]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_page.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Resident memory management module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <libkern/OSAtomic.h> | |
67 | ||
68 | #include <mach/clock_types.h> | |
69 | #include <mach/vm_prot.h> | |
70 | #include <mach/vm_statistics.h> | |
71 | #include <mach/sdt.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/sched_prim.h> | |
74 | #include <kern/task.h> | |
75 | #include <kern/thread.h> | |
76 | #include <kern/kalloc.h> | |
77 | #include <kern/zalloc.h> | |
78 | #include <kern/xpr.h> | |
79 | #include <vm/pmap.h> | |
80 | #include <vm/vm_init.h> | |
81 | #include <vm/vm_map.h> | |
82 | #include <vm/vm_page.h> | |
83 | #include <vm/vm_pageout.h> | |
84 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
85 | #include <kern/misc_protos.h> | |
86 | #include <zone_debug.h> | |
87 | #include <vm/cpm.h> | |
88 | #include <pexpert/pexpert.h> | |
89 | ||
90 | #include <vm/vm_protos.h> | |
91 | #include <vm/memory_object.h> | |
92 | #include <vm/vm_purgeable_internal.h> | |
93 | ||
94 | #include <IOKit/IOHibernatePrivate.h> | |
95 | ||
96 | #include <sys/kdebug.h> | |
97 | ||
98 | boolean_t hibernate_cleaning_in_progress = FALSE; | |
99 | boolean_t vm_page_free_verify = TRUE; | |
100 | ||
101 | uint32_t vm_lopage_free_count = 0; | |
102 | uint32_t vm_lopage_free_limit = 0; | |
103 | uint32_t vm_lopage_lowater = 0; | |
104 | boolean_t vm_lopage_refill = FALSE; | |
105 | boolean_t vm_lopage_needed = FALSE; | |
106 | ||
107 | lck_mtx_ext_t vm_page_queue_lock_ext; | |
108 | lck_mtx_ext_t vm_page_queue_free_lock_ext; | |
109 | lck_mtx_ext_t vm_purgeable_queue_lock_ext; | |
110 | ||
111 | int speculative_age_index = 0; | |
112 | int speculative_steal_index = 0; | |
113 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; | |
114 | ||
115 | ||
116 | __private_extern__ void vm_page_init_lck_grp(void); | |
117 | ||
118 | static void vm_page_free_prepare(vm_page_t page); | |
119 | static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr); | |
120 | ||
121 | ||
122 | ||
123 | ||
124 | /* | |
125 | * Associated with page of user-allocatable memory is a | |
126 | * page structure. | |
127 | */ | |
128 | ||
129 | /* | |
130 | * These variables record the values returned by vm_page_bootstrap, | |
131 | * for debugging purposes. The implementation of pmap_steal_memory | |
132 | * and pmap_startup here also uses them internally. | |
133 | */ | |
134 | ||
135 | vm_offset_t virtual_space_start; | |
136 | vm_offset_t virtual_space_end; | |
137 | uint32_t vm_page_pages; | |
138 | ||
139 | /* | |
140 | * The vm_page_lookup() routine, which provides for fast | |
141 | * (virtual memory object, offset) to page lookup, employs | |
142 | * the following hash table. The vm_page_{insert,remove} | |
143 | * routines install and remove associations in the table. | |
144 | * [This table is often called the virtual-to-physical, | |
145 | * or VP, table.] | |
146 | */ | |
147 | typedef struct { | |
148 | vm_page_t pages; | |
149 | #if MACH_PAGE_HASH_STATS | |
150 | int cur_count; /* current count */ | |
151 | int hi_count; /* high water mark */ | |
152 | #endif /* MACH_PAGE_HASH_STATS */ | |
153 | } vm_page_bucket_t; | |
154 | ||
155 | ||
156 | #define BUCKETS_PER_LOCK 16 | |
157 | ||
158 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
159 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
160 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
161 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
162 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ | |
163 | unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */ | |
164 | ||
165 | lck_spin_t *vm_page_bucket_locks; | |
166 | ||
167 | ||
168 | #if MACH_PAGE_HASH_STATS | |
169 | /* This routine is only for debug. It is intended to be called by | |
170 | * hand by a developer using a kernel debugger. This routine prints | |
171 | * out vm_page_hash table statistics to the kernel debug console. | |
172 | */ | |
173 | void | |
174 | hash_debug(void) | |
175 | { | |
176 | int i; | |
177 | int numbuckets = 0; | |
178 | int highsum = 0; | |
179 | int maxdepth = 0; | |
180 | ||
181 | for (i = 0; i < vm_page_bucket_count; i++) { | |
182 | if (vm_page_buckets[i].hi_count) { | |
183 | numbuckets++; | |
184 | highsum += vm_page_buckets[i].hi_count; | |
185 | if (vm_page_buckets[i].hi_count > maxdepth) | |
186 | maxdepth = vm_page_buckets[i].hi_count; | |
187 | } | |
188 | } | |
189 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
190 | printf("Number used buckets: %d = %d%%\n", | |
191 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
192 | printf("Number unused buckets: %d = %d%%\n", | |
193 | vm_page_bucket_count - numbuckets, | |
194 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
195 | printf("Sum of bucket max depth: %d\n", highsum); | |
196 | printf("Average bucket depth: %d.%2d\n", | |
197 | highsum/vm_page_bucket_count, | |
198 | highsum%vm_page_bucket_count); | |
199 | printf("Maximum bucket depth: %d\n", maxdepth); | |
200 | } | |
201 | #endif /* MACH_PAGE_HASH_STATS */ | |
202 | ||
203 | /* | |
204 | * The virtual page size is currently implemented as a runtime | |
205 | * variable, but is constant once initialized using vm_set_page_size. | |
206 | * This initialization must be done in the machine-dependent | |
207 | * bootstrap sequence, before calling other machine-independent | |
208 | * initializations. | |
209 | * | |
210 | * All references to the virtual page size outside this | |
211 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
212 | * constants. | |
213 | */ | |
214 | vm_size_t page_size = PAGE_SIZE; | |
215 | vm_size_t page_mask = PAGE_MASK; | |
216 | int page_shift = PAGE_SHIFT; | |
217 | ||
218 | /* | |
219 | * Resident page structures are initialized from | |
220 | * a template (see vm_page_alloc). | |
221 | * | |
222 | * When adding a new field to the virtual memory | |
223 | * object structure, be sure to add initialization | |
224 | * (see vm_page_bootstrap). | |
225 | */ | |
226 | struct vm_page vm_page_template; | |
227 | ||
228 | vm_page_t vm_pages = VM_PAGE_NULL; | |
229 | unsigned int vm_pages_count = 0; | |
230 | ppnum_t vm_page_lowest = 0; | |
231 | ||
232 | /* | |
233 | * Resident pages that represent real memory | |
234 | * are allocated from a set of free lists, | |
235 | * one per color. | |
236 | */ | |
237 | unsigned int vm_colors; | |
238 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ | |
239 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ | |
240 | queue_head_t vm_page_queue_free[MAX_COLORS]; | |
241 | unsigned int vm_page_free_wanted; | |
242 | unsigned int vm_page_free_wanted_privileged; | |
243 | unsigned int vm_page_free_count; | |
244 | unsigned int vm_page_fictitious_count; | |
245 | ||
246 | unsigned int vm_page_free_count_minimum; /* debugging */ | |
247 | ||
248 | /* | |
249 | * Occasionally, the virtual memory system uses | |
250 | * resident page structures that do not refer to | |
251 | * real pages, for example to leave a page with | |
252 | * important state information in the VP table. | |
253 | * | |
254 | * These page structures are allocated the way | |
255 | * most other kernel structures are. | |
256 | */ | |
257 | zone_t vm_page_zone; | |
258 | vm_locks_array_t vm_page_locks; | |
259 | decl_lck_mtx_data(,vm_page_alloc_lock) | |
260 | lck_mtx_ext_t vm_page_alloc_lock_ext; | |
261 | ||
262 | unsigned int io_throttle_zero_fill; | |
263 | ||
264 | unsigned int vm_page_local_q_count = 0; | |
265 | unsigned int vm_page_local_q_soft_limit = 250; | |
266 | unsigned int vm_page_local_q_hard_limit = 500; | |
267 | struct vplq *vm_page_local_q = NULL; | |
268 | ||
269 | /* N.B. Guard and fictitious pages must not | |
270 | * be assigned a zero phys_page value. | |
271 | */ | |
272 | /* | |
273 | * Fictitious pages don't have a physical address, | |
274 | * but we must initialize phys_page to something. | |
275 | * For debugging, this should be a strange value | |
276 | * that the pmap module can recognize in assertions. | |
277 | */ | |
278 | ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; | |
279 | ||
280 | /* | |
281 | * Guard pages are not accessible so they don't | |
282 | * need a physical address, but we need to enter | |
283 | * one in the pmap. | |
284 | * Let's make it recognizable and make sure that | |
285 | * we don't use a real physical page with that | |
286 | * physical address. | |
287 | */ | |
288 | ppnum_t vm_page_guard_addr = (ppnum_t) -2; | |
289 | ||
290 | /* | |
291 | * Resident page structures are also chained on | |
292 | * queues that are used by the page replacement | |
293 | * system (pageout daemon). These queues are | |
294 | * defined here, but are shared by the pageout | |
295 | * module. The inactive queue is broken into | |
296 | * inactive and zf for convenience as the | |
297 | * pageout daemon often assignes a higher | |
298 | * affinity to zf pages | |
299 | */ | |
300 | queue_head_t vm_page_queue_active; | |
301 | queue_head_t vm_page_queue_inactive; | |
302 | queue_head_t vm_page_queue_anonymous; /* inactive memory queue for anonymous pages */ | |
303 | queue_head_t vm_page_queue_throttled; | |
304 | ||
305 | unsigned int vm_page_active_count; | |
306 | unsigned int vm_page_inactive_count; | |
307 | unsigned int vm_page_anonymous_count; | |
308 | unsigned int vm_page_throttled_count; | |
309 | unsigned int vm_page_speculative_count; | |
310 | unsigned int vm_page_wire_count; | |
311 | unsigned int vm_page_wire_count_initial; | |
312 | unsigned int vm_page_gobble_count = 0; | |
313 | unsigned int vm_page_wire_count_warning = 0; | |
314 | unsigned int vm_page_gobble_count_warning = 0; | |
315 | ||
316 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ | |
317 | unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ | |
318 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ | |
319 | ||
320 | #if DEVELOPMENT || DEBUG | |
321 | unsigned int vm_page_speculative_recreated = 0; | |
322 | unsigned int vm_page_speculative_created = 0; | |
323 | unsigned int vm_page_speculative_used = 0; | |
324 | #endif | |
325 | ||
326 | queue_head_t vm_page_queue_cleaned; | |
327 | ||
328 | unsigned int vm_page_cleaned_count = 0; | |
329 | unsigned int vm_pageout_enqueued_cleaned = 0; | |
330 | ||
331 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; | |
332 | ppnum_t max_valid_low_ppnum = 0xffffffff; | |
333 | ||
334 | ||
335 | /* | |
336 | * Several page replacement parameters are also | |
337 | * shared with this module, so that page allocation | |
338 | * (done here in vm_page_alloc) can trigger the | |
339 | * pageout daemon. | |
340 | */ | |
341 | unsigned int vm_page_free_target = 0; | |
342 | unsigned int vm_page_free_min = 0; | |
343 | unsigned int vm_page_throttle_limit = 0; | |
344 | uint32_t vm_page_creation_throttle = 0; | |
345 | unsigned int vm_page_inactive_target = 0; | |
346 | unsigned int vm_page_anonymous_min = 0; | |
347 | unsigned int vm_page_inactive_min = 0; | |
348 | unsigned int vm_page_free_reserved = 0; | |
349 | unsigned int vm_page_throttle_count = 0; | |
350 | ||
351 | ||
352 | /* | |
353 | * The VM system has a couple of heuristics for deciding | |
354 | * that pages are "uninteresting" and should be placed | |
355 | * on the inactive queue as likely candidates for replacement. | |
356 | * These variables let the heuristics be controlled at run-time | |
357 | * to make experimentation easier. | |
358 | */ | |
359 | ||
360 | boolean_t vm_page_deactivate_hint = TRUE; | |
361 | ||
362 | struct vm_page_stats_reusable vm_page_stats_reusable; | |
363 | ||
364 | /* | |
365 | * vm_set_page_size: | |
366 | * | |
367 | * Sets the page size, perhaps based upon the memory | |
368 | * size. Must be called before any use of page-size | |
369 | * dependent functions. | |
370 | * | |
371 | * Sets page_shift and page_mask from page_size. | |
372 | */ | |
373 | void | |
374 | vm_set_page_size(void) | |
375 | { | |
376 | page_mask = page_size - 1; | |
377 | ||
378 | if ((page_mask & page_size) != 0) | |
379 | panic("vm_set_page_size: page size not a power of two"); | |
380 | ||
381 | for (page_shift = 0; ; page_shift++) | |
382 | if ((1U << page_shift) == page_size) | |
383 | break; | |
384 | } | |
385 | ||
386 | ||
387 | /* Called once during statup, once the cache geometry is known. | |
388 | */ | |
389 | static void | |
390 | vm_page_set_colors( void ) | |
391 | { | |
392 | unsigned int n, override; | |
393 | ||
394 | if ( PE_parse_boot_argn("colors", &override, sizeof (override)) ) /* colors specified as a boot-arg? */ | |
395 | n = override; | |
396 | else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ | |
397 | n = vm_cache_geometry_colors; | |
398 | else n = DEFAULT_COLORS; /* use default if all else fails */ | |
399 | ||
400 | if ( n == 0 ) | |
401 | n = 1; | |
402 | if ( n > MAX_COLORS ) | |
403 | n = MAX_COLORS; | |
404 | ||
405 | /* the count must be a power of 2 */ | |
406 | if ( ( n & (n - 1)) != 0 ) | |
407 | panic("vm_page_set_colors"); | |
408 | ||
409 | vm_colors = n; | |
410 | vm_color_mask = n - 1; | |
411 | } | |
412 | ||
413 | ||
414 | lck_grp_t vm_page_lck_grp_free; | |
415 | lck_grp_t vm_page_lck_grp_queue; | |
416 | lck_grp_t vm_page_lck_grp_local; | |
417 | lck_grp_t vm_page_lck_grp_purge; | |
418 | lck_grp_t vm_page_lck_grp_alloc; | |
419 | lck_grp_t vm_page_lck_grp_bucket; | |
420 | lck_grp_attr_t vm_page_lck_grp_attr; | |
421 | lck_attr_t vm_page_lck_attr; | |
422 | ||
423 | ||
424 | __private_extern__ void | |
425 | vm_page_init_lck_grp(void) | |
426 | { | |
427 | /* | |
428 | * initialze the vm_page lock world | |
429 | */ | |
430 | lck_grp_attr_setdefault(&vm_page_lck_grp_attr); | |
431 | lck_grp_init(&vm_page_lck_grp_free, "vm_page_free", &vm_page_lck_grp_attr); | |
432 | lck_grp_init(&vm_page_lck_grp_queue, "vm_page_queue", &vm_page_lck_grp_attr); | |
433 | lck_grp_init(&vm_page_lck_grp_local, "vm_page_queue_local", &vm_page_lck_grp_attr); | |
434 | lck_grp_init(&vm_page_lck_grp_purge, "vm_page_purge", &vm_page_lck_grp_attr); | |
435 | lck_grp_init(&vm_page_lck_grp_alloc, "vm_page_alloc", &vm_page_lck_grp_attr); | |
436 | lck_grp_init(&vm_page_lck_grp_bucket, "vm_page_bucket", &vm_page_lck_grp_attr); | |
437 | lck_attr_setdefault(&vm_page_lck_attr); | |
438 | lck_mtx_init_ext(&vm_page_alloc_lock, &vm_page_alloc_lock_ext, &vm_page_lck_grp_alloc, &vm_page_lck_attr); | |
439 | } | |
440 | ||
441 | void | |
442 | vm_page_init_local_q() | |
443 | { | |
444 | unsigned int num_cpus; | |
445 | unsigned int i; | |
446 | struct vplq *t_local_q; | |
447 | ||
448 | num_cpus = ml_get_max_cpus(); | |
449 | ||
450 | /* | |
451 | * no point in this for a uni-processor system | |
452 | */ | |
453 | if (num_cpus >= 2) { | |
454 | t_local_q = (struct vplq *)kalloc(num_cpus * sizeof(struct vplq)); | |
455 | ||
456 | for (i = 0; i < num_cpus; i++) { | |
457 | struct vpl *lq; | |
458 | ||
459 | lq = &t_local_q[i].vpl_un.vpl; | |
460 | VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); | |
461 | queue_init(&lq->vpl_queue); | |
462 | lq->vpl_count = 0; | |
463 | } | |
464 | vm_page_local_q_count = num_cpus; | |
465 | ||
466 | vm_page_local_q = (struct vplq *)t_local_q; | |
467 | } | |
468 | } | |
469 | ||
470 | ||
471 | /* | |
472 | * vm_page_bootstrap: | |
473 | * | |
474 | * Initializes the resident memory module. | |
475 | * | |
476 | * Allocates memory for the page cells, and | |
477 | * for the object/offset-to-page hash table headers. | |
478 | * Each page cell is initialized and placed on the free list. | |
479 | * Returns the range of available kernel virtual memory. | |
480 | */ | |
481 | ||
482 | void | |
483 | vm_page_bootstrap( | |
484 | vm_offset_t *startp, | |
485 | vm_offset_t *endp) | |
486 | { | |
487 | register vm_page_t m; | |
488 | unsigned int i; | |
489 | unsigned int log1; | |
490 | unsigned int log2; | |
491 | unsigned int size; | |
492 | ||
493 | /* | |
494 | * Initialize the vm_page template. | |
495 | */ | |
496 | ||
497 | m = &vm_page_template; | |
498 | bzero(m, sizeof (*m)); | |
499 | ||
500 | m->pageq.next = NULL; | |
501 | m->pageq.prev = NULL; | |
502 | m->listq.next = NULL; | |
503 | m->listq.prev = NULL; | |
504 | m->next = VM_PAGE_NULL; | |
505 | ||
506 | m->object = VM_OBJECT_NULL; /* reset later */ | |
507 | m->offset = (vm_object_offset_t) -1; /* reset later */ | |
508 | ||
509 | m->wire_count = 0; | |
510 | m->local = FALSE; | |
511 | m->inactive = FALSE; | |
512 | m->active = FALSE; | |
513 | m->pageout_queue = FALSE; | |
514 | m->speculative = FALSE; | |
515 | m->laundry = FALSE; | |
516 | m->free = FALSE; | |
517 | m->reference = FALSE; | |
518 | m->gobbled = FALSE; | |
519 | m->private = FALSE; | |
520 | m->throttled = FALSE; | |
521 | m->__unused_pageq_bits = 0; | |
522 | ||
523 | m->phys_page = 0; /* reset later */ | |
524 | ||
525 | m->busy = TRUE; | |
526 | m->wanted = FALSE; | |
527 | m->tabled = FALSE; | |
528 | m->fictitious = FALSE; | |
529 | m->pmapped = FALSE; | |
530 | m->wpmapped = FALSE; | |
531 | m->pageout = FALSE; | |
532 | m->absent = FALSE; | |
533 | m->error = FALSE; | |
534 | m->dirty = FALSE; | |
535 | m->cleaning = FALSE; | |
536 | m->precious = FALSE; | |
537 | m->clustered = FALSE; | |
538 | m->overwriting = FALSE; | |
539 | m->restart = FALSE; | |
540 | m->unusual = FALSE; | |
541 | m->encrypted = FALSE; | |
542 | m->encrypted_cleaning = FALSE; | |
543 | m->cs_validated = FALSE; | |
544 | m->cs_tainted = FALSE; | |
545 | m->no_cache = FALSE; | |
546 | m->reusable = FALSE; | |
547 | m->slid = FALSE; | |
548 | m->was_dirty = FALSE; | |
549 | m->__unused_object_bits = 0; | |
550 | ||
551 | ||
552 | /* | |
553 | * Initialize the page queues. | |
554 | */ | |
555 | vm_page_init_lck_grp(); | |
556 | ||
557 | lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr); | |
558 | lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr); | |
559 | lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr); | |
560 | ||
561 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
562 | int group; | |
563 | ||
564 | purgeable_queues[i].token_q_head = 0; | |
565 | purgeable_queues[i].token_q_tail = 0; | |
566 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
567 | queue_init(&purgeable_queues[i].objq[group]); | |
568 | ||
569 | purgeable_queues[i].type = i; | |
570 | purgeable_queues[i].new_pages = 0; | |
571 | #if MACH_ASSERT | |
572 | purgeable_queues[i].debug_count_tokens = 0; | |
573 | purgeable_queues[i].debug_count_objects = 0; | |
574 | #endif | |
575 | }; | |
576 | ||
577 | for (i = 0; i < MAX_COLORS; i++ ) | |
578 | queue_init(&vm_page_queue_free[i]); | |
579 | ||
580 | queue_init(&vm_lopage_queue_free); | |
581 | queue_init(&vm_page_queue_active); | |
582 | queue_init(&vm_page_queue_inactive); | |
583 | queue_init(&vm_page_queue_cleaned); | |
584 | queue_init(&vm_page_queue_throttled); | |
585 | queue_init(&vm_page_queue_anonymous); | |
586 | ||
587 | for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { | |
588 | queue_init(&vm_page_queue_speculative[i].age_q); | |
589 | ||
590 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; | |
591 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; | |
592 | } | |
593 | vm_page_free_wanted = 0; | |
594 | vm_page_free_wanted_privileged = 0; | |
595 | ||
596 | vm_page_set_colors(); | |
597 | ||
598 | ||
599 | /* | |
600 | * Steal memory for the map and zone subsystems. | |
601 | */ | |
602 | zone_steal_memory(); | |
603 | vm_map_steal_memory(); | |
604 | ||
605 | /* | |
606 | * Allocate (and initialize) the virtual-to-physical | |
607 | * table hash buckets. | |
608 | * | |
609 | * The number of buckets should be a power of two to | |
610 | * get a good hash function. The following computation | |
611 | * chooses the first power of two that is greater | |
612 | * than the number of physical pages in the system. | |
613 | */ | |
614 | ||
615 | if (vm_page_bucket_count == 0) { | |
616 | unsigned int npages = pmap_free_pages(); | |
617 | ||
618 | vm_page_bucket_count = 1; | |
619 | while (vm_page_bucket_count < npages) | |
620 | vm_page_bucket_count <<= 1; | |
621 | } | |
622 | vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; | |
623 | ||
624 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
625 | ||
626 | /* | |
627 | * Calculate object shift value for hashing algorithm: | |
628 | * O = log2(sizeof(struct vm_object)) | |
629 | * B = log2(vm_page_bucket_count) | |
630 | * hash shifts the object left by | |
631 | * B/2 - O | |
632 | */ | |
633 | size = vm_page_bucket_count; | |
634 | for (log1 = 0; size > 1; log1++) | |
635 | size /= 2; | |
636 | size = sizeof(struct vm_object); | |
637 | for (log2 = 0; size > 1; log2++) | |
638 | size /= 2; | |
639 | vm_page_hash_shift = log1/2 - log2 + 1; | |
640 | ||
641 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
642 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
643 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
644 | ||
645 | if (vm_page_hash_mask & vm_page_bucket_count) | |
646 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
647 | ||
648 | vm_page_buckets = (vm_page_bucket_t *) | |
649 | pmap_steal_memory(vm_page_bucket_count * | |
650 | sizeof(vm_page_bucket_t)); | |
651 | ||
652 | vm_page_bucket_locks = (lck_spin_t *) | |
653 | pmap_steal_memory(vm_page_bucket_lock_count * | |
654 | sizeof(lck_spin_t)); | |
655 | ||
656 | for (i = 0; i < vm_page_bucket_count; i++) { | |
657 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
658 | ||
659 | bucket->pages = VM_PAGE_NULL; | |
660 | #if MACH_PAGE_HASH_STATS | |
661 | bucket->cur_count = 0; | |
662 | bucket->hi_count = 0; | |
663 | #endif /* MACH_PAGE_HASH_STATS */ | |
664 | } | |
665 | ||
666 | for (i = 0; i < vm_page_bucket_lock_count; i++) | |
667 | lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
668 | ||
669 | /* | |
670 | * Machine-dependent code allocates the resident page table. | |
671 | * It uses vm_page_init to initialize the page frames. | |
672 | * The code also returns to us the virtual space available | |
673 | * to the kernel. We don't trust the pmap module | |
674 | * to get the alignment right. | |
675 | */ | |
676 | ||
677 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
678 | virtual_space_start = round_page(virtual_space_start); | |
679 | virtual_space_end = trunc_page(virtual_space_end); | |
680 | ||
681 | *startp = virtual_space_start; | |
682 | *endp = virtual_space_end; | |
683 | ||
684 | /* | |
685 | * Compute the initial "wire" count. | |
686 | * Up until now, the pages which have been set aside are not under | |
687 | * the VM system's control, so although they aren't explicitly | |
688 | * wired, they nonetheless can't be moved. At this moment, | |
689 | * all VM managed pages are "free", courtesy of pmap_startup. | |
690 | */ | |
691 | assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); | |
692 | vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - vm_page_free_count - vm_lopage_free_count; /* initial value */ | |
693 | vm_page_wire_count_initial = vm_page_wire_count; | |
694 | vm_page_free_count_minimum = vm_page_free_count; | |
695 | ||
696 | printf("vm_page_bootstrap: %d free pages and %d wired pages\n", | |
697 | vm_page_free_count, vm_page_wire_count); | |
698 | ||
699 | simple_lock_init(&vm_paging_lock, 0); | |
700 | } | |
701 | ||
702 | #ifndef MACHINE_PAGES | |
703 | /* | |
704 | * We implement pmap_steal_memory and pmap_startup with the help | |
705 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
706 | */ | |
707 | ||
708 | void * | |
709 | pmap_steal_memory( | |
710 | vm_size_t size) | |
711 | { | |
712 | vm_offset_t addr, vaddr; | |
713 | ppnum_t phys_page; | |
714 | ||
715 | /* | |
716 | * We round the size to a round multiple. | |
717 | */ | |
718 | ||
719 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
720 | ||
721 | /* | |
722 | * If this is the first call to pmap_steal_memory, | |
723 | * we have to initialize ourself. | |
724 | */ | |
725 | ||
726 | if (virtual_space_start == virtual_space_end) { | |
727 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
728 | ||
729 | /* | |
730 | * The initial values must be aligned properly, and | |
731 | * we don't trust the pmap module to do it right. | |
732 | */ | |
733 | ||
734 | virtual_space_start = round_page(virtual_space_start); | |
735 | virtual_space_end = trunc_page(virtual_space_end); | |
736 | } | |
737 | ||
738 | /* | |
739 | * Allocate virtual memory for this request. | |
740 | */ | |
741 | ||
742 | addr = virtual_space_start; | |
743 | virtual_space_start += size; | |
744 | ||
745 | //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ | |
746 | ||
747 | /* | |
748 | * Allocate and map physical pages to back new virtual pages. | |
749 | */ | |
750 | ||
751 | for (vaddr = round_page(addr); | |
752 | vaddr < addr + size; | |
753 | vaddr += PAGE_SIZE) { | |
754 | ||
755 | if (!pmap_next_page_hi(&phys_page)) | |
756 | panic("pmap_steal_memory"); | |
757 | ||
758 | /* | |
759 | * XXX Logically, these mappings should be wired, | |
760 | * but some pmap modules barf if they are. | |
761 | */ | |
762 | #if defined(__LP64__) | |
763 | pmap_pre_expand(kernel_pmap, vaddr); | |
764 | #endif | |
765 | ||
766 | pmap_enter(kernel_pmap, vaddr, phys_page, | |
767 | VM_PROT_READ|VM_PROT_WRITE, VM_PROT_NONE, | |
768 | VM_WIMG_USE_DEFAULT, FALSE); | |
769 | /* | |
770 | * Account for newly stolen memory | |
771 | */ | |
772 | vm_page_wire_count++; | |
773 | ||
774 | } | |
775 | ||
776 | return (void *) addr; | |
777 | } | |
778 | ||
779 | void | |
780 | pmap_startup( | |
781 | vm_offset_t *startp, | |
782 | vm_offset_t *endp) | |
783 | { | |
784 | unsigned int i, npages, pages_initialized, fill, fillval; | |
785 | ppnum_t phys_page; | |
786 | addr64_t tmpaddr; | |
787 | ||
788 | /* | |
789 | * We calculate how many page frames we will have | |
790 | * and then allocate the page structures in one chunk. | |
791 | */ | |
792 | ||
793 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ | |
794 | tmpaddr = tmpaddr + (addr64_t)(round_page(virtual_space_start) - virtual_space_start); /* Account for any slop */ | |
795 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ | |
796 | ||
797 | vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); | |
798 | ||
799 | /* | |
800 | * Initialize the page frames. | |
801 | */ | |
802 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
803 | if (!pmap_next_page(&phys_page)) | |
804 | break; | |
805 | if (pages_initialized == 0 || phys_page < vm_page_lowest) | |
806 | vm_page_lowest = phys_page; | |
807 | ||
808 | vm_page_init(&vm_pages[i], phys_page, FALSE); | |
809 | vm_page_pages++; | |
810 | pages_initialized++; | |
811 | } | |
812 | vm_pages_count = pages_initialized; | |
813 | ||
814 | /* | |
815 | * Check if we want to initialize pages to a known value | |
816 | */ | |
817 | fill = 0; /* Assume no fill */ | |
818 | if (PE_parse_boot_argn("fill", &fillval, sizeof (fillval))) fill = 1; /* Set fill */ | |
819 | #if DEBUG | |
820 | /* This slows down booting the DEBUG kernel, particularly on | |
821 | * large memory systems, but is worthwhile in deterministically | |
822 | * trapping uninitialized memory usage. | |
823 | */ | |
824 | if (fill == 0) { | |
825 | fill = 1; | |
826 | fillval = 0xDEB8F177; | |
827 | } | |
828 | #endif | |
829 | if (fill) | |
830 | kprintf("Filling vm_pages with pattern: 0x%x\n", fillval); | |
831 | // -debug code remove | |
832 | if (2 == vm_himemory_mode) { | |
833 | // free low -> high so high is preferred | |
834 | for (i = 1; i <= pages_initialized; i++) { | |
835 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
836 | vm_page_release(&vm_pages[i - 1]); | |
837 | } | |
838 | } | |
839 | else | |
840 | // debug code remove- | |
841 | ||
842 | /* | |
843 | * Release pages in reverse order so that physical pages | |
844 | * initially get allocated in ascending addresses. This keeps | |
845 | * the devices (which must address physical memory) happy if | |
846 | * they require several consecutive pages. | |
847 | */ | |
848 | for (i = pages_initialized; i > 0; i--) { | |
849 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
850 | vm_page_release(&vm_pages[i - 1]); | |
851 | } | |
852 | ||
853 | #if 0 | |
854 | { | |
855 | vm_page_t xx, xxo, xxl; | |
856 | int i, j, k, l; | |
857 | ||
858 | j = 0; /* (BRINGUP) */ | |
859 | xxl = 0; | |
860 | ||
861 | for( i = 0; i < vm_colors; i++ ) { | |
862 | queue_iterate(&vm_page_queue_free[i], | |
863 | xx, | |
864 | vm_page_t, | |
865 | pageq) { /* BRINGUP */ | |
866 | j++; /* (BRINGUP) */ | |
867 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
868 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
869 | } | |
870 | ||
871 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
872 | k = 0; /* (BRINGUP) */ | |
873 | ||
874 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
875 | ||
876 | for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i]; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
877 | k++; | |
878 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
879 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
880 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
881 | } | |
882 | } | |
883 | ||
884 | xxl = xx; | |
885 | } | |
886 | } | |
887 | ||
888 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
889 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
890 | } | |
891 | } | |
892 | #endif | |
893 | ||
894 | ||
895 | /* | |
896 | * We have to re-align virtual_space_start, | |
897 | * because pmap_steal_memory has been using it. | |
898 | */ | |
899 | ||
900 | virtual_space_start = round_page(virtual_space_start); | |
901 | ||
902 | *startp = virtual_space_start; | |
903 | *endp = virtual_space_end; | |
904 | } | |
905 | #endif /* MACHINE_PAGES */ | |
906 | ||
907 | /* | |
908 | * Routine: vm_page_module_init | |
909 | * Purpose: | |
910 | * Second initialization pass, to be done after | |
911 | * the basic VM system is ready. | |
912 | */ | |
913 | void | |
914 | vm_page_module_init(void) | |
915 | { | |
916 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
917 | 0, PAGE_SIZE, "vm pages"); | |
918 | ||
919 | #if ZONE_DEBUG | |
920 | zone_debug_disable(vm_page_zone); | |
921 | #endif /* ZONE_DEBUG */ | |
922 | ||
923 | zone_change(vm_page_zone, Z_CALLERACCT, FALSE); | |
924 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
925 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
926 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
927 | zone_change(vm_page_zone, Z_GZALLOC_EXEMPT, TRUE); | |
928 | /* | |
929 | * Adjust zone statistics to account for the real pages allocated | |
930 | * in vm_page_create(). [Q: is this really what we want?] | |
931 | */ | |
932 | vm_page_zone->count += vm_page_pages; | |
933 | vm_page_zone->sum_count += vm_page_pages; | |
934 | vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; | |
935 | } | |
936 | ||
937 | /* | |
938 | * Routine: vm_page_create | |
939 | * Purpose: | |
940 | * After the VM system is up, machine-dependent code | |
941 | * may stumble across more physical memory. For example, | |
942 | * memory that it was reserving for a frame buffer. | |
943 | * vm_page_create turns this memory into available pages. | |
944 | */ | |
945 | ||
946 | void | |
947 | vm_page_create( | |
948 | ppnum_t start, | |
949 | ppnum_t end) | |
950 | { | |
951 | ppnum_t phys_page; | |
952 | vm_page_t m; | |
953 | ||
954 | for (phys_page = start; | |
955 | phys_page < end; | |
956 | phys_page++) { | |
957 | while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page)) | |
958 | == VM_PAGE_NULL) | |
959 | vm_page_more_fictitious(); | |
960 | ||
961 | m->fictitious = FALSE; | |
962 | pmap_clear_noencrypt(phys_page); | |
963 | ||
964 | vm_page_pages++; | |
965 | vm_page_release(m); | |
966 | } | |
967 | } | |
968 | ||
969 | /* | |
970 | * vm_page_hash: | |
971 | * | |
972 | * Distributes the object/offset key pair among hash buckets. | |
973 | * | |
974 | * NOTE: The bucket count must be a power of 2 | |
975 | */ | |
976 | #define vm_page_hash(object, offset) (\ | |
977 | ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ | |
978 | & vm_page_hash_mask) | |
979 | ||
980 | ||
981 | /* | |
982 | * vm_page_insert: [ internal use only ] | |
983 | * | |
984 | * Inserts the given mem entry into the object/object-page | |
985 | * table and object list. | |
986 | * | |
987 | * The object must be locked. | |
988 | */ | |
989 | void | |
990 | vm_page_insert( | |
991 | vm_page_t mem, | |
992 | vm_object_t object, | |
993 | vm_object_offset_t offset) | |
994 | { | |
995 | vm_page_insert_internal(mem, object, offset, FALSE, TRUE, FALSE); | |
996 | } | |
997 | ||
998 | void | |
999 | vm_page_insert_internal( | |
1000 | vm_page_t mem, | |
1001 | vm_object_t object, | |
1002 | vm_object_offset_t offset, | |
1003 | boolean_t queues_lock_held, | |
1004 | boolean_t insert_in_hash, | |
1005 | boolean_t batch_pmap_op) | |
1006 | { | |
1007 | vm_page_bucket_t *bucket; | |
1008 | lck_spin_t *bucket_lock; | |
1009 | int hash_id; | |
1010 | ||
1011 | XPR(XPR_VM_PAGE, | |
1012 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
1013 | object, offset, mem, 0,0); | |
1014 | #if 0 | |
1015 | /* | |
1016 | * we may not hold the page queue lock | |
1017 | * so this check isn't safe to make | |
1018 | */ | |
1019 | VM_PAGE_CHECK(mem); | |
1020 | #endif | |
1021 | ||
1022 | if (object == vm_submap_object) { | |
1023 | /* the vm_submap_object is only a placeholder for submaps */ | |
1024 | panic("vm_page_insert(vm_submap_object,0x%llx)\n", offset); | |
1025 | } | |
1026 | ||
1027 | vm_object_lock_assert_exclusive(object); | |
1028 | #if DEBUG | |
1029 | lck_mtx_assert(&vm_page_queue_lock, | |
1030 | queues_lock_held ? LCK_MTX_ASSERT_OWNED | |
1031 | : LCK_MTX_ASSERT_NOTOWNED); | |
1032 | #endif /* DEBUG */ | |
1033 | ||
1034 | if (insert_in_hash == TRUE) { | |
1035 | #if DEBUG | |
1036 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
1037 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " | |
1038 | "already in (obj=%p,off=0x%llx)", | |
1039 | mem, object, offset, mem->object, mem->offset); | |
1040 | #endif | |
1041 | assert(!object->internal || offset < object->vo_size); | |
1042 | ||
1043 | /* only insert "pageout" pages into "pageout" objects, | |
1044 | * and normal pages into normal objects */ | |
1045 | assert(object->pageout == mem->pageout); | |
1046 | ||
1047 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); | |
1048 | ||
1049 | /* | |
1050 | * Record the object/offset pair in this page | |
1051 | */ | |
1052 | ||
1053 | mem->object = object; | |
1054 | mem->offset = offset; | |
1055 | ||
1056 | /* | |
1057 | * Insert it into the object_object/offset hash table | |
1058 | */ | |
1059 | hash_id = vm_page_hash(object, offset); | |
1060 | bucket = &vm_page_buckets[hash_id]; | |
1061 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1062 | ||
1063 | lck_spin_lock(bucket_lock); | |
1064 | ||
1065 | mem->next = bucket->pages; | |
1066 | bucket->pages = mem; | |
1067 | #if MACH_PAGE_HASH_STATS | |
1068 | if (++bucket->cur_count > bucket->hi_count) | |
1069 | bucket->hi_count = bucket->cur_count; | |
1070 | #endif /* MACH_PAGE_HASH_STATS */ | |
1071 | ||
1072 | lck_spin_unlock(bucket_lock); | |
1073 | } | |
1074 | ||
1075 | { | |
1076 | unsigned int cache_attr; | |
1077 | ||
1078 | cache_attr = object->wimg_bits & VM_WIMG_MASK; | |
1079 | ||
1080 | if (cache_attr != VM_WIMG_USE_DEFAULT) { | |
1081 | PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op); | |
1082 | } | |
1083 | } | |
1084 | /* | |
1085 | * Now link into the object's list of backed pages. | |
1086 | */ | |
1087 | ||
1088 | VM_PAGE_INSERT(mem, object); | |
1089 | mem->tabled = TRUE; | |
1090 | ||
1091 | /* | |
1092 | * Show that the object has one more resident page. | |
1093 | */ | |
1094 | ||
1095 | object->resident_page_count++; | |
1096 | if (VM_PAGE_WIRED(mem)) { | |
1097 | object->wired_page_count++; | |
1098 | } | |
1099 | assert(object->resident_page_count >= object->wired_page_count); | |
1100 | ||
1101 | assert(!mem->reusable); | |
1102 | ||
1103 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
1104 | if (VM_PAGE_WIRED(mem)) { | |
1105 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
1106 | } else { | |
1107 | OSAddAtomic(1, &vm_page_purgeable_count); | |
1108 | } | |
1109 | } else if (object->purgable == VM_PURGABLE_EMPTY && | |
1110 | mem->throttled) { | |
1111 | /* | |
1112 | * This page belongs to a purged VM object but hasn't | |
1113 | * been purged (because it was "busy"). | |
1114 | * It's in the "throttled" queue and hence not | |
1115 | * visible to vm_pageout_scan(). Move it to a pageable | |
1116 | * queue, so that it can eventually be reclaimed, instead | |
1117 | * of lingering in the "empty" object. | |
1118 | */ | |
1119 | if (queues_lock_held == FALSE) | |
1120 | vm_page_lockspin_queues(); | |
1121 | vm_page_deactivate(mem); | |
1122 | if (queues_lock_held == FALSE) | |
1123 | vm_page_unlock_queues(); | |
1124 | } | |
1125 | } | |
1126 | ||
1127 | /* | |
1128 | * vm_page_replace: | |
1129 | * | |
1130 | * Exactly like vm_page_insert, except that we first | |
1131 | * remove any existing page at the given offset in object. | |
1132 | * | |
1133 | * The object must be locked. | |
1134 | */ | |
1135 | void | |
1136 | vm_page_replace( | |
1137 | register vm_page_t mem, | |
1138 | register vm_object_t object, | |
1139 | register vm_object_offset_t offset) | |
1140 | { | |
1141 | vm_page_bucket_t *bucket; | |
1142 | vm_page_t found_m = VM_PAGE_NULL; | |
1143 | lck_spin_t *bucket_lock; | |
1144 | int hash_id; | |
1145 | ||
1146 | #if 0 | |
1147 | /* | |
1148 | * we don't hold the page queue lock | |
1149 | * so this check isn't safe to make | |
1150 | */ | |
1151 | VM_PAGE_CHECK(mem); | |
1152 | #endif | |
1153 | vm_object_lock_assert_exclusive(object); | |
1154 | #if DEBUG | |
1155 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
1156 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " | |
1157 | "already in (obj=%p,off=0x%llx)", | |
1158 | mem, object, offset, mem->object, mem->offset); | |
1159 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
1160 | #endif | |
1161 | /* | |
1162 | * Record the object/offset pair in this page | |
1163 | */ | |
1164 | ||
1165 | mem->object = object; | |
1166 | mem->offset = offset; | |
1167 | ||
1168 | /* | |
1169 | * Insert it into the object_object/offset hash table, | |
1170 | * replacing any page that might have been there. | |
1171 | */ | |
1172 | ||
1173 | hash_id = vm_page_hash(object, offset); | |
1174 | bucket = &vm_page_buckets[hash_id]; | |
1175 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1176 | ||
1177 | lck_spin_lock(bucket_lock); | |
1178 | ||
1179 | if (bucket->pages) { | |
1180 | vm_page_t *mp = &bucket->pages; | |
1181 | vm_page_t m = *mp; | |
1182 | ||
1183 | do { | |
1184 | if (m->object == object && m->offset == offset) { | |
1185 | /* | |
1186 | * Remove old page from hash list | |
1187 | */ | |
1188 | *mp = m->next; | |
1189 | ||
1190 | found_m = m; | |
1191 | break; | |
1192 | } | |
1193 | mp = &m->next; | |
1194 | } while ((m = *mp)); | |
1195 | ||
1196 | mem->next = bucket->pages; | |
1197 | } else { | |
1198 | mem->next = VM_PAGE_NULL; | |
1199 | } | |
1200 | /* | |
1201 | * insert new page at head of hash list | |
1202 | */ | |
1203 | bucket->pages = mem; | |
1204 | ||
1205 | lck_spin_unlock(bucket_lock); | |
1206 | ||
1207 | if (found_m) { | |
1208 | /* | |
1209 | * there was already a page at the specified | |
1210 | * offset for this object... remove it from | |
1211 | * the object and free it back to the free list | |
1212 | */ | |
1213 | vm_page_free_unlocked(found_m, FALSE); | |
1214 | } | |
1215 | vm_page_insert_internal(mem, object, offset, FALSE, FALSE, FALSE); | |
1216 | } | |
1217 | ||
1218 | /* | |
1219 | * vm_page_remove: [ internal use only ] | |
1220 | * | |
1221 | * Removes the given mem entry from the object/offset-page | |
1222 | * table and the object page list. | |
1223 | * | |
1224 | * The object must be locked. | |
1225 | */ | |
1226 | ||
1227 | void | |
1228 | vm_page_remove( | |
1229 | vm_page_t mem, | |
1230 | boolean_t remove_from_hash) | |
1231 | { | |
1232 | vm_page_bucket_t *bucket; | |
1233 | vm_page_t this; | |
1234 | lck_spin_t *bucket_lock; | |
1235 | int hash_id; | |
1236 | ||
1237 | XPR(XPR_VM_PAGE, | |
1238 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
1239 | mem->object, mem->offset, | |
1240 | mem, 0,0); | |
1241 | ||
1242 | vm_object_lock_assert_exclusive(mem->object); | |
1243 | assert(mem->tabled); | |
1244 | assert(!mem->cleaning); | |
1245 | assert(!mem->laundry); | |
1246 | #if 0 | |
1247 | /* | |
1248 | * we don't hold the page queue lock | |
1249 | * so this check isn't safe to make | |
1250 | */ | |
1251 | VM_PAGE_CHECK(mem); | |
1252 | #endif | |
1253 | if (remove_from_hash == TRUE) { | |
1254 | /* | |
1255 | * Remove from the object_object/offset hash table | |
1256 | */ | |
1257 | hash_id = vm_page_hash(mem->object, mem->offset); | |
1258 | bucket = &vm_page_buckets[hash_id]; | |
1259 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1260 | ||
1261 | lck_spin_lock(bucket_lock); | |
1262 | ||
1263 | if ((this = bucket->pages) == mem) { | |
1264 | /* optimize for common case */ | |
1265 | ||
1266 | bucket->pages = mem->next; | |
1267 | } else { | |
1268 | vm_page_t *prev; | |
1269 | ||
1270 | for (prev = &this->next; | |
1271 | (this = *prev) != mem; | |
1272 | prev = &this->next) | |
1273 | continue; | |
1274 | *prev = this->next; | |
1275 | } | |
1276 | #if MACH_PAGE_HASH_STATS | |
1277 | bucket->cur_count--; | |
1278 | #endif /* MACH_PAGE_HASH_STATS */ | |
1279 | ||
1280 | lck_spin_unlock(bucket_lock); | |
1281 | } | |
1282 | /* | |
1283 | * Now remove from the object's list of backed pages. | |
1284 | */ | |
1285 | ||
1286 | VM_PAGE_REMOVE(mem); | |
1287 | ||
1288 | /* | |
1289 | * And show that the object has one fewer resident | |
1290 | * page. | |
1291 | */ | |
1292 | ||
1293 | assert(mem->object->resident_page_count > 0); | |
1294 | mem->object->resident_page_count--; | |
1295 | ||
1296 | if (!mem->object->internal && (mem->object->objq.next || mem->object->objq.prev)) { | |
1297 | if (mem->object->resident_page_count == 0) | |
1298 | vm_object_cache_remove(mem->object); | |
1299 | } | |
1300 | ||
1301 | if (VM_PAGE_WIRED(mem)) { | |
1302 | assert(mem->object->wired_page_count > 0); | |
1303 | mem->object->wired_page_count--; | |
1304 | } | |
1305 | assert(mem->object->resident_page_count >= | |
1306 | mem->object->wired_page_count); | |
1307 | if (mem->reusable) { | |
1308 | assert(mem->object->reusable_page_count > 0); | |
1309 | mem->object->reusable_page_count--; | |
1310 | assert(mem->object->reusable_page_count <= | |
1311 | mem->object->resident_page_count); | |
1312 | mem->reusable = FALSE; | |
1313 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1314 | vm_page_stats_reusable.reused_remove++; | |
1315 | } else if (mem->object->all_reusable) { | |
1316 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1317 | vm_page_stats_reusable.reused_remove++; | |
1318 | } | |
1319 | ||
1320 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
1321 | if (VM_PAGE_WIRED(mem)) { | |
1322 | assert(vm_page_purgeable_wired_count > 0); | |
1323 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
1324 | } else { | |
1325 | assert(vm_page_purgeable_count > 0); | |
1326 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
1327 | } | |
1328 | } | |
1329 | if (mem->object->set_cache_attr == TRUE) | |
1330 | pmap_set_cache_attributes(mem->phys_page, 0); | |
1331 | ||
1332 | mem->tabled = FALSE; | |
1333 | mem->object = VM_OBJECT_NULL; | |
1334 | mem->offset = (vm_object_offset_t) -1; | |
1335 | } | |
1336 | ||
1337 | ||
1338 | /* | |
1339 | * vm_page_lookup: | |
1340 | * | |
1341 | * Returns the page associated with the object/offset | |
1342 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
1343 | * | |
1344 | * The object must be locked. No side effects. | |
1345 | */ | |
1346 | ||
1347 | unsigned long vm_page_lookup_hint = 0; | |
1348 | unsigned long vm_page_lookup_hint_next = 0; | |
1349 | unsigned long vm_page_lookup_hint_prev = 0; | |
1350 | unsigned long vm_page_lookup_hint_miss = 0; | |
1351 | unsigned long vm_page_lookup_bucket_NULL = 0; | |
1352 | unsigned long vm_page_lookup_miss = 0; | |
1353 | ||
1354 | ||
1355 | vm_page_t | |
1356 | vm_page_lookup( | |
1357 | vm_object_t object, | |
1358 | vm_object_offset_t offset) | |
1359 | { | |
1360 | vm_page_t mem; | |
1361 | vm_page_bucket_t *bucket; | |
1362 | queue_entry_t qe; | |
1363 | lck_spin_t *bucket_lock; | |
1364 | int hash_id; | |
1365 | ||
1366 | vm_object_lock_assert_held(object); | |
1367 | mem = object->memq_hint; | |
1368 | ||
1369 | if (mem != VM_PAGE_NULL) { | |
1370 | assert(mem->object == object); | |
1371 | ||
1372 | if (mem->offset == offset) { | |
1373 | vm_page_lookup_hint++; | |
1374 | return mem; | |
1375 | } | |
1376 | qe = queue_next(&mem->listq); | |
1377 | ||
1378 | if (! queue_end(&object->memq, qe)) { | |
1379 | vm_page_t next_page; | |
1380 | ||
1381 | next_page = (vm_page_t) qe; | |
1382 | assert(next_page->object == object); | |
1383 | ||
1384 | if (next_page->offset == offset) { | |
1385 | vm_page_lookup_hint_next++; | |
1386 | object->memq_hint = next_page; /* new hint */ | |
1387 | return next_page; | |
1388 | } | |
1389 | } | |
1390 | qe = queue_prev(&mem->listq); | |
1391 | ||
1392 | if (! queue_end(&object->memq, qe)) { | |
1393 | vm_page_t prev_page; | |
1394 | ||
1395 | prev_page = (vm_page_t) qe; | |
1396 | assert(prev_page->object == object); | |
1397 | ||
1398 | if (prev_page->offset == offset) { | |
1399 | vm_page_lookup_hint_prev++; | |
1400 | object->memq_hint = prev_page; /* new hint */ | |
1401 | return prev_page; | |
1402 | } | |
1403 | } | |
1404 | } | |
1405 | /* | |
1406 | * Search the hash table for this object/offset pair | |
1407 | */ | |
1408 | hash_id = vm_page_hash(object, offset); | |
1409 | bucket = &vm_page_buckets[hash_id]; | |
1410 | ||
1411 | /* | |
1412 | * since we hold the object lock, we are guaranteed that no | |
1413 | * new pages can be inserted into this object... this in turn | |
1414 | * guarantess that the page we're looking for can't exist | |
1415 | * if the bucket it hashes to is currently NULL even when looked | |
1416 | * at outside the scope of the hash bucket lock... this is a | |
1417 | * really cheap optimiztion to avoid taking the lock | |
1418 | */ | |
1419 | if (bucket->pages == VM_PAGE_NULL) { | |
1420 | vm_page_lookup_bucket_NULL++; | |
1421 | ||
1422 | return (VM_PAGE_NULL); | |
1423 | } | |
1424 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1425 | ||
1426 | lck_spin_lock(bucket_lock); | |
1427 | ||
1428 | for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { | |
1429 | #if 0 | |
1430 | /* | |
1431 | * we don't hold the page queue lock | |
1432 | * so this check isn't safe to make | |
1433 | */ | |
1434 | VM_PAGE_CHECK(mem); | |
1435 | #endif | |
1436 | if ((mem->object == object) && (mem->offset == offset)) | |
1437 | break; | |
1438 | } | |
1439 | lck_spin_unlock(bucket_lock); | |
1440 | ||
1441 | if (mem != VM_PAGE_NULL) { | |
1442 | if (object->memq_hint != VM_PAGE_NULL) { | |
1443 | vm_page_lookup_hint_miss++; | |
1444 | } | |
1445 | assert(mem->object == object); | |
1446 | object->memq_hint = mem; | |
1447 | } else | |
1448 | vm_page_lookup_miss++; | |
1449 | ||
1450 | return(mem); | |
1451 | } | |
1452 | ||
1453 | ||
1454 | /* | |
1455 | * vm_page_rename: | |
1456 | * | |
1457 | * Move the given memory entry from its | |
1458 | * current object to the specified target object/offset. | |
1459 | * | |
1460 | * The object must be locked. | |
1461 | */ | |
1462 | void | |
1463 | vm_page_rename( | |
1464 | register vm_page_t mem, | |
1465 | register vm_object_t new_object, | |
1466 | vm_object_offset_t new_offset, | |
1467 | boolean_t encrypted_ok) | |
1468 | { | |
1469 | assert(mem->object != new_object); | |
1470 | ||
1471 | /* | |
1472 | * ENCRYPTED SWAP: | |
1473 | * The encryption key is based on the page's memory object | |
1474 | * (aka "pager") and paging offset. Moving the page to | |
1475 | * another VM object changes its "pager" and "paging_offset" | |
1476 | * so it has to be decrypted first, or we would lose the key. | |
1477 | * | |
1478 | * One exception is VM object collapsing, where we transfer pages | |
1479 | * from one backing object to its parent object. This operation also | |
1480 | * transfers the paging information, so the <pager,paging_offset> info | |
1481 | * should remain consistent. The caller (vm_object_do_collapse()) | |
1482 | * sets "encrypted_ok" in this case. | |
1483 | */ | |
1484 | if (!encrypted_ok && mem->encrypted) { | |
1485 | panic("vm_page_rename: page %p is encrypted\n", mem); | |
1486 | } | |
1487 | ||
1488 | XPR(XPR_VM_PAGE, | |
1489 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
1490 | new_object, new_offset, | |
1491 | mem, 0,0); | |
1492 | ||
1493 | /* | |
1494 | * Changes to mem->object require the page lock because | |
1495 | * the pageout daemon uses that lock to get the object. | |
1496 | */ | |
1497 | vm_page_lockspin_queues(); | |
1498 | ||
1499 | vm_page_remove(mem, TRUE); | |
1500 | vm_page_insert_internal(mem, new_object, new_offset, TRUE, TRUE, FALSE); | |
1501 | ||
1502 | vm_page_unlock_queues(); | |
1503 | } | |
1504 | ||
1505 | /* | |
1506 | * vm_page_init: | |
1507 | * | |
1508 | * Initialize the fields in a new page. | |
1509 | * This takes a structure with random values and initializes it | |
1510 | * so that it can be given to vm_page_release or vm_page_insert. | |
1511 | */ | |
1512 | void | |
1513 | vm_page_init( | |
1514 | vm_page_t mem, | |
1515 | ppnum_t phys_page, | |
1516 | boolean_t lopage) | |
1517 | { | |
1518 | assert(phys_page); | |
1519 | ||
1520 | #if DEBUG | |
1521 | if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) { | |
1522 | if (!(pmap_valid_page(phys_page))) { | |
1523 | panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page); | |
1524 | } | |
1525 | } | |
1526 | #endif | |
1527 | *mem = vm_page_template; | |
1528 | mem->phys_page = phys_page; | |
1529 | #if 0 | |
1530 | /* | |
1531 | * we're leaving this turned off for now... currently pages | |
1532 | * come off the free list and are either immediately dirtied/referenced | |
1533 | * due to zero-fill or COW faults, or are used to read or write files... | |
1534 | * in the file I/O case, the UPL mechanism takes care of clearing | |
1535 | * the state of the HW ref/mod bits in a somewhat fragile way. | |
1536 | * Since we may change the way this works in the future (to toughen it up), | |
1537 | * I'm leaving this as a reminder of where these bits could get cleared | |
1538 | */ | |
1539 | ||
1540 | /* | |
1541 | * make sure both the h/w referenced and modified bits are | |
1542 | * clear at this point... we are especially dependent on | |
1543 | * not finding a 'stale' h/w modified in a number of spots | |
1544 | * once this page goes back into use | |
1545 | */ | |
1546 | pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
1547 | #endif | |
1548 | mem->lopage = lopage; | |
1549 | } | |
1550 | ||
1551 | /* | |
1552 | * vm_page_grab_fictitious: | |
1553 | * | |
1554 | * Remove a fictitious page from the free list. | |
1555 | * Returns VM_PAGE_NULL if there are no free pages. | |
1556 | */ | |
1557 | int c_vm_page_grab_fictitious = 0; | |
1558 | int c_vm_page_grab_fictitious_failed = 0; | |
1559 | int c_vm_page_release_fictitious = 0; | |
1560 | int c_vm_page_more_fictitious = 0; | |
1561 | ||
1562 | vm_page_t | |
1563 | vm_page_grab_fictitious_common( | |
1564 | ppnum_t phys_addr) | |
1565 | { | |
1566 | vm_page_t m; | |
1567 | ||
1568 | if ((m = (vm_page_t)zget(vm_page_zone))) { | |
1569 | ||
1570 | vm_page_init(m, phys_addr, FALSE); | |
1571 | m->fictitious = TRUE; | |
1572 | ||
1573 | c_vm_page_grab_fictitious++; | |
1574 | } else | |
1575 | c_vm_page_grab_fictitious_failed++; | |
1576 | ||
1577 | return m; | |
1578 | } | |
1579 | ||
1580 | vm_page_t | |
1581 | vm_page_grab_fictitious(void) | |
1582 | { | |
1583 | return vm_page_grab_fictitious_common(vm_page_fictitious_addr); | |
1584 | } | |
1585 | ||
1586 | vm_page_t | |
1587 | vm_page_grab_guard(void) | |
1588 | { | |
1589 | return vm_page_grab_fictitious_common(vm_page_guard_addr); | |
1590 | } | |
1591 | ||
1592 | ||
1593 | /* | |
1594 | * vm_page_release_fictitious: | |
1595 | * | |
1596 | * Release a fictitious page to the zone pool | |
1597 | */ | |
1598 | void | |
1599 | vm_page_release_fictitious( | |
1600 | vm_page_t m) | |
1601 | { | |
1602 | assert(!m->free); | |
1603 | assert(m->fictitious); | |
1604 | assert(m->phys_page == vm_page_fictitious_addr || | |
1605 | m->phys_page == vm_page_guard_addr); | |
1606 | ||
1607 | c_vm_page_release_fictitious++; | |
1608 | ||
1609 | zfree(vm_page_zone, m); | |
1610 | } | |
1611 | ||
1612 | /* | |
1613 | * vm_page_more_fictitious: | |
1614 | * | |
1615 | * Add more fictitious pages to the zone. | |
1616 | * Allowed to block. This routine is way intimate | |
1617 | * with the zones code, for several reasons: | |
1618 | * 1. we need to carve some page structures out of physical | |
1619 | * memory before zones work, so they _cannot_ come from | |
1620 | * the zone_map. | |
1621 | * 2. the zone needs to be collectable in order to prevent | |
1622 | * growth without bound. These structures are used by | |
1623 | * the device pager (by the hundreds and thousands), as | |
1624 | * private pages for pageout, and as blocking pages for | |
1625 | * pagein. Temporary bursts in demand should not result in | |
1626 | * permanent allocation of a resource. | |
1627 | * 3. To smooth allocation humps, we allocate single pages | |
1628 | * with kernel_memory_allocate(), and cram them into the | |
1629 | * zone. | |
1630 | */ | |
1631 | ||
1632 | void vm_page_more_fictitious(void) | |
1633 | { | |
1634 | vm_offset_t addr; | |
1635 | kern_return_t retval; | |
1636 | ||
1637 | c_vm_page_more_fictitious++; | |
1638 | ||
1639 | /* | |
1640 | * Allocate a single page from the zone_map. Do not wait if no physical | |
1641 | * pages are immediately available, and do not zero the space. We need | |
1642 | * our own blocking lock here to prevent having multiple, | |
1643 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
1644 | * one (of our) threads should be potentially waiting on the map lock. | |
1645 | * If winner is not vm-privileged, then the page allocation will fail, | |
1646 | * and it will temporarily block here in the vm_page_wait(). | |
1647 | */ | |
1648 | lck_mtx_lock(&vm_page_alloc_lock); | |
1649 | /* | |
1650 | * If another thread allocated space, just bail out now. | |
1651 | */ | |
1652 | if (zone_free_count(vm_page_zone) > 5) { | |
1653 | /* | |
1654 | * The number "5" is a small number that is larger than the | |
1655 | * number of fictitious pages that any single caller will | |
1656 | * attempt to allocate. Otherwise, a thread will attempt to | |
1657 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
1658 | * release all of the resources and locks already acquired, | |
1659 | * and then call this routine. This routine finds the pages | |
1660 | * that the caller released, so fails to allocate new space. | |
1661 | * The process repeats infinitely. The largest known number | |
1662 | * of fictitious pages required in this manner is 2. 5 is | |
1663 | * simply a somewhat larger number. | |
1664 | */ | |
1665 | lck_mtx_unlock(&vm_page_alloc_lock); | |
1666 | return; | |
1667 | } | |
1668 | ||
1669 | retval = kernel_memory_allocate(zone_map, | |
1670 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
1671 | KMA_KOBJECT|KMA_NOPAGEWAIT); | |
1672 | if (retval != KERN_SUCCESS) { | |
1673 | /* | |
1674 | * No page was available. Drop the | |
1675 | * lock to give another thread a chance at it, and | |
1676 | * wait for the pageout daemon to make progress. | |
1677 | */ | |
1678 | lck_mtx_unlock(&vm_page_alloc_lock); | |
1679 | vm_page_wait(THREAD_UNINT); | |
1680 | return; | |
1681 | } | |
1682 | zcram(vm_page_zone, addr, PAGE_SIZE); | |
1683 | ||
1684 | lck_mtx_unlock(&vm_page_alloc_lock); | |
1685 | } | |
1686 | ||
1687 | ||
1688 | /* | |
1689 | * vm_pool_low(): | |
1690 | * | |
1691 | * Return true if it is not likely that a non-vm_privileged thread | |
1692 | * can get memory without blocking. Advisory only, since the | |
1693 | * situation may change under us. | |
1694 | */ | |
1695 | int | |
1696 | vm_pool_low(void) | |
1697 | { | |
1698 | /* No locking, at worst we will fib. */ | |
1699 | return( vm_page_free_count <= vm_page_free_reserved ); | |
1700 | } | |
1701 | ||
1702 | ||
1703 | ||
1704 | /* | |
1705 | * this is an interface to support bring-up of drivers | |
1706 | * on platforms with physical memory > 4G... | |
1707 | */ | |
1708 | int vm_himemory_mode = 0; | |
1709 | ||
1710 | ||
1711 | /* | |
1712 | * this interface exists to support hardware controllers | |
1713 | * incapable of generating DMAs with more than 32 bits | |
1714 | * of address on platforms with physical memory > 4G... | |
1715 | */ | |
1716 | unsigned int vm_lopages_allocated_q = 0; | |
1717 | unsigned int vm_lopages_allocated_cpm_success = 0; | |
1718 | unsigned int vm_lopages_allocated_cpm_failed = 0; | |
1719 | queue_head_t vm_lopage_queue_free; | |
1720 | ||
1721 | vm_page_t | |
1722 | vm_page_grablo(void) | |
1723 | { | |
1724 | vm_page_t mem; | |
1725 | ||
1726 | if (vm_lopage_needed == FALSE) | |
1727 | return (vm_page_grab()); | |
1728 | ||
1729 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
1730 | ||
1731 | if ( !queue_empty(&vm_lopage_queue_free)) { | |
1732 | queue_remove_first(&vm_lopage_queue_free, | |
1733 | mem, | |
1734 | vm_page_t, | |
1735 | pageq); | |
1736 | assert(vm_lopage_free_count); | |
1737 | ||
1738 | vm_lopage_free_count--; | |
1739 | vm_lopages_allocated_q++; | |
1740 | ||
1741 | if (vm_lopage_free_count < vm_lopage_lowater) | |
1742 | vm_lopage_refill = TRUE; | |
1743 | ||
1744 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1745 | } else { | |
1746 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1747 | ||
1748 | if (cpm_allocate(PAGE_SIZE, &mem, atop(0xffffffff), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) { | |
1749 | ||
1750 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
1751 | vm_lopages_allocated_cpm_failed++; | |
1752 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1753 | ||
1754 | return (VM_PAGE_NULL); | |
1755 | } | |
1756 | mem->busy = TRUE; | |
1757 | ||
1758 | vm_page_lockspin_queues(); | |
1759 | ||
1760 | mem->gobbled = FALSE; | |
1761 | vm_page_gobble_count--; | |
1762 | vm_page_wire_count--; | |
1763 | ||
1764 | vm_lopages_allocated_cpm_success++; | |
1765 | vm_page_unlock_queues(); | |
1766 | } | |
1767 | assert(mem->busy); | |
1768 | assert(!mem->free); | |
1769 | assert(!mem->pmapped); | |
1770 | assert(!mem->wpmapped); | |
1771 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
1772 | ||
1773 | mem->pageq.next = NULL; | |
1774 | mem->pageq.prev = NULL; | |
1775 | ||
1776 | return (mem); | |
1777 | } | |
1778 | ||
1779 | ||
1780 | /* | |
1781 | * vm_page_grab: | |
1782 | * | |
1783 | * first try to grab a page from the per-cpu free list... | |
1784 | * this must be done while pre-emption is disabled... if | |
1785 | * a page is available, we're done... | |
1786 | * if no page is available, grab the vm_page_queue_free_lock | |
1787 | * and see if current number of free pages would allow us | |
1788 | * to grab at least 1... if not, return VM_PAGE_NULL as before... | |
1789 | * if there are pages available, disable preemption and | |
1790 | * recheck the state of the per-cpu free list... we could | |
1791 | * have been preempted and moved to a different cpu, or | |
1792 | * some other thread could have re-filled it... if still | |
1793 | * empty, figure out how many pages we can steal from the | |
1794 | * global free queue and move to the per-cpu queue... | |
1795 | * return 1 of these pages when done... only wakeup the | |
1796 | * pageout_scan thread if we moved pages from the global | |
1797 | * list... no need for the wakeup if we've satisfied the | |
1798 | * request from the per-cpu queue. | |
1799 | */ | |
1800 | ||
1801 | #define COLOR_GROUPS_TO_STEAL 4 | |
1802 | ||
1803 | ||
1804 | vm_page_t | |
1805 | vm_page_grab( void ) | |
1806 | { | |
1807 | vm_page_t mem; | |
1808 | ||
1809 | ||
1810 | disable_preemption(); | |
1811 | ||
1812 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
1813 | return_page_from_cpu_list: | |
1814 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1815 | PROCESSOR_DATA(current_processor(), free_pages) = mem->pageq.next; | |
1816 | mem->pageq.next = NULL; | |
1817 | ||
1818 | enable_preemption(); | |
1819 | ||
1820 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1821 | assert(mem->tabled == FALSE); | |
1822 | assert(mem->object == VM_OBJECT_NULL); | |
1823 | assert(!mem->laundry); | |
1824 | assert(!mem->free); | |
1825 | assert(pmap_verify_free(mem->phys_page)); | |
1826 | assert(mem->busy); | |
1827 | assert(!mem->encrypted); | |
1828 | assert(!mem->pmapped); | |
1829 | assert(!mem->wpmapped); | |
1830 | assert(!mem->active); | |
1831 | assert(!mem->inactive); | |
1832 | assert(!mem->throttled); | |
1833 | assert(!mem->speculative); | |
1834 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
1835 | ||
1836 | return mem; | |
1837 | } | |
1838 | enable_preemption(); | |
1839 | ||
1840 | ||
1841 | /* | |
1842 | * Optionally produce warnings if the wire or gobble | |
1843 | * counts exceed some threshold. | |
1844 | */ | |
1845 | if (vm_page_wire_count_warning > 0 | |
1846 | && vm_page_wire_count >= vm_page_wire_count_warning) { | |
1847 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
1848 | vm_page_wire_count); | |
1849 | assert(vm_page_wire_count < vm_page_wire_count_warning); | |
1850 | } | |
1851 | if (vm_page_gobble_count_warning > 0 | |
1852 | && vm_page_gobble_count >= vm_page_gobble_count_warning) { | |
1853 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
1854 | vm_page_gobble_count); | |
1855 | assert(vm_page_gobble_count < vm_page_gobble_count_warning); | |
1856 | } | |
1857 | ||
1858 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
1859 | ||
1860 | /* | |
1861 | * Only let privileged threads (involved in pageout) | |
1862 | * dip into the reserved pool. | |
1863 | */ | |
1864 | if ((vm_page_free_count < vm_page_free_reserved) && | |
1865 | !(current_thread()->options & TH_OPT_VMPRIV)) { | |
1866 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1867 | mem = VM_PAGE_NULL; | |
1868 | } | |
1869 | else { | |
1870 | vm_page_t head; | |
1871 | vm_page_t tail; | |
1872 | unsigned int pages_to_steal; | |
1873 | unsigned int color; | |
1874 | ||
1875 | while ( vm_page_free_count == 0 ) { | |
1876 | ||
1877 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1878 | /* | |
1879 | * must be a privileged thread to be | |
1880 | * in this state since a non-privileged | |
1881 | * thread would have bailed if we were | |
1882 | * under the vm_page_free_reserved mark | |
1883 | */ | |
1884 | VM_PAGE_WAIT(); | |
1885 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
1886 | } | |
1887 | ||
1888 | disable_preemption(); | |
1889 | ||
1890 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
1891 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1892 | ||
1893 | /* | |
1894 | * we got preempted and moved to another processor | |
1895 | * or we got preempted and someone else ran and filled the cache | |
1896 | */ | |
1897 | goto return_page_from_cpu_list; | |
1898 | } | |
1899 | if (vm_page_free_count <= vm_page_free_reserved) | |
1900 | pages_to_steal = 1; | |
1901 | else { | |
1902 | pages_to_steal = COLOR_GROUPS_TO_STEAL * vm_colors; | |
1903 | ||
1904 | if (pages_to_steal > (vm_page_free_count - vm_page_free_reserved)) | |
1905 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); | |
1906 | } | |
1907 | color = PROCESSOR_DATA(current_processor(), start_color); | |
1908 | head = tail = NULL; | |
1909 | ||
1910 | while (pages_to_steal--) { | |
1911 | if (--vm_page_free_count < vm_page_free_count_minimum) | |
1912 | vm_page_free_count_minimum = vm_page_free_count; | |
1913 | ||
1914 | while (queue_empty(&vm_page_queue_free[color])) | |
1915 | color = (color + 1) & vm_color_mask; | |
1916 | ||
1917 | queue_remove_first(&vm_page_queue_free[color], | |
1918 | mem, | |
1919 | vm_page_t, | |
1920 | pageq); | |
1921 | mem->pageq.next = NULL; | |
1922 | mem->pageq.prev = NULL; | |
1923 | ||
1924 | assert(!mem->active); | |
1925 | assert(!mem->inactive); | |
1926 | assert(!mem->throttled); | |
1927 | assert(!mem->speculative); | |
1928 | ||
1929 | color = (color + 1) & vm_color_mask; | |
1930 | ||
1931 | if (head == NULL) | |
1932 | head = mem; | |
1933 | else | |
1934 | tail->pageq.next = (queue_t)mem; | |
1935 | tail = mem; | |
1936 | ||
1937 | mem->pageq.prev = NULL; | |
1938 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1939 | assert(mem->tabled == FALSE); | |
1940 | assert(mem->object == VM_OBJECT_NULL); | |
1941 | assert(!mem->laundry); | |
1942 | assert(mem->free); | |
1943 | mem->free = FALSE; | |
1944 | ||
1945 | assert(pmap_verify_free(mem->phys_page)); | |
1946 | assert(mem->busy); | |
1947 | assert(!mem->free); | |
1948 | assert(!mem->encrypted); | |
1949 | assert(!mem->pmapped); | |
1950 | assert(!mem->wpmapped); | |
1951 | assert(!pmap_is_noencrypt(mem->phys_page)); | |
1952 | } | |
1953 | PROCESSOR_DATA(current_processor(), free_pages) = head->pageq.next; | |
1954 | PROCESSOR_DATA(current_processor(), start_color) = color; | |
1955 | ||
1956 | /* | |
1957 | * satisfy this request | |
1958 | */ | |
1959 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1960 | mem = head; | |
1961 | mem->pageq.next = NULL; | |
1962 | ||
1963 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1964 | ||
1965 | enable_preemption(); | |
1966 | } | |
1967 | /* | |
1968 | * Decide if we should poke the pageout daemon. | |
1969 | * We do this if the free count is less than the low | |
1970 | * water mark, or if the free count is less than the high | |
1971 | * water mark (but above the low water mark) and the inactive | |
1972 | * count is less than its target. | |
1973 | * | |
1974 | * We don't have the counts locked ... if they change a little, | |
1975 | * it doesn't really matter. | |
1976 | */ | |
1977 | if ((vm_page_free_count < vm_page_free_min) || | |
1978 | ((vm_page_free_count < vm_page_free_target) && | |
1979 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
1980 | thread_wakeup((event_t) &vm_page_free_wanted); | |
1981 | ||
1982 | VM_CHECK_MEMORYSTATUS; | |
1983 | ||
1984 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ | |
1985 | ||
1986 | return mem; | |
1987 | } | |
1988 | ||
1989 | /* | |
1990 | * vm_page_release: | |
1991 | * | |
1992 | * Return a page to the free list. | |
1993 | */ | |
1994 | ||
1995 | void | |
1996 | vm_page_release( | |
1997 | register vm_page_t mem) | |
1998 | { | |
1999 | unsigned int color; | |
2000 | int need_wakeup = 0; | |
2001 | int need_priv_wakeup = 0; | |
2002 | ||
2003 | ||
2004 | assert(!mem->private && !mem->fictitious); | |
2005 | if (vm_page_free_verify) { | |
2006 | assert(pmap_verify_free(mem->phys_page)); | |
2007 | } | |
2008 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ | |
2009 | ||
2010 | pmap_clear_noencrypt(mem->phys_page); | |
2011 | ||
2012 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2013 | #if DEBUG | |
2014 | if (mem->free) | |
2015 | panic("vm_page_release"); | |
2016 | #endif | |
2017 | ||
2018 | assert(mem->busy); | |
2019 | assert(!mem->laundry); | |
2020 | assert(mem->object == VM_OBJECT_NULL); | |
2021 | assert(mem->pageq.next == NULL && | |
2022 | mem->pageq.prev == NULL); | |
2023 | assert(mem->listq.next == NULL && | |
2024 | mem->listq.prev == NULL); | |
2025 | ||
2026 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
2027 | vm_lopage_free_count < vm_lopage_free_limit && | |
2028 | mem->phys_page < max_valid_low_ppnum) { | |
2029 | /* | |
2030 | * this exists to support hardware controllers | |
2031 | * incapable of generating DMAs with more than 32 bits | |
2032 | * of address on platforms with physical memory > 4G... | |
2033 | */ | |
2034 | queue_enter_first(&vm_lopage_queue_free, | |
2035 | mem, | |
2036 | vm_page_t, | |
2037 | pageq); | |
2038 | vm_lopage_free_count++; | |
2039 | ||
2040 | if (vm_lopage_free_count >= vm_lopage_free_limit) | |
2041 | vm_lopage_refill = FALSE; | |
2042 | ||
2043 | mem->lopage = TRUE; | |
2044 | } else { | |
2045 | mem->lopage = FALSE; | |
2046 | mem->free = TRUE; | |
2047 | ||
2048 | color = mem->phys_page & vm_color_mask; | |
2049 | queue_enter_first(&vm_page_queue_free[color], | |
2050 | mem, | |
2051 | vm_page_t, | |
2052 | pageq); | |
2053 | vm_page_free_count++; | |
2054 | /* | |
2055 | * Check if we should wake up someone waiting for page. | |
2056 | * But don't bother waking them unless they can allocate. | |
2057 | * | |
2058 | * We wakeup only one thread, to prevent starvation. | |
2059 | * Because the scheduling system handles wait queues FIFO, | |
2060 | * if we wakeup all waiting threads, one greedy thread | |
2061 | * can starve multiple niceguy threads. When the threads | |
2062 | * all wakeup, the greedy threads runs first, grabs the page, | |
2063 | * and waits for another page. It will be the first to run | |
2064 | * when the next page is freed. | |
2065 | * | |
2066 | * However, there is a slight danger here. | |
2067 | * The thread we wake might not use the free page. | |
2068 | * Then the other threads could wait indefinitely | |
2069 | * while the page goes unused. To forestall this, | |
2070 | * the pageout daemon will keep making free pages | |
2071 | * as long as vm_page_free_wanted is non-zero. | |
2072 | */ | |
2073 | ||
2074 | assert(vm_page_free_count > 0); | |
2075 | if (vm_page_free_wanted_privileged > 0) { | |
2076 | vm_page_free_wanted_privileged--; | |
2077 | need_priv_wakeup = 1; | |
2078 | } else if (vm_page_free_wanted > 0 && | |
2079 | vm_page_free_count > vm_page_free_reserved) { | |
2080 | vm_page_free_wanted--; | |
2081 | need_wakeup = 1; | |
2082 | } | |
2083 | } | |
2084 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2085 | ||
2086 | if (need_priv_wakeup) | |
2087 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
2088 | else if (need_wakeup) | |
2089 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2090 | ||
2091 | VM_CHECK_MEMORYSTATUS; | |
2092 | } | |
2093 | ||
2094 | /* | |
2095 | * vm_page_wait: | |
2096 | * | |
2097 | * Wait for a page to become available. | |
2098 | * If there are plenty of free pages, then we don't sleep. | |
2099 | * | |
2100 | * Returns: | |
2101 | * TRUE: There may be another page, try again | |
2102 | * FALSE: We were interrupted out of our wait, don't try again | |
2103 | */ | |
2104 | ||
2105 | boolean_t | |
2106 | vm_page_wait( | |
2107 | int interruptible ) | |
2108 | { | |
2109 | /* | |
2110 | * We can't use vm_page_free_reserved to make this | |
2111 | * determination. Consider: some thread might | |
2112 | * need to allocate two pages. The first allocation | |
2113 | * succeeds, the second fails. After the first page is freed, | |
2114 | * a call to vm_page_wait must really block. | |
2115 | */ | |
2116 | kern_return_t wait_result; | |
2117 | int need_wakeup = 0; | |
2118 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; | |
2119 | ||
2120 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2121 | ||
2122 | if (is_privileged && vm_page_free_count) { | |
2123 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2124 | return TRUE; | |
2125 | } | |
2126 | if (vm_page_free_count < vm_page_free_target) { | |
2127 | ||
2128 | if (is_privileged) { | |
2129 | if (vm_page_free_wanted_privileged++ == 0) | |
2130 | need_wakeup = 1; | |
2131 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); | |
2132 | } else { | |
2133 | if (vm_page_free_wanted++ == 0) | |
2134 | need_wakeup = 1; | |
2135 | wait_result = assert_wait((event_t)&vm_page_free_count, interruptible); | |
2136 | } | |
2137 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2138 | counter(c_vm_page_wait_block++); | |
2139 | ||
2140 | if (need_wakeup) | |
2141 | thread_wakeup((event_t)&vm_page_free_wanted); | |
2142 | ||
2143 | if (wait_result == THREAD_WAITING) | |
2144 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
2145 | ||
2146 | return(wait_result == THREAD_AWAKENED); | |
2147 | } else { | |
2148 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2149 | return TRUE; | |
2150 | } | |
2151 | } | |
2152 | ||
2153 | /* | |
2154 | * vm_page_alloc: | |
2155 | * | |
2156 | * Allocate and return a memory cell associated | |
2157 | * with this VM object/offset pair. | |
2158 | * | |
2159 | * Object must be locked. | |
2160 | */ | |
2161 | ||
2162 | vm_page_t | |
2163 | vm_page_alloc( | |
2164 | vm_object_t object, | |
2165 | vm_object_offset_t offset) | |
2166 | { | |
2167 | register vm_page_t mem; | |
2168 | ||
2169 | vm_object_lock_assert_exclusive(object); | |
2170 | mem = vm_page_grab(); | |
2171 | if (mem == VM_PAGE_NULL) | |
2172 | return VM_PAGE_NULL; | |
2173 | ||
2174 | vm_page_insert(mem, object, offset); | |
2175 | ||
2176 | return(mem); | |
2177 | } | |
2178 | ||
2179 | vm_page_t | |
2180 | vm_page_alloclo( | |
2181 | vm_object_t object, | |
2182 | vm_object_offset_t offset) | |
2183 | { | |
2184 | register vm_page_t mem; | |
2185 | ||
2186 | vm_object_lock_assert_exclusive(object); | |
2187 | mem = vm_page_grablo(); | |
2188 | if (mem == VM_PAGE_NULL) | |
2189 | return VM_PAGE_NULL; | |
2190 | ||
2191 | vm_page_insert(mem, object, offset); | |
2192 | ||
2193 | return(mem); | |
2194 | } | |
2195 | ||
2196 | ||
2197 | /* | |
2198 | * vm_page_alloc_guard: | |
2199 | * | |
2200 | * Allocate a fictitious page which will be used | |
2201 | * as a guard page. The page will be inserted into | |
2202 | * the object and returned to the caller. | |
2203 | */ | |
2204 | ||
2205 | vm_page_t | |
2206 | vm_page_alloc_guard( | |
2207 | vm_object_t object, | |
2208 | vm_object_offset_t offset) | |
2209 | { | |
2210 | register vm_page_t mem; | |
2211 | ||
2212 | vm_object_lock_assert_exclusive(object); | |
2213 | mem = vm_page_grab_guard(); | |
2214 | if (mem == VM_PAGE_NULL) | |
2215 | return VM_PAGE_NULL; | |
2216 | ||
2217 | vm_page_insert(mem, object, offset); | |
2218 | ||
2219 | return(mem); | |
2220 | } | |
2221 | ||
2222 | ||
2223 | counter(unsigned int c_laundry_pages_freed = 0;) | |
2224 | ||
2225 | /* | |
2226 | * vm_page_free_prepare: | |
2227 | * | |
2228 | * Removes page from any queue it may be on | |
2229 | * and disassociates it from its VM object. | |
2230 | * | |
2231 | * Object and page queues must be locked prior to entry. | |
2232 | */ | |
2233 | static void | |
2234 | vm_page_free_prepare( | |
2235 | vm_page_t mem) | |
2236 | { | |
2237 | vm_page_free_prepare_queues(mem); | |
2238 | vm_page_free_prepare_object(mem, TRUE); | |
2239 | } | |
2240 | ||
2241 | ||
2242 | void | |
2243 | vm_page_free_prepare_queues( | |
2244 | vm_page_t mem) | |
2245 | { | |
2246 | VM_PAGE_CHECK(mem); | |
2247 | assert(!mem->free); | |
2248 | assert(!mem->cleaning); | |
2249 | #if DEBUG | |
2250 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2251 | if (mem->free) | |
2252 | panic("vm_page_free: freeing page on free list\n"); | |
2253 | #endif | |
2254 | if (mem->object) { | |
2255 | vm_object_lock_assert_exclusive(mem->object); | |
2256 | } | |
2257 | if (mem->laundry) { | |
2258 | /* | |
2259 | * We may have to free a page while it's being laundered | |
2260 | * if we lost its pager (due to a forced unmount, for example). | |
2261 | * We need to call vm_pageout_steal_laundry() before removing | |
2262 | * the page from its VM object, so that we can remove it | |
2263 | * from its pageout queue and adjust the laundry accounting | |
2264 | */ | |
2265 | vm_pageout_steal_laundry(mem, TRUE); | |
2266 | counter(++c_laundry_pages_freed); | |
2267 | } | |
2268 | ||
2269 | VM_PAGE_QUEUES_REMOVE(mem); /* clears local/active/inactive/throttled/speculative */ | |
2270 | ||
2271 | if (VM_PAGE_WIRED(mem)) { | |
2272 | if (mem->object) { | |
2273 | assert(mem->object->wired_page_count > 0); | |
2274 | mem->object->wired_page_count--; | |
2275 | assert(mem->object->resident_page_count >= | |
2276 | mem->object->wired_page_count); | |
2277 | ||
2278 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2279 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
2280 | assert(vm_page_purgeable_wired_count > 0); | |
2281 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
2282 | } | |
2283 | } | |
2284 | if (!mem->private && !mem->fictitious) | |
2285 | vm_page_wire_count--; | |
2286 | mem->wire_count = 0; | |
2287 | assert(!mem->gobbled); | |
2288 | } else if (mem->gobbled) { | |
2289 | if (!mem->private && !mem->fictitious) | |
2290 | vm_page_wire_count--; | |
2291 | vm_page_gobble_count--; | |
2292 | } | |
2293 | } | |
2294 | ||
2295 | ||
2296 | void | |
2297 | vm_page_free_prepare_object( | |
2298 | vm_page_t mem, | |
2299 | boolean_t remove_from_hash) | |
2300 | { | |
2301 | if (mem->tabled) | |
2302 | vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ | |
2303 | ||
2304 | PAGE_WAKEUP(mem); /* clears wanted */ | |
2305 | ||
2306 | if (mem->private) { | |
2307 | mem->private = FALSE; | |
2308 | mem->fictitious = TRUE; | |
2309 | mem->phys_page = vm_page_fictitious_addr; | |
2310 | } | |
2311 | if ( !mem->fictitious) { | |
2312 | vm_page_init(mem, mem->phys_page, mem->lopage); | |
2313 | } | |
2314 | } | |
2315 | ||
2316 | ||
2317 | /* | |
2318 | * vm_page_free: | |
2319 | * | |
2320 | * Returns the given page to the free list, | |
2321 | * disassociating it with any VM object. | |
2322 | * | |
2323 | * Object and page queues must be locked prior to entry. | |
2324 | */ | |
2325 | void | |
2326 | vm_page_free( | |
2327 | vm_page_t mem) | |
2328 | { | |
2329 | vm_page_free_prepare(mem); | |
2330 | ||
2331 | if (mem->fictitious) { | |
2332 | vm_page_release_fictitious(mem); | |
2333 | } else { | |
2334 | vm_page_release(mem); | |
2335 | } | |
2336 | } | |
2337 | ||
2338 | ||
2339 | void | |
2340 | vm_page_free_unlocked( | |
2341 | vm_page_t mem, | |
2342 | boolean_t remove_from_hash) | |
2343 | { | |
2344 | vm_page_lockspin_queues(); | |
2345 | vm_page_free_prepare_queues(mem); | |
2346 | vm_page_unlock_queues(); | |
2347 | ||
2348 | vm_page_free_prepare_object(mem, remove_from_hash); | |
2349 | ||
2350 | if (mem->fictitious) { | |
2351 | vm_page_release_fictitious(mem); | |
2352 | } else { | |
2353 | vm_page_release(mem); | |
2354 | } | |
2355 | } | |
2356 | ||
2357 | ||
2358 | /* | |
2359 | * Free a list of pages. The list can be up to several hundred pages, | |
2360 | * as blocked up by vm_pageout_scan(). | |
2361 | * The big win is not having to take the free list lock once | |
2362 | * per page. | |
2363 | */ | |
2364 | void | |
2365 | vm_page_free_list( | |
2366 | vm_page_t freeq, | |
2367 | boolean_t prepare_object) | |
2368 | { | |
2369 | vm_page_t mem; | |
2370 | vm_page_t nxt; | |
2371 | vm_page_t local_freeq; | |
2372 | int pg_count; | |
2373 | ||
2374 | while (freeq) { | |
2375 | ||
2376 | pg_count = 0; | |
2377 | local_freeq = VM_PAGE_NULL; | |
2378 | mem = freeq; | |
2379 | ||
2380 | /* | |
2381 | * break up the processing into smaller chunks so | |
2382 | * that we can 'pipeline' the pages onto the | |
2383 | * free list w/o introducing too much | |
2384 | * contention on the global free queue lock | |
2385 | */ | |
2386 | while (mem && pg_count < 64) { | |
2387 | ||
2388 | assert(!mem->inactive); | |
2389 | assert(!mem->active); | |
2390 | assert(!mem->throttled); | |
2391 | assert(!mem->free); | |
2392 | assert(!mem->speculative); | |
2393 | assert(!VM_PAGE_WIRED(mem)); | |
2394 | assert(mem->pageq.prev == NULL); | |
2395 | ||
2396 | nxt = (vm_page_t)(mem->pageq.next); | |
2397 | ||
2398 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { | |
2399 | assert(pmap_verify_free(mem->phys_page)); | |
2400 | } | |
2401 | if (prepare_object == TRUE) | |
2402 | vm_page_free_prepare_object(mem, TRUE); | |
2403 | ||
2404 | if (!mem->fictitious) { | |
2405 | assert(mem->busy); | |
2406 | ||
2407 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
2408 | vm_lopage_free_count < vm_lopage_free_limit && | |
2409 | mem->phys_page < max_valid_low_ppnum) { | |
2410 | mem->pageq.next = NULL; | |
2411 | vm_page_release(mem); | |
2412 | } else { | |
2413 | /* | |
2414 | * IMPORTANT: we can't set the page "free" here | |
2415 | * because that would make the page eligible for | |
2416 | * a physically-contiguous allocation (see | |
2417 | * vm_page_find_contiguous()) right away (we don't | |
2418 | * hold the vm_page_queue_free lock). That would | |
2419 | * cause trouble because the page is not actually | |
2420 | * in the free queue yet... | |
2421 | */ | |
2422 | mem->pageq.next = (queue_entry_t)local_freeq; | |
2423 | local_freeq = mem; | |
2424 | pg_count++; | |
2425 | ||
2426 | pmap_clear_noencrypt(mem->phys_page); | |
2427 | } | |
2428 | } else { | |
2429 | assert(mem->phys_page == vm_page_fictitious_addr || | |
2430 | mem->phys_page == vm_page_guard_addr); | |
2431 | vm_page_release_fictitious(mem); | |
2432 | } | |
2433 | mem = nxt; | |
2434 | } | |
2435 | freeq = mem; | |
2436 | ||
2437 | if ( (mem = local_freeq) ) { | |
2438 | unsigned int avail_free_count; | |
2439 | unsigned int need_wakeup = 0; | |
2440 | unsigned int need_priv_wakeup = 0; | |
2441 | ||
2442 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2443 | ||
2444 | while (mem) { | |
2445 | int color; | |
2446 | ||
2447 | nxt = (vm_page_t)(mem->pageq.next); | |
2448 | ||
2449 | assert(!mem->free); | |
2450 | assert(mem->busy); | |
2451 | mem->free = TRUE; | |
2452 | ||
2453 | color = mem->phys_page & vm_color_mask; | |
2454 | queue_enter_first(&vm_page_queue_free[color], | |
2455 | mem, | |
2456 | vm_page_t, | |
2457 | pageq); | |
2458 | mem = nxt; | |
2459 | } | |
2460 | vm_page_free_count += pg_count; | |
2461 | avail_free_count = vm_page_free_count; | |
2462 | ||
2463 | if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) { | |
2464 | ||
2465 | if (avail_free_count < vm_page_free_wanted_privileged) { | |
2466 | need_priv_wakeup = avail_free_count; | |
2467 | vm_page_free_wanted_privileged -= avail_free_count; | |
2468 | avail_free_count = 0; | |
2469 | } else { | |
2470 | need_priv_wakeup = vm_page_free_wanted_privileged; | |
2471 | vm_page_free_wanted_privileged = 0; | |
2472 | avail_free_count -= vm_page_free_wanted_privileged; | |
2473 | } | |
2474 | } | |
2475 | if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) { | |
2476 | unsigned int available_pages; | |
2477 | ||
2478 | available_pages = avail_free_count - vm_page_free_reserved; | |
2479 | ||
2480 | if (available_pages >= vm_page_free_wanted) { | |
2481 | need_wakeup = vm_page_free_wanted; | |
2482 | vm_page_free_wanted = 0; | |
2483 | } else { | |
2484 | need_wakeup = available_pages; | |
2485 | vm_page_free_wanted -= available_pages; | |
2486 | } | |
2487 | } | |
2488 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2489 | ||
2490 | if (need_priv_wakeup != 0) { | |
2491 | /* | |
2492 | * There shouldn't be that many VM-privileged threads, | |
2493 | * so let's wake them all up, even if we don't quite | |
2494 | * have enough pages to satisfy them all. | |
2495 | */ | |
2496 | thread_wakeup((event_t)&vm_page_free_wanted_privileged); | |
2497 | } | |
2498 | if (need_wakeup != 0 && vm_page_free_wanted == 0) { | |
2499 | /* | |
2500 | * We don't expect to have any more waiters | |
2501 | * after this, so let's wake them all up at | |
2502 | * once. | |
2503 | */ | |
2504 | thread_wakeup((event_t) &vm_page_free_count); | |
2505 | } else for (; need_wakeup != 0; need_wakeup--) { | |
2506 | /* | |
2507 | * Wake up one waiter per page we just released. | |
2508 | */ | |
2509 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2510 | } | |
2511 | ||
2512 | VM_CHECK_MEMORYSTATUS; | |
2513 | } | |
2514 | } | |
2515 | } | |
2516 | ||
2517 | ||
2518 | /* | |
2519 | * vm_page_wire: | |
2520 | * | |
2521 | * Mark this page as wired down by yet | |
2522 | * another map, removing it from paging queues | |
2523 | * as necessary. | |
2524 | * | |
2525 | * The page's object and the page queues must be locked. | |
2526 | */ | |
2527 | void | |
2528 | vm_page_wire( | |
2529 | register vm_page_t mem) | |
2530 | { | |
2531 | ||
2532 | // dbgLog(current_thread(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ | |
2533 | ||
2534 | VM_PAGE_CHECK(mem); | |
2535 | if (mem->object) { | |
2536 | vm_object_lock_assert_exclusive(mem->object); | |
2537 | } else { | |
2538 | /* | |
2539 | * In theory, the page should be in an object before it | |
2540 | * gets wired, since we need to hold the object lock | |
2541 | * to update some fields in the page structure. | |
2542 | * However, some code (i386 pmap, for example) might want | |
2543 | * to wire a page before it gets inserted into an object. | |
2544 | * That's somewhat OK, as long as nobody else can get to | |
2545 | * that page and update it at the same time. | |
2546 | */ | |
2547 | } | |
2548 | #if DEBUG | |
2549 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2550 | #endif | |
2551 | if ( !VM_PAGE_WIRED(mem)) { | |
2552 | ||
2553 | if (mem->pageout_queue) { | |
2554 | mem->pageout = FALSE; | |
2555 | vm_pageout_throttle_up(mem); | |
2556 | } | |
2557 | VM_PAGE_QUEUES_REMOVE(mem); | |
2558 | ||
2559 | if (mem->object) { | |
2560 | mem->object->wired_page_count++; | |
2561 | assert(mem->object->resident_page_count >= | |
2562 | mem->object->wired_page_count); | |
2563 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2564 | assert(vm_page_purgeable_count > 0); | |
2565 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
2566 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
2567 | } | |
2568 | if (mem->object->all_reusable) { | |
2569 | /* | |
2570 | * Wired pages are not counted as "re-usable" | |
2571 | * in "all_reusable" VM objects, so nothing | |
2572 | * to do here. | |
2573 | */ | |
2574 | } else if (mem->reusable) { | |
2575 | /* | |
2576 | * This page is not "re-usable" when it's | |
2577 | * wired, so adjust its state and the | |
2578 | * accounting. | |
2579 | */ | |
2580 | vm_object_reuse_pages(mem->object, | |
2581 | mem->offset, | |
2582 | mem->offset+PAGE_SIZE_64, | |
2583 | FALSE); | |
2584 | } | |
2585 | } | |
2586 | assert(!mem->reusable); | |
2587 | ||
2588 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
2589 | vm_page_wire_count++; | |
2590 | if (mem->gobbled) | |
2591 | vm_page_gobble_count--; | |
2592 | mem->gobbled = FALSE; | |
2593 | ||
2594 | VM_CHECK_MEMORYSTATUS; | |
2595 | ||
2596 | /* | |
2597 | * ENCRYPTED SWAP: | |
2598 | * The page could be encrypted, but | |
2599 | * We don't have to decrypt it here | |
2600 | * because we don't guarantee that the | |
2601 | * data is actually valid at this point. | |
2602 | * The page will get decrypted in | |
2603 | * vm_fault_wire() if needed. | |
2604 | */ | |
2605 | } | |
2606 | assert(!mem->gobbled); | |
2607 | mem->wire_count++; | |
2608 | VM_PAGE_CHECK(mem); | |
2609 | } | |
2610 | ||
2611 | /* | |
2612 | * vm_page_gobble: | |
2613 | * | |
2614 | * Mark this page as consumed by the vm/ipc/xmm subsystems. | |
2615 | * | |
2616 | * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. | |
2617 | */ | |
2618 | void | |
2619 | vm_page_gobble( | |
2620 | register vm_page_t mem) | |
2621 | { | |
2622 | vm_page_lockspin_queues(); | |
2623 | VM_PAGE_CHECK(mem); | |
2624 | ||
2625 | assert(!mem->gobbled); | |
2626 | assert( !VM_PAGE_WIRED(mem)); | |
2627 | ||
2628 | if (!mem->gobbled && !VM_PAGE_WIRED(mem)) { | |
2629 | if (!mem->private && !mem->fictitious) | |
2630 | vm_page_wire_count++; | |
2631 | } | |
2632 | vm_page_gobble_count++; | |
2633 | mem->gobbled = TRUE; | |
2634 | vm_page_unlock_queues(); | |
2635 | } | |
2636 | ||
2637 | /* | |
2638 | * vm_page_unwire: | |
2639 | * | |
2640 | * Release one wiring of this page, potentially | |
2641 | * enabling it to be paged again. | |
2642 | * | |
2643 | * The page's object and the page queues must be locked. | |
2644 | */ | |
2645 | void | |
2646 | vm_page_unwire( | |
2647 | vm_page_t mem, | |
2648 | boolean_t queueit) | |
2649 | { | |
2650 | ||
2651 | // dbgLog(current_thread(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ | |
2652 | ||
2653 | VM_PAGE_CHECK(mem); | |
2654 | assert(VM_PAGE_WIRED(mem)); | |
2655 | assert(mem->object != VM_OBJECT_NULL); | |
2656 | #if DEBUG | |
2657 | vm_object_lock_assert_exclusive(mem->object); | |
2658 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2659 | #endif | |
2660 | if (--mem->wire_count == 0) { | |
2661 | assert(!mem->private && !mem->fictitious); | |
2662 | vm_page_wire_count--; | |
2663 | assert(mem->object->wired_page_count > 0); | |
2664 | mem->object->wired_page_count--; | |
2665 | assert(mem->object->resident_page_count >= | |
2666 | mem->object->wired_page_count); | |
2667 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2668 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
2669 | assert(vm_page_purgeable_wired_count > 0); | |
2670 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
2671 | } | |
2672 | assert(!mem->laundry); | |
2673 | assert(mem->object != kernel_object); | |
2674 | assert(mem->pageq.next == NULL && mem->pageq.prev == NULL); | |
2675 | ||
2676 | if (queueit == TRUE) { | |
2677 | if (mem->object->purgable == VM_PURGABLE_EMPTY) { | |
2678 | vm_page_deactivate(mem); | |
2679 | } else { | |
2680 | vm_page_activate(mem); | |
2681 | } | |
2682 | } | |
2683 | ||
2684 | VM_CHECK_MEMORYSTATUS; | |
2685 | ||
2686 | } | |
2687 | VM_PAGE_CHECK(mem); | |
2688 | } | |
2689 | ||
2690 | /* | |
2691 | * vm_page_deactivate: | |
2692 | * | |
2693 | * Returns the given page to the inactive list, | |
2694 | * indicating that no physical maps have access | |
2695 | * to this page. [Used by the physical mapping system.] | |
2696 | * | |
2697 | * The page queues must be locked. | |
2698 | */ | |
2699 | void | |
2700 | vm_page_deactivate( | |
2701 | vm_page_t m) | |
2702 | { | |
2703 | vm_page_deactivate_internal(m, TRUE); | |
2704 | } | |
2705 | ||
2706 | ||
2707 | void | |
2708 | vm_page_deactivate_internal( | |
2709 | vm_page_t m, | |
2710 | boolean_t clear_hw_reference) | |
2711 | { | |
2712 | ||
2713 | VM_PAGE_CHECK(m); | |
2714 | assert(m->object != kernel_object); | |
2715 | assert(m->phys_page != vm_page_guard_addr); | |
2716 | ||
2717 | // dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ | |
2718 | #if DEBUG | |
2719 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2720 | #endif | |
2721 | /* | |
2722 | * This page is no longer very interesting. If it was | |
2723 | * interesting (active or inactive/referenced), then we | |
2724 | * clear the reference bit and (re)enter it in the | |
2725 | * inactive queue. Note wired pages should not have | |
2726 | * their reference bit cleared. | |
2727 | */ | |
2728 | assert ( !(m->absent && !m->unusual)); | |
2729 | ||
2730 | if (m->gobbled) { /* can this happen? */ | |
2731 | assert( !VM_PAGE_WIRED(m)); | |
2732 | ||
2733 | if (!m->private && !m->fictitious) | |
2734 | vm_page_wire_count--; | |
2735 | vm_page_gobble_count--; | |
2736 | m->gobbled = FALSE; | |
2737 | } | |
2738 | /* | |
2739 | * if this page is currently on the pageout queue, we can't do the | |
2740 | * VM_PAGE_QUEUES_REMOVE (which doesn't handle the pageout queue case) | |
2741 | * and we can't remove it manually since we would need the object lock | |
2742 | * (which is not required here) to decrement the activity_in_progress | |
2743 | * reference which is held on the object while the page is in the pageout queue... | |
2744 | * just let the normal laundry processing proceed | |
2745 | */ | |
2746 | if (m->pageout_queue || m->private || m->fictitious || (VM_PAGE_WIRED(m))) | |
2747 | return; | |
2748 | ||
2749 | if (!m->absent && clear_hw_reference == TRUE) | |
2750 | pmap_clear_reference(m->phys_page); | |
2751 | ||
2752 | m->reference = FALSE; | |
2753 | m->no_cache = FALSE; | |
2754 | ||
2755 | if (!m->inactive) { | |
2756 | VM_PAGE_QUEUES_REMOVE(m); | |
2757 | ||
2758 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && | |
2759 | m->dirty && m->object->internal && | |
2760 | (m->object->purgable == VM_PURGABLE_DENY || | |
2761 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2762 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
2763 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
2764 | m->throttled = TRUE; | |
2765 | vm_page_throttled_count++; | |
2766 | } else { | |
2767 | if (m->object->named && m->object->ref_count == 1) { | |
2768 | vm_page_speculate(m, FALSE); | |
2769 | #if DEVELOPMENT || DEBUG | |
2770 | vm_page_speculative_recreated++; | |
2771 | #endif | |
2772 | } else { | |
2773 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); | |
2774 | } | |
2775 | } | |
2776 | } | |
2777 | } | |
2778 | ||
2779 | /* | |
2780 | * vm_page_enqueue_cleaned | |
2781 | * | |
2782 | * Put the page on the cleaned queue, mark it cleaned, etc. | |
2783 | * Being on the cleaned queue (and having m->clean_queue set) | |
2784 | * does ** NOT ** guarantee that the page is clean! | |
2785 | * | |
2786 | * Call with the queues lock held. | |
2787 | */ | |
2788 | ||
2789 | void vm_page_enqueue_cleaned(vm_page_t m) | |
2790 | { | |
2791 | assert(m->phys_page != vm_page_guard_addr); | |
2792 | #if DEBUG | |
2793 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2794 | #endif | |
2795 | assert( !(m->absent && !m->unusual)); | |
2796 | ||
2797 | if (m->gobbled) { | |
2798 | assert( !VM_PAGE_WIRED(m)); | |
2799 | if (!m->private && !m->fictitious) | |
2800 | vm_page_wire_count--; | |
2801 | vm_page_gobble_count--; | |
2802 | m->gobbled = FALSE; | |
2803 | } | |
2804 | /* | |
2805 | * if this page is currently on the pageout queue, we can't do the | |
2806 | * VM_PAGE_QUEUES_REMOVE (which doesn't handle the pageout queue case) | |
2807 | * and we can't remove it manually since we would need the object lock | |
2808 | * (which is not required here) to decrement the activity_in_progress | |
2809 | * reference which is held on the object while the page is in the pageout queue... | |
2810 | * just let the normal laundry processing proceed | |
2811 | */ | |
2812 | if (m->clean_queue || m->pageout_queue || m->private || m->fictitious) | |
2813 | return; | |
2814 | ||
2815 | VM_PAGE_QUEUES_REMOVE(m); | |
2816 | ||
2817 | queue_enter(&vm_page_queue_cleaned, m, vm_page_t, pageq); | |
2818 | m->clean_queue = TRUE; | |
2819 | vm_page_cleaned_count++; | |
2820 | ||
2821 | m->inactive = TRUE; | |
2822 | vm_page_inactive_count++; | |
2823 | ||
2824 | vm_pageout_enqueued_cleaned++; | |
2825 | } | |
2826 | ||
2827 | /* | |
2828 | * vm_page_activate: | |
2829 | * | |
2830 | * Put the specified page on the active list (if appropriate). | |
2831 | * | |
2832 | * The page queues must be locked. | |
2833 | */ | |
2834 | ||
2835 | void | |
2836 | vm_page_activate( | |
2837 | register vm_page_t m) | |
2838 | { | |
2839 | VM_PAGE_CHECK(m); | |
2840 | #ifdef FIXME_4778297 | |
2841 | assert(m->object != kernel_object); | |
2842 | #endif | |
2843 | assert(m->phys_page != vm_page_guard_addr); | |
2844 | #if DEBUG | |
2845 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2846 | #endif | |
2847 | assert( !(m->absent && !m->unusual)); | |
2848 | ||
2849 | if (m->gobbled) { | |
2850 | assert( !VM_PAGE_WIRED(m)); | |
2851 | if (!m->private && !m->fictitious) | |
2852 | vm_page_wire_count--; | |
2853 | vm_page_gobble_count--; | |
2854 | m->gobbled = FALSE; | |
2855 | } | |
2856 | /* | |
2857 | * if this page is currently on the pageout queue, we can't do the | |
2858 | * VM_PAGE_QUEUES_REMOVE (which doesn't handle the pageout queue case) | |
2859 | * and we can't remove it manually since we would need the object lock | |
2860 | * (which is not required here) to decrement the activity_in_progress | |
2861 | * reference which is held on the object while the page is in the pageout queue... | |
2862 | * just let the normal laundry processing proceed | |
2863 | */ | |
2864 | if (m->pageout_queue || m->private || m->fictitious) | |
2865 | return; | |
2866 | ||
2867 | #if DEBUG | |
2868 | if (m->active) | |
2869 | panic("vm_page_activate: already active"); | |
2870 | #endif | |
2871 | ||
2872 | if (m->speculative) { | |
2873 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
2874 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); | |
2875 | } | |
2876 | ||
2877 | VM_PAGE_QUEUES_REMOVE(m); | |
2878 | ||
2879 | if ( !VM_PAGE_WIRED(m)) { | |
2880 | ||
2881 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && | |
2882 | m->dirty && m->object->internal && | |
2883 | (m->object->purgable == VM_PURGABLE_DENY || | |
2884 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2885 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
2886 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
2887 | m->throttled = TRUE; | |
2888 | vm_page_throttled_count++; | |
2889 | } else { | |
2890 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
2891 | m->active = TRUE; | |
2892 | vm_page_active_count++; | |
2893 | } | |
2894 | m->reference = TRUE; | |
2895 | m->no_cache = FALSE; | |
2896 | } | |
2897 | VM_PAGE_CHECK(m); | |
2898 | } | |
2899 | ||
2900 | ||
2901 | /* | |
2902 | * vm_page_speculate: | |
2903 | * | |
2904 | * Put the specified page on the speculative list (if appropriate). | |
2905 | * | |
2906 | * The page queues must be locked. | |
2907 | */ | |
2908 | void | |
2909 | vm_page_speculate( | |
2910 | vm_page_t m, | |
2911 | boolean_t new) | |
2912 | { | |
2913 | struct vm_speculative_age_q *aq; | |
2914 | ||
2915 | VM_PAGE_CHECK(m); | |
2916 | assert(m->object != kernel_object); | |
2917 | assert(m->phys_page != vm_page_guard_addr); | |
2918 | #if DEBUG | |
2919 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2920 | #endif | |
2921 | assert( !(m->absent && !m->unusual)); | |
2922 | ||
2923 | /* | |
2924 | * if this page is currently on the pageout queue, we can't do the | |
2925 | * VM_PAGE_QUEUES_REMOVE (which doesn't handle the pageout queue case) | |
2926 | * and we can't remove it manually since we would need the object lock | |
2927 | * (which is not required here) to decrement the activity_in_progress | |
2928 | * reference which is held on the object while the page is in the pageout queue... | |
2929 | * just let the normal laundry processing proceed | |
2930 | */ | |
2931 | if (m->pageout_queue || m->private || m->fictitious) | |
2932 | return; | |
2933 | ||
2934 | VM_PAGE_QUEUES_REMOVE(m); | |
2935 | ||
2936 | if ( !VM_PAGE_WIRED(m)) { | |
2937 | mach_timespec_t ts; | |
2938 | clock_sec_t sec; | |
2939 | clock_nsec_t nsec; | |
2940 | ||
2941 | clock_get_system_nanotime(&sec, &nsec); | |
2942 | ts.tv_sec = (unsigned int) sec; | |
2943 | ts.tv_nsec = nsec; | |
2944 | ||
2945 | if (vm_page_speculative_count == 0) { | |
2946 | ||
2947 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2948 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2949 | ||
2950 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2951 | ||
2952 | /* | |
2953 | * set the timer to begin a new group | |
2954 | */ | |
2955 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
2956 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
2957 | ||
2958 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2959 | } else { | |
2960 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2961 | ||
2962 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { | |
2963 | ||
2964 | speculative_age_index++; | |
2965 | ||
2966 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2967 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2968 | if (speculative_age_index == speculative_steal_index) { | |
2969 | speculative_steal_index = speculative_age_index + 1; | |
2970 | ||
2971 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2972 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2973 | } | |
2974 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2975 | ||
2976 | if (!queue_empty(&aq->age_q)) | |
2977 | vm_page_speculate_ageit(aq); | |
2978 | ||
2979 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
2980 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
2981 | ||
2982 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2983 | } | |
2984 | } | |
2985 | enqueue_tail(&aq->age_q, &m->pageq); | |
2986 | m->speculative = TRUE; | |
2987 | vm_page_speculative_count++; | |
2988 | ||
2989 | if (new == TRUE) { | |
2990 | vm_object_lock_assert_exclusive(m->object); | |
2991 | ||
2992 | m->object->pages_created++; | |
2993 | #if DEVELOPMENT || DEBUG | |
2994 | vm_page_speculative_created++; | |
2995 | #endif | |
2996 | } | |
2997 | } | |
2998 | VM_PAGE_CHECK(m); | |
2999 | } | |
3000 | ||
3001 | ||
3002 | /* | |
3003 | * move pages from the specified aging bin to | |
3004 | * the speculative bin that pageout_scan claims from | |
3005 | * | |
3006 | * The page queues must be locked. | |
3007 | */ | |
3008 | void | |
3009 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) | |
3010 | { | |
3011 | struct vm_speculative_age_q *sq; | |
3012 | vm_page_t t; | |
3013 | ||
3014 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
3015 | ||
3016 | if (queue_empty(&sq->age_q)) { | |
3017 | sq->age_q.next = aq->age_q.next; | |
3018 | sq->age_q.prev = aq->age_q.prev; | |
3019 | ||
3020 | t = (vm_page_t)sq->age_q.next; | |
3021 | t->pageq.prev = &sq->age_q; | |
3022 | ||
3023 | t = (vm_page_t)sq->age_q.prev; | |
3024 | t->pageq.next = &sq->age_q; | |
3025 | } else { | |
3026 | t = (vm_page_t)sq->age_q.prev; | |
3027 | t->pageq.next = aq->age_q.next; | |
3028 | ||
3029 | t = (vm_page_t)aq->age_q.next; | |
3030 | t->pageq.prev = sq->age_q.prev; | |
3031 | ||
3032 | t = (vm_page_t)aq->age_q.prev; | |
3033 | t->pageq.next = &sq->age_q; | |
3034 | ||
3035 | sq->age_q.prev = aq->age_q.prev; | |
3036 | } | |
3037 | queue_init(&aq->age_q); | |
3038 | } | |
3039 | ||
3040 | ||
3041 | void | |
3042 | vm_page_lru( | |
3043 | vm_page_t m) | |
3044 | { | |
3045 | VM_PAGE_CHECK(m); | |
3046 | assert(m->object != kernel_object); | |
3047 | assert(m->phys_page != vm_page_guard_addr); | |
3048 | ||
3049 | #if DEBUG | |
3050 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3051 | #endif | |
3052 | /* | |
3053 | * if this page is currently on the pageout queue, we can't do the | |
3054 | * VM_PAGE_QUEUES_REMOVE (which doesn't handle the pageout queue case) | |
3055 | * and we can't remove it manually since we would need the object lock | |
3056 | * (which is not required here) to decrement the activity_in_progress | |
3057 | * reference which is held on the object while the page is in the pageout queue... | |
3058 | * just let the normal laundry processing proceed | |
3059 | */ | |
3060 | if (m->pageout_queue || m->private || (VM_PAGE_WIRED(m))) | |
3061 | return; | |
3062 | ||
3063 | m->no_cache = FALSE; | |
3064 | ||
3065 | VM_PAGE_QUEUES_REMOVE(m); | |
3066 | ||
3067 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); | |
3068 | } | |
3069 | ||
3070 | ||
3071 | void | |
3072 | vm_page_reactivate_all_throttled(void) | |
3073 | { | |
3074 | vm_page_t first_throttled, last_throttled; | |
3075 | vm_page_t first_active; | |
3076 | vm_page_t m; | |
3077 | int extra_active_count; | |
3078 | ||
3079 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) | |
3080 | return; | |
3081 | ||
3082 | extra_active_count = 0; | |
3083 | vm_page_lock_queues(); | |
3084 | if (! queue_empty(&vm_page_queue_throttled)) { | |
3085 | /* | |
3086 | * Switch "throttled" pages to "active". | |
3087 | */ | |
3088 | queue_iterate(&vm_page_queue_throttled, m, vm_page_t, pageq) { | |
3089 | VM_PAGE_CHECK(m); | |
3090 | assert(m->throttled); | |
3091 | assert(!m->active); | |
3092 | assert(!m->inactive); | |
3093 | assert(!m->speculative); | |
3094 | assert(!VM_PAGE_WIRED(m)); | |
3095 | ||
3096 | extra_active_count++; | |
3097 | ||
3098 | m->throttled = FALSE; | |
3099 | m->active = TRUE; | |
3100 | VM_PAGE_CHECK(m); | |
3101 | } | |
3102 | ||
3103 | /* | |
3104 | * Transfer the entire throttled queue to a regular LRU page queues. | |
3105 | * We insert it at the head of the active queue, so that these pages | |
3106 | * get re-evaluated by the LRU algorithm first, since they've been | |
3107 | * completely out of it until now. | |
3108 | */ | |
3109 | first_throttled = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
3110 | last_throttled = (vm_page_t) queue_last(&vm_page_queue_throttled); | |
3111 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3112 | if (queue_empty(&vm_page_queue_active)) { | |
3113 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_throttled; | |
3114 | } else { | |
3115 | queue_prev(&first_active->pageq) = (queue_entry_t) last_throttled; | |
3116 | } | |
3117 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_throttled; | |
3118 | queue_prev(&first_throttled->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3119 | queue_next(&last_throttled->pageq) = (queue_entry_t) first_active; | |
3120 | ||
3121 | #if DEBUG | |
3122 | printf("reactivated %d throttled pages\n", vm_page_throttled_count); | |
3123 | #endif | |
3124 | queue_init(&vm_page_queue_throttled); | |
3125 | /* | |
3126 | * Adjust the global page counts. | |
3127 | */ | |
3128 | vm_page_active_count += extra_active_count; | |
3129 | vm_page_throttled_count = 0; | |
3130 | } | |
3131 | assert(vm_page_throttled_count == 0); | |
3132 | assert(queue_empty(&vm_page_queue_throttled)); | |
3133 | vm_page_unlock_queues(); | |
3134 | } | |
3135 | ||
3136 | ||
3137 | /* | |
3138 | * move pages from the indicated local queue to the global active queue | |
3139 | * its ok to fail if we're below the hard limit and force == FALSE | |
3140 | * the nolocks == TRUE case is to allow this function to be run on | |
3141 | * the hibernate path | |
3142 | */ | |
3143 | ||
3144 | void | |
3145 | vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) | |
3146 | { | |
3147 | struct vpl *lq; | |
3148 | vm_page_t first_local, last_local; | |
3149 | vm_page_t first_active; | |
3150 | vm_page_t m; | |
3151 | uint32_t count = 0; | |
3152 | ||
3153 | if (vm_page_local_q == NULL) | |
3154 | return; | |
3155 | ||
3156 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
3157 | ||
3158 | if (nolocks == FALSE) { | |
3159 | if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { | |
3160 | if ( !vm_page_trylockspin_queues()) | |
3161 | return; | |
3162 | } else | |
3163 | vm_page_lockspin_queues(); | |
3164 | ||
3165 | VPL_LOCK(&lq->vpl_lock); | |
3166 | } | |
3167 | if (lq->vpl_count) { | |
3168 | /* | |
3169 | * Switch "local" pages to "active". | |
3170 | */ | |
3171 | assert(!queue_empty(&lq->vpl_queue)); | |
3172 | ||
3173 | queue_iterate(&lq->vpl_queue, m, vm_page_t, pageq) { | |
3174 | VM_PAGE_CHECK(m); | |
3175 | assert(m->local); | |
3176 | assert(!m->active); | |
3177 | assert(!m->inactive); | |
3178 | assert(!m->speculative); | |
3179 | assert(!VM_PAGE_WIRED(m)); | |
3180 | assert(!m->throttled); | |
3181 | assert(!m->fictitious); | |
3182 | ||
3183 | if (m->local_id != lid) | |
3184 | panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m); | |
3185 | ||
3186 | m->local_id = 0; | |
3187 | m->local = FALSE; | |
3188 | m->active = TRUE; | |
3189 | VM_PAGE_CHECK(m); | |
3190 | ||
3191 | count++; | |
3192 | } | |
3193 | if (count != lq->vpl_count) | |
3194 | panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count); | |
3195 | ||
3196 | /* | |
3197 | * Transfer the entire local queue to a regular LRU page queues. | |
3198 | */ | |
3199 | first_local = (vm_page_t) queue_first(&lq->vpl_queue); | |
3200 | last_local = (vm_page_t) queue_last(&lq->vpl_queue); | |
3201 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3202 | ||
3203 | if (queue_empty(&vm_page_queue_active)) { | |
3204 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_local; | |
3205 | } else { | |
3206 | queue_prev(&first_active->pageq) = (queue_entry_t) last_local; | |
3207 | } | |
3208 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_local; | |
3209 | queue_prev(&first_local->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3210 | queue_next(&last_local->pageq) = (queue_entry_t) first_active; | |
3211 | ||
3212 | queue_init(&lq->vpl_queue); | |
3213 | /* | |
3214 | * Adjust the global page counts. | |
3215 | */ | |
3216 | vm_page_active_count += lq->vpl_count; | |
3217 | lq->vpl_count = 0; | |
3218 | } | |
3219 | assert(queue_empty(&lq->vpl_queue)); | |
3220 | ||
3221 | if (nolocks == FALSE) { | |
3222 | VPL_UNLOCK(&lq->vpl_lock); | |
3223 | vm_page_unlock_queues(); | |
3224 | } | |
3225 | } | |
3226 | ||
3227 | /* | |
3228 | * vm_page_part_zero_fill: | |
3229 | * | |
3230 | * Zero-fill a part of the page. | |
3231 | */ | |
3232 | void | |
3233 | vm_page_part_zero_fill( | |
3234 | vm_page_t m, | |
3235 | vm_offset_t m_pa, | |
3236 | vm_size_t len) | |
3237 | { | |
3238 | vm_page_t tmp; | |
3239 | ||
3240 | #if 0 | |
3241 | /* | |
3242 | * we don't hold the page queue lock | |
3243 | * so this check isn't safe to make | |
3244 | */ | |
3245 | VM_PAGE_CHECK(m); | |
3246 | #endif | |
3247 | ||
3248 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
3249 | pmap_zero_part_page(m->phys_page, m_pa, len); | |
3250 | #else | |
3251 | while (1) { | |
3252 | tmp = vm_page_grab(); | |
3253 | if (tmp == VM_PAGE_NULL) { | |
3254 | vm_page_wait(THREAD_UNINT); | |
3255 | continue; | |
3256 | } | |
3257 | break; | |
3258 | } | |
3259 | vm_page_zero_fill(tmp); | |
3260 | if(m_pa != 0) { | |
3261 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
3262 | } | |
3263 | if((m_pa + len) < PAGE_SIZE) { | |
3264 | vm_page_part_copy(m, m_pa + len, tmp, | |
3265 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
3266 | } | |
3267 | vm_page_copy(tmp,m); | |
3268 | VM_PAGE_FREE(tmp); | |
3269 | #endif | |
3270 | ||
3271 | } | |
3272 | ||
3273 | /* | |
3274 | * vm_page_zero_fill: | |
3275 | * | |
3276 | * Zero-fill the specified page. | |
3277 | */ | |
3278 | void | |
3279 | vm_page_zero_fill( | |
3280 | vm_page_t m) | |
3281 | { | |
3282 | XPR(XPR_VM_PAGE, | |
3283 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
3284 | m->object, m->offset, m, 0,0); | |
3285 | #if 0 | |
3286 | /* | |
3287 | * we don't hold the page queue lock | |
3288 | * so this check isn't safe to make | |
3289 | */ | |
3290 | VM_PAGE_CHECK(m); | |
3291 | #endif | |
3292 | ||
3293 | // dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ | |
3294 | pmap_zero_page(m->phys_page); | |
3295 | } | |
3296 | ||
3297 | /* | |
3298 | * vm_page_part_copy: | |
3299 | * | |
3300 | * copy part of one page to another | |
3301 | */ | |
3302 | ||
3303 | void | |
3304 | vm_page_part_copy( | |
3305 | vm_page_t src_m, | |
3306 | vm_offset_t src_pa, | |
3307 | vm_page_t dst_m, | |
3308 | vm_offset_t dst_pa, | |
3309 | vm_size_t len) | |
3310 | { | |
3311 | #if 0 | |
3312 | /* | |
3313 | * we don't hold the page queue lock | |
3314 | * so this check isn't safe to make | |
3315 | */ | |
3316 | VM_PAGE_CHECK(src_m); | |
3317 | VM_PAGE_CHECK(dst_m); | |
3318 | #endif | |
3319 | pmap_copy_part_page(src_m->phys_page, src_pa, | |
3320 | dst_m->phys_page, dst_pa, len); | |
3321 | } | |
3322 | ||
3323 | /* | |
3324 | * vm_page_copy: | |
3325 | * | |
3326 | * Copy one page to another | |
3327 | * | |
3328 | * ENCRYPTED SWAP: | |
3329 | * The source page should not be encrypted. The caller should | |
3330 | * make sure the page is decrypted first, if necessary. | |
3331 | */ | |
3332 | ||
3333 | int vm_page_copy_cs_validations = 0; | |
3334 | int vm_page_copy_cs_tainted = 0; | |
3335 | ||
3336 | void | |
3337 | vm_page_copy( | |
3338 | vm_page_t src_m, | |
3339 | vm_page_t dest_m) | |
3340 | { | |
3341 | XPR(XPR_VM_PAGE, | |
3342 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
3343 | src_m->object, src_m->offset, | |
3344 | dest_m->object, dest_m->offset, | |
3345 | 0); | |
3346 | #if 0 | |
3347 | /* | |
3348 | * we don't hold the page queue lock | |
3349 | * so this check isn't safe to make | |
3350 | */ | |
3351 | VM_PAGE_CHECK(src_m); | |
3352 | VM_PAGE_CHECK(dest_m); | |
3353 | #endif | |
3354 | vm_object_lock_assert_held(src_m->object); | |
3355 | ||
3356 | /* | |
3357 | * ENCRYPTED SWAP: | |
3358 | * The source page should not be encrypted at this point. | |
3359 | * The destination page will therefore not contain encrypted | |
3360 | * data after the copy. | |
3361 | */ | |
3362 | if (src_m->encrypted) { | |
3363 | panic("vm_page_copy: source page %p is encrypted\n", src_m); | |
3364 | } | |
3365 | dest_m->encrypted = FALSE; | |
3366 | ||
3367 | if (src_m->object != VM_OBJECT_NULL && | |
3368 | src_m->object->code_signed) { | |
3369 | /* | |
3370 | * We're copying a page from a code-signed object. | |
3371 | * Whoever ends up mapping the copy page might care about | |
3372 | * the original page's integrity, so let's validate the | |
3373 | * source page now. | |
3374 | */ | |
3375 | vm_page_copy_cs_validations++; | |
3376 | vm_page_validate_cs(src_m); | |
3377 | } | |
3378 | ||
3379 | if (vm_page_is_slideable(src_m)) { | |
3380 | boolean_t was_busy = src_m->busy; | |
3381 | src_m->busy = TRUE; | |
3382 | (void) vm_page_slide(src_m, 0); | |
3383 | assert(src_m->busy); | |
3384 | if (!was_busy) { | |
3385 | PAGE_WAKEUP_DONE(src_m); | |
3386 | } | |
3387 | } | |
3388 | ||
3389 | /* | |
3390 | * Propagate the cs_tainted bit to the copy page. Do not propagate | |
3391 | * the cs_validated bit. | |
3392 | */ | |
3393 | dest_m->cs_tainted = src_m->cs_tainted; | |
3394 | if (dest_m->cs_tainted) { | |
3395 | vm_page_copy_cs_tainted++; | |
3396 | } | |
3397 | dest_m->slid = src_m->slid; | |
3398 | dest_m->error = src_m->error; /* sliding src_m might have failed... */ | |
3399 | pmap_copy_page(src_m->phys_page, dest_m->phys_page); | |
3400 | } | |
3401 | ||
3402 | #if MACH_ASSERT | |
3403 | static void | |
3404 | _vm_page_print( | |
3405 | vm_page_t p) | |
3406 | { | |
3407 | printf("vm_page %p: \n", p); | |
3408 | printf(" pageq: next=%p prev=%p\n", p->pageq.next, p->pageq.prev); | |
3409 | printf(" listq: next=%p prev=%p\n", p->listq.next, p->listq.prev); | |
3410 | printf(" next=%p\n", p->next); | |
3411 | printf(" object=%p offset=0x%llx\n", p->object, p->offset); | |
3412 | printf(" wire_count=%u\n", p->wire_count); | |
3413 | ||
3414 | printf(" %slocal, %sinactive, %sactive, %spageout_queue, %sspeculative, %slaundry\n", | |
3415 | (p->local ? "" : "!"), | |
3416 | (p->inactive ? "" : "!"), | |
3417 | (p->active ? "" : "!"), | |
3418 | (p->pageout_queue ? "" : "!"), | |
3419 | (p->speculative ? "" : "!"), | |
3420 | (p->laundry ? "" : "!")); | |
3421 | printf(" %sfree, %sref, %sgobbled, %sprivate, %sthrottled\n", | |
3422 | (p->free ? "" : "!"), | |
3423 | (p->reference ? "" : "!"), | |
3424 | (p->gobbled ? "" : "!"), | |
3425 | (p->private ? "" : "!"), | |
3426 | (p->throttled ? "" : "!")); | |
3427 | printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n", | |
3428 | (p->busy ? "" : "!"), | |
3429 | (p->wanted ? "" : "!"), | |
3430 | (p->tabled ? "" : "!"), | |
3431 | (p->fictitious ? "" : "!"), | |
3432 | (p->pmapped ? "" : "!"), | |
3433 | (p->wpmapped ? "" : "!")); | |
3434 | printf(" %spageout, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n", | |
3435 | (p->pageout ? "" : "!"), | |
3436 | (p->absent ? "" : "!"), | |
3437 | (p->error ? "" : "!"), | |
3438 | (p->dirty ? "" : "!"), | |
3439 | (p->cleaning ? "" : "!"), | |
3440 | (p->precious ? "" : "!"), | |
3441 | (p->clustered ? "" : "!")); | |
3442 | printf(" %soverwriting, %srestart, %sunusual, %sencrypted, %sencrypted_cleaning\n", | |
3443 | (p->overwriting ? "" : "!"), | |
3444 | (p->restart ? "" : "!"), | |
3445 | (p->unusual ? "" : "!"), | |
3446 | (p->encrypted ? "" : "!"), | |
3447 | (p->encrypted_cleaning ? "" : "!")); | |
3448 | printf(" %scs_validated, %scs_tainted, %sno_cache\n", | |
3449 | (p->cs_validated ? "" : "!"), | |
3450 | (p->cs_tainted ? "" : "!"), | |
3451 | (p->no_cache ? "" : "!")); | |
3452 | ||
3453 | printf("phys_page=0x%x\n", p->phys_page); | |
3454 | } | |
3455 | ||
3456 | /* | |
3457 | * Check that the list of pages is ordered by | |
3458 | * ascending physical address and has no holes. | |
3459 | */ | |
3460 | static int | |
3461 | vm_page_verify_contiguous( | |
3462 | vm_page_t pages, | |
3463 | unsigned int npages) | |
3464 | { | |
3465 | register vm_page_t m; | |
3466 | unsigned int page_count; | |
3467 | vm_offset_t prev_addr; | |
3468 | ||
3469 | prev_addr = pages->phys_page; | |
3470 | page_count = 1; | |
3471 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
3472 | if (m->phys_page != prev_addr + 1) { | |
3473 | printf("m %p prev_addr 0x%lx, current addr 0x%x\n", | |
3474 | m, (long)prev_addr, m->phys_page); | |
3475 | printf("pages %p page_count %d npages %d\n", pages, page_count, npages); | |
3476 | panic("vm_page_verify_contiguous: not contiguous!"); | |
3477 | } | |
3478 | prev_addr = m->phys_page; | |
3479 | ++page_count; | |
3480 | } | |
3481 | if (page_count != npages) { | |
3482 | printf("pages %p actual count 0x%x but requested 0x%x\n", | |
3483 | pages, page_count, npages); | |
3484 | panic("vm_page_verify_contiguous: count error"); | |
3485 | } | |
3486 | return 1; | |
3487 | } | |
3488 | ||
3489 | ||
3490 | /* | |
3491 | * Check the free lists for proper length etc. | |
3492 | */ | |
3493 | static unsigned int | |
3494 | vm_page_verify_free_list( | |
3495 | queue_head_t *vm_page_queue, | |
3496 | unsigned int color, | |
3497 | vm_page_t look_for_page, | |
3498 | boolean_t expect_page) | |
3499 | { | |
3500 | unsigned int npages; | |
3501 | vm_page_t m; | |
3502 | vm_page_t prev_m; | |
3503 | boolean_t found_page; | |
3504 | ||
3505 | found_page = FALSE; | |
3506 | npages = 0; | |
3507 | prev_m = (vm_page_t) vm_page_queue; | |
3508 | queue_iterate(vm_page_queue, | |
3509 | m, | |
3510 | vm_page_t, | |
3511 | pageq) { | |
3512 | ||
3513 | if (m == look_for_page) { | |
3514 | found_page = TRUE; | |
3515 | } | |
3516 | if ((vm_page_t) m->pageq.prev != prev_m) | |
3517 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n", | |
3518 | color, npages, m, m->pageq.prev, prev_m); | |
3519 | if ( ! m->busy ) | |
3520 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n", | |
3521 | color, npages, m); | |
3522 | if (color != (unsigned int) -1) { | |
3523 | if ((m->phys_page & vm_color_mask) != color) | |
3524 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n", | |
3525 | color, npages, m, m->phys_page & vm_color_mask, color); | |
3526 | if ( ! m->free ) | |
3527 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not free\n", | |
3528 | color, npages, m); | |
3529 | } | |
3530 | ++npages; | |
3531 | prev_m = m; | |
3532 | } | |
3533 | if (look_for_page != VM_PAGE_NULL) { | |
3534 | unsigned int other_color; | |
3535 | ||
3536 | if (expect_page && !found_page) { | |
3537 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n", | |
3538 | color, npages, look_for_page, look_for_page->phys_page); | |
3539 | _vm_page_print(look_for_page); | |
3540 | for (other_color = 0; | |
3541 | other_color < vm_colors; | |
3542 | other_color++) { | |
3543 | if (other_color == color) | |
3544 | continue; | |
3545 | vm_page_verify_free_list(&vm_page_queue_free[other_color], | |
3546 | other_color, look_for_page, FALSE); | |
3547 | } | |
3548 | if (color == (unsigned int) -1) { | |
3549 | vm_page_verify_free_list(&vm_lopage_queue_free, | |
3550 | (unsigned int) -1, look_for_page, FALSE); | |
3551 | } | |
3552 | panic("vm_page_verify_free_list(color=%u)\n", color); | |
3553 | } | |
3554 | if (!expect_page && found_page) { | |
3555 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n", | |
3556 | color, npages, look_for_page, look_for_page->phys_page); | |
3557 | } | |
3558 | } | |
3559 | return npages; | |
3560 | } | |
3561 | ||
3562 | static boolean_t vm_page_verify_free_lists_enabled = FALSE; | |
3563 | static void | |
3564 | vm_page_verify_free_lists( void ) | |
3565 | { | |
3566 | unsigned int color, npages, nlopages; | |
3567 | ||
3568 | if (! vm_page_verify_free_lists_enabled) | |
3569 | return; | |
3570 | ||
3571 | npages = 0; | |
3572 | ||
3573 | lck_mtx_lock(&vm_page_queue_free_lock); | |
3574 | ||
3575 | for( color = 0; color < vm_colors; color++ ) { | |
3576 | npages += vm_page_verify_free_list(&vm_page_queue_free[color], | |
3577 | color, VM_PAGE_NULL, FALSE); | |
3578 | } | |
3579 | nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, | |
3580 | (unsigned int) -1, | |
3581 | VM_PAGE_NULL, FALSE); | |
3582 | if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) | |
3583 | panic("vm_page_verify_free_lists: " | |
3584 | "npages %u free_count %d nlopages %u lo_free_count %u", | |
3585 | npages, vm_page_free_count, nlopages, vm_lopage_free_count); | |
3586 | ||
3587 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3588 | } | |
3589 | ||
3590 | void | |
3591 | vm_page_queues_assert( | |
3592 | vm_page_t mem, | |
3593 | int val) | |
3594 | { | |
3595 | #if DEBUG | |
3596 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3597 | #endif | |
3598 | if (mem->free + mem->active + mem->inactive + mem->speculative + | |
3599 | mem->throttled + mem->pageout_queue > (val)) { | |
3600 | _vm_page_print(mem); | |
3601 | panic("vm_page_queues_assert(%p, %d)\n", mem, val); | |
3602 | } | |
3603 | if (VM_PAGE_WIRED(mem)) { | |
3604 | assert(!mem->active); | |
3605 | assert(!mem->inactive); | |
3606 | assert(!mem->speculative); | |
3607 | assert(!mem->throttled); | |
3608 | assert(!mem->pageout_queue); | |
3609 | } | |
3610 | } | |
3611 | #endif /* MACH_ASSERT */ | |
3612 | ||
3613 | ||
3614 | /* | |
3615 | * CONTIGUOUS PAGE ALLOCATION | |
3616 | * | |
3617 | * Find a region large enough to contain at least n pages | |
3618 | * of contiguous physical memory. | |
3619 | * | |
3620 | * This is done by traversing the vm_page_t array in a linear fashion | |
3621 | * we assume that the vm_page_t array has the avaiable physical pages in an | |
3622 | * ordered, ascending list... this is currently true of all our implementations | |
3623 | * and must remain so... there can be 'holes' in the array... we also can | |
3624 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed | |
3625 | * which use to happen via 'vm_page_convert'... that function was no longer | |
3626 | * being called and was removed... | |
3627 | * | |
3628 | * The basic flow consists of stabilizing some of the interesting state of | |
3629 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our | |
3630 | * sweep at the beginning of the array looking for pages that meet our criterea | |
3631 | * for a 'stealable' page... currently we are pretty conservative... if the page | |
3632 | * meets this criterea and is physically contiguous to the previous page in the 'run' | |
3633 | * we keep developing it. If we hit a page that doesn't fit, we reset our state | |
3634 | * and start to develop a new run... if at this point we've already considered | |
3635 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, | |
3636 | * and mutex_pause (which will yield the processor), to keep the latency low w/r | |
3637 | * to other threads trying to acquire free pages (or move pages from q to q), | |
3638 | * and then continue from the spot we left off... we only make 1 pass through the | |
3639 | * array. Once we have a 'run' that is long enough, we'll go into the loop which | |
3640 | * which steals the pages from the queues they're currently on... pages on the free | |
3641 | * queue can be stolen directly... pages that are on any of the other queues | |
3642 | * must be removed from the object they are tabled on... this requires taking the | |
3643 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails | |
3644 | * or if the state of the page behind the vm_object lock is no longer viable, we'll | |
3645 | * dump the pages we've currently stolen back to the free list, and pick up our | |
3646 | * scan from the point where we aborted the 'current' run. | |
3647 | * | |
3648 | * | |
3649 | * Requirements: | |
3650 | * - neither vm_page_queue nor vm_free_list lock can be held on entry | |
3651 | * | |
3652 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. | |
3653 | * | |
3654 | * Algorithm: | |
3655 | */ | |
3656 | ||
3657 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 | |
3658 | ||
3659 | ||
3660 | #define RESET_STATE_OF_RUN() \ | |
3661 | MACRO_BEGIN \ | |
3662 | prevcontaddr = -2; \ | |
3663 | start_pnum = -1; \ | |
3664 | free_considered = 0; \ | |
3665 | substitute_needed = 0; \ | |
3666 | npages = 0; \ | |
3667 | MACRO_END | |
3668 | ||
3669 | /* | |
3670 | * Can we steal in-use (i.e. not free) pages when searching for | |
3671 | * physically-contiguous pages ? | |
3672 | */ | |
3673 | #define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 | |
3674 | ||
3675 | static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; | |
3676 | #if DEBUG | |
3677 | int vm_page_find_contig_debug = 0; | |
3678 | #endif | |
3679 | ||
3680 | static vm_page_t | |
3681 | vm_page_find_contiguous( | |
3682 | unsigned int contig_pages, | |
3683 | ppnum_t max_pnum, | |
3684 | ppnum_t pnum_mask, | |
3685 | boolean_t wire, | |
3686 | int flags) | |
3687 | { | |
3688 | vm_page_t m = NULL; | |
3689 | ppnum_t prevcontaddr; | |
3690 | ppnum_t start_pnum; | |
3691 | unsigned int npages, considered, scanned; | |
3692 | unsigned int page_idx, start_idx, last_idx, orig_last_idx; | |
3693 | unsigned int idx_last_contig_page_found = 0; | |
3694 | int free_considered, free_available; | |
3695 | int substitute_needed; | |
3696 | boolean_t wrapped; | |
3697 | #if DEBUG | |
3698 | clock_sec_t tv_start_sec, tv_end_sec; | |
3699 | clock_usec_t tv_start_usec, tv_end_usec; | |
3700 | #endif | |
3701 | #if MACH_ASSERT | |
3702 | int yielded = 0; | |
3703 | int dumped_run = 0; | |
3704 | int stolen_pages = 0; | |
3705 | #endif | |
3706 | ||
3707 | if (contig_pages == 0) | |
3708 | return VM_PAGE_NULL; | |
3709 | ||
3710 | #if MACH_ASSERT | |
3711 | vm_page_verify_free_lists(); | |
3712 | #endif | |
3713 | #if DEBUG | |
3714 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); | |
3715 | #endif | |
3716 | vm_page_lock_queues(); | |
3717 | lck_mtx_lock(&vm_page_queue_free_lock); | |
3718 | ||
3719 | RESET_STATE_OF_RUN(); | |
3720 | ||
3721 | scanned = 0; | |
3722 | considered = 0; | |
3723 | free_available = vm_page_free_count - vm_page_free_reserved; | |
3724 | ||
3725 | wrapped = FALSE; | |
3726 | ||
3727 | if(flags & KMA_LOMEM) | |
3728 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; | |
3729 | else | |
3730 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx; | |
3731 | ||
3732 | orig_last_idx = idx_last_contig_page_found; | |
3733 | last_idx = orig_last_idx; | |
3734 | ||
3735 | for (page_idx = last_idx, start_idx = last_idx; | |
3736 | npages < contig_pages && page_idx < vm_pages_count; | |
3737 | page_idx++) { | |
3738 | retry: | |
3739 | if (wrapped && | |
3740 | npages == 0 && | |
3741 | page_idx >= orig_last_idx) { | |
3742 | /* | |
3743 | * We're back where we started and we haven't | |
3744 | * found any suitable contiguous range. Let's | |
3745 | * give up. | |
3746 | */ | |
3747 | break; | |
3748 | } | |
3749 | scanned++; | |
3750 | m = &vm_pages[page_idx]; | |
3751 | ||
3752 | assert(!m->fictitious); | |
3753 | assert(!m->private); | |
3754 | ||
3755 | if (max_pnum && m->phys_page > max_pnum) { | |
3756 | /* no more low pages... */ | |
3757 | break; | |
3758 | } | |
3759 | if (!npages & ((m->phys_page & pnum_mask) != 0)) { | |
3760 | /* | |
3761 | * not aligned | |
3762 | */ | |
3763 | RESET_STATE_OF_RUN(); | |
3764 | ||
3765 | } else if (VM_PAGE_WIRED(m) || m->gobbled || | |
3766 | m->encrypted || m->encrypted_cleaning || m->cs_validated || m->cs_tainted || | |
3767 | m->error || m->absent || m->pageout_queue || m->laundry || m->wanted || m->precious || | |
3768 | m->cleaning || m->overwriting || m->restart || m->unusual || m->pageout) { | |
3769 | /* | |
3770 | * page is in a transient state | |
3771 | * or a state we don't want to deal | |
3772 | * with, so don't consider it which | |
3773 | * means starting a new run | |
3774 | */ | |
3775 | RESET_STATE_OF_RUN(); | |
3776 | ||
3777 | } else if (!m->free && !m->active && !m->inactive && !m->speculative && !m->throttled) { | |
3778 | /* | |
3779 | * page needs to be on one of our queues | |
3780 | * in order for it to be stable behind the | |
3781 | * locks we hold at this point... | |
3782 | * if not, don't consider it which | |
3783 | * means starting a new run | |
3784 | */ | |
3785 | RESET_STATE_OF_RUN(); | |
3786 | ||
3787 | } else if (!m->free && (!m->tabled || m->busy)) { | |
3788 | /* | |
3789 | * pages on the free list are always 'busy' | |
3790 | * so we couldn't test for 'busy' in the check | |
3791 | * for the transient states... pages that are | |
3792 | * 'free' are never 'tabled', so we also couldn't | |
3793 | * test for 'tabled'. So we check here to make | |
3794 | * sure that a non-free page is not busy and is | |
3795 | * tabled on an object... | |
3796 | * if not, don't consider it which | |
3797 | * means starting a new run | |
3798 | */ | |
3799 | RESET_STATE_OF_RUN(); | |
3800 | ||
3801 | } else { | |
3802 | if (m->phys_page != prevcontaddr + 1) { | |
3803 | if ((m->phys_page & pnum_mask) != 0) { | |
3804 | RESET_STATE_OF_RUN(); | |
3805 | goto did_consider; | |
3806 | } else { | |
3807 | npages = 1; | |
3808 | start_idx = page_idx; | |
3809 | start_pnum = m->phys_page; | |
3810 | } | |
3811 | } else { | |
3812 | npages++; | |
3813 | } | |
3814 | prevcontaddr = m->phys_page; | |
3815 | ||
3816 | VM_PAGE_CHECK(m); | |
3817 | if (m->free) { | |
3818 | free_considered++; | |
3819 | } else { | |
3820 | /* | |
3821 | * This page is not free. | |
3822 | * If we can't steal used pages, | |
3823 | * we have to give up this run | |
3824 | * and keep looking. | |
3825 | * Otherwise, we might need to | |
3826 | * move the contents of this page | |
3827 | * into a substitute page. | |
3828 | */ | |
3829 | #if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
3830 | if (m->pmapped || m->dirty) { | |
3831 | substitute_needed++; | |
3832 | } | |
3833 | #else | |
3834 | RESET_STATE_OF_RUN(); | |
3835 | #endif | |
3836 | } | |
3837 | ||
3838 | if ((free_considered + substitute_needed) > free_available) { | |
3839 | /* | |
3840 | * if we let this run continue | |
3841 | * we will end up dropping the vm_page_free_count | |
3842 | * below the reserve limit... we need to abort | |
3843 | * this run, but we can at least re-consider this | |
3844 | * page... thus the jump back to 'retry' | |
3845 | */ | |
3846 | RESET_STATE_OF_RUN(); | |
3847 | ||
3848 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { | |
3849 | considered++; | |
3850 | goto retry; | |
3851 | } | |
3852 | /* | |
3853 | * free_available == 0 | |
3854 | * so can't consider any free pages... if | |
3855 | * we went to retry in this case, we'd | |
3856 | * get stuck looking at the same page | |
3857 | * w/o making any forward progress | |
3858 | * we also want to take this path if we've already | |
3859 | * reached our limit that controls the lock latency | |
3860 | */ | |
3861 | } | |
3862 | } | |
3863 | did_consider: | |
3864 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { | |
3865 | ||
3866 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3867 | vm_page_unlock_queues(); | |
3868 | ||
3869 | mutex_pause(0); | |
3870 | ||
3871 | vm_page_lock_queues(); | |
3872 | lck_mtx_lock(&vm_page_queue_free_lock); | |
3873 | ||
3874 | RESET_STATE_OF_RUN(); | |
3875 | /* | |
3876 | * reset our free page limit since we | |
3877 | * dropped the lock protecting the vm_page_free_queue | |
3878 | */ | |
3879 | free_available = vm_page_free_count - vm_page_free_reserved; | |
3880 | considered = 0; | |
3881 | #if MACH_ASSERT | |
3882 | yielded++; | |
3883 | #endif | |
3884 | goto retry; | |
3885 | } | |
3886 | considered++; | |
3887 | } | |
3888 | m = VM_PAGE_NULL; | |
3889 | ||
3890 | if (npages != contig_pages) { | |
3891 | if (!wrapped) { | |
3892 | /* | |
3893 | * We didn't find a contiguous range but we didn't | |
3894 | * start from the very first page. | |
3895 | * Start again from the very first page. | |
3896 | */ | |
3897 | RESET_STATE_OF_RUN(); | |
3898 | if( flags & KMA_LOMEM) | |
3899 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; | |
3900 | else | |
3901 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; | |
3902 | last_idx = 0; | |
3903 | page_idx = last_idx; | |
3904 | wrapped = TRUE; | |
3905 | goto retry; | |
3906 | } | |
3907 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3908 | } else { | |
3909 | vm_page_t m1; | |
3910 | vm_page_t m2; | |
3911 | unsigned int cur_idx; | |
3912 | unsigned int tmp_start_idx; | |
3913 | vm_object_t locked_object = VM_OBJECT_NULL; | |
3914 | boolean_t abort_run = FALSE; | |
3915 | ||
3916 | assert(page_idx - start_idx == contig_pages); | |
3917 | ||
3918 | tmp_start_idx = start_idx; | |
3919 | ||
3920 | /* | |
3921 | * first pass through to pull the free pages | |
3922 | * off of the free queue so that in case we | |
3923 | * need substitute pages, we won't grab any | |
3924 | * of the free pages in the run... we'll clear | |
3925 | * the 'free' bit in the 2nd pass, and even in | |
3926 | * an abort_run case, we'll collect all of the | |
3927 | * free pages in this run and return them to the free list | |
3928 | */ | |
3929 | while (start_idx < page_idx) { | |
3930 | ||
3931 | m1 = &vm_pages[start_idx++]; | |
3932 | ||
3933 | #if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
3934 | assert(m1->free); | |
3935 | #endif | |
3936 | ||
3937 | if (m1->free) { | |
3938 | unsigned int color; | |
3939 | ||
3940 | color = m1->phys_page & vm_color_mask; | |
3941 | #if MACH_ASSERT | |
3942 | vm_page_verify_free_list(&vm_page_queue_free[color], color, m1, TRUE); | |
3943 | #endif | |
3944 | queue_remove(&vm_page_queue_free[color], | |
3945 | m1, | |
3946 | vm_page_t, | |
3947 | pageq); | |
3948 | m1->pageq.next = NULL; | |
3949 | m1->pageq.prev = NULL; | |
3950 | #if MACH_ASSERT | |
3951 | vm_page_verify_free_list(&vm_page_queue_free[color], color, VM_PAGE_NULL, FALSE); | |
3952 | #endif | |
3953 | /* | |
3954 | * Clear the "free" bit so that this page | |
3955 | * does not get considered for another | |
3956 | * concurrent physically-contiguous allocation. | |
3957 | */ | |
3958 | m1->free = FALSE; | |
3959 | assert(m1->busy); | |
3960 | ||
3961 | vm_page_free_count--; | |
3962 | } | |
3963 | } | |
3964 | /* | |
3965 | * adjust global freelist counts | |
3966 | */ | |
3967 | if (vm_page_free_count < vm_page_free_count_minimum) | |
3968 | vm_page_free_count_minimum = vm_page_free_count; | |
3969 | ||
3970 | if( flags & KMA_LOMEM) | |
3971 | vm_page_lomem_find_contiguous_last_idx = page_idx; | |
3972 | else | |
3973 | vm_page_find_contiguous_last_idx = page_idx; | |
3974 | ||
3975 | /* | |
3976 | * we can drop the free queue lock at this point since | |
3977 | * we've pulled any 'free' candidates off of the list | |
3978 | * we need it dropped so that we can do a vm_page_grab | |
3979 | * when substituing for pmapped/dirty pages | |
3980 | */ | |
3981 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3982 | ||
3983 | start_idx = tmp_start_idx; | |
3984 | cur_idx = page_idx - 1; | |
3985 | ||
3986 | while (start_idx++ < page_idx) { | |
3987 | /* | |
3988 | * must go through the list from back to front | |
3989 | * so that the page list is created in the | |
3990 | * correct order - low -> high phys addresses | |
3991 | */ | |
3992 | m1 = &vm_pages[cur_idx--]; | |
3993 | ||
3994 | assert(!m1->free); | |
3995 | if (m1->object == VM_OBJECT_NULL) { | |
3996 | /* | |
3997 | * page has already been removed from | |
3998 | * the free list in the 1st pass | |
3999 | */ | |
4000 | assert(m1->offset == (vm_object_offset_t) -1); | |
4001 | assert(m1->busy); | |
4002 | assert(!m1->wanted); | |
4003 | assert(!m1->laundry); | |
4004 | } else { | |
4005 | vm_object_t object; | |
4006 | ||
4007 | if (abort_run == TRUE) | |
4008 | continue; | |
4009 | ||
4010 | object = m1->object; | |
4011 | ||
4012 | if (object != locked_object) { | |
4013 | if (locked_object) { | |
4014 | vm_object_unlock(locked_object); | |
4015 | locked_object = VM_OBJECT_NULL; | |
4016 | } | |
4017 | if (vm_object_lock_try(object)) | |
4018 | locked_object = object; | |
4019 | } | |
4020 | if (locked_object == VM_OBJECT_NULL || | |
4021 | (VM_PAGE_WIRED(m1) || m1->gobbled || | |
4022 | m1->encrypted || m1->encrypted_cleaning || m1->cs_validated || m1->cs_tainted || | |
4023 | m1->error || m1->absent || m1->pageout_queue || m1->laundry || m1->wanted || m1->precious || | |
4024 | m1->cleaning || m1->overwriting || m1->restart || m1->unusual || m1->busy)) { | |
4025 | ||
4026 | if (locked_object) { | |
4027 | vm_object_unlock(locked_object); | |
4028 | locked_object = VM_OBJECT_NULL; | |
4029 | } | |
4030 | tmp_start_idx = cur_idx; | |
4031 | abort_run = TRUE; | |
4032 | continue; | |
4033 | } | |
4034 | if (m1->pmapped || m1->dirty) { | |
4035 | int refmod; | |
4036 | vm_object_offset_t offset; | |
4037 | ||
4038 | m2 = vm_page_grab(); | |
4039 | ||
4040 | if (m2 == VM_PAGE_NULL) { | |
4041 | if (locked_object) { | |
4042 | vm_object_unlock(locked_object); | |
4043 | locked_object = VM_OBJECT_NULL; | |
4044 | } | |
4045 | tmp_start_idx = cur_idx; | |
4046 | abort_run = TRUE; | |
4047 | continue; | |
4048 | } | |
4049 | if (m1->pmapped) | |
4050 | refmod = pmap_disconnect(m1->phys_page); | |
4051 | else | |
4052 | refmod = 0; | |
4053 | vm_page_copy(m1, m2); | |
4054 | ||
4055 | m2->reference = m1->reference; | |
4056 | m2->dirty = m1->dirty; | |
4057 | ||
4058 | if (refmod & VM_MEM_REFERENCED) | |
4059 | m2->reference = TRUE; | |
4060 | if (refmod & VM_MEM_MODIFIED) { | |
4061 | SET_PAGE_DIRTY(m2, TRUE); | |
4062 | } | |
4063 | offset = m1->offset; | |
4064 | ||
4065 | /* | |
4066 | * completely cleans up the state | |
4067 | * of the page so that it is ready | |
4068 | * to be put onto the free list, or | |
4069 | * for this purpose it looks like it | |
4070 | * just came off of the free list | |
4071 | */ | |
4072 | vm_page_free_prepare(m1); | |
4073 | ||
4074 | /* | |
4075 | * make sure we clear the ref/mod state | |
4076 | * from the pmap layer... else we risk | |
4077 | * inheriting state from the last time | |
4078 | * this page was used... | |
4079 | */ | |
4080 | pmap_clear_refmod(m2->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
4081 | /* | |
4082 | * now put the substitute page on the object | |
4083 | */ | |
4084 | vm_page_insert_internal(m2, locked_object, offset, TRUE, TRUE, FALSE); | |
4085 | ||
4086 | if (m2->reference) | |
4087 | vm_page_activate(m2); | |
4088 | else | |
4089 | vm_page_deactivate(m2); | |
4090 | ||
4091 | PAGE_WAKEUP_DONE(m2); | |
4092 | ||
4093 | } else { | |
4094 | /* | |
4095 | * completely cleans up the state | |
4096 | * of the page so that it is ready | |
4097 | * to be put onto the free list, or | |
4098 | * for this purpose it looks like it | |
4099 | * just came off of the free list | |
4100 | */ | |
4101 | vm_page_free_prepare(m1); | |
4102 | } | |
4103 | #if MACH_ASSERT | |
4104 | stolen_pages++; | |
4105 | #endif | |
4106 | } | |
4107 | m1->pageq.next = (queue_entry_t) m; | |
4108 | m1->pageq.prev = NULL; | |
4109 | m = m1; | |
4110 | } | |
4111 | if (locked_object) { | |
4112 | vm_object_unlock(locked_object); | |
4113 | locked_object = VM_OBJECT_NULL; | |
4114 | } | |
4115 | ||
4116 | if (abort_run == TRUE) { | |
4117 | if (m != VM_PAGE_NULL) { | |
4118 | vm_page_free_list(m, FALSE); | |
4119 | } | |
4120 | #if MACH_ASSERT | |
4121 | dumped_run++; | |
4122 | #endif | |
4123 | /* | |
4124 | * want the index of the last | |
4125 | * page in this run that was | |
4126 | * successfully 'stolen', so back | |
4127 | * it up 1 for the auto-decrement on use | |
4128 | * and 1 more to bump back over this page | |
4129 | */ | |
4130 | page_idx = tmp_start_idx + 2; | |
4131 | if (page_idx >= vm_pages_count) { | |
4132 | if (wrapped) | |
4133 | goto done_scanning; | |
4134 | page_idx = last_idx = 0; | |
4135 | wrapped = TRUE; | |
4136 | } | |
4137 | abort_run = FALSE; | |
4138 | ||
4139 | /* | |
4140 | * We didn't find a contiguous range but we didn't | |
4141 | * start from the very first page. | |
4142 | * Start again from the very first page. | |
4143 | */ | |
4144 | RESET_STATE_OF_RUN(); | |
4145 | ||
4146 | if( flags & KMA_LOMEM) | |
4147 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; | |
4148 | else | |
4149 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; | |
4150 | ||
4151 | last_idx = page_idx; | |
4152 | ||
4153 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4154 | /* | |
4155 | * reset our free page limit since we | |
4156 | * dropped the lock protecting the vm_page_free_queue | |
4157 | */ | |
4158 | free_available = vm_page_free_count - vm_page_free_reserved; | |
4159 | goto retry; | |
4160 | } | |
4161 | ||
4162 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { | |
4163 | ||
4164 | if (wire == TRUE) | |
4165 | m1->wire_count++; | |
4166 | else | |
4167 | m1->gobbled = TRUE; | |
4168 | } | |
4169 | if (wire == FALSE) | |
4170 | vm_page_gobble_count += npages; | |
4171 | ||
4172 | /* | |
4173 | * gobbled pages are also counted as wired pages | |
4174 | */ | |
4175 | vm_page_wire_count += npages; | |
4176 | ||
4177 | assert(vm_page_verify_contiguous(m, npages)); | |
4178 | } | |
4179 | done_scanning: | |
4180 | vm_page_unlock_queues(); | |
4181 | ||
4182 | #if DEBUG | |
4183 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); | |
4184 | ||
4185 | tv_end_sec -= tv_start_sec; | |
4186 | if (tv_end_usec < tv_start_usec) { | |
4187 | tv_end_sec--; | |
4188 | tv_end_usec += 1000000; | |
4189 | } | |
4190 | tv_end_usec -= tv_start_usec; | |
4191 | if (tv_end_usec >= 1000000) { | |
4192 | tv_end_sec++; | |
4193 | tv_end_sec -= 1000000; | |
4194 | } | |
4195 | if (vm_page_find_contig_debug) { | |
4196 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages\n", | |
4197 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
4198 | (long)tv_end_sec, tv_end_usec, orig_last_idx, | |
4199 | scanned, yielded, dumped_run, stolen_pages); | |
4200 | } | |
4201 | ||
4202 | #endif | |
4203 | #if MACH_ASSERT | |
4204 | vm_page_verify_free_lists(); | |
4205 | #endif | |
4206 | return m; | |
4207 | } | |
4208 | ||
4209 | /* | |
4210 | * Allocate a list of contiguous, wired pages. | |
4211 | */ | |
4212 | kern_return_t | |
4213 | cpm_allocate( | |
4214 | vm_size_t size, | |
4215 | vm_page_t *list, | |
4216 | ppnum_t max_pnum, | |
4217 | ppnum_t pnum_mask, | |
4218 | boolean_t wire, | |
4219 | int flags) | |
4220 | { | |
4221 | vm_page_t pages; | |
4222 | unsigned int npages; | |
4223 | ||
4224 | if (size % PAGE_SIZE != 0) | |
4225 | return KERN_INVALID_ARGUMENT; | |
4226 | ||
4227 | npages = (unsigned int) (size / PAGE_SIZE); | |
4228 | if (npages != size / PAGE_SIZE) { | |
4229 | /* 32-bit overflow */ | |
4230 | return KERN_INVALID_ARGUMENT; | |
4231 | } | |
4232 | ||
4233 | /* | |
4234 | * Obtain a pointer to a subset of the free | |
4235 | * list large enough to satisfy the request; | |
4236 | * the region will be physically contiguous. | |
4237 | */ | |
4238 | pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags); | |
4239 | ||
4240 | if (pages == VM_PAGE_NULL) | |
4241 | return KERN_NO_SPACE; | |
4242 | /* | |
4243 | * determine need for wakeups | |
4244 | */ | |
4245 | if ((vm_page_free_count < vm_page_free_min) || | |
4246 | ((vm_page_free_count < vm_page_free_target) && | |
4247 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
4248 | thread_wakeup((event_t) &vm_page_free_wanted); | |
4249 | ||
4250 | VM_CHECK_MEMORYSTATUS; | |
4251 | ||
4252 | /* | |
4253 | * The CPM pages should now be available and | |
4254 | * ordered by ascending physical address. | |
4255 | */ | |
4256 | assert(vm_page_verify_contiguous(pages, npages)); | |
4257 | ||
4258 | *list = pages; | |
4259 | return KERN_SUCCESS; | |
4260 | } | |
4261 | ||
4262 | ||
4263 | unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; | |
4264 | ||
4265 | /* | |
4266 | * when working on a 'run' of pages, it is necessary to hold | |
4267 | * the vm_page_queue_lock (a hot global lock) for certain operations | |
4268 | * on the page... however, the majority of the work can be done | |
4269 | * while merely holding the object lock... in fact there are certain | |
4270 | * collections of pages that don't require any work brokered by the | |
4271 | * vm_page_queue_lock... to mitigate the time spent behind the global | |
4272 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT | |
4273 | * while doing all of the work that doesn't require the vm_page_queue_lock... | |
4274 | * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the | |
4275 | * necessary work for each page... we will grab the busy bit on the page | |
4276 | * if it's not already held so that vm_page_do_delayed_work can drop the object lock | |
4277 | * if it can't immediately take the vm_page_queue_lock in order to compete | |
4278 | * for the locks in the same order that vm_pageout_scan takes them. | |
4279 | * the operation names are modeled after the names of the routines that | |
4280 | * need to be called in order to make the changes very obvious in the | |
4281 | * original loop | |
4282 | */ | |
4283 | ||
4284 | void | |
4285 | vm_page_do_delayed_work( | |
4286 | vm_object_t object, | |
4287 | struct vm_page_delayed_work *dwp, | |
4288 | int dw_count) | |
4289 | { | |
4290 | int j; | |
4291 | vm_page_t m; | |
4292 | vm_page_t local_free_q = VM_PAGE_NULL; | |
4293 | ||
4294 | /* | |
4295 | * pageout_scan takes the vm_page_lock_queues first | |
4296 | * then tries for the object lock... to avoid what | |
4297 | * is effectively a lock inversion, we'll go to the | |
4298 | * trouble of taking them in that same order... otherwise | |
4299 | * if this object contains the majority of the pages resident | |
4300 | * in the UBC (or a small set of large objects actively being | |
4301 | * worked on contain the majority of the pages), we could | |
4302 | * cause the pageout_scan thread to 'starve' in its attempt | |
4303 | * to find pages to move to the free queue, since it has to | |
4304 | * successfully acquire the object lock of any candidate page | |
4305 | * before it can steal/clean it. | |
4306 | */ | |
4307 | if (!vm_page_trylockspin_queues()) { | |
4308 | vm_object_unlock(object); | |
4309 | ||
4310 | vm_page_lockspin_queues(); | |
4311 | ||
4312 | for (j = 0; ; j++) { | |
4313 | if (!vm_object_lock_avoid(object) && | |
4314 | _vm_object_lock_try(object)) | |
4315 | break; | |
4316 | vm_page_unlock_queues(); | |
4317 | mutex_pause(j); | |
4318 | vm_page_lockspin_queues(); | |
4319 | } | |
4320 | } | |
4321 | for (j = 0; j < dw_count; j++, dwp++) { | |
4322 | ||
4323 | m = dwp->dw_m; | |
4324 | ||
4325 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) | |
4326 | vm_pageout_throttle_up(m); | |
4327 | ||
4328 | if (dwp->dw_mask & DW_vm_page_wire) | |
4329 | vm_page_wire(m); | |
4330 | else if (dwp->dw_mask & DW_vm_page_unwire) { | |
4331 | boolean_t queueit; | |
4332 | ||
4333 | queueit = (dwp->dw_mask & DW_vm_page_free) ? FALSE : TRUE; | |
4334 | ||
4335 | vm_page_unwire(m, queueit); | |
4336 | } | |
4337 | if (dwp->dw_mask & DW_vm_page_free) { | |
4338 | vm_page_free_prepare_queues(m); | |
4339 | ||
4340 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
4341 | /* | |
4342 | * Add this page to our list of reclaimed pages, | |
4343 | * to be freed later. | |
4344 | */ | |
4345 | m->pageq.next = (queue_entry_t) local_free_q; | |
4346 | local_free_q = m; | |
4347 | } else { | |
4348 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) | |
4349 | vm_page_deactivate_internal(m, FALSE); | |
4350 | else if (dwp->dw_mask & DW_vm_page_activate) { | |
4351 | if (m->active == FALSE) { | |
4352 | vm_page_activate(m); | |
4353 | } | |
4354 | } | |
4355 | else if (dwp->dw_mask & DW_vm_page_speculate) | |
4356 | vm_page_speculate(m, TRUE); | |
4357 | else if (dwp->dw_mask & DW_enqueue_cleaned) { | |
4358 | /* | |
4359 | * if we didn't hold the object lock and did this, | |
4360 | * we might disconnect the page, then someone might | |
4361 | * soft fault it back in, then we would put it on the | |
4362 | * cleaned queue, and so we would have a referenced (maybe even dirty) | |
4363 | * page on that queue, which we don't want | |
4364 | */ | |
4365 | int refmod_state = pmap_disconnect(m->phys_page); | |
4366 | ||
4367 | if ((refmod_state & VM_MEM_REFERENCED)) { | |
4368 | /* | |
4369 | * this page has been touched since it got cleaned; let's activate it | |
4370 | * if it hasn't already been | |
4371 | */ | |
4372 | vm_pageout_enqueued_cleaned++; | |
4373 | vm_pageout_cleaned_reactivated++; | |
4374 | vm_pageout_cleaned_commit_reactivated++; | |
4375 | ||
4376 | if (m->active == FALSE) | |
4377 | vm_page_activate(m); | |
4378 | } else { | |
4379 | m->reference = FALSE; | |
4380 | vm_page_enqueue_cleaned(m); | |
4381 | } | |
4382 | } | |
4383 | else if (dwp->dw_mask & DW_vm_page_lru) | |
4384 | vm_page_lru(m); | |
4385 | else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) { | |
4386 | if ( !m->pageout_queue) | |
4387 | VM_PAGE_QUEUES_REMOVE(m); | |
4388 | } | |
4389 | if (dwp->dw_mask & DW_set_reference) | |
4390 | m->reference = TRUE; | |
4391 | else if (dwp->dw_mask & DW_clear_reference) | |
4392 | m->reference = FALSE; | |
4393 | ||
4394 | if (dwp->dw_mask & DW_move_page) { | |
4395 | if ( !m->pageout_queue) { | |
4396 | VM_PAGE_QUEUES_REMOVE(m); | |
4397 | ||
4398 | assert(m->object != kernel_object); | |
4399 | ||
4400 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); | |
4401 | } | |
4402 | } | |
4403 | if (dwp->dw_mask & DW_clear_busy) | |
4404 | m->busy = FALSE; | |
4405 | ||
4406 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
4407 | PAGE_WAKEUP(m); | |
4408 | } | |
4409 | } | |
4410 | vm_page_unlock_queues(); | |
4411 | ||
4412 | if (local_free_q) | |
4413 | vm_page_free_list(local_free_q, TRUE); | |
4414 | ||
4415 | VM_CHECK_MEMORYSTATUS; | |
4416 | ||
4417 | } | |
4418 | ||
4419 | kern_return_t | |
4420 | vm_page_alloc_list( | |
4421 | int page_count, | |
4422 | int flags, | |
4423 | vm_page_t *list) | |
4424 | { | |
4425 | vm_page_t lo_page_list = VM_PAGE_NULL; | |
4426 | vm_page_t mem; | |
4427 | int i; | |
4428 | ||
4429 | if ( !(flags & KMA_LOMEM)) | |
4430 | panic("vm_page_alloc_list: called w/o KMA_LOMEM"); | |
4431 | ||
4432 | for (i = 0; i < page_count; i++) { | |
4433 | ||
4434 | mem = vm_page_grablo(); | |
4435 | ||
4436 | if (mem == VM_PAGE_NULL) { | |
4437 | if (lo_page_list) | |
4438 | vm_page_free_list(lo_page_list, FALSE); | |
4439 | ||
4440 | *list = VM_PAGE_NULL; | |
4441 | ||
4442 | return (KERN_RESOURCE_SHORTAGE); | |
4443 | } | |
4444 | mem->pageq.next = (queue_entry_t) lo_page_list; | |
4445 | lo_page_list = mem; | |
4446 | } | |
4447 | *list = lo_page_list; | |
4448 | ||
4449 | return (KERN_SUCCESS); | |
4450 | } | |
4451 | ||
4452 | void | |
4453 | vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) | |
4454 | { | |
4455 | page->offset = offset; | |
4456 | } | |
4457 | ||
4458 | vm_page_t | |
4459 | vm_page_get_next(vm_page_t page) | |
4460 | { | |
4461 | return ((vm_page_t) page->pageq.next); | |
4462 | } | |
4463 | ||
4464 | vm_object_offset_t | |
4465 | vm_page_get_offset(vm_page_t page) | |
4466 | { | |
4467 | return (page->offset); | |
4468 | } | |
4469 | ||
4470 | ppnum_t | |
4471 | vm_page_get_phys_page(vm_page_t page) | |
4472 | { | |
4473 | return (page->phys_page); | |
4474 | } | |
4475 | ||
4476 | ||
4477 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
4478 | ||
4479 | #if HIBERNATION | |
4480 | ||
4481 | static vm_page_t hibernate_gobble_queue; | |
4482 | ||
4483 | extern boolean_t (* volatile consider_buffer_cache_collect)(int); | |
4484 | ||
4485 | static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); | |
4486 | static int hibernate_flush_dirty_pages(void); | |
4487 | static int hibernate_flush_queue(queue_head_t *, int); | |
4488 | ||
4489 | void hibernate_flush_wait(void); | |
4490 | void hibernate_mark_in_progress(void); | |
4491 | void hibernate_clear_in_progress(void); | |
4492 | ||
4493 | ||
4494 | struct hibernate_statistics { | |
4495 | int hibernate_considered; | |
4496 | int hibernate_reentered_on_q; | |
4497 | int hibernate_found_dirty; | |
4498 | int hibernate_skipped_cleaning; | |
4499 | int hibernate_skipped_transient; | |
4500 | int hibernate_skipped_precious; | |
4501 | int hibernate_queue_nolock; | |
4502 | int hibernate_queue_paused; | |
4503 | int hibernate_throttled; | |
4504 | int hibernate_throttle_timeout; | |
4505 | int hibernate_drained; | |
4506 | int hibernate_drain_timeout; | |
4507 | int cd_lock_failed; | |
4508 | int cd_found_precious; | |
4509 | int cd_found_wired; | |
4510 | int cd_found_busy; | |
4511 | int cd_found_unusual; | |
4512 | int cd_found_cleaning; | |
4513 | int cd_found_laundry; | |
4514 | int cd_found_dirty; | |
4515 | int cd_local_free; | |
4516 | int cd_total_free; | |
4517 | int cd_vm_page_wire_count; | |
4518 | int cd_pages; | |
4519 | int cd_discarded; | |
4520 | int cd_count_wire; | |
4521 | } hibernate_stats; | |
4522 | ||
4523 | ||
4524 | ||
4525 | static int | |
4526 | hibernate_drain_pageout_queue(struct vm_pageout_queue *q) | |
4527 | { | |
4528 | wait_result_t wait_result; | |
4529 | ||
4530 | vm_page_lock_queues(); | |
4531 | ||
4532 | while (q->pgo_laundry) { | |
4533 | ||
4534 | q->pgo_draining = TRUE; | |
4535 | ||
4536 | assert_wait_timeout((event_t) (&q->pgo_laundry+1), THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC); | |
4537 | ||
4538 | vm_page_unlock_queues(); | |
4539 | ||
4540 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
4541 | ||
4542 | if (wait_result == THREAD_TIMED_OUT) { | |
4543 | hibernate_stats.hibernate_drain_timeout++; | |
4544 | return (1); | |
4545 | } | |
4546 | vm_page_lock_queues(); | |
4547 | ||
4548 | hibernate_stats.hibernate_drained++; | |
4549 | } | |
4550 | vm_page_unlock_queues(); | |
4551 | ||
4552 | return (0); | |
4553 | } | |
4554 | ||
4555 | ||
4556 | static int | |
4557 | hibernate_flush_queue(queue_head_t *q, int qcount) | |
4558 | { | |
4559 | vm_page_t m; | |
4560 | vm_object_t l_object = NULL; | |
4561 | vm_object_t m_object = NULL; | |
4562 | int refmod_state = 0; | |
4563 | int try_failed_count = 0; | |
4564 | int retval = 0; | |
4565 | int current_run = 0; | |
4566 | struct vm_pageout_queue *iq; | |
4567 | struct vm_pageout_queue *eq; | |
4568 | struct vm_pageout_queue *tq; | |
4569 | ||
4570 | hibernate_cleaning_in_progress = TRUE; | |
4571 | ||
4572 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, q, qcount, 0, 0, 0); | |
4573 | ||
4574 | iq = &vm_pageout_queue_internal; | |
4575 | eq = &vm_pageout_queue_external; | |
4576 | ||
4577 | vm_page_lock_queues(); | |
4578 | ||
4579 | while (qcount && !queue_empty(q)) { | |
4580 | ||
4581 | if (current_run++ == 1000) { | |
4582 | if (hibernate_should_abort()) { | |
4583 | retval = 1; | |
4584 | break; | |
4585 | } | |
4586 | current_run = 0; | |
4587 | } | |
4588 | ||
4589 | m = (vm_page_t) queue_first(q); | |
4590 | m_object = m->object; | |
4591 | ||
4592 | /* | |
4593 | * check to see if we currently are working | |
4594 | * with the same object... if so, we've | |
4595 | * already got the lock | |
4596 | */ | |
4597 | if (m_object != l_object) { | |
4598 | /* | |
4599 | * the object associated with candidate page is | |
4600 | * different from the one we were just working | |
4601 | * with... dump the lock if we still own it | |
4602 | */ | |
4603 | if (l_object != NULL) { | |
4604 | vm_object_unlock(l_object); | |
4605 | l_object = NULL; | |
4606 | } | |
4607 | /* | |
4608 | * Try to lock object; since we've alread got the | |
4609 | * page queues lock, we can only 'try' for this one. | |
4610 | * if the 'try' fails, we need to do a mutex_pause | |
4611 | * to allow the owner of the object lock a chance to | |
4612 | * run... | |
4613 | */ | |
4614 | if ( !vm_object_lock_try_scan(m_object)) { | |
4615 | ||
4616 | if (try_failed_count > 20) { | |
4617 | hibernate_stats.hibernate_queue_nolock++; | |
4618 | ||
4619 | goto reenter_pg_on_q; | |
4620 | } | |
4621 | vm_pageout_scan_wants_object = m_object; | |
4622 | ||
4623 | vm_page_unlock_queues(); | |
4624 | mutex_pause(try_failed_count++); | |
4625 | vm_page_lock_queues(); | |
4626 | ||
4627 | hibernate_stats.hibernate_queue_paused++; | |
4628 | continue; | |
4629 | } else { | |
4630 | l_object = m_object; | |
4631 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4632 | } | |
4633 | } | |
4634 | if ( !m_object->alive || m->encrypted_cleaning || m->cleaning || m->laundry || m->busy || m->absent || m->error) { | |
4635 | /* | |
4636 | * page is not to be cleaned | |
4637 | * put it back on the head of its queue | |
4638 | */ | |
4639 | if (m->cleaning) | |
4640 | hibernate_stats.hibernate_skipped_cleaning++; | |
4641 | else | |
4642 | hibernate_stats.hibernate_skipped_transient++; | |
4643 | ||
4644 | goto reenter_pg_on_q; | |
4645 | } | |
4646 | if ( !m_object->pager_initialized && m_object->pager_created) | |
4647 | goto reenter_pg_on_q; | |
4648 | ||
4649 | if (m_object->copy == VM_OBJECT_NULL) { | |
4650 | if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { | |
4651 | /* | |
4652 | * let the normal hibernate image path | |
4653 | * deal with these | |
4654 | */ | |
4655 | goto reenter_pg_on_q; | |
4656 | } | |
4657 | } | |
4658 | if ( !m->dirty && m->pmapped) { | |
4659 | refmod_state = pmap_get_refmod(m->phys_page); | |
4660 | ||
4661 | if ((refmod_state & VM_MEM_MODIFIED)) { | |
4662 | SET_PAGE_DIRTY(m, FALSE); | |
4663 | } | |
4664 | } else | |
4665 | refmod_state = 0; | |
4666 | ||
4667 | if ( !m->dirty) { | |
4668 | /* | |
4669 | * page is not to be cleaned | |
4670 | * put it back on the head of its queue | |
4671 | */ | |
4672 | if (m->precious) | |
4673 | hibernate_stats.hibernate_skipped_precious++; | |
4674 | ||
4675 | goto reenter_pg_on_q; | |
4676 | } | |
4677 | tq = NULL; | |
4678 | ||
4679 | if (m_object->internal) { | |
4680 | if (VM_PAGE_Q_THROTTLED(iq)) | |
4681 | tq = iq; | |
4682 | } else if (VM_PAGE_Q_THROTTLED(eq)) | |
4683 | tq = eq; | |
4684 | ||
4685 | if (tq != NULL) { | |
4686 | wait_result_t wait_result; | |
4687 | int wait_count = 5; | |
4688 | ||
4689 | if (l_object != NULL) { | |
4690 | vm_object_unlock(l_object); | |
4691 | l_object = NULL; | |
4692 | } | |
4693 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4694 | ||
4695 | tq->pgo_throttled = TRUE; | |
4696 | ||
4697 | while (retval == 0) { | |
4698 | ||
4699 | assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000*NSEC_PER_USEC); | |
4700 | ||
4701 | vm_page_unlock_queues(); | |
4702 | ||
4703 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
4704 | ||
4705 | vm_page_lock_queues(); | |
4706 | ||
4707 | if (hibernate_should_abort()) | |
4708 | retval = 1; | |
4709 | ||
4710 | if (wait_result != THREAD_TIMED_OUT) | |
4711 | break; | |
4712 | ||
4713 | if (--wait_count == 0) { | |
4714 | hibernate_stats.hibernate_throttle_timeout++; | |
4715 | retval = 1; | |
4716 | } | |
4717 | } | |
4718 | if (retval) | |
4719 | break; | |
4720 | ||
4721 | hibernate_stats.hibernate_throttled++; | |
4722 | ||
4723 | continue; | |
4724 | } | |
4725 | /* | |
4726 | * we've already factored out pages in the laundry which | |
4727 | * means this page can't be on the pageout queue so it's | |
4728 | * safe to do the VM_PAGE_QUEUES_REMOVE | |
4729 | */ | |
4730 | assert(!m->pageout_queue); | |
4731 | ||
4732 | VM_PAGE_QUEUES_REMOVE(m); | |
4733 | ||
4734 | vm_pageout_cluster(m, FALSE); | |
4735 | ||
4736 | hibernate_stats.hibernate_found_dirty++; | |
4737 | ||
4738 | goto next_pg; | |
4739 | ||
4740 | reenter_pg_on_q: | |
4741 | queue_remove(q, m, vm_page_t, pageq); | |
4742 | queue_enter(q, m, vm_page_t, pageq); | |
4743 | ||
4744 | hibernate_stats.hibernate_reentered_on_q++; | |
4745 | next_pg: | |
4746 | hibernate_stats.hibernate_considered++; | |
4747 | ||
4748 | qcount--; | |
4749 | try_failed_count = 0; | |
4750 | } | |
4751 | if (l_object != NULL) { | |
4752 | vm_object_unlock(l_object); | |
4753 | l_object = NULL; | |
4754 | } | |
4755 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4756 | ||
4757 | vm_page_unlock_queues(); | |
4758 | ||
4759 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); | |
4760 | ||
4761 | hibernate_cleaning_in_progress = FALSE; | |
4762 | ||
4763 | return (retval); | |
4764 | } | |
4765 | ||
4766 | ||
4767 | static int | |
4768 | hibernate_flush_dirty_pages() | |
4769 | { | |
4770 | struct vm_speculative_age_q *aq; | |
4771 | uint32_t i; | |
4772 | ||
4773 | bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); | |
4774 | ||
4775 | if (vm_page_local_q) { | |
4776 | for (i = 0; i < vm_page_local_q_count; i++) | |
4777 | vm_page_reactivate_local(i, TRUE, FALSE); | |
4778 | } | |
4779 | ||
4780 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { | |
4781 | int qcount; | |
4782 | vm_page_t m; | |
4783 | ||
4784 | aq = &vm_page_queue_speculative[i]; | |
4785 | ||
4786 | if (queue_empty(&aq->age_q)) | |
4787 | continue; | |
4788 | qcount = 0; | |
4789 | ||
4790 | vm_page_lockspin_queues(); | |
4791 | ||
4792 | queue_iterate(&aq->age_q, | |
4793 | m, | |
4794 | vm_page_t, | |
4795 | pageq) | |
4796 | { | |
4797 | qcount++; | |
4798 | } | |
4799 | vm_page_unlock_queues(); | |
4800 | ||
4801 | if (qcount) { | |
4802 | if (hibernate_flush_queue(&aq->age_q, qcount)) | |
4803 | return (1); | |
4804 | } | |
4805 | } | |
4806 | if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) | |
4807 | return (1); | |
4808 | if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) | |
4809 | return (1); | |
4810 | if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) | |
4811 | return (1); | |
4812 | if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) | |
4813 | return (1); | |
4814 | ||
4815 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) | |
4816 | return (1); | |
4817 | return (hibernate_drain_pageout_queue(&vm_pageout_queue_external)); | |
4818 | } | |
4819 | ||
4820 | ||
4821 | extern void IOSleep(unsigned int); | |
4822 | extern int sync_internal(void); | |
4823 | ||
4824 | int | |
4825 | hibernate_flush_memory() | |
4826 | { | |
4827 | int retval; | |
4828 | ||
4829 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); | |
4830 | ||
4831 | IOSleep(2 * 1000); | |
4832 | ||
4833 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_NONE, vm_page_free_count, 0, 0, 0, 0); | |
4834 | ||
4835 | if ((retval = hibernate_flush_dirty_pages()) == 0) { | |
4836 | if (consider_buffer_cache_collect != NULL) { | |
4837 | ||
4838 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, vm_page_wire_count, 0, 0, 0, 0); | |
4839 | ||
4840 | sync_internal(); | |
4841 | (void)(*consider_buffer_cache_collect)(1); | |
4842 | consider_zone_gc(TRUE); | |
4843 | ||
4844 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, vm_page_wire_count, 0, 0, 0, 0); | |
4845 | } | |
4846 | } | |
4847 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); | |
4848 | ||
4849 | HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n", | |
4850 | hibernate_stats.hibernate_considered, | |
4851 | hibernate_stats.hibernate_reentered_on_q, | |
4852 | hibernate_stats.hibernate_found_dirty); | |
4853 | HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) queue_nolock(%d)\n", | |
4854 | hibernate_stats.hibernate_skipped_cleaning, | |
4855 | hibernate_stats.hibernate_skipped_transient, | |
4856 | hibernate_stats.hibernate_skipped_precious, | |
4857 | hibernate_stats.hibernate_queue_nolock); | |
4858 | HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n", | |
4859 | hibernate_stats.hibernate_queue_paused, | |
4860 | hibernate_stats.hibernate_throttled, | |
4861 | hibernate_stats.hibernate_throttle_timeout, | |
4862 | hibernate_stats.hibernate_drained, | |
4863 | hibernate_stats.hibernate_drain_timeout); | |
4864 | ||
4865 | return (retval); | |
4866 | } | |
4867 | ||
4868 | ||
4869 | static void | |
4870 | hibernate_page_list_zero(hibernate_page_list_t *list) | |
4871 | { | |
4872 | uint32_t bank; | |
4873 | hibernate_bitmap_t * bitmap; | |
4874 | ||
4875 | bitmap = &list->bank_bitmap[0]; | |
4876 | for (bank = 0; bank < list->bank_count; bank++) | |
4877 | { | |
4878 | uint32_t last_bit; | |
4879 | ||
4880 | bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); | |
4881 | // set out-of-bound bits at end of bitmap. | |
4882 | last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); | |
4883 | if (last_bit) | |
4884 | bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); | |
4885 | ||
4886 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; | |
4887 | } | |
4888 | } | |
4889 | ||
4890 | void | |
4891 | hibernate_gobble_pages(uint32_t gobble_count, uint32_t free_page_time) | |
4892 | { | |
4893 | uint32_t i; | |
4894 | vm_page_t m; | |
4895 | uint64_t start, end, timeout, nsec; | |
4896 | clock_interval_to_deadline(free_page_time, 1000 * 1000 /*ms*/, &timeout); | |
4897 | clock_get_uptime(&start); | |
4898 | ||
4899 | for (i = 0; i < gobble_count; i++) | |
4900 | { | |
4901 | while (VM_PAGE_NULL == (m = vm_page_grab())) | |
4902 | { | |
4903 | clock_get_uptime(&end); | |
4904 | if (end >= timeout) | |
4905 | break; | |
4906 | VM_PAGE_WAIT(); | |
4907 | } | |
4908 | if (!m) | |
4909 | break; | |
4910 | m->busy = FALSE; | |
4911 | vm_page_gobble(m); | |
4912 | ||
4913 | m->pageq.next = (queue_entry_t) hibernate_gobble_queue; | |
4914 | hibernate_gobble_queue = m; | |
4915 | } | |
4916 | ||
4917 | clock_get_uptime(&end); | |
4918 | absolutetime_to_nanoseconds(end - start, &nsec); | |
4919 | HIBLOG("Gobbled %d pages, time: %qd ms\n", i, nsec / 1000000ULL); | |
4920 | } | |
4921 | ||
4922 | void | |
4923 | hibernate_free_gobble_pages(void) | |
4924 | { | |
4925 | vm_page_t m, next; | |
4926 | uint32_t count = 0; | |
4927 | ||
4928 | m = (vm_page_t) hibernate_gobble_queue; | |
4929 | while(m) | |
4930 | { | |
4931 | next = (vm_page_t) m->pageq.next; | |
4932 | vm_page_free(m); | |
4933 | count++; | |
4934 | m = next; | |
4935 | } | |
4936 | hibernate_gobble_queue = VM_PAGE_NULL; | |
4937 | ||
4938 | if (count) | |
4939 | HIBLOG("Freed %d pages\n", count); | |
4940 | } | |
4941 | ||
4942 | static boolean_t | |
4943 | hibernate_consider_discard(vm_page_t m) | |
4944 | { | |
4945 | vm_object_t object = NULL; | |
4946 | int refmod_state; | |
4947 | boolean_t discard = FALSE; | |
4948 | ||
4949 | do | |
4950 | { | |
4951 | if (m->private) | |
4952 | panic("hibernate_consider_discard: private"); | |
4953 | ||
4954 | if (!vm_object_lock_try(m->object)) { | |
4955 | hibernate_stats.cd_lock_failed++; | |
4956 | break; | |
4957 | } | |
4958 | object = m->object; | |
4959 | ||
4960 | if (VM_PAGE_WIRED(m)) { | |
4961 | hibernate_stats.cd_found_wired++; | |
4962 | break; | |
4963 | } | |
4964 | if (m->precious) { | |
4965 | hibernate_stats.cd_found_precious++; | |
4966 | break; | |
4967 | } | |
4968 | if (m->busy || !object->alive) { | |
4969 | /* | |
4970 | * Somebody is playing with this page. | |
4971 | */ | |
4972 | hibernate_stats.cd_found_busy++; | |
4973 | break; | |
4974 | } | |
4975 | if (m->absent || m->unusual || m->error) { | |
4976 | /* | |
4977 | * If it's unusual in anyway, ignore it | |
4978 | */ | |
4979 | hibernate_stats.cd_found_unusual++; | |
4980 | break; | |
4981 | } | |
4982 | if (m->cleaning) { | |
4983 | hibernate_stats.cd_found_cleaning++; | |
4984 | break; | |
4985 | } | |
4986 | if (m->laundry) { | |
4987 | hibernate_stats.cd_found_laundry++; | |
4988 | break; | |
4989 | } | |
4990 | if (!m->dirty) | |
4991 | { | |
4992 | refmod_state = pmap_get_refmod(m->phys_page); | |
4993 | ||
4994 | if (refmod_state & VM_MEM_REFERENCED) | |
4995 | m->reference = TRUE; | |
4996 | if (refmod_state & VM_MEM_MODIFIED) { | |
4997 | SET_PAGE_DIRTY(m, FALSE); | |
4998 | } | |
4999 | } | |
5000 | ||
5001 | /* | |
5002 | * If it's clean or purgeable we can discard the page on wakeup. | |
5003 | */ | |
5004 | discard = (!m->dirty) | |
5005 | || (VM_PURGABLE_VOLATILE == object->purgable) | |
5006 | || (VM_PURGABLE_EMPTY == object->purgable); | |
5007 | ||
5008 | if (discard == FALSE) | |
5009 | hibernate_stats.cd_found_dirty++; | |
5010 | } | |
5011 | while (FALSE); | |
5012 | ||
5013 | if (object) | |
5014 | vm_object_unlock(object); | |
5015 | ||
5016 | return (discard); | |
5017 | } | |
5018 | ||
5019 | ||
5020 | static void | |
5021 | hibernate_discard_page(vm_page_t m) | |
5022 | { | |
5023 | if (m->absent || m->unusual || m->error) | |
5024 | /* | |
5025 | * If it's unusual in anyway, ignore | |
5026 | */ | |
5027 | return; | |
5028 | ||
5029 | #if DEBUG | |
5030 | vm_object_t object = m->object; | |
5031 | if (!vm_object_lock_try(m->object)) | |
5032 | panic("hibernate_discard_page(%p) !vm_object_lock_try", m); | |
5033 | #else | |
5034 | /* No need to lock page queue for token delete, hibernate_vm_unlock() | |
5035 | makes sure these locks are uncontended before sleep */ | |
5036 | #endif /* !DEBUG */ | |
5037 | ||
5038 | if (m->pmapped == TRUE) | |
5039 | { | |
5040 | __unused int refmod_state = pmap_disconnect(m->phys_page); | |
5041 | } | |
5042 | ||
5043 | if (m->laundry) | |
5044 | panic("hibernate_discard_page(%p) laundry", m); | |
5045 | if (m->private) | |
5046 | panic("hibernate_discard_page(%p) private", m); | |
5047 | if (m->fictitious) | |
5048 | panic("hibernate_discard_page(%p) fictitious", m); | |
5049 | ||
5050 | if (VM_PURGABLE_VOLATILE == m->object->purgable) | |
5051 | { | |
5052 | /* object should be on a queue */ | |
5053 | assert((m->object->objq.next != NULL) && (m->object->objq.prev != NULL)); | |
5054 | purgeable_q_t old_queue = vm_purgeable_object_remove(m->object); | |
5055 | assert(old_queue); | |
5056 | vm_purgeable_token_delete_first(old_queue); | |
5057 | m->object->purgable = VM_PURGABLE_EMPTY; | |
5058 | } | |
5059 | ||
5060 | vm_page_free(m); | |
5061 | ||
5062 | #if DEBUG | |
5063 | vm_object_unlock(object); | |
5064 | #endif /* DEBUG */ | |
5065 | } | |
5066 | ||
5067 | /* | |
5068 | Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, | |
5069 | pages known to VM to not need saving are subtracted. | |
5070 | Wired pages to be saved are present in page_list_wired, pageable in page_list. | |
5071 | */ | |
5072 | ||
5073 | void | |
5074 | hibernate_page_list_setall(hibernate_page_list_t * page_list, | |
5075 | hibernate_page_list_t * page_list_wired, | |
5076 | hibernate_page_list_t * page_list_pal, | |
5077 | uint32_t * pagesOut) | |
5078 | { | |
5079 | uint64_t start, end, nsec; | |
5080 | vm_page_t m; | |
5081 | uint32_t pages = page_list->page_count; | |
5082 | uint32_t count_zf = 0, count_throttled = 0; | |
5083 | uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0; | |
5084 | uint32_t count_wire = pages; | |
5085 | uint32_t count_discard_active = 0; | |
5086 | uint32_t count_discard_inactive = 0; | |
5087 | uint32_t count_discard_cleaned = 0; | |
5088 | uint32_t count_discard_purgeable = 0; | |
5089 | uint32_t count_discard_speculative = 0; | |
5090 | uint32_t i; | |
5091 | uint32_t bank; | |
5092 | hibernate_bitmap_t * bitmap; | |
5093 | hibernate_bitmap_t * bitmap_wired; | |
5094 | ||
5095 | ||
5096 | HIBLOG("hibernate_page_list_setall start %p, %p\n", page_list, page_list_wired); | |
5097 | ||
5098 | #if DEBUG | |
5099 | vm_page_lock_queues(); | |
5100 | if (vm_page_local_q) { | |
5101 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5102 | struct vpl *lq; | |
5103 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5104 | VPL_LOCK(&lq->vpl_lock); | |
5105 | } | |
5106 | } | |
5107 | #endif /* DEBUG */ | |
5108 | ||
5109 | ||
5110 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); | |
5111 | ||
5112 | clock_get_uptime(&start); | |
5113 | ||
5114 | hibernate_page_list_zero(page_list); | |
5115 | hibernate_page_list_zero(page_list_wired); | |
5116 | hibernate_page_list_zero(page_list_pal); | |
5117 | ||
5118 | hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; | |
5119 | hibernate_stats.cd_pages = pages; | |
5120 | ||
5121 | if (vm_page_local_q) { | |
5122 | for (i = 0; i < vm_page_local_q_count; i++) | |
5123 | vm_page_reactivate_local(i, TRUE, TRUE); | |
5124 | } | |
5125 | ||
5126 | m = (vm_page_t) hibernate_gobble_queue; | |
5127 | while(m) | |
5128 | { | |
5129 | pages--; | |
5130 | count_wire--; | |
5131 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5132 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5133 | m = (vm_page_t) m->pageq.next; | |
5134 | } | |
5135 | ||
5136 | for( i = 0; i < real_ncpus; i++ ) | |
5137 | { | |
5138 | if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) | |
5139 | { | |
5140 | for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = (vm_page_t)m->pageq.next) | |
5141 | { | |
5142 | pages--; | |
5143 | count_wire--; | |
5144 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5145 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5146 | ||
5147 | hibernate_stats.cd_local_free++; | |
5148 | hibernate_stats.cd_total_free++; | |
5149 | } | |
5150 | } | |
5151 | } | |
5152 | ||
5153 | for( i = 0; i < vm_colors; i++ ) | |
5154 | { | |
5155 | queue_iterate(&vm_page_queue_free[i], | |
5156 | m, | |
5157 | vm_page_t, | |
5158 | pageq) | |
5159 | { | |
5160 | pages--; | |
5161 | count_wire--; | |
5162 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5163 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5164 | ||
5165 | hibernate_stats.cd_total_free++; | |
5166 | } | |
5167 | } | |
5168 | ||
5169 | queue_iterate(&vm_lopage_queue_free, | |
5170 | m, | |
5171 | vm_page_t, | |
5172 | pageq) | |
5173 | { | |
5174 | pages--; | |
5175 | count_wire--; | |
5176 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5177 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5178 | ||
5179 | hibernate_stats.cd_total_free++; | |
5180 | } | |
5181 | ||
5182 | queue_iterate( &vm_page_queue_throttled, | |
5183 | m, | |
5184 | vm_page_t, | |
5185 | pageq ) | |
5186 | { | |
5187 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5188 | && hibernate_consider_discard(m)) | |
5189 | { | |
5190 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5191 | count_discard_inactive++; | |
5192 | } | |
5193 | else | |
5194 | count_throttled++; | |
5195 | count_wire--; | |
5196 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5197 | } | |
5198 | ||
5199 | queue_iterate( &vm_page_queue_anonymous, | |
5200 | m, | |
5201 | vm_page_t, | |
5202 | pageq ) | |
5203 | { | |
5204 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5205 | && hibernate_consider_discard(m)) | |
5206 | { | |
5207 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5208 | if (m->dirty) | |
5209 | count_discard_purgeable++; | |
5210 | else | |
5211 | count_discard_inactive++; | |
5212 | } | |
5213 | else | |
5214 | count_zf++; | |
5215 | count_wire--; | |
5216 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5217 | } | |
5218 | ||
5219 | queue_iterate( &vm_page_queue_inactive, | |
5220 | m, | |
5221 | vm_page_t, | |
5222 | pageq ) | |
5223 | { | |
5224 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5225 | && hibernate_consider_discard(m)) | |
5226 | { | |
5227 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5228 | if (m->dirty) | |
5229 | count_discard_purgeable++; | |
5230 | else | |
5231 | count_discard_inactive++; | |
5232 | } | |
5233 | else | |
5234 | count_inactive++; | |
5235 | count_wire--; | |
5236 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5237 | } | |
5238 | ||
5239 | queue_iterate( &vm_page_queue_cleaned, | |
5240 | m, | |
5241 | vm_page_t, | |
5242 | pageq ) | |
5243 | { | |
5244 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5245 | && hibernate_consider_discard(m)) | |
5246 | { | |
5247 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5248 | if (m->dirty) | |
5249 | count_discard_purgeable++; | |
5250 | else | |
5251 | count_discard_cleaned++; | |
5252 | } | |
5253 | else | |
5254 | count_cleaned++; | |
5255 | count_wire--; | |
5256 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5257 | } | |
5258 | ||
5259 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
5260 | { | |
5261 | queue_iterate(&vm_page_queue_speculative[i].age_q, | |
5262 | m, | |
5263 | vm_page_t, | |
5264 | pageq) | |
5265 | { | |
5266 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5267 | && hibernate_consider_discard(m)) | |
5268 | { | |
5269 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5270 | count_discard_speculative++; | |
5271 | } | |
5272 | else | |
5273 | count_speculative++; | |
5274 | count_wire--; | |
5275 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5276 | } | |
5277 | } | |
5278 | ||
5279 | queue_iterate( &vm_page_queue_active, | |
5280 | m, | |
5281 | vm_page_t, | |
5282 | pageq ) | |
5283 | { | |
5284 | if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) | |
5285 | && hibernate_consider_discard(m)) | |
5286 | { | |
5287 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5288 | if (m->dirty) | |
5289 | count_discard_purgeable++; | |
5290 | else | |
5291 | count_discard_active++; | |
5292 | } | |
5293 | else | |
5294 | count_active++; | |
5295 | count_wire--; | |
5296 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5297 | } | |
5298 | ||
5299 | // pull wired from hibernate_bitmap | |
5300 | ||
5301 | bitmap = &page_list->bank_bitmap[0]; | |
5302 | bitmap_wired = &page_list_wired->bank_bitmap[0]; | |
5303 | for (bank = 0; bank < page_list->bank_count; bank++) | |
5304 | { | |
5305 | for (i = 0; i < bitmap->bitmapwords; i++) | |
5306 | bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; | |
5307 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap [bitmap->bitmapwords]; | |
5308 | bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; | |
5309 | } | |
5310 | ||
5311 | // machine dependent adjustments | |
5312 | hibernate_page_list_setall_machine(page_list, page_list_wired, &pages); | |
5313 | ||
5314 | hibernate_stats.cd_count_wire = count_wire; | |
5315 | hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + count_discard_speculative + count_discard_cleaned; | |
5316 | ||
5317 | clock_get_uptime(&end); | |
5318 | absolutetime_to_nanoseconds(end - start, &nsec); | |
5319 | HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL); | |
5320 | ||
5321 | HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, could discard act %d inact %d purgeable %d spec %d cleaned %d\n", | |
5322 | pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_zf, count_throttled, | |
5323 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
5324 | ||
5325 | *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned; | |
5326 | ||
5327 | #if DEBUG | |
5328 | if (vm_page_local_q) { | |
5329 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5330 | struct vpl *lq; | |
5331 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5332 | VPL_UNLOCK(&lq->vpl_lock); | |
5333 | } | |
5334 | } | |
5335 | vm_page_unlock_queues(); | |
5336 | #endif /* DEBUG */ | |
5337 | ||
5338 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); | |
5339 | } | |
5340 | ||
5341 | void | |
5342 | hibernate_page_list_discard(hibernate_page_list_t * page_list) | |
5343 | { | |
5344 | uint64_t start, end, nsec; | |
5345 | vm_page_t m; | |
5346 | vm_page_t next; | |
5347 | uint32_t i; | |
5348 | uint32_t count_discard_active = 0; | |
5349 | uint32_t count_discard_inactive = 0; | |
5350 | uint32_t count_discard_purgeable = 0; | |
5351 | uint32_t count_discard_cleaned = 0; | |
5352 | uint32_t count_discard_speculative = 0; | |
5353 | ||
5354 | #if DEBUG | |
5355 | vm_page_lock_queues(); | |
5356 | if (vm_page_local_q) { | |
5357 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5358 | struct vpl *lq; | |
5359 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5360 | VPL_LOCK(&lq->vpl_lock); | |
5361 | } | |
5362 | } | |
5363 | #endif /* DEBUG */ | |
5364 | ||
5365 | clock_get_uptime(&start); | |
5366 | ||
5367 | m = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
5368 | while (m && !queue_end(&vm_page_queue_anonymous, (queue_entry_t)m)) | |
5369 | { | |
5370 | next = (vm_page_t) m->pageq.next; | |
5371 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5372 | { | |
5373 | if (m->dirty) | |
5374 | count_discard_purgeable++; | |
5375 | else | |
5376 | count_discard_inactive++; | |
5377 | hibernate_discard_page(m); | |
5378 | } | |
5379 | m = next; | |
5380 | } | |
5381 | ||
5382 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
5383 | { | |
5384 | m = (vm_page_t) queue_first(&vm_page_queue_speculative[i].age_q); | |
5385 | while (m && !queue_end(&vm_page_queue_speculative[i].age_q, (queue_entry_t)m)) | |
5386 | { | |
5387 | next = (vm_page_t) m->pageq.next; | |
5388 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5389 | { | |
5390 | count_discard_speculative++; | |
5391 | hibernate_discard_page(m); | |
5392 | } | |
5393 | m = next; | |
5394 | } | |
5395 | } | |
5396 | ||
5397 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
5398 | while (m && !queue_end(&vm_page_queue_inactive, (queue_entry_t)m)) | |
5399 | { | |
5400 | next = (vm_page_t) m->pageq.next; | |
5401 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5402 | { | |
5403 | if (m->dirty) | |
5404 | count_discard_purgeable++; | |
5405 | else | |
5406 | count_discard_inactive++; | |
5407 | hibernate_discard_page(m); | |
5408 | } | |
5409 | m = next; | |
5410 | } | |
5411 | ||
5412 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
5413 | while (m && !queue_end(&vm_page_queue_active, (queue_entry_t)m)) | |
5414 | { | |
5415 | next = (vm_page_t) m->pageq.next; | |
5416 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5417 | { | |
5418 | if (m->dirty) | |
5419 | count_discard_purgeable++; | |
5420 | else | |
5421 | count_discard_active++; | |
5422 | hibernate_discard_page(m); | |
5423 | } | |
5424 | m = next; | |
5425 | } | |
5426 | ||
5427 | m = (vm_page_t) queue_first(&vm_page_queue_cleaned); | |
5428 | while (m && !queue_end(&vm_page_queue_cleaned, (queue_entry_t)m)) | |
5429 | { | |
5430 | next = (vm_page_t) m->pageq.next; | |
5431 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5432 | { | |
5433 | if (m->dirty) | |
5434 | count_discard_purgeable++; | |
5435 | else | |
5436 | count_discard_cleaned++; | |
5437 | hibernate_discard_page(m); | |
5438 | } | |
5439 | m = next; | |
5440 | } | |
5441 | ||
5442 | #if DEBUG | |
5443 | if (vm_page_local_q) { | |
5444 | for (i = 0; i < vm_page_local_q_count; i++) { | |
5445 | struct vpl *lq; | |
5446 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
5447 | VPL_UNLOCK(&lq->vpl_lock); | |
5448 | } | |
5449 | } | |
5450 | vm_page_unlock_queues(); | |
5451 | #endif /* DEBUG */ | |
5452 | ||
5453 | clock_get_uptime(&end); | |
5454 | absolutetime_to_nanoseconds(end - start, &nsec); | |
5455 | HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n", | |
5456 | nsec / 1000000ULL, | |
5457 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
5458 | } | |
5459 | ||
5460 | #endif /* HIBERNATION */ | |
5461 | ||
5462 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
5463 | ||
5464 | #include <mach_vm_debug.h> | |
5465 | #if MACH_VM_DEBUG | |
5466 | ||
5467 | #include <mach_debug/hash_info.h> | |
5468 | #include <vm/vm_debug.h> | |
5469 | ||
5470 | /* | |
5471 | * Routine: vm_page_info | |
5472 | * Purpose: | |
5473 | * Return information about the global VP table. | |
5474 | * Fills the buffer with as much information as possible | |
5475 | * and returns the desired size of the buffer. | |
5476 | * Conditions: | |
5477 | * Nothing locked. The caller should provide | |
5478 | * possibly-pageable memory. | |
5479 | */ | |
5480 | ||
5481 | unsigned int | |
5482 | vm_page_info( | |
5483 | hash_info_bucket_t *info, | |
5484 | unsigned int count) | |
5485 | { | |
5486 | unsigned int i; | |
5487 | lck_spin_t *bucket_lock; | |
5488 | ||
5489 | if (vm_page_bucket_count < count) | |
5490 | count = vm_page_bucket_count; | |
5491 | ||
5492 | for (i = 0; i < count; i++) { | |
5493 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
5494 | unsigned int bucket_count = 0; | |
5495 | vm_page_t m; | |
5496 | ||
5497 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; | |
5498 | lck_spin_lock(bucket_lock); | |
5499 | ||
5500 | for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) | |
5501 | bucket_count++; | |
5502 | ||
5503 | lck_spin_unlock(bucket_lock); | |
5504 | ||
5505 | /* don't touch pageable memory while holding locks */ | |
5506 | info[i].hib_count = bucket_count; | |
5507 | } | |
5508 | ||
5509 | return vm_page_bucket_count; | |
5510 | } | |
5511 | #endif /* MACH_VM_DEBUG */ |