]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1988, 1989, 1993 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)radix.c 8.4 (Berkeley) 11/2/94 | |
61 | * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $ | |
62 | */ | |
63 | ||
64 | /* | |
65 | * Routines to build and maintain radix trees for routing lookups. | |
66 | */ | |
67 | #ifndef _RADIX_H_ | |
68 | #include <sys/param.h> | |
69 | #include <sys/systm.h> | |
70 | #include <sys/malloc.h> | |
71 | #define M_DONTWAIT M_NOWAIT | |
72 | #include <sys/domain.h> | |
73 | #include <sys/syslog.h> | |
74 | #include <net/radix.h> | |
75 | #include <sys/socket.h> | |
76 | #include <sys/socketvar.h> | |
77 | #include <kern/locks.h> | |
78 | #endif | |
79 | ||
80 | static int rn_walktree_from(struct radix_node_head *h, void *a, | |
81 | void *m, walktree_f_t *f, void *w); | |
82 | static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); | |
83 | static struct radix_node | |
84 | *rn_insert(void *, struct radix_node_head *, int *, | |
85 | struct radix_node [2]), | |
86 | *rn_newpair(void *, int, struct radix_node[2]), | |
87 | *rn_search(void *, struct radix_node *), | |
88 | *rn_search_m(void *, struct radix_node *, void *); | |
89 | ||
90 | static int max_keylen; | |
91 | static struct radix_mask *rn_mkfreelist; | |
92 | static struct radix_node_head *mask_rnhead; | |
93 | static char *addmask_key; | |
94 | static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; | |
95 | static char *rn_zeros, *rn_ones; | |
96 | ||
97 | ||
98 | extern lck_grp_t *domain_proto_mtx_grp; | |
99 | extern lck_attr_t *domain_proto_mtx_attr; | |
100 | ||
101 | #define rn_masktop (mask_rnhead->rnh_treetop) | |
102 | #undef Bcmp | |
103 | #define Bcmp(a, b, l) \ | |
104 | (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l)) | |
105 | ||
106 | static int rn_lexobetter(void *m_arg, void *n_arg); | |
107 | static struct radix_mask * | |
108 | rn_new_radix_mask(struct radix_node *tt, | |
109 | struct radix_mask *next); | |
110 | static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, | |
111 | rn_matchf_t *f, void *w); | |
112 | ||
113 | #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) | |
114 | ||
115 | /* | |
116 | * The data structure for the keys is a radix tree with one way | |
117 | * branching removed. The index rn_bit at an internal node n represents a bit | |
118 | * position to be tested. The tree is arranged so that all descendants | |
119 | * of a node n have keys whose bits all agree up to position rn_bit - 1. | |
120 | * (We say the index of n is rn_bit.) | |
121 | * | |
122 | * There is at least one descendant which has a one bit at position rn_bit, | |
123 | * and at least one with a zero there. | |
124 | * | |
125 | * A route is determined by a pair of key and mask. We require that the | |
126 | * bit-wise logical and of the key and mask to be the key. | |
127 | * We define the index of a route to associated with the mask to be | |
128 | * the first bit number in the mask where 0 occurs (with bit number 0 | |
129 | * representing the highest order bit). | |
130 | * | |
131 | * We say a mask is normal if every bit is 0, past the index of the mask. | |
132 | * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, | |
133 | * and m is a normal mask, then the route applies to every descendant of n. | |
134 | * If the index(m) < rn_bit, this implies the trailing last few bits of k | |
135 | * before bit b are all 0, (and hence consequently true of every descendant | |
136 | * of n), so the route applies to all descendants of the node as well. | |
137 | * | |
138 | * Similar logic shows that a non-normal mask m such that | |
139 | * index(m) <= index(n) could potentially apply to many children of n. | |
140 | * Thus, for each non-host route, we attach its mask to a list at an internal | |
141 | * node as high in the tree as we can go. | |
142 | * | |
143 | * The present version of the code makes use of normal routes in short- | |
144 | * circuiting an explict mask and compare operation when testing whether | |
145 | * a key satisfies a normal route, and also in remembering the unique leaf | |
146 | * that governs a subtree. | |
147 | */ | |
148 | ||
149 | static struct radix_node * | |
150 | rn_search(void *v_arg, struct radix_node *head) | |
151 | { | |
152 | struct radix_node *x; | |
153 | caddr_t v; | |
154 | ||
155 | for (x = head, v = v_arg; x->rn_bit >= 0;) { | |
156 | if (x->rn_bmask & v[x->rn_offset]) | |
157 | x = x->rn_right; | |
158 | else | |
159 | x = x->rn_left; | |
160 | } | |
161 | return (x); | |
162 | } | |
163 | ||
164 | static struct radix_node * | |
165 | rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) | |
166 | { | |
167 | struct radix_node *x; | |
168 | caddr_t v = v_arg, m = m_arg; | |
169 | ||
170 | for (x = head; x->rn_bit >= 0;) { | |
171 | if ((x->rn_bmask & m[x->rn_offset]) && | |
172 | (x->rn_bmask & v[x->rn_offset])) | |
173 | x = x->rn_right; | |
174 | else | |
175 | x = x->rn_left; | |
176 | } | |
177 | return x; | |
178 | } | |
179 | ||
180 | int | |
181 | rn_refines(void *m_arg, void *n_arg) | |
182 | { | |
183 | caddr_t m = m_arg, n = n_arg; | |
184 | caddr_t lim, lim2 = lim = n + *(u_char *)n; | |
185 | int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); | |
186 | int masks_are_equal = 1; | |
187 | ||
188 | if (longer > 0) | |
189 | lim -= longer; | |
190 | while (n < lim) { | |
191 | if (*n & ~(*m)) | |
192 | return 0; | |
193 | if (*n++ != *m++) | |
194 | masks_are_equal = 0; | |
195 | } | |
196 | while (n < lim2) | |
197 | if (*n++) | |
198 | return 0; | |
199 | if (masks_are_equal && (longer < 0)) | |
200 | for (lim2 = m - longer; m < lim2; ) | |
201 | if (*m++) | |
202 | return 1; | |
203 | return (!masks_are_equal); | |
204 | } | |
205 | ||
206 | struct radix_node * | |
207 | rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) | |
208 | { | |
209 | return (rn_lookup_args(v_arg, m_arg, head, NULL, NULL)); | |
210 | } | |
211 | ||
212 | struct radix_node * | |
213 | rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head, | |
214 | rn_matchf_t *f, void *w) | |
215 | { | |
216 | struct radix_node *x; | |
217 | caddr_t netmask = NULL; | |
218 | ||
219 | if (m_arg) { | |
220 | x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); | |
221 | if (x == 0) | |
222 | return (NULL); | |
223 | netmask = x->rn_key; | |
224 | } | |
225 | x = rn_match_args(v_arg, head, f, w); | |
226 | if (x && netmask) { | |
227 | while (x && x->rn_mask != netmask) | |
228 | x = x->rn_dupedkey; | |
229 | } | |
230 | return x; | |
231 | } | |
232 | ||
233 | /* | |
234 | * Returns true if address 'trial' has no bits differing from the | |
235 | * leaf's key when compared under the leaf's mask. In other words, | |
236 | * returns true when 'trial' matches leaf. If a leaf-matching | |
237 | * routine is passed in, it is also used to find a match on the | |
238 | * conditions defined by the caller of rn_match. | |
239 | */ | |
240 | static int | |
241 | rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, | |
242 | rn_matchf_t *f, void *w) | |
243 | { | |
244 | char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; | |
245 | char *cplim; | |
246 | int length = min(*(u_char *)cp, *(u_char *)cp2); | |
247 | ||
248 | if (cp3 == 0) | |
249 | cp3 = rn_ones; | |
250 | else | |
251 | length = min(length, *(u_char *)cp3); | |
252 | cplim = cp + length; cp3 += skip; cp2 += skip; | |
253 | for (cp += skip; cp < cplim; cp++, cp2++, cp3++) | |
254 | if ((*cp ^ *cp2) & *cp3) | |
255 | return 0; | |
256 | ||
257 | return (RN_MATCHF(leaf, f, w)); | |
258 | } | |
259 | ||
260 | struct radix_node * | |
261 | rn_match(void *v_arg, struct radix_node_head *head) | |
262 | { | |
263 | return (rn_match_args(v_arg, head, NULL, NULL)); | |
264 | } | |
265 | ||
266 | struct radix_node * | |
267 | rn_match_args(void *v_arg, struct radix_node_head *head, | |
268 | rn_matchf_t *f, void *w) | |
269 | { | |
270 | caddr_t v = v_arg; | |
271 | struct radix_node *t = head->rnh_treetop, *x; | |
272 | caddr_t cp = v, cp2; | |
273 | caddr_t cplim; | |
274 | struct radix_node *saved_t, *top = t; | |
275 | int off = t->rn_offset, vlen = *(u_char *)cp, matched_off; | |
276 | int test, b, rn_bit; | |
277 | ||
278 | /* | |
279 | * Open code rn_search(v, top) to avoid overhead of extra | |
280 | * subroutine call. | |
281 | */ | |
282 | for (; t->rn_bit >= 0; ) { | |
283 | if (t->rn_bmask & cp[t->rn_offset]) | |
284 | t = t->rn_right; | |
285 | else | |
286 | t = t->rn_left; | |
287 | } | |
288 | /* | |
289 | * See if we match exactly as a host destination | |
290 | * or at least learn how many bits match, for normal mask finesse. | |
291 | * | |
292 | * It doesn't hurt us to limit how many bytes to check | |
293 | * to the length of the mask, since if it matches we had a genuine | |
294 | * match and the leaf we have is the most specific one anyway; | |
295 | * if it didn't match with a shorter length it would fail | |
296 | * with a long one. This wins big for class B&C netmasks which | |
297 | * are probably the most common case... | |
298 | */ | |
299 | if (t->rn_mask) | |
300 | vlen = *(u_char *)t->rn_mask; | |
301 | cp += off; cp2 = t->rn_key + off; cplim = v + vlen; | |
302 | for (; cp < cplim; cp++, cp2++) | |
303 | if (*cp != *cp2) | |
304 | goto on1; | |
305 | /* | |
306 | * This extra grot is in case we are explicitly asked | |
307 | * to look up the default. Ugh! | |
308 | * | |
309 | * Never return the root node itself, it seems to cause a | |
310 | * lot of confusion. | |
311 | */ | |
312 | if (t->rn_flags & RNF_ROOT) | |
313 | t = t->rn_dupedkey; | |
314 | if (t == NULL || RN_MATCHF(t, f, w)) { | |
315 | return (t); | |
316 | } else { | |
317 | /* | |
318 | * Although we found an exact match on the key, | |
319 | * f() is looking for some other criteria as well. | |
320 | * Continue looking as if the exact match failed. | |
321 | */ | |
322 | if (t->rn_parent->rn_flags & RNF_ROOT) { | |
323 | /* Hit the top; have to give up */ | |
324 | return (NULL); | |
325 | } | |
326 | b = 0; | |
327 | goto keeplooking; | |
328 | } | |
329 | on1: | |
330 | test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ | |
331 | for (b = 7; (test >>= 1) > 0;) | |
332 | b--; | |
333 | keeplooking: | |
334 | matched_off = cp - v; | |
335 | b += matched_off << 3; | |
336 | rn_bit = -1 - b; | |
337 | /* | |
338 | * If there is a host route in a duped-key chain, it will be first. | |
339 | */ | |
340 | if ((saved_t = t)->rn_mask == 0) | |
341 | t = t->rn_dupedkey; | |
342 | for (; t; t = t->rn_dupedkey) { | |
343 | /* | |
344 | * Even if we don't match exactly as a host, | |
345 | * we may match if the leaf we wound up at is | |
346 | * a route to a net. | |
347 | */ | |
348 | if (t->rn_flags & RNF_NORMAL) { | |
349 | if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w)) | |
350 | return (t); | |
351 | } else if (rn_satisfies_leaf(v, t, matched_off, f, w)) { | |
352 | return (t); | |
353 | } | |
354 | } | |
355 | t = saved_t; | |
356 | /* start searching up the tree */ | |
357 | do { | |
358 | struct radix_mask *m; | |
359 | t = t->rn_parent; | |
360 | m = t->rn_mklist; | |
361 | /* | |
362 | * If non-contiguous masks ever become important | |
363 | * we can restore the masking and open coding of | |
364 | * the search and satisfaction test and put the | |
365 | * calculation of "off" back before the "do". | |
366 | */ | |
367 | while (m) { | |
368 | if (m->rm_flags & RNF_NORMAL) { | |
369 | if ((rn_bit <= m->rm_bit) && | |
370 | RN_MATCHF(m->rm_leaf, f, w)) | |
371 | return (m->rm_leaf); | |
372 | } else { | |
373 | off = min(t->rn_offset, matched_off); | |
374 | x = rn_search_m(v, t, m->rm_mask); | |
375 | while (x && x->rn_mask != m->rm_mask) | |
376 | x = x->rn_dupedkey; | |
377 | if (x && rn_satisfies_leaf(v, x, off, f, w)) | |
378 | return (x); | |
379 | } | |
380 | m = m->rm_mklist; | |
381 | } | |
382 | } while (t != top); | |
383 | return (NULL); | |
384 | } | |
385 | ||
386 | #ifdef RN_DEBUG | |
387 | int rn_nodenum; | |
388 | struct radix_node *rn_clist; | |
389 | int rn_saveinfo; | |
390 | int rn_debug = 1; | |
391 | #endif | |
392 | ||
393 | static struct radix_node * | |
394 | rn_newpair(void *v, int b, struct radix_node nodes[2]) | |
395 | { | |
396 | struct radix_node *tt = nodes, *t = tt + 1; | |
397 | t->rn_bit = b; | |
398 | t->rn_bmask = 0x80 >> (b & 7); | |
399 | t->rn_left = tt; | |
400 | t->rn_offset = b >> 3; | |
401 | tt->rn_bit = -1; | |
402 | tt->rn_key = (caddr_t)v; | |
403 | tt->rn_parent = t; | |
404 | tt->rn_flags = t->rn_flags = RNF_ACTIVE; | |
405 | tt->rn_mklist = t->rn_mklist = NULL; | |
406 | #ifdef RN_DEBUG | |
407 | tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; | |
408 | tt->rn_twin = t; | |
409 | tt->rn_ybro = rn_clist; | |
410 | rn_clist = tt; | |
411 | #endif | |
412 | return t; | |
413 | } | |
414 | ||
415 | static struct radix_node * | |
416 | rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry, | |
417 | struct radix_node nodes[2]) | |
418 | { | |
419 | caddr_t v = v_arg; | |
420 | struct radix_node *top = head->rnh_treetop; | |
421 | int head_off = top->rn_offset, vlen = (int)*((u_char *)v); | |
422 | struct radix_node *t = rn_search(v_arg, top); | |
423 | caddr_t cp = v + head_off; | |
424 | int b; | |
425 | struct radix_node *tt; | |
426 | /* | |
427 | * Find first bit at which v and t->rn_key differ | |
428 | */ | |
429 | { | |
430 | caddr_t cp2 = t->rn_key + head_off; | |
431 | int cmp_res; | |
432 | caddr_t cplim = v + vlen; | |
433 | ||
434 | while (cp < cplim) | |
435 | if (*cp2++ != *cp++) | |
436 | goto on1; | |
437 | *dupentry = 1; | |
438 | return t; | |
439 | on1: | |
440 | *dupentry = 0; | |
441 | cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; | |
442 | for (b = (cp - v) << 3; cmp_res; b--) | |
443 | cmp_res >>= 1; | |
444 | } | |
445 | { | |
446 | struct radix_node *p, *x = top; | |
447 | cp = v; | |
448 | do { | |
449 | p = x; | |
450 | if (cp[x->rn_offset] & x->rn_bmask) | |
451 | x = x->rn_right; | |
452 | else | |
453 | x = x->rn_left; | |
454 | } while (b > (unsigned) x->rn_bit); | |
455 | /* x->rn_bit < b && x->rn_bit >= 0 */ | |
456 | #ifdef RN_DEBUG | |
457 | if (rn_debug) | |
458 | log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); | |
459 | #endif | |
460 | t = rn_newpair(v_arg, b, nodes); | |
461 | tt = t->rn_left; | |
462 | if ((cp[p->rn_offset] & p->rn_bmask) == 0) | |
463 | p->rn_left = t; | |
464 | else | |
465 | p->rn_right = t; | |
466 | x->rn_parent = t; | |
467 | t->rn_parent = p; /* frees x, p as temp vars below */ | |
468 | if ((cp[t->rn_offset] & t->rn_bmask) == 0) { | |
469 | t->rn_right = x; | |
470 | } else { | |
471 | t->rn_right = tt; | |
472 | t->rn_left = x; | |
473 | } | |
474 | #ifdef RN_DEBUG | |
475 | if (rn_debug) | |
476 | log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); | |
477 | #endif | |
478 | } | |
479 | return (tt); | |
480 | } | |
481 | ||
482 | struct radix_node * | |
483 | rn_addmask(void *n_arg, int search, int skip) | |
484 | { | |
485 | caddr_t netmask = (caddr_t)n_arg; | |
486 | struct radix_node *x; | |
487 | caddr_t cp, cplim; | |
488 | int b = 0, mlen, j; | |
489 | int maskduplicated, m0, isnormal; | |
490 | struct radix_node *saved_x; | |
491 | static int last_zeroed = 0; | |
492 | ||
493 | if ((mlen = *(u_char *)netmask) > max_keylen) | |
494 | mlen = max_keylen; | |
495 | if (skip == 0) | |
496 | skip = 1; | |
497 | if (mlen <= skip) | |
498 | return (mask_rnhead->rnh_nodes); | |
499 | if (skip > 1) | |
500 | Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); | |
501 | if ((m0 = mlen) > skip) | |
502 | Bcopy(netmask + skip, addmask_key + skip, mlen - skip); | |
503 | /* | |
504 | * Trim trailing zeroes. | |
505 | */ | |
506 | for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) | |
507 | cp--; | |
508 | mlen = cp - addmask_key; | |
509 | if (mlen <= skip) { | |
510 | if (m0 >= last_zeroed) | |
511 | last_zeroed = mlen; | |
512 | return (mask_rnhead->rnh_nodes); | |
513 | } | |
514 | if (m0 < last_zeroed) | |
515 | Bzero(addmask_key + m0, last_zeroed - m0); | |
516 | *addmask_key = last_zeroed = mlen; | |
517 | x = rn_search(addmask_key, rn_masktop); | |
518 | if (Bcmp(addmask_key, x->rn_key, mlen) != 0) | |
519 | x = NULL; | |
520 | if (x || search) | |
521 | return (x); | |
522 | R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); | |
523 | if ((saved_x = x) == 0) | |
524 | return (NULL); | |
525 | Bzero(x, max_keylen + 2 * sizeof (*x)); | |
526 | netmask = cp = (caddr_t)(x + 2); | |
527 | Bcopy(addmask_key, cp, mlen); | |
528 | x = rn_insert(cp, mask_rnhead, &maskduplicated, x); | |
529 | if (maskduplicated) { | |
530 | log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); | |
531 | R_Free(saved_x); | |
532 | return (x); | |
533 | } | |
534 | mask_rnhead->rnh_cnt++; | |
535 | /* | |
536 | * Calculate index of mask, and check for normalcy. | |
537 | */ | |
538 | cplim = netmask + mlen; isnormal = 1; | |
539 | for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) | |
540 | cp++; | |
541 | if (cp != cplim) { | |
542 | for (j = 0x80; (j & *cp) != 0; j >>= 1) | |
543 | b++; | |
544 | if (*cp != normal_chars[b] || cp != (cplim - 1)) | |
545 | isnormal = 0; | |
546 | } | |
547 | b += (cp - netmask) << 3; | |
548 | x->rn_bit = -1 - b; | |
549 | if (isnormal) | |
550 | x->rn_flags |= RNF_NORMAL; | |
551 | return (x); | |
552 | } | |
553 | ||
554 | static int /* XXX: arbitrary ordering for non-contiguous masks */ | |
555 | rn_lexobetter(void *m_arg, void *n_arg) | |
556 | { | |
557 | u_char *mp = m_arg, *np = n_arg, *lim; | |
558 | ||
559 | if (*mp > *np) | |
560 | return 1; /* not really, but need to check longer one first */ | |
561 | if (*mp == *np) | |
562 | for (lim = mp + *mp; mp < lim;) | |
563 | if (*mp++ > *np++) | |
564 | return 1; | |
565 | return 0; | |
566 | } | |
567 | ||
568 | static struct radix_mask * | |
569 | rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) | |
570 | { | |
571 | struct radix_mask *m; | |
572 | ||
573 | MKGet(m); | |
574 | if (m == 0) { | |
575 | log(LOG_ERR, "Mask for route not entered\n"); | |
576 | return (NULL); | |
577 | } | |
578 | Bzero(m, sizeof *m); | |
579 | m->rm_bit = tt->rn_bit; | |
580 | m->rm_flags = tt->rn_flags; | |
581 | if (tt->rn_flags & RNF_NORMAL) | |
582 | m->rm_leaf = tt; | |
583 | else | |
584 | m->rm_mask = tt->rn_mask; | |
585 | m->rm_mklist = next; | |
586 | tt->rn_mklist = m; | |
587 | return m; | |
588 | } | |
589 | ||
590 | struct radix_node * | |
591 | rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, | |
592 | struct radix_node treenodes[2]) | |
593 | { | |
594 | caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; | |
595 | struct radix_node *t, *x = NULL, *tt; | |
596 | struct radix_node *saved_tt, *top = head->rnh_treetop; | |
597 | short b = 0, b_leaf = 0; | |
598 | int keyduplicated; | |
599 | caddr_t mmask; | |
600 | struct radix_mask *m, **mp; | |
601 | ||
602 | /* | |
603 | * In dealing with non-contiguous masks, there may be | |
604 | * many different routes which have the same mask. | |
605 | * We will find it useful to have a unique pointer to | |
606 | * the mask to speed avoiding duplicate references at | |
607 | * nodes and possibly save time in calculating indices. | |
608 | */ | |
609 | if (netmask) { | |
610 | if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) | |
611 | return (NULL); | |
612 | b_leaf = x->rn_bit; | |
613 | b = -1 - x->rn_bit; | |
614 | netmask = x->rn_key; | |
615 | } | |
616 | /* | |
617 | * Deal with duplicated keys: attach node to previous instance | |
618 | */ | |
619 | saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); | |
620 | if (keyduplicated) { | |
621 | for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { | |
622 | if (tt->rn_mask == netmask) | |
623 | return (NULL); | |
624 | if (netmask == 0 || | |
625 | (tt->rn_mask && | |
626 | ((b_leaf < tt->rn_bit) /* index(netmask) > node */ | |
627 | || rn_refines(netmask, tt->rn_mask) | |
628 | || rn_lexobetter(netmask, tt->rn_mask)))) | |
629 | break; | |
630 | } | |
631 | /* | |
632 | * If the mask is not duplicated, we wouldn't | |
633 | * find it among possible duplicate key entries | |
634 | * anyway, so the above test doesn't hurt. | |
635 | * | |
636 | * We sort the masks for a duplicated key the same way as | |
637 | * in a masklist -- most specific to least specific. | |
638 | * This may require the unfortunate nuisance of relocating | |
639 | * the head of the list. | |
640 | */ | |
641 | if (tt == saved_tt) { | |
642 | struct radix_node *xx = x; | |
643 | /* link in at head of list */ | |
644 | (tt = treenodes)->rn_dupedkey = t; | |
645 | tt->rn_flags = t->rn_flags; | |
646 | tt->rn_parent = x = t->rn_parent; | |
647 | t->rn_parent = tt; /* parent */ | |
648 | if (x->rn_left == t) | |
649 | x->rn_left = tt; | |
650 | else | |
651 | x->rn_right = tt; | |
652 | saved_tt = tt; x = xx; | |
653 | } else { | |
654 | (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; | |
655 | t->rn_dupedkey = tt; | |
656 | tt->rn_parent = t; /* parent */ | |
657 | if (tt->rn_dupedkey) /* parent */ | |
658 | tt->rn_dupedkey->rn_parent = tt; /* parent */ | |
659 | } | |
660 | #ifdef RN_DEBUG | |
661 | t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; | |
662 | tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; | |
663 | #endif | |
664 | tt->rn_key = (caddr_t) v; | |
665 | tt->rn_bit = -1; | |
666 | tt->rn_flags = RNF_ACTIVE; | |
667 | } | |
668 | head->rnh_cnt++; | |
669 | /* | |
670 | * Put mask in tree. | |
671 | */ | |
672 | if (netmask) { | |
673 | tt->rn_mask = netmask; | |
674 | tt->rn_bit = x->rn_bit; | |
675 | tt->rn_flags |= x->rn_flags & RNF_NORMAL; | |
676 | } | |
677 | t = saved_tt->rn_parent; | |
678 | if (keyduplicated) | |
679 | goto on2; | |
680 | b_leaf = -1 - t->rn_bit; | |
681 | if (t->rn_right == saved_tt) | |
682 | x = t->rn_left; | |
683 | else | |
684 | x = t->rn_right; | |
685 | /* Promote general routes from below */ | |
686 | if (x->rn_bit < 0) { | |
687 | for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) | |
688 | if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { | |
689 | *mp = m = rn_new_radix_mask(x, NULL); | |
690 | if (m) | |
691 | mp = &m->rm_mklist; | |
692 | } | |
693 | } else if (x->rn_mklist) { | |
694 | /* | |
695 | * Skip over masks whose index is > that of new node | |
696 | */ | |
697 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) | |
698 | if (m->rm_bit >= b_leaf) | |
699 | break; | |
700 | t->rn_mklist = m; *mp = NULL; | |
701 | } | |
702 | on2: | |
703 | /* Add new route to highest possible ancestor's list */ | |
704 | if ((netmask == 0) || (b > t->rn_bit )) | |
705 | return tt; /* can't lift at all */ | |
706 | b_leaf = tt->rn_bit; | |
707 | do { | |
708 | x = t; | |
709 | t = t->rn_parent; | |
710 | } while (b <= t->rn_bit && x != top); | |
711 | /* | |
712 | * Search through routes associated with node to | |
713 | * insert new route according to index. | |
714 | * Need same criteria as when sorting dupedkeys to avoid | |
715 | * double loop on deletion. | |
716 | */ | |
717 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { | |
718 | if (m->rm_bit < b_leaf) | |
719 | continue; | |
720 | if (m->rm_bit > b_leaf) | |
721 | break; | |
722 | if (m->rm_flags & RNF_NORMAL) { | |
723 | mmask = m->rm_leaf->rn_mask; | |
724 | if (tt->rn_flags & RNF_NORMAL) { | |
725 | log(LOG_ERR, | |
726 | "Non-unique normal route, mask not entered"); | |
727 | return tt; | |
728 | } | |
729 | } else | |
730 | mmask = m->rm_mask; | |
731 | if (mmask == netmask) { | |
732 | m->rm_refs++; | |
733 | tt->rn_mklist = m; | |
734 | return tt; | |
735 | } | |
736 | if (rn_refines(netmask, mmask) | |
737 | || rn_lexobetter(netmask, mmask)) | |
738 | break; | |
739 | } | |
740 | *mp = rn_new_radix_mask(tt, *mp); | |
741 | return tt; | |
742 | } | |
743 | ||
744 | struct radix_node * | |
745 | rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head) | |
746 | { | |
747 | struct radix_node *t, *p, *x, *tt; | |
748 | struct radix_mask *m, *saved_m, **mp; | |
749 | struct radix_node *dupedkey, *saved_tt, *top; | |
750 | caddr_t v, netmask; | |
751 | int b, head_off, vlen; | |
752 | ||
753 | v = v_arg; | |
754 | netmask = netmask_arg; | |
755 | x = head->rnh_treetop; | |
756 | tt = rn_search(v, x); | |
757 | head_off = x->rn_offset; | |
758 | vlen = *(u_char *)v; | |
759 | saved_tt = tt; | |
760 | top = x; | |
761 | if (tt == 0 || | |
762 | Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) | |
763 | return (NULL); | |
764 | /* | |
765 | * Delete our route from mask lists. | |
766 | */ | |
767 | if (netmask) { | |
768 | if ((x = rn_addmask(netmask, 1, head_off)) == 0) | |
769 | return (NULL); | |
770 | netmask = x->rn_key; | |
771 | while (tt->rn_mask != netmask) | |
772 | if ((tt = tt->rn_dupedkey) == 0) | |
773 | return (NULL); | |
774 | } | |
775 | if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) | |
776 | goto on1; | |
777 | if (tt->rn_flags & RNF_NORMAL) { | |
778 | if (m->rm_leaf != tt || m->rm_refs > 0) { | |
779 | log(LOG_ERR, "rn_delete: inconsistent annotation\n"); | |
780 | return NULL; /* dangling ref could cause disaster */ | |
781 | } | |
782 | } else { | |
783 | if (m->rm_mask != tt->rn_mask) { | |
784 | log(LOG_ERR, "rn_delete: inconsistent annotation\n"); | |
785 | goto on1; | |
786 | } | |
787 | if (--m->rm_refs >= 0) | |
788 | goto on1; | |
789 | } | |
790 | b = -1 - tt->rn_bit; | |
791 | t = saved_tt->rn_parent; | |
792 | if (b > t->rn_bit) | |
793 | goto on1; /* Wasn't lifted at all */ | |
794 | do { | |
795 | x = t; | |
796 | t = t->rn_parent; | |
797 | } while (b <= t->rn_bit && x != top); | |
798 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) | |
799 | if (m == saved_m) { | |
800 | *mp = m->rm_mklist; | |
801 | MKFree(m); | |
802 | break; | |
803 | } | |
804 | if (m == 0) { | |
805 | log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); | |
806 | if (tt->rn_flags & RNF_NORMAL) | |
807 | return (NULL); /* Dangling ref to us */ | |
808 | } | |
809 | on1: | |
810 | /* | |
811 | * Eliminate us from tree | |
812 | */ | |
813 | if (tt->rn_flags & RNF_ROOT) | |
814 | return (NULL); | |
815 | head->rnh_cnt--; | |
816 | #ifdef RN_DEBUG | |
817 | /* Get us out of the creation list */ | |
818 | for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} | |
819 | if (t) t->rn_ybro = tt->rn_ybro; | |
820 | #endif | |
821 | t = tt->rn_parent; | |
822 | dupedkey = saved_tt->rn_dupedkey; | |
823 | if (dupedkey) { | |
824 | /* | |
825 | * at this point, tt is the deletion target and saved_tt | |
826 | * is the head of the dupekey chain | |
827 | */ | |
828 | if (tt == saved_tt) { | |
829 | /* remove from head of chain */ | |
830 | x = dupedkey; x->rn_parent = t; | |
831 | if (t->rn_left == tt) | |
832 | t->rn_left = x; | |
833 | else | |
834 | t->rn_right = x; | |
835 | } else { | |
836 | /* find node in front of tt on the chain */ | |
837 | for (x = p = saved_tt; p && p->rn_dupedkey != tt;) | |
838 | p = p->rn_dupedkey; | |
839 | if (p) { | |
840 | p->rn_dupedkey = tt->rn_dupedkey; | |
841 | if (tt->rn_dupedkey) /* parent */ | |
842 | tt->rn_dupedkey->rn_parent = p; | |
843 | /* parent */ | |
844 | } else log(LOG_ERR, "rn_delete: couldn't find us\n"); | |
845 | } | |
846 | t = tt + 1; | |
847 | if (t->rn_flags & RNF_ACTIVE) { | |
848 | #ifndef RN_DEBUG | |
849 | *++x = *t; | |
850 | p = t->rn_parent; | |
851 | #else | |
852 | b = t->rn_info; | |
853 | *++x = *t; | |
854 | t->rn_info = b; | |
855 | p = t->rn_parent; | |
856 | #endif | |
857 | if (p->rn_left == t) | |
858 | p->rn_left = x; | |
859 | else | |
860 | p->rn_right = x; | |
861 | x->rn_left->rn_parent = x; | |
862 | x->rn_right->rn_parent = x; | |
863 | } | |
864 | goto out; | |
865 | } | |
866 | if (t->rn_left == tt) | |
867 | x = t->rn_right; | |
868 | else | |
869 | x = t->rn_left; | |
870 | p = t->rn_parent; | |
871 | if (p->rn_right == t) | |
872 | p->rn_right = x; | |
873 | else | |
874 | p->rn_left = x; | |
875 | x->rn_parent = p; | |
876 | /* | |
877 | * Demote routes attached to us. | |
878 | */ | |
879 | if (t->rn_mklist) { | |
880 | if (x->rn_bit >= 0) { | |
881 | for (mp = &x->rn_mklist; (m = *mp);) | |
882 | mp = &m->rm_mklist; | |
883 | *mp = t->rn_mklist; | |
884 | } else { | |
885 | /* If there are any key,mask pairs in a sibling | |
886 | duped-key chain, some subset will appear sorted | |
887 | in the same order attached to our mklist */ | |
888 | for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) | |
889 | if (m == x->rn_mklist) { | |
890 | struct radix_mask *mm = m->rm_mklist; | |
891 | x->rn_mklist = NULL; | |
892 | if (--(m->rm_refs) < 0) | |
893 | MKFree(m); | |
894 | m = mm; | |
895 | } | |
896 | if (m) | |
897 | log(LOG_ERR, "rn_delete: Orphaned Mask " | |
898 | "0x%llx at 0x%llx\n", | |
899 | (uint64_t)VM_KERNEL_ADDRPERM(m), | |
900 | (uint64_t)VM_KERNEL_ADDRPERM(x)); | |
901 | } | |
902 | } | |
903 | /* | |
904 | * We may be holding an active internal node in the tree. | |
905 | */ | |
906 | x = tt + 1; | |
907 | if (t != x) { | |
908 | #ifndef RN_DEBUG | |
909 | *t = *x; | |
910 | #else | |
911 | b = t->rn_info; | |
912 | *t = *x; | |
913 | t->rn_info = b; | |
914 | #endif | |
915 | t->rn_left->rn_parent = t; | |
916 | t->rn_right->rn_parent = t; | |
917 | p = x->rn_parent; | |
918 | if (p->rn_left == x) | |
919 | p->rn_left = t; | |
920 | else | |
921 | p->rn_right = t; | |
922 | } | |
923 | out: | |
924 | tt->rn_flags &= ~RNF_ACTIVE; | |
925 | tt[1].rn_flags &= ~RNF_ACTIVE; | |
926 | return (tt); | |
927 | } | |
928 | ||
929 | /* | |
930 | * This is the same as rn_walktree() except for the parameters and the | |
931 | * exit. | |
932 | */ | |
933 | static int | |
934 | rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, | |
935 | void *w) | |
936 | { | |
937 | int error; | |
938 | struct radix_node *base, *next; | |
939 | u_char *xa = (u_char *)a; | |
940 | u_char *xm = (u_char *)m; | |
941 | struct radix_node *rn, *last; | |
942 | int stopping; | |
943 | int lastb; | |
944 | int rnh_cnt; | |
945 | ||
946 | /* | |
947 | * This gets complicated because we may delete the node while | |
948 | * applying the function f to it; we cannot simply use the next | |
949 | * leaf as the successor node in advance, because that leaf may | |
950 | * be removed as well during deletion when it is a clone of the | |
951 | * current node. When that happens, we would end up referring | |
952 | * to an already-freed radix node as the successor node. To get | |
953 | * around this issue, if we detect that the radix tree has changed | |
954 | * in dimension (smaller than before), we simply restart the walk | |
955 | * from the top of tree. | |
956 | */ | |
957 | restart: | |
958 | last = NULL; | |
959 | stopping = 0; | |
960 | rnh_cnt = h->rnh_cnt; | |
961 | ||
962 | /* | |
963 | * rn_search_m is sort-of-open-coded here. | |
964 | */ | |
965 | for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { | |
966 | last = rn; | |
967 | if (!(rn->rn_bmask & xm[rn->rn_offset])) | |
968 | break; | |
969 | ||
970 | if (rn->rn_bmask & xa[rn->rn_offset]) | |
971 | rn = rn->rn_right; | |
972 | else | |
973 | rn = rn->rn_left; | |
974 | } | |
975 | ||
976 | /* | |
977 | * Two cases: either we stepped off the end of our mask, | |
978 | * in which case last == rn, or we reached a leaf, in which | |
979 | * case we want to start from the last node we looked at. | |
980 | * Either way, last is the node we want to start from. | |
981 | */ | |
982 | rn = last; | |
983 | lastb = rn->rn_bit; | |
984 | ||
985 | /* First time through node, go left */ | |
986 | while (rn->rn_bit >= 0) | |
987 | rn = rn->rn_left; | |
988 | ||
989 | while (!stopping) { | |
990 | base = rn; | |
991 | /* If at right child go back up, otherwise, go right */ | |
992 | while (rn->rn_parent->rn_right == rn | |
993 | && !(rn->rn_flags & RNF_ROOT)) { | |
994 | rn = rn->rn_parent; | |
995 | ||
996 | /* if went up beyond last, stop */ | |
997 | if (rn->rn_bit <= lastb) { | |
998 | stopping = 1; | |
999 | /* | |
1000 | * XXX we should jump to the 'Process leaves' | |
1001 | * part, because the values of 'rn' and 'next' | |
1002 | * we compute will not be used. Not a big deal | |
1003 | * because this loop will terminate, but it is | |
1004 | * inefficient and hard to understand! | |
1005 | */ | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * The following code (bug fix) inherited from FreeBSD is | |
1011 | * currently disabled, because our implementation uses the | |
1012 | * RTF_PRCLONING scheme that has been abandoned in current | |
1013 | * FreeBSD release. The scheme involves setting such a flag | |
1014 | * for the default route entry, and therefore all off-link | |
1015 | * destinations would become clones of that entry. Enabling | |
1016 | * the following code would be problematic at this point, | |
1017 | * because the removal of default route would cause only | |
1018 | * the left-half of the tree to be traversed, leaving the | |
1019 | * right-half untouched. If there are clones of the entry | |
1020 | * that reside in that right-half, they would not be deleted | |
1021 | * and would linger around until they expire or explicitly | |
1022 | * deleted, which is a very bad thing. | |
1023 | * | |
1024 | * This code should be uncommented only after we get rid | |
1025 | * of the RTF_PRCLONING scheme. | |
1026 | */ | |
1027 | #if 0 | |
1028 | /* | |
1029 | * At the top of the tree, no need to traverse the right | |
1030 | * half, prevent the traversal of the entire tree in the | |
1031 | * case of default route. | |
1032 | */ | |
1033 | if (rn->rn_parent->rn_flags & RNF_ROOT) | |
1034 | stopping = 1; | |
1035 | #endif | |
1036 | ||
1037 | /* Find the next *leaf* to start from */ | |
1038 | for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) | |
1039 | rn = rn->rn_left; | |
1040 | next = rn; | |
1041 | /* Process leaves */ | |
1042 | while ((rn = base) != 0) { | |
1043 | base = rn->rn_dupedkey; | |
1044 | if (!(rn->rn_flags & RNF_ROOT) | |
1045 | && (error = (*f)(rn, w))) | |
1046 | return (error); | |
1047 | } | |
1048 | /* If one or more nodes got deleted, restart from top */ | |
1049 | if (h->rnh_cnt < rnh_cnt) | |
1050 | goto restart; | |
1051 | rn = next; | |
1052 | if (rn->rn_flags & RNF_ROOT) | |
1053 | stopping = 1; | |
1054 | } | |
1055 | return 0; | |
1056 | } | |
1057 | ||
1058 | static int | |
1059 | rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w) | |
1060 | { | |
1061 | int error; | |
1062 | struct radix_node *base, *next; | |
1063 | struct radix_node *rn; | |
1064 | int rnh_cnt; | |
1065 | ||
1066 | /* | |
1067 | * This gets complicated because we may delete the node while | |
1068 | * applying the function f to it; we cannot simply use the next | |
1069 | * leaf as the successor node in advance, because that leaf may | |
1070 | * be removed as well during deletion when it is a clone of the | |
1071 | * current node. When that happens, we would end up referring | |
1072 | * to an already-freed radix node as the successor node. To get | |
1073 | * around this issue, if we detect that the radix tree has changed | |
1074 | * in dimension (smaller than before), we simply restart the walk | |
1075 | * from the top of tree. | |
1076 | */ | |
1077 | restart: | |
1078 | rn = h->rnh_treetop; | |
1079 | rnh_cnt = h->rnh_cnt; | |
1080 | ||
1081 | /* First time through node, go left */ | |
1082 | while (rn->rn_bit >= 0) | |
1083 | rn = rn->rn_left; | |
1084 | for (;;) { | |
1085 | base = rn; | |
1086 | /* If at right child go back up, otherwise, go right */ | |
1087 | while (rn->rn_parent->rn_right == rn && | |
1088 | (rn->rn_flags & RNF_ROOT) == 0) | |
1089 | rn = rn->rn_parent; | |
1090 | /* Find the next *leaf* to start from */ | |
1091 | for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) | |
1092 | rn = rn->rn_left; | |
1093 | next = rn; | |
1094 | /* Process leaves */ | |
1095 | while ((rn = base) != NULL) { | |
1096 | base = rn->rn_dupedkey; | |
1097 | if (!(rn->rn_flags & RNF_ROOT) | |
1098 | && (error = (*f)(rn, w))) | |
1099 | return (error); | |
1100 | } | |
1101 | /* If one or more nodes got deleted, restart from top */ | |
1102 | if (h->rnh_cnt < rnh_cnt) | |
1103 | goto restart; | |
1104 | rn = next; | |
1105 | if (rn->rn_flags & RNF_ROOT) | |
1106 | return (0); | |
1107 | } | |
1108 | /* NOTREACHED */ | |
1109 | } | |
1110 | ||
1111 | int | |
1112 | rn_inithead(void **head, int off) | |
1113 | { | |
1114 | struct radix_node_head *rnh; | |
1115 | struct radix_node *t, *tt, *ttt; | |
1116 | if (*head) | |
1117 | return (1); | |
1118 | R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); | |
1119 | if (rnh == 0) | |
1120 | return (0); | |
1121 | Bzero(rnh, sizeof (*rnh)); | |
1122 | *head = rnh; | |
1123 | t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); | |
1124 | ttt = rnh->rnh_nodes + 2; | |
1125 | t->rn_right = ttt; | |
1126 | t->rn_parent = t; | |
1127 | tt = t->rn_left; | |
1128 | tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; | |
1129 | tt->rn_bit = -1 - off; | |
1130 | *ttt = *tt; | |
1131 | ttt->rn_key = rn_ones; | |
1132 | rnh->rnh_addaddr = rn_addroute; | |
1133 | rnh->rnh_deladdr = rn_delete; | |
1134 | rnh->rnh_matchaddr = rn_match; | |
1135 | rnh->rnh_matchaddr_args = rn_match_args; | |
1136 | rnh->rnh_lookup = rn_lookup; | |
1137 | rnh->rnh_lookup_args = rn_lookup_args; | |
1138 | rnh->rnh_walktree = rn_walktree; | |
1139 | rnh->rnh_walktree_from = rn_walktree_from; | |
1140 | rnh->rnh_treetop = t; | |
1141 | rnh->rnh_cnt = 3; | |
1142 | return (1); | |
1143 | } | |
1144 | ||
1145 | void | |
1146 | rn_init(void) | |
1147 | { | |
1148 | char *cp, *cplim; | |
1149 | struct domain *dom; | |
1150 | ||
1151 | /* lock already held when rn_init is called */ | |
1152 | TAILQ_FOREACH(dom, &domains, dom_entry) { | |
1153 | if (dom->dom_maxrtkey > max_keylen) | |
1154 | max_keylen = dom->dom_maxrtkey; | |
1155 | } | |
1156 | if (max_keylen == 0) { | |
1157 | log(LOG_ERR, | |
1158 | "rn_init: radix functions require max_keylen be set\n"); | |
1159 | return; | |
1160 | } | |
1161 | R_Malloc(rn_zeros, char *, 3 * max_keylen); | |
1162 | if (rn_zeros == NULL) | |
1163 | panic("rn_init"); | |
1164 | Bzero(rn_zeros, 3 * max_keylen); | |
1165 | rn_ones = cp = rn_zeros + max_keylen; | |
1166 | addmask_key = cplim = rn_ones + max_keylen; | |
1167 | while (cp < cplim) | |
1168 | *cp++ = -1; | |
1169 | if (rn_inithead((void **)&mask_rnhead, 0) == 0) | |
1170 | panic("rn_init 2"); | |
1171 | } |