | |
3847 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_first = | |
3848 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3849 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_last = | |
3850 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3851 | ||
3852 | #if INET6 | |
3853 | g_tcp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_TCP, SOCK_STREAM); | |
3854 | ||
3855 | VERIFY(g_tcp6_protosw != NULL); | |
3856 | ||
3857 | memcpy(&g_flow_divert_in6_protosw, g_tcp6_protosw, sizeof(g_flow_divert_in6_protosw)); | |
3858 | memcpy(&g_flow_divert_in6_usrreqs, g_tcp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_usrreqs)); | |
3859 | ||
3860 | g_flow_divert_in6_usrreqs.pru_connect = flow_divert_connect_out; | |
3861 | g_flow_divert_in6_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
3862 | g_flow_divert_in6_usrreqs.pru_control = flow_divert_in6_control; | |
3863 | g_flow_divert_in6_usrreqs.pru_disconnect = flow_divert_close; | |
3864 | g_flow_divert_in6_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3865 | g_flow_divert_in6_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3866 | g_flow_divert_in6_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3867 | g_flow_divert_in6_usrreqs.pru_send = flow_divert_data_out; | |
3868 | g_flow_divert_in6_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3869 | g_flow_divert_in6_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3870 | g_flow_divert_in6_usrreqs.pru_preconnect = flow_divert_preconnect; | |
3871 | ||
3872 | g_flow_divert_in6_protosw.pr_usrreqs = &g_flow_divert_in6_usrreqs; | |
3873 | g_flow_divert_in6_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3874 | /* | |
3875 | * Socket filters shouldn't attach/detach to/from this protosw | |
3876 | * since pr_protosw is to be used instead, which points to the | |
3877 | * real protocol; if they do, it is a bug and we should panic. | |
3878 | */ | |
3879 | g_flow_divert_in6_protosw.pr_filter_head.tqh_first = | |
3880 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3881 | g_flow_divert_in6_protosw.pr_filter_head.tqh_last = | |
3882 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3883 | ||
3884 | /* UDP6 */ | |
3885 | g_udp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_UDP, SOCK_DGRAM); | |
3886 | ||
3887 | VERIFY(g_udp6_protosw != NULL); | |
3888 | ||
3889 | memcpy(&g_flow_divert_in6_udp_protosw, g_udp6_protosw, sizeof(g_flow_divert_in6_udp_protosw)); | |
3890 | memcpy(&g_flow_divert_in6_udp_usrreqs, g_udp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_udp_usrreqs)); | |
3891 | ||
3892 | g_flow_divert_in6_udp_usrreqs.pru_connect = flow_divert_connect_out; | |
3893 | g_flow_divert_in6_udp_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
3894 | g_flow_divert_in6_udp_usrreqs.pru_control = flow_divert_in6_control; | |
3895 | g_flow_divert_in6_udp_usrreqs.pru_disconnect = flow_divert_close; | |
3896 | g_flow_divert_in6_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3897 | g_flow_divert_in6_udp_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3898 | g_flow_divert_in6_udp_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3899 | g_flow_divert_in6_udp_usrreqs.pru_send = flow_divert_data_out; | |
3900 | g_flow_divert_in6_udp_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3901 | g_flow_divert_in6_udp_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3902 | g_flow_divert_in6_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; | |
3903 | g_flow_divert_in6_udp_usrreqs.pru_soreceive_list = pru_soreceive_list_notsupp; | |
3904 | g_flow_divert_in6_udp_usrreqs.pru_preconnect = flow_divert_preconnect; | |
3905 | ||
3906 | g_flow_divert_in6_udp_protosw.pr_usrreqs = &g_flow_divert_in6_udp_usrreqs; | |
3907 | g_flow_divert_in6_udp_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3908 | /* | |
3909 | * Socket filters shouldn't attach/detach to/from this protosw | |
3910 | * since pr_protosw is to be used instead, which points to the | |
3911 | * real protocol; if they do, it is a bug and we should panic. | |
3912 | */ | |
3913 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_first = | |
3914 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3915 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_last = | |
3916 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3917 | #endif /* INET6 */ | |
3918 | ||
3919 | flow_divert_grp_attr = lck_grp_attr_alloc_init(); | |
3920 | if (flow_divert_grp_attr == NULL) { | |
3921 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_attr_alloc_init failed"); | |
3922 | g_init_result = ENOMEM; | |
3923 | goto done; | |
3924 | } | |
3925 | ||
3926 | flow_divert_mtx_grp = lck_grp_alloc_init(FLOW_DIVERT_CONTROL_NAME, flow_divert_grp_attr); | |
3927 | if (flow_divert_mtx_grp == NULL) { | |
3928 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_alloc_init failed"); | |
3929 | g_init_result = ENOMEM; | |
3930 | goto done; | |
3931 | } | |
3932 | ||
3933 | flow_divert_mtx_attr = lck_attr_alloc_init(); | |
3934 | if (flow_divert_mtx_attr == NULL) { | |
3935 | FDLOG0(LOG_ERR, &nil_pcb, "lck_attr_alloc_init failed"); | |
3936 | g_init_result = ENOMEM; | |
3937 | goto done; | |
3938 | } | |
3939 | ||
3940 | g_init_result = flow_divert_kctl_init(); | |
3941 | if (g_init_result) { | |
3942 | goto done; | |
3943 | } | |
3944 | ||
3945 | lck_rw_init(&g_flow_divert_group_lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
3946 | ||
3947 | done: | |
3948 | if (g_init_result != 0) { | |
3949 | if (flow_divert_mtx_attr != NULL) { | |
3950 | lck_attr_free(flow_divert_mtx_attr); | |
3951 | flow_divert_mtx_attr = NULL; | |
3952 | } | |
3953 | if (flow_divert_mtx_grp != NULL) { | |
3954 | lck_grp_free(flow_divert_mtx_grp); | |
3955 | flow_divert_mtx_grp = NULL; | |
3956 | } | |
3957 | if (flow_divert_grp_attr != NULL) { | |
3958 | lck_grp_attr_free(flow_divert_grp_attr); | |
3959 | flow_divert_grp_attr = NULL; | |
3960 | } | |
3961 | ||
3962 | if (g_flow_divert_kctl_ref != NULL) { | |
3963 | ctl_deregister(g_flow_divert_kctl_ref); | |
3964 | g_flow_divert_kctl_ref = NULL; | |
3965 | } | |
3966 | } | |
3967 | } |