]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/sys/dtrace.h
xnu-6153.41.3.tar.gz
[apple/xnu.git] / bsd / sys / dtrace.h
... / ...
CommitLineData
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Portions copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27/*
28 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 *
31 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
32 */
33
34#ifndef _SYS_DTRACE_H
35#define _SYS_DTRACE_H
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41/*
42 * DTrace Dynamic Tracing Software: Kernel Interfaces
43 *
44 * Note: The contents of this file are private to the implementation of the
45 * Solaris system and DTrace subsystem and are subject to change at any time
46 * without notice. Applications and drivers using these interfaces will fail
47 * to run on future releases. These interfaces should not be used for any
48 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50 */
51
52#ifndef _ASM
53
54#if !defined(__APPLE__)
55#include <sys/types.h>
56#include <sys/modctl.h>
57#include <sys/processor.h>
58#include <sys/systm.h>
59#include <sys/ctf_api.h>
60#include <sys/cyclic.h>
61#include <sys/int_limits.h>
62#else /* is Apple Mac OS X */
63
64#if defined(__LP64__)
65#if !defined(_LP64)
66#define _LP64 /* Solaris vs. Darwin */
67#endif
68#else
69#if !defined(_ILP32)
70#define _ILP32 /* Solaris vs. Darwin */
71#endif
72#endif
73
74#if defined(__BIG_ENDIAN__)
75#if !defined(_BIG_ENDIAN)
76#define _BIG_ENDIAN /* Solaris vs. Darwin */
77#endif
78#elif defined(__LITTLE_ENDIAN__)
79#if !defined(_LITTLE_ENDIAN)
80#define _LITTLE_ENDIAN /* Solaris vs. Darwin */
81#endif
82#else
83#error Unknown endian-ness
84#endif
85
86#ifdef KERNEL
87#ifndef _KERNEL
88#define _KERNEL /* Solaris vs. Darwin */
89#endif
90#endif
91
92#include <sys/types.h>
93#include <sys/param.h>
94#include <stdint.h>
95
96#ifndef NULL
97#define NULL ((void *)0) /* quiets many warnings */
98#endif
99
100#define SEC 1
101#define MILLISEC 1000
102#define MICROSEC 1000000
103#define NANOSEC 1000000000
104
105#define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
106#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
107#define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
108
109#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
110#define CTF_MODEL_LP64 2 /* object data model is LP64 */
111#ifdef __LP64__
112#define CTF_MODEL_NATIVE CTF_MODEL_LP64
113#else
114#define CTF_MODEL_NATIVE CTF_MODEL_ILP32
115#endif
116
117typedef uint8_t uchar_t;
118typedef uint16_t ushort_t;
119typedef uint32_t uint_t;
120typedef unsigned long ulong_t;
121typedef uint64_t u_longlong_t;
122typedef int64_t longlong_t;
123typedef int64_t off64_t;
124typedef int processorid_t;
125typedef int64_t hrtime_t;
126
127typedef enum { B_FALSE = 0, B_TRUE = 1 } _dtrace_boolean;
128
129typedef uint8_t UUID[16]; /* For modctl use in dtrace.h */
130
131struct modctl; /* In lieu of Solaris <sys/modctl.h> */
132/* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
133#include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
134#ifdef KERNEL
135/* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
136#else
137/* In lieu of Solaris <sys/ctf_api.h> */
138typedef struct ctf_file ctf_file_t;
139typedef long ctf_id_t;
140#endif
141/* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
142/* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
143
144typedef uint32_t zoneid_t;
145
146#include <sys/dtrace_glue.h>
147
148#include <stdarg.h>
149typedef va_list __va_list;
150
151/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
152#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
153#endif /* __APPLE__ */
154
155/*
156 * DTrace Universal Constants and Typedefs
157 */
158#define DTRACE_CPUALL -1 /* all CPUs */
159#define DTRACE_IDNONE 0 /* invalid probe identifier */
160#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
161#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
162#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
163#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
164#define DTRACE_PROVNONE 0 /* invalid provider identifier */
165#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
166#define DTRACE_ARGNONE -1 /* invalid argument index */
167
168#define DTRACE_PROVNAMELEN 64
169#define DTRACE_MODNAMELEN 64
170#define DTRACE_FUNCNAMELEN 128
171#define DTRACE_NAMELEN 64
172#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
173 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
174#define DTRACE_ARGTYPELEN 128
175
176typedef uint32_t dtrace_id_t; /* probe identifier */
177typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
178typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
179typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
180typedef uint16_t dtrace_actkind_t; /* action kind */
181typedef int64_t dtrace_optval_t; /* option value */
182typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
183
184typedef enum dtrace_probespec {
185 DTRACE_PROBESPEC_NONE = -1,
186 DTRACE_PROBESPEC_PROVIDER = 0,
187 DTRACE_PROBESPEC_MOD,
188 DTRACE_PROBESPEC_FUNC,
189 DTRACE_PROBESPEC_NAME
190} dtrace_probespec_t;
191
192/*
193 * DTrace Intermediate Format (DIF)
194 *
195 * The following definitions describe the DTrace Intermediate Format (DIF), a
196 * a RISC-like instruction set and program encoding used to represent
197 * predicates and actions that can be bound to DTrace probes. The constants
198 * below defining the number of available registers are suggested minimums; the
199 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
200 * registers provided by the current DTrace implementation.
201 */
202#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
203#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
204#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
205#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
206#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
207
208#define DIF_OP_OR 1 /* or r1, r2, rd */
209#define DIF_OP_XOR 2 /* xor r1, r2, rd */
210#define DIF_OP_AND 3 /* and r1, r2, rd */
211#define DIF_OP_SLL 4 /* sll r1, r2, rd */
212#define DIF_OP_SRL 5 /* srl r1, r2, rd */
213#define DIF_OP_SUB 6 /* sub r1, r2, rd */
214#define DIF_OP_ADD 7 /* add r1, r2, rd */
215#define DIF_OP_MUL 8 /* mul r1, r2, rd */
216#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
217#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
218#define DIF_OP_SREM 11 /* srem r1, r2, rd */
219#define DIF_OP_UREM 12 /* urem r1, r2, rd */
220#define DIF_OP_NOT 13 /* not r1, rd */
221#define DIF_OP_MOV 14 /* mov r1, rd */
222#define DIF_OP_CMP 15 /* cmp r1, r2 */
223#define DIF_OP_TST 16 /* tst r1 */
224#define DIF_OP_BA 17 /* ba label */
225#define DIF_OP_BE 18 /* be label */
226#define DIF_OP_BNE 19 /* bne label */
227#define DIF_OP_BG 20 /* bg label */
228#define DIF_OP_BGU 21 /* bgu label */
229#define DIF_OP_BGE 22 /* bge label */
230#define DIF_OP_BGEU 23 /* bgeu label */
231#define DIF_OP_BL 24 /* bl label */
232#define DIF_OP_BLU 25 /* blu label */
233#define DIF_OP_BLE 26 /* ble label */
234#define DIF_OP_BLEU 27 /* bleu label */
235#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
236#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
237#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
238#define DIF_OP_LDUB 31 /* ldub [r1], rd */
239#define DIF_OP_LDUH 32 /* lduh [r1], rd */
240#define DIF_OP_LDUW 33 /* lduw [r1], rd */
241#define DIF_OP_LDX 34 /* ldx [r1], rd */
242#define DIF_OP_RET 35 /* ret rd */
243#define DIF_OP_NOP 36 /* nop */
244#define DIF_OP_SETX 37 /* setx intindex, rd */
245#define DIF_OP_SETS 38 /* sets strindex, rd */
246#define DIF_OP_SCMP 39 /* scmp r1, r2 */
247#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
248#define DIF_OP_LDGS 41 /* ldgs var, rd */
249#define DIF_OP_STGS 42 /* stgs var, rs */
250#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
251#define DIF_OP_LDTS 44 /* ldts var, rd */
252#define DIF_OP_STTS 45 /* stts var, rs */
253#define DIF_OP_SRA 46 /* sra r1, r2, rd */
254#define DIF_OP_CALL 47 /* call subr, rd */
255#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
256#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
257#define DIF_OP_POPTS 50 /* popts */
258#define DIF_OP_FLUSHTS 51 /* flushts */
259#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
260#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
261#define DIF_OP_STGAA 54 /* stgaa var, rs */
262#define DIF_OP_STTAA 55 /* sttaa var, rs */
263#define DIF_OP_LDLS 56 /* ldls var, rd */
264#define DIF_OP_STLS 57 /* stls var, rs */
265#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
266#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
267#define DIF_OP_STB 60 /* stb r1, [rd] */
268#define DIF_OP_STH 61 /* sth r1, [rd] */
269#define DIF_OP_STW 62 /* stw r1, [rd] */
270#define DIF_OP_STX 63 /* stx r1, [rd] */
271#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
272#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
273#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
274#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
275#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
276#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
277#define DIF_OP_ULDX 70 /* uldx [r1], rd */
278#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
279#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
280#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
281#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
282#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
283#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
284#define DIF_OP_RLDX 77 /* rldx [r1], rd */
285#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
286#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
287#define DIF_OP_STRIP 80 /* strip r1, key, rd */
288
289#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
290#define DIF_STROFF_MAX 0xffff /* highest string table offset */
291#define DIF_REGISTER_MAX 0xff /* highest register number */
292#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
293#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
294
295#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
296#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
297#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
298
299#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
300#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
301#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
302
303#define DIF_VAR_ARGS 0x0000 /* arguments array */
304#define DIF_VAR_REGS 0x0001 /* registers array */
305#define DIF_VAR_UREGS 0x0002 /* user registers array */
306#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
307#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
308#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
309#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
310#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
311#define DIF_VAR_ID 0x0105 /* probe ID */
312#define DIF_VAR_ARG0 0x0106 /* first argument */
313#define DIF_VAR_ARG1 0x0107 /* second argument */
314#define DIF_VAR_ARG2 0x0108 /* third argument */
315#define DIF_VAR_ARG3 0x0109 /* fourth argument */
316#define DIF_VAR_ARG4 0x010a /* fifth argument */
317#define DIF_VAR_ARG5 0x010b /* sixth argument */
318#define DIF_VAR_ARG6 0x010c /* seventh argument */
319#define DIF_VAR_ARG7 0x010d /* eighth argument */
320#define DIF_VAR_ARG8 0x010e /* ninth argument */
321#define DIF_VAR_ARG9 0x010f /* tenth argument */
322#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
323#define DIF_VAR_CALLER 0x0111 /* caller */
324#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
325#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
326#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
327#define DIF_VAR_PROBENAME 0x0115 /* probe name */
328#define DIF_VAR_PID 0x0116 /* process ID */
329#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
330#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
331#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
332#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
333#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
334#define DIF_VAR_UCALLER 0x011c /* user-level caller */
335#define DIF_VAR_PPID 0x011d /* parent process ID */
336#define DIF_VAR_UID 0x011e /* process user ID */
337#define DIF_VAR_GID 0x011f /* process group ID */
338#define DIF_VAR_ERRNO 0x0120 /* thread errno */
339#if defined(__APPLE__)
340#define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
341#define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
342#define DIF_VAR_MACHTIMESTAMP 0x0202 /* mach_absolute_timestamp() */
343#define DIF_VAR_CPU 0x0203 /* cpu number */
344#define DIF_VAR_CPUINSTRS 0x0204 /* cpu instructions */
345#define DIF_VAR_CPUCYCLES 0x0205 /* cpu cycles */
346#define DIF_VAR_VINSTRS 0x0206 /* virtual instructions */
347#define DIF_VAR_VCYCLES 0x0207 /* virtual cycles */
348#endif /* __APPLE __ */
349
350#define DIF_SUBR_RAND 0
351#define DIF_SUBR_MUTEX_OWNED 1
352#define DIF_SUBR_MUTEX_OWNER 2
353#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
354#define DIF_SUBR_MUTEX_TYPE_SPIN 4
355#define DIF_SUBR_RW_READ_HELD 5
356#define DIF_SUBR_RW_WRITE_HELD 6
357#define DIF_SUBR_RW_ISWRITER 7
358#define DIF_SUBR_COPYIN 8
359#define DIF_SUBR_COPYINSTR 9
360#define DIF_SUBR_SPECULATION 10
361#define DIF_SUBR_PROGENYOF 11
362#define DIF_SUBR_STRLEN 12
363#define DIF_SUBR_COPYOUT 13
364#define DIF_SUBR_COPYOUTSTR 14
365#define DIF_SUBR_ALLOCA 15
366#define DIF_SUBR_BCOPY 16
367#define DIF_SUBR_COPYINTO 17
368#define DIF_SUBR_MSGDSIZE 18
369#define DIF_SUBR_MSGSIZE 19
370#define DIF_SUBR_GETMAJOR 20
371#define DIF_SUBR_GETMINOR 21
372#define DIF_SUBR_DDI_PATHNAME 22
373#define DIF_SUBR_STRJOIN 23
374#define DIF_SUBR_LLTOSTR 24
375#define DIF_SUBR_BASENAME 25
376#define DIF_SUBR_DIRNAME 26
377#define DIF_SUBR_CLEANPATH 27
378#define DIF_SUBR_STRCHR 28
379#define DIF_SUBR_STRRCHR 29
380#define DIF_SUBR_STRSTR 30
381#define DIF_SUBR_STRTOK 31
382#define DIF_SUBR_SUBSTR 32
383#define DIF_SUBR_INDEX 33
384#define DIF_SUBR_RINDEX 34
385#define DIF_SUBR_HTONS 35
386#define DIF_SUBR_HTONL 36
387#define DIF_SUBR_HTONLL 37
388#define DIF_SUBR_NTOHS 38
389#define DIF_SUBR_NTOHL 39
390#define DIF_SUBR_NTOHLL 40
391#define DIF_SUBR_INET_NTOP 41
392#define DIF_SUBR_INET_NTOA 42
393#define DIF_SUBR_INET_NTOA6 43
394#define DIF_SUBR_TOUPPER 44
395#define DIF_SUBR_TOLOWER 45
396#define DIF_SUBR_JSON 46
397#define DIF_SUBR_STRTOLL 47
398#define DIF_SUBR_STRIP 48
399#define DIF_SUBR_MAX 48 /* max subroutine value */
400
401/* Apple-specific subroutines */
402#if defined(__APPLE__)
403#define DIF_SUBR_APPLE_MIN 200 /* min apple-specific subroutine value */
404#define DIF_SUBR_VM_KERNEL_ADDRPERM 200
405#define DIF_SUBR_KDEBUG_TRACE 201
406#define DIF_SUBR_KDEBUG_TRACE_STRING 202
407#define DIF_SUBR_APPLE_MAX 202 /* max apple-specific subroutine value */
408#endif /* __APPLE__ */
409
410typedef uint32_t dif_instr_t;
411
412#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
413#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
414#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
415#define DIF_INSTR_RD(i) ((i) & 0xff)
416#define DIF_INSTR_RS(i) ((i) & 0xff)
417#define DIF_INSTR_IMM2(i) (((i) >> 8) & 0xff)
418#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
419#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
420#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
421#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
422#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
423#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
424#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
425
426#define DIF_INSTR_FMT(op, r1, r2, d) \
427 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
428
429#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
430#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
431#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
432#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
433#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
434#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
435#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
436#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
437#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
438#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
439#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
440#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
441#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
442#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
443#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
444#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
445#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
446#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
447#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
448#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
449#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
450
451#define DIF_REG_R0 0 /* %r0 is always set to zero */
452
453/*
454 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
455 * of variables, function and associative array arguments, and the return type
456 * for each DIF object (shown below). It contains a description of the type,
457 * its size in bytes, and a module identifier.
458 */
459typedef struct dtrace_diftype {
460 uint8_t dtdt_kind; /* type kind (see below) */
461 uint8_t dtdt_ckind; /* type kind in CTF */
462 uint8_t dtdt_flags; /* type flags (see below) */
463 uint8_t dtdt_pad; /* reserved for future use */
464 uint32_t dtdt_size; /* type size in bytes (unless string) */
465} dtrace_diftype_t;
466
467#define DIF_TYPE_CTF 0 /* type is a CTF type */
468#define DIF_TYPE_STRING 1 /* type is a D string */
469
470#define DIF_TF_BYREF 0x1 /* type is passed by reference */
471#define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
472
473/*
474 * A DTrace Intermediate Format variable record is used to describe each of the
475 * variables referenced by a given DIF object. It contains an integer variable
476 * identifier along with variable scope and properties, as shown below. The
477 * size of this structure must be sizeof (int) aligned.
478 */
479typedef struct dtrace_difv {
480 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
481 uint32_t dtdv_id; /* variable reference identifier */
482 uint8_t dtdv_kind; /* variable kind (see below) */
483 uint8_t dtdv_scope; /* variable scope (see below) */
484 uint16_t dtdv_flags; /* variable flags (see below) */
485 dtrace_diftype_t dtdv_type; /* variable type (see above) */
486} dtrace_difv_t;
487
488#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
489#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
490
491#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
492#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
493#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
494
495#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
496#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
497
498/*
499 * DTrace Actions
500 *
501 * The upper byte determines the class of the action; the low bytes determines
502 * the specific action within that class. The classes of actions are as
503 * follows:
504 *
505 * [ no class ] <= May record process- or kernel-related data
506 * DTRACEACT_PROC <= Only records process-related data
507 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
508 * DTRACEACT_KERNEL <= Only records kernel-related data
509 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
510 * DTRACEACT_SPECULATIVE <= Speculation-related action
511 * DTRACEACT_AGGREGATION <= Aggregating action
512 */
513#define DTRACEACT_NONE 0 /* no action */
514#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
515#define DTRACEACT_EXIT 2 /* exit() action */
516#define DTRACEACT_PRINTF 3 /* printf() action */
517#define DTRACEACT_PRINTA 4 /* printa() action */
518#define DTRACEACT_LIBACT 5 /* library-controlled action */
519#define DTRACEACT_TRACEMEM 6 /* tracemem() action */
520#define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
521
522#if defined(__APPLE__)
523#define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
524#endif /* __APPLE__ */
525
526#define DTRACEACT_PROC 0x0100
527#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
528#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
529#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
530#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
531#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
532
533#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
534#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
535#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
536#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
537#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
538
539#if defined(__APPLE__)
540/*
541 * Dtrace stop() will task_suspend the currently running process.
542 * Dtrace pidresume(pid) will task_resume it.
543 */
544
545#define DTRACEACT_PIDRESUME (DTRACEACT_PROC_DESTRUCTIVE + 50)
546#endif /* __APPLE__ */
547
548#define DTRACEACT_PROC_CONTROL 0x0300
549
550#define DTRACEACT_KERNEL 0x0400
551#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
552#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
553#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
554
555#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
556#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
557#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
558#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
559
560#define DTRACEACT_SPECULATIVE 0x0600
561#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
562#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
563#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
564
565#define DTRACEACT_CLASS(x) ((x) & 0xff00)
566
567#define DTRACEACT_ISDESTRUCTIVE(x) \
568 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
569 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
570
571#define DTRACEACT_ISSPECULATIVE(x) \
572 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
573
574#define DTRACEACT_ISPRINTFLIKE(x) \
575 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
576 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
577
578/*
579 * DTrace Aggregating Actions
580 *
581 * These are functions f(x) for which the following is true:
582 *
583 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
584 *
585 * where x_n is a set of arbitrary data. Aggregating actions are in their own
586 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
587 * for easier processing of the aggregation argument and data payload for a few
588 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
589 */
590#define DTRACEACT_AGGREGATION 0x0700
591#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
592#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
593#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
594#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
595#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
596#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
597#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
598#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
599#define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
600
601#define DTRACEACT_ISAGG(x) \
602 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
603
604#if !defined(__APPLE__) /* Quiet compiler warning. */
605#define DTRACE_QUANTIZE_NBUCKETS \
606 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
607
608#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
609#else
610#define DTRACE_QUANTIZE_NBUCKETS \
611 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
612
613#define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
614#endif /* __APPLE __*/
615
616#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
617 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
618 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
619 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
620 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
621
622#define DTRACE_LQUANTIZE_STEPSHIFT 48
623#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
624#define DTRACE_LQUANTIZE_LEVELSHIFT 32
625#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
626#define DTRACE_LQUANTIZE_BASESHIFT 0
627#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
628
629#define DTRACE_LQUANTIZE_STEP(x) \
630 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
631 DTRACE_LQUANTIZE_STEPSHIFT)
632
633#define DTRACE_LQUANTIZE_LEVELS(x) \
634 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
635 DTRACE_LQUANTIZE_LEVELSHIFT)
636
637#define DTRACE_LQUANTIZE_BASE(x) \
638 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
639 DTRACE_LQUANTIZE_BASESHIFT)
640
641#define DTRACE_LLQUANTIZE_FACTORSHIFT 48
642#define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
643#define DTRACE_LLQUANTIZE_LOWSHIFT 32
644#define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
645#define DTRACE_LLQUANTIZE_HIGHSHIFT 16
646#define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
647#define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
648#define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
649
650#define DTRACE_LLQUANTIZE_FACTOR(x) \
651 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
652 DTRACE_LLQUANTIZE_FACTORSHIFT)
653
654#define DTRACE_LLQUANTIZE_LOW(x) \
655 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
656 DTRACE_LLQUANTIZE_LOWSHIFT)
657
658#define DTRACE_LLQUANTIZE_HIGH(x) \
659 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
660 DTRACE_LLQUANTIZE_HIGHSHIFT)
661
662#define DTRACE_LLQUANTIZE_NSTEP(x) \
663 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
664 DTRACE_LLQUANTIZE_NSTEPSHIFT)
665
666#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
667#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
668#define DTRACE_USTACK_ARG(x, y) \
669 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
670
671#if !defined(__APPLE__)
672
673#ifndef _LP64
674#ifndef _LITTLE_ENDIAN
675#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
676#else
677#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
678#endif
679#else
680#define DTRACE_PTR(type, name) type *name
681#endif
682
683#else
684
685#ifndef _LP64
686#define DTRACE_PTR(type, name) user_addr_t name
687#else
688#define DTRACE_PTR(type, name) type *name
689#endif
690
691#endif /* __APPLE__ */
692
693/*
694 * DTrace Object Format (DOF)
695 *
696 * DTrace programs can be persistently encoded in the DOF format so that they
697 * may be embedded in other programs (for example, in an ELF file) or in the
698 * dtrace driver configuration file for use in anonymous tracing. The DOF
699 * format is versioned and extensible so that it can be revised and so that
700 * internal data structures can be modified or extended compatibly. All DOF
701 * structures use fixed-size types, so the 32-bit and 64-bit representations
702 * are identical and consumers can use either data model transparently.
703 *
704 * The file layout is structured as follows:
705 *
706 * +---------------+-------------------+----- ... ----+---- ... ------+
707 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
708 * | (file header) | (section headers) | section data | section data |
709 * +---------------+-------------------+----- ... ----+---- ... ------+
710 * |<------------ dof_hdr.dofh_loadsz --------------->| |
711 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
712 *
713 * The file header stores meta-data including a magic number, data model for
714 * the instrumentation, data encoding, and properties of the DIF code within.
715 * The header describes its own size and the size of the section headers. By
716 * convention, an array of section headers follows the file header, and then
717 * the data for all loadable sections and unloadable sections. This permits
718 * consumer code to easily download the headers and all loadable data into the
719 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
720 *
721 * The section headers describe the size, offset, alignment, and section type
722 * for each section. Sections are described using a set of #defines that tell
723 * the consumer what kind of data is expected. Sections can contain links to
724 * other sections by storing a dof_secidx_t, an index into the section header
725 * array, inside of the section data structures. The section header includes
726 * an entry size so that sections with data arrays can grow their structures.
727 *
728 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
729 * are represented themselves as a collection of related DOF sections. This
730 * permits us to change the set of sections associated with a DIFO over time,
731 * and also permits us to encode DIFOs that contain different sets of sections.
732 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
733 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
734 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
735 *
736 * This loose coupling of the file structure (header and sections) to the
737 * structure of the DTrace program itself (ECB descriptions, action
738 * descriptions, and DIFOs) permits activities such as relocation processing
739 * to occur in a single pass without having to understand D program structure.
740 *
741 * Finally, strings are always stored in ELF-style string tables along with a
742 * string table section index and string table offset. Therefore strings in
743 * DOF are always arbitrary-length and not bound to the current implementation.
744 */
745
746#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
747
748typedef struct dof_hdr {
749 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
750 uint32_t dofh_flags; /* file attribute flags (if any) */
751 uint32_t dofh_hdrsize; /* size of file header in bytes */
752 uint32_t dofh_secsize; /* size of section header in bytes */
753 uint32_t dofh_secnum; /* number of section headers */
754 uint64_t dofh_secoff; /* file offset of section headers */
755 uint64_t dofh_loadsz; /* file size of loadable portion */
756 uint64_t dofh_filesz; /* file size of entire DOF file */
757 uint64_t dofh_pad; /* reserved for future use */
758} dof_hdr_t;
759
760#define DOF_ID_MAG0 0 /* first byte of magic number */
761#define DOF_ID_MAG1 1 /* second byte of magic number */
762#define DOF_ID_MAG2 2 /* third byte of magic number */
763#define DOF_ID_MAG3 3 /* fourth byte of magic number */
764#define DOF_ID_MODEL 4 /* DOF data model (see below) */
765#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
766#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
767#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
768#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
769#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
770#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
771
772#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
773#define DOF_MAG_MAG1 'D'
774#define DOF_MAG_MAG2 'O'
775#define DOF_MAG_MAG3 'F'
776
777#define DOF_MAG_STRING "\177DOF"
778#define DOF_MAG_STRLEN 4
779
780#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
781#define DOF_MODEL_ILP32 1
782#define DOF_MODEL_LP64 2
783
784#ifdef _LP64
785#define DOF_MODEL_NATIVE DOF_MODEL_LP64
786#else
787#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
788#endif
789
790#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
791#define DOF_ENCODE_LSB 1
792#define DOF_ENCODE_MSB 2
793
794#ifdef _BIG_ENDIAN
795#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
796#else
797#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
798#endif
799
800#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
801#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
802#if !defined(__APPLE__)
803#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
804#else
805#define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
806#define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
807#endif /* __APPLE__ */
808
809#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
810
811typedef uint32_t dof_secidx_t; /* section header table index type */
812typedef uint32_t dof_stridx_t; /* string table index type */
813
814#define DOF_SECIDX_NONE (-1U) /* null value for section indices */
815#define DOF_STRIDX_NONE (-1U) /* null value for string indices */
816
817typedef struct dof_sec {
818 uint32_t dofs_type; /* section type (see below) */
819 uint32_t dofs_align; /* section data memory alignment */
820 uint32_t dofs_flags; /* section flags (if any) */
821 uint32_t dofs_entsize; /* size of section entry (if table) */
822 uint64_t dofs_offset; /* offset of section data within file */
823 uint64_t dofs_size; /* size of section data in bytes */
824} dof_sec_t;
825
826#define DOF_SECT_NONE 0 /* null section */
827#define DOF_SECT_COMMENTS 1 /* compiler comments */
828#define DOF_SECT_SOURCE 2 /* D program source code */
829#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
830#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
831#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
832#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
833#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
834#define DOF_SECT_STRTAB 8 /* string table */
835#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
836#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
837#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
838#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
839#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
840#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
841#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
842#define DOF_SECT_PROBES 16 /* dof_probe_t array */
843#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
844#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
845#define DOF_SECT_INTTAB 19 /* uint64_t array */
846#define DOF_SECT_UTSNAME 20 /* struct utsname */
847#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
848#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
849#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
850#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
851#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
852#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
853
854#define DOF_SECF_LOAD 1 /* section should be loaded */
855
856typedef struct dof_ecbdesc {
857 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
858 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
859 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
860 uint32_t dofe_pad; /* reserved for future use */
861 uint64_t dofe_uarg; /* user-supplied library argument */
862} dof_ecbdesc_t;
863
864typedef struct dof_probedesc {
865 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
866 dof_stridx_t dofp_provider; /* provider string */
867 dof_stridx_t dofp_mod; /* module string */
868 dof_stridx_t dofp_func; /* function string */
869 dof_stridx_t dofp_name; /* name string */
870 uint32_t dofp_id; /* probe identifier (or zero) */
871} dof_probedesc_t;
872
873typedef struct dof_actdesc {
874 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
875 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
876 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
877 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
878 uint64_t dofa_arg; /* kind-specific argument */
879 uint64_t dofa_uarg; /* user-supplied argument */
880} dof_actdesc_t;
881
882typedef struct dof_difohdr {
883 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
884 dof_secidx_t dofd_links[1]; /* variable length array of indices */
885} dof_difohdr_t;
886
887typedef struct dof_relohdr {
888 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
889 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
890 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
891} dof_relohdr_t;
892
893typedef struct dof_relodesc {
894 dof_stridx_t dofr_name; /* string name of relocation symbol */
895 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
896 uint64_t dofr_offset; /* byte offset for relocation */
897 uint64_t dofr_data; /* additional type-specific data */
898} dof_relodesc_t;
899
900#define DOF_RELO_NONE 0 /* empty relocation entry */
901#define DOF_RELO_SETX 1 /* relocate setx value */
902
903typedef struct dof_optdesc {
904 uint32_t dofo_option; /* option identifier */
905 dof_secidx_t dofo_strtab; /* string table, if string option */
906 uint64_t dofo_value; /* option value or string index */
907} dof_optdesc_t;
908
909typedef uint32_t dof_attr_t; /* encoded stability attributes */
910
911#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
912#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
913#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
914#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
915
916typedef struct dof_provider {
917 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
918 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
919 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
920 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
921 dof_stridx_t dofpv_name; /* provider name string */
922 dof_attr_t dofpv_provattr; /* provider attributes */
923 dof_attr_t dofpv_modattr; /* module attributes */
924 dof_attr_t dofpv_funcattr; /* function attributes */
925 dof_attr_t dofpv_nameattr; /* name attributes */
926 dof_attr_t dofpv_argsattr; /* args attributes */
927 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
928} dof_provider_t;
929
930typedef struct dof_probe {
931 uint64_t dofpr_addr; /* probe base address or offset */
932 dof_stridx_t dofpr_func; /* probe function string */
933 dof_stridx_t dofpr_name; /* probe name string */
934 dof_stridx_t dofpr_nargv; /* native argument type strings */
935 dof_stridx_t dofpr_xargv; /* translated argument type strings */
936 uint32_t dofpr_argidx; /* index of first argument mapping */
937 uint32_t dofpr_offidx; /* index of first offset entry */
938 uint8_t dofpr_nargc; /* native argument count */
939 uint8_t dofpr_xargc; /* translated argument count */
940 uint16_t dofpr_noffs; /* number of offset entries for probe */
941 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
942 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
943 uint16_t dofpr_pad1; /* reserved for future use */
944 uint32_t dofpr_pad2; /* reserved for future use */
945} dof_probe_t;
946
947typedef struct dof_xlator {
948 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
949 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
950 dof_stridx_t dofxl_argv; /* input parameter type strings */
951 uint32_t dofxl_argc; /* input parameter list length */
952 dof_stridx_t dofxl_type; /* output type string name */
953 dof_attr_t dofxl_attr; /* output stability attributes */
954} dof_xlator_t;
955
956typedef struct dof_xlmember {
957 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
958 dof_stridx_t dofxm_name; /* member name */
959 dtrace_diftype_t dofxm_type; /* member type */
960} dof_xlmember_t;
961
962typedef struct dof_xlref {
963 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
964 uint32_t dofxr_member; /* index of referenced dof_xlmember */
965 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
966} dof_xlref_t;
967
968/*
969 * DTrace Intermediate Format Object (DIFO)
970 *
971 * A DIFO is used to store the compiled DIF for a D expression, its return
972 * type, and its string and variable tables. The string table is a single
973 * buffer of character data into which sets instructions and variable
974 * references can reference strings using a byte offset. The variable table
975 * is an array of dtrace_difv_t structures that describe the name and type of
976 * each variable and the id used in the DIF code. This structure is described
977 * above in the DIF section of this header file. The DIFO is used at both
978 * user-level (in the library) and in the kernel, but the structure is never
979 * passed between the two: the DOF structures form the only interface. As a
980 * result, the definition can change depending on the presence of _KERNEL.
981 */
982typedef struct dtrace_difo {
983 dif_instr_t *dtdo_buf; /* instruction buffer */
984 uint64_t *dtdo_inttab; /* integer table (optional) */
985 char *dtdo_strtab; /* string table (optional) */
986 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
987 uint_t dtdo_len; /* length of instruction buffer */
988 uint_t dtdo_intlen; /* length of integer table */
989 uint_t dtdo_strlen; /* length of string table */
990 uint_t dtdo_varlen; /* length of variable table */
991 dtrace_diftype_t dtdo_rtype; /* return type */
992 uint_t dtdo_refcnt; /* owner reference count */
993 uint_t dtdo_destructive; /* invokes destructive subroutines */
994#ifndef _KERNEL
995 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
996 dof_relodesc_t *dtdo_ureltab; /* user relocations */
997 struct dt_node **dtdo_xlmtab; /* translator references */
998 uint_t dtdo_krelen; /* length of krelo table */
999 uint_t dtdo_urelen; /* length of urelo table */
1000 uint_t dtdo_xlmlen; /* length of translator table */
1001#endif
1002} dtrace_difo_t;
1003
1004/*
1005 * DTrace Enabling Description Structures
1006 *
1007 * When DTrace is tracking the description of a DTrace enabling entity (probe,
1008 * predicate, action, ECB, record, etc.), it does so in a description
1009 * structure. These structures all end in "desc", and are used at both
1010 * user-level and in the kernel -- but (with the exception of
1011 * dtrace_probedesc_t) they are never passed between them. Typically,
1012 * user-level will use the description structures when assembling an enabling.
1013 * It will then distill those description structures into a DOF object (see
1014 * above), and send it into the kernel. The kernel will again use the
1015 * description structures to create a description of the enabling as it reads
1016 * the DOF. When the description is complete, the enabling will be actually
1017 * created -- turning it into the structures that represent the enabling
1018 * instead of merely describing it. Not surprisingly, the description
1019 * structures bear a strong resemblance to the DOF structures that act as their
1020 * conduit.
1021 */
1022struct dtrace_predicate;
1023
1024typedef struct dtrace_probedesc {
1025 dtrace_id_t dtpd_id; /* probe identifier */
1026 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
1027 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
1028 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
1029 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
1030} dtrace_probedesc_t;
1031
1032typedef struct dtrace_repldesc {
1033 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
1034 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
1035} dtrace_repldesc_t;
1036
1037typedef struct dtrace_preddesc {
1038 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
1039 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
1040} dtrace_preddesc_t;
1041
1042typedef struct dtrace_actdesc {
1043 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
1044 struct dtrace_actdesc *dtad_next; /* next action */
1045 dtrace_actkind_t dtad_kind; /* kind of action */
1046 uint32_t dtad_ntuple; /* number in tuple */
1047 uint64_t dtad_arg; /* action argument */
1048 uint64_t dtad_uarg; /* user argument */
1049 int dtad_refcnt; /* reference count */
1050} dtrace_actdesc_t;
1051
1052
1053typedef struct dtrace_ecbdesc {
1054 dtrace_actdesc_t *dted_action; /* action description(s) */
1055 dtrace_preddesc_t dted_pred; /* predicate description */
1056 dtrace_probedesc_t dted_probe; /* probe description */
1057 uint64_t dted_uarg; /* library argument */
1058 int dted_refcnt; /* reference count */
1059 uint64_t dted_probegen; /* matched probe generation */
1060} dtrace_ecbdesc_t;
1061
1062/*
1063 * APPLE NOTE: The kernel always rebuild dtrace_ecbdesc structures
1064 * coming from userspace, so there is no dted_probegen manipulation risk
1065 */
1066
1067/*
1068 * DTrace Metadata Description Structures
1069 *
1070 * DTrace separates the trace data stream from the metadata stream. The only
1071 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
1072 * timestamp) or (in the case of aggregations) aggregation identifiers. To
1073 * determine the structure of the data, DTrace consumers pass the token to the
1074 * kernel, and receive in return a corresponding description of the enabled
1075 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1076 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1077 * of record descriptions (via the dtrace_recdesc structure) that describe the
1078 * exact structure of the data. Some record descriptions may also contain a
1079 * format identifier; this additional bit of metadata can be retrieved from the
1080 * kernel, for which a format description is returned via the dtrace_fmtdesc
1081 * structure. Note that all four of these structures must be bitness-neutral
1082 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1083 */
1084typedef struct dtrace_recdesc {
1085 dtrace_actkind_t dtrd_action; /* kind of action */
1086 uint32_t dtrd_size; /* size of record */
1087 uint32_t dtrd_offset; /* offset in ECB's data */
1088 uint16_t dtrd_alignment; /* required alignment */
1089 uint16_t dtrd_format; /* format, if any */
1090 uint64_t dtrd_arg; /* action argument */
1091 uint64_t dtrd_uarg; /* user argument */
1092} dtrace_recdesc_t;
1093
1094typedef struct dtrace_eprobedesc {
1095 dtrace_epid_t dtepd_epid; /* enabled probe ID */
1096 dtrace_id_t dtepd_probeid; /* probe ID */
1097 uint64_t dtepd_uarg; /* library argument */
1098 uint32_t dtepd_size; /* total size */
1099 int dtepd_nrecs; /* number of records */
1100 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
1101} dtrace_eprobedesc_t;
1102
1103typedef struct dtrace_aggdesc {
1104 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
1105 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
1106 int dtagd_flags; /* not filled in by kernel */
1107 dtrace_aggid_t dtagd_id; /* aggregation ID */
1108 dtrace_epid_t dtagd_epid; /* enabled probe ID */
1109 uint32_t dtagd_size; /* size in bytes */
1110 int dtagd_nrecs; /* number of records */
1111 uint32_t dtagd_pad; /* explicit padding */
1112 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
1113} dtrace_aggdesc_t;
1114
1115typedef struct dtrace_fmtdesc {
1116 DTRACE_PTR(char, dtfd_string); /* format string */
1117 int dtfd_length; /* length of format string */
1118 uint16_t dtfd_format; /* format identifier */
1119} dtrace_fmtdesc_t;
1120
1121#define DTRACE_SIZEOF_EPROBEDESC(desc) \
1122 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1123 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1124
1125#define DTRACE_SIZEOF_AGGDESC(desc) \
1126 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1127 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1128
1129/*
1130 * DTrace Option Interface
1131 *
1132 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1133 * in a DOF image. The dof_optdesc structure contains an option identifier and
1134 * an option value. The valid option identifiers are found below; the mapping
1135 * between option identifiers and option identifying strings is maintained at
1136 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1137 * following are potentially valid option values: all positive integers, zero
1138 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1139 * predefined tokens as their values; these are defined with
1140 * DTRACEOPT_{option}_{token}.
1141 */
1142#define DTRACEOPT_BUFSIZE 0 /* buffer size */
1143#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1144#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1145#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1146#define DTRACEOPT_SPECSIZE 4 /* speculation size */
1147#define DTRACEOPT_NSPEC 5 /* number of speculations */
1148#define DTRACEOPT_STRSIZE 6 /* string size */
1149#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1150#define DTRACEOPT_CPU 8 /* CPU to trace */
1151#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1152#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1153#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1154#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1155#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1156#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1157#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1158#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1159#define DTRACEOPT_STATUSRATE 17 /* status rate */
1160#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1161#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1162#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1163#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1164#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1165#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1166#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1167#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1168#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1169#define DTRACEOPT_AGGHIST 27 /* histogram aggregation output */
1170#define DTRACEOPT_AGGPACK 28 /* packed aggregation output */
1171#define DTRACEOPT_AGGZOOM 29 /* zoomed aggregation scaling */
1172#define DTRACEOPT_TEMPORAL 30 /* temporally ordered output */
1173#if !defined(__APPLE__)
1174#define DTRACEOPT_MAX 31 /* number of options */
1175#else
1176#define DTRACEOPT_STACKSYMBOLS 31 /* clear to prevent stack symbolication */
1177#define DTRACEOPT_BUFLIMIT 32 /* buffer signaling limit in % of the size */
1178#define DTRACEOPT_MAX 33 /* number of options */
1179#endif /* __APPLE__ */
1180
1181#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1182
1183#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1184#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1185#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1186
1187#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1188#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1189
1190/*
1191 * DTrace Buffer Interface
1192 *
1193 * In order to get a snapshot of the principal or aggregation buffer,
1194 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1195 * structure. This describes which CPU user-level is interested in, and
1196 * where user-level wishes the kernel to snapshot the buffer to (the
1197 * dtbd_data field). The kernel uses the same structure to pass back some
1198 * information regarding the buffer: the size of data actually copied out, the
1199 * number of drops, the number of errors, the offset of the oldest record,
1200 * and the time of the snapshot.
1201 *
1202 * If the buffer policy is a "switch" policy, taking a snapshot of the
1203 * principal buffer has the additional effect of switching the active and
1204 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1205 * the additional effect of switching the active and inactive buffers.
1206 */
1207typedef struct dtrace_bufdesc {
1208 uint64_t dtbd_size; /* size of buffer */
1209 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1210 uint32_t dtbd_errors; /* number of errors */
1211 uint64_t dtbd_drops; /* number of drops */
1212 DTRACE_PTR(char, dtbd_data); /* data */
1213 uint64_t dtbd_oldest; /* offset of oldest record */
1214 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1215} dtrace_bufdesc_t;
1216
1217/*
1218 * Each record in the buffer (dtbd_data) begins with a header that includes
1219 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1220 * so that we do not require 8-byte alignment.
1221 */
1222typedef struct dtrace_rechdr {
1223 dtrace_epid_t dtrh_epid; /* enabled probe id */
1224 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1225 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1226} dtrace_rechdr_t;
1227
1228#define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1229 ((dtrh)->dtrh_timestamp_lo + \
1230 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1231
1232#define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1233 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1234 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1235}
1236
1237/*
1238 * DTrace Status
1239 *
1240 * The status of DTrace is relayed via the dtrace_status structure. This
1241 * structure contains members to count drops other than the capacity drops
1242 * available via the buffer interface (see above). This consists of dynamic
1243 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1244 * speculative drops (including capacity speculative drops, drops due to busy
1245 * speculative buffers and drops due to unavailable speculative buffers).
1246 * Additionally, the status structure contains a field to indicate the number
1247 * of "fill"-policy buffers have been filled and a boolean field to indicate
1248 * that exit() has been called. If the dtst_exiting field is non-zero, no
1249 * further data will be generated until tracing is stopped (at which time any
1250 * enablings of the END action will be processed); if user-level sees that
1251 * this field is non-zero, tracing should be stopped as soon as possible.
1252 */
1253typedef struct dtrace_status {
1254 uint64_t dtst_dyndrops; /* dynamic drops */
1255 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1256 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1257 uint64_t dtst_specdrops; /* speculative drops */
1258 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1259 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1260 uint64_t dtst_errors; /* total errors */
1261 uint64_t dtst_filled; /* number of filled bufs */
1262 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1263 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1264 char dtst_killed; /* non-zero if killed */
1265 char dtst_exiting; /* non-zero if exit() called */
1266 char dtst_pad[6]; /* pad out to 64-bit align */
1267} dtrace_status_t;
1268
1269/*
1270 * DTrace Configuration
1271 *
1272 * User-level may need to understand some elements of the kernel DTrace
1273 * configuration in order to generate correct DIF. This information is
1274 * conveyed via the dtrace_conf structure.
1275 */
1276typedef struct dtrace_conf {
1277 uint_t dtc_difversion; /* supported DIF version */
1278 uint_t dtc_difintregs; /* # of DIF integer registers */
1279 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1280 uint_t dtc_ctfmodel; /* CTF data model */
1281 uint_t dtc_pad[8]; /* reserved for future use */
1282} dtrace_conf_t;
1283
1284/*
1285 * DTrace Faults
1286 *
1287 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1288 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1289 * postprocessing at user-level. Probe processing faults induce an ERROR
1290 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1291 * the error condition using thse symbolic labels.
1292 */
1293#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1294#define DTRACEFLT_BADADDR 1 /* Bad address */
1295#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1296#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1297#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1298#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1299#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1300#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1301#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1302#define DTRACEFLT_BADSTACK 9 /* Bad stack */
1303
1304#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1305
1306/*
1307 * DTrace Argument Types
1308 *
1309 * Because it would waste both space and time, argument types do not reside
1310 * with the probe. In order to determine argument types for args[X]
1311 * variables, the D compiler queries for argument types on a probe-by-probe
1312 * basis. (This optimizes for the common case that arguments are either not
1313 * used or used in an untyped fashion.) Typed arguments are specified with a
1314 * string of the type name in the dtragd_native member of the argument
1315 * description structure. Typed arguments may be further translated to types
1316 * of greater stability; the provider indicates such a translated argument by
1317 * filling in the dtargd_xlate member with the string of the translated type.
1318 * Finally, the provider may indicate which argument value a given argument
1319 * maps to by setting the dtargd_mapping member -- allowing a single argument
1320 * to map to multiple args[X] variables.
1321 */
1322typedef struct dtrace_argdesc {
1323 dtrace_id_t dtargd_id; /* probe identifier */
1324 int dtargd_ndx; /* arg number (-1 iff none) */
1325 int dtargd_mapping; /* value mapping */
1326 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1327 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1328} dtrace_argdesc_t;
1329
1330/*
1331 * DTrace Stability Attributes
1332 *
1333 * Each DTrace provider advertises the name and data stability of each of its
1334 * probe description components, as well as its architectural dependencies.
1335 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1336 * order to compute the properties of an input program and report them.
1337 */
1338typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1339typedef uint8_t dtrace_class_t; /* architectural dependency class */
1340
1341#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1342#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1343#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1344#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1345#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1346#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1347#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1348#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1349#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1350
1351#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1352#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1353#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1354#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1355#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1356#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1357#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1358
1359#define DTRACE_PRIV_NONE 0x0000
1360#define DTRACE_PRIV_KERNEL 0x0001
1361#define DTRACE_PRIV_USER 0x0002
1362#define DTRACE_PRIV_PROC 0x0004
1363#define DTRACE_PRIV_OWNER 0x0008
1364#define DTRACE_PRIV_ZONEOWNER 0x0010
1365
1366#define DTRACE_PRIV_ALL \
1367 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1368 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1369
1370typedef struct dtrace_ppriv {
1371 uint32_t dtpp_flags; /* privilege flags */
1372 uid_t dtpp_uid; /* user ID */
1373 zoneid_t dtpp_zoneid; /* zone ID */
1374} dtrace_ppriv_t;
1375
1376typedef struct dtrace_attribute {
1377 dtrace_stability_t dtat_name; /* entity name stability */
1378 dtrace_stability_t dtat_data; /* entity data stability */
1379 dtrace_class_t dtat_class; /* entity data dependency */
1380} dtrace_attribute_t;
1381
1382typedef struct dtrace_pattr {
1383 dtrace_attribute_t dtpa_provider; /* provider attributes */
1384 dtrace_attribute_t dtpa_mod; /* module attributes */
1385 dtrace_attribute_t dtpa_func; /* function attributes */
1386 dtrace_attribute_t dtpa_name; /* name attributes */
1387 dtrace_attribute_t dtpa_args; /* args[] attributes */
1388} dtrace_pattr_t;
1389
1390typedef struct dtrace_providerdesc {
1391 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1392 dtrace_pattr_t dtvd_attr; /* stability attributes */
1393 dtrace_ppriv_t dtvd_priv; /* privileges required */
1394} dtrace_providerdesc_t;
1395
1396/*
1397 * DTrace Pseudodevice Interface
1398 *
1399 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1400 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1401 * DTrace.
1402 */
1403#if !defined(__APPLE__)
1404#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1405#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1406#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1407#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1408#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1409#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1410#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1411#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1412#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1413#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1414#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1415#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1416#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1417#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1418#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1419#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1420#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1421#else
1422/* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1423#define DTRACEIOC _IO('d',0)
1424#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1425#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1426#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1427#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1428#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1429#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1430#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1431#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1432#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1433#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1434#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1435#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1436#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1437#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1438#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1439#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1440#define DTRACEIOC_MODUUIDSLIST (DTRACEIOC | 30) /* APPLE ONLY, query for modules with missing symbols */
1441#define DTRACEIOC_PROVMODSYMS (DTRACEIOC | 31) /* APPLE ONLY, provide missing symbols for a given module */
1442#define DTRACEIOC_PROCWAITFOR (DTRACEIOC | 32) /* APPLE ONLY, wait for process exec */
1443#define DTRACEIOC_SLEEP (DTRACEIOC | 33) /* APPLE ONLY, sleep */
1444#define DTRACEIOC_SIGNAL (DTRACEIOC | 34) /* APPLE ONLY, signal sleeping process */
1445
1446/*
1447 * The following structs are used to provide symbol information to the kernel from userspace.
1448 */
1449
1450typedef struct dtrace_symbol {
1451 uint64_t dtsym_addr; /* address of the symbol */
1452 uint64_t dtsym_size; /* size of the symbol, must be uint64_t to maintain alignment when called by 64b uproc in i386 kernel */
1453 char dtsym_name[DTRACE_FUNCNAMELEN]; /* symbol name */
1454} dtrace_symbol_t;
1455
1456typedef struct dtrace_module_symbols {
1457 UUID dtmodsyms_uuid;
1458 uint64_t dtmodsyms_count;
1459 dtrace_symbol_t dtmodsyms_symbols[1];
1460} dtrace_module_symbols_t;
1461
1462#define DTRACE_MODULE_SYMBOLS_SIZE(count) (sizeof(dtrace_module_symbols_t) + ((count - 1) * sizeof(dtrace_symbol_t)))
1463
1464typedef struct dtrace_module_uuids_list {
1465 uint64_t dtmul_count;
1466 UUID dtmul_uuid[1];
1467} dtrace_module_uuids_list_t;
1468
1469#define DTRACE_MODULE_UUIDS_LIST_SIZE(count) (sizeof(dtrace_module_uuids_list_t) + ((count - 1) * sizeof(UUID)))
1470
1471typedef struct dtrace_procdesc {
1472 /* Must be specified by user-space */
1473 char p_name[128];
1474 /* Set or modified by the Kernel */
1475 int p_name_length;
1476 pid_t p_pid;
1477} dtrace_procdesc_t;
1478
1479/**
1480 * DTrace wake reasons.
1481 * This is used in userspace to determine what's the reason why it woke up,
1482 * to start aggregating / switching buffer right away if it is because a buffer
1483 * got over its limit
1484 */
1485#define DTRACE_WAKE_TIMEOUT 0 /* dtrace client woke up because of a timeout */
1486#define DTRACE_WAKE_BUF_LIMIT 1 /* dtrace client woke up because of a over limit buffer */
1487
1488#endif /* __APPLE__ */
1489
1490/*
1491 * DTrace Helpers
1492 *
1493 * In general, DTrace establishes probes in processes and takes actions on
1494 * processes without knowing their specific user-level structures. Instead of
1495 * existing in the framework, process-specific knowledge is contained by the
1496 * enabling D program -- which can apply process-specific knowledge by making
1497 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1498 * operate on user-level data. However, there may exist some specific probes
1499 * of particular semantic relevance that the application developer may wish to
1500 * explicitly export. For example, an application may wish to export a probe
1501 * at the point that it begins and ends certain well-defined transactions. In
1502 * addition to providing probes, programs may wish to offer assistance for
1503 * certain actions. For example, in highly dynamic environments (e.g., Java),
1504 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1505 * names (the translation from instruction addresses to corresponding symbol
1506 * names may only be possible in situ); these environments may wish to define
1507 * a series of actions to be applied in situ to obtain a meaningful stack
1508 * trace.
1509 *
1510 * These two mechanisms -- user-level statically defined tracing and assisting
1511 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1512 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1513 * providers, probes and their arguments. If a helper wishes to provide
1514 * action assistance, probe descriptions and corresponding DIF actions may be
1515 * specified in the helper DOF. For such helper actions, however, the probe
1516 * description describes the specific helper: all DTrace helpers have the
1517 * provider name "dtrace" and the module name "helper", and the name of the
1518 * helper is contained in the function name (for example, the ustack() helper
1519 * is named "ustack"). Any helper-specific name may be contained in the name
1520 * (for example, if a helper were to have a constructor, it might be named
1521 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1522 * action that they are helping is taken. Helper actions may only return DIF
1523 * expressions, and may only call the following subroutines:
1524 *
1525 * alloca() <= Allocates memory out of the consumer's scratch space
1526 * bcopy() <= Copies memory to scratch space
1527 * copyin() <= Copies memory from user-level into consumer's scratch
1528 * copyinto() <= Copies memory into a specific location in scratch
1529 * copyinstr() <= Copies a string into a specific location in scratch
1530 *
1531 * Helper actions may only access the following built-in variables:
1532 *
1533 * curthread <= Current kthread_t pointer
1534 * tid <= Current thread identifier
1535 * pid <= Current process identifier
1536 * ppid <= Parent process identifier
1537 * uid <= Current user ID
1538 * gid <= Current group ID
1539 * execname <= Current executable name
1540 * zonename <= Current zone name
1541 *
1542 * Helper actions may not manipulate or allocate dynamic variables, but they
1543 * may have clause-local and statically-allocated global variables. The
1544 * helper action variable state is specific to the helper action -- variables
1545 * used by the helper action may not be accessed outside of the helper
1546 * action, and the helper action may not access variables that like outside
1547 * of it. Helper actions may not load from kernel memory at-large; they are
1548 * restricting to loading current user state (via copyin() and variants) and
1549 * scratch space. As with probe enablings, helper actions are executed in
1550 * program order. The result of the helper action is the result of the last
1551 * executing helper expression.
1552 *
1553 * Helpers -- composed of either providers/probes or probes/actions (or both)
1554 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1555 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1556 * encapsulates the name and base address of the user-level library or
1557 * executable publishing the helpers and probes as well as the DOF that
1558 * contains the definitions of those helpers and probes.
1559 *
1560 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1561 * helpers and should no longer be used. No other ioctls are valid on the
1562 * helper minor node.
1563 */
1564#if !defined(__APPLE__)
1565#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1566#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1567#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1568#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1569#else
1570#define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1571#define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1572#endif /* __APPLE__ */
1573
1574typedef struct dof_helper {
1575 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1576 uint64_t dofhp_addr; /* base address of object */
1577 uint64_t dofhp_dof; /* address of helper DOF */
1578} dof_helper_t;
1579
1580#if defined(__APPLE__)
1581/*
1582 * This structure is used to register one or more dof_helper_t(s).
1583 * For counts greater than one, malloc the structure as if the
1584 * dofiod_helpers field was "count" sized. The kernel will copyin
1585 * data of size:
1586 *
1587 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1588 */
1589typedef struct dof_ioctl_data {
1590 /*
1591 * This field must be 64 bits to keep the alignment the same
1592 * when 64 bit user procs are sending data to 32 bit xnu
1593 */
1594 uint64_t dofiod_count;
1595 dof_helper_t dofiod_helpers[1];
1596} dof_ioctl_data_t;
1597
1598#define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1599
1600#endif
1601
1602#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1603#if !defined(__APPLE__)
1604#define DTRACEMNR_HELPER "helper" /* node for helpers */
1605#else
1606#define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1607#endif /* __APPLE__ */
1608#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1609#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1610#define DTRACEMNRN_CLONE 2 /* first clone minor */
1611
1612#ifdef _KERNEL
1613
1614/*
1615 * DTrace Provider API
1616 *
1617 * The following functions are implemented by the DTrace framework and are
1618 * used to implement separate in-kernel DTrace providers. Common functions
1619 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1620 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1621 *
1622 * The provider API has two halves: the API that the providers consume from
1623 * DTrace, and the API that providers make available to DTrace.
1624 *
1625 * 1 Framework-to-Provider API
1626 *
1627 * 1.1 Overview
1628 *
1629 * The Framework-to-Provider API is represented by the dtrace_pops structure
1630 * that the provider passes to the framework when registering itself. This
1631 * structure consists of the following members:
1632 *
1633 * dtps_provide() <-- Provide all probes, all modules
1634 * dtps_provide_module() <-- Provide all probes in specified module
1635 * dtps_enable() <-- Enable specified probe
1636 * dtps_disable() <-- Disable specified probe
1637 * dtps_suspend() <-- Suspend specified probe
1638 * dtps_resume() <-- Resume specified probe
1639 * dtps_getargdesc() <-- Get the argument description for args[X]
1640 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1641 * dtps_usermode() <-- Find out if the probe was fired in user mode
1642 * dtps_destroy() <-- Destroy all state associated with this probe
1643 *
1644 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1645 *
1646 * 1.2.1 Overview
1647 *
1648 * Called to indicate that the provider should provide all probes. If the
1649 * specified description is non-NULL, dtps_provide() is being called because
1650 * no probe matched a specified probe -- if the provider has the ability to
1651 * create custom probes, it may wish to create a probe that matches the
1652 * specified description.
1653 *
1654 * 1.2.2 Arguments and notes
1655 *
1656 * The first argument is the cookie as passed to dtrace_register(). The
1657 * second argument is a pointer to a probe description that the provider may
1658 * wish to consider when creating custom probes. The provider is expected to
1659 * call back into the DTrace framework via dtrace_probe_create() to create
1660 * any necessary probes. dtps_provide() may be called even if the provider
1661 * has made available all probes; the provider should check the return value
1662 * of dtrace_probe_create() to handle this case. Note that the provider need
1663 * not implement both dtps_provide() and dtps_provide_module(); see
1664 * "Arguments and Notes" for dtrace_register(), below.
1665 *
1666 * 1.2.3 Return value
1667 *
1668 * None.
1669 *
1670 * 1.2.4 Caller's context
1671 *
1672 * dtps_provide() is typically called from open() or ioctl() context, but may
1673 * be called from other contexts as well. The DTrace framework is locked in
1674 * such a way that providers may not register or unregister. This means that
1675 * the provider may not call any DTrace API that affects its registration with
1676 * the framework, including dtrace_register(), dtrace_unregister(),
1677 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1678 * that the provider may (and indeed, is expected to) call probe-related
1679 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1680 * and dtrace_probe_arg().
1681 *
1682 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1683 *
1684 * 1.3.1 Overview
1685 *
1686 * Called to indicate that the provider should provide all probes in the
1687 * specified module.
1688 *
1689 * 1.3.2 Arguments and notes
1690 *
1691 * The first argument is the cookie as passed to dtrace_register(). The
1692 * second argument is a pointer to a modctl structure that indicates the
1693 * module for which probes should be created.
1694 *
1695 * 1.3.3 Return value
1696 *
1697 * None.
1698 *
1699 * 1.3.4 Caller's context
1700 *
1701 * dtps_provide_module() may be called from open() or ioctl() context, but
1702 * may also be called from a module loading context. mod_lock is held, and
1703 * the DTrace framework is locked in such a way that providers may not
1704 * register or unregister. This means that the provider may not call any
1705 * DTrace API that affects its registration with the framework, including
1706 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1707 * dtrace_condense(). However, the context is such that the provider may (and
1708 * indeed, is expected to) call probe-related DTrace routines, including
1709 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1710 * that the provider need not implement both dtps_provide() and
1711 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1712 * below.
1713 *
1714 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1715 *
1716 * 1.4.1 Overview
1717 *
1718 * Called to enable the specified probe.
1719 *
1720 * 1.4.2 Arguments and notes
1721 *
1722 * The first argument is the cookie as passed to dtrace_register(). The
1723 * second argument is the identifier of the probe to be enabled. The third
1724 * argument is the probe argument as passed to dtrace_probe_create().
1725 * dtps_enable() will be called when a probe transitions from not being
1726 * enabled at all to having one or more ECB. The number of ECBs associated
1727 * with the probe may change without subsequent calls into the provider.
1728 * When the number of ECBs drops to zero, the provider will be explicitly
1729 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1730 * be called for a probe identifier that hasn't been explicitly enabled via
1731 * dtps_enable().
1732 *
1733 * 1.4.3 Return value
1734 *
1735 * On success, dtps_enable() should return 0. On failure, -1 should be
1736 * returned.
1737 *
1738 * 1.4.4 Caller's context
1739 *
1740 * The DTrace framework is locked in such a way that it may not be called
1741 * back into at all. cpu_lock is held. mod_lock is not held and may not
1742 * be acquired.
1743 *
1744 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1745 *
1746 * 1.5.1 Overview
1747 *
1748 * Called to disable the specified probe.
1749 *
1750 * 1.5.2 Arguments and notes
1751 *
1752 * The first argument is the cookie as passed to dtrace_register(). The
1753 * second argument is the identifier of the probe to be disabled. The third
1754 * argument is the probe argument as passed to dtrace_probe_create().
1755 * dtps_disable() will be called when a probe transitions from being enabled
1756 * to having zero ECBs. dtrace_probe() should never be called for a probe
1757 * identifier that has been explicitly enabled via dtps_disable().
1758 *
1759 * 1.5.3 Return value
1760 *
1761 * None.
1762 *
1763 * 1.5.4 Caller's context
1764 *
1765 * The DTrace framework is locked in such a way that it may not be called
1766 * back into at all. cpu_lock is held. mod_lock is not held and may not
1767 * be acquired.
1768 *
1769 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1770 *
1771 * 1.6.1 Overview
1772 *
1773 * Called to suspend the specified enabled probe. This entry point is for
1774 * providers that may need to suspend some or all of their probes when CPUs
1775 * are being powered on or when the boot monitor is being entered for a
1776 * prolonged period of time.
1777 *
1778 * 1.6.2 Arguments and notes
1779 *
1780 * The first argument is the cookie as passed to dtrace_register(). The
1781 * second argument is the identifier of the probe to be suspended. The
1782 * third argument is the probe argument as passed to dtrace_probe_create().
1783 * dtps_suspend will only be called on an enabled probe. Providers that
1784 * provide a dtps_suspend entry point will want to take roughly the action
1785 * that it takes for dtps_disable.
1786 *
1787 * 1.6.3 Return value
1788 *
1789 * None.
1790 *
1791 * 1.6.4 Caller's context
1792 *
1793 * Interrupts are disabled. The DTrace framework is in a state such that the
1794 * specified probe cannot be disabled or destroyed for the duration of
1795 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1796 * little latitude; the provider is expected to do no more than a store to
1797 * memory.
1798 *
1799 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1800 *
1801 * 1.7.1 Overview
1802 *
1803 * Called to resume the specified enabled probe. This entry point is for
1804 * providers that may need to resume some or all of their probes after the
1805 * completion of an event that induced a call to dtps_suspend().
1806 *
1807 * 1.7.2 Arguments and notes
1808 *
1809 * The first argument is the cookie as passed to dtrace_register(). The
1810 * second argument is the identifier of the probe to be resumed. The
1811 * third argument is the probe argument as passed to dtrace_probe_create().
1812 * dtps_resume will only be called on an enabled probe. Providers that
1813 * provide a dtps_resume entry point will want to take roughly the action
1814 * that it takes for dtps_enable.
1815 *
1816 * 1.7.3 Return value
1817 *
1818 * None.
1819 *
1820 * 1.7.4 Caller's context
1821 *
1822 * Interrupts are disabled. The DTrace framework is in a state such that the
1823 * specified probe cannot be disabled or destroyed for the duration of
1824 * dtps_resume(). As interrupts are disabled, the provider is afforded
1825 * little latitude; the provider is expected to do no more than a store to
1826 * memory.
1827 *
1828 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1829 * dtrace_argdesc_t *desc)
1830 *
1831 * 1.8.1 Overview
1832 *
1833 * Called to retrieve the argument description for an args[X] variable.
1834 *
1835 * 1.8.2 Arguments and notes
1836 *
1837 * The first argument is the cookie as passed to dtrace_register(). The
1838 * second argument is the identifier of the current probe. The third
1839 * argument is the probe argument as passed to dtrace_probe_create(). The
1840 * fourth argument is a pointer to the argument description. This
1841 * description is both an input and output parameter: it contains the
1842 * index of the desired argument in the dtargd_ndx field, and expects
1843 * the other fields to be filled in upon return. If there is no argument
1844 * corresponding to the specified index, the dtargd_ndx field should be set
1845 * to DTRACE_ARGNONE.
1846 *
1847 * 1.8.3 Return value
1848 *
1849 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1850 * members of the dtrace_argdesc_t structure are all output values.
1851 *
1852 * 1.8.4 Caller's context
1853 *
1854 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1855 * the DTrace framework is locked in such a way that providers may not
1856 * register or unregister. This means that the provider may not call any
1857 * DTrace API that affects its registration with the framework, including
1858 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1859 * dtrace_condense().
1860 *
1861 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1862 * int argno, int aframes)
1863 *
1864 * 1.9.1 Overview
1865 *
1866 * Called to retrieve a value for an argX or args[X] variable.
1867 *
1868 * 1.9.2 Arguments and notes
1869 *
1870 * The first argument is the cookie as passed to dtrace_register(). The
1871 * second argument is the identifier of the current probe. The third
1872 * argument is the probe argument as passed to dtrace_probe_create(). The
1873 * fourth argument is the number of the argument (the X in the example in
1874 * 1.9.1). The fifth argument is the number of stack frames that were used
1875 * to get from the actual place in the code that fired the probe to
1876 * dtrace_probe() itself, the so-called artificial frames. This argument may
1877 * be used to descend an appropriate number of frames to find the correct
1878 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1879 * function is used.
1880 *
1881 * 1.9.3 Return value
1882 *
1883 * The value of the argument.
1884 *
1885 * 1.9.4 Caller's context
1886 *
1887 * This is called from within dtrace_probe() meaning that interrupts
1888 * are disabled. No locks should be taken within this entry point.
1889 *
1890 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1891 *
1892 * 1.10.1 Overview
1893 *
1894 * Called to determine if the probe was fired in a user context.
1895 *
1896 * 1.10.2 Arguments and notes
1897 *
1898 * The first argument is the cookie as passed to dtrace_register(). The
1899 * second argument is the identifier of the current probe. The third
1900 * argument is the probe argument as passed to dtrace_probe_create(). This
1901 * entry point must not be left NULL for providers whose probes allow for
1902 * mixed mode tracing, that is to say those probes that can fire during
1903 * kernel- _or_ user-mode execution
1904 *
1905 * 1.10.3 Return value
1906 *
1907 * A boolean value.
1908 *
1909 * 1.10.4 Caller's context
1910 *
1911 * This is called from within dtrace_probe() meaning that interrupts
1912 * are disabled. No locks should be taken within this entry point.
1913 *
1914 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1915 *
1916 * 1.11.1 Overview
1917 *
1918 * Called to destroy the specified probe.
1919 *
1920 * 1.11.2 Arguments and notes
1921 *
1922 * The first argument is the cookie as passed to dtrace_register(). The
1923 * second argument is the identifier of the probe to be destroyed. The third
1924 * argument is the probe argument as passed to dtrace_probe_create(). The
1925 * provider should free all state associated with the probe. The framework
1926 * guarantees that dtps_destroy() is only called for probes that have either
1927 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1928 * Once dtps_disable() has been called for a probe, no further call will be
1929 * made specifying the probe.
1930 *
1931 * 1.11.3 Return value
1932 *
1933 * None.
1934 *
1935 * 1.11.4 Caller's context
1936 *
1937 * The DTrace framework is locked in such a way that it may not be called
1938 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1939 * acquired.
1940 *
1941 *
1942 * 2 Provider-to-Framework API
1943 *
1944 * 2.1 Overview
1945 *
1946 * The Provider-to-Framework API provides the mechanism for the provider to
1947 * register itself with the DTrace framework, to create probes, to lookup
1948 * probes and (most importantly) to fire probes. The Provider-to-Framework
1949 * consists of:
1950 *
1951 * dtrace_register() <-- Register a provider with the DTrace framework
1952 * dtrace_unregister() <-- Remove a provider's DTrace registration
1953 * dtrace_invalidate() <-- Invalidate the specified provider
1954 * dtrace_condense() <-- Remove a provider's unenabled probes
1955 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1956 * dtrace_probe_create() <-- Create a DTrace probe
1957 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1958 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1959 * dtrace_probe() <-- Fire the specified probe
1960 *
1961 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1962 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1963 * dtrace_provider_id_t *idp)
1964 *
1965 * 2.2.1 Overview
1966 *
1967 * dtrace_register() registers the calling provider with the DTrace
1968 * framework. It should generally be called by DTrace providers in their
1969 * attach(9E) entry point.
1970 *
1971 * 2.2.2 Arguments and Notes
1972 *
1973 * The first argument is the name of the provider. The second argument is a
1974 * pointer to the stability attributes for the provider. The third argument
1975 * is the privilege flags for the provider, and must be some combination of:
1976 *
1977 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1978 *
1979 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1980 * enable probes from this provider
1981 *
1982 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1983 * enable probes from this provider
1984 *
1985 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1986 * may enable probes from this provider
1987 *
1988 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1989 * the privilege requirements above. These probes
1990 * require either (a) a user ID matching the user
1991 * ID of the cred passed in the fourth argument
1992 * or (b) the PRIV_PROC_OWNER privilege.
1993 *
1994 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1995 * the privilege requirements above. These probes
1996 * require either (a) a zone ID matching the zone
1997 * ID of the cred passed in the fourth argument
1998 * or (b) the PRIV_PROC_ZONE privilege.
1999 *
2000 * Note that these flags designate the _visibility_ of the probes, not
2001 * the conditions under which they may or may not fire.
2002 *
2003 * The fourth argument is the credential that is associated with the
2004 * provider. This argument should be NULL if the privilege flags don't
2005 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
2006 * framework stashes the uid and zoneid represented by this credential
2007 * for use at probe-time, in implicit predicates. These limit visibility
2008 * of the probes to users and/or zones which have sufficient privilege to
2009 * access them.
2010 *
2011 * The fifth argument is a DTrace provider operations vector, which provides
2012 * the implementation for the Framework-to-Provider API. (See Section 1,
2013 * above.) This must be non-NULL, and each member must be non-NULL. The
2014 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
2015 * members (if the provider so desires, _one_ of these members may be left
2016 * NULL -- denoting that the provider only implements the other) and (2)
2017 * the dtps_suspend() and dtps_resume() members, which must either both be
2018 * NULL or both be non-NULL.
2019 *
2020 * The sixth argument is a cookie to be specified as the first argument for
2021 * each function in the Framework-to-Provider API. This argument may have
2022 * any value.
2023 *
2024 * The final argument is a pointer to dtrace_provider_id_t. If
2025 * dtrace_register() successfully completes, the provider identifier will be
2026 * stored in the memory pointed to be this argument. This argument must be
2027 * non-NULL.
2028 *
2029 * 2.2.3 Return value
2030 *
2031 * On success, dtrace_register() returns 0 and stores the new provider's
2032 * identifier into the memory pointed to by the idp argument. On failure,
2033 * dtrace_register() returns an errno:
2034 *
2035 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
2036 * This may because a parameter that must be non-NULL was NULL,
2037 * because the name was invalid (either empty or an illegal
2038 * provider name) or because the attributes were invalid.
2039 *
2040 * No other failure code is returned.
2041 *
2042 * 2.2.4 Caller's context
2043 *
2044 * dtrace_register() may induce calls to dtrace_provide(); the provider must
2045 * hold no locks across dtrace_register() that may also be acquired by
2046 * dtrace_provide(). cpu_lock and mod_lock must not be held.
2047 *
2048 * 2.3 int dtrace_unregister(dtrace_provider_t id)
2049 *
2050 * 2.3.1 Overview
2051 *
2052 * Unregisters the specified provider from the DTrace framework. It should
2053 * generally be called by DTrace providers in their detach(9E) entry point.
2054 *
2055 * 2.3.2 Arguments and Notes
2056 *
2057 * The only argument is the provider identifier, as returned from a
2058 * successful call to dtrace_register(). As a result of calling
2059 * dtrace_unregister(), the DTrace framework will call back into the provider
2060 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
2061 * completes, however, the DTrace framework will no longer make calls through
2062 * the Framework-to-Provider API.
2063 *
2064 * 2.3.3 Return value
2065 *
2066 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
2067 * returns an errno:
2068 *
2069 * EBUSY There are currently processes that have the DTrace pseudodevice
2070 * open, or there exists an anonymous enabling that hasn't yet
2071 * been claimed.
2072 *
2073 * No other failure code is returned.
2074 *
2075 * 2.3.4 Caller's context
2076 *
2077 * Because a call to dtrace_unregister() may induce calls through the
2078 * Framework-to-Provider API, the caller may not hold any lock across
2079 * dtrace_register() that is also acquired in any of the Framework-to-
2080 * Provider API functions. Additionally, mod_lock may not be held.
2081 *
2082 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
2083 *
2084 * 2.4.1 Overview
2085 *
2086 * Invalidates the specified provider. All subsequent probe lookups for the
2087 * specified provider will fail, but its probes will not be removed.
2088 *
2089 * 2.4.2 Arguments and note
2090 *
2091 * The only argument is the provider identifier, as returned from a
2092 * successful call to dtrace_register(). In general, a provider's probes
2093 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
2094 * an entire provider, regardless of whether or not probes are enabled or
2095 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
2096 * probes from firing -- it will merely prevent any new enablings of the
2097 * provider's probes.
2098 *
2099 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
2100 *
2101 * 2.5.1 Overview
2102 *
2103 * Removes all the unenabled probes for the given provider. This function is
2104 * not unlike dtrace_unregister(), except that it doesn't remove the
2105 * provider just as many of its associated probes as it can.
2106 *
2107 * 2.5.2 Arguments and Notes
2108 *
2109 * As with dtrace_unregister(), the sole argument is the provider identifier
2110 * as returned from a successful call to dtrace_register(). As a result of
2111 * calling dtrace_condense(), the DTrace framework will call back into the
2112 * given provider's dtps_destroy() entry point for each of the provider's
2113 * unenabled probes.
2114 *
2115 * 2.5.3 Return value
2116 *
2117 * Currently, dtrace_condense() always returns 0. However, consumers of this
2118 * function should check the return value as appropriate; its behavior may
2119 * change in the future.
2120 *
2121 * 2.5.4 Caller's context
2122 *
2123 * As with dtrace_unregister(), the caller may not hold any lock across
2124 * dtrace_condense() that is also acquired in the provider's entry points.
2125 * Also, mod_lock may not be held.
2126 *
2127 * 2.6 int dtrace_attached()
2128 *
2129 * 2.6.1 Overview
2130 *
2131 * Indicates whether or not DTrace has attached.
2132 *
2133 * 2.6.2 Arguments and Notes
2134 *
2135 * For most providers, DTrace makes initial contact beyond registration.
2136 * That is, once a provider has registered with DTrace, it waits to hear
2137 * from DTrace to create probes. However, some providers may wish to
2138 * proactively create probes without first being told by DTrace to do so.
2139 * If providers wish to do this, they must first call dtrace_attached() to
2140 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
2141 * the provider must not make any other Provider-to-Framework API call.
2142 *
2143 * 2.6.3 Return value
2144 *
2145 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2146 *
2147 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2148 * const char *func, const char *name, int aframes, void *arg)
2149 *
2150 * 2.7.1 Overview
2151 *
2152 * Creates a probe with specified module name, function name, and name.
2153 *
2154 * 2.7.2 Arguments and Notes
2155 *
2156 * The first argument is the provider identifier, as returned from a
2157 * successful call to dtrace_register(). The second, third, and fourth
2158 * arguments are the module name, function name, and probe name,
2159 * respectively. Of these, module name and function name may both be NULL
2160 * (in which case the probe is considered to be unanchored), or they may both
2161 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2162 * string.
2163 *
2164 * The fifth argument is the number of artificial stack frames that will be
2165 * found on the stack when dtrace_probe() is called for the new probe. These
2166 * artificial frames will be automatically be pruned should the stack() or
2167 * stackdepth() functions be called as part of one of the probe's ECBs. If
2168 * the parameter doesn't add an artificial frame, this parameter should be
2169 * zero.
2170 *
2171 * The final argument is a probe argument that will be passed back to the
2172 * provider when a probe-specific operation is called. (e.g., via
2173 * dtps_enable(), dtps_disable(), etc.)
2174 *
2175 * Note that it is up to the provider to be sure that the probe that it
2176 * creates does not already exist -- if the provider is unsure of the probe's
2177 * existence, it should assure its absence with dtrace_probe_lookup() before
2178 * calling dtrace_probe_create().
2179 *
2180 * 2.7.3 Return value
2181 *
2182 * dtrace_probe_create() always succeeds, and always returns the identifier
2183 * of the newly-created probe.
2184 *
2185 * 2.7.4 Caller's context
2186 *
2187 * While dtrace_probe_create() is generally expected to be called from
2188 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2189 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2190 *
2191 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2192 * const char *func, const char *name)
2193 *
2194 * 2.8.1 Overview
2195 *
2196 * Looks up a probe based on provdider and one or more of module name,
2197 * function name and probe name.
2198 *
2199 * 2.8.2 Arguments and Notes
2200 *
2201 * The first argument is the provider identifier, as returned from a
2202 * successful call to dtrace_register(). The second, third, and fourth
2203 * arguments are the module name, function name, and probe name,
2204 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2205 * the identifier of the first probe that is provided by the specified
2206 * provider and matches all of the non-NULL matching criteria.
2207 * dtrace_probe_lookup() is generally used by a provider to be check the
2208 * existence of a probe before creating it with dtrace_probe_create().
2209 *
2210 * 2.8.3 Return value
2211 *
2212 * If the probe exists, returns its identifier. If the probe does not exist,
2213 * return DTRACE_IDNONE.
2214 *
2215 * 2.8.4 Caller's context
2216 *
2217 * While dtrace_probe_lookup() is generally expected to be called from
2218 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2219 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2220 *
2221 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2222 *
2223 * 2.9.1 Overview
2224 *
2225 * Returns the probe argument associated with the specified probe.
2226 *
2227 * 2.9.2 Arguments and Notes
2228 *
2229 * The first argument is the provider identifier, as returned from a
2230 * successful call to dtrace_register(). The second argument is a probe
2231 * identifier, as returned from dtrace_probe_lookup() or
2232 * dtrace_probe_create(). This is useful if a probe has multiple
2233 * provider-specific components to it: the provider can create the probe
2234 * once with provider-specific state, and then add to the state by looking
2235 * up the probe based on probe identifier.
2236 *
2237 * 2.9.3 Return value
2238 *
2239 * Returns the argument associated with the specified probe. If the
2240 * specified probe does not exist, or if the specified probe is not provided
2241 * by the specified provider, NULL is returned.
2242 *
2243 * 2.9.4 Caller's context
2244 *
2245 * While dtrace_probe_arg() is generally expected to be called from
2246 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2247 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2248 *
2249 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2250 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2251 *
2252 * 2.10.1 Overview
2253 *
2254 * The epicenter of DTrace: fires the specified probes with the specified
2255 * arguments.
2256 *
2257 * 2.10.2 Arguments and Notes
2258 *
2259 * The first argument is a probe identifier as returned by
2260 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2261 * arguments are the values to which the D variables "arg0" through "arg4"
2262 * will be mapped.
2263 *
2264 * dtrace_probe() should be called whenever the specified probe has fired --
2265 * however the provider defines it.
2266 *
2267 * 2.10.3 Return value
2268 *
2269 * None.
2270 *
2271 * 2.10.4 Caller's context
2272 *
2273 * dtrace_probe() may be called in virtually any context: kernel, user,
2274 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2275 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2276 * that must be afforded to DTrace is the ability to make calls within
2277 * itself (and to its in-kernel subroutines) and the ability to access
2278 * arbitrary (but mapped) memory. On some platforms, this constrains
2279 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2280 * from any context in which TL is greater than zero. dtrace_probe() may
2281 * also not be called from any routine which may be called by dtrace_probe()
2282 * -- which includes functions in the DTrace framework and some in-kernel
2283 * DTrace subroutines. All such functions "dtrace_"; providers that
2284 * instrument the kernel arbitrarily should be sure to not instrument these
2285 * routines.
2286 */
2287typedef struct dtrace_pops {
2288 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2289 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2290 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2291 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2292 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2293 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2294 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2295 dtrace_argdesc_t *desc);
2296 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2297 int argno, int aframes);
2298 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2299 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2300} dtrace_pops_t;
2301
2302typedef uintptr_t dtrace_provider_id_t;
2303
2304extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2305 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2306extern int dtrace_unregister(dtrace_provider_id_t);
2307extern int dtrace_condense(dtrace_provider_id_t);
2308extern void dtrace_invalidate(dtrace_provider_id_t);
2309extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2310 const char *, const char *);
2311extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2312 const char *, const char *, int, void *);
2313extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2314#if !defined(__APPLE__)
2315extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2316 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2317#else
2318extern void dtrace_probe(dtrace_id_t, uint64_t arg0, uint64_t arg1,
2319 uint64_t arg2, uint64_t arg3, uint64_t arg4);
2320#endif /* __APPLE__ */
2321
2322/*
2323 * DTrace Meta Provider API
2324 *
2325 * The following functions are implemented by the DTrace framework and are
2326 * used to implement meta providers. Meta providers plug into the DTrace
2327 * framework and are used to instantiate new providers on the fly. At
2328 * present, there is only one type of meta provider and only one meta
2329 * provider may be registered with the DTrace framework at a time. The
2330 * sole meta provider type provides user-land static tracing facilities
2331 * by taking meta probe descriptions and adding a corresponding provider
2332 * into the DTrace framework.
2333 *
2334 * 1 Framework-to-Provider
2335 *
2336 * 1.1 Overview
2337 *
2338 * The Framework-to-Provider API is represented by the dtrace_mops structure
2339 * that the meta provider passes to the framework when registering itself as
2340 * a meta provider. This structure consists of the following members:
2341 *
2342 * dtms_create_probe() <-- Add a new probe to a created provider
2343 * dtms_provide_proc() <-- Create a new provider for a given process
2344 * dtms_remove_proc() <-- Remove a previously created provider
2345 *
2346 * 1.2 void dtms_create_probe(void *arg, void *parg,
2347 * dtrace_helper_probedesc_t *probedesc);
2348 *
2349 * 1.2.1 Overview
2350 *
2351 * Called by the DTrace framework to create a new probe in a provider
2352 * created by this meta provider.
2353 *
2354 * 1.2.2 Arguments and notes
2355 *
2356 * The first argument is the cookie as passed to dtrace_meta_register().
2357 * The second argument is the provider cookie for the associated provider;
2358 * this is obtained from the return value of dtms_provide_proc(). The third
2359 * argument is the helper probe description.
2360 *
2361 * 1.2.3 Return value
2362 *
2363 * None
2364 *
2365 * 1.2.4 Caller's context
2366 *
2367 * dtms_create_probe() is called from either ioctl() or module load context.
2368 * The DTrace framework is locked in such a way that meta providers may not
2369 * register or unregister. This means that the meta provider cannot call
2370 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2371 * such that the provider may (and is expected to) call provider-related
2372 * DTrace provider APIs including dtrace_probe_create().
2373 *
2374 * 1.3 void *dtms_provide_proc(void *arg, dtrace_meta_provider_t *mprov,
2375 * proc_t *proc)
2376 *
2377 * 1.3.1 Overview
2378 *
2379 * Called by the DTrace framework to instantiate a new provider given the
2380 * description of the provider and probes in the mprov argument. The
2381 * meta provider should call dtrace_register() to insert the new provider
2382 * into the DTrace framework.
2383 *
2384 * 1.3.2 Arguments and notes
2385 *
2386 * The first argument is the cookie as passed to dtrace_meta_register().
2387 * The second argument is a pointer to a structure describing the new
2388 * helper provider. The third argument is the process identifier for
2389 * process associated with this new provider. Note that the name of the
2390 * provider as passed to dtrace_register() should be the contatenation of
2391 * the dtmpb_provname member of the mprov argument and the processs
2392 * identifier as a string.
2393 *
2394 * 1.3.3 Return value
2395 *
2396 * The cookie for the provider that the meta provider creates. This is
2397 * the same value that it passed to dtrace_register().
2398 *
2399 * 1.3.4 Caller's context
2400 *
2401 * dtms_provide_proc() is called from either ioctl() or module load context.
2402 * The DTrace framework is locked in such a way that meta providers may not
2403 * register or unregister. This means that the meta provider cannot call
2404 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2405 * is such that the provider may -- and is expected to -- call
2406 * provider-related DTrace provider APIs including dtrace_register().
2407 *
2408 * 1.4 void dtms_remove_proc(void *arg, dtrace_meta_provider_t *mprov,
2409 * proc_t proc)
2410 *
2411 * 1.4.1 Overview
2412 *
2413 * Called by the DTrace framework to remove a provider that had previously
2414 * been instantiated via the dtms_provide_pid() entry point. The meta
2415 * provider need not remove the provider immediately, but this entry
2416 * point indicates that the provider should be removed as soon as possible
2417 * using the dtrace_unregister() API.
2418 *
2419 * 1.4.2 Arguments and notes
2420 *
2421 * The first argument is the cookie as passed to dtrace_meta_register().
2422 * The second argument is a pointer to a structure describing the helper
2423 * provider. The third argument is the process identifier for process
2424 * associated with this new provider.
2425 *
2426 * 1.4.3 Return value
2427 *
2428 * None
2429 *
2430 * 1.4.4 Caller's context
2431 *
2432 * dtms_remove_proc() is called from either ioctl() or exit() context.
2433 * The DTrace framework is locked in such a way that meta providers may not
2434 * register or unregister. This means that the meta provider cannot call
2435 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2436 * is such that the provider may -- and is expected to -- call
2437 * provider-related DTrace provider APIs including dtrace_unregister().
2438 */
2439typedef struct dtrace_helper_probedesc {
2440 char *dthpb_mod; /* probe module */
2441 char *dthpb_func; /* probe function */
2442 char *dthpb_name; /* probe name */
2443 uint64_t dthpb_base; /* base address */
2444#if !defined(__APPLE__)
2445 uint32_t *dthpb_offs; /* offsets array */
2446 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2447#else
2448 int32_t *dthpb_offs; /* (signed) offsets array */
2449 int32_t *dthpb_enoffs; /* (signed) is-enabled offsets array */
2450#endif
2451 uint32_t dthpb_noffs; /* offsets count */
2452 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2453 uint8_t *dthpb_args; /* argument mapping array */
2454 uint8_t dthpb_xargc; /* translated argument count */
2455 uint8_t dthpb_nargc; /* native argument count */
2456 char *dthpb_xtypes; /* translated types strings */
2457 char *dthpb_ntypes; /* native types strings */
2458} dtrace_helper_probedesc_t;
2459
2460typedef struct dtrace_helper_provdesc {
2461 char *dthpv_provname; /* provider name */
2462 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2463} dtrace_helper_provdesc_t;
2464
2465/*
2466 * APPLE NOTE: dtms_provide_pid and dtms_remove_pid are replaced with
2467 * dtms_provide_proc on Darwin, and a proc reference need to be held
2468 * for the duration of the call.
2469 *
2470 * This is due to the fact that proc_find is not re-entrant on Darwin.
2471 */
2472
2473typedef struct dtrace_mops {
2474 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2475 void *(*dtms_provide_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2476 void (*dtms_remove_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2477 char* (*dtms_provider_name)(void *);
2478} dtrace_mops_t;
2479
2480typedef uintptr_t dtrace_meta_provider_id_t;
2481
2482extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2483 dtrace_meta_provider_id_t *);
2484extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2485
2486/*
2487 * DTrace Kernel Hooks
2488 *
2489 * The following functions are implemented by the base kernel and form a set of
2490 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2491 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2492 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2493 */
2494
2495typedef enum dtrace_vtime_state {
2496 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2497 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2498 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2499 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2500} dtrace_vtime_state_t;
2501
2502extern dtrace_vtime_state_t dtrace_vtime_active;
2503extern void dtrace_vtime_switch(kthread_t *next);
2504extern void dtrace_vtime_enable_tnf(void);
2505extern void dtrace_vtime_disable_tnf(void);
2506extern void dtrace_vtime_enable(void);
2507extern void dtrace_vtime_disable(void);
2508
2509#if !defined(__APPLE__)
2510struct regs;
2511
2512extern int (*dtrace_pid_probe_ptr)(struct regs *);
2513extern int (*dtrace_return_probe_ptr)(struct regs *);
2514#else
2515#if defined (__i386__) || defined(__x86_64__)
2516extern int (*dtrace_pid_probe_ptr)(x86_saved_state_t *regs);
2517extern int (*dtrace_return_probe_ptr)(x86_saved_state_t* regs);
2518#elif defined (__arm__) || defined(__arm64__)
2519extern int (*dtrace_pid_probe_ptr)(arm_saved_state_t *regs);
2520extern int (*dtrace_return_probe_ptr)(arm_saved_state_t *regs);
2521#else
2522#error architecture not supported
2523#endif
2524#endif /* __APPLE__ */
2525extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2526extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2527extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2528extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2529
2530typedef uintptr_t dtrace_icookie_t;
2531typedef void (*dtrace_xcall_t)(void *);
2532
2533extern dtrace_icookie_t dtrace_interrupt_disable(void);
2534extern void dtrace_interrupt_enable(dtrace_icookie_t);
2535
2536extern void dtrace_membar_producer(void);
2537extern void dtrace_membar_consumer(void);
2538
2539extern void (*dtrace_cpu_init)(processorid_t);
2540#if !defined(__APPLE__)
2541extern void (*dtrace_modload)(struct modctl *);
2542extern void (*dtrace_modunload)(struct modctl *);
2543#else
2544extern int (*dtrace_modload)(struct kmod_info *, uint32_t);
2545extern int (*dtrace_modunload)(struct kmod_info *);
2546#endif /* __APPLE__ */
2547extern void (*dtrace_helpers_cleanup)(proc_t*);
2548extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2549extern void (*dtrace_cpustart_init)(void);
2550extern void (*dtrace_cpustart_fini)(void);
2551
2552extern void (*dtrace_kreloc_init)(void);
2553extern void (*dtrace_kreloc_fini)(void);
2554
2555extern void (*dtrace_debugger_init)(void);
2556extern void (*dtrace_debugger_fini)(void);
2557extern dtrace_cacheid_t dtrace_predcache_id;
2558
2559extern hrtime_t dtrace_gethrtime(void);
2560extern void dtrace_sync(void);
2561extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2562extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2563
2564#if defined(__i386__) || defined(__x86_64__)
2565extern int dtrace_instr_size(uchar_t *instr);
2566extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2567extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2568extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2569extern void *dtrace_invop_callsite_pre;
2570extern void *dtrace_invop_callsite_post;
2571#endif
2572
2573#if defined(__arm__)
2574extern int dtrace_instr_size(uint32_t instr, int thumb_mode);
2575#endif
2576#if defined(__arm__) || defined(__arm64__)
2577extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2578extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2579extern void *dtrace_invop_callsite_pre;
2580extern void *dtrace_invop_callsite_post;
2581#endif
2582
2583#undef proc_t
2584
2585#define DTRACE_CPUFLAG_ISSET(flag) \
2586 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2587
2588#define DTRACE_CPUFLAG_SET(flag) \
2589 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2590
2591#define DTRACE_CPUFLAG_CLEAR(flag) \
2592 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2593
2594#endif /* _KERNEL */
2595
2596#endif /* _ASM */
2597
2598#if defined(__i386__) || defined(__x86_64__)
2599
2600#define DTRACE_INVOP_PUSHL_EBP 1
2601#define DTRACE_INVOP_POPL_EBP 2
2602#define DTRACE_INVOP_LEAVE 3
2603#define DTRACE_INVOP_NOP 4
2604#define DTRACE_INVOP_RET 5
2605
2606#endif
2607
2608#if defined(__arm__) || defined(__arm64__)
2609
2610#define DTRACE_INVOP_NOP 4
2611#define DTRACE_INVOP_RET 5
2612#define DTRACE_INVOP_B 6
2613
2614#endif
2615
2616#ifdef __cplusplus
2617}
2618#endif
2619
2620#endif /* _SYS_DTRACE_H */