]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
65 | #include <sys/proc_internal.h> | |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
69 | #include <sys/trace.h> | |
70 | #include <sys/malloc.h> | |
71 | #include <sys/time.h> | |
72 | #include <sys/kernel.h> | |
73 | #include <sys/resourcevar.h> | |
74 | #include <miscfs/specfs/specdev.h> | |
75 | #include <sys/uio_internal.h> | |
76 | #include <libkern/libkern.h> | |
77 | #include <machine/machine_routines.h> | |
78 | ||
79 | #include <sys/ubc_internal.h> | |
80 | #include <vm/vnode_pager.h> | |
81 | ||
82 | #include <mach/mach_types.h> | |
83 | #include <mach/memory_object_types.h> | |
84 | #include <mach/vm_map.h> | |
85 | #include <mach/upl.h> | |
86 | #include <kern/task.h> | |
87 | ||
88 | #include <vm/vm_kern.h> | |
89 | #include <vm/vm_map.h> | |
90 | #include <vm/vm_pageout.h> | |
91 | #include <vm/vm_fault.h> | |
92 | ||
93 | #include <sys/kdebug.h> | |
94 | #include <libkern/OSAtomic.h> | |
95 | ||
96 | #include <sys/sdt.h> | |
97 | ||
98 | #if 0 | |
99 | #undef KERNEL_DEBUG | |
100 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
101 | #endif | |
102 | ||
103 | ||
104 | #define CL_READ 0x01 | |
105 | #define CL_WRITE 0x02 | |
106 | #define CL_ASYNC 0x04 | |
107 | #define CL_COMMIT 0x08 | |
108 | #define CL_PAGEOUT 0x10 | |
109 | #define CL_AGE 0x20 | |
110 | #define CL_NOZERO 0x40 | |
111 | #define CL_PAGEIN 0x80 | |
112 | #define CL_DEV_MEMORY 0x100 | |
113 | #define CL_PRESERVE 0x200 | |
114 | #define CL_THROTTLE 0x400 | |
115 | #define CL_KEEPCACHED 0x800 | |
116 | #define CL_DIRECT_IO 0x1000 | |
117 | #define CL_PASSIVE 0x2000 | |
118 | #define CL_IOSTREAMING 0x4000 | |
119 | #define CL_CLOSE 0x8000 | |
120 | #define CL_ENCRYPTED 0x10000 | |
121 | #define CL_RAW_ENCRYPTED 0x20000 | |
122 | #define CL_NOCACHE 0x40000 | |
123 | ||
124 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
125 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) | |
126 | ||
127 | extern upl_t vector_upl_create(vm_offset_t); | |
128 | extern boolean_t vector_upl_is_valid(upl_t); | |
129 | extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); | |
130 | extern void vector_upl_set_pagelist(upl_t); | |
131 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
132 | ||
133 | struct clios { | |
134 | lck_mtx_t io_mtxp; | |
135 | u_int io_completed; /* amount of io that has currently completed */ | |
136 | u_int io_issued; /* amount of io that was successfully issued */ | |
137 | int io_error; /* error code of first error encountered */ | |
138 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
139 | }; | |
140 | ||
141 | static lck_grp_t *cl_mtx_grp; | |
142 | static lck_attr_t *cl_mtx_attr; | |
143 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
144 | static lck_mtx_t *cl_transaction_mtxp; | |
145 | ||
146 | ||
147 | #define IO_UNKNOWN 0 | |
148 | #define IO_DIRECT 1 | |
149 | #define IO_CONTIG 2 | |
150 | #define IO_COPY 3 | |
151 | ||
152 | #define PUSH_DELAY 0x01 | |
153 | #define PUSH_ALL 0x02 | |
154 | #define PUSH_SYNC 0x04 | |
155 | ||
156 | ||
157 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
158 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
159 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
160 | ||
161 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
162 | ||
163 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
164 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); | |
165 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
166 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); | |
167 | static int cluster_is_throttled(vnode_t vp); | |
168 | ||
169 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); | |
170 | ||
171 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); | |
172 | ||
173 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); | |
174 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); | |
175 | ||
176 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
177 | int (*)(buf_t, void *), void *callback_arg); | |
178 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
179 | int flags, int (*)(buf_t, void *), void *callback_arg); | |
180 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
181 | int (*)(buf_t, void *), void *callback_arg, int flags); | |
182 | ||
183 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, | |
184 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); | |
185 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
186 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); | |
187 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
188 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); | |
189 | ||
190 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); | |
191 | ||
192 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
193 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
194 | ||
195 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); | |
196 | ||
197 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg); | |
198 | ||
199 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
200 | static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); | |
201 | static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
202 | ||
203 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
204 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); | |
205 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
206 | ||
207 | ||
208 | /* | |
209 | * For throttled IO to check whether | |
210 | * a block is cached by the boot cache | |
211 | * and thus it can avoid delaying the IO. | |
212 | * | |
213 | * bootcache_contains_block is initially | |
214 | * NULL. The BootCache will set it while | |
215 | * the cache is active and clear it when | |
216 | * the cache is jettisoned. | |
217 | * | |
218 | * Returns 0 if the block is not | |
219 | * contained in the cache, 1 if it is | |
220 | * contained. | |
221 | * | |
222 | * The function pointer remains valid | |
223 | * after the cache has been evicted even | |
224 | * if bootcache_contains_block has been | |
225 | * cleared. | |
226 | * | |
227 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
228 | */ | |
229 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
230 | ||
231 | ||
232 | /* | |
233 | * limit the internal I/O size so that we | |
234 | * can represent it in a 32 bit int | |
235 | */ | |
236 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) | |
237 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES | |
238 | #define MAX_VECTS 16 | |
239 | #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE) | |
240 | ||
241 | #define WRITE_THROTTLE 6 | |
242 | #define WRITE_THROTTLE_SSD 2 | |
243 | #define WRITE_BEHIND 1 | |
244 | #define WRITE_BEHIND_SSD 1 | |
245 | ||
246 | #define PREFETCH 3 | |
247 | #define PREFETCH_SSD 2 | |
248 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ | |
249 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ | |
250 | ||
251 | ||
252 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) | |
253 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) | |
254 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH))) | |
255 | ||
256 | int ignore_is_ssd = 0; | |
257 | int speculative_reads_disabled = 0; | |
258 | ||
259 | /* | |
260 | * throttle the number of async writes that | |
261 | * can be outstanding on a single vnode | |
262 | * before we issue a synchronous write | |
263 | */ | |
264 | #define THROTTLE_MAXCNT 0 | |
265 | ||
266 | uint32_t throttle_max_iosize = (128 * 1024); | |
267 | ||
268 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) | |
269 | ||
270 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
271 | ||
272 | ||
273 | void | |
274 | cluster_init(void) { | |
275 | /* | |
276 | * allocate lock group attribute and group | |
277 | */ | |
278 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); | |
279 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); | |
280 | ||
281 | /* | |
282 | * allocate the lock attribute | |
283 | */ | |
284 | cl_mtx_attr = lck_attr_alloc_init(); | |
285 | ||
286 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); | |
287 | ||
288 | if (cl_transaction_mtxp == NULL) | |
289 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
290 | } | |
291 | ||
292 | ||
293 | uint32_t | |
294 | cluster_max_io_size(mount_t mp, int type) | |
295 | { | |
296 | uint32_t max_io_size; | |
297 | uint32_t segcnt; | |
298 | uint32_t maxcnt; | |
299 | ||
300 | switch(type) { | |
301 | ||
302 | case CL_READ: | |
303 | segcnt = mp->mnt_segreadcnt; | |
304 | maxcnt = mp->mnt_maxreadcnt; | |
305 | break; | |
306 | case CL_WRITE: | |
307 | segcnt = mp->mnt_segwritecnt; | |
308 | maxcnt = mp->mnt_maxwritecnt; | |
309 | break; | |
310 | default: | |
311 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
312 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
313 | break; | |
314 | } | |
315 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { | |
316 | /* | |
317 | * don't allow a size beyond the max UPL size we can create | |
318 | */ | |
319 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; | |
320 | } | |
321 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
322 | ||
323 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { | |
324 | /* | |
325 | * don't allow a size smaller than the old fixed limit | |
326 | */ | |
327 | max_io_size = MAX_UPL_TRANSFER_BYTES; | |
328 | } else { | |
329 | /* | |
330 | * make sure the size specified is a multiple of PAGE_SIZE | |
331 | */ | |
332 | max_io_size &= ~PAGE_MASK; | |
333 | } | |
334 | return (max_io_size); | |
335 | } | |
336 | ||
337 | ||
338 | ||
339 | ||
340 | #define CLW_ALLOCATE 0x01 | |
341 | #define CLW_RETURNLOCKED 0x02 | |
342 | #define CLW_IONOCACHE 0x04 | |
343 | #define CLW_IOPASSIVE 0x08 | |
344 | ||
345 | /* | |
346 | * if the read ahead context doesn't yet exist, | |
347 | * allocate and initialize it... | |
348 | * the vnode lock serializes multiple callers | |
349 | * during the actual assignment... first one | |
350 | * to grab the lock wins... the other callers | |
351 | * will release the now unnecessary storage | |
352 | * | |
353 | * once the context is present, try to grab (but don't block on) | |
354 | * the lock associated with it... if someone | |
355 | * else currently owns it, than the read | |
356 | * will run without read-ahead. this allows | |
357 | * multiple readers to run in parallel and | |
358 | * since there's only 1 read ahead context, | |
359 | * there's no real loss in only allowing 1 | |
360 | * reader to have read-ahead enabled. | |
361 | */ | |
362 | static struct cl_readahead * | |
363 | cluster_get_rap(vnode_t vp) | |
364 | { | |
365 | struct ubc_info *ubc; | |
366 | struct cl_readahead *rap; | |
367 | ||
368 | ubc = vp->v_ubcinfo; | |
369 | ||
370 | if ((rap = ubc->cl_rahead) == NULL) { | |
371 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
372 | ||
373 | bzero(rap, sizeof *rap); | |
374 | rap->cl_lastr = -1; | |
375 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
376 | ||
377 | vnode_lock(vp); | |
378 | ||
379 | if (ubc->cl_rahead == NULL) | |
380 | ubc->cl_rahead = rap; | |
381 | else { | |
382 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
383 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
384 | rap = ubc->cl_rahead; | |
385 | } | |
386 | vnode_unlock(vp); | |
387 | } | |
388 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
389 | return(rap); | |
390 | ||
391 | return ((struct cl_readahead *)NULL); | |
392 | } | |
393 | ||
394 | ||
395 | /* | |
396 | * if the write behind context doesn't yet exist, | |
397 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
398 | * the vnode lock serializes multiple callers | |
399 | * during the actual assignment... first one | |
400 | * to grab the lock wins... the other callers | |
401 | * will release the now unnecessary storage | |
402 | * | |
403 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
404 | * the lock associated with the write behind context before | |
405 | * returning | |
406 | */ | |
407 | ||
408 | static struct cl_writebehind * | |
409 | cluster_get_wbp(vnode_t vp, int flags) | |
410 | { | |
411 | struct ubc_info *ubc; | |
412 | struct cl_writebehind *wbp; | |
413 | ||
414 | ubc = vp->v_ubcinfo; | |
415 | ||
416 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
417 | ||
418 | if ( !(flags & CLW_ALLOCATE)) | |
419 | return ((struct cl_writebehind *)NULL); | |
420 | ||
421 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
422 | ||
423 | bzero(wbp, sizeof *wbp); | |
424 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
425 | ||
426 | vnode_lock(vp); | |
427 | ||
428 | if (ubc->cl_wbehind == NULL) | |
429 | ubc->cl_wbehind = wbp; | |
430 | else { | |
431 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
432 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
433 | wbp = ubc->cl_wbehind; | |
434 | } | |
435 | vnode_unlock(vp); | |
436 | } | |
437 | if (flags & CLW_RETURNLOCKED) | |
438 | lck_mtx_lock(&wbp->cl_lockw); | |
439 | ||
440 | return (wbp); | |
441 | } | |
442 | ||
443 | ||
444 | static void | |
445 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
446 | { | |
447 | struct cl_writebehind *wbp; | |
448 | ||
449 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
450 | ||
451 | if (wbp->cl_number) { | |
452 | lck_mtx_lock(&wbp->cl_lockw); | |
453 | ||
454 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg); | |
455 | ||
456 | lck_mtx_unlock(&wbp->cl_lockw); | |
457 | } | |
458 | } | |
459 | } | |
460 | ||
461 | ||
462 | static int | |
463 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
464 | { | |
465 | daddr64_t blkno; | |
466 | size_t io_size; | |
467 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; | |
468 | ||
469 | if (bootcache_check_fn) { | |
470 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL)) | |
471 | return(0); | |
472 | ||
473 | if (io_size == 0) | |
474 | return (0); | |
475 | ||
476 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) | |
477 | return(1); | |
478 | } | |
479 | return(0); | |
480 | } | |
481 | ||
482 | ||
483 | static int | |
484 | cluster_is_throttled(vnode_t vp) | |
485 | { | |
486 | return (throttle_io_will_be_throttled(-1, vp->v_mount)); | |
487 | } | |
488 | ||
489 | ||
490 | static void | |
491 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
492 | { | |
493 | ||
494 | lck_mtx_lock(&iostate->io_mtxp); | |
495 | ||
496 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
497 | ||
498 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
499 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
500 | ||
501 | iostate->io_wanted = 1; | |
502 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
503 | ||
504 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
505 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
506 | } | |
507 | lck_mtx_unlock(&iostate->io_mtxp); | |
508 | } | |
509 | ||
510 | ||
511 | static int | |
512 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) | |
513 | { | |
514 | int upl_abort_code = 0; | |
515 | int page_in = 0; | |
516 | int page_out = 0; | |
517 | ||
518 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) | |
519 | /* | |
520 | * direct write of any flavor, or a direct read that wasn't aligned | |
521 | */ | |
522 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
523 | else { | |
524 | if (io_flags & B_PAGEIO) { | |
525 | if (io_flags & B_READ) | |
526 | page_in = 1; | |
527 | else | |
528 | page_out = 1; | |
529 | } | |
530 | if (io_flags & B_CACHE) | |
531 | /* | |
532 | * leave pages in the cache unchanged on error | |
533 | */ | |
534 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
535 | else if (page_out && ((error != ENXIO) || vnode_isswap(vp))) | |
536 | /* | |
537 | * transient error... leave pages unchanged | |
538 | */ | |
539 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
540 | else if (page_in) | |
541 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
542 | else | |
543 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
544 | ||
545 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
546 | } | |
547 | return (upl_abort_code); | |
548 | } | |
549 | ||
550 | ||
551 | static int | |
552 | cluster_iodone(buf_t bp, void *callback_arg) | |
553 | { | |
554 | int b_flags; | |
555 | int error; | |
556 | int total_size; | |
557 | int total_resid; | |
558 | int upl_offset; | |
559 | int zero_offset; | |
560 | int pg_offset = 0; | |
561 | int commit_size = 0; | |
562 | int upl_flags = 0; | |
563 | int transaction_size = 0; | |
564 | upl_t upl; | |
565 | buf_t cbp; | |
566 | buf_t cbp_head; | |
567 | buf_t cbp_next; | |
568 | buf_t real_bp; | |
569 | vnode_t vp; | |
570 | struct clios *iostate; | |
571 | boolean_t transaction_complete = FALSE; | |
572 | ||
573 | cbp_head = (buf_t)(bp->b_trans_head); | |
574 | ||
575 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
576 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
577 | ||
578 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { | |
579 | boolean_t need_wakeup = FALSE; | |
580 | ||
581 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
582 | ||
583 | bp->b_flags |= B_TDONE; | |
584 | ||
585 | if (bp->b_flags & B_TWANTED) { | |
586 | CLR(bp->b_flags, B_TWANTED); | |
587 | need_wakeup = TRUE; | |
588 | } | |
589 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
590 | /* | |
591 | * all I/O requests that are part of this transaction | |
592 | * have to complete before we can process it | |
593 | */ | |
594 | if ( !(cbp->b_flags & B_TDONE)) { | |
595 | ||
596 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
597 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); | |
598 | ||
599 | lck_mtx_unlock(cl_transaction_mtxp); | |
600 | ||
601 | if (need_wakeup == TRUE) | |
602 | wakeup(bp); | |
603 | ||
604 | return 0; | |
605 | } | |
606 | if (cbp->b_flags & B_EOT) | |
607 | transaction_complete = TRUE; | |
608 | } | |
609 | lck_mtx_unlock(cl_transaction_mtxp); | |
610 | ||
611 | if (need_wakeup == TRUE) | |
612 | wakeup(bp); | |
613 | ||
614 | if (transaction_complete == FALSE) { | |
615 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
616 | cbp_head, 0, 0, 0, 0); | |
617 | return 0; | |
618 | } | |
619 | } | |
620 | error = 0; | |
621 | total_size = 0; | |
622 | total_resid = 0; | |
623 | ||
624 | cbp = cbp_head; | |
625 | vp = cbp->b_vp; | |
626 | upl_offset = cbp->b_uploffset; | |
627 | upl = cbp->b_upl; | |
628 | b_flags = cbp->b_flags; | |
629 | real_bp = cbp->b_real_bp; | |
630 | zero_offset= cbp->b_validend; | |
631 | iostate = (struct clios *)cbp->b_iostate; | |
632 | ||
633 | if (real_bp) | |
634 | real_bp->b_dev = cbp->b_dev; | |
635 | ||
636 | while (cbp) { | |
637 | if ((cbp->b_flags & B_ERROR) && error == 0) | |
638 | error = cbp->b_error; | |
639 | ||
640 | total_resid += cbp->b_resid; | |
641 | total_size += cbp->b_bcount; | |
642 | ||
643 | cbp_next = cbp->b_trans_next; | |
644 | ||
645 | if (cbp_next == NULL) | |
646 | /* | |
647 | * compute the overall size of the transaction | |
648 | * in case we created one that has 'holes' in it | |
649 | * 'total_size' represents the amount of I/O we | |
650 | * did, not the span of the transaction w/r to the UPL | |
651 | */ | |
652 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
653 | ||
654 | if (cbp != cbp_head) | |
655 | free_io_buf(cbp); | |
656 | ||
657 | cbp = cbp_next; | |
658 | } | |
659 | if (error == 0 && total_resid) | |
660 | error = EIO; | |
661 | ||
662 | if (error == 0) { | |
663 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
664 | ||
665 | if (cliodone_func != NULL) { | |
666 | cbp_head->b_bcount = transaction_size; | |
667 | ||
668 | error = (*cliodone_func)(cbp_head, callback_arg); | |
669 | } | |
670 | } | |
671 | if (zero_offset) | |
672 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
673 | ||
674 | free_io_buf(cbp_head); | |
675 | ||
676 | if (iostate) { | |
677 | int need_wakeup = 0; | |
678 | ||
679 | /* | |
680 | * someone has issued multiple I/Os asynchrounsly | |
681 | * and is waiting for them to complete (streaming) | |
682 | */ | |
683 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
684 | ||
685 | if (error && iostate->io_error == 0) | |
686 | iostate->io_error = error; | |
687 | ||
688 | iostate->io_completed += total_size; | |
689 | ||
690 | if (iostate->io_wanted) { | |
691 | /* | |
692 | * someone is waiting for the state of | |
693 | * this io stream to change | |
694 | */ | |
695 | iostate->io_wanted = 0; | |
696 | need_wakeup = 1; | |
697 | } | |
698 | lck_mtx_unlock(&iostate->io_mtxp); | |
699 | ||
700 | if (need_wakeup) | |
701 | wakeup((caddr_t)&iostate->io_wanted); | |
702 | } | |
703 | ||
704 | if (b_flags & B_COMMIT_UPL) { | |
705 | ||
706 | pg_offset = upl_offset & PAGE_MASK; | |
707 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
708 | ||
709 | if (error) | |
710 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); | |
711 | else { | |
712 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; | |
713 | ||
714 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) | |
715 | upl_flags |= UPL_COMMIT_SET_DIRTY; | |
716 | ||
717 | if (b_flags & B_AGE) | |
718 | upl_flags |= UPL_COMMIT_INACTIVATE; | |
719 | ||
720 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); | |
721 | } | |
722 | } | |
723 | if (real_bp) { | |
724 | if (error) { | |
725 | real_bp->b_flags |= B_ERROR; | |
726 | real_bp->b_error = error; | |
727 | } | |
728 | real_bp->b_resid = total_resid; | |
729 | ||
730 | buf_biodone(real_bp); | |
731 | } | |
732 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
733 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); | |
734 | ||
735 | return (error); | |
736 | } | |
737 | ||
738 | ||
739 | uint32_t | |
740 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) | |
741 | { | |
742 | if (cluster_is_throttled(vp)) { | |
743 | *limit = THROTTLE_MAX_IOSIZE; | |
744 | return 1; | |
745 | } | |
746 | return 0; | |
747 | } | |
748 | ||
749 | ||
750 | void | |
751 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) | |
752 | { | |
753 | ||
754 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, | |
755 | upl_offset, size, bp, 0, 0); | |
756 | ||
757 | if (bp == NULL || bp->b_datap == 0) { | |
758 | upl_page_info_t *pl; | |
759 | addr64_t zero_addr; | |
760 | ||
761 | pl = ubc_upl_pageinfo(upl); | |
762 | ||
763 | if (upl_device_page(pl) == TRUE) { | |
764 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; | |
765 | ||
766 | bzero_phys_nc(zero_addr, size); | |
767 | } else { | |
768 | while (size) { | |
769 | int page_offset; | |
770 | int page_index; | |
771 | int zero_cnt; | |
772 | ||
773 | page_index = upl_offset / PAGE_SIZE; | |
774 | page_offset = upl_offset & PAGE_MASK; | |
775 | ||
776 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; | |
777 | zero_cnt = min(PAGE_SIZE - page_offset, size); | |
778 | ||
779 | bzero_phys(zero_addr, zero_cnt); | |
780 | ||
781 | size -= zero_cnt; | |
782 | upl_offset += zero_cnt; | |
783 | } | |
784 | } | |
785 | } else | |
786 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); | |
787 | ||
788 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, | |
789 | upl_offset, size, 0, 0, 0); | |
790 | } | |
791 | ||
792 | ||
793 | static void | |
794 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
795 | { | |
796 | cbp_head->b_validend = zero_offset; | |
797 | cbp_tail->b_flags |= B_EOT; | |
798 | } | |
799 | ||
800 | static void | |
801 | cluster_wait_IO(buf_t cbp_head, int async) | |
802 | { | |
803 | buf_t cbp; | |
804 | ||
805 | if (async) { | |
806 | /* | |
807 | * async callback completion will not normally | |
808 | * generate a wakeup upon I/O completion... | |
809 | * by setting B_TWANTED, we will force a wakeup | |
810 | * to occur as any outstanding I/Os complete... | |
811 | * I/Os already completed will have B_TDONE already | |
812 | * set and we won't cause us to block | |
813 | * note that we're actually waiting for the bp to have | |
814 | * completed the callback function... only then | |
815 | * can we safely take back ownership of the bp | |
816 | */ | |
817 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
818 | ||
819 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
820 | cbp->b_flags |= B_TWANTED; | |
821 | ||
822 | lck_mtx_unlock(cl_transaction_mtxp); | |
823 | } | |
824 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
825 | ||
826 | if (async) { | |
827 | while (!ISSET(cbp->b_flags, B_TDONE)) { | |
828 | ||
829 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
830 | ||
831 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
832 | DTRACE_IO1(wait__start, buf_t, cbp); | |
833 | (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL); | |
834 | DTRACE_IO1(wait__done, buf_t, cbp); | |
835 | } else | |
836 | lck_mtx_unlock(cl_transaction_mtxp); | |
837 | } | |
838 | } else | |
839 | buf_biowait(cbp); | |
840 | } | |
841 | } | |
842 | ||
843 | static void | |
844 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
845 | { | |
846 | buf_t cbp; | |
847 | int error; | |
848 | boolean_t isswapout = FALSE; | |
849 | ||
850 | /* | |
851 | * cluster_complete_transaction will | |
852 | * only be called if we've issued a complete chain in synchronous mode | |
853 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
854 | */ | |
855 | if (needwait) { | |
856 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
857 | buf_biowait(cbp); | |
858 | } | |
859 | /* | |
860 | * we've already waited on all of the I/Os in this transaction, | |
861 | * so mark all of the buf_t's in this transaction as B_TDONE | |
862 | * so that cluster_iodone sees the transaction as completed | |
863 | */ | |
864 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
865 | cbp->b_flags |= B_TDONE; | |
866 | cbp = *cbp_head; | |
867 | ||
868 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) | |
869 | isswapout = TRUE; | |
870 | ||
871 | error = cluster_iodone(cbp, callback_arg); | |
872 | ||
873 | if ( !(flags & CL_ASYNC) && error && *retval == 0) { | |
874 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) | |
875 | *retval = error; | |
876 | else if (isswapout == TRUE) | |
877 | *retval = error; | |
878 | } | |
879 | *cbp_head = (buf_t)NULL; | |
880 | } | |
881 | ||
882 | ||
883 | static int | |
884 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
885 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
886 | { | |
887 | buf_t cbp; | |
888 | u_int size; | |
889 | u_int io_size; | |
890 | int io_flags; | |
891 | int bmap_flags; | |
892 | int error = 0; | |
893 | int retval = 0; | |
894 | buf_t cbp_head = NULL; | |
895 | buf_t cbp_tail = NULL; | |
896 | int trans_count = 0; | |
897 | int max_trans_count; | |
898 | u_int pg_count; | |
899 | int pg_offset; | |
900 | u_int max_iosize; | |
901 | u_int max_vectors; | |
902 | int priv; | |
903 | int zero_offset = 0; | |
904 | int async_throttle = 0; | |
905 | mount_t mp; | |
906 | vm_offset_t upl_end_offset; | |
907 | boolean_t need_EOT = FALSE; | |
908 | ||
909 | /* | |
910 | * we currently don't support buffers larger than a page | |
911 | */ | |
912 | if (real_bp && non_rounded_size > PAGE_SIZE) | |
913 | panic("%s(): Called with real buffer of size %d bytes which " | |
914 | "is greater than the maximum allowed size of " | |
915 | "%d bytes (the system PAGE_SIZE).\n", | |
916 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
917 | ||
918 | mp = vp->v_mount; | |
919 | ||
920 | /* | |
921 | * we don't want to do any funny rounding of the size for IO requests | |
922 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
923 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
924 | * out a page | |
925 | */ | |
926 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
927 | /* | |
928 | * round the requested size up so that this I/O ends on a | |
929 | * page boundary in case this is a 'write'... if the filesystem | |
930 | * has blocks allocated to back the page beyond the EOF, we want to | |
931 | * make sure to write out the zero's that are sitting beyond the EOF | |
932 | * so that in case the filesystem doesn't explicitly zero this area | |
933 | * if a hole is created via a lseek/write beyond the current EOF, | |
934 | * it will return zeros when it's read back from the disk. If the | |
935 | * physical allocation doesn't extend for the whole page, we'll | |
936 | * only write/read from the disk up to the end of this allocation | |
937 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
938 | */ | |
939 | pg_offset = upl_offset & PAGE_MASK; | |
940 | ||
941 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; | |
942 | } else { | |
943 | /* | |
944 | * anyone advertising a blocksize of 1 byte probably | |
945 | * can't deal with us rounding up the request size | |
946 | * AFP is one such filesystem/device | |
947 | */ | |
948 | size = non_rounded_size; | |
949 | } | |
950 | upl_end_offset = upl_offset + size; | |
951 | ||
952 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
953 | ||
954 | /* | |
955 | * Set the maximum transaction size to the maximum desired number of | |
956 | * buffers. | |
957 | */ | |
958 | max_trans_count = 8; | |
959 | if (flags & CL_DEV_MEMORY) | |
960 | max_trans_count = 16; | |
961 | ||
962 | if (flags & CL_READ) { | |
963 | io_flags = B_READ; | |
964 | bmap_flags = VNODE_READ; | |
965 | ||
966 | max_iosize = mp->mnt_maxreadcnt; | |
967 | max_vectors = mp->mnt_segreadcnt; | |
968 | } else { | |
969 | io_flags = B_WRITE; | |
970 | bmap_flags = VNODE_WRITE; | |
971 | ||
972 | max_iosize = mp->mnt_maxwritecnt; | |
973 | max_vectors = mp->mnt_segwritecnt; | |
974 | } | |
975 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); | |
976 | ||
977 | /* | |
978 | * make sure the maximum iosize is a | |
979 | * multiple of the page size | |
980 | */ | |
981 | max_iosize &= ~PAGE_MASK; | |
982 | ||
983 | /* | |
984 | * Ensure the maximum iosize is sensible. | |
985 | */ | |
986 | if (!max_iosize) | |
987 | max_iosize = PAGE_SIZE; | |
988 | ||
989 | if (flags & CL_THROTTLE) { | |
990 | if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { | |
991 | if (max_iosize > THROTTLE_MAX_IOSIZE) | |
992 | max_iosize = THROTTLE_MAX_IOSIZE; | |
993 | async_throttle = THROTTLE_MAXCNT; | |
994 | } else { | |
995 | if ( (flags & CL_DEV_MEMORY) ) | |
996 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); | |
997 | else { | |
998 | u_int max_cluster; | |
999 | u_int max_cluster_size; | |
1000 | u_int scale; | |
1001 | ||
1002 | max_cluster_size = MAX_CLUSTER_SIZE(vp); | |
1003 | ||
1004 | if (max_iosize > max_cluster_size) | |
1005 | max_cluster = max_cluster_size; | |
1006 | else | |
1007 | max_cluster = max_iosize; | |
1008 | ||
1009 | if (size < max_cluster) | |
1010 | max_cluster = size; | |
1011 | ||
1012 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
1013 | scale = WRITE_THROTTLE_SSD; | |
1014 | else | |
1015 | scale = WRITE_THROTTLE; | |
1016 | ||
1017 | if (flags & CL_CLOSE) | |
1018 | scale += MAX_CLUSTERS; | |
1019 | ||
1020 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); | |
1021 | } | |
1022 | } | |
1023 | } | |
1024 | if (flags & CL_AGE) | |
1025 | io_flags |= B_AGE; | |
1026 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) | |
1027 | io_flags |= B_PAGEIO; | |
1028 | if (flags & (CL_IOSTREAMING)) | |
1029 | io_flags |= B_IOSTREAMING; | |
1030 | if (flags & CL_COMMIT) | |
1031 | io_flags |= B_COMMIT_UPL; | |
1032 | if (flags & CL_DIRECT_IO) | |
1033 | io_flags |= B_PHYS; | |
1034 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) | |
1035 | io_flags |= B_CACHE; | |
1036 | if (flags & CL_PASSIVE) | |
1037 | io_flags |= B_PASSIVE; | |
1038 | if (flags & CL_ENCRYPTED) | |
1039 | io_flags |= B_ENCRYPTED_IO; | |
1040 | if (vp->v_flag & VSYSTEM) | |
1041 | io_flags |= B_META; | |
1042 | ||
1043 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { | |
1044 | /* | |
1045 | * then we are going to end up | |
1046 | * with a page that we can't complete (the file size wasn't a multiple | |
1047 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1048 | * so we'll go ahead and zero out the portion of the page we can't | |
1049 | * read in from the file | |
1050 | */ | |
1051 | zero_offset = upl_offset + non_rounded_size; | |
1052 | } | |
1053 | while (size) { | |
1054 | daddr64_t blkno; | |
1055 | daddr64_t lblkno; | |
1056 | u_int io_size_wanted; | |
1057 | size_t io_size_tmp; | |
1058 | ||
1059 | if (size > max_iosize) | |
1060 | io_size = max_iosize; | |
1061 | else | |
1062 | io_size = size; | |
1063 | ||
1064 | io_size_wanted = io_size; | |
1065 | io_size_tmp = (size_t)io_size; | |
1066 | ||
1067 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) | |
1068 | break; | |
1069 | ||
1070 | if (io_size_tmp > io_size_wanted) | |
1071 | io_size = io_size_wanted; | |
1072 | else | |
1073 | io_size = (u_int)io_size_tmp; | |
1074 | ||
1075 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) | |
1076 | real_bp->b_blkno = blkno; | |
1077 | ||
1078 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
1079 | (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); | |
1080 | ||
1081 | if (io_size == 0) { | |
1082 | /* | |
1083 | * vnop_blockmap didn't return an error... however, it did | |
1084 | * return an extent size of 0 which means we can't | |
1085 | * make forward progress on this I/O... a hole in the | |
1086 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1087 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1088 | */ | |
1089 | error = EINVAL; | |
1090 | break; | |
1091 | } | |
1092 | if ( !(flags & CL_READ) && blkno == -1) { | |
1093 | off_t e_offset; | |
1094 | int pageout_flags; | |
1095 | ||
1096 | if (upl_get_internal_vectorupl(upl)) | |
1097 | panic("Vector UPLs should not take this code-path\n"); | |
1098 | /* | |
1099 | * we're writing into a 'hole' | |
1100 | */ | |
1101 | if (flags & CL_PAGEOUT) { | |
1102 | /* | |
1103 | * if we got here via cluster_pageout | |
1104 | * then just error the request and return | |
1105 | * the 'hole' should already have been covered | |
1106 | */ | |
1107 | error = EINVAL; | |
1108 | break; | |
1109 | } | |
1110 | /* | |
1111 | * we can get here if the cluster code happens to | |
1112 | * pick up a page that was dirtied via mmap vs | |
1113 | * a 'write' and the page targets a 'hole'... | |
1114 | * i.e. the writes to the cluster were sparse | |
1115 | * and the file was being written for the first time | |
1116 | * | |
1117 | * we can also get here if the filesystem supports | |
1118 | * 'holes' that are less than PAGE_SIZE.... because | |
1119 | * we can't know if the range in the page that covers | |
1120 | * the 'hole' has been dirtied via an mmap or not, | |
1121 | * we have to assume the worst and try to push the | |
1122 | * entire page to storage. | |
1123 | * | |
1124 | * Try paging out the page individually before | |
1125 | * giving up entirely and dumping it (the pageout | |
1126 | * path will insure that the zero extent accounting | |
1127 | * has been taken care of before we get back into cluster_io) | |
1128 | * | |
1129 | * go direct to vnode_pageout so that we don't have to | |
1130 | * unbusy the page from the UPL... we used to do this | |
1131 | * so that we could call ubc_msync, but that results | |
1132 | * in a potential deadlock if someone else races us to acquire | |
1133 | * that page and wins and in addition needs one of the pages | |
1134 | * we're continuing to hold in the UPL | |
1135 | */ | |
1136 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; | |
1137 | ||
1138 | if ( !(flags & CL_ASYNC)) | |
1139 | pageout_flags |= UPL_IOSYNC; | |
1140 | if ( !(flags & CL_COMMIT)) | |
1141 | pageout_flags |= UPL_NOCOMMIT; | |
1142 | ||
1143 | if (cbp_head) { | |
1144 | buf_t last_cbp; | |
1145 | ||
1146 | /* | |
1147 | * first we have to wait for the the current outstanding I/Os | |
1148 | * to complete... EOT hasn't been set yet on this transaction | |
1149 | * so the pages won't be released just because all of the current | |
1150 | * I/O linked to this transaction has completed... | |
1151 | */ | |
1152 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1153 | ||
1154 | /* | |
1155 | * we've got a transcation that | |
1156 | * includes the page we're about to push out through vnode_pageout... | |
1157 | * find the last bp in the list which will be the one that | |
1158 | * includes the head of this page and round it's iosize down | |
1159 | * to a page boundary... | |
1160 | */ | |
1161 | for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) | |
1162 | last_cbp = cbp; | |
1163 | ||
1164 | cbp->b_bcount &= ~PAGE_MASK; | |
1165 | ||
1166 | if (cbp->b_bcount == 0) { | |
1167 | /* | |
1168 | * this buf no longer has any I/O associated with it | |
1169 | */ | |
1170 | free_io_buf(cbp); | |
1171 | ||
1172 | if (cbp == cbp_head) { | |
1173 | /* | |
1174 | * the buf we just freed was the only buf in | |
1175 | * this transaction... so there's no I/O to do | |
1176 | */ | |
1177 | cbp_head = NULL; | |
1178 | } else { | |
1179 | /* | |
1180 | * remove the buf we just freed from | |
1181 | * the transaction list | |
1182 | */ | |
1183 | last_cbp->b_trans_next = NULL; | |
1184 | cbp_tail = last_cbp; | |
1185 | } | |
1186 | } | |
1187 | if (cbp_head) { | |
1188 | /* | |
1189 | * there was more to the current transaction | |
1190 | * than just the page we are pushing out via vnode_pageout... | |
1191 | * mark it as finished and complete it... we've already | |
1192 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1193 | */ | |
1194 | cluster_EOT(cbp_head, cbp_tail, 0); | |
1195 | ||
1196 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1197 | ||
1198 | trans_count = 0; | |
1199 | } | |
1200 | } | |
1201 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
1202 | error = EINVAL; | |
1203 | } | |
1204 | e_offset = round_page_64(f_offset + 1); | |
1205 | io_size = e_offset - f_offset; | |
1206 | ||
1207 | f_offset += io_size; | |
1208 | upl_offset += io_size; | |
1209 | ||
1210 | if (size >= io_size) | |
1211 | size -= io_size; | |
1212 | else | |
1213 | size = 0; | |
1214 | /* | |
1215 | * keep track of how much of the original request | |
1216 | * that we've actually completed... non_rounded_size | |
1217 | * may go negative due to us rounding the request | |
1218 | * to a page size multiple (i.e. size > non_rounded_size) | |
1219 | */ | |
1220 | non_rounded_size -= io_size; | |
1221 | ||
1222 | if (non_rounded_size <= 0) { | |
1223 | /* | |
1224 | * we've transferred all of the data in the original | |
1225 | * request, but we were unable to complete the tail | |
1226 | * of the last page because the file didn't have | |
1227 | * an allocation to back that portion... this is ok. | |
1228 | */ | |
1229 | size = 0; | |
1230 | } | |
1231 | if (error) { | |
1232 | if (size == 0) | |
1233 | flags &= ~CL_COMMIT; | |
1234 | break; | |
1235 | } | |
1236 | continue; | |
1237 | } | |
1238 | lblkno = (daddr64_t)(f_offset / 0x1000); | |
1239 | /* | |
1240 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1241 | * pg_offset is the starting point in the first page for the I/O | |
1242 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1243 | */ | |
1244 | pg_offset = upl_offset & PAGE_MASK; | |
1245 | ||
1246 | if (flags & CL_DEV_MEMORY) { | |
1247 | /* | |
1248 | * treat physical requests as one 'giant' page | |
1249 | */ | |
1250 | pg_count = 1; | |
1251 | } else | |
1252 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1253 | ||
1254 | if ((flags & CL_READ) && blkno == -1) { | |
1255 | vm_offset_t commit_offset; | |
1256 | int bytes_to_zero; | |
1257 | int complete_transaction_now = 0; | |
1258 | ||
1259 | /* | |
1260 | * if we're reading and blkno == -1, then we've got a | |
1261 | * 'hole' in the file that we need to deal with by zeroing | |
1262 | * out the affected area in the upl | |
1263 | */ | |
1264 | if (io_size >= (u_int)non_rounded_size) { | |
1265 | /* | |
1266 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1267 | * than 'zero_offset' will be non-zero | |
1268 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof | |
1269 | * (indicated by the io_size finishing off the I/O request for this UPL) | |
1270 | * than we're not going to issue an I/O for the | |
1271 | * last page in this upl... we need to zero both the hole and the tail | |
1272 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1273 | */ | |
1274 | bytes_to_zero = non_rounded_size; | |
1275 | if (!(flags & CL_NOZERO)) | |
1276 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
1277 | ||
1278 | zero_offset = 0; | |
1279 | } else | |
1280 | bytes_to_zero = io_size; | |
1281 | ||
1282 | pg_count = 0; | |
1283 | ||
1284 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
1285 | ||
1286 | if (cbp_head) { | |
1287 | int pg_resid; | |
1288 | ||
1289 | /* | |
1290 | * if there is a current I/O chain pending | |
1291 | * then the first page of the group we just zero'd | |
1292 | * will be handled by the I/O completion if the zero | |
1293 | * fill started in the middle of the page | |
1294 | */ | |
1295 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1296 | ||
1297 | pg_resid = commit_offset - upl_offset; | |
1298 | ||
1299 | if (bytes_to_zero >= pg_resid) { | |
1300 | /* | |
1301 | * the last page of the current I/O | |
1302 | * has been completed... | |
1303 | * compute the number of fully zero'd | |
1304 | * pages that are beyond it | |
1305 | * plus the last page if its partial | |
1306 | * and we have no more I/O to issue... | |
1307 | * otherwise a partial page is left | |
1308 | * to begin the next I/O | |
1309 | */ | |
1310 | if ((int)io_size >= non_rounded_size) | |
1311 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1312 | else | |
1313 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1314 | ||
1315 | complete_transaction_now = 1; | |
1316 | } | |
1317 | } else { | |
1318 | /* | |
1319 | * no pending I/O to deal with | |
1320 | * so, commit all of the fully zero'd pages | |
1321 | * plus the last page if its partial | |
1322 | * and we have no more I/O to issue... | |
1323 | * otherwise a partial page is left | |
1324 | * to begin the next I/O | |
1325 | */ | |
1326 | if ((int)io_size >= non_rounded_size) | |
1327 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1328 | else | |
1329 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; | |
1330 | ||
1331 | commit_offset = upl_offset & ~PAGE_MASK; | |
1332 | } | |
1333 | if ( (flags & CL_COMMIT) && pg_count) { | |
1334 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1335 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1336 | } | |
1337 | upl_offset += io_size; | |
1338 | f_offset += io_size; | |
1339 | size -= io_size; | |
1340 | ||
1341 | /* | |
1342 | * keep track of how much of the original request | |
1343 | * that we've actually completed... non_rounded_size | |
1344 | * may go negative due to us rounding the request | |
1345 | * to a page size multiple (i.e. size > non_rounded_size) | |
1346 | */ | |
1347 | non_rounded_size -= io_size; | |
1348 | ||
1349 | if (non_rounded_size <= 0) { | |
1350 | /* | |
1351 | * we've transferred all of the data in the original | |
1352 | * request, but we were unable to complete the tail | |
1353 | * of the last page because the file didn't have | |
1354 | * an allocation to back that portion... this is ok. | |
1355 | */ | |
1356 | size = 0; | |
1357 | } | |
1358 | if (cbp_head && (complete_transaction_now || size == 0)) { | |
1359 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1360 | ||
1361 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1362 | ||
1363 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1364 | ||
1365 | trans_count = 0; | |
1366 | } | |
1367 | continue; | |
1368 | } | |
1369 | if (pg_count > max_vectors) { | |
1370 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { | |
1371 | io_size = PAGE_SIZE - pg_offset; | |
1372 | pg_count = 1; | |
1373 | } else { | |
1374 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
1375 | pg_count = max_vectors; | |
1376 | } | |
1377 | } | |
1378 | /* | |
1379 | * If the transaction is going to reach the maximum number of | |
1380 | * desired elements, truncate the i/o to the nearest page so | |
1381 | * that the actual i/o is initiated after this buffer is | |
1382 | * created and added to the i/o chain. | |
1383 | * | |
1384 | * I/O directed to physically contiguous memory | |
1385 | * doesn't have a requirement to make sure we 'fill' a page | |
1386 | */ | |
1387 | if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1388 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1389 | vm_offset_t aligned_ofs; | |
1390 | ||
1391 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1392 | /* | |
1393 | * If the io_size does not actually finish off even a | |
1394 | * single page we have to keep adding buffers to the | |
1395 | * transaction despite having reached the desired limit. | |
1396 | * | |
1397 | * Eventually we get here with the page being finished | |
1398 | * off (and exceeded) and then we truncate the size of | |
1399 | * this i/o request so that it is page aligned so that | |
1400 | * we can finally issue the i/o on the transaction. | |
1401 | */ | |
1402 | if (aligned_ofs > upl_offset) { | |
1403 | io_size = aligned_ofs - upl_offset; | |
1404 | pg_count--; | |
1405 | } | |
1406 | } | |
1407 | ||
1408 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) | |
1409 | /* | |
1410 | * if we're not targeting a virtual device i.e. a disk image | |
1411 | * it's safe to dip into the reserve pool since real devices | |
1412 | * can complete this I/O request without requiring additional | |
1413 | * bufs from the alloc_io_buf pool | |
1414 | */ | |
1415 | priv = 1; | |
1416 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
1417 | /* | |
1418 | * Throttle the speculative IO | |
1419 | */ | |
1420 | priv = 0; | |
1421 | else | |
1422 | priv = 1; | |
1423 | ||
1424 | cbp = alloc_io_buf(vp, priv); | |
1425 | ||
1426 | if (flags & CL_PAGEOUT) { | |
1427 | u_int i; | |
1428 | ||
1429 | for (i = 0; i < pg_count; i++) { | |
1430 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) | |
1431 | panic("BUSY bp found in cluster_io"); | |
1432 | } | |
1433 | } | |
1434 | if (flags & CL_ASYNC) { | |
1435 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) | |
1436 | panic("buf_setcallback failed\n"); | |
1437 | } | |
1438 | cbp->b_cliodone = (void *)callback; | |
1439 | cbp->b_flags |= io_flags; | |
1440 | if (flags & CL_NOCACHE) | |
1441 | cbp->b_attr.ba_flags |= BA_NOCACHE; | |
1442 | ||
1443 | cbp->b_lblkno = lblkno; | |
1444 | cbp->b_blkno = blkno; | |
1445 | cbp->b_bcount = io_size; | |
1446 | ||
1447 | if (buf_setupl(cbp, upl, upl_offset)) | |
1448 | panic("buf_setupl failed\n"); | |
1449 | #if CONFIG_IOSCHED | |
1450 | upl_set_blkno(upl, upl_offset, io_size, blkno); | |
1451 | #endif | |
1452 | cbp->b_trans_next = (buf_t)NULL; | |
1453 | ||
1454 | if ((cbp->b_iostate = (void *)iostate)) | |
1455 | /* | |
1456 | * caller wants to track the state of this | |
1457 | * io... bump the amount issued against this stream | |
1458 | */ | |
1459 | iostate->io_issued += io_size; | |
1460 | ||
1461 | if (flags & CL_READ) { | |
1462 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, | |
1463 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
1464 | } | |
1465 | else { | |
1466 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, | |
1467 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
1468 | } | |
1469 | ||
1470 | if (cbp_head) { | |
1471 | cbp_tail->b_trans_next = cbp; | |
1472 | cbp_tail = cbp; | |
1473 | } else { | |
1474 | cbp_head = cbp; | |
1475 | cbp_tail = cbp; | |
1476 | ||
1477 | if ( (cbp_head->b_real_bp = real_bp) ) | |
1478 | real_bp = (buf_t)NULL; | |
1479 | } | |
1480 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; | |
1481 | ||
1482 | trans_count++; | |
1483 | ||
1484 | upl_offset += io_size; | |
1485 | f_offset += io_size; | |
1486 | size -= io_size; | |
1487 | /* | |
1488 | * keep track of how much of the original request | |
1489 | * that we've actually completed... non_rounded_size | |
1490 | * may go negative due to us rounding the request | |
1491 | * to a page size multiple (i.e. size > non_rounded_size) | |
1492 | */ | |
1493 | non_rounded_size -= io_size; | |
1494 | ||
1495 | if (non_rounded_size <= 0) { | |
1496 | /* | |
1497 | * we've transferred all of the data in the original | |
1498 | * request, but we were unable to complete the tail | |
1499 | * of the last page because the file didn't have | |
1500 | * an allocation to back that portion... this is ok. | |
1501 | */ | |
1502 | size = 0; | |
1503 | } | |
1504 | if (size == 0) { | |
1505 | /* | |
1506 | * we have no more I/O to issue, so go | |
1507 | * finish the final transaction | |
1508 | */ | |
1509 | need_EOT = TRUE; | |
1510 | } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1511 | ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { | |
1512 | /* | |
1513 | * I/O directed to physically contiguous memory... | |
1514 | * which doesn't have a requirement to make sure we 'fill' a page | |
1515 | * or... | |
1516 | * the current I/O we've prepared fully | |
1517 | * completes the last page in this request | |
1518 | * and ... | |
1519 | * it's either an ASYNC request or | |
1520 | * we've already accumulated more than 8 I/O's into | |
1521 | * this transaction so mark it as complete so that | |
1522 | * it can finish asynchronously or via the cluster_complete_transaction | |
1523 | * below if the request is synchronous | |
1524 | */ | |
1525 | need_EOT = TRUE; | |
1526 | } | |
1527 | if (need_EOT == TRUE) | |
1528 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1529 | ||
1530 | if (flags & CL_THROTTLE) | |
1531 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1532 | ||
1533 | if ( !(io_flags & B_READ)) | |
1534 | vnode_startwrite(vp); | |
1535 | ||
1536 | if (flags & CL_RAW_ENCRYPTED) { | |
1537 | /* | |
1538 | * User requested raw encrypted bytes. | |
1539 | * Twiddle the bit in the ba_flags for the buffer | |
1540 | */ | |
1541 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1542 | } | |
1543 | ||
1544 | (void) VNOP_STRATEGY(cbp); | |
1545 | ||
1546 | if (need_EOT == TRUE) { | |
1547 | if ( !(flags & CL_ASYNC)) | |
1548 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
1549 | ||
1550 | need_EOT = FALSE; | |
1551 | trans_count = 0; | |
1552 | cbp_head = NULL; | |
1553 | } | |
1554 | } | |
1555 | if (error) { | |
1556 | int abort_size; | |
1557 | ||
1558 | io_size = 0; | |
1559 | ||
1560 | if (cbp_head) { | |
1561 | /* | |
1562 | * first wait until all of the outstanding I/O | |
1563 | * for this partial transaction has completed | |
1564 | */ | |
1565 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1566 | ||
1567 | /* | |
1568 | * Rewind the upl offset to the beginning of the | |
1569 | * transaction. | |
1570 | */ | |
1571 | upl_offset = cbp_head->b_uploffset; | |
1572 | ||
1573 | for (cbp = cbp_head; cbp;) { | |
1574 | buf_t cbp_next; | |
1575 | ||
1576 | size += cbp->b_bcount; | |
1577 | io_size += cbp->b_bcount; | |
1578 | ||
1579 | cbp_next = cbp->b_trans_next; | |
1580 | free_io_buf(cbp); | |
1581 | cbp = cbp_next; | |
1582 | } | |
1583 | } | |
1584 | if (iostate) { | |
1585 | int need_wakeup = 0; | |
1586 | ||
1587 | /* | |
1588 | * update the error condition for this stream | |
1589 | * since we never really issued the io | |
1590 | * just go ahead and adjust it back | |
1591 | */ | |
1592 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
1593 | ||
1594 | if (iostate->io_error == 0) | |
1595 | iostate->io_error = error; | |
1596 | iostate->io_issued -= io_size; | |
1597 | ||
1598 | if (iostate->io_wanted) { | |
1599 | /* | |
1600 | * someone is waiting for the state of | |
1601 | * this io stream to change | |
1602 | */ | |
1603 | iostate->io_wanted = 0; | |
1604 | need_wakeup = 1; | |
1605 | } | |
1606 | lck_mtx_unlock(&iostate->io_mtxp); | |
1607 | ||
1608 | if (need_wakeup) | |
1609 | wakeup((caddr_t)&iostate->io_wanted); | |
1610 | } | |
1611 | if (flags & CL_COMMIT) { | |
1612 | int upl_flags; | |
1613 | ||
1614 | pg_offset = upl_offset & PAGE_MASK; | |
1615 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; | |
1616 | ||
1617 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp); | |
1618 | ||
1619 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, | |
1620 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); | |
1621 | } | |
1622 | if (retval == 0) | |
1623 | retval = error; | |
1624 | } else if (cbp_head) | |
1625 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1626 | ||
1627 | if (real_bp) { | |
1628 | /* | |
1629 | * can get here if we either encountered an error | |
1630 | * or we completely zero-filled the request and | |
1631 | * no I/O was issued | |
1632 | */ | |
1633 | if (error) { | |
1634 | real_bp->b_flags |= B_ERROR; | |
1635 | real_bp->b_error = error; | |
1636 | } | |
1637 | buf_biodone(real_bp); | |
1638 | } | |
1639 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); | |
1640 | ||
1641 | return (retval); | |
1642 | } | |
1643 | ||
1644 | #define reset_vector_run_state() \ | |
1645 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1646 | ||
1647 | static int | |
1648 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1649 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1650 | { | |
1651 | vector_upl_set_pagelist(vector_upl); | |
1652 | ||
1653 | if(io_flag & CL_READ) { | |
1654 | if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) | |
1655 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1656 | else | |
1657 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1658 | } | |
1659 | return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); | |
1660 | ||
1661 | } | |
1662 | ||
1663 | static int | |
1664 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1665 | { | |
1666 | int pages_in_prefetch; | |
1667 | ||
1668 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1669 | (int)f_offset, size, (int)filesize, 0, 0); | |
1670 | ||
1671 | if (f_offset >= filesize) { | |
1672 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1673 | (int)f_offset, 0, 0, 0, 0); | |
1674 | return(0); | |
1675 | } | |
1676 | if ((off_t)size > (filesize - f_offset)) | |
1677 | size = filesize - f_offset; | |
1678 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1679 | ||
1680 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); | |
1681 | ||
1682 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1683 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); | |
1684 | ||
1685 | return (pages_in_prefetch); | |
1686 | } | |
1687 | ||
1688 | ||
1689 | ||
1690 | static void | |
1691 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, | |
1692 | int bflag) | |
1693 | { | |
1694 | daddr64_t r_addr; | |
1695 | off_t f_offset; | |
1696 | int size_of_prefetch; | |
1697 | u_int max_prefetch; | |
1698 | ||
1699 | ||
1700 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
1701 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); | |
1702 | ||
1703 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { | |
1704 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1705 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); | |
1706 | return; | |
1707 | } | |
1708 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { | |
1709 | rap->cl_ralen = 0; | |
1710 | rap->cl_maxra = 0; | |
1711 | ||
1712 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1713 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); | |
1714 | ||
1715 | return; | |
1716 | } | |
1717 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD)); | |
1718 | ||
1719 | if (max_prefetch > speculative_prefetch_max) | |
1720 | max_prefetch = speculative_prefetch_max; | |
1721 | ||
1722 | if (max_prefetch <= PAGE_SIZE) { | |
1723 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1724 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
1725 | return; | |
1726 | } | |
1727 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { | |
1728 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { | |
1729 | ||
1730 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1731 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); | |
1732 | return; | |
1733 | } | |
1734 | } | |
1735 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; | |
1736 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1737 | ||
1738 | size_of_prefetch = 0; | |
1739 | ||
1740 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
1741 | ||
1742 | if (size_of_prefetch) { | |
1743 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1744 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); | |
1745 | return; | |
1746 | } | |
1747 | if (f_offset < filesize) { | |
1748 | daddr64_t read_size; | |
1749 | ||
1750 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; | |
1751 | ||
1752 | read_size = (extent->e_addr + 1) - extent->b_addr; | |
1753 | ||
1754 | if (read_size > rap->cl_ralen) { | |
1755 | if (read_size > max_prefetch / PAGE_SIZE) | |
1756 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
1757 | else | |
1758 | rap->cl_ralen = read_size; | |
1759 | } | |
1760 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); | |
1761 | ||
1762 | if (size_of_prefetch) | |
1763 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; | |
1764 | } | |
1765 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1766 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); | |
1767 | } | |
1768 | ||
1769 | ||
1770 | int | |
1771 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
1772 | int size, off_t filesize, int flags) | |
1773 | { | |
1774 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1775 | ||
1776 | } | |
1777 | ||
1778 | ||
1779 | int | |
1780 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
1781 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1782 | { | |
1783 | int io_size; | |
1784 | int rounded_size; | |
1785 | off_t max_size; | |
1786 | int local_flags; | |
1787 | ||
1788 | local_flags = CL_PAGEOUT | CL_THROTTLE; | |
1789 | ||
1790 | if ((flags & UPL_IOSYNC) == 0) | |
1791 | local_flags |= CL_ASYNC; | |
1792 | if ((flags & UPL_NOCOMMIT) == 0) | |
1793 | local_flags |= CL_COMMIT; | |
1794 | if ((flags & UPL_KEEPCACHED)) | |
1795 | local_flags |= CL_KEEPCACHED; | |
1796 | if (flags & UPL_PAGING_ENCRYPTED) | |
1797 | local_flags |= CL_ENCRYPTED; | |
1798 | ||
1799 | ||
1800 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
1801 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1802 | ||
1803 | /* | |
1804 | * If they didn't specify any I/O, then we are done... | |
1805 | * we can't issue an abort because we don't know how | |
1806 | * big the upl really is | |
1807 | */ | |
1808 | if (size <= 0) | |
1809 | return (EINVAL); | |
1810 | ||
1811 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
1812 | if (local_flags & CL_COMMIT) | |
1813 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1814 | return (EROFS); | |
1815 | } | |
1816 | /* | |
1817 | * can't page-in from a negative offset | |
1818 | * or if we're starting beyond the EOF | |
1819 | * or if the file offset isn't page aligned | |
1820 | * or the size requested isn't a multiple of PAGE_SIZE | |
1821 | */ | |
1822 | if (f_offset < 0 || f_offset >= filesize || | |
1823 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
1824 | if (local_flags & CL_COMMIT) | |
1825 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1826 | return (EINVAL); | |
1827 | } | |
1828 | max_size = filesize - f_offset; | |
1829 | ||
1830 | if (size < max_size) | |
1831 | io_size = size; | |
1832 | else | |
1833 | io_size = max_size; | |
1834 | ||
1835 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1836 | ||
1837 | if (size > rounded_size) { | |
1838 | if (local_flags & CL_COMMIT) | |
1839 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, | |
1840 | UPL_ABORT_FREE_ON_EMPTY); | |
1841 | } | |
1842 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
1843 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); | |
1844 | } | |
1845 | ||
1846 | ||
1847 | int | |
1848 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
1849 | int size, off_t filesize, int flags) | |
1850 | { | |
1851 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1852 | } | |
1853 | ||
1854 | ||
1855 | int | |
1856 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
1857 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1858 | { | |
1859 | u_int io_size; | |
1860 | int rounded_size; | |
1861 | off_t max_size; | |
1862 | int retval; | |
1863 | int local_flags = 0; | |
1864 | ||
1865 | if (upl == NULL || size < 0) | |
1866 | panic("cluster_pagein: NULL upl passed in"); | |
1867 | ||
1868 | if ((flags & UPL_IOSYNC) == 0) | |
1869 | local_flags |= CL_ASYNC; | |
1870 | if ((flags & UPL_NOCOMMIT) == 0) | |
1871 | local_flags |= CL_COMMIT; | |
1872 | if (flags & UPL_IOSTREAMING) | |
1873 | local_flags |= CL_IOSTREAMING; | |
1874 | if (flags & UPL_PAGING_ENCRYPTED) | |
1875 | local_flags |= CL_ENCRYPTED; | |
1876 | ||
1877 | ||
1878 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
1879 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1880 | ||
1881 | /* | |
1882 | * can't page-in from a negative offset | |
1883 | * or if we're starting beyond the EOF | |
1884 | * or if the file offset isn't page aligned | |
1885 | * or the size requested isn't a multiple of PAGE_SIZE | |
1886 | */ | |
1887 | if (f_offset < 0 || f_offset >= filesize || | |
1888 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { | |
1889 | if (local_flags & CL_COMMIT) | |
1890 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1891 | return (EINVAL); | |
1892 | } | |
1893 | max_size = filesize - f_offset; | |
1894 | ||
1895 | if (size < max_size) | |
1896 | io_size = size; | |
1897 | else | |
1898 | io_size = max_size; | |
1899 | ||
1900 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1901 | ||
1902 | if (size > rounded_size && (local_flags & CL_COMMIT)) | |
1903 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
1904 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1905 | ||
1906 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
1907 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
1908 | ||
1909 | return (retval); | |
1910 | } | |
1911 | ||
1912 | ||
1913 | int | |
1914 | cluster_bp(buf_t bp) | |
1915 | { | |
1916 | return cluster_bp_ext(bp, NULL, NULL); | |
1917 | } | |
1918 | ||
1919 | ||
1920 | int | |
1921 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1922 | { | |
1923 | off_t f_offset; | |
1924 | int flags; | |
1925 | ||
1926 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, | |
1927 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
1928 | ||
1929 | if (bp->b_flags & B_READ) | |
1930 | flags = CL_ASYNC | CL_READ; | |
1931 | else | |
1932 | flags = CL_ASYNC; | |
1933 | if (bp->b_flags & B_PASSIVE) | |
1934 | flags |= CL_PASSIVE; | |
1935 | ||
1936 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
1937 | ||
1938 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); | |
1939 | } | |
1940 | ||
1941 | ||
1942 | ||
1943 | int | |
1944 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) | |
1945 | { | |
1946 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); | |
1947 | } | |
1948 | ||
1949 | ||
1950 | int | |
1951 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
1952 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
1953 | { | |
1954 | user_ssize_t cur_resid; | |
1955 | int retval = 0; | |
1956 | int flags; | |
1957 | int zflags; | |
1958 | int bflag; | |
1959 | int write_type = IO_COPY; | |
1960 | u_int32_t write_length; | |
1961 | ||
1962 | flags = xflags; | |
1963 | ||
1964 | if (flags & IO_PASSIVE) | |
1965 | bflag = CL_PASSIVE; | |
1966 | else | |
1967 | bflag = 0; | |
1968 | ||
1969 | if (vp->v_flag & VNOCACHE_DATA){ | |
1970 | flags |= IO_NOCACHE; | |
1971 | bflag |= CL_NOCACHE; | |
1972 | } | |
1973 | if (uio == NULL) { | |
1974 | /* | |
1975 | * no user data... | |
1976 | * this call is being made to zero-fill some range in the file | |
1977 | */ | |
1978 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); | |
1979 | ||
1980 | return(retval); | |
1981 | } | |
1982 | /* | |
1983 | * do a write through the cache if one of the following is true.... | |
1984 | * NOCACHE is not true or NODIRECT is true | |
1985 | * the uio request doesn't target USERSPACE | |
1986 | * otherwise, find out if we want the direct or contig variant for | |
1987 | * the first vector in the uio request | |
1988 | */ | |
1989 | if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) | |
1990 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
1991 | ||
1992 | if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) | |
1993 | /* | |
1994 | * must go through the cached variant in this case | |
1995 | */ | |
1996 | write_type = IO_COPY; | |
1997 | ||
1998 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { | |
1999 | ||
2000 | switch (write_type) { | |
2001 | ||
2002 | case IO_COPY: | |
2003 | /* | |
2004 | * make sure the uio_resid isn't too big... | |
2005 | * internally, we want to handle all of the I/O in | |
2006 | * chunk sizes that fit in a 32 bit int | |
2007 | */ | |
2008 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { | |
2009 | /* | |
2010 | * we're going to have to call cluster_write_copy | |
2011 | * more than once... | |
2012 | * | |
2013 | * only want the last call to cluster_write_copy to | |
2014 | * have the IO_TAILZEROFILL flag set and only the | |
2015 | * first call should have IO_HEADZEROFILL | |
2016 | */ | |
2017 | zflags = flags & ~IO_TAILZEROFILL; | |
2018 | flags &= ~IO_HEADZEROFILL; | |
2019 | ||
2020 | write_length = MAX_IO_REQUEST_SIZE; | |
2021 | } else { | |
2022 | /* | |
2023 | * last call to cluster_write_copy | |
2024 | */ | |
2025 | zflags = flags; | |
2026 | ||
2027 | write_length = (u_int32_t)cur_resid; | |
2028 | } | |
2029 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2030 | break; | |
2031 | ||
2032 | case IO_CONTIG: | |
2033 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
2034 | ||
2035 | if (flags & IO_HEADZEROFILL) { | |
2036 | /* | |
2037 | * only do this once per request | |
2038 | */ | |
2039 | flags &= ~IO_HEADZEROFILL; | |
2040 | ||
2041 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, | |
2042 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2043 | if (retval) | |
2044 | break; | |
2045 | } | |
2046 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); | |
2047 | ||
2048 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
2049 | /* | |
2050 | * we're done with the data from the user specified buffer(s) | |
2051 | * and we've been requested to zero fill at the tail | |
2052 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2053 | * by rearranging the args and passing in IO_HEADZEROFILL | |
2054 | */ | |
2055 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, | |
2056 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2057 | } | |
2058 | break; | |
2059 | ||
2060 | case IO_DIRECT: | |
2061 | /* | |
2062 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2063 | */ | |
2064 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2065 | break; | |
2066 | ||
2067 | case IO_UNKNOWN: | |
2068 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2069 | break; | |
2070 | } | |
2071 | /* | |
2072 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2073 | * multiple times to service a multi-vector request that is not aligned properly | |
2074 | * we need to update the oldEOF so that we | |
2075 | * don't zero-fill the head of a page if we've successfully written | |
2076 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2077 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2078 | * want that to happen for the very first page of the cluster_write, | |
2079 | * NOT the first page of each vector making up a multi-vector write. | |
2080 | */ | |
2081 | if (uio->uio_offset > oldEOF) | |
2082 | oldEOF = uio->uio_offset; | |
2083 | } | |
2084 | return (retval); | |
2085 | } | |
2086 | ||
2087 | ||
2088 | static int | |
2089 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, | |
2090 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
2091 | { | |
2092 | upl_t upl; | |
2093 | upl_page_info_t *pl; | |
2094 | vm_offset_t upl_offset; | |
2095 | vm_offset_t vector_upl_offset = 0; | |
2096 | u_int32_t io_req_size; | |
2097 | u_int32_t offset_in_file; | |
2098 | u_int32_t offset_in_iovbase; | |
2099 | u_int32_t io_size; | |
2100 | int io_flag = 0; | |
2101 | upl_size_t upl_size, vector_upl_size = 0; | |
2102 | vm_size_t upl_needed_size; | |
2103 | mach_msg_type_number_t pages_in_pl; | |
2104 | int upl_flags; | |
2105 | kern_return_t kret; | |
2106 | mach_msg_type_number_t i; | |
2107 | int force_data_sync; | |
2108 | int retval = 0; | |
2109 | int first_IO = 1; | |
2110 | struct clios iostate; | |
2111 | user_addr_t iov_base; | |
2112 | u_int32_t mem_alignment_mask; | |
2113 | u_int32_t devblocksize; | |
2114 | u_int32_t max_io_size; | |
2115 | u_int32_t max_upl_size; | |
2116 | u_int32_t max_vector_size; | |
2117 | boolean_t io_throttled = FALSE; | |
2118 | ||
2119 | u_int32_t vector_upl_iosize = 0; | |
2120 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
2121 | off_t v_upl_uio_offset = 0; | |
2122 | int vector_upl_index=0; | |
2123 | upl_t vector_upl = NULL; | |
2124 | ||
2125 | ||
2126 | /* | |
2127 | * When we enter this routine, we know | |
2128 | * -- the resid will not exceed iov_len | |
2129 | */ | |
2130 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, | |
2131 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2132 | ||
2133 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
2134 | ||
2135 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2136 | ||
2137 | if (flags & IO_PASSIVE) | |
2138 | io_flag |= CL_PASSIVE; | |
2139 | ||
2140 | if (flags & IO_NOCACHE) | |
2141 | io_flag |= CL_NOCACHE; | |
2142 | ||
2143 | if (flags & IO_SKIP_ENCRYPTION) | |
2144 | io_flag |= CL_ENCRYPTED; | |
2145 | ||
2146 | iostate.io_completed = 0; | |
2147 | iostate.io_issued = 0; | |
2148 | iostate.io_error = 0; | |
2149 | iostate.io_wanted = 0; | |
2150 | ||
2151 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
2152 | ||
2153 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
2154 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2155 | ||
2156 | if (devblocksize == 1) { | |
2157 | /* | |
2158 | * the AFP client advertises a devblocksize of 1 | |
2159 | * however, its BLOCKMAP routine maps to physical | |
2160 | * blocks that are PAGE_SIZE in size... | |
2161 | * therefore we can't ask for I/Os that aren't page aligned | |
2162 | * or aren't multiples of PAGE_SIZE in size | |
2163 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2164 | * the old behavior we had before the mem_alignment_mask | |
2165 | * changes went in... | |
2166 | */ | |
2167 | devblocksize = PAGE_SIZE; | |
2168 | } | |
2169 | ||
2170 | next_dwrite: | |
2171 | io_req_size = *write_length; | |
2172 | iov_base = uio_curriovbase(uio); | |
2173 | ||
2174 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; | |
2175 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
2176 | ||
2177 | if (offset_in_file || offset_in_iovbase) { | |
2178 | /* | |
2179 | * one of the 2 important offsets is misaligned | |
2180 | * so fire an I/O through the cache for this entire vector | |
2181 | */ | |
2182 | goto wait_for_dwrites; | |
2183 | } | |
2184 | if (iov_base & (devblocksize - 1)) { | |
2185 | /* | |
2186 | * the offset in memory must be on a device block boundary | |
2187 | * so that we can guarantee that we can generate an | |
2188 | * I/O that ends on a page boundary in cluster_io | |
2189 | */ | |
2190 | goto wait_for_dwrites; | |
2191 | } | |
2192 | ||
2193 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { | |
2194 | int throttle_type; | |
2195 | ||
2196 | if ( (throttle_type = cluster_is_throttled(vp)) ) { | |
2197 | /* | |
2198 | * we're in the throttle window, at the very least | |
2199 | * we want to limit the size of the I/O we're about | |
2200 | * to issue | |
2201 | */ | |
2202 | if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { | |
2203 | /* | |
2204 | * we're in the throttle window and at least 1 I/O | |
2205 | * has already been issued by a throttleable thread | |
2206 | * in this window, so return with EAGAIN to indicate | |
2207 | * to the FS issuing the cluster_write call that it | |
2208 | * should now throttle after dropping any locks | |
2209 | */ | |
2210 | throttle_info_update_by_mount(vp->v_mount); | |
2211 | ||
2212 | io_throttled = TRUE; | |
2213 | goto wait_for_dwrites; | |
2214 | } | |
2215 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2216 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2217 | } else { | |
2218 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2219 | max_io_size = max_upl_size; | |
2220 | } | |
2221 | ||
2222 | if (first_IO) { | |
2223 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); | |
2224 | first_IO = 0; | |
2225 | } | |
2226 | io_size = io_req_size & ~PAGE_MASK; | |
2227 | iov_base = uio_curriovbase(uio); | |
2228 | ||
2229 | if (io_size > max_io_size) | |
2230 | io_size = max_io_size; | |
2231 | ||
2232 | if(useVectorUPL && (iov_base & PAGE_MASK)) { | |
2233 | /* | |
2234 | * We have an iov_base that's not page-aligned. | |
2235 | * Issue all I/O's that have been collected within | |
2236 | * this Vectored UPL. | |
2237 | */ | |
2238 | if(vector_upl_index) { | |
2239 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2240 | reset_vector_run_state(); | |
2241 | } | |
2242 | ||
2243 | /* | |
2244 | * After this point, if we are using the Vector UPL path and the base is | |
2245 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2246 | */ | |
2247 | } | |
2248 | ||
2249 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
2250 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; | |
2251 | ||
2252 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
2253 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
2254 | ||
2255 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
2256 | pages_in_pl = 0; | |
2257 | upl_size = upl_needed_size; | |
2258 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
2259 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
2260 | ||
2261 | kret = vm_map_get_upl(current_map(), | |
2262 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
2263 | &upl_size, | |
2264 | &upl, | |
2265 | NULL, | |
2266 | &pages_in_pl, | |
2267 | &upl_flags, | |
2268 | force_data_sync); | |
2269 | ||
2270 | if (kret != KERN_SUCCESS) { | |
2271 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2272 | 0, 0, 0, kret, 0); | |
2273 | /* | |
2274 | * failed to get pagelist | |
2275 | * | |
2276 | * we may have already spun some portion of this request | |
2277 | * off as async requests... we need to wait for the I/O | |
2278 | * to complete before returning | |
2279 | */ | |
2280 | goto wait_for_dwrites; | |
2281 | } | |
2282 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2283 | pages_in_pl = upl_size / PAGE_SIZE; | |
2284 | ||
2285 | for (i = 0; i < pages_in_pl; i++) { | |
2286 | if (!upl_valid_page(pl, i)) | |
2287 | break; | |
2288 | } | |
2289 | if (i == pages_in_pl) | |
2290 | break; | |
2291 | ||
2292 | /* | |
2293 | * didn't get all the pages back that we | |
2294 | * needed... release this upl and try again | |
2295 | */ | |
2296 | ubc_upl_abort(upl, 0); | |
2297 | } | |
2298 | if (force_data_sync >= 3) { | |
2299 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2300 | i, pages_in_pl, upl_size, kret, 0); | |
2301 | /* | |
2302 | * for some reason, we couldn't acquire a hold on all | |
2303 | * the pages needed in the user's address space | |
2304 | * | |
2305 | * we may have already spun some portion of this request | |
2306 | * off as async requests... we need to wait for the I/O | |
2307 | * to complete before returning | |
2308 | */ | |
2309 | goto wait_for_dwrites; | |
2310 | } | |
2311 | ||
2312 | /* | |
2313 | * Consider the possibility that upl_size wasn't satisfied. | |
2314 | */ | |
2315 | if (upl_size < upl_needed_size) { | |
2316 | if (upl_size && upl_offset == 0) | |
2317 | io_size = upl_size; | |
2318 | else | |
2319 | io_size = 0; | |
2320 | } | |
2321 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2322 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); | |
2323 | ||
2324 | if (io_size == 0) { | |
2325 | ubc_upl_abort(upl, 0); | |
2326 | /* | |
2327 | * we may have already spun some portion of this request | |
2328 | * off as async requests... we need to wait for the I/O | |
2329 | * to complete before returning | |
2330 | */ | |
2331 | goto wait_for_dwrites; | |
2332 | } | |
2333 | ||
2334 | if(useVectorUPL) { | |
2335 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2336 | if(end_off) | |
2337 | issueVectorUPL = 1; | |
2338 | /* | |
2339 | * After this point, if we are using a vector UPL, then | |
2340 | * either all the UPL elements end on a page boundary OR | |
2341 | * this UPL is the last element because it does not end | |
2342 | * on a page boundary. | |
2343 | */ | |
2344 | } | |
2345 | ||
2346 | /* | |
2347 | * Now look for pages already in the cache | |
2348 | * and throw them away. | |
2349 | * uio->uio_offset is page aligned within the file | |
2350 | * io_size is a multiple of PAGE_SIZE | |
2351 | */ | |
2352 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL); | |
2353 | ||
2354 | /* | |
2355 | * we want push out these writes asynchronously so that we can overlap | |
2356 | * the preparation of the next I/O | |
2357 | * if there are already too many outstanding writes | |
2358 | * wait until some complete before issuing the next | |
2359 | */ | |
2360 | cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct"); | |
2361 | ||
2362 | if (iostate.io_error) { | |
2363 | /* | |
2364 | * one of the earlier writes we issued ran into a hard error | |
2365 | * don't issue any more writes, cleanup the UPL | |
2366 | * that was just created but not used, then | |
2367 | * go wait for all writes that are part of this stream | |
2368 | * to complete before returning the error to the caller | |
2369 | */ | |
2370 | ubc_upl_abort(upl, 0); | |
2371 | ||
2372 | goto wait_for_dwrites; | |
2373 | } | |
2374 | ||
2375 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, | |
2376 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
2377 | ||
2378 | if(!useVectorUPL) | |
2379 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2380 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2381 | ||
2382 | else { | |
2383 | if(!vector_upl_index) { | |
2384 | vector_upl = vector_upl_create(upl_offset); | |
2385 | v_upl_uio_offset = uio->uio_offset; | |
2386 | vector_upl_offset = upl_offset; | |
2387 | } | |
2388 | ||
2389 | vector_upl_set_subupl(vector_upl,upl,upl_size); | |
2390 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2391 | vector_upl_index++; | |
2392 | vector_upl_iosize += io_size; | |
2393 | vector_upl_size += upl_size; | |
2394 | ||
2395 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { | |
2396 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2397 | reset_vector_run_state(); | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | /* | |
2402 | * update the uio structure to | |
2403 | * reflect the I/O that we just issued | |
2404 | */ | |
2405 | uio_update(uio, (user_size_t)io_size); | |
2406 | ||
2407 | /* | |
2408 | * in case we end up calling through to cluster_write_copy to finish | |
2409 | * the tail of this request, we need to update the oldEOF so that we | |
2410 | * don't zero-fill the head of a page if we've successfully written | |
2411 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2412 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2413 | * want that to happen for the very first page of the cluster_write, | |
2414 | * NOT the first page of each vector making up a multi-vector write. | |
2415 | */ | |
2416 | if (uio->uio_offset > oldEOF) | |
2417 | oldEOF = uio->uio_offset; | |
2418 | ||
2419 | io_req_size -= io_size; | |
2420 | ||
2421 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, | |
2422 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); | |
2423 | ||
2424 | } /* end while */ | |
2425 | ||
2426 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { | |
2427 | ||
2428 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); | |
2429 | ||
2430 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2431 | ||
2432 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2433 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2434 | ||
2435 | goto next_dwrite; | |
2436 | } | |
2437 | } | |
2438 | ||
2439 | wait_for_dwrites: | |
2440 | ||
2441 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
2442 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2443 | reset_vector_run_state(); | |
2444 | } | |
2445 | /* | |
2446 | * make sure all async writes issued as part of this stream | |
2447 | * have completed before we return | |
2448 | */ | |
2449 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); | |
2450 | ||
2451 | if (iostate.io_error) | |
2452 | retval = iostate.io_error; | |
2453 | ||
2454 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
2455 | ||
2456 | if (io_throttled == TRUE && retval == 0) | |
2457 | retval = EAGAIN; | |
2458 | ||
2459 | if (io_req_size && retval == 0) { | |
2460 | /* | |
2461 | * we couldn't handle the tail of this request in DIRECT mode | |
2462 | * so fire it through the copy path | |
2463 | * | |
2464 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2465 | * so we can just pass 0 in for the headOff and tailOff | |
2466 | */ | |
2467 | if (uio->uio_offset > oldEOF) | |
2468 | oldEOF = uio->uio_offset; | |
2469 | ||
2470 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); | |
2471 | ||
2472 | *write_type = IO_UNKNOWN; | |
2473 | } | |
2474 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, | |
2475 | (int)uio->uio_offset, io_req_size, retval, 4, 0); | |
2476 | ||
2477 | return (retval); | |
2478 | } | |
2479 | ||
2480 | ||
2481 | static int | |
2482 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, | |
2483 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
2484 | { | |
2485 | upl_page_info_t *pl; | |
2486 | addr64_t src_paddr = 0; | |
2487 | upl_t upl[MAX_VECTS]; | |
2488 | vm_offset_t upl_offset; | |
2489 | u_int32_t tail_size = 0; | |
2490 | u_int32_t io_size; | |
2491 | u_int32_t xsize; | |
2492 | upl_size_t upl_size; | |
2493 | vm_size_t upl_needed_size; | |
2494 | mach_msg_type_number_t pages_in_pl; | |
2495 | int upl_flags; | |
2496 | kern_return_t kret; | |
2497 | struct clios iostate; | |
2498 | int error = 0; | |
2499 | int cur_upl = 0; | |
2500 | int num_upl = 0; | |
2501 | int n; | |
2502 | user_addr_t iov_base; | |
2503 | u_int32_t devblocksize; | |
2504 | u_int32_t mem_alignment_mask; | |
2505 | ||
2506 | /* | |
2507 | * When we enter this routine, we know | |
2508 | * -- the io_req_size will not exceed iov_len | |
2509 | * -- the target address is physically contiguous | |
2510 | */ | |
2511 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); | |
2512 | ||
2513 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2514 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
2515 | ||
2516 | iostate.io_completed = 0; | |
2517 | iostate.io_issued = 0; | |
2518 | iostate.io_error = 0; | |
2519 | iostate.io_wanted = 0; | |
2520 | ||
2521 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
2522 | ||
2523 | next_cwrite: | |
2524 | io_size = *write_length; | |
2525 | ||
2526 | iov_base = uio_curriovbase(uio); | |
2527 | ||
2528 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
2529 | upl_needed_size = upl_offset + io_size; | |
2530 | ||
2531 | pages_in_pl = 0; | |
2532 | upl_size = upl_needed_size; | |
2533 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
2534 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
2535 | ||
2536 | kret = vm_map_get_upl(current_map(), | |
2537 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
2538 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); | |
2539 | ||
2540 | if (kret != KERN_SUCCESS) { | |
2541 | /* | |
2542 | * failed to get pagelist | |
2543 | */ | |
2544 | error = EINVAL; | |
2545 | goto wait_for_cwrites; | |
2546 | } | |
2547 | num_upl++; | |
2548 | ||
2549 | /* | |
2550 | * Consider the possibility that upl_size wasn't satisfied. | |
2551 | */ | |
2552 | if (upl_size < upl_needed_size) { | |
2553 | /* | |
2554 | * This is a failure in the physical memory case. | |
2555 | */ | |
2556 | error = EINVAL; | |
2557 | goto wait_for_cwrites; | |
2558 | } | |
2559 | pl = ubc_upl_pageinfo(upl[cur_upl]); | |
2560 | ||
2561 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; | |
2562 | ||
2563 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
2564 | u_int32_t head_size; | |
2565 | ||
2566 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); | |
2567 | ||
2568 | if (head_size > io_size) | |
2569 | head_size = io_size; | |
2570 | ||
2571 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); | |
2572 | ||
2573 | if (error) | |
2574 | goto wait_for_cwrites; | |
2575 | ||
2576 | upl_offset += head_size; | |
2577 | src_paddr += head_size; | |
2578 | io_size -= head_size; | |
2579 | ||
2580 | iov_base += head_size; | |
2581 | } | |
2582 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2583 | /* | |
2584 | * request doesn't set up on a memory boundary | |
2585 | * the underlying DMA engine can handle... | |
2586 | * return an error instead of going through | |
2587 | * the slow copy path since the intent of this | |
2588 | * path is direct I/O from device memory | |
2589 | */ | |
2590 | error = EINVAL; | |
2591 | goto wait_for_cwrites; | |
2592 | } | |
2593 | ||
2594 | tail_size = io_size & (devblocksize - 1); | |
2595 | io_size -= tail_size; | |
2596 | ||
2597 | while (io_size && error == 0) { | |
2598 | ||
2599 | if (io_size > MAX_IO_CONTIG_SIZE) | |
2600 | xsize = MAX_IO_CONTIG_SIZE; | |
2601 | else | |
2602 | xsize = io_size; | |
2603 | /* | |
2604 | * request asynchronously so that we can overlap | |
2605 | * the preparation of the next I/O... we'll do | |
2606 | * the commit after all the I/O has completed | |
2607 | * since its all issued against the same UPL | |
2608 | * if there are already too many outstanding writes | |
2609 | * wait until some have completed before issuing the next | |
2610 | */ | |
2611 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); | |
2612 | ||
2613 | if (iostate.io_error) { | |
2614 | /* | |
2615 | * one of the earlier writes we issued ran into a hard error | |
2616 | * don't issue any more writes... | |
2617 | * go wait for all writes that are part of this stream | |
2618 | * to complete before returning the error to the caller | |
2619 | */ | |
2620 | goto wait_for_cwrites; | |
2621 | } | |
2622 | /* | |
2623 | * issue an asynchronous write to cluster_io | |
2624 | */ | |
2625 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, | |
2626 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
2627 | ||
2628 | if (error == 0) { | |
2629 | /* | |
2630 | * The cluster_io write completed successfully, | |
2631 | * update the uio structure | |
2632 | */ | |
2633 | uio_update(uio, (user_size_t)xsize); | |
2634 | ||
2635 | upl_offset += xsize; | |
2636 | src_paddr += xsize; | |
2637 | io_size -= xsize; | |
2638 | } | |
2639 | } | |
2640 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { | |
2641 | ||
2642 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2643 | ||
2644 | if (error == 0 && *write_type == IO_CONTIG) { | |
2645 | cur_upl++; | |
2646 | goto next_cwrite; | |
2647 | } | |
2648 | } else | |
2649 | *write_type = IO_UNKNOWN; | |
2650 | ||
2651 | wait_for_cwrites: | |
2652 | /* | |
2653 | * make sure all async writes that are part of this stream | |
2654 | * have completed before we proceed | |
2655 | */ | |
2656 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); | |
2657 | ||
2658 | if (iostate.io_error) | |
2659 | error = iostate.io_error; | |
2660 | ||
2661 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
2662 | ||
2663 | if (error == 0 && tail_size) | |
2664 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
2665 | ||
2666 | for (n = 0; n < num_upl; n++) | |
2667 | /* | |
2668 | * just release our hold on each physically contiguous | |
2669 | * region without changing any state | |
2670 | */ | |
2671 | ubc_upl_abort(upl[n], 0); | |
2672 | ||
2673 | return (error); | |
2674 | } | |
2675 | ||
2676 | ||
2677 | /* | |
2678 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
2679 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
2680 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
2681 | * | |
2682 | * we should never force-zero-fill pages that are already valid in the cache... | |
2683 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
2684 | * via an mmap) so we can only do damage by trying to zero-fill | |
2685 | * | |
2686 | */ | |
2687 | static int | |
2688 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
2689 | { | |
2690 | int zero_pg_index; | |
2691 | boolean_t need_cluster_zero = TRUE; | |
2692 | ||
2693 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2694 | ||
2695 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2696 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2697 | ||
2698 | if (upl_valid_page(pl, zero_pg_index)) { | |
2699 | /* | |
2700 | * never force zero valid pages - dirty or clean | |
2701 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
2702 | */ | |
2703 | need_cluster_zero = FALSE; | |
2704 | } | |
2705 | } | |
2706 | if (need_cluster_zero == TRUE) | |
2707 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2708 | ||
2709 | return (bytes_to_zero); | |
2710 | } | |
2711 | ||
2712 | ||
2713 | static int | |
2714 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, | |
2715 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
2716 | { | |
2717 | upl_page_info_t *pl; | |
2718 | upl_t upl; | |
2719 | vm_offset_t upl_offset = 0; | |
2720 | vm_size_t upl_size; | |
2721 | off_t upl_f_offset; | |
2722 | int pages_in_upl; | |
2723 | int start_offset; | |
2724 | int xfer_resid; | |
2725 | int io_size; | |
2726 | int io_offset; | |
2727 | int bytes_to_zero; | |
2728 | int bytes_to_move; | |
2729 | kern_return_t kret; | |
2730 | int retval = 0; | |
2731 | int io_resid; | |
2732 | long long total_size; | |
2733 | long long zero_cnt; | |
2734 | off_t zero_off; | |
2735 | long long zero_cnt1; | |
2736 | off_t zero_off1; | |
2737 | off_t write_off = 0; | |
2738 | int write_cnt = 0; | |
2739 | boolean_t first_pass = FALSE; | |
2740 | struct cl_extent cl; | |
2741 | struct cl_writebehind *wbp; | |
2742 | int bflag; | |
2743 | u_int max_cluster_pgcount; | |
2744 | u_int max_io_size; | |
2745 | ||
2746 | if (uio) { | |
2747 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2748 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); | |
2749 | ||
2750 | io_resid = io_req_size; | |
2751 | } else { | |
2752 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2753 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
2754 | ||
2755 | io_resid = 0; | |
2756 | } | |
2757 | if (flags & IO_PASSIVE) | |
2758 | bflag = CL_PASSIVE; | |
2759 | else | |
2760 | bflag = 0; | |
2761 | if (flags & IO_NOCACHE) | |
2762 | bflag |= CL_NOCACHE; | |
2763 | ||
2764 | if (flags & IO_SKIP_ENCRYPTION) | |
2765 | bflag |= CL_ENCRYPTED; | |
2766 | ||
2767 | zero_cnt = 0; | |
2768 | zero_cnt1 = 0; | |
2769 | zero_off = 0; | |
2770 | zero_off1 = 0; | |
2771 | ||
2772 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
2773 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
2774 | ||
2775 | if (flags & IO_HEADZEROFILL) { | |
2776 | /* | |
2777 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
2778 | * so we zero fill the intervening space between the old EOF and the offset | |
2779 | * where the next chunk of real data begins.... ftruncate will also use this | |
2780 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
2781 | * uio structure will not be provided | |
2782 | */ | |
2783 | if (uio) { | |
2784 | if (headOff < uio->uio_offset) { | |
2785 | zero_cnt = uio->uio_offset - headOff; | |
2786 | zero_off = headOff; | |
2787 | } | |
2788 | } else if (headOff < newEOF) { | |
2789 | zero_cnt = newEOF - headOff; | |
2790 | zero_off = headOff; | |
2791 | } | |
2792 | } else { | |
2793 | if (uio && uio->uio_offset > oldEOF) { | |
2794 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
2795 | ||
2796 | if (zero_off >= oldEOF) { | |
2797 | zero_cnt = uio->uio_offset - zero_off; | |
2798 | ||
2799 | flags |= IO_HEADZEROFILL; | |
2800 | } | |
2801 | } | |
2802 | } | |
2803 | if (flags & IO_TAILZEROFILL) { | |
2804 | if (uio) { | |
2805 | zero_off1 = uio->uio_offset + io_req_size; | |
2806 | ||
2807 | if (zero_off1 < tailOff) | |
2808 | zero_cnt1 = tailOff - zero_off1; | |
2809 | } | |
2810 | } else { | |
2811 | if (uio && newEOF > oldEOF) { | |
2812 | zero_off1 = uio->uio_offset + io_req_size; | |
2813 | ||
2814 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
2815 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
2816 | ||
2817 | flags |= IO_TAILZEROFILL; | |
2818 | } | |
2819 | } | |
2820 | } | |
2821 | if (zero_cnt == 0 && uio == (struct uio *) 0) { | |
2822 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, | |
2823 | retval, 0, 0, 0, 0); | |
2824 | return (0); | |
2825 | } | |
2826 | if (uio) { | |
2827 | write_off = uio->uio_offset; | |
2828 | write_cnt = uio_resid(uio); | |
2829 | /* | |
2830 | * delay updating the sequential write info | |
2831 | * in the control block until we've obtained | |
2832 | * the lock for it | |
2833 | */ | |
2834 | first_pass = TRUE; | |
2835 | } | |
2836 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { | |
2837 | /* | |
2838 | * for this iteration of the loop, figure out where our starting point is | |
2839 | */ | |
2840 | if (zero_cnt) { | |
2841 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
2842 | upl_f_offset = zero_off - start_offset; | |
2843 | } else if (io_resid) { | |
2844 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2845 | upl_f_offset = uio->uio_offset - start_offset; | |
2846 | } else { | |
2847 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
2848 | upl_f_offset = zero_off1 - start_offset; | |
2849 | } | |
2850 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
2851 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
2852 | ||
2853 | if (total_size > max_io_size) | |
2854 | total_size = max_io_size; | |
2855 | ||
2856 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); | |
2857 | ||
2858 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { | |
2859 | /* | |
2860 | * assumption... total_size <= io_resid | |
2861 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set | |
2862 | */ | |
2863 | if ((start_offset + total_size) > max_io_size) | |
2864 | total_size = max_io_size - start_offset; | |
2865 | xfer_resid = total_size; | |
2866 | ||
2867 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); | |
2868 | ||
2869 | if (retval) | |
2870 | break; | |
2871 | ||
2872 | io_resid -= (total_size - xfer_resid); | |
2873 | total_size = xfer_resid; | |
2874 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2875 | upl_f_offset = uio->uio_offset - start_offset; | |
2876 | ||
2877 | if (total_size == 0) { | |
2878 | if (start_offset) { | |
2879 | /* | |
2880 | * the write did not finish on a page boundary | |
2881 | * which will leave upl_f_offset pointing to the | |
2882 | * beginning of the last page written instead of | |
2883 | * the page beyond it... bump it in this case | |
2884 | * so that the cluster code records the last page | |
2885 | * written as dirty | |
2886 | */ | |
2887 | upl_f_offset += PAGE_SIZE_64; | |
2888 | } | |
2889 | upl_size = 0; | |
2890 | ||
2891 | goto check_cluster; | |
2892 | } | |
2893 | } | |
2894 | /* | |
2895 | * compute the size of the upl needed to encompass | |
2896 | * the requested write... limit each call to cluster_io | |
2897 | * to the maximum UPL size... cluster_io will clip if | |
2898 | * this exceeds the maximum io_size for the device, | |
2899 | * make sure to account for | |
2900 | * a starting offset that's not page aligned | |
2901 | */ | |
2902 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2903 | ||
2904 | if (upl_size > max_io_size) | |
2905 | upl_size = max_io_size; | |
2906 | ||
2907 | pages_in_upl = upl_size / PAGE_SIZE; | |
2908 | io_size = upl_size - start_offset; | |
2909 | ||
2910 | if ((long long)io_size > total_size) | |
2911 | io_size = total_size; | |
2912 | ||
2913 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); | |
2914 | ||
2915 | ||
2916 | /* | |
2917 | * Gather the pages from the buffer cache. | |
2918 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
2919 | * that we intend to modify these pages. | |
2920 | */ | |
2921 | kret = ubc_create_upl(vp, | |
2922 | upl_f_offset, | |
2923 | upl_size, | |
2924 | &upl, | |
2925 | &pl, | |
2926 | UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY)); | |
2927 | if (kret != KERN_SUCCESS) | |
2928 | panic("cluster_write_copy: failed to get pagelist"); | |
2929 | ||
2930 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, | |
2931 | upl, (int)upl_f_offset, start_offset, 0, 0); | |
2932 | ||
2933 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { | |
2934 | int read_size; | |
2935 | ||
2936 | /* | |
2937 | * we're starting in the middle of the first page of the upl | |
2938 | * and the page isn't currently valid, so we're going to have | |
2939 | * to read it in first... this is a synchronous operation | |
2940 | */ | |
2941 | read_size = PAGE_SIZE; | |
2942 | ||
2943 | if ((upl_f_offset + read_size) > oldEOF) | |
2944 | read_size = oldEOF - upl_f_offset; | |
2945 | ||
2946 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, | |
2947 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
2948 | if (retval) { | |
2949 | /* | |
2950 | * we had an error during the read which causes us to abort | |
2951 | * the current cluster_write request... before we do, we need | |
2952 | * to release the rest of the pages in the upl without modifying | |
2953 | * there state and mark the failed page in error | |
2954 | */ | |
2955 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); | |
2956 | ||
2957 | if (upl_size > PAGE_SIZE) | |
2958 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
2959 | ||
2960 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
2961 | upl, 0, 0, retval, 0); | |
2962 | break; | |
2963 | } | |
2964 | } | |
2965 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
2966 | /* | |
2967 | * the last offset we're writing to in this upl does not end on a page | |
2968 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
2969 | * pre-read this page in if it isn't already valid | |
2970 | */ | |
2971 | upl_offset = upl_size - PAGE_SIZE; | |
2972 | ||
2973 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
2974 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
2975 | int read_size; | |
2976 | ||
2977 | read_size = PAGE_SIZE; | |
2978 | ||
2979 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) | |
2980 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
2981 | ||
2982 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, | |
2983 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
2984 | if (retval) { | |
2985 | /* | |
2986 | * we had an error during the read which causes us to abort | |
2987 | * the current cluster_write request... before we do, we | |
2988 | * need to release the rest of the pages in the upl without | |
2989 | * modifying there state and mark the failed page in error | |
2990 | */ | |
2991 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); | |
2992 | ||
2993 | if (upl_size > PAGE_SIZE) | |
2994 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
2995 | ||
2996 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
2997 | upl, 0, 0, retval, 0); | |
2998 | break; | |
2999 | } | |
3000 | } | |
3001 | } | |
3002 | xfer_resid = io_size; | |
3003 | io_offset = start_offset; | |
3004 | ||
3005 | while (zero_cnt && xfer_resid) { | |
3006 | ||
3007 | if (zero_cnt < (long long)xfer_resid) | |
3008 | bytes_to_zero = zero_cnt; | |
3009 | else | |
3010 | bytes_to_zero = xfer_resid; | |
3011 | ||
3012 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); | |
3013 | ||
3014 | xfer_resid -= bytes_to_zero; | |
3015 | zero_cnt -= bytes_to_zero; | |
3016 | zero_off += bytes_to_zero; | |
3017 | io_offset += bytes_to_zero; | |
3018 | } | |
3019 | if (xfer_resid && io_resid) { | |
3020 | u_int32_t io_requested; | |
3021 | ||
3022 | bytes_to_move = min(io_resid, xfer_resid); | |
3023 | io_requested = bytes_to_move; | |
3024 | ||
3025 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); | |
3026 | ||
3027 | if (retval) { | |
3028 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3029 | ||
3030 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
3031 | upl, 0, 0, retval, 0); | |
3032 | } else { | |
3033 | io_resid -= bytes_to_move; | |
3034 | xfer_resid -= bytes_to_move; | |
3035 | io_offset += bytes_to_move; | |
3036 | } | |
3037 | } | |
3038 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
3039 | ||
3040 | if (zero_cnt1 < (long long)xfer_resid) | |
3041 | bytes_to_zero = zero_cnt1; | |
3042 | else | |
3043 | bytes_to_zero = xfer_resid; | |
3044 | ||
3045 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); | |
3046 | ||
3047 | xfer_resid -= bytes_to_zero; | |
3048 | zero_cnt1 -= bytes_to_zero; | |
3049 | zero_off1 += bytes_to_zero; | |
3050 | io_offset += bytes_to_zero; | |
3051 | } | |
3052 | if (retval == 0) { | |
3053 | int cl_index; | |
3054 | int ret_cluster_try_push; | |
3055 | ||
3056 | io_size += start_offset; | |
3057 | ||
3058 | if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { | |
3059 | /* | |
3060 | * if we're extending the file with this write | |
3061 | * we'll zero fill the rest of the page so that | |
3062 | * if the file gets extended again in such a way as to leave a | |
3063 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3064 | */ | |
3065 | cluster_zero(upl, io_size, upl_size - io_size, NULL); | |
3066 | } | |
3067 | /* | |
3068 | * release the upl now if we hold one since... | |
3069 | * 1) pages in it may be present in the sparse cluster map | |
3070 | * and may span 2 separate buckets there... if they do and | |
3071 | * we happen to have to flush a bucket to make room and it intersects | |
3072 | * this upl, a deadlock may result on page BUSY | |
3073 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3074 | * the cluster state... no need to hold the pages, so commit them | |
3075 | * 3) IO_SYNC is set... | |
3076 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3077 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3078 | * upon committing it... this is not the behavior we want since it's possible for | |
3079 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3080 | * we'll pick these pages back up later with the correct behavior specified. | |
3081 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3082 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3083 | * we hold since the flushing context is holding the cluster lock. | |
3084 | */ | |
3085 | ubc_upl_commit_range(upl, 0, upl_size, | |
3086 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
3087 | check_cluster: | |
3088 | /* | |
3089 | * calculate the last logical block number | |
3090 | * that this delayed I/O encompassed | |
3091 | */ | |
3092 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3093 | ||
3094 | if (flags & IO_SYNC) { | |
3095 | /* | |
3096 | * if the IO_SYNC flag is set than we need to | |
3097 | * bypass any clusters and immediately issue | |
3098 | * the I/O | |
3099 | */ | |
3100 | goto issue_io; | |
3101 | } | |
3102 | /* | |
3103 | * take the lock to protect our accesses | |
3104 | * of the writebehind and sparse cluster state | |
3105 | */ | |
3106 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3107 | ||
3108 | if (wbp->cl_scmap) { | |
3109 | ||
3110 | if ( !(flags & IO_NOCACHE)) { | |
3111 | /* | |
3112 | * we've fallen into the sparse | |
3113 | * cluster method of delaying dirty pages | |
3114 | */ | |
3115 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); | |
3116 | ||
3117 | lck_mtx_unlock(&wbp->cl_lockw); | |
3118 | ||
3119 | continue; | |
3120 | } | |
3121 | /* | |
3122 | * must have done cached writes that fell into | |
3123 | * the sparse cluster mechanism... we've switched | |
3124 | * to uncached writes on the file, so go ahead | |
3125 | * and push whatever's in the sparse map | |
3126 | * and switch back to normal clustering | |
3127 | */ | |
3128 | wbp->cl_number = 0; | |
3129 | ||
3130 | sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); | |
3131 | /* | |
3132 | * no clusters of either type present at this point | |
3133 | * so just go directly to start_new_cluster since | |
3134 | * we know we need to delay this I/O since we've | |
3135 | * already released the pages back into the cache | |
3136 | * to avoid the deadlock with sparse_cluster_push | |
3137 | */ | |
3138 | goto start_new_cluster; | |
3139 | } | |
3140 | if (first_pass) { | |
3141 | if (write_off == wbp->cl_last_write) | |
3142 | wbp->cl_seq_written += write_cnt; | |
3143 | else | |
3144 | wbp->cl_seq_written = write_cnt; | |
3145 | ||
3146 | wbp->cl_last_write = write_off + write_cnt; | |
3147 | ||
3148 | first_pass = FALSE; | |
3149 | } | |
3150 | if (wbp->cl_number == 0) | |
3151 | /* | |
3152 | * no clusters currently present | |
3153 | */ | |
3154 | goto start_new_cluster; | |
3155 | ||
3156 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
3157 | /* | |
3158 | * check each cluster that we currently hold | |
3159 | * try to merge some or all of this write into | |
3160 | * one or more of the existing clusters... if | |
3161 | * any portion of the write remains, start a | |
3162 | * new cluster | |
3163 | */ | |
3164 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { | |
3165 | /* | |
3166 | * the current write starts at or after the current cluster | |
3167 | */ | |
3168 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3169 | /* | |
3170 | * we have a write that fits entirely | |
3171 | * within the existing cluster limits | |
3172 | */ | |
3173 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) | |
3174 | /* | |
3175 | * update our idea of where the cluster ends | |
3176 | */ | |
3177 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; | |
3178 | break; | |
3179 | } | |
3180 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3181 | /* | |
3182 | * we have a write that starts in the middle of the current cluster | |
3183 | * but extends beyond the cluster's limit... we know this because | |
3184 | * of the previous checks | |
3185 | * we'll extend the current cluster to the max | |
3186 | * and update the b_addr for the current write to reflect that | |
3187 | * the head of it was absorbed into this cluster... | |
3188 | * note that we'll always have a leftover tail in this case since | |
3189 | * full absorbtion would have occurred in the clause above | |
3190 | */ | |
3191 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; | |
3192 | ||
3193 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; | |
3194 | } | |
3195 | /* | |
3196 | * we come here for the case where the current write starts | |
3197 | * beyond the limit of the existing cluster or we have a leftover | |
3198 | * tail after a partial absorbtion | |
3199 | * | |
3200 | * in either case, we'll check the remaining clusters before | |
3201 | * starting a new one | |
3202 | */ | |
3203 | } else { | |
3204 | /* | |
3205 | * the current write starts in front of the cluster we're currently considering | |
3206 | */ | |
3207 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { | |
3208 | /* | |
3209 | * we can just merge the new request into | |
3210 | * this cluster and leave it in the cache | |
3211 | * since the resulting cluster is still | |
3212 | * less than the maximum allowable size | |
3213 | */ | |
3214 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; | |
3215 | ||
3216 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { | |
3217 | /* | |
3218 | * the current write completely | |
3219 | * envelops the existing cluster and since | |
3220 | * each write is limited to at most max_cluster_pgcount pages | |
3221 | * we can just use the start and last blocknos of the write | |
3222 | * to generate the cluster limits | |
3223 | */ | |
3224 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; | |
3225 | } | |
3226 | break; | |
3227 | } | |
3228 | ||
3229 | /* | |
3230 | * if we were to combine this write with the current cluster | |
3231 | * we would exceed the cluster size limit.... so, | |
3232 | * let's see if there's any overlap of the new I/O with | |
3233 | * the cluster we're currently considering... in fact, we'll | |
3234 | * stretch the cluster out to it's full limit and see if we | |
3235 | * get an intersection with the current write | |
3236 | * | |
3237 | */ | |
3238 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { | |
3239 | /* | |
3240 | * the current write extends into the proposed cluster | |
3241 | * clip the length of the current write after first combining it's | |
3242 | * tail with the newly shaped cluster | |
3243 | */ | |
3244 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; | |
3245 | ||
3246 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; | |
3247 | } | |
3248 | /* | |
3249 | * if we get here, there was no way to merge | |
3250 | * any portion of this write with this cluster | |
3251 | * or we could only merge part of it which | |
3252 | * will leave a tail... | |
3253 | * we'll check the remaining clusters before starting a new one | |
3254 | */ | |
3255 | } | |
3256 | } | |
3257 | if (cl_index < wbp->cl_number) | |
3258 | /* | |
3259 | * we found an existing cluster(s) that we | |
3260 | * could entirely merge this I/O into | |
3261 | */ | |
3262 | goto delay_io; | |
3263 | ||
3264 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && | |
3265 | wbp->cl_number == MAX_CLUSTERS && | |
3266 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3267 | uint32_t n; | |
3268 | ||
3269 | if (vp->v_mount->mnt_kern_flag & MNTK_SSD) | |
3270 | n = WRITE_BEHIND_SSD; | |
3271 | else | |
3272 | n = WRITE_BEHIND; | |
3273 | ||
3274 | while (n--) | |
3275 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg); | |
3276 | } | |
3277 | if (wbp->cl_number < MAX_CLUSTERS) { | |
3278 | /* | |
3279 | * we didn't find an existing cluster to | |
3280 | * merge into, but there's room to start | |
3281 | * a new one | |
3282 | */ | |
3283 | goto start_new_cluster; | |
3284 | } | |
3285 | /* | |
3286 | * no exisitng cluster to merge with and no | |
3287 | * room to start a new one... we'll try | |
3288 | * pushing one of the existing ones... if none of | |
3289 | * them are able to be pushed, we'll switch | |
3290 | * to the sparse cluster mechanism | |
3291 | * cluster_try_push updates cl_number to the | |
3292 | * number of remaining clusters... and | |
3293 | * returns the number of currently unused clusters | |
3294 | */ | |
3295 | ret_cluster_try_push = 0; | |
3296 | ||
3297 | /* | |
3298 | * if writes are not deferred, call cluster push immediately | |
3299 | */ | |
3300 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { | |
3301 | ||
3302 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg); | |
3303 | } | |
3304 | ||
3305 | /* | |
3306 | * execute following regardless of writes being deferred or not | |
3307 | */ | |
3308 | if (ret_cluster_try_push == 0) { | |
3309 | /* | |
3310 | * no more room in the normal cluster mechanism | |
3311 | * so let's switch to the more expansive but expensive | |
3312 | * sparse mechanism.... | |
3313 | */ | |
3314 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); | |
3315 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); | |
3316 | ||
3317 | lck_mtx_unlock(&wbp->cl_lockw); | |
3318 | ||
3319 | continue; | |
3320 | } | |
3321 | start_new_cluster: | |
3322 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; | |
3323 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
3324 | ||
3325 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; | |
3326 | ||
3327 | if (flags & IO_NOCACHE) | |
3328 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; | |
3329 | ||
3330 | if (bflag & CL_PASSIVE) | |
3331 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3332 | ||
3333 | wbp->cl_number++; | |
3334 | delay_io: | |
3335 | lck_mtx_unlock(&wbp->cl_lockw); | |
3336 | ||
3337 | continue; | |
3338 | issue_io: | |
3339 | /* | |
3340 | * we don't hold the lock at this point | |
3341 | * | |
3342 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set | |
3343 | * so that we correctly deal with a change in state of the hardware modify bit... | |
3344 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force | |
3345 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
3346 | * responsible for generating the correct sized I/O(s) | |
3347 | */ | |
3348 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); | |
3349 | } | |
3350 | } | |
3351 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); | |
3352 | ||
3353 | return (retval); | |
3354 | } | |
3355 | ||
3356 | ||
3357 | ||
3358 | int | |
3359 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) | |
3360 | { | |
3361 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); | |
3362 | } | |
3363 | ||
3364 | ||
3365 | int | |
3366 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3367 | { | |
3368 | int retval = 0; | |
3369 | int flags; | |
3370 | user_ssize_t cur_resid; | |
3371 | u_int32_t io_size; | |
3372 | u_int32_t read_length = 0; | |
3373 | int read_type = IO_COPY; | |
3374 | ||
3375 | flags = xflags; | |
3376 | ||
3377 | if (vp->v_flag & VNOCACHE_DATA) | |
3378 | flags |= IO_NOCACHE; | |
3379 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) | |
3380 | flags |= IO_RAOFF; | |
3381 | ||
3382 | if (flags & IO_SKIP_ENCRYPTION) | |
3383 | flags |= IO_ENCRYPTED; | |
3384 | /* | |
3385 | * If we're doing an encrypted IO, then first check to see | |
3386 | * if the IO requested was page aligned. If not, then bail | |
3387 | * out immediately. | |
3388 | */ | |
3389 | if (flags & IO_ENCRYPTED) { | |
3390 | if (read_length & PAGE_MASK) { | |
3391 | retval = EINVAL; | |
3392 | return retval; | |
3393 | } | |
3394 | } | |
3395 | ||
3396 | /* | |
3397 | * do a read through the cache if one of the following is true.... | |
3398 | * NOCACHE is not true | |
3399 | * the uio request doesn't target USERSPACE | |
3400 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. | |
3401 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3402 | * the UBC. | |
3403 | * | |
3404 | * otherwise, find out if we want the direct or contig variant for | |
3405 | * the first vector in the uio request | |
3406 | */ | |
3407 | if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) { | |
3408 | ||
3409 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3410 | } | |
3411 | ||
3412 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { | |
3413 | ||
3414 | switch (read_type) { | |
3415 | ||
3416 | case IO_COPY: | |
3417 | /* | |
3418 | * make sure the uio_resid isn't too big... | |
3419 | * internally, we want to handle all of the I/O in | |
3420 | * chunk sizes that fit in a 32 bit int | |
3421 | */ | |
3422 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) | |
3423 | io_size = MAX_IO_REQUEST_SIZE; | |
3424 | else | |
3425 | io_size = (u_int32_t)cur_resid; | |
3426 | ||
3427 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); | |
3428 | break; | |
3429 | ||
3430 | case IO_DIRECT: | |
3431 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3432 | break; | |
3433 | ||
3434 | case IO_CONTIG: | |
3435 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3436 | break; | |
3437 | ||
3438 | case IO_UNKNOWN: | |
3439 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3440 | break; | |
3441 | } | |
3442 | } | |
3443 | return (retval); | |
3444 | } | |
3445 | ||
3446 | ||
3447 | ||
3448 | static void | |
3449 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) | |
3450 | { | |
3451 | int range; | |
3452 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
3453 | ||
3454 | if ((range = last_pg - start_pg)) { | |
3455 | if (take_reference) | |
3456 | abort_flags |= UPL_ABORT_REFERENCE; | |
3457 | ||
3458 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3459 | } | |
3460 | } | |
3461 | ||
3462 | ||
3463 | static int | |
3464 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
3465 | { | |
3466 | upl_page_info_t *pl; | |
3467 | upl_t upl; | |
3468 | vm_offset_t upl_offset; | |
3469 | u_int32_t upl_size; | |
3470 | off_t upl_f_offset; | |
3471 | int start_offset; | |
3472 | int start_pg; | |
3473 | int last_pg; | |
3474 | int uio_last = 0; | |
3475 | int pages_in_upl; | |
3476 | off_t max_size; | |
3477 | off_t last_ioread_offset; | |
3478 | off_t last_request_offset; | |
3479 | kern_return_t kret; | |
3480 | int error = 0; | |
3481 | int retval = 0; | |
3482 | u_int32_t size_of_prefetch; | |
3483 | u_int32_t xsize; | |
3484 | u_int32_t io_size; | |
3485 | u_int32_t max_rd_size; | |
3486 | u_int32_t max_io_size; | |
3487 | u_int32_t max_prefetch; | |
3488 | u_int rd_ahead_enabled = 1; | |
3489 | u_int prefetch_enabled = 1; | |
3490 | struct cl_readahead * rap; | |
3491 | struct clios iostate; | |
3492 | struct cl_extent extent; | |
3493 | int bflag; | |
3494 | int take_reference = 1; | |
3495 | int policy = IOPOL_DEFAULT; | |
3496 | boolean_t iolock_inited = FALSE; | |
3497 | ||
3498 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3499 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
3500 | ||
3501 | if (flags & IO_ENCRYPTED) { | |
3502 | panic ("encrypted blocks will hit UBC!"); | |
3503 | } | |
3504 | ||
3505 | policy = throttle_get_io_policy(NULL); | |
3506 | ||
3507 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) | |
3508 | take_reference = 0; | |
3509 | ||
3510 | if (flags & IO_PASSIVE) | |
3511 | bflag = CL_PASSIVE; | |
3512 | else | |
3513 | bflag = 0; | |
3514 | ||
3515 | if (flags & IO_NOCACHE) | |
3516 | bflag |= CL_NOCACHE; | |
3517 | ||
3518 | if (flags & IO_SKIP_ENCRYPTION) | |
3519 | bflag |= CL_ENCRYPTED; | |
3520 | ||
3521 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
3522 | max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD)); | |
3523 | max_rd_size = max_prefetch; | |
3524 | ||
3525 | last_request_offset = uio->uio_offset + io_req_size; | |
3526 | ||
3527 | if (last_request_offset > filesize) | |
3528 | last_request_offset = filesize; | |
3529 | ||
3530 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { | |
3531 | rd_ahead_enabled = 0; | |
3532 | rap = NULL; | |
3533 | } else { | |
3534 | if (cluster_is_throttled(vp)) { | |
3535 | /* | |
3536 | * we're in the throttle window, at the very least | |
3537 | * we want to limit the size of the I/O we're about | |
3538 | * to issue | |
3539 | */ | |
3540 | rd_ahead_enabled = 0; | |
3541 | prefetch_enabled = 0; | |
3542 | ||
3543 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
3544 | } | |
3545 | if ((rap = cluster_get_rap(vp)) == NULL) | |
3546 | rd_ahead_enabled = 0; | |
3547 | else { | |
3548 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3549 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3550 | } | |
3551 | } | |
3552 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { | |
3553 | /* | |
3554 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3555 | * last read systemcall that was issued... | |
3556 | * if so, pick up it's extent to determine where we should start | |
3557 | * with respect to any read-ahead that might be necessary to | |
3558 | * garner all the data needed to complete this read systemcall | |
3559 | */ | |
3560 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; | |
3561 | ||
3562 | if (last_ioread_offset < uio->uio_offset) | |
3563 | last_ioread_offset = (off_t)0; | |
3564 | else if (last_ioread_offset > last_request_offset) | |
3565 | last_ioread_offset = last_request_offset; | |
3566 | } else | |
3567 | last_ioread_offset = (off_t)0; | |
3568 | ||
3569 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { | |
3570 | ||
3571 | max_size = filesize - uio->uio_offset; | |
3572 | ||
3573 | if ((off_t)(io_req_size) < max_size) | |
3574 | io_size = io_req_size; | |
3575 | else | |
3576 | io_size = max_size; | |
3577 | ||
3578 | if (!(flags & IO_NOCACHE)) { | |
3579 | ||
3580 | while (io_size) { | |
3581 | u_int32_t io_resid; | |
3582 | u_int32_t io_requested; | |
3583 | ||
3584 | /* | |
3585 | * if we keep finding the pages we need already in the cache, then | |
3586 | * don't bother to call cluster_read_prefetch since it costs CPU cycles | |
3587 | * to determine that we have all the pages we need... once we miss in | |
3588 | * the cache and have issued an I/O, than we'll assume that we're likely | |
3589 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
3590 | */ | |
3591 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
3592 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
3593 | /* | |
3594 | * we've already issued I/O for this request and | |
3595 | * there's still work to do and | |
3596 | * our prefetch stream is running dry, so issue a | |
3597 | * pre-fetch I/O... the I/O latency will overlap | |
3598 | * with the copying of the data | |
3599 | */ | |
3600 | if (size_of_prefetch > max_rd_size) | |
3601 | size_of_prefetch = max_rd_size; | |
3602 | ||
3603 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
3604 | ||
3605 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
3606 | ||
3607 | if (last_ioread_offset > last_request_offset) | |
3608 | last_ioread_offset = last_request_offset; | |
3609 | } | |
3610 | } | |
3611 | /* | |
3612 | * limit the size of the copy we're about to do so that | |
3613 | * we can notice that our I/O pipe is running dry and | |
3614 | * get the next I/O issued before it does go dry | |
3615 | */ | |
3616 | if (last_ioread_offset && io_size > (max_io_size / 4)) | |
3617 | io_resid = (max_io_size / 4); | |
3618 | else | |
3619 | io_resid = io_size; | |
3620 | ||
3621 | io_requested = io_resid; | |
3622 | ||
3623 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); | |
3624 | ||
3625 | xsize = io_requested - io_resid; | |
3626 | ||
3627 | io_size -= xsize; | |
3628 | io_req_size -= xsize; | |
3629 | ||
3630 | if (retval || io_resid) | |
3631 | /* | |
3632 | * if we run into a real error or | |
3633 | * a page that is not in the cache | |
3634 | * we need to leave streaming mode | |
3635 | */ | |
3636 | break; | |
3637 | ||
3638 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { | |
3639 | /* | |
3640 | * we're already finished the I/O for this read request | |
3641 | * let's see if we should do a read-ahead | |
3642 | */ | |
3643 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); | |
3644 | } | |
3645 | } | |
3646 | if (retval) | |
3647 | break; | |
3648 | if (io_size == 0) { | |
3649 | if (rap != NULL) { | |
3650 | if (extent.e_addr < rap->cl_lastr) | |
3651 | rap->cl_maxra = 0; | |
3652 | rap->cl_lastr = extent.e_addr; | |
3653 | } | |
3654 | break; | |
3655 | } | |
3656 | /* | |
3657 | * recompute max_size since cluster_copy_ubc_data_internal | |
3658 | * may have advanced uio->uio_offset | |
3659 | */ | |
3660 | max_size = filesize - uio->uio_offset; | |
3661 | } | |
3662 | ||
3663 | iostate.io_completed = 0; | |
3664 | iostate.io_issued = 0; | |
3665 | iostate.io_error = 0; | |
3666 | iostate.io_wanted = 0; | |
3667 | ||
3668 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { | |
3669 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { | |
3670 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { | |
3671 | /* | |
3672 | * we're in the throttle window and at least 1 I/O | |
3673 | * has already been issued by a throttleable thread | |
3674 | * in this window, so return with EAGAIN to indicate | |
3675 | * to the FS issuing the cluster_read call that it | |
3676 | * should now throttle after dropping any locks | |
3677 | */ | |
3678 | throttle_info_update_by_mount(vp->v_mount); | |
3679 | ||
3680 | retval = EAGAIN; | |
3681 | break; | |
3682 | } | |
3683 | } | |
3684 | } | |
3685 | ||
3686 | /* | |
3687 | * compute the size of the upl needed to encompass | |
3688 | * the requested read... limit each call to cluster_io | |
3689 | * to the maximum UPL size... cluster_io will clip if | |
3690 | * this exceeds the maximum io_size for the device, | |
3691 | * make sure to account for | |
3692 | * a starting offset that's not page aligned | |
3693 | */ | |
3694 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3695 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
3696 | ||
3697 | if (io_size > max_rd_size) | |
3698 | io_size = max_rd_size; | |
3699 | ||
3700 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3701 | ||
3702 | if (flags & IO_NOCACHE) { | |
3703 | if (upl_size > max_io_size) | |
3704 | upl_size = max_io_size; | |
3705 | } else { | |
3706 | if (upl_size > max_io_size / 4) { | |
3707 | upl_size = max_io_size / 4; | |
3708 | upl_size &= ~PAGE_MASK; | |
3709 | ||
3710 | if (upl_size == 0) | |
3711 | upl_size = PAGE_SIZE; | |
3712 | } | |
3713 | } | |
3714 | pages_in_upl = upl_size / PAGE_SIZE; | |
3715 | ||
3716 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
3717 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
3718 | ||
3719 | kret = ubc_create_upl(vp, | |
3720 | upl_f_offset, | |
3721 | upl_size, | |
3722 | &upl, | |
3723 | &pl, | |
3724 | UPL_FILE_IO | UPL_SET_LITE); | |
3725 | if (kret != KERN_SUCCESS) | |
3726 | panic("cluster_read_copy: failed to get pagelist"); | |
3727 | ||
3728 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, | |
3729 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
3730 | ||
3731 | /* | |
3732 | * scan from the beginning of the upl looking for the first | |
3733 | * non-valid page.... this will become the first page in | |
3734 | * the request we're going to make to 'cluster_io'... if all | |
3735 | * of the pages are valid, we won't call through to 'cluster_io' | |
3736 | */ | |
3737 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
3738 | if (!upl_valid_page(pl, start_pg)) | |
3739 | break; | |
3740 | } | |
3741 | ||
3742 | /* | |
3743 | * scan from the starting invalid page looking for a valid | |
3744 | * page before the end of the upl is reached, if we | |
3745 | * find one, then it will be the last page of the request to | |
3746 | * 'cluster_io' | |
3747 | */ | |
3748 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
3749 | if (upl_valid_page(pl, last_pg)) | |
3750 | break; | |
3751 | } | |
3752 | ||
3753 | if (start_pg < last_pg) { | |
3754 | /* | |
3755 | * we found a range of 'invalid' pages that must be filled | |
3756 | * if the last page in this range is the last page of the file | |
3757 | * we may have to clip the size of it to keep from reading past | |
3758 | * the end of the last physical block associated with the file | |
3759 | */ | |
3760 | if (iolock_inited == FALSE) { | |
3761 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
3762 | ||
3763 | iolock_inited = TRUE; | |
3764 | } | |
3765 | upl_offset = start_pg * PAGE_SIZE; | |
3766 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3767 | ||
3768 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) | |
3769 | io_size = filesize - (upl_f_offset + upl_offset); | |
3770 | ||
3771 | /* | |
3772 | * issue an asynchronous read to cluster_io | |
3773 | */ | |
3774 | ||
3775 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
3776 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); | |
3777 | ||
3778 | if (rap) { | |
3779 | if (extent.e_addr < rap->cl_maxra) { | |
3780 | /* | |
3781 | * we've just issued a read for a block that should have been | |
3782 | * in the cache courtesy of the read-ahead engine... something | |
3783 | * has gone wrong with the pipeline, so reset the read-ahead | |
3784 | * logic which will cause us to restart from scratch | |
3785 | */ | |
3786 | rap->cl_maxra = 0; | |
3787 | } | |
3788 | } | |
3789 | } | |
3790 | if (error == 0) { | |
3791 | /* | |
3792 | * if the read completed successfully, or there was no I/O request | |
3793 | * issued, than copy the data into user land via 'cluster_upl_copy_data' | |
3794 | * we'll first add on any 'valid' | |
3795 | * pages that were present in the upl when we acquired it. | |
3796 | */ | |
3797 | u_int val_size; | |
3798 | ||
3799 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
3800 | if (!upl_valid_page(pl, uio_last)) | |
3801 | break; | |
3802 | } | |
3803 | if (uio_last < pages_in_upl) { | |
3804 | /* | |
3805 | * there were some invalid pages beyond the valid pages | |
3806 | * that we didn't issue an I/O for, just release them | |
3807 | * unchanged now, so that any prefetch/readahed can | |
3808 | * include them | |
3809 | */ | |
3810 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
3811 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
3812 | } | |
3813 | ||
3814 | /* | |
3815 | * compute size to transfer this round, if io_req_size is | |
3816 | * still non-zero after this attempt, we'll loop around and | |
3817 | * set up for another I/O. | |
3818 | */ | |
3819 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
3820 | ||
3821 | if (val_size > max_size) | |
3822 | val_size = max_size; | |
3823 | ||
3824 | if (val_size > io_req_size) | |
3825 | val_size = io_req_size; | |
3826 | ||
3827 | if ((uio->uio_offset + val_size) > last_ioread_offset) | |
3828 | last_ioread_offset = uio->uio_offset + val_size; | |
3829 | ||
3830 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { | |
3831 | ||
3832 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { | |
3833 | /* | |
3834 | * if there's still I/O left to do for this request, and... | |
3835 | * we're not in hard throttle mode, and... | |
3836 | * we're close to using up the previous prefetch, then issue a | |
3837 | * new pre-fetch I/O... the I/O latency will overlap | |
3838 | * with the copying of the data | |
3839 | */ | |
3840 | if (size_of_prefetch > max_rd_size) | |
3841 | size_of_prefetch = max_rd_size; | |
3842 | ||
3843 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
3844 | ||
3845 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
3846 | ||
3847 | if (last_ioread_offset > last_request_offset) | |
3848 | last_ioread_offset = last_request_offset; | |
3849 | } | |
3850 | ||
3851 | } else if ((uio->uio_offset + val_size) == last_request_offset) { | |
3852 | /* | |
3853 | * this transfer will finish this request, so... | |
3854 | * let's try to read ahead if we're in | |
3855 | * a sequential access pattern and we haven't | |
3856 | * explicitly disabled it | |
3857 | */ | |
3858 | if (rd_ahead_enabled) | |
3859 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); | |
3860 | ||
3861 | if (rap != NULL) { | |
3862 | if (extent.e_addr < rap->cl_lastr) | |
3863 | rap->cl_maxra = 0; | |
3864 | rap->cl_lastr = extent.e_addr; | |
3865 | } | |
3866 | } | |
3867 | if (iolock_inited == TRUE) | |
3868 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
3869 | ||
3870 | if (iostate.io_error) | |
3871 | error = iostate.io_error; | |
3872 | else { | |
3873 | u_int32_t io_requested; | |
3874 | ||
3875 | io_requested = val_size; | |
3876 | ||
3877 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
3878 | ||
3879 | io_req_size -= (val_size - io_requested); | |
3880 | } | |
3881 | } else { | |
3882 | if (iolock_inited == TRUE) | |
3883 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
3884 | } | |
3885 | if (start_pg < last_pg) { | |
3886 | /* | |
3887 | * compute the range of pages that we actually issued an I/O for | |
3888 | * and either commit them as valid if the I/O succeeded | |
3889 | * or abort them if the I/O failed or we're not supposed to | |
3890 | * keep them in the cache | |
3891 | */ | |
3892 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3893 | ||
3894 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
3895 | ||
3896 | if (error || (flags & IO_NOCACHE)) | |
3897 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, | |
3898 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3899 | else { | |
3900 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
3901 | ||
3902 | if (take_reference) | |
3903 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
3904 | else | |
3905 | commit_flags |= UPL_COMMIT_SPECULATE; | |
3906 | ||
3907 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); | |
3908 | } | |
3909 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
3910 | } | |
3911 | if ((last_pg - start_pg) < pages_in_upl) { | |
3912 | /* | |
3913 | * the set of pages that we issued an I/O for did not encompass | |
3914 | * the entire upl... so just release these without modifying | |
3915 | * their state | |
3916 | */ | |
3917 | if (error) | |
3918 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3919 | else { | |
3920 | ||
3921 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, | |
3922 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); | |
3923 | ||
3924 | /* | |
3925 | * handle any valid pages at the beginning of | |
3926 | * the upl... release these appropriately | |
3927 | */ | |
3928 | cluster_read_upl_release(upl, 0, start_pg, take_reference); | |
3929 | ||
3930 | /* | |
3931 | * handle any valid pages immediately after the | |
3932 | * pages we issued I/O for... ... release these appropriately | |
3933 | */ | |
3934 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); | |
3935 | ||
3936 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); | |
3937 | } | |
3938 | } | |
3939 | if (retval == 0) | |
3940 | retval = error; | |
3941 | ||
3942 | if (io_req_size) { | |
3943 | if (cluster_is_throttled(vp)) { | |
3944 | /* | |
3945 | * we're in the throttle window, at the very least | |
3946 | * we want to limit the size of the I/O we're about | |
3947 | * to issue | |
3948 | */ | |
3949 | rd_ahead_enabled = 0; | |
3950 | prefetch_enabled = 0; | |
3951 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
3952 | } else { | |
3953 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { | |
3954 | /* | |
3955 | * coming out of throttled state | |
3956 | */ | |
3957 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { | |
3958 | if (rap != NULL) | |
3959 | rd_ahead_enabled = 1; | |
3960 | prefetch_enabled = 1; | |
3961 | } | |
3962 | max_rd_size = max_prefetch; | |
3963 | last_ioread_offset = 0; | |
3964 | } | |
3965 | } | |
3966 | } | |
3967 | } | |
3968 | if (iolock_inited == TRUE) { | |
3969 | /* | |
3970 | * cluster_io returned an error after it | |
3971 | * had already issued some I/O. we need | |
3972 | * to wait for that I/O to complete before | |
3973 | * we can destroy the iostate mutex... | |
3974 | * 'retval' already contains the early error | |
3975 | * so no need to pick it up from iostate.io_error | |
3976 | */ | |
3977 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
3978 | ||
3979 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
3980 | } | |
3981 | if (rap != NULL) { | |
3982 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
3983 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); | |
3984 | ||
3985 | lck_mtx_unlock(&rap->cl_lockr); | |
3986 | } else { | |
3987 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
3988 | (int)uio->uio_offset, io_req_size, 0, retval, 0); | |
3989 | } | |
3990 | ||
3991 | return (retval); | |
3992 | } | |
3993 | ||
3994 | static int | |
3995 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
3996 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
3997 | { | |
3998 | upl_t upl; | |
3999 | upl_page_info_t *pl; | |
4000 | off_t max_io_size; | |
4001 | vm_offset_t upl_offset, vector_upl_offset = 0; | |
4002 | upl_size_t upl_size, vector_upl_size = 0; | |
4003 | vm_size_t upl_needed_size; | |
4004 | unsigned int pages_in_pl; | |
4005 | int upl_flags; | |
4006 | kern_return_t kret; | |
4007 | unsigned int i; | |
4008 | int force_data_sync; | |
4009 | int retval = 0; | |
4010 | int no_zero_fill = 0; | |
4011 | int io_flag = 0; | |
4012 | int misaligned = 0; | |
4013 | struct clios iostate; | |
4014 | user_addr_t iov_base; | |
4015 | u_int32_t io_req_size; | |
4016 | u_int32_t offset_in_file; | |
4017 | u_int32_t offset_in_iovbase; | |
4018 | u_int32_t io_size; | |
4019 | u_int32_t io_min; | |
4020 | u_int32_t xsize; | |
4021 | u_int32_t devblocksize; | |
4022 | u_int32_t mem_alignment_mask; | |
4023 | u_int32_t max_upl_size; | |
4024 | u_int32_t max_rd_size; | |
4025 | u_int32_t max_rd_ahead; | |
4026 | u_int32_t max_vector_size; | |
4027 | boolean_t strict_uncached_IO = FALSE; | |
4028 | boolean_t io_throttled = FALSE; | |
4029 | ||
4030 | u_int32_t vector_upl_iosize = 0; | |
4031 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
4032 | off_t v_upl_uio_offset = 0; | |
4033 | int vector_upl_index=0; | |
4034 | upl_t vector_upl = NULL; | |
4035 | ||
4036 | user_addr_t orig_iov_base = 0; | |
4037 | user_addr_t last_iov_base = 0; | |
4038 | user_addr_t next_iov_base = 0; | |
4039 | ||
4040 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, | |
4041 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4042 | ||
4043 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
4044 | ||
4045 | max_rd_size = max_upl_size; | |
4046 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
4047 | ||
4048 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; | |
4049 | ||
4050 | if (flags & IO_PASSIVE) | |
4051 | io_flag |= CL_PASSIVE; | |
4052 | ||
4053 | if (flags & IO_ENCRYPTED) { | |
4054 | io_flag |= CL_RAW_ENCRYPTED; | |
4055 | } | |
4056 | ||
4057 | if (flags & IO_NOCACHE) { | |
4058 | io_flag |= CL_NOCACHE; | |
4059 | } | |
4060 | ||
4061 | if (flags & IO_SKIP_ENCRYPTION) | |
4062 | io_flag |= CL_ENCRYPTED; | |
4063 | ||
4064 | iostate.io_completed = 0; | |
4065 | iostate.io_issued = 0; | |
4066 | iostate.io_error = 0; | |
4067 | iostate.io_wanted = 0; | |
4068 | ||
4069 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
4070 | ||
4071 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
4072 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4073 | ||
4074 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4075 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
4076 | ||
4077 | if (devblocksize == 1) { | |
4078 | /* | |
4079 | * the AFP client advertises a devblocksize of 1 | |
4080 | * however, its BLOCKMAP routine maps to physical | |
4081 | * blocks that are PAGE_SIZE in size... | |
4082 | * therefore we can't ask for I/Os that aren't page aligned | |
4083 | * or aren't multiples of PAGE_SIZE in size | |
4084 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4085 | * the old behavior we had before the mem_alignment_mask | |
4086 | * changes went in... | |
4087 | */ | |
4088 | devblocksize = PAGE_SIZE; | |
4089 | } | |
4090 | ||
4091 | strict_uncached_IO = ubc_strict_uncached_IO(vp); | |
4092 | ||
4093 | orig_iov_base = uio_curriovbase(uio); | |
4094 | last_iov_base = orig_iov_base; | |
4095 | ||
4096 | next_dread: | |
4097 | io_req_size = *read_length; | |
4098 | iov_base = uio_curriovbase(uio); | |
4099 | ||
4100 | max_io_size = filesize - uio->uio_offset; | |
4101 | ||
4102 | if ((off_t)io_req_size > max_io_size) | |
4103 | io_req_size = max_io_size; | |
4104 | ||
4105 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); | |
4106 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4107 | ||
4108 | if (offset_in_file || offset_in_iovbase) { | |
4109 | /* | |
4110 | * one of the 2 important offsets is misaligned | |
4111 | * so fire an I/O through the cache for this entire vector | |
4112 | */ | |
4113 | misaligned = 1; | |
4114 | } | |
4115 | if (iov_base & (devblocksize - 1)) { | |
4116 | /* | |
4117 | * the offset in memory must be on a device block boundary | |
4118 | * so that we can guarantee that we can generate an | |
4119 | * I/O that ends on a page boundary in cluster_io | |
4120 | */ | |
4121 | misaligned = 1; | |
4122 | } | |
4123 | ||
4124 | /* | |
4125 | * The user must request IO in aligned chunks. If the | |
4126 | * offset into the file is bad, or the userland pointer | |
4127 | * is non-aligned, then we cannot service the encrypted IO request. | |
4128 | */ | |
4129 | if ((flags & IO_ENCRYPTED) && (misaligned)) { | |
4130 | retval = EINVAL; | |
4131 | } | |
4132 | ||
4133 | /* | |
4134 | * When we get to this point, we know... | |
4135 | * -- the offset into the file is on a devblocksize boundary | |
4136 | */ | |
4137 | ||
4138 | while (io_req_size && retval == 0) { | |
4139 | u_int32_t io_start; | |
4140 | ||
4141 | if (cluster_is_throttled(vp)) { | |
4142 | /* | |
4143 | * we're in the throttle window, at the very least | |
4144 | * we want to limit the size of the I/O we're about | |
4145 | * to issue | |
4146 | */ | |
4147 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4148 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; | |
4149 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
4150 | } else { | |
4151 | max_rd_size = max_upl_size; | |
4152 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
4153 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
4154 | } | |
4155 | io_start = io_size = io_req_size; | |
4156 | ||
4157 | /* | |
4158 | * First look for pages already in the cache | |
4159 | * and move them to user space. But only do this | |
4160 | * check if we are not retrieving encrypted data directly | |
4161 | * from the filesystem; those blocks should never | |
4162 | * be in the UBC. | |
4163 | * | |
4164 | * cluster_copy_ubc_data returns the resid | |
4165 | * in io_size | |
4166 | */ | |
4167 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { | |
4168 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); | |
4169 | } | |
4170 | /* | |
4171 | * calculate the number of bytes actually copied | |
4172 | * starting size - residual | |
4173 | */ | |
4174 | xsize = io_start - io_size; | |
4175 | ||
4176 | io_req_size -= xsize; | |
4177 | ||
4178 | if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { | |
4179 | /* | |
4180 | * We found something in the cache or we have an iov_base that's not | |
4181 | * page-aligned. | |
4182 | * | |
4183 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4184 | */ | |
4185 | if(vector_upl_index) { | |
4186 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4187 | reset_vector_run_state(); | |
4188 | } | |
4189 | ||
4190 | if(xsize) | |
4191 | useVectorUPL = 0; | |
4192 | ||
4193 | /* | |
4194 | * After this point, if we are using the Vector UPL path and the base is | |
4195 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4196 | */ | |
4197 | } | |
4198 | ||
4199 | /* | |
4200 | * check to see if we are finished with this request. | |
4201 | * | |
4202 | * If we satisfied this IO already, then io_req_size will be 0. | |
4203 | * Otherwise, see if the IO was mis-aligned and needs to go through | |
4204 | * the UBC to deal with the 'tail'. | |
4205 | * | |
4206 | */ | |
4207 | if (io_req_size == 0 || (misaligned)) { | |
4208 | /* | |
4209 | * see if there's another uio vector to | |
4210 | * process that's of type IO_DIRECT | |
4211 | * | |
4212 | * break out of while loop to get there | |
4213 | */ | |
4214 | break; | |
4215 | } | |
4216 | /* | |
4217 | * assume the request ends on a device block boundary | |
4218 | */ | |
4219 | io_min = devblocksize; | |
4220 | ||
4221 | /* | |
4222 | * we can handle I/O's in multiples of the device block size | |
4223 | * however, if io_size isn't a multiple of devblocksize we | |
4224 | * want to clip it back to the nearest page boundary since | |
4225 | * we are going to have to go through cluster_read_copy to | |
4226 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4227 | * multiple, we avoid asking the drive for the same physical | |
4228 | * blocks twice.. once for the partial page at the end of the | |
4229 | * request and a 2nd time for the page we read into the cache | |
4230 | * (which overlaps the end of the direct read) in order to | |
4231 | * get at the overhang bytes | |
4232 | */ | |
4233 | if (io_size & (devblocksize - 1)) { | |
4234 | if (flags & IO_ENCRYPTED) { | |
4235 | /* | |
4236 | * Normally, we'd round down to the previous page boundary to | |
4237 | * let the UBC manage the zero-filling of the file past the EOF. | |
4238 | * But if we're doing encrypted IO, we can't let any of | |
4239 | * the data hit the UBC. This means we have to do the full | |
4240 | * IO to the upper block boundary of the device block that | |
4241 | * contains the EOF. The user will be responsible for not | |
4242 | * interpreting data PAST the EOF in its buffer. | |
4243 | * | |
4244 | * So just bump the IO back up to a multiple of devblocksize | |
4245 | */ | |
4246 | io_size = ((io_size + devblocksize) & ~(devblocksize - 1)); | |
4247 | io_min = io_size; | |
4248 | } | |
4249 | else { | |
4250 | /* | |
4251 | * Clip the request to the previous page size boundary | |
4252 | * since request does NOT end on a device block boundary | |
4253 | */ | |
4254 | io_size &= ~PAGE_MASK; | |
4255 | io_min = PAGE_SIZE; | |
4256 | } | |
4257 | ||
4258 | } | |
4259 | if (retval || io_size < io_min) { | |
4260 | /* | |
4261 | * either an error or we only have the tail left to | |
4262 | * complete via the copy path... | |
4263 | * we may have already spun some portion of this request | |
4264 | * off as async requests... we need to wait for the I/O | |
4265 | * to complete before returning | |
4266 | */ | |
4267 | goto wait_for_dreads; | |
4268 | } | |
4269 | ||
4270 | /* | |
4271 | * Don't re-check the UBC data if we are looking for uncached IO | |
4272 | * or asking for encrypted blocks. | |
4273 | */ | |
4274 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { | |
4275 | ||
4276 | if ((xsize = io_size) > max_rd_size) | |
4277 | xsize = max_rd_size; | |
4278 | ||
4279 | io_size = 0; | |
4280 | ||
4281 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); | |
4282 | ||
4283 | if (io_size == 0) { | |
4284 | /* | |
4285 | * a page must have just come into the cache | |
4286 | * since the first page in this range is no | |
4287 | * longer absent, go back and re-evaluate | |
4288 | */ | |
4289 | continue; | |
4290 | } | |
4291 | } | |
4292 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { | |
4293 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { | |
4294 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { | |
4295 | /* | |
4296 | * we're in the throttle window and at least 1 I/O | |
4297 | * has already been issued by a throttleable thread | |
4298 | * in this window, so return with EAGAIN to indicate | |
4299 | * to the FS issuing the cluster_read call that it | |
4300 | * should now throttle after dropping any locks | |
4301 | */ | |
4302 | throttle_info_update_by_mount(vp->v_mount); | |
4303 | ||
4304 | io_throttled = TRUE; | |
4305 | goto wait_for_dreads; | |
4306 | } | |
4307 | } | |
4308 | } | |
4309 | if (io_size > max_rd_size) | |
4310 | io_size = max_rd_size; | |
4311 | ||
4312 | iov_base = uio_curriovbase(uio); | |
4313 | ||
4314 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
4315 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; | |
4316 | ||
4317 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, | |
4318 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
4319 | ||
4320 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) | |
4321 | no_zero_fill = 1; | |
4322 | else | |
4323 | no_zero_fill = 0; | |
4324 | ||
4325 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
4326 | pages_in_pl = 0; | |
4327 | upl_size = upl_needed_size; | |
4328 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
4329 | ||
4330 | if (no_zero_fill) | |
4331 | upl_flags |= UPL_NOZEROFILL; | |
4332 | if (force_data_sync) | |
4333 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4334 | ||
4335 | kret = vm_map_create_upl(current_map(), | |
4336 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4337 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); | |
4338 | ||
4339 | if (kret != KERN_SUCCESS) { | |
4340 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4341 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4342 | /* | |
4343 | * failed to get pagelist | |
4344 | * | |
4345 | * we may have already spun some portion of this request | |
4346 | * off as async requests... we need to wait for the I/O | |
4347 | * to complete before returning | |
4348 | */ | |
4349 | goto wait_for_dreads; | |
4350 | } | |
4351 | pages_in_pl = upl_size / PAGE_SIZE; | |
4352 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
4353 | ||
4354 | for (i = 0; i < pages_in_pl; i++) { | |
4355 | if (!upl_page_present(pl, i)) | |
4356 | break; | |
4357 | } | |
4358 | if (i == pages_in_pl) | |
4359 | break; | |
4360 | ||
4361 | ubc_upl_abort(upl, 0); | |
4362 | } | |
4363 | if (force_data_sync >= 3) { | |
4364 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4365 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4366 | ||
4367 | goto wait_for_dreads; | |
4368 | } | |
4369 | /* | |
4370 | * Consider the possibility that upl_size wasn't satisfied. | |
4371 | */ | |
4372 | if (upl_size < upl_needed_size) { | |
4373 | if (upl_size && upl_offset == 0) | |
4374 | io_size = upl_size; | |
4375 | else | |
4376 | io_size = 0; | |
4377 | } | |
4378 | if (io_size == 0) { | |
4379 | ubc_upl_abort(upl, 0); | |
4380 | goto wait_for_dreads; | |
4381 | } | |
4382 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4383 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4384 | ||
4385 | if(useVectorUPL) { | |
4386 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4387 | if(end_off) | |
4388 | issueVectorUPL = 1; | |
4389 | /* | |
4390 | * After this point, if we are using a vector UPL, then | |
4391 | * either all the UPL elements end on a page boundary OR | |
4392 | * this UPL is the last element because it does not end | |
4393 | * on a page boundary. | |
4394 | */ | |
4395 | } | |
4396 | ||
4397 | /* | |
4398 | * request asynchronously so that we can overlap | |
4399 | * the preparation of the next I/O | |
4400 | * if there are already too many outstanding reads | |
4401 | * wait until some have completed before issuing the next read | |
4402 | */ | |
4403 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); | |
4404 | ||
4405 | if (iostate.io_error) { | |
4406 | /* | |
4407 | * one of the earlier reads we issued ran into a hard error | |
4408 | * don't issue any more reads, cleanup the UPL | |
4409 | * that was just created but not used, then | |
4410 | * go wait for any other reads to complete before | |
4411 | * returning the error to the caller | |
4412 | */ | |
4413 | ubc_upl_abort(upl, 0); | |
4414 | ||
4415 | goto wait_for_dreads; | |
4416 | } | |
4417 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
4418 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); | |
4419 | ||
4420 | ||
4421 | if(!useVectorUPL) { | |
4422 | if (no_zero_fill) | |
4423 | io_flag &= ~CL_PRESERVE; | |
4424 | else | |
4425 | io_flag |= CL_PRESERVE; | |
4426 | ||
4427 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4428 | ||
4429 | } else { | |
4430 | ||
4431 | if(!vector_upl_index) { | |
4432 | vector_upl = vector_upl_create(upl_offset); | |
4433 | v_upl_uio_offset = uio->uio_offset; | |
4434 | vector_upl_offset = upl_offset; | |
4435 | } | |
4436 | ||
4437 | vector_upl_set_subupl(vector_upl,upl, upl_size); | |
4438 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
4439 | vector_upl_index++; | |
4440 | vector_upl_size += upl_size; | |
4441 | vector_upl_iosize += io_size; | |
4442 | ||
4443 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { | |
4444 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4445 | reset_vector_run_state(); | |
4446 | } | |
4447 | } | |
4448 | last_iov_base = iov_base + io_size; | |
4449 | ||
4450 | /* | |
4451 | * update the uio structure | |
4452 | */ | |
4453 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { | |
4454 | uio_update(uio, (user_size_t)max_io_size); | |
4455 | } | |
4456 | else { | |
4457 | uio_update(uio, (user_size_t)io_size); | |
4458 | } | |
4459 | /* | |
4460 | * Under normal circumstances, the io_size should not be | |
4461 | * bigger than the io_req_size, but we may have had to round up | |
4462 | * to the end of the page in the encrypted IO case. In that case only, | |
4463 | * ensure that we only decrement io_req_size to 0. | |
4464 | */ | |
4465 | if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) { | |
4466 | io_req_size = 0; | |
4467 | } | |
4468 | else { | |
4469 | io_req_size -= io_size; | |
4470 | } | |
4471 | ||
4472 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, | |
4473 | upl, (int)uio->uio_offset, io_req_size, retval, 0); | |
4474 | ||
4475 | } /* end while */ | |
4476 | ||
4477 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { | |
4478 | ||
4479 | retval = cluster_io_type(uio, read_type, read_length, 0); | |
4480 | ||
4481 | if (retval == 0 && *read_type == IO_DIRECT) { | |
4482 | ||
4483 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4484 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4485 | ||
4486 | goto next_dread; | |
4487 | } | |
4488 | } | |
4489 | ||
4490 | wait_for_dreads: | |
4491 | ||
4492 | if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
4493 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4494 | reset_vector_run_state(); | |
4495 | } | |
4496 | /* | |
4497 | * make sure all async reads that are part of this stream | |
4498 | * have completed before we return | |
4499 | */ | |
4500 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); | |
4501 | ||
4502 | if (iostate.io_error) | |
4503 | retval = iostate.io_error; | |
4504 | ||
4505 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
4506 | ||
4507 | if (io_throttled == TRUE && retval == 0) | |
4508 | retval = EAGAIN; | |
4509 | ||
4510 | for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) { | |
4511 | /* | |
4512 | * This is specifically done for pmap accounting purposes. | |
4513 | * vm_pre_fault() will call vm_fault() to enter the page into | |
4514 | * the pmap if there isn't _a_ physical page for that VA already. | |
4515 | */ | |
4516 | vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK)); | |
4517 | } | |
4518 | ||
4519 | if (io_req_size && retval == 0) { | |
4520 | /* | |
4521 | * we couldn't handle the tail of this request in DIRECT mode | |
4522 | * so fire it through the copy path | |
4523 | */ | |
4524 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
4525 | ||
4526 | *read_type = IO_UNKNOWN; | |
4527 | } | |
4528 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, | |
4529 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); | |
4530 | ||
4531 | return (retval); | |
4532 | } | |
4533 | ||
4534 | ||
4535 | static int | |
4536 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
4537 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
4538 | { | |
4539 | upl_page_info_t *pl; | |
4540 | upl_t upl[MAX_VECTS]; | |
4541 | vm_offset_t upl_offset; | |
4542 | addr64_t dst_paddr = 0; | |
4543 | user_addr_t iov_base; | |
4544 | off_t max_size; | |
4545 | upl_size_t upl_size; | |
4546 | vm_size_t upl_needed_size; | |
4547 | mach_msg_type_number_t pages_in_pl; | |
4548 | int upl_flags; | |
4549 | kern_return_t kret; | |
4550 | struct clios iostate; | |
4551 | int error= 0; | |
4552 | int cur_upl = 0; | |
4553 | int num_upl = 0; | |
4554 | int n; | |
4555 | u_int32_t xsize; | |
4556 | u_int32_t io_size; | |
4557 | u_int32_t devblocksize; | |
4558 | u_int32_t mem_alignment_mask; | |
4559 | u_int32_t tail_size = 0; | |
4560 | int bflag; | |
4561 | ||
4562 | if (flags & IO_PASSIVE) | |
4563 | bflag = CL_PASSIVE; | |
4564 | else | |
4565 | bflag = 0; | |
4566 | ||
4567 | if (flags & IO_NOCACHE) | |
4568 | bflag |= CL_NOCACHE; | |
4569 | ||
4570 | /* | |
4571 | * When we enter this routine, we know | |
4572 | * -- the read_length will not exceed the current iov_len | |
4573 | * -- the target address is physically contiguous for read_length | |
4574 | */ | |
4575 | cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); | |
4576 | ||
4577 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
4578 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4579 | ||
4580 | iostate.io_completed = 0; | |
4581 | iostate.io_issued = 0; | |
4582 | iostate.io_error = 0; | |
4583 | iostate.io_wanted = 0; | |
4584 | ||
4585 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
4586 | ||
4587 | next_cread: | |
4588 | io_size = *read_length; | |
4589 | ||
4590 | max_size = filesize - uio->uio_offset; | |
4591 | ||
4592 | if (io_size > max_size) | |
4593 | io_size = max_size; | |
4594 | ||
4595 | iov_base = uio_curriovbase(uio); | |
4596 | ||
4597 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
4598 | upl_needed_size = upl_offset + io_size; | |
4599 | ||
4600 | pages_in_pl = 0; | |
4601 | upl_size = upl_needed_size; | |
4602 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
4603 | ||
4604 | ||
4605 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
4606 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
4607 | ||
4608 | kret = vm_map_get_upl(current_map(), | |
4609 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4610 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); | |
4611 | ||
4612 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
4613 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4614 | ||
4615 | if (kret != KERN_SUCCESS) { | |
4616 | /* | |
4617 | * failed to get pagelist | |
4618 | */ | |
4619 | error = EINVAL; | |
4620 | goto wait_for_creads; | |
4621 | } | |
4622 | num_upl++; | |
4623 | ||
4624 | if (upl_size < upl_needed_size) { | |
4625 | /* | |
4626 | * The upl_size wasn't satisfied. | |
4627 | */ | |
4628 | error = EINVAL; | |
4629 | goto wait_for_creads; | |
4630 | } | |
4631 | pl = ubc_upl_pageinfo(upl[cur_upl]); | |
4632 | ||
4633 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; | |
4634 | ||
4635 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
4636 | u_int32_t head_size; | |
4637 | ||
4638 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); | |
4639 | ||
4640 | if (head_size > io_size) | |
4641 | head_size = io_size; | |
4642 | ||
4643 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); | |
4644 | ||
4645 | if (error) | |
4646 | goto wait_for_creads; | |
4647 | ||
4648 | upl_offset += head_size; | |
4649 | dst_paddr += head_size; | |
4650 | io_size -= head_size; | |
4651 | ||
4652 | iov_base += head_size; | |
4653 | } | |
4654 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
4655 | /* | |
4656 | * request doesn't set up on a memory boundary | |
4657 | * the underlying DMA engine can handle... | |
4658 | * return an error instead of going through | |
4659 | * the slow copy path since the intent of this | |
4660 | * path is direct I/O to device memory | |
4661 | */ | |
4662 | error = EINVAL; | |
4663 | goto wait_for_creads; | |
4664 | } | |
4665 | ||
4666 | tail_size = io_size & (devblocksize - 1); | |
4667 | ||
4668 | io_size -= tail_size; | |
4669 | ||
4670 | while (io_size && error == 0) { | |
4671 | ||
4672 | if (io_size > MAX_IO_CONTIG_SIZE) | |
4673 | xsize = MAX_IO_CONTIG_SIZE; | |
4674 | else | |
4675 | xsize = io_size; | |
4676 | /* | |
4677 | * request asynchronously so that we can overlap | |
4678 | * the preparation of the next I/O... we'll do | |
4679 | * the commit after all the I/O has completed | |
4680 | * since its all issued against the same UPL | |
4681 | * if there are already too many outstanding reads | |
4682 | * wait until some have completed before issuing the next | |
4683 | */ | |
4684 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); | |
4685 | ||
4686 | if (iostate.io_error) { | |
4687 | /* | |
4688 | * one of the earlier reads we issued ran into a hard error | |
4689 | * don't issue any more reads... | |
4690 | * go wait for any other reads to complete before | |
4691 | * returning the error to the caller | |
4692 | */ | |
4693 | goto wait_for_creads; | |
4694 | } | |
4695 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
4696 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
4697 | (buf_t)NULL, &iostate, callback, callback_arg); | |
4698 | /* | |
4699 | * The cluster_io read was issued successfully, | |
4700 | * update the uio structure | |
4701 | */ | |
4702 | if (error == 0) { | |
4703 | uio_update(uio, (user_size_t)xsize); | |
4704 | ||
4705 | dst_paddr += xsize; | |
4706 | upl_offset += xsize; | |
4707 | io_size -= xsize; | |
4708 | } | |
4709 | } | |
4710 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { | |
4711 | ||
4712 | error = cluster_io_type(uio, read_type, read_length, 0); | |
4713 | ||
4714 | if (error == 0 && *read_type == IO_CONTIG) { | |
4715 | cur_upl++; | |
4716 | goto next_cread; | |
4717 | } | |
4718 | } else | |
4719 | *read_type = IO_UNKNOWN; | |
4720 | ||
4721 | wait_for_creads: | |
4722 | /* | |
4723 | * make sure all async reads that are part of this stream | |
4724 | * have completed before we proceed | |
4725 | */ | |
4726 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); | |
4727 | ||
4728 | if (iostate.io_error) | |
4729 | error = iostate.io_error; | |
4730 | ||
4731 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
4732 | ||
4733 | if (error == 0 && tail_size) | |
4734 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); | |
4735 | ||
4736 | for (n = 0; n < num_upl; n++) | |
4737 | /* | |
4738 | * just release our hold on each physically contiguous | |
4739 | * region without changing any state | |
4740 | */ | |
4741 | ubc_upl_abort(upl[n], 0); | |
4742 | ||
4743 | return (error); | |
4744 | } | |
4745 | ||
4746 | ||
4747 | static int | |
4748 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
4749 | { | |
4750 | user_size_t iov_len; | |
4751 | user_addr_t iov_base = 0; | |
4752 | upl_t upl; | |
4753 | upl_size_t upl_size; | |
4754 | int upl_flags; | |
4755 | int retval = 0; | |
4756 | ||
4757 | /* | |
4758 | * skip over any emtpy vectors | |
4759 | */ | |
4760 | uio_update(uio, (user_size_t)0); | |
4761 | ||
4762 | iov_len = uio_curriovlen(uio); | |
4763 | ||
4764 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); | |
4765 | ||
4766 | if (iov_len) { | |
4767 | iov_base = uio_curriovbase(uio); | |
4768 | /* | |
4769 | * make sure the size of the vector isn't too big... | |
4770 | * internally, we want to handle all of the I/O in | |
4771 | * chunk sizes that fit in a 32 bit int | |
4772 | */ | |
4773 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) | |
4774 | upl_size = MAX_IO_REQUEST_SIZE; | |
4775 | else | |
4776 | upl_size = (u_int32_t)iov_len; | |
4777 | ||
4778 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
4779 | ||
4780 | if ((vm_map_get_upl(current_map(), | |
4781 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4782 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
4783 | /* | |
4784 | * the user app must have passed in an invalid address | |
4785 | */ | |
4786 | retval = EFAULT; | |
4787 | } | |
4788 | if (upl_size == 0) | |
4789 | retval = EFAULT; | |
4790 | ||
4791 | *io_length = upl_size; | |
4792 | ||
4793 | if (upl_flags & UPL_PHYS_CONTIG) | |
4794 | *io_type = IO_CONTIG; | |
4795 | else if (iov_len >= min_length) | |
4796 | *io_type = IO_DIRECT; | |
4797 | else | |
4798 | *io_type = IO_COPY; | |
4799 | } else { | |
4800 | /* | |
4801 | * nothing left to do for this uio | |
4802 | */ | |
4803 | *io_length = 0; | |
4804 | *io_type = IO_UNKNOWN; | |
4805 | } | |
4806 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); | |
4807 | ||
4808 | return (retval); | |
4809 | } | |
4810 | ||
4811 | ||
4812 | /* | |
4813 | * generate advisory I/O's in the largest chunks possible | |
4814 | * the completed pages will be released into the VM cache | |
4815 | */ | |
4816 | int | |
4817 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) | |
4818 | { | |
4819 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
4820 | } | |
4821 | ||
4822 | int | |
4823 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
4824 | { | |
4825 | upl_page_info_t *pl; | |
4826 | upl_t upl; | |
4827 | vm_offset_t upl_offset; | |
4828 | int upl_size; | |
4829 | off_t upl_f_offset; | |
4830 | int start_offset; | |
4831 | int start_pg; | |
4832 | int last_pg; | |
4833 | int pages_in_upl; | |
4834 | off_t max_size; | |
4835 | int io_size; | |
4836 | kern_return_t kret; | |
4837 | int retval = 0; | |
4838 | int issued_io; | |
4839 | int skip_range; | |
4840 | uint32_t max_io_size; | |
4841 | ||
4842 | ||
4843 | if ( !UBCINFOEXISTS(vp)) | |
4844 | return(EINVAL); | |
4845 | ||
4846 | if (resid < 0) | |
4847 | return(EINVAL); | |
4848 | ||
4849 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
4850 | ||
4851 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) { | |
4852 | if (max_io_size > speculative_prefetch_max_iosize) | |
4853 | max_io_size = speculative_prefetch_max_iosize; | |
4854 | } | |
4855 | ||
4856 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, | |
4857 | (int)f_offset, resid, (int)filesize, 0, 0); | |
4858 | ||
4859 | while (resid && f_offset < filesize && retval == 0) { | |
4860 | /* | |
4861 | * compute the size of the upl needed to encompass | |
4862 | * the requested read... limit each call to cluster_io | |
4863 | * to the maximum UPL size... cluster_io will clip if | |
4864 | * this exceeds the maximum io_size for the device, | |
4865 | * make sure to account for | |
4866 | * a starting offset that's not page aligned | |
4867 | */ | |
4868 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
4869 | upl_f_offset = f_offset - (off_t)start_offset; | |
4870 | max_size = filesize - f_offset; | |
4871 | ||
4872 | if (resid < max_size) | |
4873 | io_size = resid; | |
4874 | else | |
4875 | io_size = max_size; | |
4876 | ||
4877 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
4878 | if ((uint32_t)upl_size > max_io_size) | |
4879 | upl_size = max_io_size; | |
4880 | ||
4881 | skip_range = 0; | |
4882 | /* | |
4883 | * return the number of contiguously present pages in the cache | |
4884 | * starting at upl_f_offset within the file | |
4885 | */ | |
4886 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
4887 | ||
4888 | if (skip_range) { | |
4889 | /* | |
4890 | * skip over pages already present in the cache | |
4891 | */ | |
4892 | io_size = skip_range - start_offset; | |
4893 | ||
4894 | f_offset += io_size; | |
4895 | resid -= io_size; | |
4896 | ||
4897 | if (skip_range == upl_size) | |
4898 | continue; | |
4899 | /* | |
4900 | * have to issue some real I/O | |
4901 | * at this point, we know it's starting on a page boundary | |
4902 | * because we've skipped over at least the first page in the request | |
4903 | */ | |
4904 | start_offset = 0; | |
4905 | upl_f_offset += skip_range; | |
4906 | upl_size -= skip_range; | |
4907 | } | |
4908 | pages_in_upl = upl_size / PAGE_SIZE; | |
4909 | ||
4910 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, | |
4911 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
4912 | ||
4913 | kret = ubc_create_upl(vp, | |
4914 | upl_f_offset, | |
4915 | upl_size, | |
4916 | &upl, | |
4917 | &pl, | |
4918 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE); | |
4919 | if (kret != KERN_SUCCESS) | |
4920 | return(retval); | |
4921 | issued_io = 0; | |
4922 | ||
4923 | /* | |
4924 | * before we start marching forward, we must make sure we end on | |
4925 | * a present page, otherwise we will be working with a freed | |
4926 | * upl | |
4927 | */ | |
4928 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
4929 | if (upl_page_present(pl, last_pg)) | |
4930 | break; | |
4931 | } | |
4932 | pages_in_upl = last_pg + 1; | |
4933 | ||
4934 | ||
4935 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, | |
4936 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
4937 | ||
4938 | ||
4939 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
4940 | /* | |
4941 | * scan from the beginning of the upl looking for the first | |
4942 | * page that is present.... this will become the first page in | |
4943 | * the request we're going to make to 'cluster_io'... if all | |
4944 | * of the pages are absent, we won't call through to 'cluster_io' | |
4945 | */ | |
4946 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
4947 | if (upl_page_present(pl, start_pg)) | |
4948 | break; | |
4949 | } | |
4950 | ||
4951 | /* | |
4952 | * scan from the starting present page looking for an absent | |
4953 | * page before the end of the upl is reached, if we | |
4954 | * find one, then it will terminate the range of pages being | |
4955 | * presented to 'cluster_io' | |
4956 | */ | |
4957 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
4958 | if (!upl_page_present(pl, last_pg)) | |
4959 | break; | |
4960 | } | |
4961 | ||
4962 | if (last_pg > start_pg) { | |
4963 | /* | |
4964 | * we found a range of pages that must be filled | |
4965 | * if the last page in this range is the last page of the file | |
4966 | * we may have to clip the size of it to keep from reading past | |
4967 | * the end of the last physical block associated with the file | |
4968 | */ | |
4969 | upl_offset = start_pg * PAGE_SIZE; | |
4970 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4971 | ||
4972 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) | |
4973 | io_size = filesize - (upl_f_offset + upl_offset); | |
4974 | ||
4975 | /* | |
4976 | * issue an asynchronous read to cluster_io | |
4977 | */ | |
4978 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
4979 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
4980 | ||
4981 | issued_io = 1; | |
4982 | } | |
4983 | } | |
4984 | if (issued_io == 0) | |
4985 | ubc_upl_abort(upl, 0); | |
4986 | ||
4987 | io_size = upl_size - start_offset; | |
4988 | ||
4989 | if (io_size > resid) | |
4990 | io_size = resid; | |
4991 | f_offset += io_size; | |
4992 | resid -= io_size; | |
4993 | } | |
4994 | ||
4995 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, | |
4996 | (int)f_offset, resid, retval, 0, 0); | |
4997 | ||
4998 | return(retval); | |
4999 | } | |
5000 | ||
5001 | ||
5002 | int | |
5003 | cluster_push(vnode_t vp, int flags) | |
5004 | { | |
5005 | return cluster_push_ext(vp, flags, NULL, NULL); | |
5006 | } | |
5007 | ||
5008 | ||
5009 | int | |
5010 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5011 | { | |
5012 | int retval; | |
5013 | int my_sparse_wait = 0; | |
5014 | struct cl_writebehind *wbp; | |
5015 | ||
5016 | if ( !UBCINFOEXISTS(vp)) { | |
5017 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0); | |
5018 | return (0); | |
5019 | } | |
5020 | /* return if deferred write is set */ | |
5021 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
5022 | return (0); | |
5023 | } | |
5024 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
5025 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0); | |
5026 | return (0); | |
5027 | } | |
5028 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { | |
5029 | lck_mtx_unlock(&wbp->cl_lockw); | |
5030 | ||
5031 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0); | |
5032 | return(0); | |
5033 | } | |
5034 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, | |
5035 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); | |
5036 | ||
5037 | /* | |
5038 | * if we have an fsync in progress, we don't want to allow any additional | |
5039 | * sync/fsync/close(s) to occur until it finishes. | |
5040 | * note that its possible for writes to continue to occur to this file | |
5041 | * while we're waiting and also once the fsync starts to clean if we're | |
5042 | * in the sparse map case | |
5043 | */ | |
5044 | while (wbp->cl_sparse_wait) { | |
5045 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
5046 | ||
5047 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5048 | ||
5049 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
5050 | } | |
5051 | if (flags & IO_SYNC) { | |
5052 | my_sparse_wait = 1; | |
5053 | wbp->cl_sparse_wait = 1; | |
5054 | ||
5055 | /* | |
5056 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5057 | * cleaning operations to complete before we evaulate the current state | |
5058 | * and finish cleaning... this insures that all writes issued before this | |
5059 | * fsync actually get cleaned to the disk before this fsync returns | |
5060 | */ | |
5061 | while (wbp->cl_sparse_pushes) { | |
5062 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
5063 | ||
5064 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5065 | ||
5066 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
5067 | } | |
5068 | } | |
5069 | if (wbp->cl_scmap) { | |
5070 | void *scmap; | |
5071 | ||
5072 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
5073 | ||
5074 | scmap = wbp->cl_scmap; | |
5075 | wbp->cl_scmap = NULL; | |
5076 | ||
5077 | wbp->cl_sparse_pushes++; | |
5078 | ||
5079 | lck_mtx_unlock(&wbp->cl_lockw); | |
5080 | ||
5081 | sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); | |
5082 | ||
5083 | lck_mtx_lock(&wbp->cl_lockw); | |
5084 | ||
5085 | wbp->cl_sparse_pushes--; | |
5086 | ||
5087 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) | |
5088 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
5089 | } else { | |
5090 | sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); | |
5091 | } | |
5092 | retval = 1; | |
5093 | } else { | |
5094 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); | |
5095 | } | |
5096 | lck_mtx_unlock(&wbp->cl_lockw); | |
5097 | ||
5098 | if (flags & IO_SYNC) | |
5099 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); | |
5100 | ||
5101 | if (my_sparse_wait) { | |
5102 | /* | |
5103 | * I'm the owner of the serialization token | |
5104 | * clear it and wakeup anyone that is waiting | |
5105 | * for me to finish | |
5106 | */ | |
5107 | lck_mtx_lock(&wbp->cl_lockw); | |
5108 | ||
5109 | wbp->cl_sparse_wait = 0; | |
5110 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5111 | ||
5112 | lck_mtx_unlock(&wbp->cl_lockw); | |
5113 | } | |
5114 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, | |
5115 | wbp->cl_scmap, wbp->cl_number, retval, 0, 0); | |
5116 | ||
5117 | return (retval); | |
5118 | } | |
5119 | ||
5120 | ||
5121 | __private_extern__ void | |
5122 | cluster_release(struct ubc_info *ubc) | |
5123 | { | |
5124 | struct cl_writebehind *wbp; | |
5125 | struct cl_readahead *rap; | |
5126 | ||
5127 | if ((wbp = ubc->cl_wbehind)) { | |
5128 | ||
5129 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); | |
5130 | ||
5131 | if (wbp->cl_scmap) | |
5132 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5133 | } else { | |
5134 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); | |
5135 | } | |
5136 | ||
5137 | rap = ubc->cl_rahead; | |
5138 | ||
5139 | if (wbp != NULL) { | |
5140 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
5141 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
5142 | } | |
5143 | if ((rap = ubc->cl_rahead)) { | |
5144 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
5145 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
5146 | } | |
5147 | ubc->cl_rahead = NULL; | |
5148 | ubc->cl_wbehind = NULL; | |
5149 | ||
5150 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); | |
5151 | } | |
5152 | ||
5153 | ||
5154 | static int | |
5155 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5156 | { | |
5157 | int cl_index; | |
5158 | int cl_index1; | |
5159 | int min_index; | |
5160 | int cl_len; | |
5161 | int cl_pushed = 0; | |
5162 | struct cl_wextent l_clusters[MAX_CLUSTERS]; | |
5163 | u_int max_cluster_pgcount; | |
5164 | ||
5165 | ||
5166 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
5167 | /* | |
5168 | * the write behind context exists and has | |
5169 | * already been locked... | |
5170 | */ | |
5171 | if (wbp->cl_number == 0) | |
5172 | /* | |
5173 | * no clusters to push | |
5174 | * return number of empty slots | |
5175 | */ | |
5176 | return (MAX_CLUSTERS); | |
5177 | ||
5178 | /* | |
5179 | * make a local 'sorted' copy of the clusters | |
5180 | * and clear wbp->cl_number so that new clusters can | |
5181 | * be developed | |
5182 | */ | |
5183 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5184 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
5185 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
5186 | continue; | |
5187 | if (min_index == -1) | |
5188 | min_index = cl_index1; | |
5189 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) | |
5190 | min_index = cl_index1; | |
5191 | } | |
5192 | if (min_index == -1) | |
5193 | break; | |
5194 | ||
5195 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; | |
5196 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
5197 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; | |
5198 | ||
5199 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; | |
5200 | } | |
5201 | wbp->cl_number = 0; | |
5202 | ||
5203 | cl_len = cl_index; | |
5204 | ||
5205 | if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) { | |
5206 | int i; | |
5207 | ||
5208 | /* | |
5209 | * determine if we appear to be writing the file sequentially | |
5210 | * if not, by returning without having pushed any clusters | |
5211 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5212 | * used for managing more random I/O patterns | |
5213 | * | |
5214 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
5215 | * that's why we're in try_push with PUSH_DELAY... | |
5216 | * | |
5217 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5218 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
5219 | * so we can just make a simple pass through, up to, but not including the last one... | |
5220 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
5221 | * are sequential | |
5222 | * | |
5223 | * we let the last one be partial as long as it was adjacent to the previous one... | |
5224 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5225 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5226 | */ | |
5227 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
5228 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) | |
5229 | goto dont_try; | |
5230 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) | |
5231 | goto dont_try; | |
5232 | } | |
5233 | } | |
5234 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
5235 | int flags; | |
5236 | struct cl_extent cl; | |
5237 | ||
5238 | flags = io_flags & (IO_PASSIVE|IO_CLOSE); | |
5239 | ||
5240 | /* | |
5241 | * try to push each cluster in turn... | |
5242 | */ | |
5243 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) | |
5244 | flags |= IO_NOCACHE; | |
5245 | ||
5246 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) | |
5247 | flags |= IO_PASSIVE; | |
5248 | ||
5249 | if (push_flag & PUSH_SYNC) | |
5250 | flags |= IO_SYNC; | |
5251 | ||
5252 | cl.b_addr = l_clusters[cl_index].b_addr; | |
5253 | cl.e_addr = l_clusters[cl_index].e_addr; | |
5254 | ||
5255 | cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); | |
5256 | ||
5257 | l_clusters[cl_index].b_addr = 0; | |
5258 | l_clusters[cl_index].e_addr = 0; | |
5259 | ||
5260 | cl_pushed++; | |
5261 | ||
5262 | if ( !(push_flag & PUSH_ALL) ) | |
5263 | break; | |
5264 | } | |
5265 | dont_try: | |
5266 | if (cl_len > cl_pushed) { | |
5267 | /* | |
5268 | * we didn't push all of the clusters, so | |
5269 | * lets try to merge them back in to the vnode | |
5270 | */ | |
5271 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { | |
5272 | /* | |
5273 | * we picked up some new clusters while we were trying to | |
5274 | * push the old ones... this can happen because I've dropped | |
5275 | * the vnode lock... the sum of the | |
5276 | * leftovers plus the new cluster count exceeds our ability | |
5277 | * to represent them, so switch to the sparse cluster mechanism | |
5278 | * | |
5279 | * collect the active public clusters... | |
5280 | */ | |
5281 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); | |
5282 | ||
5283 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
5284 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
5285 | continue; | |
5286 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
5287 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
5288 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; | |
5289 | ||
5290 | cl_index1++; | |
5291 | } | |
5292 | /* | |
5293 | * update the cluster count | |
5294 | */ | |
5295 | wbp->cl_number = cl_index1; | |
5296 | ||
5297 | /* | |
5298 | * and collect the original clusters that were moved into the | |
5299 | * local storage for sorting purposes | |
5300 | */ | |
5301 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); | |
5302 | ||
5303 | } else { | |
5304 | /* | |
5305 | * we've got room to merge the leftovers back in | |
5306 | * just append them starting at the next 'hole' | |
5307 | * represented by wbp->cl_number | |
5308 | */ | |
5309 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { | |
5310 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
5311 | continue; | |
5312 | ||
5313 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
5314 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
5315 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; | |
5316 | ||
5317 | cl_index1++; | |
5318 | } | |
5319 | /* | |
5320 | * update the cluster count | |
5321 | */ | |
5322 | wbp->cl_number = cl_index1; | |
5323 | } | |
5324 | } | |
5325 | return (MAX_CLUSTERS - wbp->cl_number); | |
5326 | } | |
5327 | ||
5328 | ||
5329 | ||
5330 | static int | |
5331 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5332 | { | |
5333 | upl_page_info_t *pl; | |
5334 | upl_t upl; | |
5335 | vm_offset_t upl_offset; | |
5336 | int upl_size; | |
5337 | off_t upl_f_offset; | |
5338 | int pages_in_upl; | |
5339 | int start_pg; | |
5340 | int last_pg; | |
5341 | int io_size; | |
5342 | int io_flags; | |
5343 | int upl_flags; | |
5344 | int bflag; | |
5345 | int size; | |
5346 | int error = 0; | |
5347 | int retval; | |
5348 | kern_return_t kret; | |
5349 | ||
5350 | if (flags & IO_PASSIVE) | |
5351 | bflag = CL_PASSIVE; | |
5352 | else | |
5353 | bflag = 0; | |
5354 | ||
5355 | if (flags & IO_SKIP_ENCRYPTION) | |
5356 | bflag |= CL_ENCRYPTED; | |
5357 | ||
5358 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, | |
5359 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); | |
5360 | ||
5361 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { | |
5362 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); | |
5363 | ||
5364 | return (0); | |
5365 | } | |
5366 | upl_size = pages_in_upl * PAGE_SIZE; | |
5367 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
5368 | ||
5369 | if (upl_f_offset + upl_size >= EOF) { | |
5370 | ||
5371 | if (upl_f_offset >= EOF) { | |
5372 | /* | |
5373 | * must have truncated the file and missed | |
5374 | * clearing a dangling cluster (i.e. it's completely | |
5375 | * beyond the new EOF | |
5376 | */ | |
5377 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
5378 | ||
5379 | return(0); | |
5380 | } | |
5381 | size = EOF - upl_f_offset; | |
5382 | ||
5383 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
5384 | pages_in_upl = upl_size / PAGE_SIZE; | |
5385 | } else | |
5386 | size = upl_size; | |
5387 | ||
5388 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
5389 | ||
5390 | /* | |
5391 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
5392 | * | |
5393 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
5394 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
5395 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
5396 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
5397 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
5398 | * | |
5399 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
5400 | */ | |
5401 | ||
5402 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
5403 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; | |
5404 | else | |
5405 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
5406 | ||
5407 | kret = ubc_create_upl(vp, | |
5408 | upl_f_offset, | |
5409 | upl_size, | |
5410 | &upl, | |
5411 | &pl, | |
5412 | upl_flags); | |
5413 | if (kret != KERN_SUCCESS) | |
5414 | panic("cluster_push: failed to get pagelist"); | |
5415 | ||
5416 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); | |
5417 | ||
5418 | /* | |
5419 | * since we only asked for the dirty pages back | |
5420 | * it's possible that we may only get a few or even none, so... | |
5421 | * before we start marching forward, we must make sure we know | |
5422 | * where the last present page is in the UPL, otherwise we could | |
5423 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
5424 | * employed by commit_range and abort_range. | |
5425 | */ | |
5426 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5427 | if (upl_page_present(pl, last_pg)) | |
5428 | break; | |
5429 | } | |
5430 | pages_in_upl = last_pg + 1; | |
5431 | ||
5432 | if (pages_in_upl == 0) { | |
5433 | ubc_upl_abort(upl, 0); | |
5434 | ||
5435 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); | |
5436 | return(0); | |
5437 | } | |
5438 | ||
5439 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
5440 | /* | |
5441 | * find the next dirty page in the UPL | |
5442 | * this will become the first page in the | |
5443 | * next I/O to generate | |
5444 | */ | |
5445 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
5446 | if (upl_dirty_page(pl, start_pg)) | |
5447 | break; | |
5448 | if (upl_page_present(pl, start_pg)) | |
5449 | /* | |
5450 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
5451 | * just release these unchanged since we're not going | |
5452 | * to steal them or change their state | |
5453 | */ | |
5454 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
5455 | } | |
5456 | if (start_pg >= pages_in_upl) | |
5457 | /* | |
5458 | * done... no more dirty pages to push | |
5459 | */ | |
5460 | break; | |
5461 | if (start_pg > last_pg) | |
5462 | /* | |
5463 | * skipped over some non-dirty pages | |
5464 | */ | |
5465 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
5466 | ||
5467 | /* | |
5468 | * find a range of dirty pages to write | |
5469 | */ | |
5470 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
5471 | if (!upl_dirty_page(pl, last_pg)) | |
5472 | break; | |
5473 | } | |
5474 | upl_offset = start_pg * PAGE_SIZE; | |
5475 | ||
5476 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
5477 | ||
5478 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; | |
5479 | ||
5480 | if ( !(flags & IO_SYNC)) | |
5481 | io_flags |= CL_ASYNC; | |
5482 | ||
5483 | if (flags & IO_CLOSE) | |
5484 | io_flags |= CL_CLOSE; | |
5485 | ||
5486 | if (flags & IO_NOCACHE) | |
5487 | io_flags |= CL_NOCACHE; | |
5488 | ||
5489 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
5490 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
5491 | ||
5492 | if (error == 0 && retval) | |
5493 | error = retval; | |
5494 | ||
5495 | size -= io_size; | |
5496 | } | |
5497 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); | |
5498 | ||
5499 | return(error); | |
5500 | } | |
5501 | ||
5502 | ||
5503 | /* | |
5504 | * sparse_cluster_switch is called with the write behind lock held | |
5505 | */ | |
5506 | static void | |
5507 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) | |
5508 | { | |
5509 | int cl_index; | |
5510 | ||
5511 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0); | |
5512 | ||
5513 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5514 | int flags; | |
5515 | struct cl_extent cl; | |
5516 | ||
5517 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
5518 | ||
5519 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { | |
5520 | if (flags & UPL_POP_DIRTY) { | |
5521 | cl.e_addr = cl.b_addr + 1; | |
5522 | ||
5523 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); | |
5524 | } | |
5525 | } | |
5526 | } | |
5527 | } | |
5528 | wbp->cl_number = 0; | |
5529 | ||
5530 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0); | |
5531 | } | |
5532 | ||
5533 | ||
5534 | /* | |
5535 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is | |
5536 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
5537 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
5538 | */ | |
5539 | static void | |
5540 | sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5541 | { | |
5542 | struct cl_extent cl; | |
5543 | off_t offset; | |
5544 | u_int length; | |
5545 | ||
5546 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0); | |
5547 | ||
5548 | if (push_flag & PUSH_ALL) | |
5549 | vfs_drt_control(scmap, 1); | |
5550 | ||
5551 | for (;;) { | |
5552 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) | |
5553 | break; | |
5554 | ||
5555 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); | |
5556 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
5557 | ||
5558 | cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); | |
5559 | ||
5560 | if ( !(push_flag & PUSH_ALL) ) | |
5561 | break; | |
5562 | } | |
5563 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); | |
5564 | } | |
5565 | ||
5566 | ||
5567 | /* | |
5568 | * sparse_cluster_add is called with the write behind lock held | |
5569 | */ | |
5570 | static void | |
5571 | sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) | |
5572 | { | |
5573 | u_int new_dirty; | |
5574 | u_int length; | |
5575 | off_t offset; | |
5576 | ||
5577 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); | |
5578 | ||
5579 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
5580 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
5581 | ||
5582 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { | |
5583 | /* | |
5584 | * no room left in the map | |
5585 | * only a partial update was done | |
5586 | * push out some pages and try again | |
5587 | */ | |
5588 | sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); | |
5589 | ||
5590 | offset += (new_dirty * PAGE_SIZE_64); | |
5591 | length -= (new_dirty * PAGE_SIZE); | |
5592 | } | |
5593 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); | |
5594 | } | |
5595 | ||
5596 | ||
5597 | static int | |
5598 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5599 | { | |
5600 | upl_page_info_t *pl; | |
5601 | upl_t upl; | |
5602 | addr64_t ubc_paddr; | |
5603 | kern_return_t kret; | |
5604 | int error = 0; | |
5605 | int did_read = 0; | |
5606 | int abort_flags; | |
5607 | int upl_flags; | |
5608 | int bflag; | |
5609 | ||
5610 | if (flags & IO_PASSIVE) | |
5611 | bflag = CL_PASSIVE; | |
5612 | else | |
5613 | bflag = 0; | |
5614 | ||
5615 | if (flags & IO_NOCACHE) | |
5616 | bflag |= CL_NOCACHE; | |
5617 | ||
5618 | upl_flags = UPL_SET_LITE; | |
5619 | ||
5620 | if ( !(flags & CL_READ) ) { | |
5621 | /* | |
5622 | * "write" operation: let the UPL subsystem know | |
5623 | * that we intend to modify the buffer cache pages | |
5624 | * we're gathering. | |
5625 | */ | |
5626 | upl_flags |= UPL_WILL_MODIFY; | |
5627 | } else { | |
5628 | /* | |
5629 | * indicate that there is no need to pull the | |
5630 | * mapping for this page... we're only going | |
5631 | * to read from it, not modify it. | |
5632 | */ | |
5633 | upl_flags |= UPL_FILE_IO; | |
5634 | } | |
5635 | kret = ubc_create_upl(vp, | |
5636 | uio->uio_offset & ~PAGE_MASK_64, | |
5637 | PAGE_SIZE, | |
5638 | &upl, | |
5639 | &pl, | |
5640 | upl_flags); | |
5641 | ||
5642 | if (kret != KERN_SUCCESS) | |
5643 | return(EINVAL); | |
5644 | ||
5645 | if (!upl_valid_page(pl, 0)) { | |
5646 | /* | |
5647 | * issue a synchronous read to cluster_io | |
5648 | */ | |
5649 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
5650 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
5651 | if (error) { | |
5652 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
5653 | ||
5654 | return(error); | |
5655 | } | |
5656 | did_read = 1; | |
5657 | } | |
5658 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); | |
5659 | ||
5660 | /* | |
5661 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
5662 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
5663 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
5664 | * way to do so without exporting them to kexts as well. | |
5665 | */ | |
5666 | if (flags & CL_READ) | |
5667 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ | |
5668 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
5669 | else | |
5670 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ | |
5671 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
5672 | ||
5673 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
5674 | /* | |
5675 | * issue a synchronous write to cluster_io | |
5676 | */ | |
5677 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
5678 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
5679 | } | |
5680 | if (error == 0) | |
5681 | uio_update(uio, (user_size_t)xsize); | |
5682 | ||
5683 | if (did_read) | |
5684 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
5685 | else | |
5686 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
5687 | ||
5688 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
5689 | ||
5690 | return (error); | |
5691 | } | |
5692 | ||
5693 | ||
5694 | ||
5695 | int | |
5696 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) | |
5697 | { | |
5698 | int pg_offset; | |
5699 | int pg_index; | |
5700 | int csize; | |
5701 | int segflg; | |
5702 | int retval = 0; | |
5703 | int xsize; | |
5704 | upl_page_info_t *pl; | |
5705 | ||
5706 | xsize = *io_resid; | |
5707 | ||
5708 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
5709 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); | |
5710 | ||
5711 | segflg = uio->uio_segflg; | |
5712 | ||
5713 | switch(segflg) { | |
5714 | ||
5715 | case UIO_USERSPACE32: | |
5716 | case UIO_USERISPACE32: | |
5717 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5718 | break; | |
5719 | ||
5720 | case UIO_USERSPACE: | |
5721 | case UIO_USERISPACE: | |
5722 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5723 | break; | |
5724 | ||
5725 | case UIO_USERSPACE64: | |
5726 | case UIO_USERISPACE64: | |
5727 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5728 | break; | |
5729 | ||
5730 | case UIO_SYSSPACE: | |
5731 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5732 | break; | |
5733 | ||
5734 | } | |
5735 | pl = ubc_upl_pageinfo(upl); | |
5736 | ||
5737 | pg_index = upl_offset / PAGE_SIZE; | |
5738 | pg_offset = upl_offset & PAGE_MASK; | |
5739 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
5740 | ||
5741 | while (xsize && retval == 0) { | |
5742 | addr64_t paddr; | |
5743 | ||
5744 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; | |
5745 | ||
5746 | retval = uiomove64(paddr, csize, uio); | |
5747 | ||
5748 | pg_index += 1; | |
5749 | pg_offset = 0; | |
5750 | xsize -= csize; | |
5751 | csize = min(PAGE_SIZE, xsize); | |
5752 | } | |
5753 | *io_resid = xsize; | |
5754 | ||
5755 | uio->uio_segflg = segflg; | |
5756 | ||
5757 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
5758 | (int)uio->uio_offset, xsize, retval, segflg, 0); | |
5759 | ||
5760 | return (retval); | |
5761 | } | |
5762 | ||
5763 | ||
5764 | int | |
5765 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) | |
5766 | { | |
5767 | ||
5768 | return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); | |
5769 | } | |
5770 | ||
5771 | ||
5772 | static int | |
5773 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
5774 | { | |
5775 | int segflg; | |
5776 | int io_size; | |
5777 | int xsize; | |
5778 | int start_offset; | |
5779 | int retval = 0; | |
5780 | memory_object_control_t control; | |
5781 | ||
5782 | io_size = *io_resid; | |
5783 | ||
5784 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
5785 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); | |
5786 | ||
5787 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
5788 | ||
5789 | if (control == MEMORY_OBJECT_CONTROL_NULL) { | |
5790 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
5791 | (int)uio->uio_offset, io_size, retval, 3, 0); | |
5792 | ||
5793 | return(0); | |
5794 | } | |
5795 | segflg = uio->uio_segflg; | |
5796 | ||
5797 | switch(segflg) { | |
5798 | ||
5799 | case UIO_USERSPACE32: | |
5800 | case UIO_USERISPACE32: | |
5801 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5802 | break; | |
5803 | ||
5804 | case UIO_USERSPACE64: | |
5805 | case UIO_USERISPACE64: | |
5806 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5807 | break; | |
5808 | ||
5809 | case UIO_USERSPACE: | |
5810 | case UIO_USERISPACE: | |
5811 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5812 | break; | |
5813 | ||
5814 | case UIO_SYSSPACE: | |
5815 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5816 | break; | |
5817 | } | |
5818 | ||
5819 | if ( (io_size = *io_resid) ) { | |
5820 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
5821 | xsize = uio_resid(uio); | |
5822 | ||
5823 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, | |
5824 | start_offset, io_size, mark_dirty, take_reference); | |
5825 | xsize -= uio_resid(uio); | |
5826 | io_size -= xsize; | |
5827 | } | |
5828 | uio->uio_segflg = segflg; | |
5829 | *io_resid = io_size; | |
5830 | ||
5831 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
5832 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); | |
5833 | ||
5834 | return(retval); | |
5835 | } | |
5836 | ||
5837 | ||
5838 | int | |
5839 | is_file_clean(vnode_t vp, off_t filesize) | |
5840 | { | |
5841 | off_t f_offset; | |
5842 | int flags; | |
5843 | int total_dirty = 0; | |
5844 | ||
5845 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
5846 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { | |
5847 | if (flags & UPL_POP_DIRTY) { | |
5848 | total_dirty++; | |
5849 | } | |
5850 | } | |
5851 | } | |
5852 | if (total_dirty) | |
5853 | return(EINVAL); | |
5854 | ||
5855 | return (0); | |
5856 | } | |
5857 | ||
5858 | ||
5859 | ||
5860 | /* | |
5861 | * Dirty region tracking/clustering mechanism. | |
5862 | * | |
5863 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
5864 | * dirty regions within a larger space (file). It is primarily intended to | |
5865 | * support clustering in large files with many dirty areas. | |
5866 | * | |
5867 | * The implementation assumes that the dirty regions are pages. | |
5868 | * | |
5869 | * To represent dirty pages within the file, we store bit vectors in a | |
5870 | * variable-size circular hash. | |
5871 | */ | |
5872 | ||
5873 | /* | |
5874 | * Bitvector size. This determines the number of pages we group in a | |
5875 | * single hashtable entry. Each hashtable entry is aligned to this | |
5876 | * size within the file. | |
5877 | */ | |
5878 | #define DRT_BITVECTOR_PAGES 256 | |
5879 | ||
5880 | /* | |
5881 | * File offset handling. | |
5882 | * | |
5883 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; | |
5884 | * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1) | |
5885 | */ | |
5886 | #define DRT_ADDRESS_MASK (~((1 << 20) - 1)) | |
5887 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
5888 | ||
5889 | /* | |
5890 | * Hashtable address field handling. | |
5891 | * | |
5892 | * The low-order bits of the hashtable address are used to conserve | |
5893 | * space. | |
5894 | * | |
5895 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
5896 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
5897 | * to indicate that the bucket is actually unoccupied. | |
5898 | */ | |
5899 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
5900 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
5901 | do { \ | |
5902 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5903 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
5904 | } while (0) | |
5905 | #define DRT_HASH_COUNT_MASK 0x1ff | |
5906 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
5907 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
5908 | do { \ | |
5909 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5910 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
5911 | } while (0) | |
5912 | #define DRT_HASH_CLEAR(scm, i) \ | |
5913 | do { \ | |
5914 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
5915 | } while (0) | |
5916 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
5917 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
5918 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
5919 | do { \ | |
5920 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
5921 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
5922 | } while(0); | |
5923 | ||
5924 | ||
5925 | /* | |
5926 | * Hash table moduli. | |
5927 | * | |
5928 | * Since the hashtable entry's size is dependent on the size of | |
5929 | * the bitvector, and since the hashtable size is constrained to | |
5930 | * both being prime and fitting within the desired allocation | |
5931 | * size, these values need to be manually determined. | |
5932 | * | |
5933 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
5934 | * | |
5935 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
5936 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
5937 | */ | |
5938 | #define DRT_HASH_SMALL_MODULUS 23 | |
5939 | #define DRT_HASH_LARGE_MODULUS 401 | |
5940 | ||
5941 | /* | |
5942 | * Physical memory required before the large hash modulus is permitted. | |
5943 | * | |
5944 | * On small memory systems, the large hash modulus can lead to phsyical | |
5945 | * memory starvation, so we avoid using it there. | |
5946 | */ | |
5947 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
5948 | ||
5949 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ | |
5950 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
5951 | ||
5952 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
5953 | ||
5954 | /* | |
5955 | * Hashtable bitvector handling. | |
5956 | * | |
5957 | * Bitvector fields are 32 bits long. | |
5958 | */ | |
5959 | ||
5960 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
5961 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
5962 | ||
5963 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
5964 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
5965 | ||
5966 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
5967 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
5968 | ||
5969 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
5970 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5971 | ||
5972 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
5973 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
5974 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
5975 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5976 | ||
5977 | ||
5978 | ||
5979 | /* | |
5980 | * Hashtable entry. | |
5981 | */ | |
5982 | struct vfs_drt_hashentry { | |
5983 | u_int64_t dhe_control; | |
5984 | u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
5985 | }; | |
5986 | ||
5987 | /* | |
5988 | * Dirty Region Tracking structure. | |
5989 | * | |
5990 | * The hashtable is allocated entirely inside the DRT structure. | |
5991 | * | |
5992 | * The hash is a simple circular prime modulus arrangement, the structure | |
5993 | * is resized from small to large if it overflows. | |
5994 | */ | |
5995 | ||
5996 | struct vfs_drt_clustermap { | |
5997 | u_int32_t scm_magic; /* sanity/detection */ | |
5998 | #define DRT_SCM_MAGIC 0x12020003 | |
5999 | u_int32_t scm_modulus; /* current ring size */ | |
6000 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
6001 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
6002 | u_int32_t scm_iskips; /* number of slot skips */ | |
6003 | ||
6004 | struct vfs_drt_hashentry scm_hashtable[0]; | |
6005 | }; | |
6006 | ||
6007 | ||
6008 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
6009 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
6010 | ||
6011 | /* | |
6012 | * Debugging codes and arguments. | |
6013 | */ | |
6014 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
6015 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
6016 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
6017 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
6018 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
6019 | * dirty */ | |
6020 | /* 0, setcount */ | |
6021 | /* 1 (clean, no map) */ | |
6022 | /* 2 (map alloc fail) */ | |
6023 | /* 3, resid (partial) */ | |
6024 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
6025 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
6026 | * lastclean, iskips */ | |
6027 | ||
6028 | ||
6029 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); | |
6030 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6031 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6032 | u_int64_t offset, int *indexp); | |
6033 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6034 | u_int64_t offset, | |
6035 | int *indexp, | |
6036 | int recursed); | |
6037 | static kern_return_t vfs_drt_do_mark_pages( | |
6038 | void **cmapp, | |
6039 | u_int64_t offset, | |
6040 | u_int length, | |
6041 | u_int *setcountp, | |
6042 | int dirty); | |
6043 | static void vfs_drt_trace( | |
6044 | struct vfs_drt_clustermap *cmap, | |
6045 | int code, | |
6046 | int arg1, | |
6047 | int arg2, | |
6048 | int arg3, | |
6049 | int arg4); | |
6050 | ||
6051 | ||
6052 | /* | |
6053 | * Allocate and initialise a sparse cluster map. | |
6054 | * | |
6055 | * Will allocate a new map, resize or compact an existing map. | |
6056 | * | |
6057 | * XXX we should probably have at least one intermediate map size, | |
6058 | * as the 1:16 ratio seems a bit drastic. | |
6059 | */ | |
6060 | static kern_return_t | |
6061 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6062 | { | |
6063 | struct vfs_drt_clustermap *cmap, *ocmap; | |
6064 | kern_return_t kret; | |
6065 | u_int64_t offset; | |
6066 | u_int32_t i; | |
6067 | int nsize, active_buckets, index, copycount; | |
6068 | ||
6069 | ocmap = NULL; | |
6070 | if (cmapp != NULL) | |
6071 | ocmap = *cmapp; | |
6072 | ||
6073 | /* | |
6074 | * Decide on the size of the new map. | |
6075 | */ | |
6076 | if (ocmap == NULL) { | |
6077 | nsize = DRT_HASH_SMALL_MODULUS; | |
6078 | } else { | |
6079 | /* count the number of active buckets in the old map */ | |
6080 | active_buckets = 0; | |
6081 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6082 | if (!DRT_HASH_VACANT(ocmap, i) && | |
6083 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
6084 | active_buckets++; | |
6085 | } | |
6086 | /* | |
6087 | * If we're currently using the small allocation, check to | |
6088 | * see whether we should grow to the large one. | |
6089 | */ | |
6090 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
6091 | /* | |
6092 | * If the ring is nearly full and we are allowed to | |
6093 | * use the large modulus, upgrade. | |
6094 | */ | |
6095 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6096 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
6097 | nsize = DRT_HASH_LARGE_MODULUS; | |
6098 | } else { | |
6099 | nsize = DRT_HASH_SMALL_MODULUS; | |
6100 | } | |
6101 | } else { | |
6102 | /* already using the large modulus */ | |
6103 | nsize = DRT_HASH_LARGE_MODULUS; | |
6104 | /* | |
6105 | * If the ring is completely full, there's | |
6106 | * nothing useful for us to do. Behave as | |
6107 | * though we had compacted into the new | |
6108 | * array and return. | |
6109 | */ | |
6110 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
6111 | return(KERN_SUCCESS); | |
6112 | } | |
6113 | } | |
6114 | ||
6115 | /* | |
6116 | * Allocate and initialise the new map. | |
6117 | */ | |
6118 | ||
6119 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
6120 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6121 | if (kret != KERN_SUCCESS) | |
6122 | return(kret); | |
6123 | cmap->scm_magic = DRT_SCM_MAGIC; | |
6124 | cmap->scm_modulus = nsize; | |
6125 | cmap->scm_buckets = 0; | |
6126 | cmap->scm_lastclean = 0; | |
6127 | cmap->scm_iskips = 0; | |
6128 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6129 | DRT_HASH_CLEAR(cmap, i); | |
6130 | DRT_HASH_VACATE(cmap, i); | |
6131 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6132 | } | |
6133 | ||
6134 | /* | |
6135 | * If there's an old map, re-hash entries from it into the new map. | |
6136 | */ | |
6137 | copycount = 0; | |
6138 | if (ocmap != NULL) { | |
6139 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6140 | /* skip empty buckets */ | |
6141 | if (DRT_HASH_VACANT(ocmap, i) || | |
6142 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
6143 | continue; | |
6144 | /* get new index */ | |
6145 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
6146 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
6147 | if (kret != KERN_SUCCESS) { | |
6148 | /* XXX need to bail out gracefully here */ | |
6149 | panic("vfs_drt: new cluster map mysteriously too small"); | |
6150 | index = 0; | |
6151 | } | |
6152 | /* copy */ | |
6153 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
6154 | copycount++; | |
6155 | } | |
6156 | } | |
6157 | ||
6158 | /* log what we've done */ | |
6159 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
6160 | ||
6161 | /* | |
6162 | * It's important to ensure that *cmapp always points to | |
6163 | * a valid map, so we must overwrite it before freeing | |
6164 | * the old map. | |
6165 | */ | |
6166 | *cmapp = cmap; | |
6167 | if (ocmap != NULL) { | |
6168 | /* emit stats into trace buffer */ | |
6169 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
6170 | ocmap->scm_modulus, | |
6171 | ocmap->scm_buckets, | |
6172 | ocmap->scm_lastclean, | |
6173 | ocmap->scm_iskips); | |
6174 | ||
6175 | vfs_drt_free_map(ocmap); | |
6176 | } | |
6177 | return(KERN_SUCCESS); | |
6178 | } | |
6179 | ||
6180 | ||
6181 | /* | |
6182 | * Free a sparse cluster map. | |
6183 | */ | |
6184 | static kern_return_t | |
6185 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
6186 | { | |
6187 | kmem_free(kernel_map, (vm_offset_t)cmap, | |
6188 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6189 | return(KERN_SUCCESS); | |
6190 | } | |
6191 | ||
6192 | ||
6193 | /* | |
6194 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
6195 | */ | |
6196 | static kern_return_t | |
6197 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
6198 | { | |
6199 | int index; | |
6200 | u_int32_t i; | |
6201 | ||
6202 | offset = DRT_ALIGN_ADDRESS(offset); | |
6203 | index = DRT_HASH(cmap, offset); | |
6204 | ||
6205 | /* traverse the hashtable */ | |
6206 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6207 | ||
6208 | /* | |
6209 | * If the slot is vacant, we can stop. | |
6210 | */ | |
6211 | if (DRT_HASH_VACANT(cmap, index)) | |
6212 | break; | |
6213 | ||
6214 | /* | |
6215 | * If the address matches our offset, we have success. | |
6216 | */ | |
6217 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
6218 | *indexp = index; | |
6219 | return(KERN_SUCCESS); | |
6220 | } | |
6221 | ||
6222 | /* | |
6223 | * Move to the next slot, try again. | |
6224 | */ | |
6225 | index = DRT_HASH_NEXT(cmap, index); | |
6226 | } | |
6227 | /* | |
6228 | * It's not there. | |
6229 | */ | |
6230 | return(KERN_FAILURE); | |
6231 | } | |
6232 | ||
6233 | /* | |
6234 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
6235 | * one yet, allocate one and populate the address field. Note that it will | |
6236 | * not have a nonzero page count and thus will still technically be free, so | |
6237 | * in the case where we are called to clean pages, the slot will remain free. | |
6238 | */ | |
6239 | static kern_return_t | |
6240 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
6241 | { | |
6242 | struct vfs_drt_clustermap *cmap; | |
6243 | kern_return_t kret; | |
6244 | u_int32_t index; | |
6245 | u_int32_t i; | |
6246 | ||
6247 | cmap = *cmapp; | |
6248 | ||
6249 | /* look for an existing entry */ | |
6250 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
6251 | if (kret == KERN_SUCCESS) | |
6252 | return(kret); | |
6253 | ||
6254 | /* need to allocate an entry */ | |
6255 | offset = DRT_ALIGN_ADDRESS(offset); | |
6256 | index = DRT_HASH(cmap, offset); | |
6257 | ||
6258 | /* scan from the index forwards looking for a vacant slot */ | |
6259 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6260 | /* slot vacant? */ | |
6261 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
6262 | cmap->scm_buckets++; | |
6263 | if (index < cmap->scm_lastclean) | |
6264 | cmap->scm_lastclean = index; | |
6265 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
6266 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
6267 | DRT_BITVECTOR_CLEAR(cmap, index); | |
6268 | *indexp = index; | |
6269 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
6270 | return(KERN_SUCCESS); | |
6271 | } | |
6272 | cmap->scm_iskips += i; | |
6273 | index = DRT_HASH_NEXT(cmap, index); | |
6274 | } | |
6275 | ||
6276 | /* | |
6277 | * We haven't found a vacant slot, so the map is full. If we're not | |
6278 | * already recursed, try reallocating/compacting it. | |
6279 | */ | |
6280 | if (recursed) | |
6281 | return(KERN_FAILURE); | |
6282 | kret = vfs_drt_alloc_map(cmapp); | |
6283 | if (kret == KERN_SUCCESS) { | |
6284 | /* now try to insert again */ | |
6285 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
6286 | } | |
6287 | return(kret); | |
6288 | } | |
6289 | ||
6290 | /* | |
6291 | * Implementation of set dirty/clean. | |
6292 | * | |
6293 | * In the 'clean' case, not finding a map is OK. | |
6294 | */ | |
6295 | static kern_return_t | |
6296 | vfs_drt_do_mark_pages( | |
6297 | void **private, | |
6298 | u_int64_t offset, | |
6299 | u_int length, | |
6300 | u_int *setcountp, | |
6301 | int dirty) | |
6302 | { | |
6303 | struct vfs_drt_clustermap *cmap, **cmapp; | |
6304 | kern_return_t kret; | |
6305 | int i, index, pgoff, pgcount, setcount, ecount; | |
6306 | ||
6307 | cmapp = (struct vfs_drt_clustermap **)private; | |
6308 | cmap = *cmapp; | |
6309 | ||
6310 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
6311 | ||
6312 | if (setcountp != NULL) | |
6313 | *setcountp = 0; | |
6314 | ||
6315 | /* allocate a cluster map if we don't already have one */ | |
6316 | if (cmap == NULL) { | |
6317 | /* no cluster map, nothing to clean */ | |
6318 | if (!dirty) { | |
6319 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
6320 | return(KERN_SUCCESS); | |
6321 | } | |
6322 | kret = vfs_drt_alloc_map(cmapp); | |
6323 | if (kret != KERN_SUCCESS) { | |
6324 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
6325 | return(kret); | |
6326 | } | |
6327 | } | |
6328 | setcount = 0; | |
6329 | ||
6330 | /* | |
6331 | * Iterate over the length of the region. | |
6332 | */ | |
6333 | while (length > 0) { | |
6334 | /* | |
6335 | * Get the hashtable index for this offset. | |
6336 | * | |
6337 | * XXX this will add blank entries if we are clearing a range | |
6338 | * that hasn't been dirtied. | |
6339 | */ | |
6340 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
6341 | cmap = *cmapp; /* may have changed! */ | |
6342 | /* this may be a partial-success return */ | |
6343 | if (kret != KERN_SUCCESS) { | |
6344 | if (setcountp != NULL) | |
6345 | *setcountp = setcount; | |
6346 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
6347 | ||
6348 | return(kret); | |
6349 | } | |
6350 | ||
6351 | /* | |
6352 | * Work out how many pages we're modifying in this | |
6353 | * hashtable entry. | |
6354 | */ | |
6355 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
6356 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
6357 | ||
6358 | /* | |
6359 | * Iterate over pages, dirty/clearing as we go. | |
6360 | */ | |
6361 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
6362 | for (i = 0; i < pgcount; i++) { | |
6363 | if (dirty) { | |
6364 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6365 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
6366 | ecount++; | |
6367 | setcount++; | |
6368 | } | |
6369 | } else { | |
6370 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6371 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
6372 | ecount--; | |
6373 | setcount++; | |
6374 | } | |
6375 | } | |
6376 | } | |
6377 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
6378 | ||
6379 | offset += pgcount * PAGE_SIZE; | |
6380 | length -= pgcount * PAGE_SIZE; | |
6381 | } | |
6382 | if (setcountp != NULL) | |
6383 | *setcountp = setcount; | |
6384 | ||
6385 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
6386 | ||
6387 | return(KERN_SUCCESS); | |
6388 | } | |
6389 | ||
6390 | /* | |
6391 | * Mark a set of pages as dirty/clean. | |
6392 | * | |
6393 | * This is a public interface. | |
6394 | * | |
6395 | * cmapp | |
6396 | * Pointer to storage suitable for holding a pointer. Note that | |
6397 | * this must either be NULL or a value set by this function. | |
6398 | * | |
6399 | * size | |
6400 | * Current file size in bytes. | |
6401 | * | |
6402 | * offset | |
6403 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
6404 | * page-aligned. | |
6405 | * | |
6406 | * length | |
6407 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
6408 | * | |
6409 | * setcountp | |
6410 | * Number of pages newly marked dirty by this call (optional). | |
6411 | * | |
6412 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
6413 | */ | |
6414 | static kern_return_t | |
6415 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) | |
6416 | { | |
6417 | /* XXX size unused, drop from interface */ | |
6418 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
6419 | } | |
6420 | ||
6421 | #if 0 | |
6422 | static kern_return_t | |
6423 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
6424 | { | |
6425 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
6426 | } | |
6427 | #endif | |
6428 | ||
6429 | /* | |
6430 | * Get a cluster of dirty pages. | |
6431 | * | |
6432 | * This is a public interface. | |
6433 | * | |
6434 | * cmapp | |
6435 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
6436 | * be NULL or a value set by drt_mark_pages. | |
6437 | * | |
6438 | * offsetp | |
6439 | * Returns the byte offset into the file of the first page in the cluster. | |
6440 | * | |
6441 | * lengthp | |
6442 | * Returns the length in bytes of the cluster of dirty pages. | |
6443 | * | |
6444 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
6445 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
6446 | * be released if there are no more dirty pages left in the map | |
6447 | * | |
6448 | */ | |
6449 | static kern_return_t | |
6450 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
6451 | { | |
6452 | struct vfs_drt_clustermap *cmap; | |
6453 | u_int64_t offset; | |
6454 | u_int length; | |
6455 | u_int32_t j; | |
6456 | int index, i, fs, ls; | |
6457 | ||
6458 | /* sanity */ | |
6459 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6460 | return(KERN_FAILURE); | |
6461 | cmap = *cmapp; | |
6462 | ||
6463 | /* walk the hashtable */ | |
6464 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
6465 | index = DRT_HASH(cmap, offset); | |
6466 | ||
6467 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
6468 | continue; | |
6469 | ||
6470 | /* scan the bitfield for a string of bits */ | |
6471 | fs = -1; | |
6472 | ||
6473 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6474 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
6475 | fs = i; | |
6476 | break; | |
6477 | } | |
6478 | } | |
6479 | if (fs == -1) { | |
6480 | /* didn't find any bits set */ | |
6481 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
6482 | } | |
6483 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
6484 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
6485 | break; | |
6486 | } | |
6487 | ||
6488 | /* compute offset and length, mark pages clean */ | |
6489 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
6490 | length = ls * PAGE_SIZE; | |
6491 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
6492 | cmap->scm_lastclean = index; | |
6493 | ||
6494 | /* return successful */ | |
6495 | *offsetp = (off_t)offset; | |
6496 | *lengthp = length; | |
6497 | ||
6498 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
6499 | return(KERN_SUCCESS); | |
6500 | } | |
6501 | /* | |
6502 | * We didn't find anything... hashtable is empty | |
6503 | * emit stats into trace buffer and | |
6504 | * then free it | |
6505 | */ | |
6506 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6507 | cmap->scm_modulus, | |
6508 | cmap->scm_buckets, | |
6509 | cmap->scm_lastclean, | |
6510 | cmap->scm_iskips); | |
6511 | ||
6512 | vfs_drt_free_map(cmap); | |
6513 | *cmapp = NULL; | |
6514 | ||
6515 | return(KERN_FAILURE); | |
6516 | } | |
6517 | ||
6518 | ||
6519 | static kern_return_t | |
6520 | vfs_drt_control(void **cmapp, int op_type) | |
6521 | { | |
6522 | struct vfs_drt_clustermap *cmap; | |
6523 | ||
6524 | /* sanity */ | |
6525 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6526 | return(KERN_FAILURE); | |
6527 | cmap = *cmapp; | |
6528 | ||
6529 | switch (op_type) { | |
6530 | case 0: | |
6531 | /* emit stats into trace buffer */ | |
6532 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6533 | cmap->scm_modulus, | |
6534 | cmap->scm_buckets, | |
6535 | cmap->scm_lastclean, | |
6536 | cmap->scm_iskips); | |
6537 | ||
6538 | vfs_drt_free_map(cmap); | |
6539 | *cmapp = NULL; | |
6540 | break; | |
6541 | ||
6542 | case 1: | |
6543 | cmap->scm_lastclean = 0; | |
6544 | break; | |
6545 | } | |
6546 | return(KERN_SUCCESS); | |
6547 | } | |
6548 | ||
6549 | ||
6550 | ||
6551 | /* | |
6552 | * Emit a summary of the state of the clustermap into the trace buffer | |
6553 | * along with some caller-provided data. | |
6554 | */ | |
6555 | #if KDEBUG | |
6556 | static void | |
6557 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) | |
6558 | { | |
6559 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
6560 | } | |
6561 | #else | |
6562 | static void | |
6563 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
6564 | __unused int arg1, __unused int arg2, __unused int arg3, | |
6565 | __unused int arg4) | |
6566 | { | |
6567 | } | |
6568 | #endif | |
6569 | ||
6570 | #if 0 | |
6571 | /* | |
6572 | * Perform basic sanity check on the hash entry summary count | |
6573 | * vs. the actual bits set in the entry. | |
6574 | */ | |
6575 | static void | |
6576 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
6577 | { | |
6578 | int index, i; | |
6579 | int bits_on; | |
6580 | ||
6581 | for (index = 0; index < cmap->scm_modulus; index++) { | |
6582 | if (DRT_HASH_VACANT(cmap, index)) | |
6583 | continue; | |
6584 | ||
6585 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6586 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
6587 | bits_on++; | |
6588 | } | |
6589 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
6590 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
6591 | } | |
6592 | } | |
6593 | #endif |