]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/vfs/vfs_cluster.c
xnu-2782.10.72.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64#include <sys/param.h>
65#include <sys/proc_internal.h>
66#include <sys/buf_internal.h>
67#include <sys/mount_internal.h>
68#include <sys/vnode_internal.h>
69#include <sys/trace.h>
70#include <sys/malloc.h>
71#include <sys/time.h>
72#include <sys/kernel.h>
73#include <sys/resourcevar.h>
74#include <miscfs/specfs/specdev.h>
75#include <sys/uio_internal.h>
76#include <libkern/libkern.h>
77#include <machine/machine_routines.h>
78
79#include <sys/ubc_internal.h>
80#include <vm/vnode_pager.h>
81
82#include <mach/mach_types.h>
83#include <mach/memory_object_types.h>
84#include <mach/vm_map.h>
85#include <mach/upl.h>
86#include <kern/task.h>
87
88#include <vm/vm_kern.h>
89#include <vm/vm_map.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_fault.h>
92
93#include <sys/kdebug.h>
94#include <libkern/OSAtomic.h>
95
96#include <sys/sdt.h>
97
98#if 0
99#undef KERNEL_DEBUG
100#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
101#endif
102
103
104#define CL_READ 0x01
105#define CL_WRITE 0x02
106#define CL_ASYNC 0x04
107#define CL_COMMIT 0x08
108#define CL_PAGEOUT 0x10
109#define CL_AGE 0x20
110#define CL_NOZERO 0x40
111#define CL_PAGEIN 0x80
112#define CL_DEV_MEMORY 0x100
113#define CL_PRESERVE 0x200
114#define CL_THROTTLE 0x400
115#define CL_KEEPCACHED 0x800
116#define CL_DIRECT_IO 0x1000
117#define CL_PASSIVE 0x2000
118#define CL_IOSTREAMING 0x4000
119#define CL_CLOSE 0x8000
120#define CL_ENCRYPTED 0x10000
121#define CL_RAW_ENCRYPTED 0x20000
122#define CL_NOCACHE 0x40000
123
124#define MAX_VECTOR_UPL_ELEMENTS 8
125#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
126
127extern upl_t vector_upl_create(vm_offset_t);
128extern boolean_t vector_upl_is_valid(upl_t);
129extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
130extern void vector_upl_set_pagelist(upl_t);
131extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
132
133struct clios {
134 lck_mtx_t io_mtxp;
135 u_int io_completed; /* amount of io that has currently completed */
136 u_int io_issued; /* amount of io that was successfully issued */
137 int io_error; /* error code of first error encountered */
138 int io_wanted; /* someone is sleeping waiting for a change in state */
139};
140
141static lck_grp_t *cl_mtx_grp;
142static lck_attr_t *cl_mtx_attr;
143static lck_grp_attr_t *cl_mtx_grp_attr;
144static lck_mtx_t *cl_transaction_mtxp;
145
146
147#define IO_UNKNOWN 0
148#define IO_DIRECT 1
149#define IO_CONTIG 2
150#define IO_COPY 3
151
152#define PUSH_DELAY 0x01
153#define PUSH_ALL 0x02
154#define PUSH_SYNC 0x04
155
156
157static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
158static void cluster_wait_IO(buf_t cbp_head, int async);
159static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
160
161static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
162
163static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
164 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
165static int cluster_iodone(buf_t bp, void *callback_arg);
166static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
167static int cluster_is_throttled(vnode_t vp);
168
169static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
170
171static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
172
173static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
174static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
175
176static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
177 int (*)(buf_t, void *), void *callback_arg);
178static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
179 int flags, int (*)(buf_t, void *), void *callback_arg);
180static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
181 int (*)(buf_t, void *), void *callback_arg, int flags);
182
183static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
184 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
185static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
186 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
187static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
188 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
189
190static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
191
192static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
193static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
194
195static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
196
197static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
198
199static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
200static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
201static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
202
203static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
204static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
205static kern_return_t vfs_drt_control(void **cmapp, int op_type);
206
207
208/*
209 * For throttled IO to check whether
210 * a block is cached by the boot cache
211 * and thus it can avoid delaying the IO.
212 *
213 * bootcache_contains_block is initially
214 * NULL. The BootCache will set it while
215 * the cache is active and clear it when
216 * the cache is jettisoned.
217 *
218 * Returns 0 if the block is not
219 * contained in the cache, 1 if it is
220 * contained.
221 *
222 * The function pointer remains valid
223 * after the cache has been evicted even
224 * if bootcache_contains_block has been
225 * cleared.
226 *
227 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
228 */
229int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
230
231
232/*
233 * limit the internal I/O size so that we
234 * can represent it in a 32 bit int
235 */
236#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
237#define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
238#define MAX_VECTS 16
239#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
240
241#define WRITE_THROTTLE 6
242#define WRITE_THROTTLE_SSD 2
243#define WRITE_BEHIND 1
244#define WRITE_BEHIND_SSD 1
245
246#define PREFETCH 3
247#define PREFETCH_SSD 2
248uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
249uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
250
251
252#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
253#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
254#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
255
256int ignore_is_ssd = 0;
257int speculative_reads_disabled = 0;
258
259/*
260 * throttle the number of async writes that
261 * can be outstanding on a single vnode
262 * before we issue a synchronous write
263 */
264#define THROTTLE_MAXCNT 0
265
266uint32_t throttle_max_iosize = (128 * 1024);
267
268#define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
269
270SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
271
272
273void
274cluster_init(void) {
275 /*
276 * allocate lock group attribute and group
277 */
278 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
279 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
280
281 /*
282 * allocate the lock attribute
283 */
284 cl_mtx_attr = lck_attr_alloc_init();
285
286 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
287
288 if (cl_transaction_mtxp == NULL)
289 panic("cluster_init: failed to allocate cl_transaction_mtxp");
290}
291
292
293uint32_t
294cluster_max_io_size(mount_t mp, int type)
295{
296 uint32_t max_io_size;
297 uint32_t segcnt;
298 uint32_t maxcnt;
299
300 switch(type) {
301
302 case CL_READ:
303 segcnt = mp->mnt_segreadcnt;
304 maxcnt = mp->mnt_maxreadcnt;
305 break;
306 case CL_WRITE:
307 segcnt = mp->mnt_segwritecnt;
308 maxcnt = mp->mnt_maxwritecnt;
309 break;
310 default:
311 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
312 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
313 break;
314 }
315 if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
316 /*
317 * don't allow a size beyond the max UPL size we can create
318 */
319 segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
320 }
321 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
322
323 if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
324 /*
325 * don't allow a size smaller than the old fixed limit
326 */
327 max_io_size = MAX_UPL_TRANSFER_BYTES;
328 } else {
329 /*
330 * make sure the size specified is a multiple of PAGE_SIZE
331 */
332 max_io_size &= ~PAGE_MASK;
333 }
334 return (max_io_size);
335}
336
337
338
339
340#define CLW_ALLOCATE 0x01
341#define CLW_RETURNLOCKED 0x02
342#define CLW_IONOCACHE 0x04
343#define CLW_IOPASSIVE 0x08
344
345/*
346 * if the read ahead context doesn't yet exist,
347 * allocate and initialize it...
348 * the vnode lock serializes multiple callers
349 * during the actual assignment... first one
350 * to grab the lock wins... the other callers
351 * will release the now unnecessary storage
352 *
353 * once the context is present, try to grab (but don't block on)
354 * the lock associated with it... if someone
355 * else currently owns it, than the read
356 * will run without read-ahead. this allows
357 * multiple readers to run in parallel and
358 * since there's only 1 read ahead context,
359 * there's no real loss in only allowing 1
360 * reader to have read-ahead enabled.
361 */
362static struct cl_readahead *
363cluster_get_rap(vnode_t vp)
364{
365 struct ubc_info *ubc;
366 struct cl_readahead *rap;
367
368 ubc = vp->v_ubcinfo;
369
370 if ((rap = ubc->cl_rahead) == NULL) {
371 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
372
373 bzero(rap, sizeof *rap);
374 rap->cl_lastr = -1;
375 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
376
377 vnode_lock(vp);
378
379 if (ubc->cl_rahead == NULL)
380 ubc->cl_rahead = rap;
381 else {
382 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
383 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
384 rap = ubc->cl_rahead;
385 }
386 vnode_unlock(vp);
387 }
388 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
389 return(rap);
390
391 return ((struct cl_readahead *)NULL);
392}
393
394
395/*
396 * if the write behind context doesn't yet exist,
397 * and CLW_ALLOCATE is specified, allocate and initialize it...
398 * the vnode lock serializes multiple callers
399 * during the actual assignment... first one
400 * to grab the lock wins... the other callers
401 * will release the now unnecessary storage
402 *
403 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
404 * the lock associated with the write behind context before
405 * returning
406 */
407
408static struct cl_writebehind *
409cluster_get_wbp(vnode_t vp, int flags)
410{
411 struct ubc_info *ubc;
412 struct cl_writebehind *wbp;
413
414 ubc = vp->v_ubcinfo;
415
416 if ((wbp = ubc->cl_wbehind) == NULL) {
417
418 if ( !(flags & CLW_ALLOCATE))
419 return ((struct cl_writebehind *)NULL);
420
421 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
422
423 bzero(wbp, sizeof *wbp);
424 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
425
426 vnode_lock(vp);
427
428 if (ubc->cl_wbehind == NULL)
429 ubc->cl_wbehind = wbp;
430 else {
431 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
432 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
433 wbp = ubc->cl_wbehind;
434 }
435 vnode_unlock(vp);
436 }
437 if (flags & CLW_RETURNLOCKED)
438 lck_mtx_lock(&wbp->cl_lockw);
439
440 return (wbp);
441}
442
443
444static void
445cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
446{
447 struct cl_writebehind *wbp;
448
449 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
450
451 if (wbp->cl_number) {
452 lck_mtx_lock(&wbp->cl_lockw);
453
454 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg);
455
456 lck_mtx_unlock(&wbp->cl_lockw);
457 }
458 }
459}
460
461
462static int
463cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
464{
465 daddr64_t blkno;
466 size_t io_size;
467 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
468
469 if (bootcache_check_fn) {
470 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
471 return(0);
472
473 if (io_size == 0)
474 return (0);
475
476 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
477 return(1);
478 }
479 return(0);
480}
481
482
483static int
484cluster_is_throttled(vnode_t vp)
485{
486 return (throttle_io_will_be_throttled(-1, vp->v_mount));
487}
488
489
490static void
491cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
492{
493
494 lck_mtx_lock(&iostate->io_mtxp);
495
496 while ((iostate->io_issued - iostate->io_completed) > target) {
497
498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
499 iostate->io_issued, iostate->io_completed, target, 0, 0);
500
501 iostate->io_wanted = 1;
502 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
503
504 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
505 iostate->io_issued, iostate->io_completed, target, 0, 0);
506 }
507 lck_mtx_unlock(&iostate->io_mtxp);
508}
509
510
511static int
512cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
513{
514 int upl_abort_code = 0;
515 int page_in = 0;
516 int page_out = 0;
517
518 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
519 /*
520 * direct write of any flavor, or a direct read that wasn't aligned
521 */
522 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
523 else {
524 if (io_flags & B_PAGEIO) {
525 if (io_flags & B_READ)
526 page_in = 1;
527 else
528 page_out = 1;
529 }
530 if (io_flags & B_CACHE)
531 /*
532 * leave pages in the cache unchanged on error
533 */
534 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
535 else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
536 /*
537 * transient error... leave pages unchanged
538 */
539 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
540 else if (page_in)
541 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
542 else
543 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
544
545 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
546 }
547 return (upl_abort_code);
548}
549
550
551static int
552cluster_iodone(buf_t bp, void *callback_arg)
553{
554 int b_flags;
555 int error;
556 int total_size;
557 int total_resid;
558 int upl_offset;
559 int zero_offset;
560 int pg_offset = 0;
561 int commit_size = 0;
562 int upl_flags = 0;
563 int transaction_size = 0;
564 upl_t upl;
565 buf_t cbp;
566 buf_t cbp_head;
567 buf_t cbp_next;
568 buf_t real_bp;
569 vnode_t vp;
570 struct clios *iostate;
571 boolean_t transaction_complete = FALSE;
572
573 cbp_head = (buf_t)(bp->b_trans_head);
574
575 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
576 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
577
578 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
579 boolean_t need_wakeup = FALSE;
580
581 lck_mtx_lock_spin(cl_transaction_mtxp);
582
583 bp->b_flags |= B_TDONE;
584
585 if (bp->b_flags & B_TWANTED) {
586 CLR(bp->b_flags, B_TWANTED);
587 need_wakeup = TRUE;
588 }
589 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
590 /*
591 * all I/O requests that are part of this transaction
592 * have to complete before we can process it
593 */
594 if ( !(cbp->b_flags & B_TDONE)) {
595
596 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
597 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
598
599 lck_mtx_unlock(cl_transaction_mtxp);
600
601 if (need_wakeup == TRUE)
602 wakeup(bp);
603
604 return 0;
605 }
606 if (cbp->b_flags & B_EOT)
607 transaction_complete = TRUE;
608 }
609 lck_mtx_unlock(cl_transaction_mtxp);
610
611 if (need_wakeup == TRUE)
612 wakeup(bp);
613
614 if (transaction_complete == FALSE) {
615 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
616 cbp_head, 0, 0, 0, 0);
617 return 0;
618 }
619 }
620 error = 0;
621 total_size = 0;
622 total_resid = 0;
623
624 cbp = cbp_head;
625 vp = cbp->b_vp;
626 upl_offset = cbp->b_uploffset;
627 upl = cbp->b_upl;
628 b_flags = cbp->b_flags;
629 real_bp = cbp->b_real_bp;
630 zero_offset= cbp->b_validend;
631 iostate = (struct clios *)cbp->b_iostate;
632
633 if (real_bp)
634 real_bp->b_dev = cbp->b_dev;
635
636 while (cbp) {
637 if ((cbp->b_flags & B_ERROR) && error == 0)
638 error = cbp->b_error;
639
640 total_resid += cbp->b_resid;
641 total_size += cbp->b_bcount;
642
643 cbp_next = cbp->b_trans_next;
644
645 if (cbp_next == NULL)
646 /*
647 * compute the overall size of the transaction
648 * in case we created one that has 'holes' in it
649 * 'total_size' represents the amount of I/O we
650 * did, not the span of the transaction w/r to the UPL
651 */
652 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
653
654 if (cbp != cbp_head)
655 free_io_buf(cbp);
656
657 cbp = cbp_next;
658 }
659 if (error == 0 && total_resid)
660 error = EIO;
661
662 if (error == 0) {
663 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
664
665 if (cliodone_func != NULL) {
666 cbp_head->b_bcount = transaction_size;
667
668 error = (*cliodone_func)(cbp_head, callback_arg);
669 }
670 }
671 if (zero_offset)
672 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
673
674 free_io_buf(cbp_head);
675
676 if (iostate) {
677 int need_wakeup = 0;
678
679 /*
680 * someone has issued multiple I/Os asynchrounsly
681 * and is waiting for them to complete (streaming)
682 */
683 lck_mtx_lock_spin(&iostate->io_mtxp);
684
685 if (error && iostate->io_error == 0)
686 iostate->io_error = error;
687
688 iostate->io_completed += total_size;
689
690 if (iostate->io_wanted) {
691 /*
692 * someone is waiting for the state of
693 * this io stream to change
694 */
695 iostate->io_wanted = 0;
696 need_wakeup = 1;
697 }
698 lck_mtx_unlock(&iostate->io_mtxp);
699
700 if (need_wakeup)
701 wakeup((caddr_t)&iostate->io_wanted);
702 }
703
704 if (b_flags & B_COMMIT_UPL) {
705
706 pg_offset = upl_offset & PAGE_MASK;
707 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
708
709 if (error)
710 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
711 else {
712 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
713
714 if ((b_flags & B_PHYS) && (b_flags & B_READ))
715 upl_flags |= UPL_COMMIT_SET_DIRTY;
716
717 if (b_flags & B_AGE)
718 upl_flags |= UPL_COMMIT_INACTIVATE;
719
720 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
721 }
722 }
723 if (real_bp) {
724 if (error) {
725 real_bp->b_flags |= B_ERROR;
726 real_bp->b_error = error;
727 }
728 real_bp->b_resid = total_resid;
729
730 buf_biodone(real_bp);
731 }
732 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
733 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
734
735 return (error);
736}
737
738
739uint32_t
740cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
741{
742 if (cluster_is_throttled(vp)) {
743 *limit = THROTTLE_MAX_IOSIZE;
744 return 1;
745 }
746 return 0;
747}
748
749
750void
751cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
752{
753
754 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
755 upl_offset, size, bp, 0, 0);
756
757 if (bp == NULL || bp->b_datap == 0) {
758 upl_page_info_t *pl;
759 addr64_t zero_addr;
760
761 pl = ubc_upl_pageinfo(upl);
762
763 if (upl_device_page(pl) == TRUE) {
764 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
765
766 bzero_phys_nc(zero_addr, size);
767 } else {
768 while (size) {
769 int page_offset;
770 int page_index;
771 int zero_cnt;
772
773 page_index = upl_offset / PAGE_SIZE;
774 page_offset = upl_offset & PAGE_MASK;
775
776 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
777 zero_cnt = min(PAGE_SIZE - page_offset, size);
778
779 bzero_phys(zero_addr, zero_cnt);
780
781 size -= zero_cnt;
782 upl_offset += zero_cnt;
783 }
784 }
785 } else
786 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
787
788 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
789 upl_offset, size, 0, 0, 0);
790}
791
792
793static void
794cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
795{
796 cbp_head->b_validend = zero_offset;
797 cbp_tail->b_flags |= B_EOT;
798}
799
800static void
801cluster_wait_IO(buf_t cbp_head, int async)
802{
803 buf_t cbp;
804
805 if (async) {
806 /*
807 * async callback completion will not normally
808 * generate a wakeup upon I/O completion...
809 * by setting B_TWANTED, we will force a wakeup
810 * to occur as any outstanding I/Os complete...
811 * I/Os already completed will have B_TDONE already
812 * set and we won't cause us to block
813 * note that we're actually waiting for the bp to have
814 * completed the callback function... only then
815 * can we safely take back ownership of the bp
816 */
817 lck_mtx_lock_spin(cl_transaction_mtxp);
818
819 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
820 cbp->b_flags |= B_TWANTED;
821
822 lck_mtx_unlock(cl_transaction_mtxp);
823 }
824 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
825
826 if (async) {
827 while (!ISSET(cbp->b_flags, B_TDONE)) {
828
829 lck_mtx_lock_spin(cl_transaction_mtxp);
830
831 if (!ISSET(cbp->b_flags, B_TDONE)) {
832 DTRACE_IO1(wait__start, buf_t, cbp);
833 (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
834 DTRACE_IO1(wait__done, buf_t, cbp);
835 } else
836 lck_mtx_unlock(cl_transaction_mtxp);
837 }
838 } else
839 buf_biowait(cbp);
840 }
841}
842
843static void
844cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
845{
846 buf_t cbp;
847 int error;
848 boolean_t isswapout = FALSE;
849
850 /*
851 * cluster_complete_transaction will
852 * only be called if we've issued a complete chain in synchronous mode
853 * or, we've already done a cluster_wait_IO on an incomplete chain
854 */
855 if (needwait) {
856 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
857 buf_biowait(cbp);
858 }
859 /*
860 * we've already waited on all of the I/Os in this transaction,
861 * so mark all of the buf_t's in this transaction as B_TDONE
862 * so that cluster_iodone sees the transaction as completed
863 */
864 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
865 cbp->b_flags |= B_TDONE;
866 cbp = *cbp_head;
867
868 if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
869 isswapout = TRUE;
870
871 error = cluster_iodone(cbp, callback_arg);
872
873 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
874 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
875 *retval = error;
876 else if (isswapout == TRUE)
877 *retval = error;
878 }
879 *cbp_head = (buf_t)NULL;
880}
881
882
883static int
884cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
885 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
886{
887 buf_t cbp;
888 u_int size;
889 u_int io_size;
890 int io_flags;
891 int bmap_flags;
892 int error = 0;
893 int retval = 0;
894 buf_t cbp_head = NULL;
895 buf_t cbp_tail = NULL;
896 int trans_count = 0;
897 int max_trans_count;
898 u_int pg_count;
899 int pg_offset;
900 u_int max_iosize;
901 u_int max_vectors;
902 int priv;
903 int zero_offset = 0;
904 int async_throttle = 0;
905 mount_t mp;
906 vm_offset_t upl_end_offset;
907 boolean_t need_EOT = FALSE;
908
909 /*
910 * we currently don't support buffers larger than a page
911 */
912 if (real_bp && non_rounded_size > PAGE_SIZE)
913 panic("%s(): Called with real buffer of size %d bytes which "
914 "is greater than the maximum allowed size of "
915 "%d bytes (the system PAGE_SIZE).\n",
916 __FUNCTION__, non_rounded_size, PAGE_SIZE);
917
918 mp = vp->v_mount;
919
920 /*
921 * we don't want to do any funny rounding of the size for IO requests
922 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
923 * belong to us... we can't extend (nor do we need to) the I/O to fill
924 * out a page
925 */
926 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
927 /*
928 * round the requested size up so that this I/O ends on a
929 * page boundary in case this is a 'write'... if the filesystem
930 * has blocks allocated to back the page beyond the EOF, we want to
931 * make sure to write out the zero's that are sitting beyond the EOF
932 * so that in case the filesystem doesn't explicitly zero this area
933 * if a hole is created via a lseek/write beyond the current EOF,
934 * it will return zeros when it's read back from the disk. If the
935 * physical allocation doesn't extend for the whole page, we'll
936 * only write/read from the disk up to the end of this allocation
937 * via the extent info returned from the VNOP_BLOCKMAP call.
938 */
939 pg_offset = upl_offset & PAGE_MASK;
940
941 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
942 } else {
943 /*
944 * anyone advertising a blocksize of 1 byte probably
945 * can't deal with us rounding up the request size
946 * AFP is one such filesystem/device
947 */
948 size = non_rounded_size;
949 }
950 upl_end_offset = upl_offset + size;
951
952 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
953
954 /*
955 * Set the maximum transaction size to the maximum desired number of
956 * buffers.
957 */
958 max_trans_count = 8;
959 if (flags & CL_DEV_MEMORY)
960 max_trans_count = 16;
961
962 if (flags & CL_READ) {
963 io_flags = B_READ;
964 bmap_flags = VNODE_READ;
965
966 max_iosize = mp->mnt_maxreadcnt;
967 max_vectors = mp->mnt_segreadcnt;
968 } else {
969 io_flags = B_WRITE;
970 bmap_flags = VNODE_WRITE;
971
972 max_iosize = mp->mnt_maxwritecnt;
973 max_vectors = mp->mnt_segwritecnt;
974 }
975 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
976
977 /*
978 * make sure the maximum iosize is a
979 * multiple of the page size
980 */
981 max_iosize &= ~PAGE_MASK;
982
983 /*
984 * Ensure the maximum iosize is sensible.
985 */
986 if (!max_iosize)
987 max_iosize = PAGE_SIZE;
988
989 if (flags & CL_THROTTLE) {
990 if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
991 if (max_iosize > THROTTLE_MAX_IOSIZE)
992 max_iosize = THROTTLE_MAX_IOSIZE;
993 async_throttle = THROTTLE_MAXCNT;
994 } else {
995 if ( (flags & CL_DEV_MEMORY) )
996 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
997 else {
998 u_int max_cluster;
999 u_int max_cluster_size;
1000 u_int scale;
1001
1002 max_cluster_size = MAX_CLUSTER_SIZE(vp);
1003
1004 if (max_iosize > max_cluster_size)
1005 max_cluster = max_cluster_size;
1006 else
1007 max_cluster = max_iosize;
1008
1009 if (size < max_cluster)
1010 max_cluster = size;
1011
1012 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1013 scale = WRITE_THROTTLE_SSD;
1014 else
1015 scale = WRITE_THROTTLE;
1016
1017 if (flags & CL_CLOSE)
1018 scale += MAX_CLUSTERS;
1019
1020 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
1021 }
1022 }
1023 }
1024 if (flags & CL_AGE)
1025 io_flags |= B_AGE;
1026 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1027 io_flags |= B_PAGEIO;
1028 if (flags & (CL_IOSTREAMING))
1029 io_flags |= B_IOSTREAMING;
1030 if (flags & CL_COMMIT)
1031 io_flags |= B_COMMIT_UPL;
1032 if (flags & CL_DIRECT_IO)
1033 io_flags |= B_PHYS;
1034 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1035 io_flags |= B_CACHE;
1036 if (flags & CL_PASSIVE)
1037 io_flags |= B_PASSIVE;
1038 if (flags & CL_ENCRYPTED)
1039 io_flags |= B_ENCRYPTED_IO;
1040 if (vp->v_flag & VSYSTEM)
1041 io_flags |= B_META;
1042
1043 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1044 /*
1045 * then we are going to end up
1046 * with a page that we can't complete (the file size wasn't a multiple
1047 * of PAGE_SIZE and we're trying to read to the end of the file
1048 * so we'll go ahead and zero out the portion of the page we can't
1049 * read in from the file
1050 */
1051 zero_offset = upl_offset + non_rounded_size;
1052 }
1053 while (size) {
1054 daddr64_t blkno;
1055 daddr64_t lblkno;
1056 u_int io_size_wanted;
1057 size_t io_size_tmp;
1058
1059 if (size > max_iosize)
1060 io_size = max_iosize;
1061 else
1062 io_size = size;
1063
1064 io_size_wanted = io_size;
1065 io_size_tmp = (size_t)io_size;
1066
1067 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1068 break;
1069
1070 if (io_size_tmp > io_size_wanted)
1071 io_size = io_size_wanted;
1072 else
1073 io_size = (u_int)io_size_tmp;
1074
1075 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1076 real_bp->b_blkno = blkno;
1077
1078 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
1079 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1080
1081 if (io_size == 0) {
1082 /*
1083 * vnop_blockmap didn't return an error... however, it did
1084 * return an extent size of 0 which means we can't
1085 * make forward progress on this I/O... a hole in the
1086 * file would be returned as a blkno of -1 with a non-zero io_size
1087 * a real extent is returned with a blkno != -1 and a non-zero io_size
1088 */
1089 error = EINVAL;
1090 break;
1091 }
1092 if ( !(flags & CL_READ) && blkno == -1) {
1093 off_t e_offset;
1094 int pageout_flags;
1095
1096 if (upl_get_internal_vectorupl(upl))
1097 panic("Vector UPLs should not take this code-path\n");
1098 /*
1099 * we're writing into a 'hole'
1100 */
1101 if (flags & CL_PAGEOUT) {
1102 /*
1103 * if we got here via cluster_pageout
1104 * then just error the request and return
1105 * the 'hole' should already have been covered
1106 */
1107 error = EINVAL;
1108 break;
1109 }
1110 /*
1111 * we can get here if the cluster code happens to
1112 * pick up a page that was dirtied via mmap vs
1113 * a 'write' and the page targets a 'hole'...
1114 * i.e. the writes to the cluster were sparse
1115 * and the file was being written for the first time
1116 *
1117 * we can also get here if the filesystem supports
1118 * 'holes' that are less than PAGE_SIZE.... because
1119 * we can't know if the range in the page that covers
1120 * the 'hole' has been dirtied via an mmap or not,
1121 * we have to assume the worst and try to push the
1122 * entire page to storage.
1123 *
1124 * Try paging out the page individually before
1125 * giving up entirely and dumping it (the pageout
1126 * path will insure that the zero extent accounting
1127 * has been taken care of before we get back into cluster_io)
1128 *
1129 * go direct to vnode_pageout so that we don't have to
1130 * unbusy the page from the UPL... we used to do this
1131 * so that we could call ubc_msync, but that results
1132 * in a potential deadlock if someone else races us to acquire
1133 * that page and wins and in addition needs one of the pages
1134 * we're continuing to hold in the UPL
1135 */
1136 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
1137
1138 if ( !(flags & CL_ASYNC))
1139 pageout_flags |= UPL_IOSYNC;
1140 if ( !(flags & CL_COMMIT))
1141 pageout_flags |= UPL_NOCOMMIT;
1142
1143 if (cbp_head) {
1144 buf_t last_cbp;
1145
1146 /*
1147 * first we have to wait for the the current outstanding I/Os
1148 * to complete... EOT hasn't been set yet on this transaction
1149 * so the pages won't be released just because all of the current
1150 * I/O linked to this transaction has completed...
1151 */
1152 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1153
1154 /*
1155 * we've got a transcation that
1156 * includes the page we're about to push out through vnode_pageout...
1157 * find the last bp in the list which will be the one that
1158 * includes the head of this page and round it's iosize down
1159 * to a page boundary...
1160 */
1161 for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1162 last_cbp = cbp;
1163
1164 cbp->b_bcount &= ~PAGE_MASK;
1165
1166 if (cbp->b_bcount == 0) {
1167 /*
1168 * this buf no longer has any I/O associated with it
1169 */
1170 free_io_buf(cbp);
1171
1172 if (cbp == cbp_head) {
1173 /*
1174 * the buf we just freed was the only buf in
1175 * this transaction... so there's no I/O to do
1176 */
1177 cbp_head = NULL;
1178 } else {
1179 /*
1180 * remove the buf we just freed from
1181 * the transaction list
1182 */
1183 last_cbp->b_trans_next = NULL;
1184 cbp_tail = last_cbp;
1185 }
1186 }
1187 if (cbp_head) {
1188 /*
1189 * there was more to the current transaction
1190 * than just the page we are pushing out via vnode_pageout...
1191 * mark it as finished and complete it... we've already
1192 * waited for the I/Os to complete above in the call to cluster_wait_IO
1193 */
1194 cluster_EOT(cbp_head, cbp_tail, 0);
1195
1196 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1197
1198 trans_count = 0;
1199 }
1200 }
1201 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1202 error = EINVAL;
1203 }
1204 e_offset = round_page_64(f_offset + 1);
1205 io_size = e_offset - f_offset;
1206
1207 f_offset += io_size;
1208 upl_offset += io_size;
1209
1210 if (size >= io_size)
1211 size -= io_size;
1212 else
1213 size = 0;
1214 /*
1215 * keep track of how much of the original request
1216 * that we've actually completed... non_rounded_size
1217 * may go negative due to us rounding the request
1218 * to a page size multiple (i.e. size > non_rounded_size)
1219 */
1220 non_rounded_size -= io_size;
1221
1222 if (non_rounded_size <= 0) {
1223 /*
1224 * we've transferred all of the data in the original
1225 * request, but we were unable to complete the tail
1226 * of the last page because the file didn't have
1227 * an allocation to back that portion... this is ok.
1228 */
1229 size = 0;
1230 }
1231 if (error) {
1232 if (size == 0)
1233 flags &= ~CL_COMMIT;
1234 break;
1235 }
1236 continue;
1237 }
1238 lblkno = (daddr64_t)(f_offset / 0x1000);
1239 /*
1240 * we have now figured out how much I/O we can do - this is in 'io_size'
1241 * pg_offset is the starting point in the first page for the I/O
1242 * pg_count is the number of full and partial pages that 'io_size' encompasses
1243 */
1244 pg_offset = upl_offset & PAGE_MASK;
1245
1246 if (flags & CL_DEV_MEMORY) {
1247 /*
1248 * treat physical requests as one 'giant' page
1249 */
1250 pg_count = 1;
1251 } else
1252 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1253
1254 if ((flags & CL_READ) && blkno == -1) {
1255 vm_offset_t commit_offset;
1256 int bytes_to_zero;
1257 int complete_transaction_now = 0;
1258
1259 /*
1260 * if we're reading and blkno == -1, then we've got a
1261 * 'hole' in the file that we need to deal with by zeroing
1262 * out the affected area in the upl
1263 */
1264 if (io_size >= (u_int)non_rounded_size) {
1265 /*
1266 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1267 * than 'zero_offset' will be non-zero
1268 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1269 * (indicated by the io_size finishing off the I/O request for this UPL)
1270 * than we're not going to issue an I/O for the
1271 * last page in this upl... we need to zero both the hole and the tail
1272 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1273 */
1274 bytes_to_zero = non_rounded_size;
1275 if (!(flags & CL_NOZERO))
1276 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1277
1278 zero_offset = 0;
1279 } else
1280 bytes_to_zero = io_size;
1281
1282 pg_count = 0;
1283
1284 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1285
1286 if (cbp_head) {
1287 int pg_resid;
1288
1289 /*
1290 * if there is a current I/O chain pending
1291 * then the first page of the group we just zero'd
1292 * will be handled by the I/O completion if the zero
1293 * fill started in the middle of the page
1294 */
1295 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1296
1297 pg_resid = commit_offset - upl_offset;
1298
1299 if (bytes_to_zero >= pg_resid) {
1300 /*
1301 * the last page of the current I/O
1302 * has been completed...
1303 * compute the number of fully zero'd
1304 * pages that are beyond it
1305 * plus the last page if its partial
1306 * and we have no more I/O to issue...
1307 * otherwise a partial page is left
1308 * to begin the next I/O
1309 */
1310 if ((int)io_size >= non_rounded_size)
1311 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1312 else
1313 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1314
1315 complete_transaction_now = 1;
1316 }
1317 } else {
1318 /*
1319 * no pending I/O to deal with
1320 * so, commit all of the fully zero'd pages
1321 * plus the last page if its partial
1322 * and we have no more I/O to issue...
1323 * otherwise a partial page is left
1324 * to begin the next I/O
1325 */
1326 if ((int)io_size >= non_rounded_size)
1327 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1328 else
1329 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1330
1331 commit_offset = upl_offset & ~PAGE_MASK;
1332 }
1333 if ( (flags & CL_COMMIT) && pg_count) {
1334 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1335 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1336 }
1337 upl_offset += io_size;
1338 f_offset += io_size;
1339 size -= io_size;
1340
1341 /*
1342 * keep track of how much of the original request
1343 * that we've actually completed... non_rounded_size
1344 * may go negative due to us rounding the request
1345 * to a page size multiple (i.e. size > non_rounded_size)
1346 */
1347 non_rounded_size -= io_size;
1348
1349 if (non_rounded_size <= 0) {
1350 /*
1351 * we've transferred all of the data in the original
1352 * request, but we were unable to complete the tail
1353 * of the last page because the file didn't have
1354 * an allocation to back that portion... this is ok.
1355 */
1356 size = 0;
1357 }
1358 if (cbp_head && (complete_transaction_now || size == 0)) {
1359 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1360
1361 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1362
1363 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1364
1365 trans_count = 0;
1366 }
1367 continue;
1368 }
1369 if (pg_count > max_vectors) {
1370 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1371 io_size = PAGE_SIZE - pg_offset;
1372 pg_count = 1;
1373 } else {
1374 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1375 pg_count = max_vectors;
1376 }
1377 }
1378 /*
1379 * If the transaction is going to reach the maximum number of
1380 * desired elements, truncate the i/o to the nearest page so
1381 * that the actual i/o is initiated after this buffer is
1382 * created and added to the i/o chain.
1383 *
1384 * I/O directed to physically contiguous memory
1385 * doesn't have a requirement to make sure we 'fill' a page
1386 */
1387 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1388 ((upl_offset + io_size) & PAGE_MASK)) {
1389 vm_offset_t aligned_ofs;
1390
1391 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1392 /*
1393 * If the io_size does not actually finish off even a
1394 * single page we have to keep adding buffers to the
1395 * transaction despite having reached the desired limit.
1396 *
1397 * Eventually we get here with the page being finished
1398 * off (and exceeded) and then we truncate the size of
1399 * this i/o request so that it is page aligned so that
1400 * we can finally issue the i/o on the transaction.
1401 */
1402 if (aligned_ofs > upl_offset) {
1403 io_size = aligned_ofs - upl_offset;
1404 pg_count--;
1405 }
1406 }
1407
1408 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1409 /*
1410 * if we're not targeting a virtual device i.e. a disk image
1411 * it's safe to dip into the reserve pool since real devices
1412 * can complete this I/O request without requiring additional
1413 * bufs from the alloc_io_buf pool
1414 */
1415 priv = 1;
1416 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1417 /*
1418 * Throttle the speculative IO
1419 */
1420 priv = 0;
1421 else
1422 priv = 1;
1423
1424 cbp = alloc_io_buf(vp, priv);
1425
1426 if (flags & CL_PAGEOUT) {
1427 u_int i;
1428
1429 for (i = 0; i < pg_count; i++) {
1430 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1431 panic("BUSY bp found in cluster_io");
1432 }
1433 }
1434 if (flags & CL_ASYNC) {
1435 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1436 panic("buf_setcallback failed\n");
1437 }
1438 cbp->b_cliodone = (void *)callback;
1439 cbp->b_flags |= io_flags;
1440 if (flags & CL_NOCACHE)
1441 cbp->b_attr.ba_flags |= BA_NOCACHE;
1442
1443 cbp->b_lblkno = lblkno;
1444 cbp->b_blkno = blkno;
1445 cbp->b_bcount = io_size;
1446
1447 if (buf_setupl(cbp, upl, upl_offset))
1448 panic("buf_setupl failed\n");
1449#if CONFIG_IOSCHED
1450 upl_set_blkno(upl, upl_offset, io_size, blkno);
1451#endif
1452 cbp->b_trans_next = (buf_t)NULL;
1453
1454 if ((cbp->b_iostate = (void *)iostate))
1455 /*
1456 * caller wants to track the state of this
1457 * io... bump the amount issued against this stream
1458 */
1459 iostate->io_issued += io_size;
1460
1461 if (flags & CL_READ) {
1462 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1463 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1464 }
1465 else {
1466 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1467 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1468 }
1469
1470 if (cbp_head) {
1471 cbp_tail->b_trans_next = cbp;
1472 cbp_tail = cbp;
1473 } else {
1474 cbp_head = cbp;
1475 cbp_tail = cbp;
1476
1477 if ( (cbp_head->b_real_bp = real_bp) )
1478 real_bp = (buf_t)NULL;
1479 }
1480 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1481
1482 trans_count++;
1483
1484 upl_offset += io_size;
1485 f_offset += io_size;
1486 size -= io_size;
1487 /*
1488 * keep track of how much of the original request
1489 * that we've actually completed... non_rounded_size
1490 * may go negative due to us rounding the request
1491 * to a page size multiple (i.e. size > non_rounded_size)
1492 */
1493 non_rounded_size -= io_size;
1494
1495 if (non_rounded_size <= 0) {
1496 /*
1497 * we've transferred all of the data in the original
1498 * request, but we were unable to complete the tail
1499 * of the last page because the file didn't have
1500 * an allocation to back that portion... this is ok.
1501 */
1502 size = 0;
1503 }
1504 if (size == 0) {
1505 /*
1506 * we have no more I/O to issue, so go
1507 * finish the final transaction
1508 */
1509 need_EOT = TRUE;
1510 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1511 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1512 /*
1513 * I/O directed to physically contiguous memory...
1514 * which doesn't have a requirement to make sure we 'fill' a page
1515 * or...
1516 * the current I/O we've prepared fully
1517 * completes the last page in this request
1518 * and ...
1519 * it's either an ASYNC request or
1520 * we've already accumulated more than 8 I/O's into
1521 * this transaction so mark it as complete so that
1522 * it can finish asynchronously or via the cluster_complete_transaction
1523 * below if the request is synchronous
1524 */
1525 need_EOT = TRUE;
1526 }
1527 if (need_EOT == TRUE)
1528 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1529
1530 if (flags & CL_THROTTLE)
1531 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1532
1533 if ( !(io_flags & B_READ))
1534 vnode_startwrite(vp);
1535
1536 if (flags & CL_RAW_ENCRYPTED) {
1537 /*
1538 * User requested raw encrypted bytes.
1539 * Twiddle the bit in the ba_flags for the buffer
1540 */
1541 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1542 }
1543
1544 (void) VNOP_STRATEGY(cbp);
1545
1546 if (need_EOT == TRUE) {
1547 if ( !(flags & CL_ASYNC))
1548 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1549
1550 need_EOT = FALSE;
1551 trans_count = 0;
1552 cbp_head = NULL;
1553 }
1554 }
1555 if (error) {
1556 int abort_size;
1557
1558 io_size = 0;
1559
1560 if (cbp_head) {
1561 /*
1562 * first wait until all of the outstanding I/O
1563 * for this partial transaction has completed
1564 */
1565 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1566
1567 /*
1568 * Rewind the upl offset to the beginning of the
1569 * transaction.
1570 */
1571 upl_offset = cbp_head->b_uploffset;
1572
1573 for (cbp = cbp_head; cbp;) {
1574 buf_t cbp_next;
1575
1576 size += cbp->b_bcount;
1577 io_size += cbp->b_bcount;
1578
1579 cbp_next = cbp->b_trans_next;
1580 free_io_buf(cbp);
1581 cbp = cbp_next;
1582 }
1583 }
1584 if (iostate) {
1585 int need_wakeup = 0;
1586
1587 /*
1588 * update the error condition for this stream
1589 * since we never really issued the io
1590 * just go ahead and adjust it back
1591 */
1592 lck_mtx_lock_spin(&iostate->io_mtxp);
1593
1594 if (iostate->io_error == 0)
1595 iostate->io_error = error;
1596 iostate->io_issued -= io_size;
1597
1598 if (iostate->io_wanted) {
1599 /*
1600 * someone is waiting for the state of
1601 * this io stream to change
1602 */
1603 iostate->io_wanted = 0;
1604 need_wakeup = 1;
1605 }
1606 lck_mtx_unlock(&iostate->io_mtxp);
1607
1608 if (need_wakeup)
1609 wakeup((caddr_t)&iostate->io_wanted);
1610 }
1611 if (flags & CL_COMMIT) {
1612 int upl_flags;
1613
1614 pg_offset = upl_offset & PAGE_MASK;
1615 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1616
1617 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
1618
1619 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1620 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1621 }
1622 if (retval == 0)
1623 retval = error;
1624 } else if (cbp_head)
1625 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1626
1627 if (real_bp) {
1628 /*
1629 * can get here if we either encountered an error
1630 * or we completely zero-filled the request and
1631 * no I/O was issued
1632 */
1633 if (error) {
1634 real_bp->b_flags |= B_ERROR;
1635 real_bp->b_error = error;
1636 }
1637 buf_biodone(real_bp);
1638 }
1639 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1640
1641 return (retval);
1642}
1643
1644#define reset_vector_run_state() \
1645 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1646
1647static int
1648vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1649 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1650{
1651 vector_upl_set_pagelist(vector_upl);
1652
1653 if(io_flag & CL_READ) {
1654 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1655 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1656 else
1657 io_flag |= CL_PRESERVE; /*zero fill*/
1658 }
1659 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1660
1661}
1662
1663static int
1664cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1665{
1666 int pages_in_prefetch;
1667
1668 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1669 (int)f_offset, size, (int)filesize, 0, 0);
1670
1671 if (f_offset >= filesize) {
1672 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1673 (int)f_offset, 0, 0, 0, 0);
1674 return(0);
1675 }
1676 if ((off_t)size > (filesize - f_offset))
1677 size = filesize - f_offset;
1678 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1679
1680 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1681
1682 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1683 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1684
1685 return (pages_in_prefetch);
1686}
1687
1688
1689
1690static void
1691cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1692 int bflag)
1693{
1694 daddr64_t r_addr;
1695 off_t f_offset;
1696 int size_of_prefetch;
1697 u_int max_prefetch;
1698
1699
1700 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1701 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1702
1703 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1704 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1705 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1706 return;
1707 }
1708 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1709 rap->cl_ralen = 0;
1710 rap->cl_maxra = 0;
1711
1712 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1713 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1714
1715 return;
1716 }
1717 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
1718
1719 if (max_prefetch > speculative_prefetch_max)
1720 max_prefetch = speculative_prefetch_max;
1721
1722 if (max_prefetch <= PAGE_SIZE) {
1723 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1724 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1725 return;
1726 }
1727 if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
1728 if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
1729
1730 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1731 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1732 return;
1733 }
1734 }
1735 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1736 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1737
1738 size_of_prefetch = 0;
1739
1740 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1741
1742 if (size_of_prefetch) {
1743 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1744 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
1745 return;
1746 }
1747 if (f_offset < filesize) {
1748 daddr64_t read_size;
1749
1750 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
1751
1752 read_size = (extent->e_addr + 1) - extent->b_addr;
1753
1754 if (read_size > rap->cl_ralen) {
1755 if (read_size > max_prefetch / PAGE_SIZE)
1756 rap->cl_ralen = max_prefetch / PAGE_SIZE;
1757 else
1758 rap->cl_ralen = read_size;
1759 }
1760 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
1761
1762 if (size_of_prefetch)
1763 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
1764 }
1765 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1766 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
1767}
1768
1769
1770int
1771cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1772 int size, off_t filesize, int flags)
1773{
1774 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1775
1776}
1777
1778
1779int
1780cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1781 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1782{
1783 int io_size;
1784 int rounded_size;
1785 off_t max_size;
1786 int local_flags;
1787
1788 local_flags = CL_PAGEOUT | CL_THROTTLE;
1789
1790 if ((flags & UPL_IOSYNC) == 0)
1791 local_flags |= CL_ASYNC;
1792 if ((flags & UPL_NOCOMMIT) == 0)
1793 local_flags |= CL_COMMIT;
1794 if ((flags & UPL_KEEPCACHED))
1795 local_flags |= CL_KEEPCACHED;
1796 if (flags & UPL_PAGING_ENCRYPTED)
1797 local_flags |= CL_ENCRYPTED;
1798
1799
1800 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
1801 (int)f_offset, size, (int)filesize, local_flags, 0);
1802
1803 /*
1804 * If they didn't specify any I/O, then we are done...
1805 * we can't issue an abort because we don't know how
1806 * big the upl really is
1807 */
1808 if (size <= 0)
1809 return (EINVAL);
1810
1811 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
1812 if (local_flags & CL_COMMIT)
1813 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1814 return (EROFS);
1815 }
1816 /*
1817 * can't page-in from a negative offset
1818 * or if we're starting beyond the EOF
1819 * or if the file offset isn't page aligned
1820 * or the size requested isn't a multiple of PAGE_SIZE
1821 */
1822 if (f_offset < 0 || f_offset >= filesize ||
1823 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
1824 if (local_flags & CL_COMMIT)
1825 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1826 return (EINVAL);
1827 }
1828 max_size = filesize - f_offset;
1829
1830 if (size < max_size)
1831 io_size = size;
1832 else
1833 io_size = max_size;
1834
1835 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1836
1837 if (size > rounded_size) {
1838 if (local_flags & CL_COMMIT)
1839 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
1840 UPL_ABORT_FREE_ON_EMPTY);
1841 }
1842 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
1843 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
1844}
1845
1846
1847int
1848cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1849 int size, off_t filesize, int flags)
1850{
1851 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1852}
1853
1854
1855int
1856cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1857 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1858{
1859 u_int io_size;
1860 int rounded_size;
1861 off_t max_size;
1862 int retval;
1863 int local_flags = 0;
1864
1865 if (upl == NULL || size < 0)
1866 panic("cluster_pagein: NULL upl passed in");
1867
1868 if ((flags & UPL_IOSYNC) == 0)
1869 local_flags |= CL_ASYNC;
1870 if ((flags & UPL_NOCOMMIT) == 0)
1871 local_flags |= CL_COMMIT;
1872 if (flags & UPL_IOSTREAMING)
1873 local_flags |= CL_IOSTREAMING;
1874 if (flags & UPL_PAGING_ENCRYPTED)
1875 local_flags |= CL_ENCRYPTED;
1876
1877
1878 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
1879 (int)f_offset, size, (int)filesize, local_flags, 0);
1880
1881 /*
1882 * can't page-in from a negative offset
1883 * or if we're starting beyond the EOF
1884 * or if the file offset isn't page aligned
1885 * or the size requested isn't a multiple of PAGE_SIZE
1886 */
1887 if (f_offset < 0 || f_offset >= filesize ||
1888 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
1889 if (local_flags & CL_COMMIT)
1890 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1891 return (EINVAL);
1892 }
1893 max_size = filesize - f_offset;
1894
1895 if (size < max_size)
1896 io_size = size;
1897 else
1898 io_size = max_size;
1899
1900 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1901
1902 if (size > rounded_size && (local_flags & CL_COMMIT))
1903 ubc_upl_abort_range(upl, upl_offset + rounded_size,
1904 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1905
1906 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
1907 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1908
1909 return (retval);
1910}
1911
1912
1913int
1914cluster_bp(buf_t bp)
1915{
1916 return cluster_bp_ext(bp, NULL, NULL);
1917}
1918
1919
1920int
1921cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
1922{
1923 off_t f_offset;
1924 int flags;
1925
1926 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
1927 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
1928
1929 if (bp->b_flags & B_READ)
1930 flags = CL_ASYNC | CL_READ;
1931 else
1932 flags = CL_ASYNC;
1933 if (bp->b_flags & B_PASSIVE)
1934 flags |= CL_PASSIVE;
1935
1936 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
1937
1938 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
1939}
1940
1941
1942
1943int
1944cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
1945{
1946 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
1947}
1948
1949
1950int
1951cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
1952 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
1953{
1954 user_ssize_t cur_resid;
1955 int retval = 0;
1956 int flags;
1957 int zflags;
1958 int bflag;
1959 int write_type = IO_COPY;
1960 u_int32_t write_length;
1961
1962 flags = xflags;
1963
1964 if (flags & IO_PASSIVE)
1965 bflag = CL_PASSIVE;
1966 else
1967 bflag = 0;
1968
1969 if (vp->v_flag & VNOCACHE_DATA){
1970 flags |= IO_NOCACHE;
1971 bflag |= CL_NOCACHE;
1972 }
1973 if (uio == NULL) {
1974 /*
1975 * no user data...
1976 * this call is being made to zero-fill some range in the file
1977 */
1978 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
1979
1980 return(retval);
1981 }
1982 /*
1983 * do a write through the cache if one of the following is true....
1984 * NOCACHE is not true or NODIRECT is true
1985 * the uio request doesn't target USERSPACE
1986 * otherwise, find out if we want the direct or contig variant for
1987 * the first vector in the uio request
1988 */
1989 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
1990 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
1991
1992 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
1993 /*
1994 * must go through the cached variant in this case
1995 */
1996 write_type = IO_COPY;
1997
1998 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
1999
2000 switch (write_type) {
2001
2002 case IO_COPY:
2003 /*
2004 * make sure the uio_resid isn't too big...
2005 * internally, we want to handle all of the I/O in
2006 * chunk sizes that fit in a 32 bit int
2007 */
2008 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
2009 /*
2010 * we're going to have to call cluster_write_copy
2011 * more than once...
2012 *
2013 * only want the last call to cluster_write_copy to
2014 * have the IO_TAILZEROFILL flag set and only the
2015 * first call should have IO_HEADZEROFILL
2016 */
2017 zflags = flags & ~IO_TAILZEROFILL;
2018 flags &= ~IO_HEADZEROFILL;
2019
2020 write_length = MAX_IO_REQUEST_SIZE;
2021 } else {
2022 /*
2023 * last call to cluster_write_copy
2024 */
2025 zflags = flags;
2026
2027 write_length = (u_int32_t)cur_resid;
2028 }
2029 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2030 break;
2031
2032 case IO_CONTIG:
2033 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
2034
2035 if (flags & IO_HEADZEROFILL) {
2036 /*
2037 * only do this once per request
2038 */
2039 flags &= ~IO_HEADZEROFILL;
2040
2041 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2042 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2043 if (retval)
2044 break;
2045 }
2046 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2047
2048 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2049 /*
2050 * we're done with the data from the user specified buffer(s)
2051 * and we've been requested to zero fill at the tail
2052 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2053 * by rearranging the args and passing in IO_HEADZEROFILL
2054 */
2055 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2056 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2057 }
2058 break;
2059
2060 case IO_DIRECT:
2061 /*
2062 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2063 */
2064 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2065 break;
2066
2067 case IO_UNKNOWN:
2068 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2069 break;
2070 }
2071 /*
2072 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2073 * multiple times to service a multi-vector request that is not aligned properly
2074 * we need to update the oldEOF so that we
2075 * don't zero-fill the head of a page if we've successfully written
2076 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2077 * page that is beyond the oldEOF if the write is unaligned... we only
2078 * want that to happen for the very first page of the cluster_write,
2079 * NOT the first page of each vector making up a multi-vector write.
2080 */
2081 if (uio->uio_offset > oldEOF)
2082 oldEOF = uio->uio_offset;
2083 }
2084 return (retval);
2085}
2086
2087
2088static int
2089cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2090 int flags, int (*callback)(buf_t, void *), void *callback_arg)
2091{
2092 upl_t upl;
2093 upl_page_info_t *pl;
2094 vm_offset_t upl_offset;
2095 vm_offset_t vector_upl_offset = 0;
2096 u_int32_t io_req_size;
2097 u_int32_t offset_in_file;
2098 u_int32_t offset_in_iovbase;
2099 u_int32_t io_size;
2100 int io_flag = 0;
2101 upl_size_t upl_size, vector_upl_size = 0;
2102 vm_size_t upl_needed_size;
2103 mach_msg_type_number_t pages_in_pl;
2104 int upl_flags;
2105 kern_return_t kret;
2106 mach_msg_type_number_t i;
2107 int force_data_sync;
2108 int retval = 0;
2109 int first_IO = 1;
2110 struct clios iostate;
2111 user_addr_t iov_base;
2112 u_int32_t mem_alignment_mask;
2113 u_int32_t devblocksize;
2114 u_int32_t max_io_size;
2115 u_int32_t max_upl_size;
2116 u_int32_t max_vector_size;
2117 boolean_t io_throttled = FALSE;
2118
2119 u_int32_t vector_upl_iosize = 0;
2120 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2121 off_t v_upl_uio_offset = 0;
2122 int vector_upl_index=0;
2123 upl_t vector_upl = NULL;
2124
2125
2126 /*
2127 * When we enter this routine, we know
2128 * -- the resid will not exceed iov_len
2129 */
2130 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2131 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2132
2133 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2134
2135 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2136
2137 if (flags & IO_PASSIVE)
2138 io_flag |= CL_PASSIVE;
2139
2140 if (flags & IO_NOCACHE)
2141 io_flag |= CL_NOCACHE;
2142
2143 if (flags & IO_SKIP_ENCRYPTION)
2144 io_flag |= CL_ENCRYPTED;
2145
2146 iostate.io_completed = 0;
2147 iostate.io_issued = 0;
2148 iostate.io_error = 0;
2149 iostate.io_wanted = 0;
2150
2151 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2152
2153 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2154 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2155
2156 if (devblocksize == 1) {
2157 /*
2158 * the AFP client advertises a devblocksize of 1
2159 * however, its BLOCKMAP routine maps to physical
2160 * blocks that are PAGE_SIZE in size...
2161 * therefore we can't ask for I/Os that aren't page aligned
2162 * or aren't multiples of PAGE_SIZE in size
2163 * by setting devblocksize to PAGE_SIZE, we re-instate
2164 * the old behavior we had before the mem_alignment_mask
2165 * changes went in...
2166 */
2167 devblocksize = PAGE_SIZE;
2168 }
2169
2170next_dwrite:
2171 io_req_size = *write_length;
2172 iov_base = uio_curriovbase(uio);
2173
2174 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2175 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
2176
2177 if (offset_in_file || offset_in_iovbase) {
2178 /*
2179 * one of the 2 important offsets is misaligned
2180 * so fire an I/O through the cache for this entire vector
2181 */
2182 goto wait_for_dwrites;
2183 }
2184 if (iov_base & (devblocksize - 1)) {
2185 /*
2186 * the offset in memory must be on a device block boundary
2187 * so that we can guarantee that we can generate an
2188 * I/O that ends on a page boundary in cluster_io
2189 */
2190 goto wait_for_dwrites;
2191 }
2192
2193 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
2194 int throttle_type;
2195
2196 if ( (throttle_type = cluster_is_throttled(vp)) ) {
2197 /*
2198 * we're in the throttle window, at the very least
2199 * we want to limit the size of the I/O we're about
2200 * to issue
2201 */
2202 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
2203 /*
2204 * we're in the throttle window and at least 1 I/O
2205 * has already been issued by a throttleable thread
2206 * in this window, so return with EAGAIN to indicate
2207 * to the FS issuing the cluster_write call that it
2208 * should now throttle after dropping any locks
2209 */
2210 throttle_info_update_by_mount(vp->v_mount);
2211
2212 io_throttled = TRUE;
2213 goto wait_for_dwrites;
2214 }
2215 max_vector_size = THROTTLE_MAX_IOSIZE;
2216 max_io_size = THROTTLE_MAX_IOSIZE;
2217 } else {
2218 max_vector_size = MAX_VECTOR_UPL_SIZE;
2219 max_io_size = max_upl_size;
2220 }
2221
2222 if (first_IO) {
2223 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2224 first_IO = 0;
2225 }
2226 io_size = io_req_size & ~PAGE_MASK;
2227 iov_base = uio_curriovbase(uio);
2228
2229 if (io_size > max_io_size)
2230 io_size = max_io_size;
2231
2232 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2233 /*
2234 * We have an iov_base that's not page-aligned.
2235 * Issue all I/O's that have been collected within
2236 * this Vectored UPL.
2237 */
2238 if(vector_upl_index) {
2239 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2240 reset_vector_run_state();
2241 }
2242
2243 /*
2244 * After this point, if we are using the Vector UPL path and the base is
2245 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2246 */
2247 }
2248
2249 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2250 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2251
2252 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
2253 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
2254
2255 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2256 pages_in_pl = 0;
2257 upl_size = upl_needed_size;
2258 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2259 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2260
2261 kret = vm_map_get_upl(current_map(),
2262 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2263 &upl_size,
2264 &upl,
2265 NULL,
2266 &pages_in_pl,
2267 &upl_flags,
2268 force_data_sync);
2269
2270 if (kret != KERN_SUCCESS) {
2271 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2272 0, 0, 0, kret, 0);
2273 /*
2274 * failed to get pagelist
2275 *
2276 * we may have already spun some portion of this request
2277 * off as async requests... we need to wait for the I/O
2278 * to complete before returning
2279 */
2280 goto wait_for_dwrites;
2281 }
2282 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2283 pages_in_pl = upl_size / PAGE_SIZE;
2284
2285 for (i = 0; i < pages_in_pl; i++) {
2286 if (!upl_valid_page(pl, i))
2287 break;
2288 }
2289 if (i == pages_in_pl)
2290 break;
2291
2292 /*
2293 * didn't get all the pages back that we
2294 * needed... release this upl and try again
2295 */
2296 ubc_upl_abort(upl, 0);
2297 }
2298 if (force_data_sync >= 3) {
2299 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2300 i, pages_in_pl, upl_size, kret, 0);
2301 /*
2302 * for some reason, we couldn't acquire a hold on all
2303 * the pages needed in the user's address space
2304 *
2305 * we may have already spun some portion of this request
2306 * off as async requests... we need to wait for the I/O
2307 * to complete before returning
2308 */
2309 goto wait_for_dwrites;
2310 }
2311
2312 /*
2313 * Consider the possibility that upl_size wasn't satisfied.
2314 */
2315 if (upl_size < upl_needed_size) {
2316 if (upl_size && upl_offset == 0)
2317 io_size = upl_size;
2318 else
2319 io_size = 0;
2320 }
2321 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2322 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2323
2324 if (io_size == 0) {
2325 ubc_upl_abort(upl, 0);
2326 /*
2327 * we may have already spun some portion of this request
2328 * off as async requests... we need to wait for the I/O
2329 * to complete before returning
2330 */
2331 goto wait_for_dwrites;
2332 }
2333
2334 if(useVectorUPL) {
2335 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2336 if(end_off)
2337 issueVectorUPL = 1;
2338 /*
2339 * After this point, if we are using a vector UPL, then
2340 * either all the UPL elements end on a page boundary OR
2341 * this UPL is the last element because it does not end
2342 * on a page boundary.
2343 */
2344 }
2345
2346 /*
2347 * Now look for pages already in the cache
2348 * and throw them away.
2349 * uio->uio_offset is page aligned within the file
2350 * io_size is a multiple of PAGE_SIZE
2351 */
2352 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
2353
2354 /*
2355 * we want push out these writes asynchronously so that we can overlap
2356 * the preparation of the next I/O
2357 * if there are already too many outstanding writes
2358 * wait until some complete before issuing the next
2359 */
2360 cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
2361
2362 if (iostate.io_error) {
2363 /*
2364 * one of the earlier writes we issued ran into a hard error
2365 * don't issue any more writes, cleanup the UPL
2366 * that was just created but not used, then
2367 * go wait for all writes that are part of this stream
2368 * to complete before returning the error to the caller
2369 */
2370 ubc_upl_abort(upl, 0);
2371
2372 goto wait_for_dwrites;
2373 }
2374
2375 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2376 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2377
2378 if(!useVectorUPL)
2379 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2380 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2381
2382 else {
2383 if(!vector_upl_index) {
2384 vector_upl = vector_upl_create(upl_offset);
2385 v_upl_uio_offset = uio->uio_offset;
2386 vector_upl_offset = upl_offset;
2387 }
2388
2389 vector_upl_set_subupl(vector_upl,upl,upl_size);
2390 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2391 vector_upl_index++;
2392 vector_upl_iosize += io_size;
2393 vector_upl_size += upl_size;
2394
2395 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
2396 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2397 reset_vector_run_state();
2398 }
2399 }
2400
2401 /*
2402 * update the uio structure to
2403 * reflect the I/O that we just issued
2404 */
2405 uio_update(uio, (user_size_t)io_size);
2406
2407 /*
2408 * in case we end up calling through to cluster_write_copy to finish
2409 * the tail of this request, we need to update the oldEOF so that we
2410 * don't zero-fill the head of a page if we've successfully written
2411 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2412 * page that is beyond the oldEOF if the write is unaligned... we only
2413 * want that to happen for the very first page of the cluster_write,
2414 * NOT the first page of each vector making up a multi-vector write.
2415 */
2416 if (uio->uio_offset > oldEOF)
2417 oldEOF = uio->uio_offset;
2418
2419 io_req_size -= io_size;
2420
2421 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2422 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2423
2424 } /* end while */
2425
2426 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2427
2428 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2429
2430 if (retval == 0 && *write_type == IO_DIRECT) {
2431
2432 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2433 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2434
2435 goto next_dwrite;
2436 }
2437 }
2438
2439wait_for_dwrites:
2440
2441 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
2442 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2443 reset_vector_run_state();
2444 }
2445 /*
2446 * make sure all async writes issued as part of this stream
2447 * have completed before we return
2448 */
2449 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2450
2451 if (iostate.io_error)
2452 retval = iostate.io_error;
2453
2454 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2455
2456 if (io_throttled == TRUE && retval == 0)
2457 retval = EAGAIN;
2458
2459 if (io_req_size && retval == 0) {
2460 /*
2461 * we couldn't handle the tail of this request in DIRECT mode
2462 * so fire it through the copy path
2463 *
2464 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2465 * so we can just pass 0 in for the headOff and tailOff
2466 */
2467 if (uio->uio_offset > oldEOF)
2468 oldEOF = uio->uio_offset;
2469
2470 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2471
2472 *write_type = IO_UNKNOWN;
2473 }
2474 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2475 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2476
2477 return (retval);
2478}
2479
2480
2481static int
2482cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2483 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2484{
2485 upl_page_info_t *pl;
2486 addr64_t src_paddr = 0;
2487 upl_t upl[MAX_VECTS];
2488 vm_offset_t upl_offset;
2489 u_int32_t tail_size = 0;
2490 u_int32_t io_size;
2491 u_int32_t xsize;
2492 upl_size_t upl_size;
2493 vm_size_t upl_needed_size;
2494 mach_msg_type_number_t pages_in_pl;
2495 int upl_flags;
2496 kern_return_t kret;
2497 struct clios iostate;
2498 int error = 0;
2499 int cur_upl = 0;
2500 int num_upl = 0;
2501 int n;
2502 user_addr_t iov_base;
2503 u_int32_t devblocksize;
2504 u_int32_t mem_alignment_mask;
2505
2506 /*
2507 * When we enter this routine, we know
2508 * -- the io_req_size will not exceed iov_len
2509 * -- the target address is physically contiguous
2510 */
2511 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2512
2513 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2514 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2515
2516 iostate.io_completed = 0;
2517 iostate.io_issued = 0;
2518 iostate.io_error = 0;
2519 iostate.io_wanted = 0;
2520
2521 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2522
2523next_cwrite:
2524 io_size = *write_length;
2525
2526 iov_base = uio_curriovbase(uio);
2527
2528 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2529 upl_needed_size = upl_offset + io_size;
2530
2531 pages_in_pl = 0;
2532 upl_size = upl_needed_size;
2533 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2534 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2535
2536 kret = vm_map_get_upl(current_map(),
2537 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2538 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
2539
2540 if (kret != KERN_SUCCESS) {
2541 /*
2542 * failed to get pagelist
2543 */
2544 error = EINVAL;
2545 goto wait_for_cwrites;
2546 }
2547 num_upl++;
2548
2549 /*
2550 * Consider the possibility that upl_size wasn't satisfied.
2551 */
2552 if (upl_size < upl_needed_size) {
2553 /*
2554 * This is a failure in the physical memory case.
2555 */
2556 error = EINVAL;
2557 goto wait_for_cwrites;
2558 }
2559 pl = ubc_upl_pageinfo(upl[cur_upl]);
2560
2561 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
2562
2563 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2564 u_int32_t head_size;
2565
2566 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2567
2568 if (head_size > io_size)
2569 head_size = io_size;
2570
2571 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2572
2573 if (error)
2574 goto wait_for_cwrites;
2575
2576 upl_offset += head_size;
2577 src_paddr += head_size;
2578 io_size -= head_size;
2579
2580 iov_base += head_size;
2581 }
2582 if ((u_int32_t)iov_base & mem_alignment_mask) {
2583 /*
2584 * request doesn't set up on a memory boundary
2585 * the underlying DMA engine can handle...
2586 * return an error instead of going through
2587 * the slow copy path since the intent of this
2588 * path is direct I/O from device memory
2589 */
2590 error = EINVAL;
2591 goto wait_for_cwrites;
2592 }
2593
2594 tail_size = io_size & (devblocksize - 1);
2595 io_size -= tail_size;
2596
2597 while (io_size && error == 0) {
2598
2599 if (io_size > MAX_IO_CONTIG_SIZE)
2600 xsize = MAX_IO_CONTIG_SIZE;
2601 else
2602 xsize = io_size;
2603 /*
2604 * request asynchronously so that we can overlap
2605 * the preparation of the next I/O... we'll do
2606 * the commit after all the I/O has completed
2607 * since its all issued against the same UPL
2608 * if there are already too many outstanding writes
2609 * wait until some have completed before issuing the next
2610 */
2611 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2612
2613 if (iostate.io_error) {
2614 /*
2615 * one of the earlier writes we issued ran into a hard error
2616 * don't issue any more writes...
2617 * go wait for all writes that are part of this stream
2618 * to complete before returning the error to the caller
2619 */
2620 goto wait_for_cwrites;
2621 }
2622 /*
2623 * issue an asynchronous write to cluster_io
2624 */
2625 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2626 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2627
2628 if (error == 0) {
2629 /*
2630 * The cluster_io write completed successfully,
2631 * update the uio structure
2632 */
2633 uio_update(uio, (user_size_t)xsize);
2634
2635 upl_offset += xsize;
2636 src_paddr += xsize;
2637 io_size -= xsize;
2638 }
2639 }
2640 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2641
2642 error = cluster_io_type(uio, write_type, write_length, 0);
2643
2644 if (error == 0 && *write_type == IO_CONTIG) {
2645 cur_upl++;
2646 goto next_cwrite;
2647 }
2648 } else
2649 *write_type = IO_UNKNOWN;
2650
2651wait_for_cwrites:
2652 /*
2653 * make sure all async writes that are part of this stream
2654 * have completed before we proceed
2655 */
2656 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
2657
2658 if (iostate.io_error)
2659 error = iostate.io_error;
2660
2661 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2662
2663 if (error == 0 && tail_size)
2664 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2665
2666 for (n = 0; n < num_upl; n++)
2667 /*
2668 * just release our hold on each physically contiguous
2669 * region without changing any state
2670 */
2671 ubc_upl_abort(upl[n], 0);
2672
2673 return (error);
2674}
2675
2676
2677/*
2678 * need to avoid a race between an msync of a range of pages dirtied via mmap
2679 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2680 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2681 *
2682 * we should never force-zero-fill pages that are already valid in the cache...
2683 * the entire page contains valid data (either from disk, zero-filled or dirtied
2684 * via an mmap) so we can only do damage by trying to zero-fill
2685 *
2686 */
2687static int
2688cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2689{
2690 int zero_pg_index;
2691 boolean_t need_cluster_zero = TRUE;
2692
2693 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2694
2695 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2696 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2697
2698 if (upl_valid_page(pl, zero_pg_index)) {
2699 /*
2700 * never force zero valid pages - dirty or clean
2701 * we'll leave these in the UPL for cluster_write_copy to deal with
2702 */
2703 need_cluster_zero = FALSE;
2704 }
2705 }
2706 if (need_cluster_zero == TRUE)
2707 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2708
2709 return (bytes_to_zero);
2710}
2711
2712
2713static int
2714cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2715 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2716{
2717 upl_page_info_t *pl;
2718 upl_t upl;
2719 vm_offset_t upl_offset = 0;
2720 vm_size_t upl_size;
2721 off_t upl_f_offset;
2722 int pages_in_upl;
2723 int start_offset;
2724 int xfer_resid;
2725 int io_size;
2726 int io_offset;
2727 int bytes_to_zero;
2728 int bytes_to_move;
2729 kern_return_t kret;
2730 int retval = 0;
2731 int io_resid;
2732 long long total_size;
2733 long long zero_cnt;
2734 off_t zero_off;
2735 long long zero_cnt1;
2736 off_t zero_off1;
2737 off_t write_off = 0;
2738 int write_cnt = 0;
2739 boolean_t first_pass = FALSE;
2740 struct cl_extent cl;
2741 struct cl_writebehind *wbp;
2742 int bflag;
2743 u_int max_cluster_pgcount;
2744 u_int max_io_size;
2745
2746 if (uio) {
2747 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2748 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
2749
2750 io_resid = io_req_size;
2751 } else {
2752 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2753 0, 0, (int)oldEOF, (int)newEOF, 0);
2754
2755 io_resid = 0;
2756 }
2757 if (flags & IO_PASSIVE)
2758 bflag = CL_PASSIVE;
2759 else
2760 bflag = 0;
2761 if (flags & IO_NOCACHE)
2762 bflag |= CL_NOCACHE;
2763
2764 if (flags & IO_SKIP_ENCRYPTION)
2765 bflag |= CL_ENCRYPTED;
2766
2767 zero_cnt = 0;
2768 zero_cnt1 = 0;
2769 zero_off = 0;
2770 zero_off1 = 0;
2771
2772 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
2773 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2774
2775 if (flags & IO_HEADZEROFILL) {
2776 /*
2777 * some filesystems (HFS is one) don't support unallocated holes within a file...
2778 * so we zero fill the intervening space between the old EOF and the offset
2779 * where the next chunk of real data begins.... ftruncate will also use this
2780 * routine to zero fill to the new EOF when growing a file... in this case, the
2781 * uio structure will not be provided
2782 */
2783 if (uio) {
2784 if (headOff < uio->uio_offset) {
2785 zero_cnt = uio->uio_offset - headOff;
2786 zero_off = headOff;
2787 }
2788 } else if (headOff < newEOF) {
2789 zero_cnt = newEOF - headOff;
2790 zero_off = headOff;
2791 }
2792 } else {
2793 if (uio && uio->uio_offset > oldEOF) {
2794 zero_off = uio->uio_offset & ~PAGE_MASK_64;
2795
2796 if (zero_off >= oldEOF) {
2797 zero_cnt = uio->uio_offset - zero_off;
2798
2799 flags |= IO_HEADZEROFILL;
2800 }
2801 }
2802 }
2803 if (flags & IO_TAILZEROFILL) {
2804 if (uio) {
2805 zero_off1 = uio->uio_offset + io_req_size;
2806
2807 if (zero_off1 < tailOff)
2808 zero_cnt1 = tailOff - zero_off1;
2809 }
2810 } else {
2811 if (uio && newEOF > oldEOF) {
2812 zero_off1 = uio->uio_offset + io_req_size;
2813
2814 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
2815 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
2816
2817 flags |= IO_TAILZEROFILL;
2818 }
2819 }
2820 }
2821 if (zero_cnt == 0 && uio == (struct uio *) 0) {
2822 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
2823 retval, 0, 0, 0, 0);
2824 return (0);
2825 }
2826 if (uio) {
2827 write_off = uio->uio_offset;
2828 write_cnt = uio_resid(uio);
2829 /*
2830 * delay updating the sequential write info
2831 * in the control block until we've obtained
2832 * the lock for it
2833 */
2834 first_pass = TRUE;
2835 }
2836 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
2837 /*
2838 * for this iteration of the loop, figure out where our starting point is
2839 */
2840 if (zero_cnt) {
2841 start_offset = (int)(zero_off & PAGE_MASK_64);
2842 upl_f_offset = zero_off - start_offset;
2843 } else if (io_resid) {
2844 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2845 upl_f_offset = uio->uio_offset - start_offset;
2846 } else {
2847 start_offset = (int)(zero_off1 & PAGE_MASK_64);
2848 upl_f_offset = zero_off1 - start_offset;
2849 }
2850 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
2851 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
2852
2853 if (total_size > max_io_size)
2854 total_size = max_io_size;
2855
2856 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
2857
2858 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
2859 /*
2860 * assumption... total_size <= io_resid
2861 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
2862 */
2863 if ((start_offset + total_size) > max_io_size)
2864 total_size = max_io_size - start_offset;
2865 xfer_resid = total_size;
2866
2867 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
2868
2869 if (retval)
2870 break;
2871
2872 io_resid -= (total_size - xfer_resid);
2873 total_size = xfer_resid;
2874 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2875 upl_f_offset = uio->uio_offset - start_offset;
2876
2877 if (total_size == 0) {
2878 if (start_offset) {
2879 /*
2880 * the write did not finish on a page boundary
2881 * which will leave upl_f_offset pointing to the
2882 * beginning of the last page written instead of
2883 * the page beyond it... bump it in this case
2884 * so that the cluster code records the last page
2885 * written as dirty
2886 */
2887 upl_f_offset += PAGE_SIZE_64;
2888 }
2889 upl_size = 0;
2890
2891 goto check_cluster;
2892 }
2893 }
2894 /*
2895 * compute the size of the upl needed to encompass
2896 * the requested write... limit each call to cluster_io
2897 * to the maximum UPL size... cluster_io will clip if
2898 * this exceeds the maximum io_size for the device,
2899 * make sure to account for
2900 * a starting offset that's not page aligned
2901 */
2902 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2903
2904 if (upl_size > max_io_size)
2905 upl_size = max_io_size;
2906
2907 pages_in_upl = upl_size / PAGE_SIZE;
2908 io_size = upl_size - start_offset;
2909
2910 if ((long long)io_size > total_size)
2911 io_size = total_size;
2912
2913 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
2914
2915
2916 /*
2917 * Gather the pages from the buffer cache.
2918 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
2919 * that we intend to modify these pages.
2920 */
2921 kret = ubc_create_upl(vp,
2922 upl_f_offset,
2923 upl_size,
2924 &upl,
2925 &pl,
2926 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
2927 if (kret != KERN_SUCCESS)
2928 panic("cluster_write_copy: failed to get pagelist");
2929
2930 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
2931 upl, (int)upl_f_offset, start_offset, 0, 0);
2932
2933 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
2934 int read_size;
2935
2936 /*
2937 * we're starting in the middle of the first page of the upl
2938 * and the page isn't currently valid, so we're going to have
2939 * to read it in first... this is a synchronous operation
2940 */
2941 read_size = PAGE_SIZE;
2942
2943 if ((upl_f_offset + read_size) > oldEOF)
2944 read_size = oldEOF - upl_f_offset;
2945
2946 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
2947 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2948 if (retval) {
2949 /*
2950 * we had an error during the read which causes us to abort
2951 * the current cluster_write request... before we do, we need
2952 * to release the rest of the pages in the upl without modifying
2953 * there state and mark the failed page in error
2954 */
2955 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2956
2957 if (upl_size > PAGE_SIZE)
2958 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2959
2960 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2961 upl, 0, 0, retval, 0);
2962 break;
2963 }
2964 }
2965 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
2966 /*
2967 * the last offset we're writing to in this upl does not end on a page
2968 * boundary... if it's not beyond the old EOF, then we'll also need to
2969 * pre-read this page in if it isn't already valid
2970 */
2971 upl_offset = upl_size - PAGE_SIZE;
2972
2973 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
2974 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
2975 int read_size;
2976
2977 read_size = PAGE_SIZE;
2978
2979 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
2980 read_size = oldEOF - (upl_f_offset + upl_offset);
2981
2982 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
2983 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2984 if (retval) {
2985 /*
2986 * we had an error during the read which causes us to abort
2987 * the current cluster_write request... before we do, we
2988 * need to release the rest of the pages in the upl without
2989 * modifying there state and mark the failed page in error
2990 */
2991 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2992
2993 if (upl_size > PAGE_SIZE)
2994 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2995
2996 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2997 upl, 0, 0, retval, 0);
2998 break;
2999 }
3000 }
3001 }
3002 xfer_resid = io_size;
3003 io_offset = start_offset;
3004
3005 while (zero_cnt && xfer_resid) {
3006
3007 if (zero_cnt < (long long)xfer_resid)
3008 bytes_to_zero = zero_cnt;
3009 else
3010 bytes_to_zero = xfer_resid;
3011
3012 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
3013
3014 xfer_resid -= bytes_to_zero;
3015 zero_cnt -= bytes_to_zero;
3016 zero_off += bytes_to_zero;
3017 io_offset += bytes_to_zero;
3018 }
3019 if (xfer_resid && io_resid) {
3020 u_int32_t io_requested;
3021
3022 bytes_to_move = min(io_resid, xfer_resid);
3023 io_requested = bytes_to_move;
3024
3025 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
3026
3027 if (retval) {
3028 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3029
3030 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3031 upl, 0, 0, retval, 0);
3032 } else {
3033 io_resid -= bytes_to_move;
3034 xfer_resid -= bytes_to_move;
3035 io_offset += bytes_to_move;
3036 }
3037 }
3038 while (xfer_resid && zero_cnt1 && retval == 0) {
3039
3040 if (zero_cnt1 < (long long)xfer_resid)
3041 bytes_to_zero = zero_cnt1;
3042 else
3043 bytes_to_zero = xfer_resid;
3044
3045 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3046
3047 xfer_resid -= bytes_to_zero;
3048 zero_cnt1 -= bytes_to_zero;
3049 zero_off1 += bytes_to_zero;
3050 io_offset += bytes_to_zero;
3051 }
3052 if (retval == 0) {
3053 int cl_index;
3054 int ret_cluster_try_push;
3055
3056 io_size += start_offset;
3057
3058 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
3059 /*
3060 * if we're extending the file with this write
3061 * we'll zero fill the rest of the page so that
3062 * if the file gets extended again in such a way as to leave a
3063 * hole starting at this EOF, we'll have zero's in the correct spot
3064 */
3065 cluster_zero(upl, io_size, upl_size - io_size, NULL);
3066 }
3067 /*
3068 * release the upl now if we hold one since...
3069 * 1) pages in it may be present in the sparse cluster map
3070 * and may span 2 separate buckets there... if they do and
3071 * we happen to have to flush a bucket to make room and it intersects
3072 * this upl, a deadlock may result on page BUSY
3073 * 2) we're delaying the I/O... from this point forward we're just updating
3074 * the cluster state... no need to hold the pages, so commit them
3075 * 3) IO_SYNC is set...
3076 * because we had to ask for a UPL that provides currenty non-present pages, the
3077 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3078 * upon committing it... this is not the behavior we want since it's possible for
3079 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3080 * we'll pick these pages back up later with the correct behavior specified.
3081 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3082 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3083 * we hold since the flushing context is holding the cluster lock.
3084 */
3085 ubc_upl_commit_range(upl, 0, upl_size,
3086 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3087check_cluster:
3088 /*
3089 * calculate the last logical block number
3090 * that this delayed I/O encompassed
3091 */
3092 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3093
3094 if (flags & IO_SYNC) {
3095 /*
3096 * if the IO_SYNC flag is set than we need to
3097 * bypass any clusters and immediately issue
3098 * the I/O
3099 */
3100 goto issue_io;
3101 }
3102 /*
3103 * take the lock to protect our accesses
3104 * of the writebehind and sparse cluster state
3105 */
3106 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3107
3108 if (wbp->cl_scmap) {
3109
3110 if ( !(flags & IO_NOCACHE)) {
3111 /*
3112 * we've fallen into the sparse
3113 * cluster method of delaying dirty pages
3114 */
3115 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3116
3117 lck_mtx_unlock(&wbp->cl_lockw);
3118
3119 continue;
3120 }
3121 /*
3122 * must have done cached writes that fell into
3123 * the sparse cluster mechanism... we've switched
3124 * to uncached writes on the file, so go ahead
3125 * and push whatever's in the sparse map
3126 * and switch back to normal clustering
3127 */
3128 wbp->cl_number = 0;
3129
3130 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
3131 /*
3132 * no clusters of either type present at this point
3133 * so just go directly to start_new_cluster since
3134 * we know we need to delay this I/O since we've
3135 * already released the pages back into the cache
3136 * to avoid the deadlock with sparse_cluster_push
3137 */
3138 goto start_new_cluster;
3139 }
3140 if (first_pass) {
3141 if (write_off == wbp->cl_last_write)
3142 wbp->cl_seq_written += write_cnt;
3143 else
3144 wbp->cl_seq_written = write_cnt;
3145
3146 wbp->cl_last_write = write_off + write_cnt;
3147
3148 first_pass = FALSE;
3149 }
3150 if (wbp->cl_number == 0)
3151 /*
3152 * no clusters currently present
3153 */
3154 goto start_new_cluster;
3155
3156 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
3157 /*
3158 * check each cluster that we currently hold
3159 * try to merge some or all of this write into
3160 * one or more of the existing clusters... if
3161 * any portion of the write remains, start a
3162 * new cluster
3163 */
3164 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
3165 /*
3166 * the current write starts at or after the current cluster
3167 */
3168 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3169 /*
3170 * we have a write that fits entirely
3171 * within the existing cluster limits
3172 */
3173 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
3174 /*
3175 * update our idea of where the cluster ends
3176 */
3177 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3178 break;
3179 }
3180 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3181 /*
3182 * we have a write that starts in the middle of the current cluster
3183 * but extends beyond the cluster's limit... we know this because
3184 * of the previous checks
3185 * we'll extend the current cluster to the max
3186 * and update the b_addr for the current write to reflect that
3187 * the head of it was absorbed into this cluster...
3188 * note that we'll always have a leftover tail in this case since
3189 * full absorbtion would have occurred in the clause above
3190 */
3191 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
3192
3193 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
3194 }
3195 /*
3196 * we come here for the case where the current write starts
3197 * beyond the limit of the existing cluster or we have a leftover
3198 * tail after a partial absorbtion
3199 *
3200 * in either case, we'll check the remaining clusters before
3201 * starting a new one
3202 */
3203 } else {
3204 /*
3205 * the current write starts in front of the cluster we're currently considering
3206 */
3207 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
3208 /*
3209 * we can just merge the new request into
3210 * this cluster and leave it in the cache
3211 * since the resulting cluster is still
3212 * less than the maximum allowable size
3213 */
3214 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
3215
3216 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
3217 /*
3218 * the current write completely
3219 * envelops the existing cluster and since
3220 * each write is limited to at most max_cluster_pgcount pages
3221 * we can just use the start and last blocknos of the write
3222 * to generate the cluster limits
3223 */
3224 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3225 }
3226 break;
3227 }
3228
3229 /*
3230 * if we were to combine this write with the current cluster
3231 * we would exceed the cluster size limit.... so,
3232 * let's see if there's any overlap of the new I/O with
3233 * the cluster we're currently considering... in fact, we'll
3234 * stretch the cluster out to it's full limit and see if we
3235 * get an intersection with the current write
3236 *
3237 */
3238 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
3239 /*
3240 * the current write extends into the proposed cluster
3241 * clip the length of the current write after first combining it's
3242 * tail with the newly shaped cluster
3243 */
3244 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
3245
3246 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
3247 }
3248 /*
3249 * if we get here, there was no way to merge
3250 * any portion of this write with this cluster
3251 * or we could only merge part of it which
3252 * will leave a tail...
3253 * we'll check the remaining clusters before starting a new one
3254 */
3255 }
3256 }
3257 if (cl_index < wbp->cl_number)
3258 /*
3259 * we found an existing cluster(s) that we
3260 * could entirely merge this I/O into
3261 */
3262 goto delay_io;
3263
3264 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3265 wbp->cl_number == MAX_CLUSTERS &&
3266 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3267 uint32_t n;
3268
3269 if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
3270 n = WRITE_BEHIND_SSD;
3271 else
3272 n = WRITE_BEHIND;
3273
3274 while (n--)
3275 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
3276 }
3277 if (wbp->cl_number < MAX_CLUSTERS) {
3278 /*
3279 * we didn't find an existing cluster to
3280 * merge into, but there's room to start
3281 * a new one
3282 */
3283 goto start_new_cluster;
3284 }
3285 /*
3286 * no exisitng cluster to merge with and no
3287 * room to start a new one... we'll try
3288 * pushing one of the existing ones... if none of
3289 * them are able to be pushed, we'll switch
3290 * to the sparse cluster mechanism
3291 * cluster_try_push updates cl_number to the
3292 * number of remaining clusters... and
3293 * returns the number of currently unused clusters
3294 */
3295 ret_cluster_try_push = 0;
3296
3297 /*
3298 * if writes are not deferred, call cluster push immediately
3299 */
3300 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
3301
3302 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
3303 }
3304
3305 /*
3306 * execute following regardless of writes being deferred or not
3307 */
3308 if (ret_cluster_try_push == 0) {
3309 /*
3310 * no more room in the normal cluster mechanism
3311 * so let's switch to the more expansive but expensive
3312 * sparse mechanism....
3313 */
3314 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
3315 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3316
3317 lck_mtx_unlock(&wbp->cl_lockw);
3318
3319 continue;
3320 }
3321start_new_cluster:
3322 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3323 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3324
3325 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3326
3327 if (flags & IO_NOCACHE)
3328 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3329
3330 if (bflag & CL_PASSIVE)
3331 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3332
3333 wbp->cl_number++;
3334delay_io:
3335 lck_mtx_unlock(&wbp->cl_lockw);
3336
3337 continue;
3338issue_io:
3339 /*
3340 * we don't hold the lock at this point
3341 *
3342 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3343 * so that we correctly deal with a change in state of the hardware modify bit...
3344 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3345 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3346 * responsible for generating the correct sized I/O(s)
3347 */
3348 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3349 }
3350 }
3351 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3352
3353 return (retval);
3354}
3355
3356
3357
3358int
3359cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3360{
3361 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3362}
3363
3364
3365int
3366cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3367{
3368 int retval = 0;
3369 int flags;
3370 user_ssize_t cur_resid;
3371 u_int32_t io_size;
3372 u_int32_t read_length = 0;
3373 int read_type = IO_COPY;
3374
3375 flags = xflags;
3376
3377 if (vp->v_flag & VNOCACHE_DATA)
3378 flags |= IO_NOCACHE;
3379 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3380 flags |= IO_RAOFF;
3381
3382 if (flags & IO_SKIP_ENCRYPTION)
3383 flags |= IO_ENCRYPTED;
3384 /*
3385 * If we're doing an encrypted IO, then first check to see
3386 * if the IO requested was page aligned. If not, then bail
3387 * out immediately.
3388 */
3389 if (flags & IO_ENCRYPTED) {
3390 if (read_length & PAGE_MASK) {
3391 retval = EINVAL;
3392 return retval;
3393 }
3394 }
3395
3396 /*
3397 * do a read through the cache if one of the following is true....
3398 * NOCACHE is not true
3399 * the uio request doesn't target USERSPACE
3400 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3401 * Reading encrypted data from a CP filesystem should never result in the data touching
3402 * the UBC.
3403 *
3404 * otherwise, find out if we want the direct or contig variant for
3405 * the first vector in the uio request
3406 */
3407 if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
3408
3409 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3410 }
3411
3412 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3413
3414 switch (read_type) {
3415
3416 case IO_COPY:
3417 /*
3418 * make sure the uio_resid isn't too big...
3419 * internally, we want to handle all of the I/O in
3420 * chunk sizes that fit in a 32 bit int
3421 */
3422 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3423 io_size = MAX_IO_REQUEST_SIZE;
3424 else
3425 io_size = (u_int32_t)cur_resid;
3426
3427 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3428 break;
3429
3430 case IO_DIRECT:
3431 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3432 break;
3433
3434 case IO_CONTIG:
3435 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3436 break;
3437
3438 case IO_UNKNOWN:
3439 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3440 break;
3441 }
3442 }
3443 return (retval);
3444}
3445
3446
3447
3448static void
3449cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
3450{
3451 int range;
3452 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3453
3454 if ((range = last_pg - start_pg)) {
3455 if (take_reference)
3456 abort_flags |= UPL_ABORT_REFERENCE;
3457
3458 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3459 }
3460}
3461
3462
3463static int
3464cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3465{
3466 upl_page_info_t *pl;
3467 upl_t upl;
3468 vm_offset_t upl_offset;
3469 u_int32_t upl_size;
3470 off_t upl_f_offset;
3471 int start_offset;
3472 int start_pg;
3473 int last_pg;
3474 int uio_last = 0;
3475 int pages_in_upl;
3476 off_t max_size;
3477 off_t last_ioread_offset;
3478 off_t last_request_offset;
3479 kern_return_t kret;
3480 int error = 0;
3481 int retval = 0;
3482 u_int32_t size_of_prefetch;
3483 u_int32_t xsize;
3484 u_int32_t io_size;
3485 u_int32_t max_rd_size;
3486 u_int32_t max_io_size;
3487 u_int32_t max_prefetch;
3488 u_int rd_ahead_enabled = 1;
3489 u_int prefetch_enabled = 1;
3490 struct cl_readahead * rap;
3491 struct clios iostate;
3492 struct cl_extent extent;
3493 int bflag;
3494 int take_reference = 1;
3495 int policy = IOPOL_DEFAULT;
3496 boolean_t iolock_inited = FALSE;
3497
3498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3499 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3500
3501 if (flags & IO_ENCRYPTED) {
3502 panic ("encrypted blocks will hit UBC!");
3503 }
3504
3505 policy = throttle_get_io_policy(NULL);
3506
3507 if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
3508 take_reference = 0;
3509
3510 if (flags & IO_PASSIVE)
3511 bflag = CL_PASSIVE;
3512 else
3513 bflag = 0;
3514
3515 if (flags & IO_NOCACHE)
3516 bflag |= CL_NOCACHE;
3517
3518 if (flags & IO_SKIP_ENCRYPTION)
3519 bflag |= CL_ENCRYPTED;
3520
3521 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3522 max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
3523 max_rd_size = max_prefetch;
3524
3525 last_request_offset = uio->uio_offset + io_req_size;
3526
3527 if (last_request_offset > filesize)
3528 last_request_offset = filesize;
3529
3530 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3531 rd_ahead_enabled = 0;
3532 rap = NULL;
3533 } else {
3534 if (cluster_is_throttled(vp)) {
3535 /*
3536 * we're in the throttle window, at the very least
3537 * we want to limit the size of the I/O we're about
3538 * to issue
3539 */
3540 rd_ahead_enabled = 0;
3541 prefetch_enabled = 0;
3542
3543 max_rd_size = THROTTLE_MAX_IOSIZE;
3544 }
3545 if ((rap = cluster_get_rap(vp)) == NULL)
3546 rd_ahead_enabled = 0;
3547 else {
3548 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3549 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3550 }
3551 }
3552 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3553 /*
3554 * determine if we already have a read-ahead in the pipe courtesy of the
3555 * last read systemcall that was issued...
3556 * if so, pick up it's extent to determine where we should start
3557 * with respect to any read-ahead that might be necessary to
3558 * garner all the data needed to complete this read systemcall
3559 */
3560 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3561
3562 if (last_ioread_offset < uio->uio_offset)
3563 last_ioread_offset = (off_t)0;
3564 else if (last_ioread_offset > last_request_offset)
3565 last_ioread_offset = last_request_offset;
3566 } else
3567 last_ioread_offset = (off_t)0;
3568
3569 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3570
3571 max_size = filesize - uio->uio_offset;
3572
3573 if ((off_t)(io_req_size) < max_size)
3574 io_size = io_req_size;
3575 else
3576 io_size = max_size;
3577
3578 if (!(flags & IO_NOCACHE)) {
3579
3580 while (io_size) {
3581 u_int32_t io_resid;
3582 u_int32_t io_requested;
3583
3584 /*
3585 * if we keep finding the pages we need already in the cache, then
3586 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3587 * to determine that we have all the pages we need... once we miss in
3588 * the cache and have issued an I/O, than we'll assume that we're likely
3589 * to continue to miss in the cache and it's to our advantage to try and prefetch
3590 */
3591 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3592 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3593 /*
3594 * we've already issued I/O for this request and
3595 * there's still work to do and
3596 * our prefetch stream is running dry, so issue a
3597 * pre-fetch I/O... the I/O latency will overlap
3598 * with the copying of the data
3599 */
3600 if (size_of_prefetch > max_rd_size)
3601 size_of_prefetch = max_rd_size;
3602
3603 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3604
3605 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3606
3607 if (last_ioread_offset > last_request_offset)
3608 last_ioread_offset = last_request_offset;
3609 }
3610 }
3611 /*
3612 * limit the size of the copy we're about to do so that
3613 * we can notice that our I/O pipe is running dry and
3614 * get the next I/O issued before it does go dry
3615 */
3616 if (last_ioread_offset && io_size > (max_io_size / 4))
3617 io_resid = (max_io_size / 4);
3618 else
3619 io_resid = io_size;
3620
3621 io_requested = io_resid;
3622
3623 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3624
3625 xsize = io_requested - io_resid;
3626
3627 io_size -= xsize;
3628 io_req_size -= xsize;
3629
3630 if (retval || io_resid)
3631 /*
3632 * if we run into a real error or
3633 * a page that is not in the cache
3634 * we need to leave streaming mode
3635 */
3636 break;
3637
3638 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
3639 /*
3640 * we're already finished the I/O for this read request
3641 * let's see if we should do a read-ahead
3642 */
3643 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3644 }
3645 }
3646 if (retval)
3647 break;
3648 if (io_size == 0) {
3649 if (rap != NULL) {
3650 if (extent.e_addr < rap->cl_lastr)
3651 rap->cl_maxra = 0;
3652 rap->cl_lastr = extent.e_addr;
3653 }
3654 break;
3655 }
3656 /*
3657 * recompute max_size since cluster_copy_ubc_data_internal
3658 * may have advanced uio->uio_offset
3659 */
3660 max_size = filesize - uio->uio_offset;
3661 }
3662
3663 iostate.io_completed = 0;
3664 iostate.io_issued = 0;
3665 iostate.io_error = 0;
3666 iostate.io_wanted = 0;
3667
3668 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3669 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
3670 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3671 /*
3672 * we're in the throttle window and at least 1 I/O
3673 * has already been issued by a throttleable thread
3674 * in this window, so return with EAGAIN to indicate
3675 * to the FS issuing the cluster_read call that it
3676 * should now throttle after dropping any locks
3677 */
3678 throttle_info_update_by_mount(vp->v_mount);
3679
3680 retval = EAGAIN;
3681 break;
3682 }
3683 }
3684 }
3685
3686 /*
3687 * compute the size of the upl needed to encompass
3688 * the requested read... limit each call to cluster_io
3689 * to the maximum UPL size... cluster_io will clip if
3690 * this exceeds the maximum io_size for the device,
3691 * make sure to account for
3692 * a starting offset that's not page aligned
3693 */
3694 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3695 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3696
3697 if (io_size > max_rd_size)
3698 io_size = max_rd_size;
3699
3700 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3701
3702 if (flags & IO_NOCACHE) {
3703 if (upl_size > max_io_size)
3704 upl_size = max_io_size;
3705 } else {
3706 if (upl_size > max_io_size / 4) {
3707 upl_size = max_io_size / 4;
3708 upl_size &= ~PAGE_MASK;
3709
3710 if (upl_size == 0)
3711 upl_size = PAGE_SIZE;
3712 }
3713 }
3714 pages_in_upl = upl_size / PAGE_SIZE;
3715
3716 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3717 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3718
3719 kret = ubc_create_upl(vp,
3720 upl_f_offset,
3721 upl_size,
3722 &upl,
3723 &pl,
3724 UPL_FILE_IO | UPL_SET_LITE);
3725 if (kret != KERN_SUCCESS)
3726 panic("cluster_read_copy: failed to get pagelist");
3727
3728 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
3729 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3730
3731 /*
3732 * scan from the beginning of the upl looking for the first
3733 * non-valid page.... this will become the first page in
3734 * the request we're going to make to 'cluster_io'... if all
3735 * of the pages are valid, we won't call through to 'cluster_io'
3736 */
3737 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3738 if (!upl_valid_page(pl, start_pg))
3739 break;
3740 }
3741
3742 /*
3743 * scan from the starting invalid page looking for a valid
3744 * page before the end of the upl is reached, if we
3745 * find one, then it will be the last page of the request to
3746 * 'cluster_io'
3747 */
3748 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
3749 if (upl_valid_page(pl, last_pg))
3750 break;
3751 }
3752
3753 if (start_pg < last_pg) {
3754 /*
3755 * we found a range of 'invalid' pages that must be filled
3756 * if the last page in this range is the last page of the file
3757 * we may have to clip the size of it to keep from reading past
3758 * the end of the last physical block associated with the file
3759 */
3760 if (iolock_inited == FALSE) {
3761 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
3762
3763 iolock_inited = TRUE;
3764 }
3765 upl_offset = start_pg * PAGE_SIZE;
3766 io_size = (last_pg - start_pg) * PAGE_SIZE;
3767
3768 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
3769 io_size = filesize - (upl_f_offset + upl_offset);
3770
3771 /*
3772 * issue an asynchronous read to cluster_io
3773 */
3774
3775 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
3776 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
3777
3778 if (rap) {
3779 if (extent.e_addr < rap->cl_maxra) {
3780 /*
3781 * we've just issued a read for a block that should have been
3782 * in the cache courtesy of the read-ahead engine... something
3783 * has gone wrong with the pipeline, so reset the read-ahead
3784 * logic which will cause us to restart from scratch
3785 */
3786 rap->cl_maxra = 0;
3787 }
3788 }
3789 }
3790 if (error == 0) {
3791 /*
3792 * if the read completed successfully, or there was no I/O request
3793 * issued, than copy the data into user land via 'cluster_upl_copy_data'
3794 * we'll first add on any 'valid'
3795 * pages that were present in the upl when we acquired it.
3796 */
3797 u_int val_size;
3798
3799 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
3800 if (!upl_valid_page(pl, uio_last))
3801 break;
3802 }
3803 if (uio_last < pages_in_upl) {
3804 /*
3805 * there were some invalid pages beyond the valid pages
3806 * that we didn't issue an I/O for, just release them
3807 * unchanged now, so that any prefetch/readahed can
3808 * include them
3809 */
3810 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
3811 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
3812 }
3813
3814 /*
3815 * compute size to transfer this round, if io_req_size is
3816 * still non-zero after this attempt, we'll loop around and
3817 * set up for another I/O.
3818 */
3819 val_size = (uio_last * PAGE_SIZE) - start_offset;
3820
3821 if (val_size > max_size)
3822 val_size = max_size;
3823
3824 if (val_size > io_req_size)
3825 val_size = io_req_size;
3826
3827 if ((uio->uio_offset + val_size) > last_ioread_offset)
3828 last_ioread_offset = uio->uio_offset + val_size;
3829
3830 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
3831
3832 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
3833 /*
3834 * if there's still I/O left to do for this request, and...
3835 * we're not in hard throttle mode, and...
3836 * we're close to using up the previous prefetch, then issue a
3837 * new pre-fetch I/O... the I/O latency will overlap
3838 * with the copying of the data
3839 */
3840 if (size_of_prefetch > max_rd_size)
3841 size_of_prefetch = max_rd_size;
3842
3843 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3844
3845 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3846
3847 if (last_ioread_offset > last_request_offset)
3848 last_ioread_offset = last_request_offset;
3849 }
3850
3851 } else if ((uio->uio_offset + val_size) == last_request_offset) {
3852 /*
3853 * this transfer will finish this request, so...
3854 * let's try to read ahead if we're in
3855 * a sequential access pattern and we haven't
3856 * explicitly disabled it
3857 */
3858 if (rd_ahead_enabled)
3859 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3860
3861 if (rap != NULL) {
3862 if (extent.e_addr < rap->cl_lastr)
3863 rap->cl_maxra = 0;
3864 rap->cl_lastr = extent.e_addr;
3865 }
3866 }
3867 if (iolock_inited == TRUE)
3868 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3869
3870 if (iostate.io_error)
3871 error = iostate.io_error;
3872 else {
3873 u_int32_t io_requested;
3874
3875 io_requested = val_size;
3876
3877 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
3878
3879 io_req_size -= (val_size - io_requested);
3880 }
3881 } else {
3882 if (iolock_inited == TRUE)
3883 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3884 }
3885 if (start_pg < last_pg) {
3886 /*
3887 * compute the range of pages that we actually issued an I/O for
3888 * and either commit them as valid if the I/O succeeded
3889 * or abort them if the I/O failed or we're not supposed to
3890 * keep them in the cache
3891 */
3892 io_size = (last_pg - start_pg) * PAGE_SIZE;
3893
3894 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
3895
3896 if (error || (flags & IO_NOCACHE))
3897 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
3898 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3899 else {
3900 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
3901
3902 if (take_reference)
3903 commit_flags |= UPL_COMMIT_INACTIVATE;
3904 else
3905 commit_flags |= UPL_COMMIT_SPECULATE;
3906
3907 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
3908 }
3909 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
3910 }
3911 if ((last_pg - start_pg) < pages_in_upl) {
3912 /*
3913 * the set of pages that we issued an I/O for did not encompass
3914 * the entire upl... so just release these without modifying
3915 * their state
3916 */
3917 if (error)
3918 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3919 else {
3920
3921 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
3922 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
3923
3924 /*
3925 * handle any valid pages at the beginning of
3926 * the upl... release these appropriately
3927 */
3928 cluster_read_upl_release(upl, 0, start_pg, take_reference);
3929
3930 /*
3931 * handle any valid pages immediately after the
3932 * pages we issued I/O for... ... release these appropriately
3933 */
3934 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
3935
3936 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
3937 }
3938 }
3939 if (retval == 0)
3940 retval = error;
3941
3942 if (io_req_size) {
3943 if (cluster_is_throttled(vp)) {
3944 /*
3945 * we're in the throttle window, at the very least
3946 * we want to limit the size of the I/O we're about
3947 * to issue
3948 */
3949 rd_ahead_enabled = 0;
3950 prefetch_enabled = 0;
3951 max_rd_size = THROTTLE_MAX_IOSIZE;
3952 } else {
3953 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
3954 /*
3955 * coming out of throttled state
3956 */
3957 if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
3958 if (rap != NULL)
3959 rd_ahead_enabled = 1;
3960 prefetch_enabled = 1;
3961 }
3962 max_rd_size = max_prefetch;
3963 last_ioread_offset = 0;
3964 }
3965 }
3966 }
3967 }
3968 if (iolock_inited == TRUE) {
3969 /*
3970 * cluster_io returned an error after it
3971 * had already issued some I/O. we need
3972 * to wait for that I/O to complete before
3973 * we can destroy the iostate mutex...
3974 * 'retval' already contains the early error
3975 * so no need to pick it up from iostate.io_error
3976 */
3977 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3978
3979 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
3980 }
3981 if (rap != NULL) {
3982 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3983 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
3984
3985 lck_mtx_unlock(&rap->cl_lockr);
3986 } else {
3987 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3988 (int)uio->uio_offset, io_req_size, 0, retval, 0);
3989 }
3990
3991 return (retval);
3992}
3993
3994static int
3995cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
3996 int flags, int (*callback)(buf_t, void *), void *callback_arg)
3997{
3998 upl_t upl;
3999 upl_page_info_t *pl;
4000 off_t max_io_size;
4001 vm_offset_t upl_offset, vector_upl_offset = 0;
4002 upl_size_t upl_size, vector_upl_size = 0;
4003 vm_size_t upl_needed_size;
4004 unsigned int pages_in_pl;
4005 int upl_flags;
4006 kern_return_t kret;
4007 unsigned int i;
4008 int force_data_sync;
4009 int retval = 0;
4010 int no_zero_fill = 0;
4011 int io_flag = 0;
4012 int misaligned = 0;
4013 struct clios iostate;
4014 user_addr_t iov_base;
4015 u_int32_t io_req_size;
4016 u_int32_t offset_in_file;
4017 u_int32_t offset_in_iovbase;
4018 u_int32_t io_size;
4019 u_int32_t io_min;
4020 u_int32_t xsize;
4021 u_int32_t devblocksize;
4022 u_int32_t mem_alignment_mask;
4023 u_int32_t max_upl_size;
4024 u_int32_t max_rd_size;
4025 u_int32_t max_rd_ahead;
4026 u_int32_t max_vector_size;
4027 boolean_t strict_uncached_IO = FALSE;
4028 boolean_t io_throttled = FALSE;
4029
4030 u_int32_t vector_upl_iosize = 0;
4031 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4032 off_t v_upl_uio_offset = 0;
4033 int vector_upl_index=0;
4034 upl_t vector_upl = NULL;
4035
4036 user_addr_t orig_iov_base = 0;
4037 user_addr_t last_iov_base = 0;
4038 user_addr_t next_iov_base = 0;
4039
4040 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4041 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4042
4043 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
4044
4045 max_rd_size = max_upl_size;
4046 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4047
4048 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
4049
4050 if (flags & IO_PASSIVE)
4051 io_flag |= CL_PASSIVE;
4052
4053 if (flags & IO_ENCRYPTED) {
4054 io_flag |= CL_RAW_ENCRYPTED;
4055 }
4056
4057 if (flags & IO_NOCACHE) {
4058 io_flag |= CL_NOCACHE;
4059 }
4060
4061 if (flags & IO_SKIP_ENCRYPTION)
4062 io_flag |= CL_ENCRYPTED;
4063
4064 iostate.io_completed = 0;
4065 iostate.io_issued = 0;
4066 iostate.io_error = 0;
4067 iostate.io_wanted = 0;
4068
4069 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4070
4071 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4072 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4073
4074 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4075 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4076
4077 if (devblocksize == 1) {
4078 /*
4079 * the AFP client advertises a devblocksize of 1
4080 * however, its BLOCKMAP routine maps to physical
4081 * blocks that are PAGE_SIZE in size...
4082 * therefore we can't ask for I/Os that aren't page aligned
4083 * or aren't multiples of PAGE_SIZE in size
4084 * by setting devblocksize to PAGE_SIZE, we re-instate
4085 * the old behavior we had before the mem_alignment_mask
4086 * changes went in...
4087 */
4088 devblocksize = PAGE_SIZE;
4089 }
4090
4091 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4092
4093 orig_iov_base = uio_curriovbase(uio);
4094 last_iov_base = orig_iov_base;
4095
4096next_dread:
4097 io_req_size = *read_length;
4098 iov_base = uio_curriovbase(uio);
4099
4100 max_io_size = filesize - uio->uio_offset;
4101
4102 if ((off_t)io_req_size > max_io_size)
4103 io_req_size = max_io_size;
4104
4105 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4106 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4107
4108 if (offset_in_file || offset_in_iovbase) {
4109 /*
4110 * one of the 2 important offsets is misaligned
4111 * so fire an I/O through the cache for this entire vector
4112 */
4113 misaligned = 1;
4114 }
4115 if (iov_base & (devblocksize - 1)) {
4116 /*
4117 * the offset in memory must be on a device block boundary
4118 * so that we can guarantee that we can generate an
4119 * I/O that ends on a page boundary in cluster_io
4120 */
4121 misaligned = 1;
4122 }
4123
4124 /*
4125 * The user must request IO in aligned chunks. If the
4126 * offset into the file is bad, or the userland pointer
4127 * is non-aligned, then we cannot service the encrypted IO request.
4128 */
4129 if ((flags & IO_ENCRYPTED) && (misaligned)) {
4130 retval = EINVAL;
4131 }
4132
4133 /*
4134 * When we get to this point, we know...
4135 * -- the offset into the file is on a devblocksize boundary
4136 */
4137
4138 while (io_req_size && retval == 0) {
4139 u_int32_t io_start;
4140
4141 if (cluster_is_throttled(vp)) {
4142 /*
4143 * we're in the throttle window, at the very least
4144 * we want to limit the size of the I/O we're about
4145 * to issue
4146 */
4147 max_rd_size = THROTTLE_MAX_IOSIZE;
4148 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4149 max_vector_size = THROTTLE_MAX_IOSIZE;
4150 } else {
4151 max_rd_size = max_upl_size;
4152 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4153 max_vector_size = MAX_VECTOR_UPL_SIZE;
4154 }
4155 io_start = io_size = io_req_size;
4156
4157 /*
4158 * First look for pages already in the cache
4159 * and move them to user space. But only do this
4160 * check if we are not retrieving encrypted data directly
4161 * from the filesystem; those blocks should never
4162 * be in the UBC.
4163 *
4164 * cluster_copy_ubc_data returns the resid
4165 * in io_size
4166 */
4167 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4168 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4169 }
4170 /*
4171 * calculate the number of bytes actually copied
4172 * starting size - residual
4173 */
4174 xsize = io_start - io_size;
4175
4176 io_req_size -= xsize;
4177
4178 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4179 /*
4180 * We found something in the cache or we have an iov_base that's not
4181 * page-aligned.
4182 *
4183 * Issue all I/O's that have been collected within this Vectored UPL.
4184 */
4185 if(vector_upl_index) {
4186 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4187 reset_vector_run_state();
4188 }
4189
4190 if(xsize)
4191 useVectorUPL = 0;
4192
4193 /*
4194 * After this point, if we are using the Vector UPL path and the base is
4195 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4196 */
4197 }
4198
4199 /*
4200 * check to see if we are finished with this request.
4201 *
4202 * If we satisfied this IO already, then io_req_size will be 0.
4203 * Otherwise, see if the IO was mis-aligned and needs to go through
4204 * the UBC to deal with the 'tail'.
4205 *
4206 */
4207 if (io_req_size == 0 || (misaligned)) {
4208 /*
4209 * see if there's another uio vector to
4210 * process that's of type IO_DIRECT
4211 *
4212 * break out of while loop to get there
4213 */
4214 break;
4215 }
4216 /*
4217 * assume the request ends on a device block boundary
4218 */
4219 io_min = devblocksize;
4220
4221 /*
4222 * we can handle I/O's in multiples of the device block size
4223 * however, if io_size isn't a multiple of devblocksize we
4224 * want to clip it back to the nearest page boundary since
4225 * we are going to have to go through cluster_read_copy to
4226 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4227 * multiple, we avoid asking the drive for the same physical
4228 * blocks twice.. once for the partial page at the end of the
4229 * request and a 2nd time for the page we read into the cache
4230 * (which overlaps the end of the direct read) in order to
4231 * get at the overhang bytes
4232 */
4233 if (io_size & (devblocksize - 1)) {
4234 if (flags & IO_ENCRYPTED) {
4235 /*
4236 * Normally, we'd round down to the previous page boundary to
4237 * let the UBC manage the zero-filling of the file past the EOF.
4238 * But if we're doing encrypted IO, we can't let any of
4239 * the data hit the UBC. This means we have to do the full
4240 * IO to the upper block boundary of the device block that
4241 * contains the EOF. The user will be responsible for not
4242 * interpreting data PAST the EOF in its buffer.
4243 *
4244 * So just bump the IO back up to a multiple of devblocksize
4245 */
4246 io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
4247 io_min = io_size;
4248 }
4249 else {
4250 /*
4251 * Clip the request to the previous page size boundary
4252 * since request does NOT end on a device block boundary
4253 */
4254 io_size &= ~PAGE_MASK;
4255 io_min = PAGE_SIZE;
4256 }
4257
4258 }
4259 if (retval || io_size < io_min) {
4260 /*
4261 * either an error or we only have the tail left to
4262 * complete via the copy path...
4263 * we may have already spun some portion of this request
4264 * off as async requests... we need to wait for the I/O
4265 * to complete before returning
4266 */
4267 goto wait_for_dreads;
4268 }
4269
4270 /*
4271 * Don't re-check the UBC data if we are looking for uncached IO
4272 * or asking for encrypted blocks.
4273 */
4274 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4275
4276 if ((xsize = io_size) > max_rd_size)
4277 xsize = max_rd_size;
4278
4279 io_size = 0;
4280
4281 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4282
4283 if (io_size == 0) {
4284 /*
4285 * a page must have just come into the cache
4286 * since the first page in this range is no
4287 * longer absent, go back and re-evaluate
4288 */
4289 continue;
4290 }
4291 }
4292 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4293 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
4294 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4295 /*
4296 * we're in the throttle window and at least 1 I/O
4297 * has already been issued by a throttleable thread
4298 * in this window, so return with EAGAIN to indicate
4299 * to the FS issuing the cluster_read call that it
4300 * should now throttle after dropping any locks
4301 */
4302 throttle_info_update_by_mount(vp->v_mount);
4303
4304 io_throttled = TRUE;
4305 goto wait_for_dreads;
4306 }
4307 }
4308 }
4309 if (io_size > max_rd_size)
4310 io_size = max_rd_size;
4311
4312 iov_base = uio_curriovbase(uio);
4313
4314 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4315 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
4316
4317 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
4318 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
4319
4320 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
4321 no_zero_fill = 1;
4322 else
4323 no_zero_fill = 0;
4324
4325 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4326 pages_in_pl = 0;
4327 upl_size = upl_needed_size;
4328 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4329
4330 if (no_zero_fill)
4331 upl_flags |= UPL_NOZEROFILL;
4332 if (force_data_sync)
4333 upl_flags |= UPL_FORCE_DATA_SYNC;
4334
4335 kret = vm_map_create_upl(current_map(),
4336 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4337 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
4338
4339 if (kret != KERN_SUCCESS) {
4340 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4341 (int)upl_offset, upl_size, io_size, kret, 0);
4342 /*
4343 * failed to get pagelist
4344 *
4345 * we may have already spun some portion of this request
4346 * off as async requests... we need to wait for the I/O
4347 * to complete before returning
4348 */
4349 goto wait_for_dreads;
4350 }
4351 pages_in_pl = upl_size / PAGE_SIZE;
4352 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
4353
4354 for (i = 0; i < pages_in_pl; i++) {
4355 if (!upl_page_present(pl, i))
4356 break;
4357 }
4358 if (i == pages_in_pl)
4359 break;
4360
4361 ubc_upl_abort(upl, 0);
4362 }
4363 if (force_data_sync >= 3) {
4364 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4365 (int)upl_offset, upl_size, io_size, kret, 0);
4366
4367 goto wait_for_dreads;
4368 }
4369 /*
4370 * Consider the possibility that upl_size wasn't satisfied.
4371 */
4372 if (upl_size < upl_needed_size) {
4373 if (upl_size && upl_offset == 0)
4374 io_size = upl_size;
4375 else
4376 io_size = 0;
4377 }
4378 if (io_size == 0) {
4379 ubc_upl_abort(upl, 0);
4380 goto wait_for_dreads;
4381 }
4382 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4383 (int)upl_offset, upl_size, io_size, kret, 0);
4384
4385 if(useVectorUPL) {
4386 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4387 if(end_off)
4388 issueVectorUPL = 1;
4389 /*
4390 * After this point, if we are using a vector UPL, then
4391 * either all the UPL elements end on a page boundary OR
4392 * this UPL is the last element because it does not end
4393 * on a page boundary.
4394 */
4395 }
4396
4397 /*
4398 * request asynchronously so that we can overlap
4399 * the preparation of the next I/O
4400 * if there are already too many outstanding reads
4401 * wait until some have completed before issuing the next read
4402 */
4403 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
4404
4405 if (iostate.io_error) {
4406 /*
4407 * one of the earlier reads we issued ran into a hard error
4408 * don't issue any more reads, cleanup the UPL
4409 * that was just created but not used, then
4410 * go wait for any other reads to complete before
4411 * returning the error to the caller
4412 */
4413 ubc_upl_abort(upl, 0);
4414
4415 goto wait_for_dreads;
4416 }
4417 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
4418 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
4419
4420
4421 if(!useVectorUPL) {
4422 if (no_zero_fill)
4423 io_flag &= ~CL_PRESERVE;
4424 else
4425 io_flag |= CL_PRESERVE;
4426
4427 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4428
4429 } else {
4430
4431 if(!vector_upl_index) {
4432 vector_upl = vector_upl_create(upl_offset);
4433 v_upl_uio_offset = uio->uio_offset;
4434 vector_upl_offset = upl_offset;
4435 }
4436
4437 vector_upl_set_subupl(vector_upl,upl, upl_size);
4438 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4439 vector_upl_index++;
4440 vector_upl_size += upl_size;
4441 vector_upl_iosize += io_size;
4442
4443 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
4444 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4445 reset_vector_run_state();
4446 }
4447 }
4448 last_iov_base = iov_base + io_size;
4449
4450 /*
4451 * update the uio structure
4452 */
4453 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4454 uio_update(uio, (user_size_t)max_io_size);
4455 }
4456 else {
4457 uio_update(uio, (user_size_t)io_size);
4458 }
4459 /*
4460 * Under normal circumstances, the io_size should not be
4461 * bigger than the io_req_size, but we may have had to round up
4462 * to the end of the page in the encrypted IO case. In that case only,
4463 * ensure that we only decrement io_req_size to 0.
4464 */
4465 if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
4466 io_req_size = 0;
4467 }
4468 else {
4469 io_req_size -= io_size;
4470 }
4471
4472 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
4473 upl, (int)uio->uio_offset, io_req_size, retval, 0);
4474
4475 } /* end while */
4476
4477 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
4478
4479 retval = cluster_io_type(uio, read_type, read_length, 0);
4480
4481 if (retval == 0 && *read_type == IO_DIRECT) {
4482
4483 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4484 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4485
4486 goto next_dread;
4487 }
4488 }
4489
4490wait_for_dreads:
4491
4492 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4493 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4494 reset_vector_run_state();
4495 }
4496 /*
4497 * make sure all async reads that are part of this stream
4498 * have completed before we return
4499 */
4500 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
4501
4502 if (iostate.io_error)
4503 retval = iostate.io_error;
4504
4505 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4506
4507 if (io_throttled == TRUE && retval == 0)
4508 retval = EAGAIN;
4509
4510 for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
4511 /*
4512 * This is specifically done for pmap accounting purposes.
4513 * vm_pre_fault() will call vm_fault() to enter the page into
4514 * the pmap if there isn't _a_ physical page for that VA already.
4515 */
4516 vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
4517 }
4518
4519 if (io_req_size && retval == 0) {
4520 /*
4521 * we couldn't handle the tail of this request in DIRECT mode
4522 * so fire it through the copy path
4523 */
4524 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
4525
4526 *read_type = IO_UNKNOWN;
4527 }
4528 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
4529 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
4530
4531 return (retval);
4532}
4533
4534
4535static int
4536cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4537 int (*callback)(buf_t, void *), void *callback_arg, int flags)
4538{
4539 upl_page_info_t *pl;
4540 upl_t upl[MAX_VECTS];
4541 vm_offset_t upl_offset;
4542 addr64_t dst_paddr = 0;
4543 user_addr_t iov_base;
4544 off_t max_size;
4545 upl_size_t upl_size;
4546 vm_size_t upl_needed_size;
4547 mach_msg_type_number_t pages_in_pl;
4548 int upl_flags;
4549 kern_return_t kret;
4550 struct clios iostate;
4551 int error= 0;
4552 int cur_upl = 0;
4553 int num_upl = 0;
4554 int n;
4555 u_int32_t xsize;
4556 u_int32_t io_size;
4557 u_int32_t devblocksize;
4558 u_int32_t mem_alignment_mask;
4559 u_int32_t tail_size = 0;
4560 int bflag;
4561
4562 if (flags & IO_PASSIVE)
4563 bflag = CL_PASSIVE;
4564 else
4565 bflag = 0;
4566
4567 if (flags & IO_NOCACHE)
4568 bflag |= CL_NOCACHE;
4569
4570 /*
4571 * When we enter this routine, we know
4572 * -- the read_length will not exceed the current iov_len
4573 * -- the target address is physically contiguous for read_length
4574 */
4575 cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
4576
4577 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4578 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4579
4580 iostate.io_completed = 0;
4581 iostate.io_issued = 0;
4582 iostate.io_error = 0;
4583 iostate.io_wanted = 0;
4584
4585 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4586
4587next_cread:
4588 io_size = *read_length;
4589
4590 max_size = filesize - uio->uio_offset;
4591
4592 if (io_size > max_size)
4593 io_size = max_size;
4594
4595 iov_base = uio_curriovbase(uio);
4596
4597 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4598 upl_needed_size = upl_offset + io_size;
4599
4600 pages_in_pl = 0;
4601 upl_size = upl_needed_size;
4602 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4603
4604
4605 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4606 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4607
4608 kret = vm_map_get_upl(current_map(),
4609 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4610 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4611
4612 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4613 (int)upl_offset, upl_size, io_size, kret, 0);
4614
4615 if (kret != KERN_SUCCESS) {
4616 /*
4617 * failed to get pagelist
4618 */
4619 error = EINVAL;
4620 goto wait_for_creads;
4621 }
4622 num_upl++;
4623
4624 if (upl_size < upl_needed_size) {
4625 /*
4626 * The upl_size wasn't satisfied.
4627 */
4628 error = EINVAL;
4629 goto wait_for_creads;
4630 }
4631 pl = ubc_upl_pageinfo(upl[cur_upl]);
4632
4633 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
4634
4635 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4636 u_int32_t head_size;
4637
4638 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4639
4640 if (head_size > io_size)
4641 head_size = io_size;
4642
4643 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4644
4645 if (error)
4646 goto wait_for_creads;
4647
4648 upl_offset += head_size;
4649 dst_paddr += head_size;
4650 io_size -= head_size;
4651
4652 iov_base += head_size;
4653 }
4654 if ((u_int32_t)iov_base & mem_alignment_mask) {
4655 /*
4656 * request doesn't set up on a memory boundary
4657 * the underlying DMA engine can handle...
4658 * return an error instead of going through
4659 * the slow copy path since the intent of this
4660 * path is direct I/O to device memory
4661 */
4662 error = EINVAL;
4663 goto wait_for_creads;
4664 }
4665
4666 tail_size = io_size & (devblocksize - 1);
4667
4668 io_size -= tail_size;
4669
4670 while (io_size && error == 0) {
4671
4672 if (io_size > MAX_IO_CONTIG_SIZE)
4673 xsize = MAX_IO_CONTIG_SIZE;
4674 else
4675 xsize = io_size;
4676 /*
4677 * request asynchronously so that we can overlap
4678 * the preparation of the next I/O... we'll do
4679 * the commit after all the I/O has completed
4680 * since its all issued against the same UPL
4681 * if there are already too many outstanding reads
4682 * wait until some have completed before issuing the next
4683 */
4684 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
4685
4686 if (iostate.io_error) {
4687 /*
4688 * one of the earlier reads we issued ran into a hard error
4689 * don't issue any more reads...
4690 * go wait for any other reads to complete before
4691 * returning the error to the caller
4692 */
4693 goto wait_for_creads;
4694 }
4695 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
4696 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
4697 (buf_t)NULL, &iostate, callback, callback_arg);
4698 /*
4699 * The cluster_io read was issued successfully,
4700 * update the uio structure
4701 */
4702 if (error == 0) {
4703 uio_update(uio, (user_size_t)xsize);
4704
4705 dst_paddr += xsize;
4706 upl_offset += xsize;
4707 io_size -= xsize;
4708 }
4709 }
4710 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
4711
4712 error = cluster_io_type(uio, read_type, read_length, 0);
4713
4714 if (error == 0 && *read_type == IO_CONTIG) {
4715 cur_upl++;
4716 goto next_cread;
4717 }
4718 } else
4719 *read_type = IO_UNKNOWN;
4720
4721wait_for_creads:
4722 /*
4723 * make sure all async reads that are part of this stream
4724 * have completed before we proceed
4725 */
4726 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
4727
4728 if (iostate.io_error)
4729 error = iostate.io_error;
4730
4731 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4732
4733 if (error == 0 && tail_size)
4734 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
4735
4736 for (n = 0; n < num_upl; n++)
4737 /*
4738 * just release our hold on each physically contiguous
4739 * region without changing any state
4740 */
4741 ubc_upl_abort(upl[n], 0);
4742
4743 return (error);
4744}
4745
4746
4747static int
4748cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
4749{
4750 user_size_t iov_len;
4751 user_addr_t iov_base = 0;
4752 upl_t upl;
4753 upl_size_t upl_size;
4754 int upl_flags;
4755 int retval = 0;
4756
4757 /*
4758 * skip over any emtpy vectors
4759 */
4760 uio_update(uio, (user_size_t)0);
4761
4762 iov_len = uio_curriovlen(uio);
4763
4764 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
4765
4766 if (iov_len) {
4767 iov_base = uio_curriovbase(uio);
4768 /*
4769 * make sure the size of the vector isn't too big...
4770 * internally, we want to handle all of the I/O in
4771 * chunk sizes that fit in a 32 bit int
4772 */
4773 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
4774 upl_size = MAX_IO_REQUEST_SIZE;
4775 else
4776 upl_size = (u_int32_t)iov_len;
4777
4778 upl_flags = UPL_QUERY_OBJECT_TYPE;
4779
4780 if ((vm_map_get_upl(current_map(),
4781 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4782 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
4783 /*
4784 * the user app must have passed in an invalid address
4785 */
4786 retval = EFAULT;
4787 }
4788 if (upl_size == 0)
4789 retval = EFAULT;
4790
4791 *io_length = upl_size;
4792
4793 if (upl_flags & UPL_PHYS_CONTIG)
4794 *io_type = IO_CONTIG;
4795 else if (iov_len >= min_length)
4796 *io_type = IO_DIRECT;
4797 else
4798 *io_type = IO_COPY;
4799 } else {
4800 /*
4801 * nothing left to do for this uio
4802 */
4803 *io_length = 0;
4804 *io_type = IO_UNKNOWN;
4805 }
4806 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
4807
4808 return (retval);
4809}
4810
4811
4812/*
4813 * generate advisory I/O's in the largest chunks possible
4814 * the completed pages will be released into the VM cache
4815 */
4816int
4817advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
4818{
4819 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
4820}
4821
4822int
4823advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
4824{
4825 upl_page_info_t *pl;
4826 upl_t upl;
4827 vm_offset_t upl_offset;
4828 int upl_size;
4829 off_t upl_f_offset;
4830 int start_offset;
4831 int start_pg;
4832 int last_pg;
4833 int pages_in_upl;
4834 off_t max_size;
4835 int io_size;
4836 kern_return_t kret;
4837 int retval = 0;
4838 int issued_io;
4839 int skip_range;
4840 uint32_t max_io_size;
4841
4842
4843 if ( !UBCINFOEXISTS(vp))
4844 return(EINVAL);
4845
4846 if (resid < 0)
4847 return(EINVAL);
4848
4849 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
4850
4851 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
4852 if (max_io_size > speculative_prefetch_max_iosize)
4853 max_io_size = speculative_prefetch_max_iosize;
4854 }
4855
4856 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
4857 (int)f_offset, resid, (int)filesize, 0, 0);
4858
4859 while (resid && f_offset < filesize && retval == 0) {
4860 /*
4861 * compute the size of the upl needed to encompass
4862 * the requested read... limit each call to cluster_io
4863 * to the maximum UPL size... cluster_io will clip if
4864 * this exceeds the maximum io_size for the device,
4865 * make sure to account for
4866 * a starting offset that's not page aligned
4867 */
4868 start_offset = (int)(f_offset & PAGE_MASK_64);
4869 upl_f_offset = f_offset - (off_t)start_offset;
4870 max_size = filesize - f_offset;
4871
4872 if (resid < max_size)
4873 io_size = resid;
4874 else
4875 io_size = max_size;
4876
4877 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
4878 if ((uint32_t)upl_size > max_io_size)
4879 upl_size = max_io_size;
4880
4881 skip_range = 0;
4882 /*
4883 * return the number of contiguously present pages in the cache
4884 * starting at upl_f_offset within the file
4885 */
4886 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
4887
4888 if (skip_range) {
4889 /*
4890 * skip over pages already present in the cache
4891 */
4892 io_size = skip_range - start_offset;
4893
4894 f_offset += io_size;
4895 resid -= io_size;
4896
4897 if (skip_range == upl_size)
4898 continue;
4899 /*
4900 * have to issue some real I/O
4901 * at this point, we know it's starting on a page boundary
4902 * because we've skipped over at least the first page in the request
4903 */
4904 start_offset = 0;
4905 upl_f_offset += skip_range;
4906 upl_size -= skip_range;
4907 }
4908 pages_in_upl = upl_size / PAGE_SIZE;
4909
4910 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
4911 upl, (int)upl_f_offset, upl_size, start_offset, 0);
4912
4913 kret = ubc_create_upl(vp,
4914 upl_f_offset,
4915 upl_size,
4916 &upl,
4917 &pl,
4918 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
4919 if (kret != KERN_SUCCESS)
4920 return(retval);
4921 issued_io = 0;
4922
4923 /*
4924 * before we start marching forward, we must make sure we end on
4925 * a present page, otherwise we will be working with a freed
4926 * upl
4927 */
4928 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
4929 if (upl_page_present(pl, last_pg))
4930 break;
4931 }
4932 pages_in_upl = last_pg + 1;
4933
4934
4935 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
4936 upl, (int)upl_f_offset, upl_size, start_offset, 0);
4937
4938
4939 for (last_pg = 0; last_pg < pages_in_upl; ) {
4940 /*
4941 * scan from the beginning of the upl looking for the first
4942 * page that is present.... this will become the first page in
4943 * the request we're going to make to 'cluster_io'... if all
4944 * of the pages are absent, we won't call through to 'cluster_io'
4945 */
4946 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
4947 if (upl_page_present(pl, start_pg))
4948 break;
4949 }
4950
4951 /*
4952 * scan from the starting present page looking for an absent
4953 * page before the end of the upl is reached, if we
4954 * find one, then it will terminate the range of pages being
4955 * presented to 'cluster_io'
4956 */
4957 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4958 if (!upl_page_present(pl, last_pg))
4959 break;
4960 }
4961
4962 if (last_pg > start_pg) {
4963 /*
4964 * we found a range of pages that must be filled
4965 * if the last page in this range is the last page of the file
4966 * we may have to clip the size of it to keep from reading past
4967 * the end of the last physical block associated with the file
4968 */
4969 upl_offset = start_pg * PAGE_SIZE;
4970 io_size = (last_pg - start_pg) * PAGE_SIZE;
4971
4972 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
4973 io_size = filesize - (upl_f_offset + upl_offset);
4974
4975 /*
4976 * issue an asynchronous read to cluster_io
4977 */
4978 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
4979 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
4980
4981 issued_io = 1;
4982 }
4983 }
4984 if (issued_io == 0)
4985 ubc_upl_abort(upl, 0);
4986
4987 io_size = upl_size - start_offset;
4988
4989 if (io_size > resid)
4990 io_size = resid;
4991 f_offset += io_size;
4992 resid -= io_size;
4993 }
4994
4995 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
4996 (int)f_offset, resid, retval, 0, 0);
4997
4998 return(retval);
4999}
5000
5001
5002int
5003cluster_push(vnode_t vp, int flags)
5004{
5005 return cluster_push_ext(vp, flags, NULL, NULL);
5006}
5007
5008
5009int
5010cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5011{
5012 int retval;
5013 int my_sparse_wait = 0;
5014 struct cl_writebehind *wbp;
5015
5016 if ( !UBCINFOEXISTS(vp)) {
5017 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
5018 return (0);
5019 }
5020 /* return if deferred write is set */
5021 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
5022 return (0);
5023 }
5024 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
5025 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
5026 return (0);
5027 }
5028 if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5029 lck_mtx_unlock(&wbp->cl_lockw);
5030
5031 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
5032 return(0);
5033 }
5034 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
5035 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5036
5037 /*
5038 * if we have an fsync in progress, we don't want to allow any additional
5039 * sync/fsync/close(s) to occur until it finishes.
5040 * note that its possible for writes to continue to occur to this file
5041 * while we're waiting and also once the fsync starts to clean if we're
5042 * in the sparse map case
5043 */
5044 while (wbp->cl_sparse_wait) {
5045 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5046
5047 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5048
5049 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5050 }
5051 if (flags & IO_SYNC) {
5052 my_sparse_wait = 1;
5053 wbp->cl_sparse_wait = 1;
5054
5055 /*
5056 * this is an fsync (or equivalent)... we must wait for any existing async
5057 * cleaning operations to complete before we evaulate the current state
5058 * and finish cleaning... this insures that all writes issued before this
5059 * fsync actually get cleaned to the disk before this fsync returns
5060 */
5061 while (wbp->cl_sparse_pushes) {
5062 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5063
5064 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5065
5066 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5067 }
5068 }
5069 if (wbp->cl_scmap) {
5070 void *scmap;
5071
5072 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5073
5074 scmap = wbp->cl_scmap;
5075 wbp->cl_scmap = NULL;
5076
5077 wbp->cl_sparse_pushes++;
5078
5079 lck_mtx_unlock(&wbp->cl_lockw);
5080
5081 sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5082
5083 lck_mtx_lock(&wbp->cl_lockw);
5084
5085 wbp->cl_sparse_pushes--;
5086
5087 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5088 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5089 } else {
5090 sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5091 }
5092 retval = 1;
5093 } else {
5094 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5095 }
5096 lck_mtx_unlock(&wbp->cl_lockw);
5097
5098 if (flags & IO_SYNC)
5099 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
5100
5101 if (my_sparse_wait) {
5102 /*
5103 * I'm the owner of the serialization token
5104 * clear it and wakeup anyone that is waiting
5105 * for me to finish
5106 */
5107 lck_mtx_lock(&wbp->cl_lockw);
5108
5109 wbp->cl_sparse_wait = 0;
5110 wakeup((caddr_t)&wbp->cl_sparse_wait);
5111
5112 lck_mtx_unlock(&wbp->cl_lockw);
5113 }
5114 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
5115 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
5116
5117 return (retval);
5118}
5119
5120
5121__private_extern__ void
5122cluster_release(struct ubc_info *ubc)
5123{
5124 struct cl_writebehind *wbp;
5125 struct cl_readahead *rap;
5126
5127 if ((wbp = ubc->cl_wbehind)) {
5128
5129 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
5130
5131 if (wbp->cl_scmap)
5132 vfs_drt_control(&(wbp->cl_scmap), 0);
5133 } else {
5134 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
5135 }
5136
5137 rap = ubc->cl_rahead;
5138
5139 if (wbp != NULL) {
5140 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5141 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5142 }
5143 if ((rap = ubc->cl_rahead)) {
5144 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5145 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
5146 }
5147 ubc->cl_rahead = NULL;
5148 ubc->cl_wbehind = NULL;
5149
5150 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
5151}
5152
5153
5154static int
5155cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5156{
5157 int cl_index;
5158 int cl_index1;
5159 int min_index;
5160 int cl_len;
5161 int cl_pushed = 0;
5162 struct cl_wextent l_clusters[MAX_CLUSTERS];
5163 u_int max_cluster_pgcount;
5164
5165
5166 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
5167 /*
5168 * the write behind context exists and has
5169 * already been locked...
5170 */
5171 if (wbp->cl_number == 0)
5172 /*
5173 * no clusters to push
5174 * return number of empty slots
5175 */
5176 return (MAX_CLUSTERS);
5177
5178 /*
5179 * make a local 'sorted' copy of the clusters
5180 * and clear wbp->cl_number so that new clusters can
5181 * be developed
5182 */
5183 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5184 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5185 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
5186 continue;
5187 if (min_index == -1)
5188 min_index = cl_index1;
5189 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
5190 min_index = cl_index1;
5191 }
5192 if (min_index == -1)
5193 break;
5194
5195 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5196 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
5197 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
5198
5199 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
5200 }
5201 wbp->cl_number = 0;
5202
5203 cl_len = cl_index;
5204
5205 if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
5206 int i;
5207
5208 /*
5209 * determine if we appear to be writing the file sequentially
5210 * if not, by returning without having pushed any clusters
5211 * we will cause this vnode to be pushed into the sparse cluster mechanism
5212 * used for managing more random I/O patterns
5213 *
5214 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5215 * that's why we're in try_push with PUSH_DELAY...
5216 *
5217 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5218 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5219 * so we can just make a simple pass through, up to, but not including the last one...
5220 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5221 * are sequential
5222 *
5223 * we let the last one be partial as long as it was adjacent to the previous one...
5224 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5225 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5226 */
5227 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
5228 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
5229 goto dont_try;
5230 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
5231 goto dont_try;
5232 }
5233 }
5234 for (cl_index = 0; cl_index < cl_len; cl_index++) {
5235 int flags;
5236 struct cl_extent cl;
5237
5238 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5239
5240 /*
5241 * try to push each cluster in turn...
5242 */
5243 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
5244 flags |= IO_NOCACHE;
5245
5246 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
5247 flags |= IO_PASSIVE;
5248
5249 if (push_flag & PUSH_SYNC)
5250 flags |= IO_SYNC;
5251
5252 cl.b_addr = l_clusters[cl_index].b_addr;
5253 cl.e_addr = l_clusters[cl_index].e_addr;
5254
5255 cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
5256
5257 l_clusters[cl_index].b_addr = 0;
5258 l_clusters[cl_index].e_addr = 0;
5259
5260 cl_pushed++;
5261
5262 if ( !(push_flag & PUSH_ALL) )
5263 break;
5264 }
5265dont_try:
5266 if (cl_len > cl_pushed) {
5267 /*
5268 * we didn't push all of the clusters, so
5269 * lets try to merge them back in to the vnode
5270 */
5271 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
5272 /*
5273 * we picked up some new clusters while we were trying to
5274 * push the old ones... this can happen because I've dropped
5275 * the vnode lock... the sum of the
5276 * leftovers plus the new cluster count exceeds our ability
5277 * to represent them, so switch to the sparse cluster mechanism
5278 *
5279 * collect the active public clusters...
5280 */
5281 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5282
5283 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
5284 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5285 continue;
5286 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5287 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5288 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5289
5290 cl_index1++;
5291 }
5292 /*
5293 * update the cluster count
5294 */
5295 wbp->cl_number = cl_index1;
5296
5297 /*
5298 * and collect the original clusters that were moved into the
5299 * local storage for sorting purposes
5300 */
5301 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5302
5303 } else {
5304 /*
5305 * we've got room to merge the leftovers back in
5306 * just append them starting at the next 'hole'
5307 * represented by wbp->cl_number
5308 */
5309 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5310 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5311 continue;
5312
5313 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5314 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5315 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5316
5317 cl_index1++;
5318 }
5319 /*
5320 * update the cluster count
5321 */
5322 wbp->cl_number = cl_index1;
5323 }
5324 }
5325 return (MAX_CLUSTERS - wbp->cl_number);
5326}
5327
5328
5329
5330static int
5331cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5332{
5333 upl_page_info_t *pl;
5334 upl_t upl;
5335 vm_offset_t upl_offset;
5336 int upl_size;
5337 off_t upl_f_offset;
5338 int pages_in_upl;
5339 int start_pg;
5340 int last_pg;
5341 int io_size;
5342 int io_flags;
5343 int upl_flags;
5344 int bflag;
5345 int size;
5346 int error = 0;
5347 int retval;
5348 kern_return_t kret;
5349
5350 if (flags & IO_PASSIVE)
5351 bflag = CL_PASSIVE;
5352 else
5353 bflag = 0;
5354
5355 if (flags & IO_SKIP_ENCRYPTION)
5356 bflag |= CL_ENCRYPTED;
5357
5358 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
5359 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
5360
5361 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
5362 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
5363
5364 return (0);
5365 }
5366 upl_size = pages_in_upl * PAGE_SIZE;
5367 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5368
5369 if (upl_f_offset + upl_size >= EOF) {
5370
5371 if (upl_f_offset >= EOF) {
5372 /*
5373 * must have truncated the file and missed
5374 * clearing a dangling cluster (i.e. it's completely
5375 * beyond the new EOF
5376 */
5377 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5378
5379 return(0);
5380 }
5381 size = EOF - upl_f_offset;
5382
5383 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5384 pages_in_upl = upl_size / PAGE_SIZE;
5385 } else
5386 size = upl_size;
5387
5388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5389
5390 /*
5391 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5392 *
5393 * - only pages that are currently dirty are returned... these are the ones we need to clean
5394 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5395 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5396 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5397 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5398 *
5399 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5400 */
5401
5402 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
5403 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5404 else
5405 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5406
5407 kret = ubc_create_upl(vp,
5408 upl_f_offset,
5409 upl_size,
5410 &upl,
5411 &pl,
5412 upl_flags);
5413 if (kret != KERN_SUCCESS)
5414 panic("cluster_push: failed to get pagelist");
5415
5416 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
5417
5418 /*
5419 * since we only asked for the dirty pages back
5420 * it's possible that we may only get a few or even none, so...
5421 * before we start marching forward, we must make sure we know
5422 * where the last present page is in the UPL, otherwise we could
5423 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5424 * employed by commit_range and abort_range.
5425 */
5426 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5427 if (upl_page_present(pl, last_pg))
5428 break;
5429 }
5430 pages_in_upl = last_pg + 1;
5431
5432 if (pages_in_upl == 0) {
5433 ubc_upl_abort(upl, 0);
5434
5435 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
5436 return(0);
5437 }
5438
5439 for (last_pg = 0; last_pg < pages_in_upl; ) {
5440 /*
5441 * find the next dirty page in the UPL
5442 * this will become the first page in the
5443 * next I/O to generate
5444 */
5445 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5446 if (upl_dirty_page(pl, start_pg))
5447 break;
5448 if (upl_page_present(pl, start_pg))
5449 /*
5450 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5451 * just release these unchanged since we're not going
5452 * to steal them or change their state
5453 */
5454 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
5455 }
5456 if (start_pg >= pages_in_upl)
5457 /*
5458 * done... no more dirty pages to push
5459 */
5460 break;
5461 if (start_pg > last_pg)
5462 /*
5463 * skipped over some non-dirty pages
5464 */
5465 size -= ((start_pg - last_pg) * PAGE_SIZE);
5466
5467 /*
5468 * find a range of dirty pages to write
5469 */
5470 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5471 if (!upl_dirty_page(pl, last_pg))
5472 break;
5473 }
5474 upl_offset = start_pg * PAGE_SIZE;
5475
5476 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5477
5478 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
5479
5480 if ( !(flags & IO_SYNC))
5481 io_flags |= CL_ASYNC;
5482
5483 if (flags & IO_CLOSE)
5484 io_flags |= CL_CLOSE;
5485
5486 if (flags & IO_NOCACHE)
5487 io_flags |= CL_NOCACHE;
5488
5489 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5490 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5491
5492 if (error == 0 && retval)
5493 error = retval;
5494
5495 size -= io_size;
5496 }
5497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5498
5499 return(error);
5500}
5501
5502
5503/*
5504 * sparse_cluster_switch is called with the write behind lock held
5505 */
5506static void
5507sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5508{
5509 int cl_index;
5510
5511 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
5512
5513 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5514 int flags;
5515 struct cl_extent cl;
5516
5517 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
5518
5519 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
5520 if (flags & UPL_POP_DIRTY) {
5521 cl.e_addr = cl.b_addr + 1;
5522
5523 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
5524 }
5525 }
5526 }
5527 }
5528 wbp->cl_number = 0;
5529
5530 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
5531}
5532
5533
5534/*
5535 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5536 * still associated with the write-behind context... however, if the scmap has been disassociated
5537 * from the write-behind context (the cluster_push case), the wb lock is not held
5538 */
5539static void
5540sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5541{
5542 struct cl_extent cl;
5543 off_t offset;
5544 u_int length;
5545
5546 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
5547
5548 if (push_flag & PUSH_ALL)
5549 vfs_drt_control(scmap, 1);
5550
5551 for (;;) {
5552 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
5553 break;
5554
5555 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5556 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5557
5558 cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
5559
5560 if ( !(push_flag & PUSH_ALL) )
5561 break;
5562 }
5563 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5564}
5565
5566
5567/*
5568 * sparse_cluster_add is called with the write behind lock held
5569 */
5570static void
5571sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5572{
5573 u_int new_dirty;
5574 u_int length;
5575 off_t offset;
5576
5577 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
5578
5579 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5580 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
5581
5582 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
5583 /*
5584 * no room left in the map
5585 * only a partial update was done
5586 * push out some pages and try again
5587 */
5588 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
5589
5590 offset += (new_dirty * PAGE_SIZE_64);
5591 length -= (new_dirty * PAGE_SIZE);
5592 }
5593 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5594}
5595
5596
5597static int
5598cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5599{
5600 upl_page_info_t *pl;
5601 upl_t upl;
5602 addr64_t ubc_paddr;
5603 kern_return_t kret;
5604 int error = 0;
5605 int did_read = 0;
5606 int abort_flags;
5607 int upl_flags;
5608 int bflag;
5609
5610 if (flags & IO_PASSIVE)
5611 bflag = CL_PASSIVE;
5612 else
5613 bflag = 0;
5614
5615 if (flags & IO_NOCACHE)
5616 bflag |= CL_NOCACHE;
5617
5618 upl_flags = UPL_SET_LITE;
5619
5620 if ( !(flags & CL_READ) ) {
5621 /*
5622 * "write" operation: let the UPL subsystem know
5623 * that we intend to modify the buffer cache pages
5624 * we're gathering.
5625 */
5626 upl_flags |= UPL_WILL_MODIFY;
5627 } else {
5628 /*
5629 * indicate that there is no need to pull the
5630 * mapping for this page... we're only going
5631 * to read from it, not modify it.
5632 */
5633 upl_flags |= UPL_FILE_IO;
5634 }
5635 kret = ubc_create_upl(vp,
5636 uio->uio_offset & ~PAGE_MASK_64,
5637 PAGE_SIZE,
5638 &upl,
5639 &pl,
5640 upl_flags);
5641
5642 if (kret != KERN_SUCCESS)
5643 return(EINVAL);
5644
5645 if (!upl_valid_page(pl, 0)) {
5646 /*
5647 * issue a synchronous read to cluster_io
5648 */
5649 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5650 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5651 if (error) {
5652 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
5653
5654 return(error);
5655 }
5656 did_read = 1;
5657 }
5658 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
5659
5660/*
5661 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5662 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5663 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5664 * way to do so without exporting them to kexts as well.
5665 */
5666 if (flags & CL_READ)
5667// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5668 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
5669 else
5670// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5671 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
5672
5673 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
5674 /*
5675 * issue a synchronous write to cluster_io
5676 */
5677 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5678 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5679 }
5680 if (error == 0)
5681 uio_update(uio, (user_size_t)xsize);
5682
5683 if (did_read)
5684 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
5685 else
5686 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
5687
5688 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
5689
5690 return (error);
5691}
5692
5693
5694
5695int
5696cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
5697{
5698 int pg_offset;
5699 int pg_index;
5700 int csize;
5701 int segflg;
5702 int retval = 0;
5703 int xsize;
5704 upl_page_info_t *pl;
5705
5706 xsize = *io_resid;
5707
5708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5709 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
5710
5711 segflg = uio->uio_segflg;
5712
5713 switch(segflg) {
5714
5715 case UIO_USERSPACE32:
5716 case UIO_USERISPACE32:
5717 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5718 break;
5719
5720 case UIO_USERSPACE:
5721 case UIO_USERISPACE:
5722 uio->uio_segflg = UIO_PHYS_USERSPACE;
5723 break;
5724
5725 case UIO_USERSPACE64:
5726 case UIO_USERISPACE64:
5727 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5728 break;
5729
5730 case UIO_SYSSPACE:
5731 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5732 break;
5733
5734 }
5735 pl = ubc_upl_pageinfo(upl);
5736
5737 pg_index = upl_offset / PAGE_SIZE;
5738 pg_offset = upl_offset & PAGE_MASK;
5739 csize = min(PAGE_SIZE - pg_offset, xsize);
5740
5741 while (xsize && retval == 0) {
5742 addr64_t paddr;
5743
5744 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
5745
5746 retval = uiomove64(paddr, csize, uio);
5747
5748 pg_index += 1;
5749 pg_offset = 0;
5750 xsize -= csize;
5751 csize = min(PAGE_SIZE, xsize);
5752 }
5753 *io_resid = xsize;
5754
5755 uio->uio_segflg = segflg;
5756
5757 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5758 (int)uio->uio_offset, xsize, retval, segflg, 0);
5759
5760 return (retval);
5761}
5762
5763
5764int
5765cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
5766{
5767
5768 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
5769}
5770
5771
5772static int
5773cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
5774{
5775 int segflg;
5776 int io_size;
5777 int xsize;
5778 int start_offset;
5779 int retval = 0;
5780 memory_object_control_t control;
5781
5782 io_size = *io_resid;
5783
5784 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5785 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
5786
5787 control = ubc_getobject(vp, UBC_FLAGS_NONE);
5788
5789 if (control == MEMORY_OBJECT_CONTROL_NULL) {
5790 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5791 (int)uio->uio_offset, io_size, retval, 3, 0);
5792
5793 return(0);
5794 }
5795 segflg = uio->uio_segflg;
5796
5797 switch(segflg) {
5798
5799 case UIO_USERSPACE32:
5800 case UIO_USERISPACE32:
5801 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5802 break;
5803
5804 case UIO_USERSPACE64:
5805 case UIO_USERISPACE64:
5806 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5807 break;
5808
5809 case UIO_USERSPACE:
5810 case UIO_USERISPACE:
5811 uio->uio_segflg = UIO_PHYS_USERSPACE;
5812 break;
5813
5814 case UIO_SYSSPACE:
5815 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5816 break;
5817 }
5818
5819 if ( (io_size = *io_resid) ) {
5820 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
5821 xsize = uio_resid(uio);
5822
5823 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
5824 start_offset, io_size, mark_dirty, take_reference);
5825 xsize -= uio_resid(uio);
5826 io_size -= xsize;
5827 }
5828 uio->uio_segflg = segflg;
5829 *io_resid = io_size;
5830
5831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5832 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
5833
5834 return(retval);
5835}
5836
5837
5838int
5839is_file_clean(vnode_t vp, off_t filesize)
5840{
5841 off_t f_offset;
5842 int flags;
5843 int total_dirty = 0;
5844
5845 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
5846 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
5847 if (flags & UPL_POP_DIRTY) {
5848 total_dirty++;
5849 }
5850 }
5851 }
5852 if (total_dirty)
5853 return(EINVAL);
5854
5855 return (0);
5856}
5857
5858
5859
5860/*
5861 * Dirty region tracking/clustering mechanism.
5862 *
5863 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
5864 * dirty regions within a larger space (file). It is primarily intended to
5865 * support clustering in large files with many dirty areas.
5866 *
5867 * The implementation assumes that the dirty regions are pages.
5868 *
5869 * To represent dirty pages within the file, we store bit vectors in a
5870 * variable-size circular hash.
5871 */
5872
5873/*
5874 * Bitvector size. This determines the number of pages we group in a
5875 * single hashtable entry. Each hashtable entry is aligned to this
5876 * size within the file.
5877 */
5878#define DRT_BITVECTOR_PAGES 256
5879
5880/*
5881 * File offset handling.
5882 *
5883 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
5884 * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
5885 */
5886#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
5887#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
5888
5889/*
5890 * Hashtable address field handling.
5891 *
5892 * The low-order bits of the hashtable address are used to conserve
5893 * space.
5894 *
5895 * DRT_HASH_COUNT_MASK must be large enough to store the range
5896 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
5897 * to indicate that the bucket is actually unoccupied.
5898 */
5899#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
5900#define DRT_HASH_SET_ADDRESS(scm, i, a) \
5901 do { \
5902 (scm)->scm_hashtable[(i)].dhe_control = \
5903 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
5904 } while (0)
5905#define DRT_HASH_COUNT_MASK 0x1ff
5906#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
5907#define DRT_HASH_SET_COUNT(scm, i, c) \
5908 do { \
5909 (scm)->scm_hashtable[(i)].dhe_control = \
5910 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
5911 } while (0)
5912#define DRT_HASH_CLEAR(scm, i) \
5913 do { \
5914 (scm)->scm_hashtable[(i)].dhe_control = 0; \
5915 } while (0)
5916#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
5917#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
5918#define DRT_HASH_COPY(oscm, oi, scm, i) \
5919 do { \
5920 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
5921 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
5922 } while(0);
5923
5924
5925/*
5926 * Hash table moduli.
5927 *
5928 * Since the hashtable entry's size is dependent on the size of
5929 * the bitvector, and since the hashtable size is constrained to
5930 * both being prime and fitting within the desired allocation
5931 * size, these values need to be manually determined.
5932 *
5933 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
5934 *
5935 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
5936 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
5937 */
5938#define DRT_HASH_SMALL_MODULUS 23
5939#define DRT_HASH_LARGE_MODULUS 401
5940
5941/*
5942 * Physical memory required before the large hash modulus is permitted.
5943 *
5944 * On small memory systems, the large hash modulus can lead to phsyical
5945 * memory starvation, so we avoid using it there.
5946 */
5947#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
5948
5949#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
5950#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
5951
5952/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
5953
5954/*
5955 * Hashtable bitvector handling.
5956 *
5957 * Bitvector fields are 32 bits long.
5958 */
5959
5960#define DRT_HASH_SET_BIT(scm, i, bit) \
5961 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
5962
5963#define DRT_HASH_CLEAR_BIT(scm, i, bit) \
5964 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
5965
5966#define DRT_HASH_TEST_BIT(scm, i, bit) \
5967 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
5968
5969#define DRT_BITVECTOR_CLEAR(scm, i) \
5970 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5971
5972#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
5973 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
5974 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
5975 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5976
5977
5978
5979/*
5980 * Hashtable entry.
5981 */
5982struct vfs_drt_hashentry {
5983 u_int64_t dhe_control;
5984 u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
5985};
5986
5987/*
5988 * Dirty Region Tracking structure.
5989 *
5990 * The hashtable is allocated entirely inside the DRT structure.
5991 *
5992 * The hash is a simple circular prime modulus arrangement, the structure
5993 * is resized from small to large if it overflows.
5994 */
5995
5996struct vfs_drt_clustermap {
5997 u_int32_t scm_magic; /* sanity/detection */
5998#define DRT_SCM_MAGIC 0x12020003
5999 u_int32_t scm_modulus; /* current ring size */
6000 u_int32_t scm_buckets; /* number of occupied buckets */
6001 u_int32_t scm_lastclean; /* last entry we cleaned */
6002 u_int32_t scm_iskips; /* number of slot skips */
6003
6004 struct vfs_drt_hashentry scm_hashtable[0];
6005};
6006
6007
6008#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6009#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6010
6011/*
6012 * Debugging codes and arguments.
6013 */
6014#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6015#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6016#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6017#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6018#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6019 * dirty */
6020 /* 0, setcount */
6021 /* 1 (clean, no map) */
6022 /* 2 (map alloc fail) */
6023 /* 3, resid (partial) */
6024#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6025#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6026 * lastclean, iskips */
6027
6028
6029static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6030static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6031static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6032 u_int64_t offset, int *indexp);
6033static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6034 u_int64_t offset,
6035 int *indexp,
6036 int recursed);
6037static kern_return_t vfs_drt_do_mark_pages(
6038 void **cmapp,
6039 u_int64_t offset,
6040 u_int length,
6041 u_int *setcountp,
6042 int dirty);
6043static void vfs_drt_trace(
6044 struct vfs_drt_clustermap *cmap,
6045 int code,
6046 int arg1,
6047 int arg2,
6048 int arg3,
6049 int arg4);
6050
6051
6052/*
6053 * Allocate and initialise a sparse cluster map.
6054 *
6055 * Will allocate a new map, resize or compact an existing map.
6056 *
6057 * XXX we should probably have at least one intermediate map size,
6058 * as the 1:16 ratio seems a bit drastic.
6059 */
6060static kern_return_t
6061vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6062{
6063 struct vfs_drt_clustermap *cmap, *ocmap;
6064 kern_return_t kret;
6065 u_int64_t offset;
6066 u_int32_t i;
6067 int nsize, active_buckets, index, copycount;
6068
6069 ocmap = NULL;
6070 if (cmapp != NULL)
6071 ocmap = *cmapp;
6072
6073 /*
6074 * Decide on the size of the new map.
6075 */
6076 if (ocmap == NULL) {
6077 nsize = DRT_HASH_SMALL_MODULUS;
6078 } else {
6079 /* count the number of active buckets in the old map */
6080 active_buckets = 0;
6081 for (i = 0; i < ocmap->scm_modulus; i++) {
6082 if (!DRT_HASH_VACANT(ocmap, i) &&
6083 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6084 active_buckets++;
6085 }
6086 /*
6087 * If we're currently using the small allocation, check to
6088 * see whether we should grow to the large one.
6089 */
6090 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
6091 /*
6092 * If the ring is nearly full and we are allowed to
6093 * use the large modulus, upgrade.
6094 */
6095 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6096 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
6097 nsize = DRT_HASH_LARGE_MODULUS;
6098 } else {
6099 nsize = DRT_HASH_SMALL_MODULUS;
6100 }
6101 } else {
6102 /* already using the large modulus */
6103 nsize = DRT_HASH_LARGE_MODULUS;
6104 /*
6105 * If the ring is completely full, there's
6106 * nothing useful for us to do. Behave as
6107 * though we had compacted into the new
6108 * array and return.
6109 */
6110 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6111 return(KERN_SUCCESS);
6112 }
6113 }
6114
6115 /*
6116 * Allocate and initialise the new map.
6117 */
6118
6119 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6120 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6121 if (kret != KERN_SUCCESS)
6122 return(kret);
6123 cmap->scm_magic = DRT_SCM_MAGIC;
6124 cmap->scm_modulus = nsize;
6125 cmap->scm_buckets = 0;
6126 cmap->scm_lastclean = 0;
6127 cmap->scm_iskips = 0;
6128 for (i = 0; i < cmap->scm_modulus; i++) {
6129 DRT_HASH_CLEAR(cmap, i);
6130 DRT_HASH_VACATE(cmap, i);
6131 DRT_BITVECTOR_CLEAR(cmap, i);
6132 }
6133
6134 /*
6135 * If there's an old map, re-hash entries from it into the new map.
6136 */
6137 copycount = 0;
6138 if (ocmap != NULL) {
6139 for (i = 0; i < ocmap->scm_modulus; i++) {
6140 /* skip empty buckets */
6141 if (DRT_HASH_VACANT(ocmap, i) ||
6142 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6143 continue;
6144 /* get new index */
6145 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6146 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6147 if (kret != KERN_SUCCESS) {
6148 /* XXX need to bail out gracefully here */
6149 panic("vfs_drt: new cluster map mysteriously too small");
6150 index = 0;
6151 }
6152 /* copy */
6153 DRT_HASH_COPY(ocmap, i, cmap, index);
6154 copycount++;
6155 }
6156 }
6157
6158 /* log what we've done */
6159 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6160
6161 /*
6162 * It's important to ensure that *cmapp always points to
6163 * a valid map, so we must overwrite it before freeing
6164 * the old map.
6165 */
6166 *cmapp = cmap;
6167 if (ocmap != NULL) {
6168 /* emit stats into trace buffer */
6169 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6170 ocmap->scm_modulus,
6171 ocmap->scm_buckets,
6172 ocmap->scm_lastclean,
6173 ocmap->scm_iskips);
6174
6175 vfs_drt_free_map(ocmap);
6176 }
6177 return(KERN_SUCCESS);
6178}
6179
6180
6181/*
6182 * Free a sparse cluster map.
6183 */
6184static kern_return_t
6185vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6186{
6187 kmem_free(kernel_map, (vm_offset_t)cmap,
6188 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6189 return(KERN_SUCCESS);
6190}
6191
6192
6193/*
6194 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6195 */
6196static kern_return_t
6197vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6198{
6199 int index;
6200 u_int32_t i;
6201
6202 offset = DRT_ALIGN_ADDRESS(offset);
6203 index = DRT_HASH(cmap, offset);
6204
6205 /* traverse the hashtable */
6206 for (i = 0; i < cmap->scm_modulus; i++) {
6207
6208 /*
6209 * If the slot is vacant, we can stop.
6210 */
6211 if (DRT_HASH_VACANT(cmap, index))
6212 break;
6213
6214 /*
6215 * If the address matches our offset, we have success.
6216 */
6217 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6218 *indexp = index;
6219 return(KERN_SUCCESS);
6220 }
6221
6222 /*
6223 * Move to the next slot, try again.
6224 */
6225 index = DRT_HASH_NEXT(cmap, index);
6226 }
6227 /*
6228 * It's not there.
6229 */
6230 return(KERN_FAILURE);
6231}
6232
6233/*
6234 * Find the hashtable slot for the supplied offset. If we haven't allocated
6235 * one yet, allocate one and populate the address field. Note that it will
6236 * not have a nonzero page count and thus will still technically be free, so
6237 * in the case where we are called to clean pages, the slot will remain free.
6238 */
6239static kern_return_t
6240vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6241{
6242 struct vfs_drt_clustermap *cmap;
6243 kern_return_t kret;
6244 u_int32_t index;
6245 u_int32_t i;
6246
6247 cmap = *cmapp;
6248
6249 /* look for an existing entry */
6250 kret = vfs_drt_search_index(cmap, offset, indexp);
6251 if (kret == KERN_SUCCESS)
6252 return(kret);
6253
6254 /* need to allocate an entry */
6255 offset = DRT_ALIGN_ADDRESS(offset);
6256 index = DRT_HASH(cmap, offset);
6257
6258 /* scan from the index forwards looking for a vacant slot */
6259 for (i = 0; i < cmap->scm_modulus; i++) {
6260 /* slot vacant? */
6261 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6262 cmap->scm_buckets++;
6263 if (index < cmap->scm_lastclean)
6264 cmap->scm_lastclean = index;
6265 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6266 DRT_HASH_SET_COUNT(cmap, index, 0);
6267 DRT_BITVECTOR_CLEAR(cmap, index);
6268 *indexp = index;
6269 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6270 return(KERN_SUCCESS);
6271 }
6272 cmap->scm_iskips += i;
6273 index = DRT_HASH_NEXT(cmap, index);
6274 }
6275
6276 /*
6277 * We haven't found a vacant slot, so the map is full. If we're not
6278 * already recursed, try reallocating/compacting it.
6279 */
6280 if (recursed)
6281 return(KERN_FAILURE);
6282 kret = vfs_drt_alloc_map(cmapp);
6283 if (kret == KERN_SUCCESS) {
6284 /* now try to insert again */
6285 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6286 }
6287 return(kret);
6288}
6289
6290/*
6291 * Implementation of set dirty/clean.
6292 *
6293 * In the 'clean' case, not finding a map is OK.
6294 */
6295static kern_return_t
6296vfs_drt_do_mark_pages(
6297 void **private,
6298 u_int64_t offset,
6299 u_int length,
6300 u_int *setcountp,
6301 int dirty)
6302{
6303 struct vfs_drt_clustermap *cmap, **cmapp;
6304 kern_return_t kret;
6305 int i, index, pgoff, pgcount, setcount, ecount;
6306
6307 cmapp = (struct vfs_drt_clustermap **)private;
6308 cmap = *cmapp;
6309
6310 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6311
6312 if (setcountp != NULL)
6313 *setcountp = 0;
6314
6315 /* allocate a cluster map if we don't already have one */
6316 if (cmap == NULL) {
6317 /* no cluster map, nothing to clean */
6318 if (!dirty) {
6319 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6320 return(KERN_SUCCESS);
6321 }
6322 kret = vfs_drt_alloc_map(cmapp);
6323 if (kret != KERN_SUCCESS) {
6324 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6325 return(kret);
6326 }
6327 }
6328 setcount = 0;
6329
6330 /*
6331 * Iterate over the length of the region.
6332 */
6333 while (length > 0) {
6334 /*
6335 * Get the hashtable index for this offset.
6336 *
6337 * XXX this will add blank entries if we are clearing a range
6338 * that hasn't been dirtied.
6339 */
6340 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6341 cmap = *cmapp; /* may have changed! */
6342 /* this may be a partial-success return */
6343 if (kret != KERN_SUCCESS) {
6344 if (setcountp != NULL)
6345 *setcountp = setcount;
6346 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6347
6348 return(kret);
6349 }
6350
6351 /*
6352 * Work out how many pages we're modifying in this
6353 * hashtable entry.
6354 */
6355 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6356 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6357
6358 /*
6359 * Iterate over pages, dirty/clearing as we go.
6360 */
6361 ecount = DRT_HASH_GET_COUNT(cmap, index);
6362 for (i = 0; i < pgcount; i++) {
6363 if (dirty) {
6364 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6365 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6366 ecount++;
6367 setcount++;
6368 }
6369 } else {
6370 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6371 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6372 ecount--;
6373 setcount++;
6374 }
6375 }
6376 }
6377 DRT_HASH_SET_COUNT(cmap, index, ecount);
6378
6379 offset += pgcount * PAGE_SIZE;
6380 length -= pgcount * PAGE_SIZE;
6381 }
6382 if (setcountp != NULL)
6383 *setcountp = setcount;
6384
6385 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6386
6387 return(KERN_SUCCESS);
6388}
6389
6390/*
6391 * Mark a set of pages as dirty/clean.
6392 *
6393 * This is a public interface.
6394 *
6395 * cmapp
6396 * Pointer to storage suitable for holding a pointer. Note that
6397 * this must either be NULL or a value set by this function.
6398 *
6399 * size
6400 * Current file size in bytes.
6401 *
6402 * offset
6403 * Offset of the first page to be marked as dirty, in bytes. Must be
6404 * page-aligned.
6405 *
6406 * length
6407 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6408 *
6409 * setcountp
6410 * Number of pages newly marked dirty by this call (optional).
6411 *
6412 * Returns KERN_SUCCESS if all the pages were successfully marked.
6413 */
6414static kern_return_t
6415vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
6416{
6417 /* XXX size unused, drop from interface */
6418 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6419}
6420
6421#if 0
6422static kern_return_t
6423vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6424{
6425 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6426}
6427#endif
6428
6429/*
6430 * Get a cluster of dirty pages.
6431 *
6432 * This is a public interface.
6433 *
6434 * cmapp
6435 * Pointer to storage managed by drt_mark_pages. Note that this must
6436 * be NULL or a value set by drt_mark_pages.
6437 *
6438 * offsetp
6439 * Returns the byte offset into the file of the first page in the cluster.
6440 *
6441 * lengthp
6442 * Returns the length in bytes of the cluster of dirty pages.
6443 *
6444 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6445 * are no dirty pages meeting the minmum size criteria. Private storage will
6446 * be released if there are no more dirty pages left in the map
6447 *
6448 */
6449static kern_return_t
6450vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6451{
6452 struct vfs_drt_clustermap *cmap;
6453 u_int64_t offset;
6454 u_int length;
6455 u_int32_t j;
6456 int index, i, fs, ls;
6457
6458 /* sanity */
6459 if ((cmapp == NULL) || (*cmapp == NULL))
6460 return(KERN_FAILURE);
6461 cmap = *cmapp;
6462
6463 /* walk the hashtable */
6464 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6465 index = DRT_HASH(cmap, offset);
6466
6467 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6468 continue;
6469
6470 /* scan the bitfield for a string of bits */
6471 fs = -1;
6472
6473 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6474 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6475 fs = i;
6476 break;
6477 }
6478 }
6479 if (fs == -1) {
6480 /* didn't find any bits set */
6481 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6482 }
6483 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6484 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6485 break;
6486 }
6487
6488 /* compute offset and length, mark pages clean */
6489 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6490 length = ls * PAGE_SIZE;
6491 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6492 cmap->scm_lastclean = index;
6493
6494 /* return successful */
6495 *offsetp = (off_t)offset;
6496 *lengthp = length;
6497
6498 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6499 return(KERN_SUCCESS);
6500 }
6501 /*
6502 * We didn't find anything... hashtable is empty
6503 * emit stats into trace buffer and
6504 * then free it
6505 */
6506 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6507 cmap->scm_modulus,
6508 cmap->scm_buckets,
6509 cmap->scm_lastclean,
6510 cmap->scm_iskips);
6511
6512 vfs_drt_free_map(cmap);
6513 *cmapp = NULL;
6514
6515 return(KERN_FAILURE);
6516}
6517
6518
6519static kern_return_t
6520vfs_drt_control(void **cmapp, int op_type)
6521{
6522 struct vfs_drt_clustermap *cmap;
6523
6524 /* sanity */
6525 if ((cmapp == NULL) || (*cmapp == NULL))
6526 return(KERN_FAILURE);
6527 cmap = *cmapp;
6528
6529 switch (op_type) {
6530 case 0:
6531 /* emit stats into trace buffer */
6532 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6533 cmap->scm_modulus,
6534 cmap->scm_buckets,
6535 cmap->scm_lastclean,
6536 cmap->scm_iskips);
6537
6538 vfs_drt_free_map(cmap);
6539 *cmapp = NULL;
6540 break;
6541
6542 case 1:
6543 cmap->scm_lastclean = 0;
6544 break;
6545 }
6546 return(KERN_SUCCESS);
6547}
6548
6549
6550
6551/*
6552 * Emit a summary of the state of the clustermap into the trace buffer
6553 * along with some caller-provided data.
6554 */
6555#if KDEBUG
6556static void
6557vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
6558{
6559 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6560}
6561#else
6562static void
6563vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6564 __unused int arg1, __unused int arg2, __unused int arg3,
6565 __unused int arg4)
6566{
6567}
6568#endif
6569
6570#if 0
6571/*
6572 * Perform basic sanity check on the hash entry summary count
6573 * vs. the actual bits set in the entry.
6574 */
6575static void
6576vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6577{
6578 int index, i;
6579 int bits_on;
6580
6581 for (index = 0; index < cmap->scm_modulus; index++) {
6582 if (DRT_HASH_VACANT(cmap, index))
6583 continue;
6584
6585 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6586 if (DRT_HASH_TEST_BIT(cmap, index, i))
6587 bits_on++;
6588 }
6589 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6590 panic("bits_on = %d, index = %d\n", bits_on, index);
6591 }
6592}
6593#endif