]>
Commit | Line | Data |
---|---|---|
1 | ||
2 | /* | |
3 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * The contents of this file constitute Original Code as defined in and | |
8 | * are subject to the Apple Public Source License Version 1.1 (the | |
9 | * "License"). You may not use this file except in compliance with the | |
10 | * License. Please obtain a copy of the License at | |
11 | * http://www.apple.com/publicsource and read it before using this file. | |
12 | * | |
13 | * This Original Code and all software distributed under the License are | |
14 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
17 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
18 | * License for the specific language governing rights and limitations | |
19 | * under the License. | |
20 | * | |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | /* | |
24 | * @OSF_COPYRIGHT@ | |
25 | */ | |
26 | /* | |
27 | * Mach Operating System | |
28 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
29 | * All Rights Reserved. | |
30 | * | |
31 | * Permission to use, copy, modify and distribute this software and its | |
32 | * documentation is hereby granted, provided that both the copyright | |
33 | * notice and this permission notice appear in all copies of the | |
34 | * software, derivative works or modified versions, and any portions | |
35 | * thereof, and that both notices appear in supporting documentation. | |
36 | * | |
37 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
38 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
39 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
40 | * | |
41 | * Carnegie Mellon requests users of this software to return to | |
42 | * | |
43 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
44 | * School of Computer Science | |
45 | * Carnegie Mellon University | |
46 | * Pittsburgh PA 15213-3890 | |
47 | * | |
48 | * any improvements or extensions that they make and grant Carnegie Mellon | |
49 | * the rights to redistribute these changes. | |
50 | */ | |
51 | ||
52 | /* | |
53 | * Default Pager. | |
54 | * Paging File Management. | |
55 | */ | |
56 | ||
57 | #include <mach/memory_object_control.h> | |
58 | #include <mach/memory_object_server.h> | |
59 | #include "default_pager_internal.h" | |
60 | #include <default_pager/default_pager_alerts.h> | |
61 | #include <ipc/ipc_port.h> | |
62 | #include <ipc/ipc_space.h> | |
63 | #include <kern/queue.h> | |
64 | #include <kern/counters.h> | |
65 | #include <kern/sched_prim.h> | |
66 | #include <vm/vm_kern.h> | |
67 | #include <vm/vm_pageout.h> | |
68 | /* CDY CDY */ | |
69 | #include <vm/vm_map.h> | |
70 | ||
71 | /* | |
72 | * ALLOC_STRIDE... the maximum number of bytes allocated from | |
73 | * a swap file before moving on to the next swap file... if | |
74 | * all swap files reside on a single disk, this value should | |
75 | * be very large (this is the default assumption)... if the | |
76 | * swap files are spread across multiple disks, than this value | |
77 | * should be small (128 * 1024)... | |
78 | * | |
79 | * This should be determined dynamically in the future | |
80 | */ | |
81 | ||
82 | #define ALLOC_STRIDE (1024 * 1024 * 1024) | |
83 | int physical_transfer_cluster_count = 0; | |
84 | ||
85 | #define VM_SUPER_CLUSTER 0x40000 | |
86 | #define VM_SUPER_PAGES 64 | |
87 | ||
88 | /* | |
89 | * 0 means no shift to pages, so == 1 page/cluster. 1 would mean | |
90 | * 2 pages/cluster, 2 means 4 pages/cluster, and so on. | |
91 | */ | |
92 | #define VSTRUCT_DEF_CLSHIFT 2 | |
93 | int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT; | |
94 | int default_pager_clsize = 0; | |
95 | ||
96 | /* statistics */ | |
97 | unsigned int clustered_writes[VM_SUPER_PAGES+1]; | |
98 | unsigned int clustered_reads[VM_SUPER_PAGES+1]; | |
99 | ||
100 | /* | |
101 | * Globals used for asynchronous paging operations: | |
102 | * vs_async_list: head of list of to-be-completed I/O ops | |
103 | * async_num_queued: number of pages completed, but not yet | |
104 | * processed by async thread. | |
105 | * async_requests_out: number of pages of requests not completed. | |
106 | */ | |
107 | ||
108 | #if 0 | |
109 | struct vs_async *vs_async_list; | |
110 | int async_num_queued; | |
111 | int async_requests_out; | |
112 | #endif | |
113 | ||
114 | ||
115 | #define VS_ASYNC_REUSE 1 | |
116 | struct vs_async *vs_async_free_list; | |
117 | ||
118 | mutex_t default_pager_async_lock; /* Protects globals above */ | |
119 | ||
120 | ||
121 | int vs_alloc_async_failed = 0; /* statistics */ | |
122 | int vs_alloc_async_count = 0; /* statistics */ | |
123 | struct vs_async *vs_alloc_async(void); /* forward */ | |
124 | void vs_free_async(struct vs_async *vsa); /* forward */ | |
125 | ||
126 | ||
127 | #define VS_ALLOC_ASYNC() vs_alloc_async() | |
128 | #define VS_FREE_ASYNC(vsa) vs_free_async(vsa) | |
129 | ||
130 | #define VS_ASYNC_LOCK() mutex_lock(&default_pager_async_lock) | |
131 | #define VS_ASYNC_UNLOCK() mutex_unlock(&default_pager_async_lock) | |
132 | #define VS_ASYNC_LOCK_INIT() mutex_init(&default_pager_async_lock, \ | |
133 | ETAP_IO_DEV_PAGEH) | |
134 | #define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock) | |
135 | /* | |
136 | * Paging Space Hysteresis triggers and the target notification port | |
137 | * | |
138 | */ | |
139 | ||
140 | unsigned int minimum_pages_remaining = 0; | |
141 | unsigned int maximum_pages_free = 0; | |
142 | ipc_port_t min_pages_trigger_port = NULL; | |
143 | ipc_port_t max_pages_trigger_port = NULL; | |
144 | ||
145 | boolean_t bs_low = FALSE; | |
146 | int backing_store_release_trigger_disable = 0; | |
147 | ||
148 | ||
149 | ||
150 | /* | |
151 | * Object sizes are rounded up to the next power of 2, | |
152 | * unless they are bigger than a given maximum size. | |
153 | */ | |
154 | vm_size_t max_doubled_size = 4 * 1024 * 1024; /* 4 meg */ | |
155 | ||
156 | /* | |
157 | * List of all backing store and segments. | |
158 | */ | |
159 | struct backing_store_list_head backing_store_list; | |
160 | paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS]; | |
161 | mutex_t paging_segments_lock; | |
162 | int paging_segment_max = 0; | |
163 | int paging_segment_count = 0; | |
164 | int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 }; | |
165 | ||
166 | ||
167 | /* | |
168 | * Total pages free in system | |
169 | * This differs from clusters committed/avail which is a measure of the | |
170 | * over commitment of paging segments to backing store. An idea which is | |
171 | * likely to be deprecated. | |
172 | */ | |
173 | unsigned int dp_pages_free = 0; | |
174 | unsigned int cluster_transfer_minimum = 100; | |
175 | ||
176 | kern_return_t ps_write_file(paging_segment_t, upl_t, vm_offset_t, vm_offset_t, unsigned int, int); /* forward */ | |
177 | kern_return_t ps_read_file (paging_segment_t, upl_t, vm_offset_t, vm_offset_t, unsigned int, unsigned int *, int); /* forward */ | |
178 | ||
179 | ||
180 | default_pager_thread_t * | |
181 | get_read_buffer() | |
182 | { | |
183 | int i; | |
184 | ||
185 | DPT_LOCK(dpt_lock); | |
186 | while(TRUE) { | |
187 | for (i=0; i<default_pager_internal_count; i++) { | |
188 | if(dpt_array[i]->checked_out == FALSE) { | |
189 | dpt_array[i]->checked_out = TRUE; | |
190 | DPT_UNLOCK(dpt_lock); | |
191 | return dpt_array[i]; | |
192 | } | |
193 | } | |
194 | DPT_SLEEP(dpt_lock, &dpt_array, THREAD_UNINT); | |
195 | } | |
196 | } | |
197 | ||
198 | void | |
199 | bs_initialize(void) | |
200 | { | |
201 | int i; | |
202 | ||
203 | /* | |
204 | * List of all backing store. | |
205 | */ | |
206 | BSL_LOCK_INIT(); | |
207 | queue_init(&backing_store_list.bsl_queue); | |
208 | PSL_LOCK_INIT(); | |
209 | ||
210 | VS_ASYNC_LOCK_INIT(); | |
211 | #if VS_ASYNC_REUSE | |
212 | vs_async_free_list = NULL; | |
213 | #endif /* VS_ASYNC_REUSE */ | |
214 | ||
215 | for (i = 0; i < VM_SUPER_PAGES + 1; i++) { | |
216 | clustered_writes[i] = 0; | |
217 | clustered_reads[i] = 0; | |
218 | } | |
219 | ||
220 | } | |
221 | ||
222 | /* | |
223 | * When things do not quite workout... | |
224 | */ | |
225 | void bs_no_paging_space(boolean_t); /* forward */ | |
226 | ||
227 | void | |
228 | bs_no_paging_space( | |
229 | boolean_t out_of_memory) | |
230 | { | |
231 | ||
232 | if (out_of_memory) | |
233 | dprintf(("*** OUT OF MEMORY ***\n")); | |
234 | panic("bs_no_paging_space: NOT ENOUGH PAGING SPACE"); | |
235 | } | |
236 | ||
237 | void bs_more_space(int); /* forward */ | |
238 | void bs_commit(int); /* forward */ | |
239 | ||
240 | boolean_t user_warned = FALSE; | |
241 | unsigned int clusters_committed = 0; | |
242 | unsigned int clusters_available = 0; | |
243 | unsigned int clusters_committed_peak = 0; | |
244 | ||
245 | void | |
246 | bs_more_space( | |
247 | int nclusters) | |
248 | { | |
249 | BSL_LOCK(); | |
250 | /* | |
251 | * Account for new paging space. | |
252 | */ | |
253 | clusters_available += nclusters; | |
254 | ||
255 | if (clusters_available >= clusters_committed) { | |
256 | if (verbose && user_warned) { | |
257 | printf("%s%s - %d excess clusters now.\n", | |
258 | my_name, | |
259 | "paging space is OK now", | |
260 | clusters_available - clusters_committed); | |
261 | user_warned = FALSE; | |
262 | clusters_committed_peak = 0; | |
263 | } | |
264 | } else { | |
265 | if (verbose && user_warned) { | |
266 | printf("%s%s - still short of %d clusters.\n", | |
267 | my_name, | |
268 | "WARNING: paging space over-committed", | |
269 | clusters_committed - clusters_available); | |
270 | clusters_committed_peak -= nclusters; | |
271 | } | |
272 | } | |
273 | BSL_UNLOCK(); | |
274 | ||
275 | return; | |
276 | } | |
277 | ||
278 | void | |
279 | bs_commit( | |
280 | int nclusters) | |
281 | { | |
282 | BSL_LOCK(); | |
283 | clusters_committed += nclusters; | |
284 | if (clusters_committed > clusters_available) { | |
285 | if (verbose && !user_warned) { | |
286 | user_warned = TRUE; | |
287 | printf("%s%s - short of %d clusters.\n", | |
288 | my_name, | |
289 | "WARNING: paging space over-committed", | |
290 | clusters_committed - clusters_available); | |
291 | } | |
292 | if (clusters_committed > clusters_committed_peak) { | |
293 | clusters_committed_peak = clusters_committed; | |
294 | } | |
295 | } else { | |
296 | if (verbose && user_warned) { | |
297 | printf("%s%s - was short of up to %d clusters.\n", | |
298 | my_name, | |
299 | "paging space is OK now", | |
300 | clusters_committed_peak - clusters_available); | |
301 | user_warned = FALSE; | |
302 | clusters_committed_peak = 0; | |
303 | } | |
304 | } | |
305 | BSL_UNLOCK(); | |
306 | ||
307 | return; | |
308 | } | |
309 | ||
310 | int default_pager_info_verbose = 1; | |
311 | ||
312 | void | |
313 | bs_global_info( | |
314 | vm_size_t *totalp, | |
315 | vm_size_t *freep) | |
316 | { | |
317 | vm_size_t pages_total, pages_free; | |
318 | paging_segment_t ps; | |
319 | int i; | |
320 | ||
321 | PSL_LOCK(); | |
322 | pages_total = pages_free = 0; | |
323 | for (i = 0; i <= paging_segment_max; i++) { | |
324 | ps = paging_segments[i]; | |
325 | if (ps == PAGING_SEGMENT_NULL) | |
326 | continue; | |
327 | ||
328 | /* | |
329 | * no need to lock: by the time this data | |
330 | * gets back to any remote requestor it | |
331 | * will be obsolete anyways | |
332 | */ | |
333 | pages_total += ps->ps_pgnum; | |
334 | pages_free += ps->ps_clcount << ps->ps_clshift; | |
335 | DEBUG(DEBUG_BS_INTERNAL, | |
336 | ("segment #%d: %d total, %d free\n", | |
337 | i, ps->ps_pgnum, ps->ps_clcount << ps->ps_clshift)); | |
338 | } | |
339 | *totalp = pages_total; | |
340 | *freep = pages_free; | |
341 | if (verbose && user_warned && default_pager_info_verbose) { | |
342 | if (clusters_available < clusters_committed) { | |
343 | printf("%s %d clusters committed, %d available.\n", | |
344 | my_name, | |
345 | clusters_committed, | |
346 | clusters_available); | |
347 | } | |
348 | } | |
349 | PSL_UNLOCK(); | |
350 | } | |
351 | ||
352 | backing_store_t backing_store_alloc(void); /* forward */ | |
353 | ||
354 | backing_store_t | |
355 | backing_store_alloc(void) | |
356 | { | |
357 | backing_store_t bs; | |
358 | ||
359 | bs = (backing_store_t) kalloc(sizeof (struct backing_store)); | |
360 | if (bs == BACKING_STORE_NULL) | |
361 | panic("backing_store_alloc: no memory"); | |
362 | ||
363 | BS_LOCK_INIT(bs); | |
364 | bs->bs_port = MACH_PORT_NULL; | |
365 | bs->bs_priority = 0; | |
366 | bs->bs_clsize = 0; | |
367 | bs->bs_pages_total = 0; | |
368 | bs->bs_pages_in = 0; | |
369 | bs->bs_pages_in_fail = 0; | |
370 | bs->bs_pages_out = 0; | |
371 | bs->bs_pages_out_fail = 0; | |
372 | ||
373 | return bs; | |
374 | } | |
375 | ||
376 | backing_store_t backing_store_lookup(MACH_PORT_FACE); /* forward */ | |
377 | ||
378 | /* Even in both the component space and external versions of this pager, */ | |
379 | /* backing_store_lookup will be called from tasks in the application space */ | |
380 | backing_store_t | |
381 | backing_store_lookup( | |
382 | MACH_PORT_FACE port) | |
383 | { | |
384 | backing_store_t bs; | |
385 | ||
386 | /* | |
387 | port is currently backed with a vs structure in the alias field | |
388 | we could create an ISBS alias and a port_is_bs call but frankly | |
389 | I see no reason for the test, the bs->port == port check below | |
390 | will work properly on junk entries. | |
391 | ||
392 | if ((port == MACH_PORT_NULL) || port_is_vs(port)) | |
393 | */ | |
394 | if ((port == MACH_PORT_NULL)) | |
395 | return BACKING_STORE_NULL; | |
396 | ||
397 | BSL_LOCK(); | |
398 | queue_iterate(&backing_store_list.bsl_queue, bs, backing_store_t, | |
399 | bs_links) { | |
400 | BS_LOCK(bs); | |
401 | if (bs->bs_port == port) { | |
402 | BSL_UNLOCK(); | |
403 | /* Success, return it locked. */ | |
404 | return bs; | |
405 | } | |
406 | BS_UNLOCK(bs); | |
407 | } | |
408 | BSL_UNLOCK(); | |
409 | return BACKING_STORE_NULL; | |
410 | } | |
411 | ||
412 | void backing_store_add(backing_store_t); /* forward */ | |
413 | ||
414 | void | |
415 | backing_store_add( | |
416 | backing_store_t bs) | |
417 | { | |
418 | MACH_PORT_FACE port = bs->bs_port; | |
419 | MACH_PORT_FACE pset = default_pager_default_set; | |
420 | kern_return_t kr = KERN_SUCCESS; | |
421 | ||
422 | if (kr != KERN_SUCCESS) | |
423 | panic("backing_store_add: add to set"); | |
424 | ||
425 | } | |
426 | ||
427 | /* | |
428 | * Set up default page shift, but only if not already | |
429 | * set and argument is within range. | |
430 | */ | |
431 | boolean_t | |
432 | bs_set_default_clsize(unsigned int npages) | |
433 | { | |
434 | switch(npages){ | |
435 | case 1: | |
436 | case 2: | |
437 | case 4: | |
438 | case 8: | |
439 | if (default_pager_clsize == 0) /* if not yet set */ | |
440 | vstruct_def_clshift = local_log2(npages); | |
441 | return(TRUE); | |
442 | } | |
443 | return(FALSE); | |
444 | } | |
445 | ||
446 | int bs_get_global_clsize(int clsize); /* forward */ | |
447 | ||
448 | int | |
449 | bs_get_global_clsize( | |
450 | int clsize) | |
451 | { | |
452 | int i; | |
453 | memory_object_default_t dmm; | |
454 | kern_return_t kr; | |
455 | ||
456 | /* | |
457 | * Only allow setting of cluster size once. If called | |
458 | * with no cluster size (default), we use the compiled-in default | |
459 | * for the duration. The same cluster size is used for all | |
460 | * paging segments. | |
461 | */ | |
462 | if (default_pager_clsize == 0) { | |
463 | /* | |
464 | * Keep cluster size in bit shift because it's quicker | |
465 | * arithmetic, and easier to keep at a power of 2. | |
466 | */ | |
467 | if (clsize != NO_CLSIZE) { | |
468 | for (i = 0; (1 << i) < clsize; i++); | |
469 | if (i > MAX_CLUSTER_SHIFT) | |
470 | i = MAX_CLUSTER_SHIFT; | |
471 | vstruct_def_clshift = i; | |
472 | } | |
473 | default_pager_clsize = (1 << vstruct_def_clshift); | |
474 | ||
475 | /* | |
476 | * Let the user know the new (and definitive) cluster size. | |
477 | */ | |
478 | if (verbose) | |
479 | printf("%scluster size = %d page%s\n", | |
480 | my_name, default_pager_clsize, | |
481 | (default_pager_clsize == 1) ? "" : "s"); | |
482 | ||
483 | /* | |
484 | * Let the kernel know too, in case it hasn't used the | |
485 | * default value provided in main() yet. | |
486 | */ | |
487 | dmm = default_pager_object; | |
488 | clsize = default_pager_clsize * vm_page_size; /* in bytes */ | |
489 | kr = host_default_memory_manager(host_priv_self(), | |
490 | &dmm, | |
491 | clsize); | |
492 | memory_object_default_deallocate(dmm); | |
493 | ||
494 | if (kr != KERN_SUCCESS) { | |
495 | panic("bs_get_global_cl_size:host_default_memory_manager"); | |
496 | } | |
497 | if (dmm != default_pager_object) { | |
498 | panic("bs_get_global_cl_size:there is another default pager"); | |
499 | } | |
500 | } | |
501 | ASSERT(default_pager_clsize > 0 && | |
502 | (default_pager_clsize & (default_pager_clsize - 1)) == 0); | |
503 | ||
504 | return default_pager_clsize; | |
505 | } | |
506 | ||
507 | kern_return_t | |
508 | default_pager_backing_store_create( | |
509 | memory_object_default_t pager, | |
510 | int priority, | |
511 | int clsize, /* in bytes */ | |
512 | MACH_PORT_FACE *backing_store) | |
513 | { | |
514 | backing_store_t bs; | |
515 | MACH_PORT_FACE port; | |
516 | kern_return_t kr; | |
517 | struct vstruct_alias *alias_struct; | |
518 | ||
519 | if (pager != default_pager_object) | |
520 | return KERN_INVALID_ARGUMENT; | |
521 | ||
522 | bs = backing_store_alloc(); | |
523 | port = ipc_port_alloc_kernel(); | |
524 | ipc_port_make_send(port); | |
525 | assert (port != IP_NULL); | |
526 | ||
527 | DEBUG(DEBUG_BS_EXTERNAL, | |
528 | ("priority=%d clsize=%d bs_port=0x%x\n", | |
529 | priority, clsize, (int) backing_store)); | |
530 | ||
531 | alias_struct = (struct vstruct_alias *) | |
532 | kalloc(sizeof (struct vstruct_alias)); | |
533 | if(alias_struct != NULL) { | |
534 | alias_struct->vs = (struct vstruct *)bs; | |
535 | alias_struct->name = ISVS; | |
536 | port->alias = (int) alias_struct; | |
537 | } | |
538 | else { | |
539 | ipc_port_dealloc_kernel((MACH_PORT_FACE)(port)); | |
540 | kfree((vm_offset_t)bs, sizeof (struct backing_store)); | |
541 | return KERN_RESOURCE_SHORTAGE; | |
542 | } | |
543 | ||
544 | bs->bs_port = port; | |
545 | if (priority == DEFAULT_PAGER_BACKING_STORE_MAXPRI) | |
546 | priority = BS_MAXPRI; | |
547 | else if (priority == BS_NOPRI) | |
548 | priority = BS_MAXPRI; | |
549 | else | |
550 | priority = BS_MINPRI; | |
551 | bs->bs_priority = priority; | |
552 | ||
553 | bs->bs_clsize = bs_get_global_clsize(atop(clsize)); | |
554 | ||
555 | BSL_LOCK(); | |
556 | queue_enter(&backing_store_list.bsl_queue, bs, backing_store_t, | |
557 | bs_links); | |
558 | BSL_UNLOCK(); | |
559 | ||
560 | backing_store_add(bs); | |
561 | ||
562 | *backing_store = port; | |
563 | return KERN_SUCCESS; | |
564 | } | |
565 | ||
566 | kern_return_t | |
567 | default_pager_backing_store_info( | |
568 | MACH_PORT_FACE backing_store, | |
569 | backing_store_flavor_t flavour, | |
570 | backing_store_info_t info, | |
571 | mach_msg_type_number_t *size) | |
572 | { | |
573 | backing_store_t bs; | |
574 | backing_store_basic_info_t basic; | |
575 | int i; | |
576 | paging_segment_t ps; | |
577 | ||
578 | if (flavour != BACKING_STORE_BASIC_INFO || | |
579 | *size < BACKING_STORE_BASIC_INFO_COUNT) | |
580 | return KERN_INVALID_ARGUMENT; | |
581 | ||
582 | basic = (backing_store_basic_info_t)info; | |
583 | *size = BACKING_STORE_BASIC_INFO_COUNT; | |
584 | ||
585 | VSTATS_LOCK(&global_stats.gs_lock); | |
586 | basic->pageout_calls = global_stats.gs_pageout_calls; | |
587 | basic->pagein_calls = global_stats.gs_pagein_calls; | |
588 | basic->pages_in = global_stats.gs_pages_in; | |
589 | basic->pages_out = global_stats.gs_pages_out; | |
590 | basic->pages_unavail = global_stats.gs_pages_unavail; | |
591 | basic->pages_init = global_stats.gs_pages_init; | |
592 | basic->pages_init_writes= global_stats.gs_pages_init_writes; | |
593 | VSTATS_UNLOCK(&global_stats.gs_lock); | |
594 | ||
595 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
596 | return KERN_INVALID_ARGUMENT; | |
597 | ||
598 | basic->bs_pages_total = bs->bs_pages_total; | |
599 | PSL_LOCK(); | |
600 | bs->bs_pages_free = 0; | |
601 | for (i = 0; i <= paging_segment_max; i++) { | |
602 | ps = paging_segments[i]; | |
603 | if (ps != PAGING_SEGMENT_NULL && ps->ps_bs == bs) { | |
604 | PS_LOCK(ps); | |
605 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
606 | PS_UNLOCK(ps); | |
607 | } | |
608 | } | |
609 | PSL_UNLOCK(); | |
610 | basic->bs_pages_free = bs->bs_pages_free; | |
611 | basic->bs_pages_in = bs->bs_pages_in; | |
612 | basic->bs_pages_in_fail = bs->bs_pages_in_fail; | |
613 | basic->bs_pages_out = bs->bs_pages_out; | |
614 | basic->bs_pages_out_fail= bs->bs_pages_out_fail; | |
615 | ||
616 | basic->bs_priority = bs->bs_priority; | |
617 | basic->bs_clsize = ptoa(bs->bs_clsize); /* in bytes */ | |
618 | ||
619 | BS_UNLOCK(bs); | |
620 | ||
621 | return KERN_SUCCESS; | |
622 | } | |
623 | ||
624 | int ps_delete(paging_segment_t); /* forward */ | |
625 | ||
626 | int | |
627 | ps_delete( | |
628 | paging_segment_t ps) | |
629 | { | |
630 | vstruct_t vs; | |
631 | kern_return_t error = KERN_SUCCESS; | |
632 | int vs_count; | |
633 | ||
634 | VSL_LOCK(); /* get the lock on the list of vs's */ | |
635 | ||
636 | /* The lock relationship and sequence is farily complicated */ | |
637 | /* this code looks at a live list, locking and unlocking the list */ | |
638 | /* as it traverses it. It depends on the locking behavior of */ | |
639 | /* default_pager_no_senders. no_senders always locks the vstruct */ | |
640 | /* targeted for removal before locking the vstruct list. However */ | |
641 | /* it will remove that member of the list without locking its */ | |
642 | /* neighbors. We can be sure when we hold a lock on a vstruct */ | |
643 | /* it cannot be removed from the list but we must hold the list */ | |
644 | /* lock to be sure that its pointers to its neighbors are valid. */ | |
645 | /* Also, we can hold off destruction of a vstruct when the list */ | |
646 | /* lock and the vs locks are not being held by bumping the */ | |
647 | /* vs_async_pending count. */ | |
648 | ||
649 | ||
650 | while(backing_store_release_trigger_disable != 0) { | |
651 | VSL_SLEEP(&backing_store_release_trigger_disable, THREAD_UNINT); | |
652 | } | |
653 | ||
654 | /* we will choose instead to hold a send right */ | |
655 | vs_count = vstruct_list.vsl_count; | |
656 | vs = (vstruct_t) queue_first((queue_entry_t)&(vstruct_list.vsl_queue)); | |
657 | if(vs == (vstruct_t)&vstruct_list) { | |
658 | VSL_UNLOCK(); | |
659 | return KERN_SUCCESS; | |
660 | } | |
661 | VS_LOCK(vs); | |
662 | vs_async_wait(vs); /* wait for any pending async writes */ | |
663 | if ((vs_count != 0) && (vs != NULL)) | |
664 | vs->vs_async_pending += 1; /* hold parties calling */ | |
665 | /* vs_async_wait */ | |
666 | VS_UNLOCK(vs); | |
667 | VSL_UNLOCK(); | |
668 | while((vs_count != 0) && (vs != NULL)) { | |
669 | /* We take the count of AMO's before beginning the */ | |
670 | /* transfer of of the target segment. */ | |
671 | /* We are guaranteed that the target segment cannot get */ | |
672 | /* more users. We also know that queue entries are */ | |
673 | /* made at the back of the list. If some of the entries */ | |
674 | /* we would check disappear while we are traversing the */ | |
675 | /* list then we will either check new entries which */ | |
676 | /* do not have any backing store in the target segment */ | |
677 | /* or re-check old entries. This might not be optimal */ | |
678 | /* but it will always be correct. The alternative is to */ | |
679 | /* take a snapshot of the list. */ | |
680 | vstruct_t next_vs; | |
681 | ||
682 | if(dp_pages_free < cluster_transfer_minimum) | |
683 | error = KERN_FAILURE; | |
684 | else { | |
685 | vm_object_t transfer_object; | |
686 | int count; | |
687 | upl_t upl; | |
688 | ||
689 | transfer_object = vm_object_allocate(VM_SUPER_CLUSTER); | |
690 | count = 0; | |
691 | error = vm_object_upl_request(transfer_object, | |
692 | (vm_object_offset_t)0, VM_SUPER_CLUSTER, | |
693 | &upl, NULL, &count, | |
694 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | |
695 | | UPL_SET_INTERNAL); | |
696 | if(error == KERN_SUCCESS) { | |
697 | error = ps_vstruct_transfer_from_segment( | |
698 | vs, ps, upl); | |
699 | upl_commit(upl, NULL); | |
700 | upl_deallocate(upl); | |
701 | } else { | |
702 | error = KERN_FAILURE; | |
703 | } | |
704 | vm_object_deallocate(transfer_object); | |
705 | } | |
706 | if(error) { | |
707 | VS_LOCK(vs); | |
708 | vs->vs_async_pending -= 1; /* release vs_async_wait */ | |
709 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { | |
710 | vs->vs_waiting_async = FALSE; | |
711 | VS_UNLOCK(vs); | |
712 | thread_wakeup(&vs->vs_async_pending); | |
713 | } else { | |
714 | VS_UNLOCK(vs); | |
715 | } | |
716 | return KERN_FAILURE; | |
717 | } | |
718 | ||
719 | VSL_LOCK(); | |
720 | ||
721 | while(backing_store_release_trigger_disable != 0) { | |
722 | VSL_SLEEP(&backing_store_release_trigger_disable, | |
723 | THREAD_UNINT); | |
724 | } | |
725 | ||
726 | next_vs = (vstruct_t) queue_next(&(vs->vs_links)); | |
727 | if((next_vs != (vstruct_t)&vstruct_list) && | |
728 | (vs != next_vs) && (vs_count != 1)) { | |
729 | VS_LOCK(next_vs); | |
730 | vs_async_wait(next_vs); /* wait for any */ | |
731 | /* pending async writes */ | |
732 | next_vs->vs_async_pending += 1; /* hold parties */ | |
733 | /* calling vs_async_wait */ | |
734 | VS_UNLOCK(next_vs); | |
735 | } | |
736 | VSL_UNLOCK(); | |
737 | VS_LOCK(vs); | |
738 | vs->vs_async_pending -= 1; | |
739 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { | |
740 | vs->vs_waiting_async = FALSE; | |
741 | VS_UNLOCK(vs); | |
742 | thread_wakeup(&vs->vs_async_pending); | |
743 | } else { | |
744 | VS_UNLOCK(vs); | |
745 | } | |
746 | if((vs == next_vs) || (next_vs == (vstruct_t)&vstruct_list)) | |
747 | vs = NULL; | |
748 | else | |
749 | vs = next_vs; | |
750 | vs_count--; | |
751 | } | |
752 | return KERN_SUCCESS; | |
753 | } | |
754 | ||
755 | ||
756 | kern_return_t | |
757 | default_pager_backing_store_delete( | |
758 | MACH_PORT_FACE backing_store) | |
759 | { | |
760 | backing_store_t bs; | |
761 | int i; | |
762 | paging_segment_t ps; | |
763 | int error; | |
764 | int interim_pages_removed = 0; | |
765 | kern_return_t kr; | |
766 | ||
767 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
768 | return KERN_INVALID_ARGUMENT; | |
769 | ||
770 | #if 0 | |
771 | /* not implemented */ | |
772 | BS_UNLOCK(bs); | |
773 | return KERN_FAILURE; | |
774 | #endif | |
775 | ||
776 | restart: | |
777 | PSL_LOCK(); | |
778 | error = KERN_SUCCESS; | |
779 | for (i = 0; i <= paging_segment_max; i++) { | |
780 | ps = paging_segments[i]; | |
781 | if (ps != PAGING_SEGMENT_NULL && | |
782 | ps->ps_bs == bs && | |
783 | ! ps->ps_going_away) { | |
784 | PS_LOCK(ps); | |
785 | /* disable access to this segment */ | |
786 | ps->ps_going_away = TRUE; | |
787 | PS_UNLOCK(ps); | |
788 | /* | |
789 | * The "ps" segment is "off-line" now, | |
790 | * we can try and delete it... | |
791 | */ | |
792 | if(dp_pages_free < (cluster_transfer_minimum | |
793 | + ps->ps_pgcount)) { | |
794 | error = KERN_FAILURE; | |
795 | PSL_UNLOCK(); | |
796 | } | |
797 | else { | |
798 | /* remove all pages associated with the */ | |
799 | /* segment from the list of free pages */ | |
800 | /* when transfer is through, all target */ | |
801 | /* segment pages will appear to be free */ | |
802 | ||
803 | dp_pages_free -= ps->ps_pgcount; | |
804 | interim_pages_removed += ps->ps_pgcount; | |
805 | PSL_UNLOCK(); | |
806 | error = ps_delete(ps); | |
807 | } | |
808 | if (error != KERN_SUCCESS) { | |
809 | /* | |
810 | * We couldn't delete the segment, | |
811 | * probably because there's not enough | |
812 | * virtual memory left. | |
813 | * Re-enable all the segments. | |
814 | */ | |
815 | PSL_LOCK(); | |
816 | break; | |
817 | } | |
818 | goto restart; | |
819 | } | |
820 | } | |
821 | ||
822 | if (error != KERN_SUCCESS) { | |
823 | for (i = 0; i <= paging_segment_max; i++) { | |
824 | ps = paging_segments[i]; | |
825 | if (ps != PAGING_SEGMENT_NULL && | |
826 | ps->ps_bs == bs && | |
827 | ps->ps_going_away) { | |
828 | PS_LOCK(ps); | |
829 | /* re-enable access to this segment */ | |
830 | ps->ps_going_away = FALSE; | |
831 | PS_UNLOCK(ps); | |
832 | } | |
833 | } | |
834 | dp_pages_free += interim_pages_removed; | |
835 | PSL_UNLOCK(); | |
836 | BS_UNLOCK(bs); | |
837 | return error; | |
838 | } | |
839 | ||
840 | for (i = 0; i <= paging_segment_max; i++) { | |
841 | ps = paging_segments[i]; | |
842 | if (ps != PAGING_SEGMENT_NULL && | |
843 | ps->ps_bs == bs) { | |
844 | if(ps->ps_going_away) { | |
845 | paging_segments[i] = PAGING_SEGMENT_NULL; | |
846 | paging_segment_count--; | |
847 | PS_LOCK(ps); | |
848 | kfree((vm_offset_t)ps->ps_bmap, | |
849 | RMAPSIZE(ps->ps_ncls)); | |
850 | kfree((vm_offset_t)ps, sizeof *ps); | |
851 | } | |
852 | } | |
853 | } | |
854 | ||
855 | /* Scan the entire ps array separately to make certain we find the */ | |
856 | /* proper paging_segment_max */ | |
857 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
858 | if(paging_segments[i] != PAGING_SEGMENT_NULL) | |
859 | paging_segment_max = i; | |
860 | } | |
861 | ||
862 | PSL_UNLOCK(); | |
863 | ||
864 | /* | |
865 | * All the segments have been deleted. | |
866 | * We can remove the backing store. | |
867 | */ | |
868 | ||
869 | /* | |
870 | * Disable lookups of this backing store. | |
871 | */ | |
872 | if((void *)bs->bs_port->alias != NULL) | |
873 | kfree((vm_offset_t) bs->bs_port->alias, | |
874 | sizeof (struct vstruct_alias)); | |
875 | ipc_port_dealloc_kernel((ipc_port_t) (bs->bs_port)); | |
876 | bs->bs_port = MACH_PORT_NULL; | |
877 | BS_UNLOCK(bs); | |
878 | ||
879 | /* | |
880 | * Remove backing store from backing_store list. | |
881 | */ | |
882 | BSL_LOCK(); | |
883 | queue_remove(&backing_store_list.bsl_queue, bs, backing_store_t, | |
884 | bs_links); | |
885 | BSL_UNLOCK(); | |
886 | ||
887 | /* | |
888 | * Free the backing store structure. | |
889 | */ | |
890 | kfree((vm_offset_t)bs, sizeof *bs); | |
891 | ||
892 | return KERN_SUCCESS; | |
893 | } | |
894 | ||
895 | int ps_enter(paging_segment_t); /* forward */ | |
896 | ||
897 | int | |
898 | ps_enter( | |
899 | paging_segment_t ps) | |
900 | { | |
901 | int i; | |
902 | ||
903 | PSL_LOCK(); | |
904 | ||
905 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
906 | if (paging_segments[i] == PAGING_SEGMENT_NULL) | |
907 | break; | |
908 | } | |
909 | ||
910 | if (i < MAX_NUM_PAGING_SEGMENTS) { | |
911 | paging_segments[i] = ps; | |
912 | if (i > paging_segment_max) | |
913 | paging_segment_max = i; | |
914 | paging_segment_count++; | |
915 | if ((ps_select_array[ps->ps_bs->bs_priority] == BS_NOPRI) || | |
916 | (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)) | |
917 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
918 | i = 0; | |
919 | } else { | |
920 | PSL_UNLOCK(); | |
921 | return KERN_RESOURCE_SHORTAGE; | |
922 | } | |
923 | ||
924 | PSL_UNLOCK(); | |
925 | return i; | |
926 | } | |
927 | ||
928 | #ifdef DEVICE_PAGING | |
929 | kern_return_t | |
930 | default_pager_add_segment( | |
931 | MACH_PORT_FACE backing_store, | |
932 | MACH_PORT_FACE device, | |
933 | recnum_t offset, | |
934 | recnum_t count, | |
935 | int record_size) | |
936 | { | |
937 | backing_store_t bs; | |
938 | paging_segment_t ps; | |
939 | int i; | |
940 | int error; | |
941 | ||
942 | if ((bs = backing_store_lookup(backing_store)) | |
943 | == BACKING_STORE_NULL) | |
944 | return KERN_INVALID_ARGUMENT; | |
945 | ||
946 | PSL_LOCK(); | |
947 | for (i = 0; i <= paging_segment_max; i++) { | |
948 | ps = paging_segments[i]; | |
949 | if (ps == PAGING_SEGMENT_NULL) | |
950 | continue; | |
951 | ||
952 | /* | |
953 | * Check for overlap on same device. | |
954 | */ | |
955 | if (!(ps->ps_device != device | |
956 | || offset >= ps->ps_offset + ps->ps_recnum | |
957 | || offset + count <= ps->ps_offset)) { | |
958 | PSL_UNLOCK(); | |
959 | BS_UNLOCK(bs); | |
960 | return KERN_INVALID_ARGUMENT; | |
961 | } | |
962 | } | |
963 | PSL_UNLOCK(); | |
964 | ||
965 | /* | |
966 | * Set up the paging segment | |
967 | */ | |
968 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
969 | if (ps == PAGING_SEGMENT_NULL) { | |
970 | BS_UNLOCK(bs); | |
971 | return KERN_RESOURCE_SHORTAGE; | |
972 | } | |
973 | ||
974 | ps->ps_segtype = PS_PARTITION; | |
975 | ps->ps_device = device; | |
976 | ps->ps_offset = offset; | |
977 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
978 | ps->ps_recnum = count; | |
979 | ps->ps_pgnum = count >> ps->ps_record_shift; | |
980 | ||
981 | ps->ps_pgcount = ps->ps_pgnum; | |
982 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
983 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
984 | ps->ps_hint = 0; | |
985 | ||
986 | PS_LOCK_INIT(ps); | |
987 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
988 | if (!ps->ps_bmap) { | |
989 | kfree((vm_offset_t)ps, sizeof *ps); | |
990 | BS_UNLOCK(bs); | |
991 | return KERN_RESOURCE_SHORTAGE; | |
992 | } | |
993 | for (i = 0; i < ps->ps_ncls; i++) { | |
994 | clrbit(ps->ps_bmap, i); | |
995 | } | |
996 | ||
997 | ps->ps_going_away = FALSE; | |
998 | ps->ps_bs = bs; | |
999 | ||
1000 | if ((error = ps_enter(ps)) != 0) { | |
1001 | kfree((vm_offset_t)ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); | |
1002 | kfree((vm_offset_t)ps, sizeof *ps); | |
1003 | BS_UNLOCK(bs); | |
1004 | return KERN_RESOURCE_SHORTAGE; | |
1005 | } | |
1006 | ||
1007 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
1008 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
1009 | BS_UNLOCK(bs); | |
1010 | ||
1011 | PSL_LOCK(); | |
1012 | dp_pages_free += ps->ps_pgcount; | |
1013 | PSL_UNLOCK(); | |
1014 | ||
1015 | bs_more_space(ps->ps_clcount); | |
1016 | ||
1017 | DEBUG(DEBUG_BS_INTERNAL, | |
1018 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
1019 | device, offset, count, record_size, | |
1020 | ps->ps_record_shift, ps->ps_pgnum)); | |
1021 | ||
1022 | return KERN_SUCCESS; | |
1023 | } | |
1024 | ||
1025 | boolean_t | |
1026 | bs_add_device( | |
1027 | char *dev_name, | |
1028 | MACH_PORT_FACE master) | |
1029 | { | |
1030 | security_token_t null_security_token = { | |
1031 | { 0, 0 } | |
1032 | }; | |
1033 | MACH_PORT_FACE device; | |
1034 | int info[DEV_GET_SIZE_COUNT]; | |
1035 | mach_msg_type_number_t info_count; | |
1036 | MACH_PORT_FACE bs = MACH_PORT_NULL; | |
1037 | unsigned int rec_size; | |
1038 | recnum_t count; | |
1039 | int clsize; | |
1040 | MACH_PORT_FACE reply_port; | |
1041 | ||
1042 | if (ds_device_open_sync(master, MACH_PORT_NULL, D_READ | D_WRITE, | |
1043 | null_security_token, dev_name, &device)) | |
1044 | return FALSE; | |
1045 | ||
1046 | info_count = DEV_GET_SIZE_COUNT; | |
1047 | if (!ds_device_get_status(device, DEV_GET_SIZE, info, &info_count)) { | |
1048 | rec_size = info[DEV_GET_SIZE_RECORD_SIZE]; | |
1049 | count = info[DEV_GET_SIZE_DEVICE_SIZE] / rec_size; | |
1050 | clsize = bs_get_global_clsize(0); | |
1051 | if (!default_pager_backing_store_create( | |
1052 | default_pager_object, | |
1053 | DEFAULT_PAGER_BACKING_STORE_MAXPRI, | |
1054 | (clsize * vm_page_size), | |
1055 | &bs)) { | |
1056 | if (!default_pager_add_segment(bs, device, | |
1057 | 0, count, rec_size)) { | |
1058 | return TRUE; | |
1059 | } | |
1060 | ipc_port_release_receive(bs); | |
1061 | } | |
1062 | } | |
1063 | ||
1064 | ipc_port_release_send(device); | |
1065 | return FALSE; | |
1066 | } | |
1067 | #endif /* DEVICE_PAGING */ | |
1068 | ||
1069 | #if VS_ASYNC_REUSE | |
1070 | ||
1071 | struct vs_async * | |
1072 | vs_alloc_async(void) | |
1073 | { | |
1074 | struct vs_async *vsa; | |
1075 | MACH_PORT_FACE reply_port; | |
1076 | kern_return_t kr; | |
1077 | ||
1078 | VS_ASYNC_LOCK(); | |
1079 | if (vs_async_free_list == NULL) { | |
1080 | VS_ASYNC_UNLOCK(); | |
1081 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1082 | if (vsa != NULL) { | |
1083 | /* | |
1084 | * Try allocating a reply port named after the | |
1085 | * address of the vs_async structure. | |
1086 | */ | |
1087 | struct vstruct_alias *alias_struct; | |
1088 | ||
1089 | reply_port = ipc_port_alloc_kernel(); | |
1090 | alias_struct = (struct vstruct_alias *) | |
1091 | kalloc(sizeof (struct vstruct_alias)); | |
1092 | if(alias_struct != NULL) { | |
1093 | alias_struct->vs = (struct vstruct *)vsa; | |
1094 | alias_struct->name = ISVS; | |
1095 | reply_port->alias = (int) alias_struct; | |
1096 | vsa->reply_port = reply_port; | |
1097 | vs_alloc_async_count++; | |
1098 | } | |
1099 | else { | |
1100 | vs_alloc_async_failed++; | |
1101 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1102 | (reply_port)); | |
1103 | kfree((vm_offset_t)vsa, | |
1104 | sizeof (struct vs_async)); | |
1105 | vsa = NULL; | |
1106 | } | |
1107 | } | |
1108 | } else { | |
1109 | vsa = vs_async_free_list; | |
1110 | vs_async_free_list = vs_async_free_list->vsa_next; | |
1111 | VS_ASYNC_UNLOCK(); | |
1112 | } | |
1113 | ||
1114 | return vsa; | |
1115 | } | |
1116 | ||
1117 | void | |
1118 | vs_free_async( | |
1119 | struct vs_async *vsa) | |
1120 | { | |
1121 | VS_ASYNC_LOCK(); | |
1122 | vsa->vsa_next = vs_async_free_list; | |
1123 | vs_async_free_list = vsa; | |
1124 | VS_ASYNC_UNLOCK(); | |
1125 | } | |
1126 | ||
1127 | #else /* VS_ASYNC_REUSE */ | |
1128 | ||
1129 | struct vs_async * | |
1130 | vs_alloc_async(void) | |
1131 | { | |
1132 | struct vs_async *vsa; | |
1133 | MACH_PORT_FACE reply_port; | |
1134 | kern_return_t kr; | |
1135 | ||
1136 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1137 | if (vsa != NULL) { | |
1138 | /* | |
1139 | * Try allocating a reply port named after the | |
1140 | * address of the vs_async structure. | |
1141 | */ | |
1142 | reply_port = ipc_port_alloc_kernel(); | |
1143 | alias_struct = (vstruct_alias *) | |
1144 | kalloc(sizeof (struct vstruct_alias)); | |
1145 | if(alias_struct != NULL) { | |
1146 | alias_struct->vs = reply_port; | |
1147 | alias_struct->name = ISVS; | |
1148 | reply_port->alias = (int) vsa; | |
1149 | vsa->reply_port = reply_port; | |
1150 | vs_alloc_async_count++; | |
1151 | } | |
1152 | else { | |
1153 | vs_alloc_async_failed++; | |
1154 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1155 | (reply_port)); | |
1156 | kfree((vm_offset_t) vsa, | |
1157 | sizeof (struct vs_async)); | |
1158 | vsa = NULL; | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | return vsa; | |
1163 | } | |
1164 | ||
1165 | void | |
1166 | vs_free_async( | |
1167 | struct vs_async *vsa) | |
1168 | { | |
1169 | MACH_PORT_FACE reply_port; | |
1170 | kern_return_t kr; | |
1171 | ||
1172 | reply_port = vsa->reply_port; | |
1173 | kfree((vm_offset_t) reply_port->alias, sizeof (struct vstuct_alias)); | |
1174 | kfree((vm_offset_t) vsa, sizeof (struct vs_async)); | |
1175 | ipc_port_dealloc_kernel((MACH_PORT_FACE) (reply_port)); | |
1176 | #if 0 | |
1177 | VS_ASYNC_LOCK(); | |
1178 | vs_alloc_async_count--; | |
1179 | VS_ASYNC_UNLOCK(); | |
1180 | #endif | |
1181 | } | |
1182 | ||
1183 | #endif /* VS_ASYNC_REUSE */ | |
1184 | ||
1185 | zone_t vstruct_zone; | |
1186 | ||
1187 | vstruct_t | |
1188 | ps_vstruct_create( | |
1189 | vm_size_t size) | |
1190 | { | |
1191 | vstruct_t vs; | |
1192 | int i; | |
1193 | ||
1194 | vs = (vstruct_t) zalloc(vstruct_zone); | |
1195 | if (vs == VSTRUCT_NULL) { | |
1196 | return VSTRUCT_NULL; | |
1197 | } | |
1198 | ||
1199 | VS_LOCK_INIT(vs); | |
1200 | ||
1201 | /* | |
1202 | * The following fields will be provided later. | |
1203 | */ | |
1204 | vs->vs_mem_obj = NULL; | |
1205 | vs->vs_control = MEMORY_OBJECT_CONTROL_NULL; | |
1206 | vs->vs_references = 1; | |
1207 | vs->vs_seqno = 0; | |
1208 | ||
1209 | #ifdef MACH_KERNEL | |
1210 | vs->vs_waiting_seqno = FALSE; | |
1211 | vs->vs_waiting_read = FALSE; | |
1212 | vs->vs_waiting_write = FALSE; | |
1213 | vs->vs_waiting_async = FALSE; | |
1214 | #else | |
1215 | mutex_init(&vs->vs_waiting_seqno, ETAP_DPAGE_VSSEQNO); | |
1216 | mutex_init(&vs->vs_waiting_read, ETAP_DPAGE_VSREAD); | |
1217 | mutex_init(&vs->vs_waiting_write, ETAP_DPAGE_VSWRITE); | |
1218 | mutex_init(&vs->vs_waiting_refs, ETAP_DPAGE_VSREFS); | |
1219 | mutex_init(&vs->vs_waiting_async, ETAP_DPAGE_VSASYNC); | |
1220 | #endif | |
1221 | ||
1222 | vs->vs_readers = 0; | |
1223 | vs->vs_writers = 0; | |
1224 | ||
1225 | vs->vs_errors = 0; | |
1226 | ||
1227 | vs->vs_clshift = local_log2(bs_get_global_clsize(0)); | |
1228 | vs->vs_size = ((atop(round_page(size)) - 1) >> vs->vs_clshift) + 1; | |
1229 | vs->vs_async_pending = 0; | |
1230 | ||
1231 | /* | |
1232 | * Allocate the pmap, either CLMAP_SIZE or INDIRECT_CLMAP_SIZE | |
1233 | * depending on the size of the memory object. | |
1234 | */ | |
1235 | if (INDIRECT_CLMAP(vs->vs_size)) { | |
1236 | vs->vs_imap = (struct vs_map **) | |
1237 | kalloc(INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1238 | vs->vs_indirect = TRUE; | |
1239 | } else { | |
1240 | vs->vs_dmap = (struct vs_map *) | |
1241 | kalloc(CLMAP_SIZE(vs->vs_size)); | |
1242 | vs->vs_indirect = FALSE; | |
1243 | } | |
1244 | vs->vs_xfer_pending = FALSE; | |
1245 | DEBUG(DEBUG_VS_INTERNAL, | |
1246 | ("map=0x%x, indirect=%d\n", (int) vs->vs_dmap, vs->vs_indirect)); | |
1247 | ||
1248 | /* | |
1249 | * Check to see that we got the space. | |
1250 | */ | |
1251 | if (!vs->vs_dmap) { | |
1252 | kfree((vm_offset_t)vs, sizeof *vs); | |
1253 | return VSTRUCT_NULL; | |
1254 | } | |
1255 | ||
1256 | /* | |
1257 | * Zero the indirect pointers, or clear the direct pointers. | |
1258 | */ | |
1259 | if (vs->vs_indirect) | |
1260 | memset(vs->vs_imap, 0, | |
1261 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1262 | else | |
1263 | for (i = 0; i < vs->vs_size; i++) | |
1264 | VSM_CLR(vs->vs_dmap[i]); | |
1265 | ||
1266 | VS_MAP_LOCK_INIT(vs); | |
1267 | ||
1268 | bs_commit(vs->vs_size); | |
1269 | ||
1270 | return vs; | |
1271 | } | |
1272 | ||
1273 | paging_segment_t ps_select_segment(int, int *); /* forward */ | |
1274 | ||
1275 | paging_segment_t | |
1276 | ps_select_segment( | |
1277 | int shift, | |
1278 | int *psindex) | |
1279 | { | |
1280 | paging_segment_t ps; | |
1281 | int i; | |
1282 | int j; | |
1283 | ||
1284 | /* | |
1285 | * Optimize case where there's only one segment. | |
1286 | * paging_segment_max will index the one and only segment. | |
1287 | */ | |
1288 | ||
1289 | PSL_LOCK(); | |
1290 | if (paging_segment_count == 1) { | |
1291 | paging_segment_t lps; /* used to avoid extra PS_UNLOCK */ | |
1292 | ipc_port_t trigger = IP_NULL; | |
1293 | ||
1294 | ps = paging_segments[paging_segment_max]; | |
1295 | *psindex = paging_segment_max; | |
1296 | PS_LOCK(ps); | |
1297 | if (ps->ps_going_away) { | |
1298 | /* this segment is being turned off */ | |
1299 | lps = PAGING_SEGMENT_NULL; | |
1300 | } else { | |
1301 | ASSERT(ps->ps_clshift >= shift); | |
1302 | if (ps->ps_clcount) { | |
1303 | ps->ps_clcount--; | |
1304 | dp_pages_free -= 1 << ps->ps_clshift; | |
1305 | if(min_pages_trigger_port && | |
1306 | (dp_pages_free < minimum_pages_remaining)) { | |
1307 | trigger = min_pages_trigger_port; | |
1308 | min_pages_trigger_port = NULL; | |
1309 | bs_low = TRUE; | |
1310 | } | |
1311 | lps = ps; | |
1312 | } else | |
1313 | lps = PAGING_SEGMENT_NULL; | |
1314 | } | |
1315 | PS_UNLOCK(ps); | |
1316 | PSL_UNLOCK(); | |
1317 | ||
1318 | if (trigger != IP_NULL) { | |
1319 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1320 | ipc_port_release_send(trigger); | |
1321 | } | |
1322 | return lps; | |
1323 | } | |
1324 | ||
1325 | if (paging_segment_count == 0) { | |
1326 | PSL_UNLOCK(); | |
1327 | return PAGING_SEGMENT_NULL; | |
1328 | } | |
1329 | ||
1330 | for (i = BS_MAXPRI; | |
1331 | i >= BS_MINPRI; i--) { | |
1332 | int start_index; | |
1333 | ||
1334 | if ((ps_select_array[i] == BS_NOPRI) || | |
1335 | (ps_select_array[i] == BS_FULLPRI)) | |
1336 | continue; | |
1337 | start_index = ps_select_array[i]; | |
1338 | ||
1339 | if(!(paging_segments[start_index])) { | |
1340 | j = start_index+1; | |
1341 | physical_transfer_cluster_count = 0; | |
1342 | } | |
1343 | else if ((physical_transfer_cluster_count+1) == (ALLOC_STRIDE >> | |
1344 | (((paging_segments[start_index])->ps_clshift) | |
1345 | + vm_page_shift))) { | |
1346 | physical_transfer_cluster_count = 0; | |
1347 | j = start_index + 1; | |
1348 | } else { | |
1349 | physical_transfer_cluster_count+=1; | |
1350 | j = start_index; | |
1351 | if(start_index == 0) | |
1352 | start_index = paging_segment_max; | |
1353 | else | |
1354 | start_index = start_index - 1; | |
1355 | } | |
1356 | ||
1357 | while (1) { | |
1358 | if (j > paging_segment_max) | |
1359 | j = 0; | |
1360 | if ((ps = paging_segments[j]) && | |
1361 | (ps->ps_bs->bs_priority == i)) { | |
1362 | /* | |
1363 | * Force the ps cluster size to be | |
1364 | * >= that of the vstruct. | |
1365 | */ | |
1366 | PS_LOCK(ps); | |
1367 | if (ps->ps_going_away) { | |
1368 | /* this segment is being turned off */ | |
1369 | } else if ((ps->ps_clcount) && | |
1370 | (ps->ps_clshift >= shift)) { | |
1371 | ipc_port_t trigger = IP_NULL; | |
1372 | ||
1373 | ps->ps_clcount--; | |
1374 | dp_pages_free -= 1 << ps->ps_clshift; | |
1375 | if(min_pages_trigger_port && | |
1376 | (dp_pages_free < | |
1377 | minimum_pages_remaining)) { | |
1378 | trigger = min_pages_trigger_port; | |
1379 | min_pages_trigger_port = NULL; | |
1380 | } | |
1381 | PS_UNLOCK(ps); | |
1382 | /* | |
1383 | * found one, quit looking. | |
1384 | */ | |
1385 | ps_select_array[i] = j; | |
1386 | PSL_UNLOCK(); | |
1387 | ||
1388 | if (trigger != IP_NULL) { | |
1389 | default_pager_space_alert( | |
1390 | trigger, | |
1391 | HI_WAT_ALERT); | |
1392 | ipc_port_release_send(trigger); | |
1393 | } | |
1394 | *psindex = j; | |
1395 | return ps; | |
1396 | } | |
1397 | PS_UNLOCK(ps); | |
1398 | } | |
1399 | if (j == start_index) { | |
1400 | /* | |
1401 | * none at this priority -- mark it full | |
1402 | */ | |
1403 | ps_select_array[i] = BS_FULLPRI; | |
1404 | break; | |
1405 | } | |
1406 | j++; | |
1407 | } | |
1408 | } | |
1409 | PSL_UNLOCK(); | |
1410 | return PAGING_SEGMENT_NULL; | |
1411 | } | |
1412 | ||
1413 | vm_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/ | |
1414 | ||
1415 | vm_offset_t | |
1416 | ps_allocate_cluster( | |
1417 | vstruct_t vs, | |
1418 | int *psindex, | |
1419 | paging_segment_t use_ps) | |
1420 | { | |
1421 | int byte_num; | |
1422 | int bit_num = 0; | |
1423 | paging_segment_t ps; | |
1424 | vm_offset_t cluster; | |
1425 | ipc_port_t trigger = IP_NULL; | |
1426 | ||
1427 | /* | |
1428 | * Find best paging segment. | |
1429 | * ps_select_segment will decrement cluster count on ps. | |
1430 | * Must pass cluster shift to find the most appropriate segment. | |
1431 | */ | |
1432 | /* NOTE: The addition of paging segment delete capability threatened | |
1433 | * to seriously complicate the treatment of paging segments in this | |
1434 | * module and the ones that call it (notably ps_clmap), because of the | |
1435 | * difficulty in assuring that the paging segment would continue to | |
1436 | * exist between being unlocked and locked. This was | |
1437 | * avoided because all calls to this module are based in either | |
1438 | * dp_memory_object calls which rely on the vs lock, or by | |
1439 | * the transfer function which is part of the segment delete path. | |
1440 | * The transfer function which is part of paging segment delete is | |
1441 | * protected from multiple callers by the backing store lock. | |
1442 | * The paging segment delete function treats mappings to a paging | |
1443 | * segment on a vstruct by vstruct basis, locking the vstruct targeted | |
1444 | * while data is transferred to the remaining segments. This is in | |
1445 | * line with the view that incomplete or in-transition mappings between | |
1446 | * data, a vstruct, and backing store are protected by the vs lock. | |
1447 | * This and the ordering of the paging segment "going_away" bit setting | |
1448 | * protects us. | |
1449 | */ | |
1450 | if (use_ps != PAGING_SEGMENT_NULL) { | |
1451 | ps = use_ps; | |
1452 | PSL_LOCK(); | |
1453 | PS_LOCK(ps); | |
1454 | ps->ps_clcount--; | |
1455 | dp_pages_free -= 1 << ps->ps_clshift; | |
1456 | if(min_pages_trigger_port && | |
1457 | (dp_pages_free < minimum_pages_remaining)) { | |
1458 | trigger = min_pages_trigger_port; | |
1459 | min_pages_trigger_port = NULL; | |
1460 | } | |
1461 | PSL_UNLOCK(); | |
1462 | PS_UNLOCK(ps); | |
1463 | if (trigger != IP_NULL) { | |
1464 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1465 | ipc_port_release_send(trigger); | |
1466 | } | |
1467 | ||
1468 | } else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) == | |
1469 | PAGING_SEGMENT_NULL) { | |
1470 | #if 0 | |
1471 | bs_no_paging_space(TRUE); | |
1472 | #endif | |
1473 | #if 0 | |
1474 | if (verbose) | |
1475 | #endif | |
1476 | dprintf(("no space in available paging segments; " | |
1477 | "swapon suggested\n")); | |
1478 | /* the count got off maybe, reset to zero */ | |
1479 | PSL_LOCK(); | |
1480 | dp_pages_free = 0; | |
1481 | if(min_pages_trigger_port) { | |
1482 | trigger = min_pages_trigger_port; | |
1483 | min_pages_trigger_port = NULL; | |
1484 | bs_low = TRUE; | |
1485 | } | |
1486 | PSL_UNLOCK(); | |
1487 | if (trigger != IP_NULL) { | |
1488 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1489 | ipc_port_release_send(trigger); | |
1490 | } | |
1491 | return (vm_offset_t) -1; | |
1492 | } | |
1493 | ASSERT(ps->ps_clcount != 0); | |
1494 | ||
1495 | /* | |
1496 | * Look for an available cluster. At the end of the loop, | |
1497 | * byte_num is the byte offset and bit_num is the bit offset of the | |
1498 | * first zero bit in the paging segment bitmap. | |
1499 | */ | |
1500 | PS_LOCK(ps); | |
1501 | byte_num = ps->ps_hint; | |
1502 | for (; byte_num < howmany(ps->ps_ncls, NBBY); byte_num++) { | |
1503 | if (*(ps->ps_bmap + byte_num) != BYTEMASK) { | |
1504 | for (bit_num = 0; bit_num < NBBY; bit_num++) { | |
1505 | if (isclr((ps->ps_bmap + byte_num), bit_num)) | |
1506 | break; | |
1507 | } | |
1508 | ASSERT(bit_num != NBBY); | |
1509 | break; | |
1510 | } | |
1511 | } | |
1512 | ps->ps_hint = byte_num; | |
1513 | cluster = (byte_num*NBBY) + bit_num; | |
1514 | ||
1515 | /* Space was reserved, so this must be true */ | |
1516 | ASSERT(cluster < ps->ps_ncls); | |
1517 | ||
1518 | setbit(ps->ps_bmap, cluster); | |
1519 | PS_UNLOCK(ps); | |
1520 | ||
1521 | return cluster; | |
1522 | } | |
1523 | ||
1524 | void ps_deallocate_cluster(paging_segment_t, vm_offset_t); /* forward */ | |
1525 | ||
1526 | void | |
1527 | ps_deallocate_cluster( | |
1528 | paging_segment_t ps, | |
1529 | vm_offset_t cluster) | |
1530 | { | |
1531 | ipc_port_t trigger = IP_NULL; | |
1532 | ||
1533 | if (cluster >= (vm_offset_t) ps->ps_ncls) | |
1534 | panic("ps_deallocate_cluster: Invalid cluster number"); | |
1535 | ||
1536 | /* | |
1537 | * Lock the paging segment, clear the cluster's bitmap and increment the | |
1538 | * number of free cluster. | |
1539 | */ | |
1540 | PSL_LOCK(); | |
1541 | PS_LOCK(ps); | |
1542 | clrbit(ps->ps_bmap, cluster); | |
1543 | ++ps->ps_clcount; | |
1544 | dp_pages_free += 1 << ps->ps_clshift; | |
1545 | if(max_pages_trigger_port | |
1546 | && (backing_store_release_trigger_disable == 0) | |
1547 | && (dp_pages_free > maximum_pages_free)) { | |
1548 | trigger = max_pages_trigger_port; | |
1549 | max_pages_trigger_port = NULL; | |
1550 | } | |
1551 | PSL_UNLOCK(); | |
1552 | ||
1553 | /* | |
1554 | * Move the hint down to the freed cluster if it is | |
1555 | * less than the current hint. | |
1556 | */ | |
1557 | if ((cluster/NBBY) < ps->ps_hint) { | |
1558 | ps->ps_hint = (cluster/NBBY); | |
1559 | } | |
1560 | ||
1561 | PS_UNLOCK(ps); | |
1562 | ||
1563 | /* | |
1564 | * If we're freeing space on a full priority, reset the array. | |
1565 | */ | |
1566 | PSL_LOCK(); | |
1567 | if (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) | |
1568 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
1569 | PSL_UNLOCK(); | |
1570 | ||
1571 | if (trigger != IP_NULL) { | |
1572 | VSL_LOCK(); | |
1573 | if(backing_store_release_trigger_disable != 0) { | |
1574 | assert_wait((event_t) | |
1575 | &backing_store_release_trigger_disable, | |
1576 | THREAD_UNINT); | |
1577 | VSL_UNLOCK(); | |
1578 | thread_block(THREAD_CONTINUE_NULL); | |
1579 | } else { | |
1580 | VSL_UNLOCK(); | |
1581 | } | |
1582 | default_pager_space_alert(trigger, LO_WAT_ALERT); | |
1583 | ipc_port_release_send(trigger); | |
1584 | } | |
1585 | ||
1586 | return; | |
1587 | } | |
1588 | ||
1589 | void ps_dealloc_vsmap(struct vs_map *, vm_size_t); /* forward */ | |
1590 | ||
1591 | void | |
1592 | ps_dealloc_vsmap( | |
1593 | struct vs_map *vsmap, | |
1594 | vm_size_t size) | |
1595 | { | |
1596 | int i; | |
1597 | for (i = 0; i < size; i++) | |
1598 | if (!VSM_ISCLR(vsmap[i]) && !VSM_ISERR(vsmap[i])) | |
1599 | ps_deallocate_cluster(VSM_PS(vsmap[i]), | |
1600 | VSM_CLOFF(vsmap[i])); | |
1601 | } | |
1602 | ||
1603 | void | |
1604 | ps_vstruct_dealloc( | |
1605 | vstruct_t vs) | |
1606 | { | |
1607 | int i; | |
1608 | spl_t s; | |
1609 | ||
1610 | VS_MAP_LOCK(vs); | |
1611 | ||
1612 | /* | |
1613 | * If this is an indirect structure, then we walk through the valid | |
1614 | * (non-zero) indirect pointers and deallocate the clusters | |
1615 | * associated with each used map entry (via ps_dealloc_vsmap). | |
1616 | * When all of the clusters in an indirect block have been | |
1617 | * freed, we deallocate the block. When all of the indirect | |
1618 | * blocks have been deallocated we deallocate the memory | |
1619 | * holding the indirect pointers. | |
1620 | */ | |
1621 | if (vs->vs_indirect) { | |
1622 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
1623 | if (vs->vs_imap[i] != NULL) { | |
1624 | ps_dealloc_vsmap(vs->vs_imap[i], CLMAP_ENTRIES); | |
1625 | kfree((vm_offset_t)vs->vs_imap[i], | |
1626 | CLMAP_THRESHOLD); | |
1627 | } | |
1628 | } | |
1629 | kfree((vm_offset_t)vs->vs_imap, | |
1630 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1631 | } else { | |
1632 | /* | |
1633 | * Direct map. Free used clusters, then memory. | |
1634 | */ | |
1635 | ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size); | |
1636 | kfree((vm_offset_t)vs->vs_dmap, CLMAP_SIZE(vs->vs_size)); | |
1637 | } | |
1638 | VS_MAP_UNLOCK(vs); | |
1639 | ||
1640 | bs_commit(- vs->vs_size); | |
1641 | ||
1642 | zfree(vstruct_zone, (vm_offset_t)vs); | |
1643 | } | |
1644 | ||
1645 | int ps_map_extend(vstruct_t, int); /* forward */ | |
1646 | ||
1647 | int ps_map_extend( | |
1648 | vstruct_t vs, | |
1649 | int new_size) | |
1650 | { | |
1651 | struct vs_map **new_imap; | |
1652 | struct vs_map *new_dmap = NULL; | |
1653 | int newdsize; | |
1654 | int i; | |
1655 | void *old_map = NULL; | |
1656 | int old_map_size = 0; | |
1657 | ||
1658 | if (vs->vs_size >= new_size) { | |
1659 | /* | |
1660 | * Someone has already done the work. | |
1661 | */ | |
1662 | return 0; | |
1663 | } | |
1664 | ||
1665 | /* | |
1666 | * If the new size extends into the indirect range, then we have one | |
1667 | * of two cases: we are going from indirect to indirect, or we are | |
1668 | * going from direct to indirect. If we are going from indirect to | |
1669 | * indirect, then it is possible that the new size will fit in the old | |
1670 | * indirect map. If this is the case, then just reset the size of the | |
1671 | * vstruct map and we are done. If the new size will not | |
1672 | * fit into the old indirect map, then we have to allocate a new | |
1673 | * indirect map and copy the old map pointers into this new map. | |
1674 | * | |
1675 | * If we are going from direct to indirect, then we have to allocate a | |
1676 | * new indirect map and copy the old direct pages into the first | |
1677 | * indirect page of the new map. | |
1678 | * NOTE: allocating memory here is dangerous, as we're in the | |
1679 | * pageout path. | |
1680 | */ | |
1681 | if (INDIRECT_CLMAP(new_size)) { | |
1682 | int new_map_size = INDIRECT_CLMAP_SIZE(new_size); | |
1683 | ||
1684 | /* | |
1685 | * Get a new indirect map and zero it. | |
1686 | */ | |
1687 | old_map_size = INDIRECT_CLMAP_SIZE(vs->vs_size); | |
1688 | if (vs->vs_indirect && | |
1689 | (new_map_size == old_map_size)) { | |
1690 | bs_commit(new_size - vs->vs_size); | |
1691 | vs->vs_size = new_size; | |
1692 | return 0; | |
1693 | } | |
1694 | ||
1695 | new_imap = (struct vs_map **)kalloc(new_map_size); | |
1696 | if (new_imap == NULL) { | |
1697 | return -1; | |
1698 | } | |
1699 | memset(new_imap, 0, new_map_size); | |
1700 | ||
1701 | if (vs->vs_indirect) { | |
1702 | /* Copy old entries into new map */ | |
1703 | memcpy(new_imap, vs->vs_imap, old_map_size); | |
1704 | /* Arrange to free the old map */ | |
1705 | old_map = (void *) vs->vs_imap; | |
1706 | newdsize = 0; | |
1707 | } else { /* Old map was a direct map */ | |
1708 | /* Allocate an indirect page */ | |
1709 | if ((new_imap[0] = (struct vs_map *) | |
1710 | kalloc(CLMAP_THRESHOLD)) == NULL) { | |
1711 | kfree((vm_offset_t)new_imap, new_map_size); | |
1712 | return -1; | |
1713 | } | |
1714 | new_dmap = new_imap[0]; | |
1715 | newdsize = CLMAP_ENTRIES; | |
1716 | } | |
1717 | } else { | |
1718 | new_imap = NULL; | |
1719 | newdsize = new_size; | |
1720 | /* | |
1721 | * If the new map is a direct map, then the old map must | |
1722 | * also have been a direct map. All we have to do is | |
1723 | * to allocate a new direct map, copy the old entries | |
1724 | * into it and free the old map. | |
1725 | */ | |
1726 | if ((new_dmap = (struct vs_map *) | |
1727 | kalloc(CLMAP_SIZE(new_size))) == NULL) { | |
1728 | return -1; | |
1729 | } | |
1730 | } | |
1731 | if (newdsize) { | |
1732 | ||
1733 | /* Free the old map */ | |
1734 | old_map = (void *) vs->vs_dmap; | |
1735 | old_map_size = CLMAP_SIZE(vs->vs_size); | |
1736 | ||
1737 | /* Copy info from the old map into the new map */ | |
1738 | memcpy(new_dmap, vs->vs_dmap, old_map_size); | |
1739 | ||
1740 | /* Initialize the rest of the new map */ | |
1741 | for (i = vs->vs_size; i < newdsize; i++) | |
1742 | VSM_CLR(new_dmap[i]); | |
1743 | } | |
1744 | if (new_imap) { | |
1745 | vs->vs_imap = new_imap; | |
1746 | vs->vs_indirect = TRUE; | |
1747 | } else | |
1748 | vs->vs_dmap = new_dmap; | |
1749 | bs_commit(new_size - vs->vs_size); | |
1750 | vs->vs_size = new_size; | |
1751 | if (old_map) | |
1752 | kfree((vm_offset_t)old_map, old_map_size); | |
1753 | return 0; | |
1754 | } | |
1755 | ||
1756 | vm_offset_t | |
1757 | ps_clmap( | |
1758 | vstruct_t vs, | |
1759 | vm_offset_t offset, | |
1760 | struct clmap *clmap, | |
1761 | int flag, | |
1762 | vm_size_t size, | |
1763 | int error) | |
1764 | { | |
1765 | vm_offset_t cluster; /* The cluster of offset. */ | |
1766 | vm_offset_t newcl; /* The new cluster allocated. */ | |
1767 | vm_offset_t newoff; | |
1768 | int i; | |
1769 | struct vs_map *vsmap; | |
1770 | ||
1771 | VS_MAP_LOCK(vs); | |
1772 | ||
1773 | ASSERT(vs->vs_dmap); | |
1774 | cluster = atop(offset) >> vs->vs_clshift; | |
1775 | ||
1776 | /* | |
1777 | * Initialize cluster error value | |
1778 | */ | |
1779 | clmap->cl_error = 0; | |
1780 | ||
1781 | /* | |
1782 | * If the object has grown, extend the page map. | |
1783 | */ | |
1784 | if (cluster >= vs->vs_size) { | |
1785 | if (flag == CL_FIND) { | |
1786 | /* Do not allocate if just doing a lookup */ | |
1787 | VS_MAP_UNLOCK(vs); | |
1788 | return (vm_offset_t) -1; | |
1789 | } | |
1790 | if (ps_map_extend(vs, cluster + 1)) { | |
1791 | VS_MAP_UNLOCK(vs); | |
1792 | return (vm_offset_t) -1; | |
1793 | } | |
1794 | } | |
1795 | ||
1796 | /* | |
1797 | * Look for the desired cluster. If the map is indirect, then we | |
1798 | * have a two level lookup. First find the indirect block, then | |
1799 | * find the actual cluster. If the indirect block has not yet | |
1800 | * been allocated, then do so. If the cluster has not yet been | |
1801 | * allocated, then do so. | |
1802 | * | |
1803 | * If any of the allocations fail, then return an error. | |
1804 | * Don't allocate if just doing a lookup. | |
1805 | */ | |
1806 | if (vs->vs_indirect) { | |
1807 | long ind_block = cluster/CLMAP_ENTRIES; | |
1808 | ||
1809 | /* Is the indirect block allocated? */ | |
1810 | vsmap = vs->vs_imap[ind_block]; | |
1811 | if (vsmap == NULL) { | |
1812 | if (flag == CL_FIND) { | |
1813 | VS_MAP_UNLOCK(vs); | |
1814 | return (vm_offset_t) -1; | |
1815 | } | |
1816 | ||
1817 | /* Allocate the indirect block */ | |
1818 | vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD); | |
1819 | if (vsmap == NULL) { | |
1820 | VS_MAP_UNLOCK(vs); | |
1821 | return (vm_offset_t) -1; | |
1822 | } | |
1823 | /* Initialize the cluster offsets */ | |
1824 | for (i = 0; i < CLMAP_ENTRIES; i++) | |
1825 | VSM_CLR(vsmap[i]); | |
1826 | vs->vs_imap[ind_block] = vsmap; | |
1827 | } | |
1828 | } else | |
1829 | vsmap = vs->vs_dmap; | |
1830 | ||
1831 | ASSERT(vsmap); | |
1832 | vsmap += cluster%CLMAP_ENTRIES; | |
1833 | ||
1834 | /* | |
1835 | * At this point, vsmap points to the struct vs_map desired. | |
1836 | * | |
1837 | * Look in the map for the cluster, if there was an error on a | |
1838 | * previous write, flag it and return. If it is not yet | |
1839 | * allocated, then allocate it, if we're writing; if we're | |
1840 | * doing a lookup and the cluster's not allocated, return error. | |
1841 | */ | |
1842 | if (VSM_ISERR(*vsmap)) { | |
1843 | clmap->cl_error = VSM_GETERR(*vsmap); | |
1844 | VS_MAP_UNLOCK(vs); | |
1845 | return (vm_offset_t) -1; | |
1846 | } else if (VSM_ISCLR(*vsmap)) { | |
1847 | int psindex; | |
1848 | ||
1849 | if (flag == CL_FIND) { | |
1850 | /* | |
1851 | * If there's an error and the entry is clear, then | |
1852 | * we've run out of swap space. Record the error | |
1853 | * here and return. | |
1854 | */ | |
1855 | if (error) { | |
1856 | VSM_SETERR(*vsmap, error); | |
1857 | } | |
1858 | VS_MAP_UNLOCK(vs); | |
1859 | return (vm_offset_t) -1; | |
1860 | } else { | |
1861 | /* | |
1862 | * Attempt to allocate a cluster from the paging segment | |
1863 | */ | |
1864 | newcl = ps_allocate_cluster(vs, &psindex, | |
1865 | PAGING_SEGMENT_NULL); | |
1866 | if (newcl == -1) { | |
1867 | VS_MAP_UNLOCK(vs); | |
1868 | return (vm_offset_t) -1; | |
1869 | } | |
1870 | VSM_CLR(*vsmap); | |
1871 | VSM_SETCLOFF(*vsmap, newcl); | |
1872 | VSM_SETPS(*vsmap, psindex); | |
1873 | } | |
1874 | } else | |
1875 | newcl = VSM_CLOFF(*vsmap); | |
1876 | ||
1877 | /* | |
1878 | * Fill in pertinent fields of the clmap | |
1879 | */ | |
1880 | clmap->cl_ps = VSM_PS(*vsmap); | |
1881 | clmap->cl_numpages = VSCLSIZE(vs); | |
1882 | clmap->cl_bmap.clb_map = (unsigned int) VSM_BMAP(*vsmap); | |
1883 | ||
1884 | /* | |
1885 | * Byte offset in paging segment is byte offset to cluster plus | |
1886 | * byte offset within cluster. It looks ugly, but should be | |
1887 | * relatively quick. | |
1888 | */ | |
1889 | ASSERT(trunc_page(offset) == offset); | |
1890 | newcl = ptoa(newcl) << vs->vs_clshift; | |
1891 | newoff = offset & ((1<<(vm_page_shift + vs->vs_clshift)) - 1); | |
1892 | if (flag == CL_ALLOC) { | |
1893 | /* | |
1894 | * set bits in the allocation bitmap according to which | |
1895 | * pages were requested. size is in bytes. | |
1896 | */ | |
1897 | i = atop(newoff); | |
1898 | while ((size > 0) && (i < VSCLSIZE(vs))) { | |
1899 | VSM_SETALLOC(*vsmap, i); | |
1900 | i++; | |
1901 | size -= vm_page_size; | |
1902 | } | |
1903 | } | |
1904 | clmap->cl_alloc.clb_map = (unsigned int) VSM_ALLOC(*vsmap); | |
1905 | if (newoff) { | |
1906 | /* | |
1907 | * Offset is not cluster aligned, so number of pages | |
1908 | * and bitmaps must be adjusted | |
1909 | */ | |
1910 | clmap->cl_numpages -= atop(newoff); | |
1911 | CLMAP_SHIFT(clmap, vs); | |
1912 | CLMAP_SHIFTALLOC(clmap, vs); | |
1913 | } | |
1914 | ||
1915 | /* | |
1916 | * | |
1917 | * The setting of valid bits and handling of write errors | |
1918 | * must be done here, while we hold the lock on the map. | |
1919 | * It logically should be done in ps_vs_write_complete(). | |
1920 | * The size and error information has been passed from | |
1921 | * ps_vs_write_complete(). If the size parameter is non-zero, | |
1922 | * then there is work to be done. If error is also non-zero, | |
1923 | * then the error number is recorded in the cluster and the | |
1924 | * entire cluster is in error. | |
1925 | */ | |
1926 | if (size && flag == CL_FIND) { | |
1927 | vm_offset_t off = (vm_offset_t) 0; | |
1928 | ||
1929 | if (!error) { | |
1930 | for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0; | |
1931 | i++) { | |
1932 | VSM_SETPG(*vsmap, i); | |
1933 | size -= vm_page_size; | |
1934 | } | |
1935 | ASSERT(i <= VSCLSIZE(vs)); | |
1936 | } else { | |
1937 | BS_STAT(clmap->cl_ps->ps_bs, | |
1938 | clmap->cl_ps->ps_bs->bs_pages_out_fail += | |
1939 | atop(size)); | |
1940 | off = VSM_CLOFF(*vsmap); | |
1941 | VSM_SETERR(*vsmap, error); | |
1942 | } | |
1943 | /* | |
1944 | * Deallocate cluster if error, and no valid pages | |
1945 | * already present. | |
1946 | */ | |
1947 | if (off != (vm_offset_t) 0) | |
1948 | ps_deallocate_cluster(clmap->cl_ps, off); | |
1949 | VS_MAP_UNLOCK(vs); | |
1950 | return (vm_offset_t) 0; | |
1951 | } else | |
1952 | VS_MAP_UNLOCK(vs); | |
1953 | ||
1954 | DEBUG(DEBUG_VS_INTERNAL, | |
1955 | ("returning 0x%X,vs=0x%X,vsmap=0x%X,flag=%d\n", | |
1956 | newcl+newoff, (int) vs, (int) vsmap, flag)); | |
1957 | DEBUG(DEBUG_VS_INTERNAL, | |
1958 | (" clmap->cl_ps=0x%X,cl_numpages=%d,clbmap=0x%x,cl_alloc=%x\n", | |
1959 | (int) clmap->cl_ps, clmap->cl_numpages, | |
1960 | (int) clmap->cl_bmap.clb_map, (int) clmap->cl_alloc.clb_map)); | |
1961 | ||
1962 | return (newcl + newoff); | |
1963 | } | |
1964 | ||
1965 | void ps_clunmap(vstruct_t, vm_offset_t, vm_size_t); /* forward */ | |
1966 | ||
1967 | void | |
1968 | ps_clunmap( | |
1969 | vstruct_t vs, | |
1970 | vm_offset_t offset, | |
1971 | vm_size_t length) | |
1972 | { | |
1973 | vm_offset_t cluster; /* The cluster number of offset */ | |
1974 | struct vs_map *vsmap; | |
1975 | ||
1976 | VS_MAP_LOCK(vs); | |
1977 | ||
1978 | /* | |
1979 | * Loop through all clusters in this range, freeing paging segment | |
1980 | * clusters and map entries as encountered. | |
1981 | */ | |
1982 | while (length > 0) { | |
1983 | vm_offset_t newoff; | |
1984 | int i; | |
1985 | ||
1986 | cluster = atop(offset) >> vs->vs_clshift; | |
1987 | if (vs->vs_indirect) /* indirect map */ | |
1988 | vsmap = vs->vs_imap[cluster/CLMAP_ENTRIES]; | |
1989 | else | |
1990 | vsmap = vs->vs_dmap; | |
1991 | if (vsmap == NULL) { | |
1992 | VS_MAP_UNLOCK(vs); | |
1993 | return; | |
1994 | } | |
1995 | vsmap += cluster%CLMAP_ENTRIES; | |
1996 | if (VSM_ISCLR(*vsmap)) { | |
1997 | length -= vm_page_size; | |
1998 | offset += vm_page_size; | |
1999 | continue; | |
2000 | } | |
2001 | /* | |
2002 | * We've got a valid mapping. Clear it and deallocate | |
2003 | * paging segment cluster pages. | |
2004 | * Optimize for entire cluster cleraing. | |
2005 | */ | |
2006 | if (newoff = (offset&((1<<(vm_page_shift+vs->vs_clshift))-1))) { | |
2007 | /* | |
2008 | * Not cluster aligned. | |
2009 | */ | |
2010 | ASSERT(trunc_page(newoff) == newoff); | |
2011 | i = atop(newoff); | |
2012 | } else | |
2013 | i = 0; | |
2014 | while ((i < VSCLSIZE(vs)) && (length > 0)) { | |
2015 | VSM_CLRPG(*vsmap, i); | |
2016 | VSM_CLRALLOC(*vsmap, i); | |
2017 | length -= vm_page_size; | |
2018 | offset += vm_page_size; | |
2019 | i++; | |
2020 | } | |
2021 | ||
2022 | /* | |
2023 | * If map entry is empty, clear and deallocate cluster. | |
2024 | */ | |
2025 | if (!VSM_ALLOC(*vsmap)) { | |
2026 | ps_deallocate_cluster(VSM_PS(*vsmap), | |
2027 | VSM_CLOFF(*vsmap)); | |
2028 | VSM_CLR(*vsmap); | |
2029 | } | |
2030 | } | |
2031 | ||
2032 | VS_MAP_UNLOCK(vs); | |
2033 | } | |
2034 | ||
2035 | void ps_vs_write_complete(vstruct_t, vm_offset_t, vm_size_t, int); /* forward */ | |
2036 | ||
2037 | void | |
2038 | ps_vs_write_complete( | |
2039 | vstruct_t vs, | |
2040 | vm_offset_t offset, | |
2041 | vm_size_t size, | |
2042 | int error) | |
2043 | { | |
2044 | struct clmap clmap; | |
2045 | ||
2046 | /* | |
2047 | * Get the struct vsmap for this cluster. | |
2048 | * Use READ, even though it was written, because the | |
2049 | * cluster MUST be present, unless there was an error | |
2050 | * in the original ps_clmap (e.g. no space), in which | |
2051 | * case, nothing happens. | |
2052 | * | |
2053 | * Must pass enough information to ps_clmap to allow it | |
2054 | * to set the vs_map structure bitmap under lock. | |
2055 | */ | |
2056 | (void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error); | |
2057 | } | |
2058 | ||
2059 | void vs_cl_write_complete(vstruct_t, paging_segment_t, vm_offset_t, vm_offset_t, vm_size_t, boolean_t, int); /* forward */ | |
2060 | ||
2061 | void | |
2062 | vs_cl_write_complete( | |
2063 | vstruct_t vs, | |
2064 | paging_segment_t ps, | |
2065 | vm_offset_t offset, | |
2066 | vm_offset_t addr, | |
2067 | vm_size_t size, | |
2068 | boolean_t async, | |
2069 | int error) | |
2070 | { | |
2071 | kern_return_t kr; | |
2072 | ||
2073 | if (error) { | |
2074 | /* | |
2075 | * For internal objects, the error is recorded on a | |
2076 | * per-cluster basis by ps_clmap() which is called | |
2077 | * by ps_vs_write_complete() below. | |
2078 | */ | |
2079 | dprintf(("write failed error = 0x%x\n", error)); | |
2080 | /* add upl_abort code here */ | |
2081 | } else | |
2082 | GSTAT(global_stats.gs_pages_out += atop(size)); | |
2083 | /* | |
2084 | * Notify the vstruct mapping code, so it can do its accounting. | |
2085 | */ | |
2086 | ps_vs_write_complete(vs, offset, size, error); | |
2087 | ||
2088 | if (async) { | |
2089 | VS_LOCK(vs); | |
2090 | ASSERT(vs->vs_async_pending > 0); | |
2091 | vs->vs_async_pending -= size; | |
2092 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { | |
2093 | vs->vs_waiting_async = FALSE; | |
2094 | VS_UNLOCK(vs); | |
2095 | /* mutex_unlock(&vs->vs_waiting_async); */ | |
2096 | thread_wakeup(&vs->vs_async_pending); | |
2097 | } else { | |
2098 | VS_UNLOCK(vs); | |
2099 | } | |
2100 | } | |
2101 | } | |
2102 | ||
2103 | #ifdef DEVICE_PAGING | |
2104 | kern_return_t device_write_reply(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2105 | ||
2106 | kern_return_t | |
2107 | device_write_reply( | |
2108 | MACH_PORT_FACE reply_port, | |
2109 | kern_return_t device_code, | |
2110 | io_buf_len_t bytes_written) | |
2111 | { | |
2112 | struct vs_async *vsa; | |
2113 | ||
2114 | vsa = (struct vs_async *) | |
2115 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2116 | ||
2117 | if (device_code == KERN_SUCCESS && bytes_written != vsa->vsa_size) { | |
2118 | device_code = KERN_FAILURE; | |
2119 | } | |
2120 | ||
2121 | vsa->vsa_error = device_code; | |
2122 | ||
2123 | ||
2124 | ASSERT(vsa->vsa_vs != VSTRUCT_NULL); | |
2125 | if(vsa->vsa_flags & VSA_TRANSFER) { | |
2126 | /* revisit when async disk segments redone */ | |
2127 | if(vsa->vsa_error) { | |
2128 | /* need to consider error condition. re-write data or */ | |
2129 | /* throw it away here. */ | |
2130 | vm_offset_t ioaddr; | |
2131 | if(vm_map_copyout(kernel_map, &ioaddr, | |
2132 | (vm_map_copy_t)vsa->vsa_addr) != KERN_SUCCESS) | |
2133 | panic("vs_cluster_write: unable to copy source list\n"); | |
2134 | vm_deallocate(kernel_map, ioaddr, vsa->vsa_size); | |
2135 | } | |
2136 | ps_vs_write_complete(vsa->vsa_vs, vsa->vsa_offset, | |
2137 | vsa->vsa_size, vsa->vsa_error); | |
2138 | } else { | |
2139 | vs_cl_write_complete(vsa->vsa_vs, vsa->vsa_ps, vsa->vsa_offset, | |
2140 | vsa->vsa_addr, vsa->vsa_size, TRUE, | |
2141 | vsa->vsa_error); | |
2142 | } | |
2143 | VS_FREE_ASYNC(vsa); | |
2144 | ||
2145 | return KERN_SUCCESS; | |
2146 | } | |
2147 | ||
2148 | kern_return_t device_write_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2149 | kern_return_t | |
2150 | device_write_reply_inband( | |
2151 | MACH_PORT_FACE reply_port, | |
2152 | kern_return_t return_code, | |
2153 | io_buf_len_t bytes_written) | |
2154 | { | |
2155 | panic("device_write_reply_inband: illegal"); | |
2156 | return KERN_SUCCESS; | |
2157 | } | |
2158 | ||
2159 | kern_return_t device_read_reply(MACH_PORT_FACE, kern_return_t, io_buf_ptr_t, mach_msg_type_number_t); | |
2160 | kern_return_t | |
2161 | device_read_reply( | |
2162 | MACH_PORT_FACE reply_port, | |
2163 | kern_return_t return_code, | |
2164 | io_buf_ptr_t data, | |
2165 | mach_msg_type_number_t dataCnt) | |
2166 | { | |
2167 | struct vs_async *vsa; | |
2168 | vsa = (struct vs_async *) | |
2169 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2170 | vsa->vsa_addr = (vm_offset_t)data; | |
2171 | vsa->vsa_size = (vm_size_t)dataCnt; | |
2172 | vsa->vsa_error = return_code; | |
2173 | thread_wakeup(&vsa->vsa_lock); | |
2174 | return KERN_SUCCESS; | |
2175 | } | |
2176 | ||
2177 | kern_return_t device_read_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_ptr_inband_t, mach_msg_type_number_t); | |
2178 | kern_return_t | |
2179 | device_read_reply_inband( | |
2180 | MACH_PORT_FACE reply_port, | |
2181 | kern_return_t return_code, | |
2182 | io_buf_ptr_inband_t data, | |
2183 | mach_msg_type_number_t dataCnt) | |
2184 | { | |
2185 | panic("device_read_reply_inband: illegal"); | |
2186 | return KERN_SUCCESS; | |
2187 | } | |
2188 | ||
2189 | kern_return_t device_read_reply_overwrite(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2190 | kern_return_t | |
2191 | device_read_reply_overwrite( | |
2192 | MACH_PORT_FACE reply_port, | |
2193 | kern_return_t return_code, | |
2194 | io_buf_len_t bytes_read) | |
2195 | { | |
2196 | panic("device_read_reply_overwrite: illegal\n"); | |
2197 | return KERN_SUCCESS; | |
2198 | } | |
2199 | ||
2200 | kern_return_t device_open_reply(MACH_PORT_FACE, kern_return_t, MACH_PORT_FACE); | |
2201 | kern_return_t | |
2202 | device_open_reply( | |
2203 | MACH_PORT_FACE reply_port, | |
2204 | kern_return_t return_code, | |
2205 | MACH_PORT_FACE device_port) | |
2206 | { | |
2207 | panic("device_open_reply: illegal\n"); | |
2208 | return KERN_SUCCESS; | |
2209 | } | |
2210 | ||
2211 | kern_return_t ps_read_device(paging_segment_t, vm_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */ | |
2212 | ||
2213 | kern_return_t | |
2214 | ps_read_device( | |
2215 | paging_segment_t ps, | |
2216 | vm_offset_t offset, | |
2217 | vm_offset_t *bufferp, | |
2218 | unsigned int size, | |
2219 | unsigned int *residualp, | |
2220 | int flags) | |
2221 | { | |
2222 | kern_return_t kr; | |
2223 | recnum_t dev_offset; | |
2224 | unsigned int bytes_wanted; | |
2225 | unsigned int bytes_read; | |
2226 | unsigned int total_read; | |
2227 | vm_offset_t dev_buffer; | |
2228 | vm_offset_t buf_ptr; | |
2229 | unsigned int records_read; | |
2230 | struct vs_async *vsa; | |
2231 | mutex_t vs_waiting_read_reply; | |
2232 | ||
2233 | device_t device; | |
2234 | vm_map_copy_t device_data = NULL; | |
2235 | default_pager_thread_t *dpt = NULL; | |
2236 | ||
2237 | device = dev_port_lookup(ps->ps_device); | |
2238 | clustered_reads[atop(size)]++; | |
2239 | ||
2240 | dev_offset = (ps->ps_offset + | |
2241 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2242 | bytes_wanted = size; | |
2243 | total_read = 0; | |
2244 | *bufferp = (vm_offset_t)NULL; | |
2245 | ||
2246 | do { | |
2247 | vsa = VS_ALLOC_ASYNC(); | |
2248 | if (vsa) { | |
2249 | vsa->vsa_vs = NULL; | |
2250 | vsa->vsa_addr = 0; | |
2251 | vsa->vsa_offset = 0; | |
2252 | vsa->vsa_size = 0; | |
2253 | vsa->vsa_ps = NULL; | |
2254 | } | |
2255 | mutex_init(&vsa->vsa_lock, ETAP_DPAGE_VSSEQNO); | |
2256 | ip_lock(vsa->reply_port); | |
2257 | vsa->reply_port->ip_sorights++; | |
2258 | ip_reference(vsa->reply_port); | |
2259 | ip_unlock(vsa->reply_port); | |
2260 | kr = ds_device_read_common(device, | |
2261 | vsa->reply_port, | |
2262 | (mach_msg_type_name_t) | |
2263 | MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2264 | (dev_mode_t) 0, | |
2265 | dev_offset, | |
2266 | bytes_wanted, | |
2267 | (IO_READ | IO_CALL), | |
2268 | (io_buf_ptr_t *) &dev_buffer, | |
2269 | (mach_msg_type_number_t *) &bytes_read); | |
2270 | if(kr == MIG_NO_REPLY) { | |
2271 | assert_wait(&vsa->vsa_lock, THREAD_UNINT); | |
2272 | thread_block(THREAD_CONTINUE_NULL); | |
2273 | ||
2274 | dev_buffer = vsa->vsa_addr; | |
2275 | bytes_read = (unsigned int)vsa->vsa_size; | |
2276 | kr = vsa->vsa_error; | |
2277 | } | |
2278 | VS_FREE_ASYNC(vsa); | |
2279 | if (kr != KERN_SUCCESS || bytes_read == 0) { | |
2280 | break; | |
2281 | } | |
2282 | total_read += bytes_read; | |
2283 | ||
2284 | /* | |
2285 | * If we got the entire range, use the returned dev_buffer. | |
2286 | */ | |
2287 | if (bytes_read == size) { | |
2288 | *bufferp = (vm_offset_t)dev_buffer; | |
2289 | break; | |
2290 | } | |
2291 | ||
2292 | #if 1 | |
2293 | dprintf(("read only %d bytes out of %d\n", | |
2294 | bytes_read, bytes_wanted)); | |
2295 | #endif | |
2296 | if(dpt == NULL) { | |
2297 | dpt = get_read_buffer(); | |
2298 | buf_ptr = dpt->dpt_buffer; | |
2299 | *bufferp = (vm_offset_t)buf_ptr; | |
2300 | } | |
2301 | /* | |
2302 | * Otherwise, copy the data into the provided buffer (*bufferp) | |
2303 | * and append the rest of the range as it comes in. | |
2304 | */ | |
2305 | memcpy((void *) buf_ptr, (void *) dev_buffer, bytes_read); | |
2306 | buf_ptr += bytes_read; | |
2307 | bytes_wanted -= bytes_read; | |
2308 | records_read = (bytes_read >> | |
2309 | (vm_page_shift - ps->ps_record_shift)); | |
2310 | dev_offset += records_read; | |
2311 | DEBUG(DEBUG_VS_INTERNAL, | |
2312 | ("calling vm_deallocate(addr=0x%X,size=0x%X)\n", | |
2313 | dev_buffer, bytes_read)); | |
2314 | if (vm_deallocate(kernel_map, dev_buffer, bytes_read) | |
2315 | != KERN_SUCCESS) | |
2316 | Panic("dealloc buf"); | |
2317 | } while (bytes_wanted); | |
2318 | ||
2319 | *residualp = size - total_read; | |
2320 | if((dev_buffer != *bufferp) && (total_read != 0)) { | |
2321 | vm_offset_t temp_buffer; | |
2322 | vm_allocate(kernel_map, &temp_buffer, total_read, TRUE); | |
2323 | memcpy((void *) temp_buffer, (void *) *bufferp, total_read); | |
2324 | if(vm_map_copyin_page_list(kernel_map, temp_buffer, total_read, | |
2325 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2326 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2327 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2328 | (vm_map_copy_t *)&device_data, FALSE)) | |
2329 | panic("ps_read_device: cannot copyin locally provided buffer\n"); | |
2330 | } | |
2331 | else if((kr == KERN_SUCCESS) && (total_read != 0) && (dev_buffer != 0)){ | |
2332 | if(vm_map_copyin_page_list(kernel_map, dev_buffer, bytes_read, | |
2333 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2334 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2335 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2336 | (vm_map_copy_t *)&device_data, FALSE)) | |
2337 | panic("ps_read_device: cannot copyin backing store provided buffer\n"); | |
2338 | } | |
2339 | else { | |
2340 | device_data = NULL; | |
2341 | } | |
2342 | *bufferp = (vm_offset_t)device_data; | |
2343 | ||
2344 | if(dpt != NULL) { | |
2345 | /* Free the receive buffer */ | |
2346 | dpt->checked_out = 0; | |
2347 | thread_wakeup(&dpt_array); | |
2348 | } | |
2349 | return KERN_SUCCESS; | |
2350 | } | |
2351 | ||
2352 | kern_return_t ps_write_device(paging_segment_t, vm_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */ | |
2353 | ||
2354 | kern_return_t | |
2355 | ps_write_device( | |
2356 | paging_segment_t ps, | |
2357 | vm_offset_t offset, | |
2358 | vm_offset_t addr, | |
2359 | unsigned int size, | |
2360 | struct vs_async *vsa) | |
2361 | { | |
2362 | recnum_t dev_offset; | |
2363 | io_buf_len_t bytes_to_write, bytes_written; | |
2364 | recnum_t records_written; | |
2365 | kern_return_t kr; | |
2366 | MACH_PORT_FACE reply_port; | |
2367 | ||
2368 | ||
2369 | ||
2370 | clustered_writes[atop(size)]++; | |
2371 | ||
2372 | dev_offset = (ps->ps_offset + | |
2373 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2374 | bytes_to_write = size; | |
2375 | ||
2376 | if (vsa) { | |
2377 | /* | |
2378 | * Asynchronous write. | |
2379 | */ | |
2380 | reply_port = vsa->reply_port; | |
2381 | ip_lock(reply_port); | |
2382 | reply_port->ip_sorights++; | |
2383 | ip_reference(reply_port); | |
2384 | ip_unlock(reply_port); | |
2385 | { | |
2386 | device_t device; | |
2387 | device = dev_port_lookup(ps->ps_device); | |
2388 | ||
2389 | vsa->vsa_addr = addr; | |
2390 | kr=ds_device_write_common(device, | |
2391 | reply_port, | |
2392 | (mach_msg_type_name_t) MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2393 | (dev_mode_t) 0, | |
2394 | dev_offset, | |
2395 | (io_buf_ptr_t) addr, | |
2396 | size, | |
2397 | (IO_WRITE | IO_CALL), | |
2398 | &bytes_written); | |
2399 | } | |
2400 | if ((kr != KERN_SUCCESS) && (kr != MIG_NO_REPLY)) { | |
2401 | if (verbose) | |
2402 | dprintf(("%s0x%x, addr=0x%x," | |
2403 | "size=0x%x,offset=0x%x\n", | |
2404 | "device_write_request returned ", | |
2405 | kr, addr, size, offset)); | |
2406 | BS_STAT(ps->ps_bs, | |
2407 | ps->ps_bs->bs_pages_out_fail += atop(size)); | |
2408 | /* do the completion notification to free resources */ | |
2409 | device_write_reply(reply_port, kr, 0); | |
2410 | return PAGER_ERROR; | |
2411 | } | |
2412 | } else do { | |
2413 | /* | |
2414 | * Synchronous write. | |
2415 | */ | |
2416 | { | |
2417 | device_t device; | |
2418 | device = dev_port_lookup(ps->ps_device); | |
2419 | kr=ds_device_write_common(device, | |
2420 | IP_NULL, 0, | |
2421 | (dev_mode_t) 0, | |
2422 | dev_offset, | |
2423 | (io_buf_ptr_t) addr, | |
2424 | size, | |
2425 | (IO_WRITE | IO_SYNC | IO_KERNEL_BUF), | |
2426 | &bytes_written); | |
2427 | } | |
2428 | if (kr != KERN_SUCCESS) { | |
2429 | dprintf(("%s0x%x, addr=0x%x,size=0x%x,offset=0x%x\n", | |
2430 | "device_write returned ", | |
2431 | kr, addr, size, offset)); | |
2432 | BS_STAT(ps->ps_bs, | |
2433 | ps->ps_bs->bs_pages_out_fail += atop(size)); | |
2434 | return PAGER_ERROR; | |
2435 | } | |
2436 | if (bytes_written & ((vm_page_size >> ps->ps_record_shift) - 1)) | |
2437 | Panic("fragmented write"); | |
2438 | records_written = (bytes_written >> | |
2439 | (vm_page_shift - ps->ps_record_shift)); | |
2440 | dev_offset += records_written; | |
2441 | #if 1 | |
2442 | if (bytes_written != bytes_to_write) { | |
2443 | dprintf(("wrote only %d bytes out of %d\n", | |
2444 | bytes_written, bytes_to_write)); | |
2445 | } | |
2446 | #endif | |
2447 | bytes_to_write -= bytes_written; | |
2448 | addr += bytes_written; | |
2449 | } while (bytes_to_write > 0); | |
2450 | ||
2451 | return PAGER_SUCCESS; | |
2452 | } | |
2453 | ||
2454 | ||
2455 | #else /* !DEVICE_PAGING */ | |
2456 | ||
2457 | kern_return_t | |
2458 | ps_read_device( | |
2459 | paging_segment_t ps, | |
2460 | vm_offset_t offset, | |
2461 | vm_offset_t *bufferp, | |
2462 | unsigned int size, | |
2463 | unsigned int *residualp, | |
2464 | int flags) | |
2465 | { | |
2466 | panic("ps_read_device not supported"); | |
2467 | } | |
2468 | ||
2469 | ps_write_device( | |
2470 | paging_segment_t ps, | |
2471 | vm_offset_t offset, | |
2472 | vm_offset_t addr, | |
2473 | unsigned int size, | |
2474 | struct vs_async *vsa) | |
2475 | { | |
2476 | panic("ps_write_device not supported"); | |
2477 | } | |
2478 | ||
2479 | #endif /* DEVICE_PAGING */ | |
2480 | void pvs_object_data_provided(vstruct_t, upl_t, vm_offset_t, vm_size_t); /* forward */ | |
2481 | ||
2482 | void | |
2483 | pvs_object_data_provided( | |
2484 | vstruct_t vs, | |
2485 | upl_t upl, | |
2486 | vm_offset_t offset, | |
2487 | vm_size_t size) | |
2488 | { | |
2489 | ||
2490 | DEBUG(DEBUG_VS_INTERNAL, | |
2491 | ("buffer=0x%x,offset=0x%x,size=0x%x\n", | |
2492 | upl, offset, size)); | |
2493 | ||
2494 | ASSERT(size > 0); | |
2495 | GSTAT(global_stats.gs_pages_in += atop(size)); | |
2496 | ||
2497 | ||
2498 | #if USE_PRECIOUS | |
2499 | ps_clunmap(vs, offset, size); | |
2500 | #endif /* USE_PRECIOUS */ | |
2501 | ||
2502 | } | |
2503 | ||
2504 | kern_return_t | |
2505 | pvs_cluster_read( | |
2506 | vstruct_t vs, | |
2507 | vm_offset_t vs_offset, | |
2508 | vm_size_t cnt) | |
2509 | { | |
2510 | upl_t upl; | |
2511 | kern_return_t error = KERN_SUCCESS; | |
2512 | int size; | |
2513 | unsigned int residual; | |
2514 | unsigned int request_flags; | |
2515 | int seg_index; | |
2516 | int pages_in_cl; | |
2517 | int cl_size; | |
2518 | int cl_mask; | |
2519 | int cl_index; | |
2520 | int xfer_size; | |
2521 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2522 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2523 | struct clmap clmap; | |
2524 | ||
2525 | pages_in_cl = 1 << vs->vs_clshift; | |
2526 | cl_size = pages_in_cl * vm_page_size; | |
2527 | cl_mask = cl_size - 1; | |
2528 | ||
2529 | /* | |
2530 | * This loop will be executed multiple times until the entire | |
2531 | * request has been satisfied... if the request spans cluster | |
2532 | * boundaries, the clusters will be checked for logical continunity, | |
2533 | * if contiguous the I/O request will span multiple clusters, otherwise | |
2534 | * it will be broken up into the minimal set of I/O's | |
2535 | * | |
2536 | * If there are holes in a request (either unallocated pages in a paging | |
2537 | * segment or an unallocated paging segment), we stop | |
2538 | * reading at the hole, inform the VM of any data read, inform | |
2539 | * the VM of an unavailable range, then loop again, hoping to | |
2540 | * find valid pages later in the requested range. This continues until | |
2541 | * the entire range has been examined, and read, if present. | |
2542 | */ | |
2543 | ||
2544 | #if USE_PRECIOUS | |
2545 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS | UPL_RET_ONLY_ABSENT; | |
2546 | #else | |
2547 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_RET_ONLY_ABSENT; | |
2548 | #endif | |
2549 | while (cnt && (error == KERN_SUCCESS)) { | |
2550 | int ps_info_valid; | |
2551 | int page_list_count; | |
2552 | ||
2553 | if (cnt > VM_SUPER_CLUSTER) | |
2554 | size = VM_SUPER_CLUSTER; | |
2555 | else | |
2556 | size = cnt; | |
2557 | cnt -= size; | |
2558 | ||
2559 | ps_info_valid = 0; | |
2560 | seg_index = 0; | |
2561 | ||
2562 | while (size > 0 && error == KERN_SUCCESS) { | |
2563 | int abort_size; | |
2564 | int failed_size; | |
2565 | int beg_pseg; | |
2566 | int beg_indx; | |
2567 | vm_offset_t cur_offset; | |
2568 | ||
2569 | ||
2570 | if ( !ps_info_valid) { | |
2571 | ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2572 | psp[seg_index] = CLMAP_PS(clmap); | |
2573 | ps_info_valid = 1; | |
2574 | } | |
2575 | /* | |
2576 | * skip over unallocated physical segments | |
2577 | */ | |
2578 | if (ps_offset[seg_index] == (vm_offset_t) -1) { | |
2579 | abort_size = cl_size - (vs_offset & cl_mask); | |
2580 | abort_size = MIN(abort_size, size); | |
2581 | ||
2582 | page_list_count = 0; | |
2583 | memory_object_super_upl_request( | |
2584 | vs->vs_control, | |
2585 | (memory_object_offset_t)vs_offset, | |
2586 | abort_size, abort_size, | |
2587 | &upl, NULL, &page_list_count, | |
2588 | request_flags); | |
2589 | ||
2590 | if (clmap.cl_error) { | |
2591 | upl_abort(upl, UPL_ABORT_ERROR); | |
2592 | } else { | |
2593 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); | |
2594 | } | |
2595 | upl_deallocate(upl); | |
2596 | ||
2597 | size -= abort_size; | |
2598 | vs_offset += abort_size; | |
2599 | ||
2600 | seg_index++; | |
2601 | ps_info_valid = 0; | |
2602 | continue; | |
2603 | } | |
2604 | cl_index = (vs_offset & cl_mask) / vm_page_size; | |
2605 | ||
2606 | for (abort_size = 0; cl_index < pages_in_cl && abort_size < size; cl_index++) { | |
2607 | /* | |
2608 | * skip over unallocated pages | |
2609 | */ | |
2610 | if (CLMAP_ISSET(clmap, cl_index)) | |
2611 | break; | |
2612 | abort_size += vm_page_size; | |
2613 | } | |
2614 | if (abort_size) { | |
2615 | /* | |
2616 | * Let VM system know about holes in clusters. | |
2617 | */ | |
2618 | GSTAT(global_stats.gs_pages_unavail += atop(abort_size)); | |
2619 | ||
2620 | page_list_count = 0; | |
2621 | memory_object_super_upl_request( | |
2622 | vs->vs_control, | |
2623 | (memory_object_offset_t)vs_offset, | |
2624 | abort_size, abort_size, | |
2625 | &upl, NULL, &page_list_count, | |
2626 | request_flags); | |
2627 | ||
2628 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); | |
2629 | upl_deallocate(upl); | |
2630 | ||
2631 | size -= abort_size; | |
2632 | vs_offset += abort_size; | |
2633 | ||
2634 | if (cl_index == pages_in_cl) { | |
2635 | /* | |
2636 | * if we're at the end of this physical cluster | |
2637 | * then bump to the next one and continue looking | |
2638 | */ | |
2639 | seg_index++; | |
2640 | ps_info_valid = 0; | |
2641 | continue; | |
2642 | } | |
2643 | if (size == 0) | |
2644 | break; | |
2645 | } | |
2646 | /* | |
2647 | * remember the starting point of the first allocated page | |
2648 | * for the I/O we're about to issue | |
2649 | */ | |
2650 | beg_pseg = seg_index; | |
2651 | beg_indx = cl_index; | |
2652 | cur_offset = vs_offset; | |
2653 | ||
2654 | /* | |
2655 | * calculate the size of the I/O that we can do... | |
2656 | * this may span multiple physical segments if | |
2657 | * they are contiguous | |
2658 | */ | |
2659 | for (xfer_size = 0; xfer_size < size; ) { | |
2660 | ||
2661 | while (cl_index < pages_in_cl && xfer_size < size) { | |
2662 | /* | |
2663 | * accumulate allocated pages within a physical segment | |
2664 | */ | |
2665 | if (CLMAP_ISSET(clmap, cl_index)) { | |
2666 | xfer_size += vm_page_size; | |
2667 | cur_offset += vm_page_size; | |
2668 | cl_index++; | |
2669 | ||
2670 | BS_STAT(psp[seg_index]->ps_bs, | |
2671 | psp[seg_index]->ps_bs->bs_pages_in++); | |
2672 | } else | |
2673 | break; | |
2674 | } | |
2675 | if (cl_index < pages_in_cl || xfer_size >= size) { | |
2676 | /* | |
2677 | * we've hit an unallocated page or the | |
2678 | * end of this request... go fire the I/O | |
2679 | */ | |
2680 | break; | |
2681 | } | |
2682 | /* | |
2683 | * we've hit the end of the current physical segment | |
2684 | * and there's more to do, so try moving to the next one | |
2685 | */ | |
2686 | seg_index++; | |
2687 | ||
2688 | ps_offset[seg_index] = ps_clmap(vs, cur_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2689 | psp[seg_index] = CLMAP_PS(clmap); | |
2690 | ps_info_valid = 1; | |
2691 | ||
2692 | if ((ps_offset[seg_index - 1] != (ps_offset[seg_index] - cl_size)) || (psp[seg_index - 1] != psp[seg_index])) { | |
2693 | /* | |
2694 | * if the physical segment we're about to step into | |
2695 | * is not contiguous to the one we're currently | |
2696 | * in, or it's in a different paging file, or | |
2697 | * it hasn't been allocated.... | |
2698 | * we stop here and generate the I/O | |
2699 | */ | |
2700 | break; | |
2701 | } | |
2702 | /* | |
2703 | * start with first page of the next physical segment | |
2704 | */ | |
2705 | cl_index = 0; | |
2706 | } | |
2707 | if (xfer_size) { | |
2708 | /* | |
2709 | * we have a contiguous range of allocated pages | |
2710 | * to read from | |
2711 | */ | |
2712 | page_list_count = 0; | |
2713 | memory_object_super_upl_request(vs->vs_control, | |
2714 | (memory_object_offset_t)vs_offset, | |
2715 | xfer_size, xfer_size, | |
2716 | &upl, NULL, &page_list_count, | |
2717 | request_flags | UPL_SET_INTERNAL); | |
2718 | ||
2719 | error = ps_read_file(psp[beg_pseg], upl, (vm_offset_t) 0, | |
2720 | ps_offset[beg_pseg] + (beg_indx * vm_page_size), xfer_size, &residual, 0); | |
2721 | } else | |
2722 | continue; | |
2723 | ||
2724 | failed_size = 0; | |
2725 | ||
2726 | /* | |
2727 | * Adjust counts and send response to VM. Optimize for the | |
2728 | * common case, i.e. no error and/or partial data. | |
2729 | * If there was an error, then we need to error the entire | |
2730 | * range, even if some data was successfully read. | |
2731 | * If there was a partial read we may supply some | |
2732 | * data and may error some as well. In all cases the | |
2733 | * VM must receive some notification for every page in the | |
2734 | * range. | |
2735 | */ | |
2736 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
2737 | /* | |
2738 | * Got everything we asked for, supply the data to | |
2739 | * the VM. Note that as a side effect of supplying | |
2740 | * the data, the buffer holding the supplied data is | |
2741 | * deallocated from the pager's address space. | |
2742 | */ | |
2743 | pvs_object_data_provided(vs, upl, vs_offset, xfer_size); | |
2744 | } else { | |
2745 | failed_size = xfer_size; | |
2746 | ||
2747 | if (error == KERN_SUCCESS) { | |
2748 | if (residual == xfer_size) { | |
2749 | /* | |
2750 | * If a read operation returns no error | |
2751 | * and no data moved, we turn it into | |
2752 | * an error, assuming we're reading at | |
2753 | * or beyong EOF. | |
2754 | * Fall through and error the entire | |
2755 | * range. | |
2756 | */ | |
2757 | error = KERN_FAILURE; | |
2758 | } else { | |
2759 | /* | |
2760 | * Otherwise, we have partial read. If | |
2761 | * the part read is a integral number | |
2762 | * of pages supply it. Otherwise round | |
2763 | * it up to a page boundary, zero fill | |
2764 | * the unread part, and supply it. | |
2765 | * Fall through and error the remainder | |
2766 | * of the range, if any. | |
2767 | */ | |
2768 | int fill, lsize; | |
2769 | ||
2770 | fill = residual & ~vm_page_size; | |
2771 | lsize = (xfer_size - residual) + fill; | |
2772 | pvs_object_data_provided(vs, upl, vs_offset, lsize); | |
2773 | ||
2774 | if (lsize < xfer_size) { | |
2775 | failed_size = xfer_size - lsize; | |
2776 | error = KERN_FAILURE; | |
2777 | } | |
2778 | } | |
2779 | } | |
2780 | } | |
2781 | /* | |
2782 | * If there was an error in any part of the range, tell | |
2783 | * the VM. Note that error is explicitly checked again since | |
2784 | * it can be modified above. | |
2785 | */ | |
2786 | if (error != KERN_SUCCESS) { | |
2787 | BS_STAT(psp[beg_pseg]->ps_bs, | |
2788 | psp[beg_pseg]->ps_bs->bs_pages_in_fail += atop(failed_size)); | |
2789 | } | |
2790 | size -= xfer_size; | |
2791 | vs_offset += xfer_size; | |
2792 | } | |
2793 | ||
2794 | } /* END while (cnt && (error == 0)) */ | |
2795 | return error; | |
2796 | } | |
2797 | ||
2798 | int vs_do_async_write = 1; | |
2799 | ||
2800 | kern_return_t | |
2801 | vs_cluster_write( | |
2802 | vstruct_t vs, | |
2803 | upl_t internal_upl, | |
2804 | vm_offset_t offset, | |
2805 | vm_size_t cnt, | |
2806 | boolean_t dp_internal, | |
2807 | int flags) | |
2808 | { | |
2809 | vm_offset_t size; | |
2810 | vm_offset_t transfer_size; | |
2811 | int error = 0; | |
2812 | struct clmap clmap; | |
2813 | ||
2814 | vm_offset_t actual_offset; /* Offset within paging segment */ | |
2815 | paging_segment_t ps; | |
2816 | vm_offset_t subx_size; | |
2817 | vm_offset_t mobj_base_addr; | |
2818 | vm_offset_t mobj_target_addr; | |
2819 | int mobj_size; | |
2820 | ||
2821 | struct vs_async *vsa; | |
2822 | vm_map_copy_t copy; | |
2823 | ||
2824 | upl_t upl; | |
2825 | upl_page_info_t *pl; | |
2826 | int page_index; | |
2827 | int list_size; | |
2828 | int cl_size; | |
2829 | ||
2830 | if (!dp_internal) { | |
2831 | int page_list_count; | |
2832 | int request_flags; | |
2833 | int super_size; | |
2834 | int first_dirty; | |
2835 | int num_dirty; | |
2836 | int num_of_pages; | |
2837 | int seg_index; | |
2838 | int pages_in_cl; | |
2839 | int must_abort; | |
2840 | vm_offset_t upl_offset; | |
2841 | vm_offset_t seg_offset; | |
2842 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2843 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2844 | ||
2845 | ||
2846 | pages_in_cl = 1 << vs->vs_clshift; | |
2847 | cl_size = pages_in_cl * vm_page_size; | |
2848 | ||
2849 | if (bs_low) { | |
2850 | super_size = cl_size; | |
2851 | ||
2852 | request_flags = UPL_NOBLOCK | | |
2853 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2854 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2855 | } else { | |
2856 | super_size = VM_SUPER_CLUSTER; | |
2857 | ||
2858 | request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE | | |
2859 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2860 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2861 | } | |
2862 | ||
2863 | page_list_count = 0; | |
2864 | memory_object_super_upl_request(vs->vs_control, | |
2865 | (memory_object_offset_t)offset, | |
2866 | cnt, super_size, | |
2867 | &upl, NULL, &page_list_count, | |
2868 | request_flags | UPL_PAGEOUT); | |
2869 | ||
2870 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2871 | ||
2872 | for (seg_index = 0, transfer_size = upl->size; transfer_size > 0; ) { | |
2873 | ||
2874 | ps_offset[seg_index] = ps_clmap(vs, upl->offset + (seg_index * cl_size), | |
2875 | &clmap, CL_ALLOC, | |
2876 | transfer_size < cl_size ? | |
2877 | transfer_size : cl_size, 0); | |
2878 | ||
2879 | if (ps_offset[seg_index] == (vm_offset_t) -1) { | |
2880 | upl_abort(upl, 0); | |
2881 | upl_deallocate(upl); | |
2882 | ||
2883 | return KERN_FAILURE; | |
2884 | ||
2885 | } | |
2886 | psp[seg_index] = CLMAP_PS(clmap); | |
2887 | ||
2888 | if (transfer_size > cl_size) { | |
2889 | transfer_size -= cl_size; | |
2890 | seg_index++; | |
2891 | } else | |
2892 | transfer_size = 0; | |
2893 | } | |
2894 | for (page_index = 0, num_of_pages = upl->size / vm_page_size; page_index < num_of_pages; ) { | |
2895 | /* | |
2896 | * skip over non-dirty pages | |
2897 | */ | |
2898 | for ( ; page_index < num_of_pages; page_index++) { | |
2899 | if (UPL_DIRTY_PAGE(pl, page_index) || UPL_PRECIOUS_PAGE(pl, page_index)) | |
2900 | /* | |
2901 | * this is a page we need to write | |
2902 | * go see if we can buddy it up with others | |
2903 | * that are contiguous to it | |
2904 | */ | |
2905 | break; | |
2906 | /* | |
2907 | * if the page is not-dirty, but present we need to commit it... | |
2908 | * this is an unusual case since we only asked for dirty pages | |
2909 | */ | |
2910 | if (UPL_PAGE_PRESENT(pl, page_index)) { | |
2911 | boolean_t empty = FALSE; | |
2912 | upl_commit_range(upl, | |
2913 | page_index * vm_page_size, | |
2914 | vm_page_size, | |
2915 | UPL_COMMIT_NOTIFY_EMPTY, | |
2916 | pl, | |
2917 | page_list_count, | |
2918 | &empty); | |
2919 | if (empty) | |
2920 | upl_deallocate(upl); | |
2921 | } | |
2922 | } | |
2923 | if (page_index == num_of_pages) | |
2924 | /* | |
2925 | * no more pages to look at, we're out of here | |
2926 | */ | |
2927 | break; | |
2928 | ||
2929 | /* | |
2930 | * gather up contiguous dirty pages... we have at least 1 | |
2931 | * otherwise we would have bailed above | |
2932 | * make sure that each physical segment that we step | |
2933 | * into is contiguous to the one we're currently in | |
2934 | * if it's not, we have to stop and write what we have | |
2935 | */ | |
2936 | for (first_dirty = page_index; page_index < num_of_pages; ) { | |
2937 | if ( !UPL_DIRTY_PAGE(pl, page_index) && !UPL_PRECIOUS_PAGE(pl, page_index)) | |
2938 | break; | |
2939 | page_index++; | |
2940 | /* | |
2941 | * if we just looked at the last page in the UPL | |
2942 | * we don't need to check for physical segment | |
2943 | * continuity | |
2944 | */ | |
2945 | if (page_index < num_of_pages) { | |
2946 | int cur_seg; | |
2947 | int nxt_seg; | |
2948 | ||
2949 | cur_seg = (page_index - 1) / pages_in_cl; | |
2950 | nxt_seg = page_index / pages_in_cl; | |
2951 | ||
2952 | if (cur_seg != nxt_seg) { | |
2953 | if ((ps_offset[cur_seg] != (ps_offset[nxt_seg] - cl_size)) || (psp[cur_seg] != psp[nxt_seg])) | |
2954 | /* | |
2955 | * if the segment we're about to step into | |
2956 | * is not contiguous to the one we're currently | |
2957 | * in, or it's in a different paging file.... | |
2958 | * we stop here and generate the I/O | |
2959 | */ | |
2960 | break; | |
2961 | } | |
2962 | } | |
2963 | } | |
2964 | num_dirty = page_index - first_dirty; | |
2965 | must_abort = 1; | |
2966 | ||
2967 | if (num_dirty) { | |
2968 | upl_offset = first_dirty * vm_page_size; | |
2969 | seg_index = first_dirty / pages_in_cl; | |
2970 | seg_offset = upl_offset - (seg_index * cl_size); | |
2971 | transfer_size = num_dirty * vm_page_size; | |
2972 | ||
2973 | error = ps_write_file(psp[seg_index], upl, upl_offset, | |
2974 | ps_offset[seg_index] + seg_offset, transfer_size, flags); | |
2975 | ||
2976 | if (error == 0) { | |
2977 | while (transfer_size) { | |
2978 | int seg_size; | |
2979 | ||
2980 | if ((seg_size = cl_size - (upl_offset % cl_size)) > transfer_size) | |
2981 | seg_size = transfer_size; | |
2982 | ||
2983 | ps_vs_write_complete(vs, upl->offset + upl_offset, seg_size, error); | |
2984 | ||
2985 | transfer_size -= seg_size; | |
2986 | upl_offset += seg_size; | |
2987 | } | |
2988 | } | |
2989 | must_abort = 0; | |
2990 | } | |
2991 | if (must_abort) { | |
2992 | boolean_t empty = FALSE; | |
2993 | upl_abort_range(upl, | |
2994 | first_dirty * vm_page_size, | |
2995 | num_dirty * vm_page_size, | |
2996 | UPL_ABORT_NOTIFY_EMPTY, | |
2997 | &empty); | |
2998 | if (empty) | |
2999 | upl_deallocate(upl); | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | } else { | |
3004 | assert(cnt <= (vm_page_size << vs->vs_clshift)); | |
3005 | list_size = cnt; | |
3006 | ||
3007 | page_index = 0; | |
3008 | /* The caller provides a mapped_data which is derived */ | |
3009 | /* from a temporary object. The targeted pages are */ | |
3010 | /* guaranteed to be set at offset 0 in the mapped_data */ | |
3011 | /* The actual offset however must still be derived */ | |
3012 | /* from the offset in the vs in question */ | |
3013 | mobj_base_addr = offset; | |
3014 | mobj_target_addr = mobj_base_addr; | |
3015 | ||
3016 | for (transfer_size = list_size; transfer_size != 0;) { | |
3017 | actual_offset = ps_clmap(vs, mobj_target_addr, | |
3018 | &clmap, CL_ALLOC, | |
3019 | transfer_size < cl_size ? | |
3020 | transfer_size : cl_size, 0); | |
3021 | if(actual_offset == (vm_offset_t) -1) { | |
3022 | error = 1; | |
3023 | break; | |
3024 | } | |
3025 | cnt = MIN(transfer_size, | |
3026 | CLMAP_NPGS(clmap) * vm_page_size); | |
3027 | ps = CLMAP_PS(clmap); | |
3028 | /* Assume that the caller has given us contiguous */ | |
3029 | /* pages */ | |
3030 | if(cnt) { | |
3031 | error = ps_write_file(ps, internal_upl, | |
3032 | 0, actual_offset, | |
3033 | cnt, flags); | |
3034 | if (error) | |
3035 | break; | |
3036 | ps_vs_write_complete(vs, mobj_target_addr, | |
3037 | cnt, error); | |
3038 | } | |
3039 | if (error) | |
3040 | break; | |
3041 | actual_offset += cnt; | |
3042 | mobj_target_addr += cnt; | |
3043 | transfer_size -= cnt; | |
3044 | cnt = 0; | |
3045 | ||
3046 | if (error) | |
3047 | break; | |
3048 | } | |
3049 | } | |
3050 | if(error) | |
3051 | return KERN_FAILURE; | |
3052 | else | |
3053 | return KERN_SUCCESS; | |
3054 | } | |
3055 | ||
3056 | vm_size_t | |
3057 | ps_vstruct_allocated_size( | |
3058 | vstruct_t vs) | |
3059 | { | |
3060 | int num_pages; | |
3061 | struct vs_map *vsmap; | |
3062 | int i, j, k; | |
3063 | ||
3064 | num_pages = 0; | |
3065 | if (vs->vs_indirect) { | |
3066 | /* loop on indirect maps */ | |
3067 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3068 | vsmap = vs->vs_imap[i]; | |
3069 | if (vsmap == NULL) | |
3070 | continue; | |
3071 | /* loop on clusters in this indirect map */ | |
3072 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3073 | if (VSM_ISCLR(vsmap[j]) || | |
3074 | VSM_ISERR(vsmap[j])) | |
3075 | continue; | |
3076 | /* loop on pages in this cluster */ | |
3077 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3078 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3079 | num_pages++; | |
3080 | } | |
3081 | } | |
3082 | } | |
3083 | } else { | |
3084 | vsmap = vs->vs_dmap; | |
3085 | if (vsmap == NULL) | |
3086 | return 0; | |
3087 | /* loop on clusters in the direct map */ | |
3088 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3089 | if (VSM_ISCLR(vsmap[j]) || | |
3090 | VSM_ISERR(vsmap[j])) | |
3091 | continue; | |
3092 | /* loop on pages in this cluster */ | |
3093 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3094 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3095 | num_pages++; | |
3096 | } | |
3097 | } | |
3098 | } | |
3099 | ||
3100 | return ptoa(num_pages); | |
3101 | } | |
3102 | ||
3103 | size_t | |
3104 | ps_vstruct_allocated_pages( | |
3105 | vstruct_t vs, | |
3106 | default_pager_page_t *pages, | |
3107 | size_t pages_size) | |
3108 | { | |
3109 | int num_pages; | |
3110 | struct vs_map *vsmap; | |
3111 | vm_offset_t offset; | |
3112 | int i, j, k; | |
3113 | ||
3114 | num_pages = 0; | |
3115 | offset = 0; | |
3116 | if (vs->vs_indirect) { | |
3117 | /* loop on indirect maps */ | |
3118 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3119 | vsmap = vs->vs_imap[i]; | |
3120 | if (vsmap == NULL) { | |
3121 | offset += (vm_page_size * CLMAP_ENTRIES * | |
3122 | VSCLSIZE(vs)); | |
3123 | continue; | |
3124 | } | |
3125 | /* loop on clusters in this indirect map */ | |
3126 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3127 | if (VSM_ISCLR(vsmap[j]) || | |
3128 | VSM_ISERR(vsmap[j])) { | |
3129 | offset += vm_page_size * VSCLSIZE(vs); | |
3130 | continue; | |
3131 | } | |
3132 | /* loop on pages in this cluster */ | |
3133 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3134 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3135 | num_pages++; | |
3136 | if (num_pages < pages_size) | |
3137 | pages++->dpp_offset = | |
3138 | offset; | |
3139 | } | |
3140 | offset += vm_page_size; | |
3141 | } | |
3142 | } | |
3143 | } | |
3144 | } else { | |
3145 | vsmap = vs->vs_dmap; | |
3146 | if (vsmap == NULL) | |
3147 | return 0; | |
3148 | /* loop on clusters in the direct map */ | |
3149 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3150 | if (VSM_ISCLR(vsmap[j]) || | |
3151 | VSM_ISERR(vsmap[j])) { | |
3152 | offset += vm_page_size * VSCLSIZE(vs); | |
3153 | continue; | |
3154 | } | |
3155 | /* loop on pages in this cluster */ | |
3156 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3157 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3158 | num_pages++; | |
3159 | if (num_pages < pages_size) | |
3160 | pages++->dpp_offset = offset; | |
3161 | } | |
3162 | offset += vm_page_size; | |
3163 | } | |
3164 | } | |
3165 | } | |
3166 | ||
3167 | return num_pages; | |
3168 | } | |
3169 | ||
3170 | ||
3171 | kern_return_t | |
3172 | ps_vstruct_transfer_from_segment( | |
3173 | vstruct_t vs, | |
3174 | paging_segment_t segment, | |
3175 | upl_t upl) | |
3176 | { | |
3177 | struct vs_map *vsmap; | |
3178 | struct vs_map old_vsmap; | |
3179 | struct vs_map new_vsmap; | |
3180 | int i, j, k; | |
3181 | ||
3182 | VS_LOCK(vs); /* block all work on this vstruct */ | |
3183 | /* can't allow the normal multiple write */ | |
3184 | /* semantic because writes may conflict */ | |
3185 | vs->vs_xfer_pending = TRUE; | |
3186 | vs_wait_for_sync_writers(vs); | |
3187 | vs_start_write(vs); | |
3188 | vs_wait_for_readers(vs); | |
3189 | /* we will unlock the vs to allow other writes while transferring */ | |
3190 | /* and will be guaranteed of the persistance of the vs struct */ | |
3191 | /* because the caller of ps_vstruct_transfer_from_segment bumped */ | |
3192 | /* vs_async_pending */ | |
3193 | /* OK we now have guaranteed no other parties are accessing this */ | |
3194 | /* vs. Now that we are also supporting simple lock versions of */ | |
3195 | /* vs_lock we cannot hold onto VS_LOCK as we may block below. */ | |
3196 | /* our purpose in holding it before was the multiple write case */ | |
3197 | /* we now use the boolean xfer_pending to do that. We can use */ | |
3198 | /* a boolean instead of a count because we have guaranteed single */ | |
3199 | /* file access to this code in its caller */ | |
3200 | VS_UNLOCK(vs); | |
3201 | vs_changed: | |
3202 | if (vs->vs_indirect) { | |
3203 | int vsmap_size; | |
3204 | int clmap_off; | |
3205 | /* loop on indirect maps */ | |
3206 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3207 | vsmap = vs->vs_imap[i]; | |
3208 | if (vsmap == NULL) | |
3209 | continue; | |
3210 | /* loop on clusters in this indirect map */ | |
3211 | clmap_off = (vm_page_size * CLMAP_ENTRIES * | |
3212 | VSCLSIZE(vs) * i); | |
3213 | if(i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size)) | |
3214 | vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i); | |
3215 | else | |
3216 | vsmap_size = CLMAP_ENTRIES; | |
3217 | for (j = 0; j < vsmap_size; j++) { | |
3218 | if (VSM_ISCLR(vsmap[j]) || | |
3219 | VSM_ISERR(vsmap[j]) || | |
3220 | (VSM_PS(vsmap[j]) != segment)) | |
3221 | continue; | |
3222 | if(vs_cluster_transfer(vs, | |
3223 | (vm_page_size * (j << vs->vs_clshift)) | |
3224 | + clmap_off, | |
3225 | vm_page_size << vs->vs_clshift, | |
3226 | upl) | |
3227 | != KERN_SUCCESS) { | |
3228 | VS_LOCK(vs); | |
3229 | vs->vs_xfer_pending = FALSE; | |
3230 | VS_UNLOCK(vs); | |
3231 | vs_finish_write(vs); | |
3232 | return KERN_FAILURE; | |
3233 | } | |
3234 | /* allow other readers/writers during transfer*/ | |
3235 | VS_LOCK(vs); | |
3236 | vs->vs_xfer_pending = FALSE; | |
3237 | VS_UNLOCK(vs); | |
3238 | vs_finish_write(vs); | |
3239 | VS_LOCK(vs); | |
3240 | vs->vs_xfer_pending = TRUE; | |
3241 | vs_wait_for_sync_writers(vs); | |
3242 | vs_start_write(vs); | |
3243 | vs_wait_for_readers(vs); | |
3244 | VS_UNLOCK(vs); | |
3245 | if (!(vs->vs_indirect)) { | |
3246 | goto vs_changed; | |
3247 | } | |
3248 | } | |
3249 | } | |
3250 | } else { | |
3251 | vsmap = vs->vs_dmap; | |
3252 | if (vsmap == NULL) { | |
3253 | VS_LOCK(vs); | |
3254 | vs->vs_xfer_pending = FALSE; | |
3255 | VS_UNLOCK(vs); | |
3256 | vs_finish_write(vs); | |
3257 | return KERN_SUCCESS; | |
3258 | } | |
3259 | /* loop on clusters in the direct map */ | |
3260 | for (j = 0; j < vs->vs_size; j++) { | |
3261 | if (VSM_ISCLR(vsmap[j]) || | |
3262 | VSM_ISERR(vsmap[j]) || | |
3263 | (VSM_PS(vsmap[j]) != segment)) | |
3264 | continue; | |
3265 | if(vs_cluster_transfer(vs, | |
3266 | vm_page_size * (j << vs->vs_clshift), | |
3267 | vm_page_size << vs->vs_clshift, | |
3268 | upl) != KERN_SUCCESS) { | |
3269 | VS_LOCK(vs); | |
3270 | vs->vs_xfer_pending = FALSE; | |
3271 | VS_UNLOCK(vs); | |
3272 | vs_finish_write(vs); | |
3273 | return KERN_FAILURE; | |
3274 | } | |
3275 | /* allow other readers/writers during transfer*/ | |
3276 | VS_LOCK(vs); | |
3277 | vs->vs_xfer_pending = FALSE; | |
3278 | VS_UNLOCK(vs); | |
3279 | vs_finish_write(vs); | |
3280 | VS_LOCK(vs); | |
3281 | vs->vs_xfer_pending = TRUE; | |
3282 | VS_UNLOCK(vs); | |
3283 | vs_wait_for_sync_writers(vs); | |
3284 | vs_start_write(vs); | |
3285 | vs_wait_for_readers(vs); | |
3286 | if (vs->vs_indirect) { | |
3287 | goto vs_changed; | |
3288 | } | |
3289 | } | |
3290 | } | |
3291 | ||
3292 | VS_LOCK(vs); | |
3293 | vs->vs_xfer_pending = FALSE; | |
3294 | VS_UNLOCK(vs); | |
3295 | vs_finish_write(vs); | |
3296 | return KERN_SUCCESS; | |
3297 | } | |
3298 | ||
3299 | ||
3300 | ||
3301 | vs_map_t | |
3302 | vs_get_map_entry( | |
3303 | vstruct_t vs, | |
3304 | vm_offset_t offset) | |
3305 | { | |
3306 | struct vs_map *vsmap; | |
3307 | vm_offset_t cluster; | |
3308 | ||
3309 | cluster = atop(offset) >> vs->vs_clshift; | |
3310 | if (vs->vs_indirect) { | |
3311 | long ind_block = cluster/CLMAP_ENTRIES; | |
3312 | ||
3313 | /* Is the indirect block allocated? */ | |
3314 | vsmap = vs->vs_imap[ind_block]; | |
3315 | if(vsmap == (vs_map_t) NULL) | |
3316 | return vsmap; | |
3317 | } else | |
3318 | vsmap = vs->vs_dmap; | |
3319 | vsmap += cluster%CLMAP_ENTRIES; | |
3320 | return vsmap; | |
3321 | } | |
3322 | ||
3323 | kern_return_t | |
3324 | vs_cluster_transfer( | |
3325 | vstruct_t vs, | |
3326 | vm_offset_t offset, | |
3327 | vm_size_t cnt, | |
3328 | upl_t upl) | |
3329 | { | |
3330 | vm_offset_t actual_offset; | |
3331 | paging_segment_t ps; | |
3332 | struct clmap clmap; | |
3333 | kern_return_t error = KERN_SUCCESS; | |
3334 | int size, size_wanted, i; | |
3335 | unsigned int residual; | |
3336 | int unavail_size; | |
3337 | default_pager_thread_t *dpt; | |
3338 | boolean_t dealloc; | |
3339 | struct vs_map *vsmap_ptr; | |
3340 | struct vs_map read_vsmap; | |
3341 | struct vs_map original_read_vsmap; | |
3342 | struct vs_map write_vsmap; | |
3343 | upl_t sync_upl; | |
3344 | vm_offset_t ioaddr; | |
3345 | ||
3346 | /* vs_cluster_transfer reads in the pages of a cluster and | |
3347 | * then writes these pages back to new backing store. The | |
3348 | * segment the pages are being read from is assumed to have | |
3349 | * been taken off-line and is no longer considered for new | |
3350 | * space requests. | |
3351 | */ | |
3352 | ||
3353 | /* | |
3354 | * This loop will be executed once per cluster referenced. | |
3355 | * Typically this means once, since it's unlikely that the | |
3356 | * VM system will ask for anything spanning cluster boundaries. | |
3357 | * | |
3358 | * If there are holes in a cluster (in a paging segment), we stop | |
3359 | * reading at the hole, then loop again, hoping to | |
3360 | * find valid pages later in the cluster. This continues until | |
3361 | * the entire range has been examined, and read, if present. The | |
3362 | * pages are written as they are read. If a failure occurs after | |
3363 | * some pages are written the unmap call at the bottom of the loop | |
3364 | * recovers the backing store and the old backing store remains | |
3365 | * in effect. | |
3366 | */ | |
3367 | ||
3368 | VSM_CLR(write_vsmap); | |
3369 | VSM_CLR(original_read_vsmap); | |
3370 | /* grab the actual object's pages to sync with I/O */ | |
3371 | while (cnt && (error == KERN_SUCCESS)) { | |
3372 | vsmap_ptr = vs_get_map_entry(vs, offset); | |
3373 | actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0); | |
3374 | ||
3375 | if (actual_offset == (vm_offset_t) -1) { | |
3376 | ||
3377 | /* | |
3378 | * Nothing left to write in this cluster at least | |
3379 | * set write cluster information for any previous | |
3380 | * write, clear for next cluster, if there is one | |
3381 | */ | |
3382 | unsigned int local_size, clmask, clsize; | |
3383 | ||
3384 | clsize = vm_page_size << vs->vs_clshift; | |
3385 | clmask = clsize - 1; | |
3386 | local_size = clsize - (offset & clmask); | |
3387 | ASSERT(local_size); | |
3388 | local_size = MIN(local_size, cnt); | |
3389 | ||
3390 | /* This cluster has no data in it beyond what may */ | |
3391 | /* have been found on a previous iteration through */ | |
3392 | /* the loop "write_vsmap" */ | |
3393 | *vsmap_ptr = write_vsmap; | |
3394 | VSM_CLR(write_vsmap); | |
3395 | VSM_CLR(original_read_vsmap); | |
3396 | ||
3397 | cnt -= local_size; | |
3398 | offset += local_size; | |
3399 | continue; | |
3400 | } | |
3401 | ||
3402 | /* | |
3403 | * Count up contiguous available or unavailable | |
3404 | * pages. | |
3405 | */ | |
3406 | ps = CLMAP_PS(clmap); | |
3407 | ASSERT(ps); | |
3408 | size = 0; | |
3409 | unavail_size = 0; | |
3410 | for (i = 0; | |
3411 | (size < cnt) && (unavail_size < cnt) && | |
3412 | (i < CLMAP_NPGS(clmap)); i++) { | |
3413 | if (CLMAP_ISSET(clmap, i)) { | |
3414 | if (unavail_size != 0) | |
3415 | break; | |
3416 | size += vm_page_size; | |
3417 | BS_STAT(ps->ps_bs, | |
3418 | ps->ps_bs->bs_pages_in++); | |
3419 | } else { | |
3420 | if (size != 0) | |
3421 | break; | |
3422 | unavail_size += vm_page_size; | |
3423 | } | |
3424 | } | |
3425 | ||
3426 | if (size == 0) { | |
3427 | ASSERT(unavail_size); | |
3428 | cnt -= unavail_size; | |
3429 | offset += unavail_size; | |
3430 | if((offset & ((vm_page_size << vs->vs_clshift) - 1)) | |
3431 | == 0) { | |
3432 | /* There is no more to transfer in this | |
3433 | cluster | |
3434 | */ | |
3435 | *vsmap_ptr = write_vsmap; | |
3436 | VSM_CLR(write_vsmap); | |
3437 | VSM_CLR(original_read_vsmap); | |
3438 | } | |
3439 | continue; | |
3440 | } | |
3441 | ||
3442 | if(VSM_ISCLR(original_read_vsmap)) | |
3443 | original_read_vsmap = *vsmap_ptr; | |
3444 | ||
3445 | if(ps->ps_segtype == PS_PARTITION) { | |
3446 | /* | |
3447 | NEED TO ISSUE WITH SYNC & NO COMMIT | |
3448 | error = ps_read_device(ps, actual_offset, &buffer, | |
3449 | size, &residual, flags); | |
3450 | */ | |
3451 | } else { | |
3452 | /* NEED TO ISSUE WITH SYNC & NO COMMIT */ | |
3453 | error = ps_read_file(ps, upl, (vm_offset_t) 0, actual_offset, | |
3454 | size, &residual, | |
3455 | (UPL_IOSYNC | UPL_NOCOMMIT)); | |
3456 | } | |
3457 | ||
3458 | read_vsmap = *vsmap_ptr; | |
3459 | ||
3460 | ||
3461 | /* | |
3462 | * Adjust counts and put data in new BS. Optimize for the | |
3463 | * common case, i.e. no error and/or partial data. | |
3464 | * If there was an error, then we need to error the entire | |
3465 | * range, even if some data was successfully read. | |
3466 | * | |
3467 | */ | |
3468 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
3469 | int page_list_count = 0; | |
3470 | ||
3471 | /* | |
3472 | * Got everything we asked for, supply the data to | |
3473 | * the new BS. Note that as a side effect of supplying | |
3474 | * the data, the buffer holding the supplied data is | |
3475 | * deallocated from the pager's address space unless | |
3476 | * the write is unsuccessful. | |
3477 | */ | |
3478 | ||
3479 | /* note buffer will be cleaned up in all cases by */ | |
3480 | /* internal_cluster_write or if an error on write */ | |
3481 | /* the vm_map_copy_page_discard call */ | |
3482 | *vsmap_ptr = write_vsmap; | |
3483 | ||
3484 | if(vs_cluster_write(vs, upl, offset, | |
3485 | size, TRUE, UPL_IOSYNC | UPL_NOCOMMIT ) != KERN_SUCCESS) { | |
3486 | error = KERN_FAILURE; | |
3487 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3488 | /* unmap the new backing store object */ | |
3489 | ps_clunmap(vs, offset, size); | |
3490 | } | |
3491 | /* original vsmap */ | |
3492 | *vsmap_ptr = original_read_vsmap; | |
3493 | VSM_CLR(write_vsmap); | |
3494 | } else { | |
3495 | if((offset + size) & | |
3496 | ((vm_page_size << vs->vs_clshift) | |
3497 | - 1)) { | |
3498 | /* There is more to transfer in this | |
3499 | cluster | |
3500 | */ | |
3501 | write_vsmap = *vsmap_ptr; | |
3502 | *vsmap_ptr = read_vsmap; | |
3503 | } else { | |
3504 | /* discard the old backing object */ | |
3505 | write_vsmap = *vsmap_ptr; | |
3506 | *vsmap_ptr = read_vsmap; | |
3507 | ps_clunmap(vs, offset, size); | |
3508 | *vsmap_ptr = write_vsmap; | |
3509 | VSM_CLR(write_vsmap); | |
3510 | VSM_CLR(original_read_vsmap); | |
3511 | } | |
3512 | } | |
3513 | } else { | |
3514 | size_wanted = size; | |
3515 | if (error == KERN_SUCCESS) { | |
3516 | if (residual == size) { | |
3517 | /* | |
3518 | * If a read operation returns no error | |
3519 | * and no data moved, we turn it into | |
3520 | * an error, assuming we're reading at | |
3521 | * or beyond EOF. | |
3522 | * Fall through and error the entire | |
3523 | * range. | |
3524 | */ | |
3525 | error = KERN_FAILURE; | |
3526 | *vsmap_ptr = write_vsmap; | |
3527 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3528 | /* unmap the new backing store object */ | |
3529 | ps_clunmap(vs, offset, size); | |
3530 | } | |
3531 | *vsmap_ptr = original_read_vsmap; | |
3532 | VSM_CLR(write_vsmap); | |
3533 | continue; | |
3534 | } else { | |
3535 | /* | |
3536 | * Otherwise, we have partial read. | |
3537 | * This is also considered an error | |
3538 | * for the purposes of cluster transfer | |
3539 | */ | |
3540 | error = KERN_FAILURE; | |
3541 | *vsmap_ptr = write_vsmap; | |
3542 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3543 | /* unmap the new backing store object */ | |
3544 | ps_clunmap(vs, offset, size); | |
3545 | } | |
3546 | *vsmap_ptr = original_read_vsmap; | |
3547 | VSM_CLR(write_vsmap); | |
3548 | continue; | |
3549 | } | |
3550 | } | |
3551 | ||
3552 | } | |
3553 | cnt -= size; | |
3554 | offset += size; | |
3555 | ||
3556 | } /* END while (cnt && (error == 0)) */ | |
3557 | if(!VSM_ISCLR(write_vsmap)) | |
3558 | *vsmap_ptr = write_vsmap; | |
3559 | ||
3560 | return error; | |
3561 | } | |
3562 | ||
3563 | kern_return_t | |
3564 | default_pager_add_file(MACH_PORT_FACE backing_store, | |
3565 | int *vp, | |
3566 | int record_size, | |
3567 | long size) | |
3568 | { | |
3569 | backing_store_t bs; | |
3570 | paging_segment_t ps; | |
3571 | int i; | |
3572 | int error; | |
3573 | ||
3574 | if ((bs = backing_store_lookup(backing_store)) | |
3575 | == BACKING_STORE_NULL) | |
3576 | return KERN_INVALID_ARGUMENT; | |
3577 | ||
3578 | PSL_LOCK(); | |
3579 | for (i = 0; i <= paging_segment_max; i++) { | |
3580 | ps = paging_segments[i]; | |
3581 | if (ps == PAGING_SEGMENT_NULL) | |
3582 | continue; | |
3583 | if (ps->ps_segtype != PS_FILE) | |
3584 | continue; | |
3585 | ||
3586 | /* | |
3587 | * Check for overlap on same device. | |
3588 | */ | |
3589 | if (ps->ps_vnode == (struct vnode *)vp) { | |
3590 | PSL_UNLOCK(); | |
3591 | BS_UNLOCK(bs); | |
3592 | return KERN_INVALID_ARGUMENT; | |
3593 | } | |
3594 | } | |
3595 | PSL_UNLOCK(); | |
3596 | ||
3597 | /* | |
3598 | * Set up the paging segment | |
3599 | */ | |
3600 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
3601 | if (ps == PAGING_SEGMENT_NULL) { | |
3602 | BS_UNLOCK(bs); | |
3603 | return KERN_RESOURCE_SHORTAGE; | |
3604 | } | |
3605 | ||
3606 | ps->ps_segtype = PS_FILE; | |
3607 | ps->ps_vnode = (struct vnode *)vp; | |
3608 | ps->ps_offset = 0; | |
3609 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
3610 | ps->ps_recnum = size; | |
3611 | ps->ps_pgnum = size >> ps->ps_record_shift; | |
3612 | ||
3613 | ps->ps_pgcount = ps->ps_pgnum; | |
3614 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
3615 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
3616 | ps->ps_hint = 0; | |
3617 | ||
3618 | PS_LOCK_INIT(ps); | |
3619 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
3620 | if (!ps->ps_bmap) { | |
3621 | kfree((vm_offset_t)ps, sizeof *ps); | |
3622 | BS_UNLOCK(bs); | |
3623 | return KERN_RESOURCE_SHORTAGE; | |
3624 | } | |
3625 | for (i = 0; i < ps->ps_ncls; i++) { | |
3626 | clrbit(ps->ps_bmap, i); | |
3627 | } | |
3628 | ||
3629 | ps->ps_going_away = FALSE; | |
3630 | ps->ps_bs = bs; | |
3631 | ||
3632 | if ((error = ps_enter(ps)) != 0) { | |
3633 | kfree((vm_offset_t)ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); | |
3634 | kfree((vm_offset_t)ps, sizeof *ps); | |
3635 | BS_UNLOCK(bs); | |
3636 | return KERN_RESOURCE_SHORTAGE; | |
3637 | } | |
3638 | ||
3639 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
3640 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
3641 | PSL_LOCK(); | |
3642 | dp_pages_free += ps->ps_pgcount; | |
3643 | PSL_UNLOCK(); | |
3644 | ||
3645 | BS_UNLOCK(bs); | |
3646 | ||
3647 | bs_more_space(ps->ps_clcount); | |
3648 | ||
3649 | DEBUG(DEBUG_BS_INTERNAL, | |
3650 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
3651 | device, offset, size, record_size, | |
3652 | ps->ps_record_shift, ps->ps_pgnum)); | |
3653 | ||
3654 | return KERN_SUCCESS; | |
3655 | } | |
3656 | ||
3657 | ||
3658 | ||
3659 | kern_return_t | |
3660 | ps_read_file( | |
3661 | paging_segment_t ps, | |
3662 | upl_t upl, | |
3663 | vm_offset_t upl_offset, | |
3664 | vm_offset_t offset, | |
3665 | unsigned int size, | |
3666 | unsigned int *residualp, | |
3667 | int flags) | |
3668 | { | |
3669 | vm_object_offset_t f_offset; | |
3670 | int error = 0; | |
3671 | int result; | |
3672 | ||
3673 | ||
3674 | clustered_reads[atop(size)]++; | |
3675 | ||
3676 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3677 | ||
3678 | /* for transfer case we need to pass uploffset and flags */ | |
3679 | error = vnode_pagein(ps->ps_vnode, | |
3680 | upl, upl_offset, f_offset, (vm_size_t)size, flags | UPL_NORDAHEAD, NULL); | |
3681 | ||
3682 | /* The vnode_pagein semantic is somewhat at odds with the existing */ | |
3683 | /* device_read semantic. Partial reads are not experienced at this */ | |
3684 | /* level. It is up to the bit map code and cluster read code to */ | |
3685 | /* check that requested data locations are actually backed, and the */ | |
3686 | /* pagein code to either read all of the requested data or return an */ | |
3687 | /* error. */ | |
3688 | ||
3689 | if (error) | |
3690 | result = KERN_FAILURE; | |
3691 | else { | |
3692 | *residualp = 0; | |
3693 | result = KERN_SUCCESS; | |
3694 | } | |
3695 | return result; | |
3696 | } | |
3697 | ||
3698 | kern_return_t | |
3699 | ps_write_file( | |
3700 | paging_segment_t ps, | |
3701 | upl_t upl, | |
3702 | vm_offset_t upl_offset, | |
3703 | vm_offset_t offset, | |
3704 | unsigned int size, | |
3705 | int flags) | |
3706 | { | |
3707 | vm_object_offset_t f_offset; | |
3708 | kern_return_t result; | |
3709 | ||
3710 | int error = 0; | |
3711 | ||
3712 | clustered_writes[atop(size)]++; | |
3713 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3714 | ||
3715 | if (vnode_pageout(ps->ps_vnode, | |
3716 | upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL)) | |
3717 | result = KERN_FAILURE; | |
3718 | else | |
3719 | result = KERN_SUCCESS; | |
3720 | ||
3721 | return result; | |
3722 | } | |
3723 | ||
3724 | kern_return_t | |
3725 | default_pager_triggers(MACH_PORT_FACE default_pager, | |
3726 | int hi_wat, | |
3727 | int lo_wat, | |
3728 | int flags, | |
3729 | MACH_PORT_FACE trigger_port) | |
3730 | { | |
3731 | MACH_PORT_FACE release; | |
3732 | kern_return_t kr; | |
3733 | ||
3734 | PSL_LOCK(); | |
3735 | if (flags == HI_WAT_ALERT) { | |
3736 | release = min_pages_trigger_port; | |
3737 | min_pages_trigger_port = trigger_port; | |
3738 | minimum_pages_remaining = hi_wat/vm_page_size; | |
3739 | bs_low = FALSE; | |
3740 | kr = KERN_SUCCESS; | |
3741 | } else if (flags == LO_WAT_ALERT) { | |
3742 | release = max_pages_trigger_port; | |
3743 | max_pages_trigger_port = trigger_port; | |
3744 | maximum_pages_free = lo_wat/vm_page_size; | |
3745 | kr = KERN_SUCCESS; | |
3746 | } else { | |
3747 | release = trigger_port; | |
3748 | kr = KERN_INVALID_ARGUMENT; | |
3749 | } | |
3750 | PSL_UNLOCK(); | |
3751 | ||
3752 | if (IP_VALID(release)) | |
3753 | ipc_port_release_send(release); | |
3754 | ||
3755 | return kr; | |
3756 | } |