]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Implementation of SVID semaphores | |
30 | * | |
31 | * Author: Daniel Boulet | |
32 | * | |
33 | * This software is provided ``AS IS'' without any warranties of any kind. | |
34 | */ | |
35 | /* | |
36 | * John Bellardo modified the implementation for Darwin. 12/2000 | |
37 | */ | |
38 | /* | |
39 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce | |
40 | * support for mandatory and extensible security protections. This notice | |
41 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
42 | * Version 2.0. | |
43 | * Copyright (c) 2005-2006 SPARTA, Inc. | |
44 | */ | |
45 | ||
46 | #include <sys/param.h> | |
47 | #include <sys/systm.h> | |
48 | #include <sys/kernel.h> | |
49 | #include <sys/proc_internal.h> | |
50 | #include <sys/kauth.h> | |
51 | #include <sys/sem_internal.h> | |
52 | #include <sys/malloc.h> | |
53 | #include <mach/mach_types.h> | |
54 | ||
55 | #include <sys/filedesc.h> | |
56 | #include <sys/file_internal.h> | |
57 | #include <sys/sysctl.h> | |
58 | #include <sys/ipcs.h> | |
59 | #include <sys/sysent.h> | |
60 | #include <sys/sysproto.h> | |
61 | #if CONFIG_MACF | |
62 | #include <security/mac_framework.h> | |
63 | #endif | |
64 | ||
65 | #include <security/audit/audit.h> | |
66 | ||
67 | #if SYSV_SEM | |
68 | ||
69 | ||
70 | /* Uncomment this line to see the debugging output */ | |
71 | /* #define SEM_DEBUG */ | |
72 | ||
73 | /* Uncomment this line to see MAC debugging output. */ | |
74 | /* #define MAC_DEBUG */ | |
75 | #if CONFIG_MACF_DEBUG | |
76 | #define MPRINTF(a) printf(a) | |
77 | #else | |
78 | #define MPRINTF(a) | |
79 | #endif | |
80 | ||
81 | #define M_SYSVSEM M_TEMP | |
82 | ||
83 | ||
84 | /* Hard system limits to avoid resource starvation / DOS attacks. | |
85 | * These are not needed if we can make the semaphore pages swappable. | |
86 | */ | |
87 | static struct seminfo limitseminfo = { | |
88 | .semmap = SEMMAP, /* # of entries in semaphore map */ | |
89 | .semmni = SEMMNI, /* # of semaphore identifiers */ | |
90 | .semmns = SEMMNS, /* # of semaphores in system */ | |
91 | .semmnu = SEMMNU, /* # of undo structures in system */ | |
92 | .semmsl = SEMMSL, /* max # of semaphores per id */ | |
93 | .semopm = SEMOPM, /* max # of operations per semop call */ | |
94 | .semume = SEMUME, /* max # of undo entries per process */ | |
95 | .semusz = SEMUSZ, /* size in bytes of undo structure */ | |
96 | .semvmx = SEMVMX, /* semaphore maximum value */ | |
97 | .semaem = SEMAEM /* adjust on exit max value */ | |
98 | }; | |
99 | ||
100 | /* Current system allocations. We use this structure to track how many | |
101 | * resources we have allocated so far. This way we can set large hard limits | |
102 | * and not allocate the memory for them up front. | |
103 | */ | |
104 | struct seminfo seminfo = { | |
105 | .semmap = SEMMAP, /* Unused, # of entries in semaphore map */ | |
106 | .semmni = 0, /* # of semaphore identifiers */ | |
107 | .semmns = 0, /* # of semaphores in system */ | |
108 | .semmnu = 0, /* # of undo entries in system */ | |
109 | .semmsl = SEMMSL, /* max # of semaphores per id */ | |
110 | .semopm = SEMOPM, /* max # of operations per semop call */ | |
111 | .semume = SEMUME, /* max # of undo entries per process */ | |
112 | .semusz = SEMUSZ, /* size in bytes of undo structure */ | |
113 | .semvmx = SEMVMX, /* semaphore maximum value */ | |
114 | .semaem = SEMAEM /* adjust on exit max value */ | |
115 | }; | |
116 | ||
117 | ||
118 | static int semu_alloc(struct proc *p); | |
119 | static int semundo_adjust(struct proc *p, int *supidx, | |
120 | int semid, int semnum, int adjval); | |
121 | static void semundo_clear(int semid, int semnum); | |
122 | ||
123 | /* XXX casting to (sy_call_t *) is bogus, as usual. */ | |
124 | static sy_call_t* const semcalls[] = { | |
125 | (sy_call_t *)semctl, (sy_call_t *)semget, | |
126 | (sy_call_t *)semop | |
127 | }; | |
128 | ||
129 | static int semtot = 0; /* # of used semaphores */ | |
130 | struct semid_kernel *sema = NULL; /* semaphore id pool */ | |
131 | struct sem *sem_pool = NULL; /* semaphore pool */ | |
132 | static int semu_list_idx = -1; /* active undo structures */ | |
133 | struct sem_undo *semu = NULL; /* semaphore undo pool */ | |
134 | ||
135 | ||
136 | void sysv_sem_lock_init(void); | |
137 | static lck_grp_t *sysv_sem_subsys_lck_grp; | |
138 | static lck_grp_attr_t *sysv_sem_subsys_lck_grp_attr; | |
139 | static lck_attr_t *sysv_sem_subsys_lck_attr; | |
140 | static lck_mtx_t sysv_sem_subsys_mutex; | |
141 | ||
142 | #define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex) | |
143 | #define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex) | |
144 | ||
145 | ||
146 | __private_extern__ void | |
147 | sysv_sem_lock_init( void ) | |
148 | { | |
149 | sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init(); | |
150 | ||
151 | sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_sem_subsys_lock", sysv_sem_subsys_lck_grp_attr); | |
152 | ||
153 | sysv_sem_subsys_lck_attr = lck_attr_alloc_init(); | |
154 | lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr); | |
155 | } | |
156 | ||
157 | static __inline__ user_time_t | |
158 | sysv_semtime(void) | |
159 | { | |
160 | struct timeval tv; | |
161 | microtime(&tv); | |
162 | return tv.tv_sec; | |
163 | } | |
164 | ||
165 | /* | |
166 | * XXX conversion of internal user_time_t to external tume_t loses | |
167 | * XXX precision; not an issue for us now, since we are only ever | |
168 | * XXX setting 32 bits worth of time into it. | |
169 | * | |
170 | * pad field contents are not moved correspondingly; contents will be lost | |
171 | * | |
172 | * NOTE: Source and target may *NOT* overlap! (target is smaller) | |
173 | */ | |
174 | static void | |
175 | semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out) | |
176 | { | |
177 | out->sem_perm = in->sem_perm; | |
178 | out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base); | |
179 | out->sem_nsems = in->sem_nsems; | |
180 | out->sem_otime = in->sem_otime; /* XXX loses precision */ | |
181 | out->sem_ctime = in->sem_ctime; /* XXX loses precision */ | |
182 | } | |
183 | ||
184 | static void | |
185 | semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out) | |
186 | { | |
187 | out->sem_perm = in->sem_perm; | |
188 | out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base); | |
189 | out->sem_nsems = in->sem_nsems; | |
190 | out->sem_otime = in->sem_otime; /* XXX loses precision */ | |
191 | out->sem_ctime = in->sem_ctime; /* XXX loses precision */ | |
192 | } | |
193 | ||
194 | /* | |
195 | * pad field contents are not moved correspondingly; contents will be lost | |
196 | * | |
197 | * NOTE: Source and target may are permitted to overlap! (source is smaller); | |
198 | * this works because we copy fields in order from the end of the struct to | |
199 | * the beginning. | |
200 | * | |
201 | * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect | |
202 | * XXX is the same. | |
203 | */ | |
204 | static void | |
205 | semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out) | |
206 | { | |
207 | out->sem_ctime = in->sem_ctime; | |
208 | out->sem_otime = in->sem_otime; | |
209 | out->sem_nsems = in->sem_nsems; | |
210 | out->sem_base = (void *)(uintptr_t)in->sem_base; | |
211 | out->sem_perm = in->sem_perm; | |
212 | } | |
213 | ||
214 | static void | |
215 | semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out) | |
216 | { | |
217 | out->sem_ctime = in->sem_ctime; | |
218 | out->sem_otime = in->sem_otime; | |
219 | out->sem_nsems = in->sem_nsems; | |
220 | out->sem_base = (void *)(uintptr_t)in->sem_base; | |
221 | out->sem_perm = in->sem_perm; | |
222 | } | |
223 | ||
224 | ||
225 | /* | |
226 | * semsys | |
227 | * | |
228 | * Entry point for all SEM calls: semctl, semget, semop | |
229 | * | |
230 | * Parameters: p Process requesting the call | |
231 | * uap User argument descriptor (see below) | |
232 | * retval Return value of the selected sem call | |
233 | * | |
234 | * Indirect parameters: uap->which sem call to invoke (index in array of sem calls) | |
235 | * uap->a2 User argument descriptor | |
236 | * | |
237 | * Returns: 0 Success | |
238 | * !0 Not success | |
239 | * | |
240 | * Implicit returns: retval Return value of the selected sem call | |
241 | * | |
242 | * DEPRECATED: This interface should not be used to call the other SEM | |
243 | * functions (semctl, semget, semop). The correct usage is | |
244 | * to call the other SEM functions directly. | |
245 | * | |
246 | */ | |
247 | int | |
248 | semsys(struct proc *p, struct semsys_args *uap, int32_t *retval) | |
249 | { | |
250 | /* The individual calls handling the locking now */ | |
251 | ||
252 | if (uap->which >= sizeof(semcalls) / sizeof(semcalls[0])) { | |
253 | return EINVAL; | |
254 | } | |
255 | return (*semcalls[uap->which])(p, &uap->a2, retval); | |
256 | } | |
257 | ||
258 | /* | |
259 | * Expand the semu array to the given capacity. If the expansion fails | |
260 | * return 0, otherwise return 1. | |
261 | * | |
262 | * Assumes we already have the subsystem lock. | |
263 | */ | |
264 | static int | |
265 | grow_semu_array(int newSize) | |
266 | { | |
267 | int i; | |
268 | struct sem_undo *newSemu; | |
269 | ||
270 | if (newSize <= seminfo.semmnu) { | |
271 | return 1; | |
272 | } | |
273 | if (newSize > limitseminfo.semmnu) { /* enforce hard limit */ | |
274 | #ifdef SEM_DEBUG | |
275 | printf("undo structure hard limit of %d reached, requested %d\n", | |
276 | limitseminfo.semmnu, newSize); | |
277 | #endif | |
278 | return 0; | |
279 | } | |
280 | newSize = (newSize / SEMMNU_INC + 1) * SEMMNU_INC; | |
281 | newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize; | |
282 | ||
283 | #ifdef SEM_DEBUG | |
284 | printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize); | |
285 | #endif | |
286 | MALLOC(newSemu, struct sem_undo *, sizeof(struct sem_undo) * newSize, | |
287 | M_SYSVSEM, M_WAITOK | M_ZERO); | |
288 | if (NULL == newSemu) { | |
289 | #ifdef SEM_DEBUG | |
290 | printf("allocation failed. no changes made.\n"); | |
291 | #endif | |
292 | return 0; | |
293 | } | |
294 | ||
295 | /* copy the old data to the new array */ | |
296 | for (i = 0; i < seminfo.semmnu; i++) { | |
297 | newSemu[i] = semu[i]; | |
298 | } | |
299 | /* | |
300 | * The new elements (from newSemu[i] to newSemu[newSize-1]) have their | |
301 | * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above, | |
302 | * so they're already marked as "not in use". | |
303 | */ | |
304 | ||
305 | /* Clean up the old array */ | |
306 | if (semu) { | |
307 | FREE(semu, M_SYSVSEM); | |
308 | } | |
309 | ||
310 | semu = newSemu; | |
311 | seminfo.semmnu = newSize; | |
312 | #ifdef SEM_DEBUG | |
313 | printf("expansion successful\n"); | |
314 | #endif | |
315 | return 1; | |
316 | } | |
317 | ||
318 | /* | |
319 | * Expand the sema array to the given capacity. If the expansion fails | |
320 | * we return 0, otherwise we return 1. | |
321 | * | |
322 | * Assumes we already have the subsystem lock. | |
323 | */ | |
324 | static int | |
325 | grow_sema_array(int newSize) | |
326 | { | |
327 | struct semid_kernel *newSema; | |
328 | int i; | |
329 | ||
330 | if (newSize <= seminfo.semmni) { | |
331 | return 0; | |
332 | } | |
333 | if (newSize > limitseminfo.semmni) { /* enforce hard limit */ | |
334 | #ifdef SEM_DEBUG | |
335 | printf("identifier hard limit of %d reached, requested %d\n", | |
336 | limitseminfo.semmni, newSize); | |
337 | #endif | |
338 | return 0; | |
339 | } | |
340 | newSize = (newSize / SEMMNI_INC + 1) * SEMMNI_INC; | |
341 | newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize; | |
342 | ||
343 | #ifdef SEM_DEBUG | |
344 | printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize); | |
345 | #endif | |
346 | MALLOC(newSema, struct semid_kernel *, | |
347 | sizeof(struct semid_kernel) * newSize, | |
348 | M_SYSVSEM, M_WAITOK | M_ZERO); | |
349 | if (NULL == newSema) { | |
350 | #ifdef SEM_DEBUG | |
351 | printf("allocation failed. no changes made.\n"); | |
352 | #endif | |
353 | return 0; | |
354 | } | |
355 | ||
356 | /* copy over the old ids */ | |
357 | for (i = 0; i < seminfo.semmni; i++) { | |
358 | newSema[i] = sema[i]; | |
359 | /* This is a hack. What we really want to be able to | |
360 | * do is change the value a process is waiting on | |
361 | * without waking it up, but I don't know how to do | |
362 | * this with the existing code, so we wake up the | |
363 | * process and let it do a lot of work to determine the | |
364 | * semaphore set is really not available yet, and then | |
365 | * sleep on the correct, reallocated semid_kernel pointer. | |
366 | */ | |
367 | if (sema[i].u.sem_perm.mode & SEM_ALLOC) { | |
368 | wakeup((caddr_t)&sema[i]); | |
369 | } | |
370 | } | |
371 | ||
372 | #if CONFIG_MACF | |
373 | for (i = seminfo.semmni; i < newSize; i++) { | |
374 | mac_sysvsem_label_init(&newSema[i]); | |
375 | } | |
376 | #endif | |
377 | ||
378 | /* | |
379 | * The new elements (from newSema[i] to newSema[newSize-1]) have their | |
380 | * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO | |
381 | * flag to MALLOC() above, so they're already marked as "not in use". | |
382 | */ | |
383 | ||
384 | /* Clean up the old array */ | |
385 | if (sema) { | |
386 | FREE(sema, M_SYSVSEM); | |
387 | } | |
388 | ||
389 | sema = newSema; | |
390 | seminfo.semmni = newSize; | |
391 | #ifdef SEM_DEBUG | |
392 | printf("expansion successful\n"); | |
393 | #endif | |
394 | return 1; | |
395 | } | |
396 | ||
397 | /* | |
398 | * Expand the sem_pool array to the given capacity. If the expansion fails | |
399 | * we return 0 (fail), otherwise we return 1 (success). | |
400 | * | |
401 | * Assumes we already hold the subsystem lock. | |
402 | */ | |
403 | static int | |
404 | grow_sem_pool(int new_pool_size) | |
405 | { | |
406 | struct sem *new_sem_pool = NULL; | |
407 | struct sem *sem_free; | |
408 | int i; | |
409 | ||
410 | if (new_pool_size < semtot) { | |
411 | return 0; | |
412 | } | |
413 | /* enforce hard limit */ | |
414 | if (new_pool_size > limitseminfo.semmns) { | |
415 | #ifdef SEM_DEBUG | |
416 | printf("semaphore hard limit of %d reached, requested %d\n", | |
417 | limitseminfo.semmns, new_pool_size); | |
418 | #endif | |
419 | return 0; | |
420 | } | |
421 | ||
422 | new_pool_size = (new_pool_size / SEMMNS_INC + 1) * SEMMNS_INC; | |
423 | new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size; | |
424 | ||
425 | #ifdef SEM_DEBUG | |
426 | printf("growing sem_pool array from %d to %d\n", seminfo.semmns, new_pool_size); | |
427 | #endif | |
428 | MALLOC(new_sem_pool, struct sem *, sizeof(struct sem) * new_pool_size, | |
429 | M_SYSVSEM, M_WAITOK | M_ZERO | M_NULL); | |
430 | if (NULL == new_sem_pool) { | |
431 | #ifdef SEM_DEBUG | |
432 | printf("allocation failed. no changes made.\n"); | |
433 | #endif | |
434 | return 0; | |
435 | } | |
436 | ||
437 | /* We have our new memory, now copy the old contents over */ | |
438 | if (sem_pool) { | |
439 | for (i = 0; i < seminfo.semmns; i++) { | |
440 | new_sem_pool[i] = sem_pool[i]; | |
441 | } | |
442 | } | |
443 | ||
444 | /* Update our id structures to point to the new semaphores */ | |
445 | for (i = 0; i < seminfo.semmni; i++) { | |
446 | if (sema[i].u.sem_perm.mode & SEM_ALLOC) { /* ID in use */ | |
447 | sema[i].u.sem_base = new_sem_pool + | |
448 | (sema[i].u.sem_base - sem_pool); | |
449 | } | |
450 | } | |
451 | ||
452 | sem_free = sem_pool; | |
453 | sem_pool = new_sem_pool; | |
454 | ||
455 | /* clean up the old array */ | |
456 | if (sem_free != NULL) { | |
457 | FREE(sem_free, M_SYSVSEM); | |
458 | } | |
459 | ||
460 | seminfo.semmns = new_pool_size; | |
461 | #ifdef SEM_DEBUG | |
462 | printf("expansion complete\n"); | |
463 | #endif | |
464 | return 1; | |
465 | } | |
466 | ||
467 | /* | |
468 | * Allocate a new sem_undo structure for a process | |
469 | * (returns ptr to structure or NULL if no more room) | |
470 | * | |
471 | * Assumes we already hold the subsystem lock. | |
472 | */ | |
473 | ||
474 | static int | |
475 | semu_alloc(struct proc *p) | |
476 | { | |
477 | int i; | |
478 | struct sem_undo *suptr; | |
479 | int *supidx; | |
480 | int attempt; | |
481 | ||
482 | /* | |
483 | * Try twice to allocate something. | |
484 | * (we'll purge any empty structures after the first pass so | |
485 | * two passes are always enough) | |
486 | */ | |
487 | ||
488 | for (attempt = 0; attempt < 2; attempt++) { | |
489 | /* | |
490 | * Look for a free structure. | |
491 | * Fill it in and return it if we find one. | |
492 | */ | |
493 | ||
494 | for (i = 0; i < seminfo.semmnu; i++) { | |
495 | suptr = SEMU(i); | |
496 | if (suptr->un_proc == NULL) { | |
497 | suptr->un_next_idx = semu_list_idx; | |
498 | semu_list_idx = i; | |
499 | suptr->un_cnt = 0; | |
500 | suptr->un_ent = NULL; | |
501 | suptr->un_proc = p; | |
502 | return i; | |
503 | } | |
504 | } | |
505 | ||
506 | /* | |
507 | * We didn't find a free one, if this is the first attempt | |
508 | * then try to free some structures. | |
509 | */ | |
510 | ||
511 | if (attempt == 0) { | |
512 | /* All the structures are in use - try to free some */ | |
513 | int did_something = 0; | |
514 | ||
515 | supidx = &semu_list_idx; | |
516 | while (*supidx != -1) { | |
517 | suptr = SEMU(*supidx); | |
518 | if (suptr->un_cnt == 0) { | |
519 | suptr->un_proc = NULL; | |
520 | *supidx = suptr->un_next_idx; | |
521 | did_something = 1; | |
522 | } else { | |
523 | supidx = &(suptr->un_next_idx); | |
524 | } | |
525 | } | |
526 | ||
527 | /* If we didn't free anything. Try expanding | |
528 | * the semu[] array. If that doesn't work | |
529 | * then fail. We expand last to get the | |
530 | * most reuse out of existing resources. | |
531 | */ | |
532 | if (!did_something) { | |
533 | if (!grow_semu_array(seminfo.semmnu + 1)) { | |
534 | return -1; | |
535 | } | |
536 | } | |
537 | } else { | |
538 | /* | |
539 | * The second pass failed even though we freed | |
540 | * something after the first pass! | |
541 | * This is IMPOSSIBLE! | |
542 | */ | |
543 | panic("semu_alloc - second attempt failed"); | |
544 | } | |
545 | } | |
546 | return -1; | |
547 | } | |
548 | ||
549 | /* | |
550 | * Adjust a particular entry for a particular proc | |
551 | * | |
552 | * Assumes we already hold the subsystem lock. | |
553 | */ | |
554 | static int | |
555 | semundo_adjust(struct proc *p, int *supidx, int semid, | |
556 | int semnum, int adjval) | |
557 | { | |
558 | struct sem_undo *suptr; | |
559 | int suidx; | |
560 | struct undo *sueptr, **suepptr, *new_sueptr; | |
561 | int i; | |
562 | ||
563 | /* | |
564 | * Look for and remember the sem_undo if the caller doesn't provide it | |
565 | */ | |
566 | ||
567 | suidx = *supidx; | |
568 | if (suidx == -1) { | |
569 | for (suidx = semu_list_idx; suidx != -1; | |
570 | suidx = suptr->un_next_idx) { | |
571 | suptr = SEMU(suidx); | |
572 | if (suptr->un_proc == p) { | |
573 | *supidx = suidx; | |
574 | break; | |
575 | } | |
576 | } | |
577 | if (suidx == -1) { | |
578 | if (adjval == 0) { | |
579 | return 0; | |
580 | } | |
581 | suidx = semu_alloc(p); | |
582 | if (suidx == -1) { | |
583 | return ENOSPC; | |
584 | } | |
585 | *supidx = suidx; | |
586 | } | |
587 | } | |
588 | ||
589 | /* | |
590 | * Look for the requested entry and adjust it (delete if adjval becomes | |
591 | * 0). | |
592 | */ | |
593 | suptr = SEMU(suidx); | |
594 | new_sueptr = NULL; | |
595 | for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent; | |
596 | i < suptr->un_cnt; | |
597 | i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) { | |
598 | if (sueptr->une_id != semid || sueptr->une_num != semnum) { | |
599 | continue; | |
600 | } | |
601 | if (adjval == 0) { | |
602 | sueptr->une_adjval = 0; | |
603 | } else { | |
604 | sueptr->une_adjval += adjval; | |
605 | } | |
606 | if (sueptr->une_adjval == 0) { | |
607 | suptr->un_cnt--; | |
608 | *suepptr = sueptr->une_next; | |
609 | FREE(sueptr, M_SYSVSEM); | |
610 | sueptr = NULL; | |
611 | } | |
612 | return 0; | |
613 | } | |
614 | ||
615 | /* Didn't find the right entry - create it */ | |
616 | if (adjval == 0) { | |
617 | /* no adjustment: no need for a new entry */ | |
618 | return 0; | |
619 | } | |
620 | ||
621 | if (suptr->un_cnt == limitseminfo.semume) { | |
622 | /* reached the limit number of semaphore undo entries */ | |
623 | return EINVAL; | |
624 | } | |
625 | ||
626 | /* allocate a new semaphore undo entry */ | |
627 | MALLOC(new_sueptr, struct undo *, sizeof(struct undo), | |
628 | M_SYSVSEM, M_WAITOK); | |
629 | if (new_sueptr == NULL) { | |
630 | return ENOMEM; | |
631 | } | |
632 | ||
633 | /* fill in the new semaphore undo entry */ | |
634 | new_sueptr->une_next = suptr->un_ent; | |
635 | suptr->un_ent = new_sueptr; | |
636 | suptr->un_cnt++; | |
637 | new_sueptr->une_adjval = adjval; | |
638 | new_sueptr->une_id = semid; | |
639 | new_sueptr->une_num = semnum; | |
640 | ||
641 | return 0; | |
642 | } | |
643 | ||
644 | /* Assumes we already hold the subsystem lock. | |
645 | */ | |
646 | static void | |
647 | semundo_clear(int semid, int semnum) | |
648 | { | |
649 | struct sem_undo *suptr; | |
650 | int suidx; | |
651 | ||
652 | for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) { | |
653 | struct undo *sueptr; | |
654 | struct undo **suepptr; | |
655 | int i = 0; | |
656 | ||
657 | suptr = SEMU(suidx); | |
658 | sueptr = suptr->un_ent; | |
659 | suepptr = &suptr->un_ent; | |
660 | while (i < suptr->un_cnt) { | |
661 | if (sueptr->une_id == semid) { | |
662 | if (semnum == -1 || sueptr->une_num == semnum) { | |
663 | suptr->un_cnt--; | |
664 | *suepptr = sueptr->une_next; | |
665 | FREE(sueptr, M_SYSVSEM); | |
666 | sueptr = *suepptr; | |
667 | continue; | |
668 | } | |
669 | if (semnum != -1) { | |
670 | break; | |
671 | } | |
672 | } | |
673 | i++; | |
674 | suepptr = &sueptr->une_next; | |
675 | sueptr = sueptr->une_next; | |
676 | } | |
677 | } | |
678 | } | |
679 | ||
680 | /* | |
681 | * Note that the user-mode half of this passes a union coerced to a | |
682 | * user_addr_t. The union contains either an int or a pointer, and | |
683 | * so we have to coerce it back, variant on whether the calling | |
684 | * process is 64 bit or not. The coercion works for the 'val' element | |
685 | * because the alignment is the same in user and kernel space. | |
686 | */ | |
687 | int | |
688 | semctl(struct proc *p, struct semctl_args *uap, int32_t *retval) | |
689 | { | |
690 | int semid = uap->semid; | |
691 | int semnum = uap->semnum; | |
692 | int cmd = uap->cmd; | |
693 | user_semun_t user_arg = (user_semun_t)uap->arg; | |
694 | kauth_cred_t cred = kauth_cred_get(); | |
695 | int i, rval, eval; | |
696 | struct user_semid_ds sbuf; | |
697 | struct semid_kernel *semakptr; | |
698 | ||
699 | ||
700 | AUDIT_ARG(svipc_cmd, cmd); | |
701 | AUDIT_ARG(svipc_id, semid); | |
702 | ||
703 | SYSV_SEM_SUBSYS_LOCK(); | |
704 | ||
705 | #ifdef SEM_DEBUG | |
706 | printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg); | |
707 | #endif | |
708 | ||
709 | semid = IPCID_TO_IX(semid); | |
710 | ||
711 | if (semid < 0 || semid >= seminfo.semmni) { | |
712 | #ifdef SEM_DEBUG | |
713 | printf("Invalid semid\n"); | |
714 | #endif | |
715 | eval = EINVAL; | |
716 | goto semctlout; | |
717 | } | |
718 | ||
719 | semakptr = &sema[semid]; | |
720 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 || | |
721 | semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) { | |
722 | eval = EINVAL; | |
723 | goto semctlout; | |
724 | } | |
725 | #if CONFIG_MACF | |
726 | eval = mac_sysvsem_check_semctl(cred, semakptr, cmd); | |
727 | if (eval) { | |
728 | goto semctlout; | |
729 | } | |
730 | #endif | |
731 | ||
732 | eval = 0; | |
733 | rval = 0; | |
734 | ||
735 | switch (cmd) { | |
736 | case IPC_RMID: | |
737 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) { | |
738 | goto semctlout; | |
739 | } | |
740 | ||
741 | semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred); | |
742 | semakptr->u.sem_perm.uid = kauth_cred_getuid(cred); | |
743 | semtot -= semakptr->u.sem_nsems; | |
744 | for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++) { | |
745 | sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems]; | |
746 | } | |
747 | for (i = 0; i < seminfo.semmni; i++) { | |
748 | if ((sema[i].u.sem_perm.mode & SEM_ALLOC) && | |
749 | sema[i].u.sem_base > semakptr->u.sem_base) { | |
750 | sema[i].u.sem_base -= semakptr->u.sem_nsems; | |
751 | } | |
752 | } | |
753 | semakptr->u.sem_perm.mode = 0; | |
754 | #if CONFIG_MACF | |
755 | mac_sysvsem_label_recycle(semakptr); | |
756 | #endif | |
757 | semundo_clear(semid, -1); | |
758 | wakeup((caddr_t)semakptr); | |
759 | break; | |
760 | ||
761 | case IPC_SET: | |
762 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) { | |
763 | goto semctlout; | |
764 | } | |
765 | ||
766 | if (IS_64BIT_PROCESS(p)) { | |
767 | struct user64_semid_ds ds64; | |
768 | eval = copyin(user_arg.buf, &ds64, sizeof(ds64)); | |
769 | semid_ds_64tokernel(&ds64, &sbuf); | |
770 | } else { | |
771 | struct user32_semid_ds ds32; | |
772 | eval = copyin(user_arg.buf, &ds32, sizeof(ds32)); | |
773 | semid_ds_32tokernel(&ds32, &sbuf); | |
774 | } | |
775 | ||
776 | if (eval != 0) { | |
777 | goto semctlout; | |
778 | } | |
779 | ||
780 | semakptr->u.sem_perm.uid = sbuf.sem_perm.uid; | |
781 | semakptr->u.sem_perm.gid = sbuf.sem_perm.gid; | |
782 | semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode & | |
783 | ~0777) | (sbuf.sem_perm.mode & 0777); | |
784 | semakptr->u.sem_ctime = sysv_semtime(); | |
785 | break; | |
786 | ||
787 | case IPC_STAT: | |
788 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
789 | goto semctlout; | |
790 | } | |
791 | ||
792 | if (IS_64BIT_PROCESS(p)) { | |
793 | struct user64_semid_ds semid_ds64; | |
794 | bzero(&semid_ds64, sizeof(semid_ds64)); | |
795 | semid_ds_kernelto64(&semakptr->u, &semid_ds64); | |
796 | eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64)); | |
797 | } else { | |
798 | struct user32_semid_ds semid_ds32; | |
799 | bzero(&semid_ds32, sizeof(semid_ds32)); | |
800 | semid_ds_kernelto32(&semakptr->u, &semid_ds32); | |
801 | eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32)); | |
802 | } | |
803 | break; | |
804 | ||
805 | case GETNCNT: | |
806 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
807 | goto semctlout; | |
808 | } | |
809 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { | |
810 | eval = EINVAL; | |
811 | goto semctlout; | |
812 | } | |
813 | rval = semakptr->u.sem_base[semnum].semncnt; | |
814 | break; | |
815 | ||
816 | case GETPID: | |
817 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
818 | goto semctlout; | |
819 | } | |
820 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { | |
821 | eval = EINVAL; | |
822 | goto semctlout; | |
823 | } | |
824 | rval = semakptr->u.sem_base[semnum].sempid; | |
825 | break; | |
826 | ||
827 | case GETVAL: | |
828 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
829 | goto semctlout; | |
830 | } | |
831 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { | |
832 | eval = EINVAL; | |
833 | goto semctlout; | |
834 | } | |
835 | rval = semakptr->u.sem_base[semnum].semval; | |
836 | break; | |
837 | ||
838 | case GETALL: | |
839 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
840 | goto semctlout; | |
841 | } | |
842 | /* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */ | |
843 | for (i = 0; i < semakptr->u.sem_nsems; i++) { | |
844 | /* XXX could be done in one go... */ | |
845 | eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval, | |
846 | user_arg.array + (i * sizeof(unsigned short)), | |
847 | sizeof(unsigned short)); | |
848 | if (eval != 0) { | |
849 | break; | |
850 | } | |
851 | } | |
852 | break; | |
853 | ||
854 | case GETZCNT: | |
855 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) { | |
856 | goto semctlout; | |
857 | } | |
858 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { | |
859 | eval = EINVAL; | |
860 | goto semctlout; | |
861 | } | |
862 | rval = semakptr->u.sem_base[semnum].semzcnt; | |
863 | break; | |
864 | ||
865 | case SETVAL: | |
866 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) { | |
867 | #ifdef SEM_DEBUG | |
868 | printf("Invalid credentials for write\n"); | |
869 | #endif | |
870 | goto semctlout; | |
871 | } | |
872 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { | |
873 | #ifdef SEM_DEBUG | |
874 | printf("Invalid number out of range for set\n"); | |
875 | #endif | |
876 | eval = EINVAL; | |
877 | goto semctlout; | |
878 | } | |
879 | ||
880 | /* | |
881 | * Cast down a pointer instead of using 'val' member directly | |
882 | * to avoid introducing endieness and a pad field into the | |
883 | * header file. Ugly, but it works. | |
884 | */ | |
885 | u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf); | |
886 | ||
887 | /* | |
888 | * The check is being performed as unsigned values to match | |
889 | * eventual destination | |
890 | */ | |
891 | if (newsemval > (u_int)seminfo.semvmx) { | |
892 | #ifdef SEM_DEBUG | |
893 | printf("Out of range sem value for set\n"); | |
894 | #endif | |
895 | eval = ERANGE; | |
896 | goto semctlout; | |
897 | } | |
898 | semakptr->u.sem_base[semnum].semval = newsemval; | |
899 | semakptr->u.sem_base[semnum].sempid = p->p_pid; | |
900 | /* XXX scottl Should there be a MAC call here? */ | |
901 | semundo_clear(semid, semnum); | |
902 | wakeup((caddr_t)semakptr); | |
903 | break; | |
904 | ||
905 | case SETALL: | |
906 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) { | |
907 | goto semctlout; | |
908 | } | |
909 | /*** XXXXXXXXXXXX TBD ********/ | |
910 | for (i = 0; i < semakptr->u.sem_nsems; i++) { | |
911 | /* XXX could be done in one go... */ | |
912 | eval = copyin(user_arg.array + (i * sizeof(unsigned short)), | |
913 | (caddr_t)&semakptr->u.sem_base[i].semval, | |
914 | sizeof(unsigned short)); | |
915 | if (eval != 0) { | |
916 | break; | |
917 | } | |
918 | semakptr->u.sem_base[i].sempid = p->p_pid; | |
919 | } | |
920 | /* XXX scottl Should there be a MAC call here? */ | |
921 | semundo_clear(semid, -1); | |
922 | wakeup((caddr_t)semakptr); | |
923 | break; | |
924 | ||
925 | default: | |
926 | eval = EINVAL; | |
927 | goto semctlout; | |
928 | } | |
929 | ||
930 | if (eval == 0) { | |
931 | *retval = rval; | |
932 | } | |
933 | semctlout: | |
934 | SYSV_SEM_SUBSYS_UNLOCK(); | |
935 | return eval; | |
936 | } | |
937 | ||
938 | int | |
939 | semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval) | |
940 | { | |
941 | int semid, eval; | |
942 | int key = uap->key; | |
943 | int nsems = uap->nsems; | |
944 | int semflg = uap->semflg; | |
945 | kauth_cred_t cred = kauth_cred_get(); | |
946 | ||
947 | #ifdef SEM_DEBUG | |
948 | if (key != IPC_PRIVATE) { | |
949 | printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg); | |
950 | } else { | |
951 | printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg); | |
952 | } | |
953 | #endif | |
954 | ||
955 | ||
956 | SYSV_SEM_SUBSYS_LOCK(); | |
957 | ||
958 | ||
959 | if (key != IPC_PRIVATE) { | |
960 | for (semid = 0; semid < seminfo.semmni; semid++) { | |
961 | if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) && | |
962 | sema[semid].u.sem_perm._key == key) { | |
963 | break; | |
964 | } | |
965 | } | |
966 | if (semid < seminfo.semmni) { | |
967 | #ifdef SEM_DEBUG | |
968 | printf("found public key\n"); | |
969 | #endif | |
970 | if ((eval = ipcperm(cred, &sema[semid].u.sem_perm, | |
971 | semflg & 0700))) { | |
972 | goto semgetout; | |
973 | } | |
974 | if (nsems < 0 || sema[semid].u.sem_nsems < nsems) { | |
975 | #ifdef SEM_DEBUG | |
976 | printf("too small\n"); | |
977 | #endif | |
978 | eval = EINVAL; | |
979 | goto semgetout; | |
980 | } | |
981 | if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { | |
982 | #ifdef SEM_DEBUG | |
983 | printf("not exclusive\n"); | |
984 | #endif | |
985 | eval = EEXIST; | |
986 | goto semgetout; | |
987 | } | |
988 | #if CONFIG_MACF | |
989 | eval = mac_sysvsem_check_semget(cred, &sema[semid]); | |
990 | if (eval) { | |
991 | goto semgetout; | |
992 | } | |
993 | #endif | |
994 | goto found; | |
995 | } | |
996 | } | |
997 | ||
998 | #ifdef SEM_DEBUG | |
999 | printf("need to allocate an id for the request\n"); | |
1000 | #endif | |
1001 | if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { | |
1002 | if (nsems <= 0 || nsems > limitseminfo.semmsl) { | |
1003 | #ifdef SEM_DEBUG | |
1004 | printf("nsems out of range (0<%d<=%d)\n", nsems, | |
1005 | seminfo.semmsl); | |
1006 | #endif | |
1007 | eval = EINVAL; | |
1008 | goto semgetout; | |
1009 | } | |
1010 | if (nsems > seminfo.semmns - semtot) { | |
1011 | #ifdef SEM_DEBUG | |
1012 | printf("not enough semaphores left (need %d, got %d)\n", | |
1013 | nsems, seminfo.semmns - semtot); | |
1014 | #endif | |
1015 | if (!grow_sem_pool(semtot + nsems)) { | |
1016 | #ifdef SEM_DEBUG | |
1017 | printf("failed to grow the sem array\n"); | |
1018 | #endif | |
1019 | eval = ENOSPC; | |
1020 | goto semgetout; | |
1021 | } | |
1022 | } | |
1023 | for (semid = 0; semid < seminfo.semmni; semid++) { | |
1024 | if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) == 0) { | |
1025 | break; | |
1026 | } | |
1027 | } | |
1028 | if (semid == seminfo.semmni) { | |
1029 | #ifdef SEM_DEBUG | |
1030 | printf("no more id's available\n"); | |
1031 | #endif | |
1032 | if (!grow_sema_array(seminfo.semmni + 1)) { | |
1033 | #ifdef SEM_DEBUG | |
1034 | printf("failed to grow sema array\n"); | |
1035 | #endif | |
1036 | eval = ENOSPC; | |
1037 | goto semgetout; | |
1038 | } | |
1039 | } | |
1040 | #ifdef SEM_DEBUG | |
1041 | printf("semid %d is available\n", semid); | |
1042 | #endif | |
1043 | sema[semid].u.sem_perm._key = key; | |
1044 | sema[semid].u.sem_perm.cuid = kauth_cred_getuid(cred); | |
1045 | sema[semid].u.sem_perm.uid = kauth_cred_getuid(cred); | |
1046 | sema[semid].u.sem_perm.cgid = kauth_cred_getgid(cred); | |
1047 | sema[semid].u.sem_perm.gid = kauth_cred_getgid(cred); | |
1048 | sema[semid].u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC; | |
1049 | sema[semid].u.sem_perm._seq = | |
1050 | (sema[semid].u.sem_perm._seq + 1) & 0x7fff; | |
1051 | sema[semid].u.sem_nsems = nsems; | |
1052 | sema[semid].u.sem_otime = 0; | |
1053 | sema[semid].u.sem_ctime = sysv_semtime(); | |
1054 | sema[semid].u.sem_base = &sem_pool[semtot]; | |
1055 | semtot += nsems; | |
1056 | bzero(sema[semid].u.sem_base, | |
1057 | sizeof(sema[semid].u.sem_base[0]) * nsems); | |
1058 | #if CONFIG_MACF | |
1059 | mac_sysvsem_label_associate(cred, &sema[semid]); | |
1060 | #endif | |
1061 | #ifdef SEM_DEBUG | |
1062 | printf("sembase = 0x%x, next = 0x%x\n", sema[semid].u.sem_base, | |
1063 | &sem_pool[semtot]); | |
1064 | #endif | |
1065 | } else { | |
1066 | #ifdef SEM_DEBUG | |
1067 | printf("didn't find it and wasn't asked to create it\n"); | |
1068 | #endif | |
1069 | eval = ENOENT; | |
1070 | goto semgetout; | |
1071 | } | |
1072 | ||
1073 | found: | |
1074 | *retval = IXSEQ_TO_IPCID(semid, sema[semid].u.sem_perm); | |
1075 | AUDIT_ARG(svipc_id, *retval); | |
1076 | #ifdef SEM_DEBUG | |
1077 | printf("semget is done, returning %d\n", *retval); | |
1078 | #endif | |
1079 | eval = 0; | |
1080 | ||
1081 | semgetout: | |
1082 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1083 | return eval; | |
1084 | } | |
1085 | ||
1086 | int | |
1087 | semop(struct proc *p, struct semop_args *uap, int32_t *retval) | |
1088 | { | |
1089 | int semid = uap->semid; | |
1090 | int nsops = uap->nsops; | |
1091 | struct sembuf sops[seminfo.semopm]; | |
1092 | struct semid_kernel *semakptr; | |
1093 | struct sembuf *sopptr = NULL; /* protected by 'semptr' */ | |
1094 | struct sem *semptr = NULL; /* protected by 'if' */ | |
1095 | int supidx = -1; | |
1096 | int i, j, eval; | |
1097 | int do_wakeup, do_undos; | |
1098 | ||
1099 | AUDIT_ARG(svipc_id, uap->semid); | |
1100 | ||
1101 | SYSV_SEM_SUBSYS_LOCK(); | |
1102 | ||
1103 | #ifdef SEM_DEBUG | |
1104 | printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops); | |
1105 | #endif | |
1106 | ||
1107 | semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ | |
1108 | ||
1109 | if (semid < 0 || semid >= seminfo.semmni) { | |
1110 | eval = EINVAL; | |
1111 | goto semopout; | |
1112 | } | |
1113 | ||
1114 | semakptr = &sema[semid]; | |
1115 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) { | |
1116 | eval = EINVAL; | |
1117 | goto semopout; | |
1118 | } | |
1119 | if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) { | |
1120 | eval = EINVAL; | |
1121 | goto semopout; | |
1122 | } | |
1123 | ||
1124 | if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) { | |
1125 | #ifdef SEM_DEBUG | |
1126 | printf("eval = %d from ipaccess\n", eval); | |
1127 | #endif | |
1128 | goto semopout; | |
1129 | } | |
1130 | ||
1131 | if (nsops < 0 || nsops > seminfo.semopm) { | |
1132 | #ifdef SEM_DEBUG | |
1133 | printf("too many sops (max=%d, nsops=%d)\n", | |
1134 | seminfo.semopm, nsops); | |
1135 | #endif | |
1136 | eval = E2BIG; | |
1137 | goto semopout; | |
1138 | } | |
1139 | ||
1140 | /* OK for LP64, since sizeof(struct sembuf) is currently invariant */ | |
1141 | if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) { | |
1142 | #ifdef SEM_DEBUG | |
1143 | printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval, | |
1144 | uap->sops, &sops, nsops * sizeof(struct sembuf)); | |
1145 | #endif | |
1146 | goto semopout; | |
1147 | } | |
1148 | ||
1149 | #if CONFIG_MACF | |
1150 | /* | |
1151 | * Initial pass thru sops to see what permissions are needed. | |
1152 | */ | |
1153 | j = 0; /* permission needed */ | |
1154 | for (i = 0; i < nsops; i++) { | |
1155 | j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A; | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | * The MAC hook checks whether the thread has read (and possibly | |
1160 | * write) permissions to the semaphore array based on the | |
1161 | * sopptr->sem_op value. | |
1162 | */ | |
1163 | eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j); | |
1164 | if (eval) { | |
1165 | goto semopout; | |
1166 | } | |
1167 | #endif | |
1168 | ||
1169 | /* | |
1170 | * Loop trying to satisfy the vector of requests. | |
1171 | * If we reach a point where we must wait, any requests already | |
1172 | * performed are rolled back and we go to sleep until some other | |
1173 | * process wakes us up. At this point, we start all over again. | |
1174 | * | |
1175 | * This ensures that from the perspective of other tasks, a set | |
1176 | * of requests is atomic (never partially satisfied). | |
1177 | */ | |
1178 | do_undos = 0; | |
1179 | ||
1180 | for (;;) { | |
1181 | do_wakeup = 0; | |
1182 | ||
1183 | for (i = 0; i < nsops; i++) { | |
1184 | sopptr = &sops[i]; | |
1185 | ||
1186 | if (sopptr->sem_num >= semakptr->u.sem_nsems) { | |
1187 | eval = EFBIG; | |
1188 | goto semopout; | |
1189 | } | |
1190 | ||
1191 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; | |
1192 | ||
1193 | #ifdef SEM_DEBUG | |
1194 | printf("semop: semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n", | |
1195 | semakptr, semakptr->u.sem_base, semptr, | |
1196 | sopptr->sem_num, semptr->semval, sopptr->sem_op, | |
1197 | (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"); | |
1198 | #endif | |
1199 | ||
1200 | if (sopptr->sem_op < 0) { | |
1201 | if (semptr->semval + sopptr->sem_op < 0) { | |
1202 | #ifdef SEM_DEBUG | |
1203 | printf("semop: can't do it now\n"); | |
1204 | #endif | |
1205 | break; | |
1206 | } else { | |
1207 | semptr->semval += sopptr->sem_op; | |
1208 | if (semptr->semval == 0 && | |
1209 | semptr->semzcnt > 0) { | |
1210 | do_wakeup = 1; | |
1211 | } | |
1212 | } | |
1213 | if (sopptr->sem_flg & SEM_UNDO) { | |
1214 | do_undos = 1; | |
1215 | } | |
1216 | } else if (sopptr->sem_op == 0) { | |
1217 | if (semptr->semval > 0) { | |
1218 | #ifdef SEM_DEBUG | |
1219 | printf("semop: not zero now\n"); | |
1220 | #endif | |
1221 | break; | |
1222 | } | |
1223 | } else { | |
1224 | if (semptr->semncnt > 0) { | |
1225 | do_wakeup = 1; | |
1226 | } | |
1227 | semptr->semval += sopptr->sem_op; | |
1228 | if (sopptr->sem_flg & SEM_UNDO) { | |
1229 | do_undos = 1; | |
1230 | } | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * Did we get through the entire vector? | |
1236 | */ | |
1237 | if (i >= nsops) { | |
1238 | goto done; | |
1239 | } | |
1240 | ||
1241 | /* | |
1242 | * No ... rollback anything that we've already done | |
1243 | */ | |
1244 | #ifdef SEM_DEBUG | |
1245 | printf("semop: rollback 0 through %d\n", i - 1); | |
1246 | #endif | |
1247 | for (j = 0; j < i; j++) { | |
1248 | semakptr->u.sem_base[sops[j].sem_num].semval -= | |
1249 | sops[j].sem_op; | |
1250 | } | |
1251 | ||
1252 | /* | |
1253 | * If the request that we couldn't satisfy has the | |
1254 | * NOWAIT flag set then return with EAGAIN. | |
1255 | */ | |
1256 | if (sopptr->sem_flg & IPC_NOWAIT) { | |
1257 | eval = EAGAIN; | |
1258 | goto semopout; | |
1259 | } | |
1260 | ||
1261 | if (sopptr->sem_op == 0) { | |
1262 | semptr->semzcnt++; | |
1263 | } else { | |
1264 | semptr->semncnt++; | |
1265 | } | |
1266 | ||
1267 | #ifdef SEM_DEBUG | |
1268 | printf("semop: good night!\n"); | |
1269 | #endif | |
1270 | /* Release our lock on the semaphore subsystem so | |
1271 | * another thread can get at the semaphore we are | |
1272 | * waiting for. We will get the lock back after we | |
1273 | * wake up. | |
1274 | */ | |
1275 | eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex, (PZERO - 4) | PCATCH, | |
1276 | "semwait", 0); | |
1277 | ||
1278 | #ifdef SEM_DEBUG | |
1279 | printf("semop: good morning (eval=%d)!\n", eval); | |
1280 | #endif | |
1281 | if (eval != 0) { | |
1282 | eval = EINTR; | |
1283 | } | |
1284 | ||
1285 | /* | |
1286 | * IMPORTANT: while we were asleep, the semaphore array might | |
1287 | * have been reallocated somewhere else (see grow_sema_array()). | |
1288 | * When we wake up, we have to re-lookup the semaphore | |
1289 | * structures and re-validate them. | |
1290 | */ | |
1291 | ||
1292 | semptr = NULL; | |
1293 | ||
1294 | /* | |
1295 | * Make sure that the semaphore still exists | |
1296 | * | |
1297 | * XXX POSIX: Third test this 'if' and 'EINTR' precedence may | |
1298 | * fail testing; if so, we will need to revert this code. | |
1299 | */ | |
1300 | semakptr = &sema[semid]; /* sema may have been reallocated */ | |
1301 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 || | |
1302 | semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) || | |
1303 | sopptr->sem_num >= semakptr->u.sem_nsems) { | |
1304 | /* The man page says to return EIDRM. */ | |
1305 | /* Unfortunately, BSD doesn't define that code! */ | |
1306 | if (eval == EINTR) { | |
1307 | /* | |
1308 | * EINTR takes precedence over the fact that | |
1309 | * the semaphore disappeared while we were | |
1310 | * sleeping... | |
1311 | */ | |
1312 | } else { | |
1313 | #ifdef EIDRM | |
1314 | eval = EIDRM; | |
1315 | #else | |
1316 | eval = EINVAL; /* Ancient past */ | |
1317 | #endif | |
1318 | } | |
1319 | goto semopout; | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * The semaphore is still alive. Readjust the count of | |
1324 | * waiting processes. semptr needs to be recomputed | |
1325 | * because the sem[] may have been reallocated while | |
1326 | * we were sleeping, updating our sem_base pointer. | |
1327 | */ | |
1328 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; | |
1329 | if (sopptr->sem_op == 0) { | |
1330 | semptr->semzcnt--; | |
1331 | } else { | |
1332 | semptr->semncnt--; | |
1333 | } | |
1334 | ||
1335 | if (eval != 0) { /* EINTR */ | |
1336 | goto semopout; | |
1337 | } | |
1338 | } | |
1339 | ||
1340 | done: | |
1341 | /* | |
1342 | * Process any SEM_UNDO requests. | |
1343 | */ | |
1344 | if (do_undos) { | |
1345 | for (i = 0; i < nsops; i++) { | |
1346 | /* | |
1347 | * We only need to deal with SEM_UNDO's for non-zero | |
1348 | * op's. | |
1349 | */ | |
1350 | int adjval; | |
1351 | ||
1352 | if ((sops[i].sem_flg & SEM_UNDO) == 0) { | |
1353 | continue; | |
1354 | } | |
1355 | adjval = sops[i].sem_op; | |
1356 | if (adjval == 0) { | |
1357 | continue; | |
1358 | } | |
1359 | eval = semundo_adjust(p, &supidx, semid, | |
1360 | sops[i].sem_num, -adjval); | |
1361 | if (eval == 0) { | |
1362 | continue; | |
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * Oh-Oh! We ran out of either sem_undo's or undo's. | |
1367 | * Rollback the adjustments to this point and then | |
1368 | * rollback the semaphore ups and down so we can return | |
1369 | * with an error with all structures restored. We | |
1370 | * rollback the undo's in the exact reverse order that | |
1371 | * we applied them. This guarantees that we won't run | |
1372 | * out of space as we roll things back out. | |
1373 | */ | |
1374 | for (j = i - 1; j >= 0; j--) { | |
1375 | if ((sops[j].sem_flg & SEM_UNDO) == 0) { | |
1376 | continue; | |
1377 | } | |
1378 | adjval = sops[j].sem_op; | |
1379 | if (adjval == 0) { | |
1380 | continue; | |
1381 | } | |
1382 | if (semundo_adjust(p, &supidx, semid, | |
1383 | sops[j].sem_num, adjval) != 0) { | |
1384 | panic("semop - can't undo undos"); | |
1385 | } | |
1386 | } | |
1387 | ||
1388 | for (j = 0; j < nsops; j++) { | |
1389 | semakptr->u.sem_base[sops[j].sem_num].semval -= | |
1390 | sops[j].sem_op; | |
1391 | } | |
1392 | ||
1393 | #ifdef SEM_DEBUG | |
1394 | printf("eval = %d from semundo_adjust\n", eval); | |
1395 | #endif | |
1396 | goto semopout; | |
1397 | } /* loop through the sops */ | |
1398 | } /* if (do_undos) */ | |
1399 | ||
1400 | /* We're definitely done - set the sempid's */ | |
1401 | for (i = 0; i < nsops; i++) { | |
1402 | sopptr = &sops[i]; | |
1403 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; | |
1404 | semptr->sempid = p->p_pid; | |
1405 | } | |
1406 | semakptr->u.sem_otime = sysv_semtime(); | |
1407 | ||
1408 | if (do_wakeup) { | |
1409 | #ifdef SEM_DEBUG | |
1410 | printf("semop: doing wakeup\n"); | |
1411 | #ifdef SEM_WAKEUP | |
1412 | sem_wakeup((caddr_t)semakptr); | |
1413 | #else | |
1414 | wakeup((caddr_t)semakptr); | |
1415 | #endif | |
1416 | printf("semop: back from wakeup\n"); | |
1417 | #else | |
1418 | wakeup((caddr_t)semakptr); | |
1419 | #endif | |
1420 | } | |
1421 | #ifdef SEM_DEBUG | |
1422 | printf("semop: done\n"); | |
1423 | #endif | |
1424 | *retval = 0; | |
1425 | eval = 0; | |
1426 | semopout: | |
1427 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1428 | return eval; | |
1429 | } | |
1430 | ||
1431 | /* | |
1432 | * Go through the undo structures for this process and apply the adjustments to | |
1433 | * semaphores. | |
1434 | */ | |
1435 | void | |
1436 | semexit(struct proc *p) | |
1437 | { | |
1438 | struct sem_undo *suptr = NULL; | |
1439 | int suidx; | |
1440 | int *supidx; | |
1441 | int did_something; | |
1442 | ||
1443 | /* If we have not allocated our semaphores yet there can't be | |
1444 | * anything to undo, but we need the lock to prevent | |
1445 | * dynamic memory race conditions. | |
1446 | */ | |
1447 | SYSV_SEM_SUBSYS_LOCK(); | |
1448 | ||
1449 | if (!sem_pool) { | |
1450 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1451 | return; | |
1452 | } | |
1453 | did_something = 0; | |
1454 | ||
1455 | /* | |
1456 | * Go through the chain of undo vectors looking for one | |
1457 | * associated with this process. | |
1458 | */ | |
1459 | ||
1460 | for (supidx = &semu_list_idx; (suidx = *supidx) != -1; | |
1461 | supidx = &suptr->un_next_idx) { | |
1462 | suptr = SEMU(suidx); | |
1463 | if (suptr->un_proc == p) { | |
1464 | break; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | if (suidx == -1) { | |
1469 | goto unlock; | |
1470 | } | |
1471 | ||
1472 | #ifdef SEM_DEBUG | |
1473 | printf("proc @%08x has undo structure with %d entries\n", p, | |
1474 | suptr->un_cnt); | |
1475 | #endif | |
1476 | ||
1477 | /* | |
1478 | * If there are any active undo elements then process them. | |
1479 | */ | |
1480 | if (suptr->un_cnt > 0) { | |
1481 | while (suptr->un_ent != NULL) { | |
1482 | struct undo *sueptr; | |
1483 | int semid; | |
1484 | int semnum; | |
1485 | int adjval; | |
1486 | struct semid_kernel *semakptr; | |
1487 | ||
1488 | sueptr = suptr->un_ent; | |
1489 | semid = sueptr->une_id; | |
1490 | semnum = sueptr->une_num; | |
1491 | adjval = sueptr->une_adjval; | |
1492 | ||
1493 | semakptr = &sema[semid]; | |
1494 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) { | |
1495 | panic("semexit - semid not allocated"); | |
1496 | } | |
1497 | if (semnum >= semakptr->u.sem_nsems) { | |
1498 | panic("semexit - semnum out of range"); | |
1499 | } | |
1500 | ||
1501 | #ifdef SEM_DEBUG | |
1502 | printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n", | |
1503 | suptr->un_proc, | |
1504 | semid, | |
1505 | semnum, | |
1506 | adjval, | |
1507 | semakptr->u.sem_base[semnum].semval); | |
1508 | #endif | |
1509 | ||
1510 | if (adjval < 0) { | |
1511 | if (semakptr->u.sem_base[semnum].semval < -adjval) { | |
1512 | semakptr->u.sem_base[semnum].semval = 0; | |
1513 | } else { | |
1514 | semakptr->u.sem_base[semnum].semval += | |
1515 | adjval; | |
1516 | } | |
1517 | } else { | |
1518 | semakptr->u.sem_base[semnum].semval += adjval; | |
1519 | } | |
1520 | ||
1521 | /* Maybe we should build a list of semakptr's to wake | |
1522 | * up, finish all access to data structures, release the | |
1523 | * subsystem lock, and wake all the processes. Something | |
1524 | * to think about. | |
1525 | */ | |
1526 | #ifdef SEM_WAKEUP | |
1527 | sem_wakeup((caddr_t)semakptr); | |
1528 | #else | |
1529 | wakeup((caddr_t)semakptr); | |
1530 | #endif | |
1531 | #ifdef SEM_DEBUG | |
1532 | printf("semexit: back from wakeup\n"); | |
1533 | #endif | |
1534 | suptr->un_cnt--; | |
1535 | suptr->un_ent = sueptr->une_next; | |
1536 | FREE(sueptr, M_SYSVSEM); | |
1537 | sueptr = NULL; | |
1538 | } | |
1539 | } | |
1540 | ||
1541 | /* | |
1542 | * Deallocate the undo vector. | |
1543 | */ | |
1544 | #ifdef SEM_DEBUG | |
1545 | printf("removing vector\n"); | |
1546 | #endif | |
1547 | suptr->un_proc = NULL; | |
1548 | *supidx = suptr->un_next_idx; | |
1549 | ||
1550 | unlock: | |
1551 | /* | |
1552 | * There is a semaphore leak (i.e. memory leak) in this code. | |
1553 | * We should be deleting the IPC_PRIVATE semaphores when they are | |
1554 | * no longer needed, and we dont. We would have to track which processes | |
1555 | * know about which IPC_PRIVATE semaphores, updating the list after | |
1556 | * every fork. We can't just delete them semaphore when the process | |
1557 | * that created it dies, because that process may well have forked | |
1558 | * some children. So we need to wait until all of it's children have | |
1559 | * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore | |
1560 | * with the creating group ID, count the number of processes left in | |
1561 | * that group, and delete the semaphore when the group is gone. | |
1562 | * Until that code gets implemented we will leak IPC_PRIVATE semaphores. | |
1563 | * There is an upper bound on the size of our semaphore array, so | |
1564 | * leaking the semaphores should not work as a DOS attack. | |
1565 | * | |
1566 | * Please note that the original BSD code this file is based on had the | |
1567 | * same leaky semaphore problem. | |
1568 | */ | |
1569 | ||
1570 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1571 | } | |
1572 | ||
1573 | ||
1574 | /* (struct sysctl_oid *oidp, void *arg1, int arg2, \ | |
1575 | * struct sysctl_req *req) */ | |
1576 | static int | |
1577 | sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1, | |
1578 | __unused int arg2, struct sysctl_req *req) | |
1579 | { | |
1580 | int error = 0; | |
1581 | ||
1582 | error = SYSCTL_OUT(req, arg1, sizeof(int)); | |
1583 | if (error || req->newptr == USER_ADDR_NULL) { | |
1584 | return error; | |
1585 | } | |
1586 | ||
1587 | SYSV_SEM_SUBSYS_LOCK(); | |
1588 | ||
1589 | /* Set the values only if shared memory is not initialised */ | |
1590 | if ((sem_pool == NULL) && | |
1591 | (sema == NULL) && | |
1592 | (semu == NULL) && | |
1593 | (semu_list_idx == -1)) { | |
1594 | if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) { | |
1595 | goto out; | |
1596 | } | |
1597 | } else { | |
1598 | error = EINVAL; | |
1599 | } | |
1600 | out: | |
1601 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1602 | return error; | |
1603 | } | |
1604 | ||
1605 | /* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */ | |
1606 | extern struct sysctl_oid_list sysctl__kern_sysv_children; | |
1607 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
1608 | &limitseminfo.semmni, 0, &sysctl_seminfo, "I", "semmni"); | |
1609 | ||
1610 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
1611 | &limitseminfo.semmns, 0, &sysctl_seminfo, "I", "semmns"); | |
1612 | ||
1613 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
1614 | &limitseminfo.semmnu, 0, &sysctl_seminfo, "I", "semmnu"); | |
1615 | ||
1616 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
1617 | &limitseminfo.semmsl, 0, &sysctl_seminfo, "I", "semmsl"); | |
1618 | ||
1619 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
1620 | &limitseminfo.semume, 0, &sysctl_seminfo, "I", "semume"); | |
1621 | ||
1622 | ||
1623 | static int | |
1624 | IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1, | |
1625 | __unused int arg2, struct sysctl_req *req) | |
1626 | { | |
1627 | int error; | |
1628 | int cursor; | |
1629 | union { | |
1630 | struct user32_IPCS_command u32; | |
1631 | struct user_IPCS_command u64; | |
1632 | } ipcs; | |
1633 | struct user32_semid_ds semid_ds32; /* post conversion, 32 bit version */ | |
1634 | struct user64_semid_ds semid_ds64; /* post conversion, 64 bit version */ | |
1635 | void *semid_dsp; | |
1636 | size_t ipcs_sz; | |
1637 | size_t semid_ds_sz; | |
1638 | struct proc *p = current_proc(); | |
1639 | ||
1640 | if (IS_64BIT_PROCESS(p)) { | |
1641 | ipcs_sz = sizeof(struct user_IPCS_command); | |
1642 | semid_ds_sz = sizeof(struct user64_semid_ds); | |
1643 | } else { | |
1644 | ipcs_sz = sizeof(struct user32_IPCS_command); | |
1645 | semid_ds_sz = sizeof(struct user32_semid_ds); | |
1646 | } | |
1647 | ||
1648 | /* Copy in the command structure */ | |
1649 | if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) { | |
1650 | return error; | |
1651 | } | |
1652 | ||
1653 | if (!IS_64BIT_PROCESS(p)) { /* convert in place */ | |
1654 | ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data); | |
1655 | } | |
1656 | ||
1657 | /* Let us version this interface... */ | |
1658 | if (ipcs.u64.ipcs_magic != IPCS_MAGIC) { | |
1659 | return EINVAL; | |
1660 | } | |
1661 | ||
1662 | SYSV_SEM_SUBSYS_LOCK(); | |
1663 | switch (ipcs.u64.ipcs_op) { | |
1664 | case IPCS_SEM_CONF: /* Obtain global configuration data */ | |
1665 | if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) { | |
1666 | error = ERANGE; | |
1667 | break; | |
1668 | } | |
1669 | if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */ | |
1670 | error = EINVAL; | |
1671 | break; | |
1672 | } | |
1673 | error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); | |
1674 | break; | |
1675 | ||
1676 | case IPCS_SEM_ITER: /* Iterate over existing segments */ | |
1677 | cursor = ipcs.u64.ipcs_cursor; | |
1678 | if (cursor < 0 || cursor >= seminfo.semmni) { | |
1679 | error = ERANGE; | |
1680 | break; | |
1681 | } | |
1682 | if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz) { | |
1683 | error = EINVAL; | |
1684 | break; | |
1685 | } | |
1686 | for (; cursor < seminfo.semmni; cursor++) { | |
1687 | if (sema[cursor].u.sem_perm.mode & SEM_ALLOC) { | |
1688 | break; | |
1689 | } | |
1690 | continue; | |
1691 | } | |
1692 | if (cursor == seminfo.semmni) { | |
1693 | error = ENOENT; | |
1694 | break; | |
1695 | } | |
1696 | ||
1697 | semid_dsp = &sema[cursor].u; /* default: 64 bit */ | |
1698 | ||
1699 | /* | |
1700 | * If necessary, convert the 64 bit kernel segment | |
1701 | * descriptor to a 32 bit user one. | |
1702 | */ | |
1703 | if (!IS_64BIT_PROCESS(p)) { | |
1704 | bzero(&semid_ds32, sizeof(semid_ds32)); | |
1705 | semid_ds_kernelto32(semid_dsp, &semid_ds32); | |
1706 | semid_dsp = &semid_ds32; | |
1707 | } else { | |
1708 | bzero(&semid_ds64, sizeof(semid_ds64)); | |
1709 | semid_ds_kernelto64(semid_dsp, &semid_ds64); | |
1710 | semid_dsp = &semid_ds64; | |
1711 | } | |
1712 | ||
1713 | error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); | |
1714 | if (!error) { | |
1715 | /* update cursor */ | |
1716 | ipcs.u64.ipcs_cursor = cursor + 1; | |
1717 | ||
1718 | if (!IS_64BIT_PROCESS(p)) { /* convert in place */ | |
1719 | ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t, ipcs.u64.ipcs_data); | |
1720 | } | |
1721 | ||
1722 | error = SYSCTL_OUT(req, &ipcs, ipcs_sz); | |
1723 | } | |
1724 | break; | |
1725 | ||
1726 | default: | |
1727 | error = EINVAL; | |
1728 | break; | |
1729 | } | |
1730 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1731 | return error; | |
1732 | } | |
1733 | ||
1734 | SYSCTL_DECL(_kern_sysv_ipcs); | |
1735 | SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, | |
1736 | 0, 0, IPCS_sem_sysctl, | |
1737 | "S,IPCS_sem_command", | |
1738 | "ipcs sem command interface"); | |
1739 | ||
1740 | #endif /* SYSV_SEM */ |