]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | ||
30 | /* | |
31 | * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol | |
32 | * from this file (_dtrace_register_anon_DOF) always needs to be exported for | |
33 | * an external kext to link against. | |
34 | */ | |
35 | ||
36 | #if CONFIG_DTRACE | |
37 | ||
38 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
39 | #include <kern/thread.h> | |
40 | #include <mach/thread_status.h> | |
41 | ||
42 | #include <stdarg.h> | |
43 | #include <string.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <sys/proc_internal.h> | |
48 | #include <sys/kauth.h> | |
49 | #include <sys/user.h> | |
50 | #include <sys/systm.h> | |
51 | #include <sys/dtrace.h> | |
52 | #include <sys/dtrace_impl.h> | |
53 | #include <libkern/OSAtomic.h> | |
54 | #include <kern/kern_types.h> | |
55 | #include <kern/timer_call.h> | |
56 | #include <kern/thread_call.h> | |
57 | #include <kern/task.h> | |
58 | #include <kern/sched_prim.h> | |
59 | #include <kern/queue.h> | |
60 | #include <miscfs/devfs/devfs.h> | |
61 | #include <kern/kalloc.h> | |
62 | ||
63 | #include <mach/vm_param.h> | |
64 | #include <mach/mach_vm.h> | |
65 | #include <mach/task.h> | |
66 | #include <vm/pmap.h> | |
67 | #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */ | |
68 | ||
69 | /* | |
70 | * pid/proc | |
71 | */ | |
72 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ | |
73 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
74 | ||
75 | /* Not called from probe context */ | |
76 | proc_t * | |
77 | sprlock(pid_t pid) | |
78 | { | |
79 | proc_t* p; | |
80 | ||
81 | if ((p = proc_find(pid)) == PROC_NULL) { | |
82 | return PROC_NULL; | |
83 | } | |
84 | ||
85 | task_suspend_internal(p->task); | |
86 | ||
87 | proc_lock(p); | |
88 | ||
89 | lck_mtx_lock(&p->p_dtrace_sprlock); | |
90 | ||
91 | return p; | |
92 | } | |
93 | ||
94 | /* Not called from probe context */ | |
95 | void | |
96 | sprunlock(proc_t *p) | |
97 | { | |
98 | if (p != PROC_NULL) { | |
99 | lck_mtx_unlock(&p->p_dtrace_sprlock); | |
100 | ||
101 | proc_unlock(p); | |
102 | ||
103 | task_resume_internal(p->task); | |
104 | ||
105 | proc_rele(p); | |
106 | } | |
107 | } | |
108 | ||
109 | /* | |
110 | * uread/uwrite | |
111 | */ | |
112 | ||
113 | // These are not exported from vm_map.h. | |
114 | extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size); | |
115 | extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size); | |
116 | ||
117 | /* Not called from probe context */ | |
118 | int | |
119 | uread(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
120 | { | |
121 | kern_return_t ret; | |
122 | ||
123 | ASSERT(p != PROC_NULL); | |
124 | ASSERT(p->task != NULL); | |
125 | ||
126 | task_t task = p->task; | |
127 | ||
128 | /* | |
129 | * Grab a reference to the task vm_map_t to make sure | |
130 | * the map isn't pulled out from under us. | |
131 | * | |
132 | * Because the proc_lock is not held at all times on all code | |
133 | * paths leading here, it is possible for the proc to have | |
134 | * exited. If the map is null, fail. | |
135 | */ | |
136 | vm_map_t map = get_task_map_reference(task); | |
137 | if (map) { | |
138 | ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len); | |
139 | vm_map_deallocate(map); | |
140 | } else | |
141 | ret = KERN_TERMINATED; | |
142 | ||
143 | return (int)ret; | |
144 | } | |
145 | ||
146 | ||
147 | /* Not called from probe context */ | |
148 | int | |
149 | uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
150 | { | |
151 | kern_return_t ret; | |
152 | ||
153 | ASSERT(p != NULL); | |
154 | ASSERT(p->task != NULL); | |
155 | ||
156 | task_t task = p->task; | |
157 | ||
158 | /* | |
159 | * Grab a reference to the task vm_map_t to make sure | |
160 | * the map isn't pulled out from under us. | |
161 | * | |
162 | * Because the proc_lock is not held at all times on all code | |
163 | * paths leading here, it is possible for the proc to have | |
164 | * exited. If the map is null, fail. | |
165 | */ | |
166 | vm_map_t map = get_task_map_reference(task); | |
167 | if (map) { | |
168 | /* Find the memory permissions. */ | |
169 | uint32_t nestingDepth=999999; | |
170 | vm_region_submap_short_info_data_64_t info; | |
171 | mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
172 | mach_vm_address_t address = (mach_vm_address_t)a; | |
173 | mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len; | |
174 | ||
175 | ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count); | |
176 | if (ret != KERN_SUCCESS) | |
177 | goto done; | |
178 | ||
179 | vm_prot_t reprotect; | |
180 | ||
181 | if (!(info.protection & VM_PROT_WRITE)) { | |
182 | /* Save the original protection values for restoration later */ | |
183 | reprotect = info.protection; | |
184 | ||
185 | if (info.max_protection & VM_PROT_WRITE) { | |
186 | /* The memory is not currently writable, but can be made writable. */ | |
187 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE); | |
188 | } else { | |
189 | /* | |
190 | * The memory is not currently writable, and cannot be made writable. We need to COW this memory. | |
191 | * | |
192 | * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails. | |
193 | */ | |
194 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE); | |
195 | } | |
196 | ||
197 | if (ret != KERN_SUCCESS) | |
198 | goto done; | |
199 | ||
200 | } else { | |
201 | /* The memory was already writable. */ | |
202 | reprotect = VM_PROT_NONE; | |
203 | } | |
204 | ||
205 | ret = vm_map_write_user( map, | |
206 | buf, | |
207 | (vm_map_address_t)a, | |
208 | (vm_size_t)len); | |
209 | ||
210 | if (ret != KERN_SUCCESS) | |
211 | goto done; | |
212 | ||
213 | if (reprotect != VM_PROT_NONE) { | |
214 | ASSERT(reprotect & VM_PROT_EXECUTE); | |
215 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect); | |
216 | } | |
217 | ||
218 | done: | |
219 | vm_map_deallocate(map); | |
220 | } else | |
221 | ret = KERN_TERMINATED; | |
222 | ||
223 | return (int)ret; | |
224 | } | |
225 | ||
226 | /* | |
227 | * cpuvar | |
228 | */ | |
229 | lck_mtx_t cpu_lock; | |
230 | lck_mtx_t cyc_lock; | |
231 | lck_mtx_t mod_lock; | |
232 | ||
233 | dtrace_cpu_t *cpu_list; | |
234 | cpu_core_t *cpu_core; /* XXX TLB lockdown? */ | |
235 | ||
236 | /* | |
237 | * cred_t | |
238 | */ | |
239 | ||
240 | /* | |
241 | * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since | |
242 | * that function may try to resolve a lazy credential binding, which entails taking the proc_lock. | |
243 | */ | |
244 | cred_t * | |
245 | dtrace_CRED(void) | |
246 | { | |
247 | struct uthread *uthread = get_bsdthread_info(current_thread()); | |
248 | ||
249 | if (uthread == NULL) | |
250 | return NULL; | |
251 | else | |
252 | return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */ | |
253 | } | |
254 | ||
255 | #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr)) | |
256 | #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \ | |
257 | HAS_ALLPRIVS(cr) : \ | |
258 | PRIV_ISASSERT(&CR_OEPRIV(cr), pr)) | |
259 | ||
260 | int PRIV_POLICY_CHOICE(void* cred, int priv, int all) | |
261 | { | |
262 | #pragma unused(priv, all) | |
263 | return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */ | |
264 | } | |
265 | ||
266 | int | |
267 | PRIV_POLICY_ONLY(void *cr, int priv, int boolean) | |
268 | { | |
269 | #pragma unused(priv, boolean) | |
270 | return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */ | |
271 | } | |
272 | ||
273 | /* XXX Get around const poisoning using structure assigns */ | |
274 | gid_t | |
275 | crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(©_cr); } | |
276 | ||
277 | uid_t | |
278 | crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(©_cr); } | |
279 | ||
280 | /* | |
281 | * "cyclic" | |
282 | */ | |
283 | ||
284 | typedef struct wrap_timer_call { | |
285 | /* node attributes */ | |
286 | cyc_handler_t hdlr; | |
287 | cyc_time_t when; | |
288 | uint64_t deadline; | |
289 | int cpuid; | |
290 | boolean_t suspended; | |
291 | struct timer_call call; | |
292 | ||
293 | /* next item in the linked list */ | |
294 | LIST_ENTRY(wrap_timer_call) entries; | |
295 | } wrap_timer_call_t; | |
296 | ||
297 | #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL | |
298 | #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL | |
299 | ||
300 | ||
301 | typedef struct cyc_list { | |
302 | cyc_omni_handler_t cyl_omni; | |
303 | wrap_timer_call_t cyl_wrap_by_cpus[]; | |
304 | #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4) | |
305 | } __attribute__ ((aligned (8))) cyc_list_t; | |
306 | #else | |
307 | } cyc_list_t; | |
308 | #endif | |
309 | ||
310 | /* CPU going online/offline notifications */ | |
311 | void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL; | |
312 | void dtrace_cpu_state_changed(int, boolean_t); | |
313 | ||
314 | void | |
315 | dtrace_install_cpu_hooks(void) { | |
316 | dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed; | |
317 | } | |
318 | ||
319 | void | |
320 | dtrace_cpu_state_changed(int cpuid, boolean_t is_running) { | |
321 | #pragma unused(cpuid) | |
322 | wrap_timer_call_t *wrapTC = NULL; | |
323 | boolean_t suspend = (is_running ? FALSE : TRUE); | |
324 | dtrace_icookie_t s; | |
325 | ||
326 | /* Ensure that we're not going to leave the CPU */ | |
327 | s = dtrace_interrupt_disable(); | |
328 | assert(cpuid == cpu_number()); | |
329 | ||
330 | LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) { | |
331 | assert(wrapTC->cpuid == cpu_number()); | |
332 | if (suspend) { | |
333 | assert(!wrapTC->suspended); | |
334 | /* If this fails, we'll panic anyway, so let's do this now. */ | |
335 | if (!timer_call_cancel(&wrapTC->call)) | |
336 | panic("timer_call_set_suspend() failed to cancel a timer call"); | |
337 | wrapTC->suspended = TRUE; | |
338 | } else { | |
339 | /* Rearm the timer, but ensure it was suspended first. */ | |
340 | assert(wrapTC->suspended); | |
341 | clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(), | |
342 | &wrapTC->deadline); | |
343 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
344 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
345 | wrapTC->suspended = FALSE; | |
346 | } | |
347 | ||
348 | } | |
349 | ||
350 | /* Restore the previous interrupt state. */ | |
351 | dtrace_interrupt_enable(s); | |
352 | } | |
353 | ||
354 | static void | |
355 | _timer_call_apply_cyclic( void *ignore, void *vTChdl ) | |
356 | { | |
357 | #pragma unused(ignore) | |
358 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl; | |
359 | ||
360 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
361 | ||
362 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
363 | timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL ); | |
364 | } | |
365 | ||
366 | static cyclic_id_t | |
367 | timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when) | |
368 | { | |
369 | uint64_t now; | |
370 | dtrace_icookie_t s; | |
371 | ||
372 | timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL ); | |
373 | wrapTC->hdlr = *handler; | |
374 | wrapTC->when = *when; | |
375 | ||
376 | nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval ); | |
377 | ||
378 | now = mach_absolute_time(); | |
379 | wrapTC->deadline = now; | |
380 | ||
381 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
382 | ||
383 | /* Insert the timer to the list of the running timers on this CPU, and start it. */ | |
384 | s = dtrace_interrupt_disable(); | |
385 | wrapTC->cpuid = cpu_number(); | |
386 | LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries); | |
387 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
388 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
389 | wrapTC->suspended = FALSE; | |
390 | dtrace_interrupt_enable(s); | |
391 | ||
392 | return (cyclic_id_t)wrapTC; | |
393 | } | |
394 | ||
395 | /* | |
396 | * Executed on the CPU the timer is running on. | |
397 | */ | |
398 | static void | |
399 | timer_call_remove_cyclic(wrap_timer_call_t *wrapTC) | |
400 | { | |
401 | assert(wrapTC); | |
402 | assert(cpu_number() == wrapTC->cpuid); | |
403 | ||
404 | if (!timer_call_cancel(&wrapTC->call)) | |
405 | panic("timer_call_remove_cyclic() failed to cancel a timer call"); | |
406 | ||
407 | LIST_REMOVE(wrapTC, entries); | |
408 | } | |
409 | ||
410 | static void * | |
411 | timer_call_get_cyclic_arg(wrap_timer_call_t *wrapTC) | |
412 | { | |
413 | return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL); | |
414 | } | |
415 | ||
416 | cyclic_id_t | |
417 | cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when) | |
418 | { | |
419 | wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
420 | if (NULL == wrapTC) | |
421 | return CYCLIC_NONE; | |
422 | else | |
423 | return timer_call_add_cyclic( wrapTC, handler, when ); | |
424 | } | |
425 | ||
426 | void | |
427 | cyclic_timer_remove(cyclic_id_t cyclic) | |
428 | { | |
429 | ASSERT( cyclic != CYCLIC_NONE ); | |
430 | ||
431 | /* Removing a timer call must be done on the CPU the timer is running on. */ | |
432 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic; | |
433 | dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic); | |
434 | ||
435 | _FREE((void *)cyclic, M_TEMP); | |
436 | } | |
437 | ||
438 | static void | |
439 | _cyclic_add_omni(cyc_list_t *cyc_list) | |
440 | { | |
441 | cyc_time_t cT; | |
442 | cyc_handler_t cH; | |
443 | cyc_omni_handler_t *omni = &cyc_list->cyl_omni; | |
444 | ||
445 | (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT); | |
446 | ||
447 | wrap_timer_call_t *wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()]; | |
448 | timer_call_add_cyclic(wrapTC, &cH, &cT); | |
449 | } | |
450 | ||
451 | cyclic_id_list_t | |
452 | cyclic_add_omni(cyc_omni_handler_t *omni) | |
453 | { | |
454 | cyc_list_t *cyc_list = | |
455 | _MALLOC(sizeof(cyc_list_t) + NCPU * sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
456 | ||
457 | if (NULL == cyc_list) | |
458 | return NULL; | |
459 | ||
460 | cyc_list->cyl_omni = *omni; | |
461 | ||
462 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list); | |
463 | ||
464 | return (cyclic_id_list_t)cyc_list; | |
465 | } | |
466 | ||
467 | static void | |
468 | _cyclic_remove_omni(cyc_list_t *cyc_list) | |
469 | { | |
470 | cyc_omni_handler_t *omni = &cyc_list->cyl_omni; | |
471 | void *oarg; | |
472 | wrap_timer_call_t *wrapTC; | |
473 | ||
474 | /* | |
475 | * If the processor was offline when dtrace started, we did not allocate | |
476 | * a cyclic timer for this CPU. | |
477 | */ | |
478 | if ((wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()]) != NULL) { | |
479 | oarg = timer_call_get_cyclic_arg(wrapTC); | |
480 | timer_call_remove_cyclic(wrapTC); | |
481 | (omni->cyo_offline)(omni->cyo_arg, CPU, oarg); | |
482 | } | |
483 | } | |
484 | ||
485 | void | |
486 | cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
487 | { | |
488 | ASSERT(cyc_list != NULL); | |
489 | ||
490 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list); | |
491 | _FREE(cyc_list, M_TEMP); | |
492 | } | |
493 | ||
494 | typedef struct wrap_thread_call { | |
495 | thread_call_t TChdl; | |
496 | cyc_handler_t hdlr; | |
497 | cyc_time_t when; | |
498 | uint64_t deadline; | |
499 | } wrap_thread_call_t; | |
500 | ||
501 | /* | |
502 | * _cyclic_apply will run on some thread under kernel_task. That's OK for the | |
503 | * cleaner and the deadman, but too distant in time and place for the profile provider. | |
504 | */ | |
505 | static void | |
506 | _cyclic_apply( void *ignore, void *vTChdl ) | |
507 | { | |
508 | #pragma unused(ignore) | |
509 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl; | |
510 | ||
511 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
512 | ||
513 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
514 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
515 | ||
516 | /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */ | |
517 | if (wrapTC->when.cyt_interval == WAKEUP_REAPER) | |
518 | thread_wakeup((event_t)wrapTC); | |
519 | } | |
520 | ||
521 | cyclic_id_t | |
522 | cyclic_add(cyc_handler_t *handler, cyc_time_t *when) | |
523 | { | |
524 | uint64_t now; | |
525 | ||
526 | wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
527 | if (NULL == wrapTC) | |
528 | return CYCLIC_NONE; | |
529 | ||
530 | wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL ); | |
531 | wrapTC->hdlr = *handler; | |
532 | wrapTC->when = *when; | |
533 | ||
534 | ASSERT(when->cyt_when == 0); | |
535 | ASSERT(when->cyt_interval < WAKEUP_REAPER); | |
536 | ||
537 | nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval); | |
538 | ||
539 | now = mach_absolute_time(); | |
540 | wrapTC->deadline = now; | |
541 | ||
542 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
543 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
544 | ||
545 | return (cyclic_id_t)wrapTC; | |
546 | } | |
547 | ||
548 | static void | |
549 | noop_cyh_func(void * ignore) | |
550 | { | |
551 | #pragma unused(ignore) | |
552 | } | |
553 | ||
554 | void | |
555 | cyclic_remove(cyclic_id_t cyclic) | |
556 | { | |
557 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic; | |
558 | ||
559 | ASSERT(cyclic != CYCLIC_NONE); | |
560 | ||
561 | while (!thread_call_cancel(wrapTC->TChdl)) { | |
562 | int ret = assert_wait(wrapTC, THREAD_UNINT); | |
563 | ASSERT(ret == THREAD_WAITING); | |
564 | ||
565 | wrapTC->when.cyt_interval = WAKEUP_REAPER; | |
566 | ||
567 | ret = thread_block(THREAD_CONTINUE_NULL); | |
568 | ASSERT(ret == THREAD_AWAKENED); | |
569 | } | |
570 | ||
571 | if (thread_call_free(wrapTC->TChdl)) | |
572 | _FREE(wrapTC, M_TEMP); | |
573 | else { | |
574 | /* Gut this cyclic and move on ... */ | |
575 | wrapTC->hdlr.cyh_func = noop_cyh_func; | |
576 | wrapTC->when.cyt_interval = NEARLY_FOREVER; | |
577 | } | |
578 | } | |
579 | ||
580 | /* | |
581 | * ddi | |
582 | */ | |
583 | void | |
584 | ddi_report_dev(dev_info_t *devi) | |
585 | { | |
586 | #pragma unused(devi) | |
587 | } | |
588 | ||
589 | kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t); | |
590 | ||
591 | kern_return_t | |
592 | _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements) | |
593 | { | |
594 | #pragma unused(name, data, nelements) | |
595 | return KERN_FAILURE; | |
596 | } | |
597 | ||
598 | int | |
599 | ddi_driver_major(dev_info_t *devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); } | |
600 | ||
601 | int | |
602 | ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type, | |
603 | minor_t minor_num, const char *node_type, int flag) | |
604 | { | |
605 | #pragma unused(spec_type,node_type,flag) | |
606 | dev_t dev = makedev( ddi_driver_major(dip), minor_num ); | |
607 | ||
608 | if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 )) | |
609 | return DDI_FAILURE; | |
610 | else | |
611 | return DDI_SUCCESS; | |
612 | } | |
613 | ||
614 | void | |
615 | ddi_remove_minor_node(dev_info_t *dip, char *name) | |
616 | { | |
617 | #pragma unused(dip,name) | |
618 | /* XXX called from dtrace_detach, so NOTREACHED for now. */ | |
619 | } | |
620 | ||
621 | major_t | |
622 | getemajor( dev_t d ) | |
623 | { | |
624 | return (major_t) major(d); | |
625 | } | |
626 | ||
627 | minor_t | |
628 | getminor ( dev_t d ) | |
629 | { | |
630 | return (minor_t) minor(d); | |
631 | } | |
632 | ||
633 | dev_t | |
634 | makedevice(major_t major, minor_t minor) | |
635 | { | |
636 | return makedev( major, minor ); | |
637 | } | |
638 | ||
639 | int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue) | |
640 | { | |
641 | #pragma unused(dev, dip, flags, name) | |
642 | ||
643 | return defvalue; | |
644 | } | |
645 | ||
646 | /* | |
647 | * Kernel Debug Interface | |
648 | */ | |
649 | int | |
650 | kdi_dtrace_set(kdi_dtrace_set_t ignore) | |
651 | { | |
652 | #pragma unused(ignore) | |
653 | return 0; /* Success */ | |
654 | } | |
655 | ||
656 | extern void Debugger(const char*); | |
657 | ||
658 | void | |
659 | debug_enter(char *c) { Debugger(c); } | |
660 | ||
661 | /* | |
662 | * kmem | |
663 | */ | |
664 | ||
665 | void * | |
666 | dt_kmem_alloc(size_t size, int kmflag) | |
667 | { | |
668 | #pragma unused(kmflag) | |
669 | ||
670 | /* | |
671 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
672 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
673 | */ | |
674 | #if defined(DTRACE_MEMORY_ZONES) | |
675 | return dtrace_alloc(size); | |
676 | #else | |
677 | return kalloc(size); | |
678 | #endif | |
679 | } | |
680 | ||
681 | void * | |
682 | dt_kmem_zalloc(size_t size, int kmflag) | |
683 | { | |
684 | #pragma unused(kmflag) | |
685 | ||
686 | /* | |
687 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
688 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
689 | */ | |
690 | #if defined(DTRACE_MEMORY_ZONES) | |
691 | void* buf = dtrace_alloc(size); | |
692 | #else | |
693 | void* buf = kalloc(size); | |
694 | #endif | |
695 | ||
696 | if(!buf) | |
697 | return NULL; | |
698 | ||
699 | bzero(buf, size); | |
700 | ||
701 | return buf; | |
702 | } | |
703 | ||
704 | void | |
705 | dt_kmem_free(void *buf, size_t size) | |
706 | { | |
707 | #pragma unused(size) | |
708 | /* | |
709 | * DTrace relies on this, its doing a lot of NULL frees. | |
710 | * A null free causes the debug builds to panic. | |
711 | */ | |
712 | if (buf == NULL) return; | |
713 | ||
714 | ASSERT(size > 0); | |
715 | ||
716 | #if defined(DTRACE_MEMORY_ZONES) | |
717 | dtrace_free(buf, size); | |
718 | #else | |
719 | kfree(buf, size); | |
720 | #endif | |
721 | } | |
722 | ||
723 | ||
724 | ||
725 | /* | |
726 | * aligned kmem allocator | |
727 | * align should be a power of two | |
728 | */ | |
729 | ||
730 | void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag) | |
731 | { | |
732 | void *mem, **addr_to_free; | |
733 | intptr_t mem_aligned; | |
734 | size_t *size_to_free, hdr_size; | |
735 | ||
736 | /* Must be a power of two. */ | |
737 | assert(align != 0); | |
738 | assert((align & (align - 1)) == 0); | |
739 | ||
740 | /* | |
741 | * We are going to add a header to the allocation. It contains | |
742 | * the address to free and the total size of the buffer. | |
743 | */ | |
744 | hdr_size = sizeof(size_t) + sizeof(void*); | |
745 | mem = dt_kmem_alloc(size + align + hdr_size, kmflag); | |
746 | if (mem == NULL) | |
747 | return NULL; | |
748 | ||
749 | mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1)); | |
750 | ||
751 | /* Write the address to free in the header. */ | |
752 | addr_to_free = (void**) (mem_aligned - sizeof(void*)); | |
753 | *addr_to_free = mem; | |
754 | ||
755 | /* Write the size to free in the header. */ | |
756 | size_to_free = (size_t*) (mem_aligned - hdr_size); | |
757 | *size_to_free = size + align + hdr_size; | |
758 | ||
759 | return (void*) mem_aligned; | |
760 | } | |
761 | ||
762 | void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag) | |
763 | { | |
764 | void* buf; | |
765 | ||
766 | buf = dt_kmem_alloc_aligned(size, align, kmflag); | |
767 | ||
768 | if(!buf) | |
769 | return NULL; | |
770 | ||
771 | bzero(buf, size); | |
772 | ||
773 | return buf; | |
774 | } | |
775 | ||
776 | void dt_kmem_free_aligned(void* buf, size_t size) | |
777 | { | |
778 | #pragma unused(size) | |
779 | intptr_t ptr = (intptr_t) buf; | |
780 | void **addr_to_free = (void**) (ptr - sizeof(void*)); | |
781 | size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*))); | |
782 | ||
783 | if (buf == NULL) | |
784 | return; | |
785 | ||
786 | dt_kmem_free(*addr_to_free, *size_to_free); | |
787 | } | |
788 | ||
789 | /* | |
790 | * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and | |
791 | * doesn't specify constructor, destructor, or reclaim methods. | |
792 | * At present, it always zeroes the block it obtains from kmem_cache_alloc(). | |
793 | * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE. | |
794 | */ | |
795 | kmem_cache_t * | |
796 | kmem_cache_create( | |
797 | const char *name, /* descriptive name for this cache */ | |
798 | size_t bufsize, /* size of the objects it manages */ | |
799 | size_t align, /* required object alignment */ | |
800 | int (*constructor)(void *, void *, int), /* object constructor */ | |
801 | void (*destructor)(void *, void *), /* object destructor */ | |
802 | void (*reclaim)(void *), /* memory reclaim callback */ | |
803 | void *private, /* pass-thru arg for constr/destr/reclaim */ | |
804 | vmem_t *vmp, /* vmem source for slab allocation */ | |
805 | int cflags) /* cache creation flags */ | |
806 | { | |
807 | #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags) | |
808 | return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */ | |
809 | } | |
810 | ||
811 | void * | |
812 | kmem_cache_alloc(kmem_cache_t *cp, int kmflag) | |
813 | { | |
814 | #pragma unused(kmflag) | |
815 | size_t bufsize = (size_t)cp; | |
816 | return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK); | |
817 | } | |
818 | ||
819 | void | |
820 | kmem_cache_free(kmem_cache_t *cp, void *buf) | |
821 | { | |
822 | #pragma unused(cp) | |
823 | _FREE(buf, M_TEMP); | |
824 | } | |
825 | ||
826 | void | |
827 | kmem_cache_destroy(kmem_cache_t *cp) | |
828 | { | |
829 | #pragma unused(cp) | |
830 | } | |
831 | ||
832 | /* | |
833 | * taskq | |
834 | */ | |
835 | extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */ | |
836 | ||
837 | static void | |
838 | _taskq_apply( task_func_t func, thread_call_param_t arg ) | |
839 | { | |
840 | func( (void *)arg ); | |
841 | } | |
842 | ||
843 | taskq_t * | |
844 | taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, | |
845 | int maxalloc, uint_t flags) | |
846 | { | |
847 | #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags) | |
848 | ||
849 | return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL ); | |
850 | } | |
851 | ||
852 | taskqid_t | |
853 | taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) | |
854 | { | |
855 | #pragma unused(flags) | |
856 | thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func ); | |
857 | thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg ); | |
858 | return (taskqid_t) tq /* for lack of anything better */; | |
859 | } | |
860 | ||
861 | void | |
862 | taskq_destroy(taskq_t *tq) | |
863 | { | |
864 | thread_call_cancel( (thread_call_t) tq ); | |
865 | thread_call_free( (thread_call_t) tq ); | |
866 | } | |
867 | ||
868 | pri_t maxclsyspri; | |
869 | ||
870 | /* | |
871 | * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids | |
872 | */ | |
873 | typedef unsigned int u_daddr_t; | |
874 | #include "blist.h" | |
875 | ||
876 | /* By passing around blist *handles*, the underlying blist can be resized as needed. */ | |
877 | struct blist_hdl { | |
878 | blist_t blist; | |
879 | }; | |
880 | ||
881 | vmem_t * | |
882 | vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5, | |
883 | void *ignore6, vmem_t *source, size_t qcache_max, int vmflag) | |
884 | { | |
885 | #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag) | |
886 | blist_t bl; | |
887 | struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK); | |
888 | ||
889 | ASSERT(quantum == 1); | |
890 | ASSERT(NULL == ignore5); | |
891 | ASSERT(NULL == ignore6); | |
892 | ASSERT(NULL == source); | |
893 | ASSERT(0 == qcache_max); | |
894 | ASSERT(vmflag & VMC_IDENTIFIER); | |
895 | ||
896 | size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */ | |
897 | ||
898 | p->blist = bl = blist_create( size ); | |
899 | blist_free(bl, 0, size); | |
900 | if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */ | |
901 | ||
902 | return (vmem_t *)p; | |
903 | } | |
904 | ||
905 | void * | |
906 | vmem_alloc(vmem_t *vmp, size_t size, int vmflag) | |
907 | { | |
908 | #pragma unused(vmflag) | |
909 | struct blist_hdl *q = (struct blist_hdl *)vmp; | |
910 | blist_t bl = q->blist; | |
911 | daddr_t p; | |
912 | ||
913 | p = blist_alloc(bl, (daddr_t)size); | |
914 | ||
915 | if ((daddr_t)-1 == p) { | |
916 | blist_resize(&bl, (bl->bl_blocks) << 1, 1); | |
917 | q->blist = bl; | |
918 | p = blist_alloc(bl, (daddr_t)size); | |
919 | if ((daddr_t)-1 == p) | |
920 | panic("vmem_alloc: failure after blist_resize!"); | |
921 | } | |
922 | ||
923 | return (void *)(uintptr_t)p; | |
924 | } | |
925 | ||
926 | void | |
927 | vmem_free(vmem_t *vmp, void *vaddr, size_t size) | |
928 | { | |
929 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
930 | ||
931 | blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size ); | |
932 | } | |
933 | ||
934 | void | |
935 | vmem_destroy(vmem_t *vmp) | |
936 | { | |
937 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
938 | ||
939 | blist_destroy( p->blist ); | |
940 | _FREE( p, sizeof(struct blist_hdl) ); | |
941 | } | |
942 | ||
943 | /* | |
944 | * Timing | |
945 | */ | |
946 | ||
947 | /* | |
948 | * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at | |
949 | * January 1, 1970. Because it can be called from probe context, it must take no locks. | |
950 | */ | |
951 | ||
952 | hrtime_t | |
953 | dtrace_gethrestime(void) | |
954 | { | |
955 | clock_sec_t secs; | |
956 | clock_nsec_t nanosecs; | |
957 | uint64_t secs64, ns64; | |
958 | ||
959 | clock_get_calendar_nanotime_nowait(&secs, &nanosecs); | |
960 | secs64 = (uint64_t)secs; | |
961 | ns64 = (uint64_t)nanosecs; | |
962 | ||
963 | ns64 = ns64 + (secs64 * 1000000000LL); | |
964 | return ns64; | |
965 | } | |
966 | ||
967 | /* | |
968 | * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin. | |
969 | * Hence its primary use is to specify intervals. | |
970 | */ | |
971 | ||
972 | hrtime_t | |
973 | dtrace_abs_to_nano(uint64_t elapsed) | |
974 | { | |
975 | static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 }; | |
976 | ||
977 | /* | |
978 | * If this is the first time we've run, get the timebase. | |
979 | * We can use denom == 0 to indicate that sTimebaseInfo is | |
980 | * uninitialised because it makes no sense to have a zero | |
981 | * denominator in a fraction. | |
982 | */ | |
983 | ||
984 | if ( sTimebaseInfo.denom == 0 ) { | |
985 | (void) clock_timebase_info(&sTimebaseInfo); | |
986 | } | |
987 | ||
988 | /* | |
989 | * Convert to nanoseconds. | |
990 | * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom; | |
991 | * | |
992 | * Provided the final result is representable in 64 bits the following maneuver will | |
993 | * deliver that result without intermediate overflow. | |
994 | */ | |
995 | if (sTimebaseInfo.denom == sTimebaseInfo.numer) | |
996 | return elapsed; | |
997 | else if (sTimebaseInfo.denom == 1) | |
998 | return elapsed * (uint64_t)sTimebaseInfo.numer; | |
999 | else { | |
1000 | /* Decompose elapsed = eta32 * 2^32 + eps32: */ | |
1001 | uint64_t eta32 = elapsed >> 32; | |
1002 | uint64_t eps32 = elapsed & 0x00000000ffffffffLL; | |
1003 | ||
1004 | uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom; | |
1005 | ||
1006 | /* Form product of elapsed64 (decomposed) and numer: */ | |
1007 | uint64_t mu64 = numer * eta32; | |
1008 | uint64_t lambda64 = numer * eps32; | |
1009 | ||
1010 | /* Divide the constituents by denom: */ | |
1011 | uint64_t q32 = mu64/denom; | |
1012 | uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */ | |
1013 | ||
1014 | return (q32 << 32) + ((r32 << 32) + lambda64)/denom; | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | hrtime_t | |
1019 | dtrace_gethrtime(void) | |
1020 | { | |
1021 | static uint64_t start = 0; | |
1022 | ||
1023 | if (start == 0) | |
1024 | start = mach_absolute_time(); | |
1025 | ||
1026 | return dtrace_abs_to_nano(mach_absolute_time() - start); | |
1027 | } | |
1028 | ||
1029 | /* | |
1030 | * Atomicity and synchronization | |
1031 | */ | |
1032 | uint32_t | |
1033 | dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new) | |
1034 | { | |
1035 | if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target )) | |
1036 | return cmp; | |
1037 | else | |
1038 | return ~cmp; /* Must return something *other* than cmp */ | |
1039 | } | |
1040 | ||
1041 | void * | |
1042 | dtrace_casptr(void *target, void *cmp, void *new) | |
1043 | { | |
1044 | if (OSCompareAndSwapPtr( cmp, new, (void**)target )) | |
1045 | return cmp; | |
1046 | else | |
1047 | return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */ | |
1048 | } | |
1049 | ||
1050 | /* | |
1051 | * Interrupt manipulation | |
1052 | */ | |
1053 | dtrace_icookie_t | |
1054 | dtrace_interrupt_disable(void) | |
1055 | { | |
1056 | return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE); | |
1057 | } | |
1058 | ||
1059 | void | |
1060 | dtrace_interrupt_enable(dtrace_icookie_t reenable) | |
1061 | { | |
1062 | (void)ml_set_interrupts_enabled((boolean_t)reenable); | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * MP coordination | |
1067 | */ | |
1068 | static void | |
1069 | dtrace_sync_func(void) {} | |
1070 | ||
1071 | /* | |
1072 | * dtrace_sync() is not called from probe context. | |
1073 | */ | |
1074 | void | |
1075 | dtrace_sync(void) | |
1076 | { | |
1077 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context. | |
1082 | */ | |
1083 | ||
1084 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
1085 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
1086 | ||
1087 | static int | |
1088 | dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size) | |
1089 | { | |
1090 | #pragma unused(kaddr) | |
1091 | ||
1092 | vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */ | |
1093 | dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */ | |
1094 | ||
1095 | ASSERT(kaddr + size >= kaddr); | |
1096 | ||
1097 | if ( uaddr + size < uaddr || /* Avoid address wrap. */ | |
1098 | KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */ | |
1099 | { | |
1100 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1101 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1102 | return (0); | |
1103 | } | |
1104 | return (1); | |
1105 | } | |
1106 | ||
1107 | void | |
1108 | dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) | |
1109 | { | |
1110 | #pragma unused(flags) | |
1111 | ||
1112 | if (dtrace_copycheck( src, dst, len )) { | |
1113 | if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) { | |
1114 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1115 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1116 | } | |
1117 | dtrace_copyio_postflight(src); | |
1118 | } | |
1119 | } | |
1120 | ||
1121 | void | |
1122 | dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) | |
1123 | { | |
1124 | #pragma unused(flags) | |
1125 | ||
1126 | size_t actual; | |
1127 | ||
1128 | if (dtrace_copycheck( src, dst, len )) { | |
1129 | /* copyin as many as 'len' bytes. */ | |
1130 | int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual); | |
1131 | ||
1132 | /* | |
1133 | * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was | |
1134 | * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on. | |
1135 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1136 | * to the caller. | |
1137 | */ | |
1138 | if (error && error != ENAMETOOLONG) { | |
1139 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1140 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1141 | } | |
1142 | dtrace_copyio_postflight(src); | |
1143 | } | |
1144 | } | |
1145 | ||
1146 | void | |
1147 | dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) | |
1148 | { | |
1149 | #pragma unused(flags) | |
1150 | ||
1151 | if (dtrace_copycheck( dst, src, len )) { | |
1152 | if (copyout((const void *)src, dst, (vm_size_t)len)) { | |
1153 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1154 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1155 | } | |
1156 | dtrace_copyio_postflight(dst); | |
1157 | } | |
1158 | } | |
1159 | ||
1160 | void | |
1161 | dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) | |
1162 | { | |
1163 | #pragma unused(flags) | |
1164 | ||
1165 | size_t actual; | |
1166 | ||
1167 | if (dtrace_copycheck( dst, src, len )) { | |
1168 | ||
1169 | /* | |
1170 | * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was | |
1171 | * not encountered. We raise CPU_DTRACE_BADADDR in that case. | |
1172 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1173 | * to the caller. | |
1174 | */ | |
1175 | if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) { | |
1176 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1177 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1178 | } | |
1179 | dtrace_copyio_postflight(dst); | |
1180 | } | |
1181 | } | |
1182 | ||
1183 | extern const int copysize_limit_panic; | |
1184 | ||
1185 | int | |
1186 | dtrace_buffer_copyout(const void *kaddr, user_addr_t uaddr, vm_size_t nbytes) | |
1187 | { | |
1188 | /* | |
1189 | * Partition the copyout in copysize_limit_panic-sized chunks | |
1190 | */ | |
1191 | while (nbytes >= (vm_size_t)copysize_limit_panic) { | |
1192 | if (copyout(kaddr, uaddr, copysize_limit_panic) != 0) | |
1193 | return (EFAULT); | |
1194 | ||
1195 | nbytes -= copysize_limit_panic; | |
1196 | uaddr += copysize_limit_panic; | |
1197 | kaddr += copysize_limit_panic; | |
1198 | } | |
1199 | if (nbytes > 0) { | |
1200 | if (copyout(kaddr, uaddr, nbytes) != 0) | |
1201 | return (EFAULT); | |
1202 | } | |
1203 | ||
1204 | return (0); | |
1205 | } | |
1206 | ||
1207 | uint8_t | |
1208 | dtrace_fuword8(user_addr_t uaddr) | |
1209 | { | |
1210 | uint8_t ret = 0; | |
1211 | ||
1212 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1213 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1214 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1215 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1216 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1217 | } | |
1218 | dtrace_copyio_postflight(uaddr); | |
1219 | } | |
1220 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1221 | ||
1222 | return(ret); | |
1223 | } | |
1224 | ||
1225 | uint16_t | |
1226 | dtrace_fuword16(user_addr_t uaddr) | |
1227 | { | |
1228 | uint16_t ret = 0; | |
1229 | ||
1230 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1231 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1232 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1233 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1234 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1235 | } | |
1236 | dtrace_copyio_postflight(uaddr); | |
1237 | } | |
1238 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1239 | ||
1240 | return(ret); | |
1241 | } | |
1242 | ||
1243 | uint32_t | |
1244 | dtrace_fuword32(user_addr_t uaddr) | |
1245 | { | |
1246 | uint32_t ret = 0; | |
1247 | ||
1248 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1249 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1250 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1251 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1252 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1253 | } | |
1254 | dtrace_copyio_postflight(uaddr); | |
1255 | } | |
1256 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1257 | ||
1258 | return(ret); | |
1259 | } | |
1260 | ||
1261 | uint64_t | |
1262 | dtrace_fuword64(user_addr_t uaddr) | |
1263 | { | |
1264 | uint64_t ret = 0; | |
1265 | ||
1266 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1267 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1268 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1269 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1270 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1271 | } | |
1272 | dtrace_copyio_postflight(uaddr); | |
1273 | } | |
1274 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1275 | ||
1276 | return(ret); | |
1277 | } | |
1278 | ||
1279 | /* | |
1280 | * Emulation of Solaris fuword / suword | |
1281 | * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds. | |
1282 | */ | |
1283 | ||
1284 | int | |
1285 | fuword8(user_addr_t uaddr, uint8_t *value) | |
1286 | { | |
1287 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) { | |
1288 | return -1; | |
1289 | } | |
1290 | ||
1291 | return 0; | |
1292 | } | |
1293 | ||
1294 | int | |
1295 | fuword16(user_addr_t uaddr, uint16_t *value) | |
1296 | { | |
1297 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) { | |
1298 | return -1; | |
1299 | } | |
1300 | ||
1301 | return 0; | |
1302 | } | |
1303 | ||
1304 | int | |
1305 | fuword32(user_addr_t uaddr, uint32_t *value) | |
1306 | { | |
1307 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) { | |
1308 | return -1; | |
1309 | } | |
1310 | ||
1311 | return 0; | |
1312 | } | |
1313 | ||
1314 | int | |
1315 | fuword64(user_addr_t uaddr, uint64_t *value) | |
1316 | { | |
1317 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) { | |
1318 | return -1; | |
1319 | } | |
1320 | ||
1321 | return 0; | |
1322 | } | |
1323 | ||
1324 | void | |
1325 | fuword8_noerr(user_addr_t uaddr, uint8_t *value) | |
1326 | { | |
1327 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) { | |
1328 | *value = 0; | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | void | |
1333 | fuword16_noerr(user_addr_t uaddr, uint16_t *value) | |
1334 | { | |
1335 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) { | |
1336 | *value = 0; | |
1337 | } | |
1338 | } | |
1339 | ||
1340 | void | |
1341 | fuword32_noerr(user_addr_t uaddr, uint32_t *value) | |
1342 | { | |
1343 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) { | |
1344 | *value = 0; | |
1345 | } | |
1346 | } | |
1347 | ||
1348 | void | |
1349 | fuword64_noerr(user_addr_t uaddr, uint64_t *value) | |
1350 | { | |
1351 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) { | |
1352 | *value = 0; | |
1353 | } | |
1354 | } | |
1355 | ||
1356 | int | |
1357 | suword64(user_addr_t addr, uint64_t value) | |
1358 | { | |
1359 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1360 | return -1; | |
1361 | } | |
1362 | ||
1363 | return 0; | |
1364 | } | |
1365 | ||
1366 | int | |
1367 | suword32(user_addr_t addr, uint32_t value) | |
1368 | { | |
1369 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1370 | return -1; | |
1371 | } | |
1372 | ||
1373 | return 0; | |
1374 | } | |
1375 | ||
1376 | int | |
1377 | suword16(user_addr_t addr, uint16_t value) | |
1378 | { | |
1379 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1380 | return -1; | |
1381 | } | |
1382 | ||
1383 | return 0; | |
1384 | } | |
1385 | ||
1386 | int | |
1387 | suword8(user_addr_t addr, uint8_t value) | |
1388 | { | |
1389 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1390 | return -1; | |
1391 | } | |
1392 | ||
1393 | return 0; | |
1394 | } | |
1395 | ||
1396 | ||
1397 | /* | |
1398 | * Miscellaneous | |
1399 | */ | |
1400 | extern boolean_t dtrace_tally_fault(user_addr_t); | |
1401 | ||
1402 | boolean_t | |
1403 | dtrace_tally_fault(user_addr_t uaddr) | |
1404 | { | |
1405 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1406 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1407 | return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE ); | |
1408 | } | |
1409 | ||
1410 | #define TOTTY 0x02 | |
1411 | extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */ | |
1412 | ||
1413 | int | |
1414 | vuprintf(const char *format, va_list ap) | |
1415 | { | |
1416 | return prf(format, ap, TOTTY, NULL); | |
1417 | } | |
1418 | ||
1419 | /* Not called from probe context */ | |
1420 | void cmn_err( int level, const char *format, ... ) | |
1421 | { | |
1422 | #pragma unused(level) | |
1423 | va_list alist; | |
1424 | ||
1425 | va_start(alist, format); | |
1426 | vuprintf(format, alist); | |
1427 | va_end(alist); | |
1428 | uprintf("\n"); | |
1429 | } | |
1430 | ||
1431 | /* | |
1432 | * History: | |
1433 | * 2002-01-24 gvdl Initial implementation of strstr | |
1434 | */ | |
1435 | ||
1436 | __private_extern__ const char * | |
1437 | strstr(const char *in, const char *str) | |
1438 | { | |
1439 | char c; | |
1440 | size_t len; | |
1441 | if (!in || !str) | |
1442 | return in; | |
1443 | ||
1444 | c = *str++; | |
1445 | if (!c) | |
1446 | return (const char *) in; // Trivial empty string case | |
1447 | ||
1448 | len = strlen(str); | |
1449 | do { | |
1450 | char sc; | |
1451 | ||
1452 | do { | |
1453 | sc = *in++; | |
1454 | if (!sc) | |
1455 | return (char *) 0; | |
1456 | } while (sc != c); | |
1457 | } while (strncmp(in, str, len) != 0); | |
1458 | ||
1459 | return (const char *) (in - 1); | |
1460 | } | |
1461 | ||
1462 | const void* | |
1463 | bsearch(const void *key, const void *base0, size_t nmemb, size_t size, int (*compar)(const void *, const void *)) | |
1464 | { | |
1465 | const char *base = base0; | |
1466 | size_t lim; | |
1467 | int cmp; | |
1468 | const void *p; | |
1469 | for (lim = nmemb; lim != 0; lim >>= 1) { | |
1470 | p = base + (lim >> 1) * size; | |
1471 | cmp = (*compar)(key, p); | |
1472 | if (cmp == 0) | |
1473 | return p; | |
1474 | if (cmp > 0) { /* key > p: move right */ | |
1475 | base = (const char *)p + size; | |
1476 | lim--; | |
1477 | } /* else move left */ | |
1478 | } | |
1479 | return (NULL); | |
1480 | } | |
1481 | ||
1482 | /* | |
1483 | * Runtime and ABI | |
1484 | */ | |
1485 | uintptr_t | |
1486 | dtrace_caller(int ignore) | |
1487 | { | |
1488 | #pragma unused(ignore) | |
1489 | return -1; /* Just as in Solaris dtrace_asm.s */ | |
1490 | } | |
1491 | ||
1492 | int | |
1493 | dtrace_getstackdepth(int aframes) | |
1494 | { | |
1495 | struct frame *fp = (struct frame *)__builtin_frame_address(0); | |
1496 | struct frame *nextfp, *minfp, *stacktop; | |
1497 | int depth = 0; | |
1498 | int on_intr; | |
1499 | ||
1500 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
1501 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
1502 | else | |
1503 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); | |
1504 | ||
1505 | minfp = fp; | |
1506 | ||
1507 | aframes++; | |
1508 | ||
1509 | for (;;) { | |
1510 | depth++; | |
1511 | ||
1512 | nextfp = *(struct frame **)fp; | |
1513 | ||
1514 | if (nextfp <= minfp || nextfp >= stacktop) { | |
1515 | if (on_intr) { | |
1516 | /* | |
1517 | * Hop from interrupt stack to thread stack. | |
1518 | */ | |
1519 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
1520 | ||
1521 | minfp = (struct frame *)kstack_base; | |
1522 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); | |
1523 | ||
1524 | on_intr = 0; | |
1525 | continue; | |
1526 | } | |
1527 | break; | |
1528 | } | |
1529 | ||
1530 | fp = nextfp; | |
1531 | minfp = fp; | |
1532 | } | |
1533 | ||
1534 | if (depth <= aframes) | |
1535 | return (0); | |
1536 | ||
1537 | return (depth - aframes); | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * Unconsidered | |
1542 | */ | |
1543 | void | |
1544 | dtrace_vtime_enable(void) {} | |
1545 | ||
1546 | void | |
1547 | dtrace_vtime_disable(void) {} | |
1548 | ||
1549 | #else /* else ! CONFIG_DTRACE */ | |
1550 | ||
1551 | #include <sys/types.h> | |
1552 | #include <mach/vm_types.h> | |
1553 | #include <mach/kmod.h> | |
1554 | ||
1555 | /* | |
1556 | * This exists to prevent build errors when dtrace is unconfigured. | |
1557 | */ | |
1558 | ||
1559 | kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t); | |
1560 | ||
1561 | kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) { | |
1562 | #pragma unused(arg1, arg2, arg3) | |
1563 | ||
1564 | return KERN_FAILURE; | |
1565 | } | |
1566 | ||
1567 | #endif /* CONFIG_DTRACE */ |