]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/i386/pcb.c
xnu-1228.7.58.tar.gz
[apple/xnu.git] / osfmk / i386 / pcb.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57#include <mach_rt.h>
58#include <mach_debug.h>
59#include <mach_ldebug.h>
60
61#include <sys/kdebug.h>
62
63#include <mach/kern_return.h>
64#include <mach/thread_status.h>
65#include <mach/vm_param.h>
66
67#include <i386/cpu_data.h>
68#include <i386/cpu_number.h>
69
70#include <kern/counters.h>
71#include <kern/kalloc.h>
72#include <kern/mach_param.h>
73#include <kern/processor.h>
74#include <kern/cpu_data.h>
75#include <kern/cpu_number.h>
76#include <kern/task.h>
77#include <kern/thread.h>
78#include <kern/sched_prim.h>
79#include <kern/misc_protos.h>
80#include <kern/assert.h>
81#include <kern/spl.h>
82#include <kern/machine.h>
83#include <ipc/ipc_port.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_map.h>
86#include <vm/pmap.h>
87#include <vm/vm_protos.h>
88
89#include <i386/thread.h>
90#include <i386/eflags.h>
91#include <i386/proc_reg.h>
92#include <i386/seg.h>
93#include <i386/tss.h>
94#include <i386/user_ldt.h>
95#include <i386/fpu.h>
96#include <i386/mp_desc.h>
97#include <i386/cpu_data.h>
98#include <i386/misc_protos.h>
99#include <i386/machine_routines.h>
100
101#include <machine/commpage.h>
102
103/*
104 * Maps state flavor to number of words in the state:
105 */
106unsigned int _MachineStateCount[] = {
107 /* FLAVOR_LIST */
108 0,
109 x86_THREAD_STATE32_COUNT,
110 x86_FLOAT_STATE32_COUNT,
111 x86_EXCEPTION_STATE32_COUNT,
112 x86_THREAD_STATE64_COUNT,
113 x86_FLOAT_STATE64_COUNT,
114 x86_EXCEPTION_STATE64_COUNT,
115 x86_THREAD_STATE_COUNT,
116 x86_FLOAT_STATE_COUNT,
117 x86_EXCEPTION_STATE_COUNT,
118 0,
119 x86_SAVED_STATE32_COUNT,
120 x86_SAVED_STATE64_COUNT,
121 x86_DEBUG_STATE32_COUNT,
122 x86_DEBUG_STATE64_COUNT,
123 x86_DEBUG_STATE_COUNT
124};
125
126zone_t iss_zone; /* zone for saved_state area */
127zone_t ids_zone; /* zone for debug_state area */
128
129/* Forward */
130
131void act_machine_throughcall(thread_t thr_act);
132void act_machine_return(int);
133
134extern void Thread_continue(void);
135extern void Load_context(
136 thread_t thread);
137
138static void
139get_exception_state32(thread_t thread, x86_exception_state32_t *es);
140
141static void
142get_exception_state64(thread_t thread, x86_exception_state64_t *es);
143
144static void
145get_thread_state32(thread_t thread, x86_thread_state32_t *ts);
146
147static void
148get_thread_state64(thread_t thread, x86_thread_state64_t *ts);
149
150static int
151set_thread_state32(thread_t thread, x86_thread_state32_t *ts);
152
153static int
154set_thread_state64(thread_t thread, x86_thread_state64_t *ts);
155
156/*
157 * Don't let an illegal value for dr7 get set. Specifically,
158 * check for undefined settings. Setting these bit patterns
159 * result in undefined behaviour and can lead to an unexpected
160 * TRCTRAP.
161 */
162static boolean_t
163dr7_is_valid(uint32_t *dr7)
164{
165 int i;
166 uint32_t mask1, mask2;
167
168 /*
169 * If the DE bit is set in CR4, R/W0-3 can be pattern
170 * "10B" to indicate i/o reads and write
171 */
172 if (!(get_cr4() & CR4_DE))
173 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
174 i++, mask1 <<= 4, mask2 <<= 4)
175 if ((*dr7 & mask1) == mask2)
176 return (FALSE);
177
178 /*
179 * len0-3 pattern "10B" is ok for len on 64-bit.
180 */
181 if (current_cpu_datap()->cpu_is64bit == TRUE)
182 for (i = 0, mask1 = 0x3<<18, mask2 = 0x2<<18; i < 4;
183 i++, mask1 <<= 4, mask2 <<= 4)
184 if ((*dr7 & mask1) == mask2)
185 return (FALSE);
186
187 /*
188 * if we are doing an instruction execution break (indicated
189 * by r/w[x] being "00B"), then the len[x] must also be set
190 * to "00B"
191 */
192 for (i = 0; i < 4; i++)
193 if (((((*dr7 >> (16 + i*4))) & 0x3) == 0) &&
194 ((((*dr7 >> (18 + i*4))) & 0x3) != 0))
195 return (FALSE);
196
197 /*
198 * Intel docs have these bits fixed.
199 */
200 *dr7 |= 0x1 << 10; /* set bit 10 to 1 */
201 *dr7 &= ~(0x1 << 11); /* set bit 11 to 0 */
202 *dr7 &= ~(0x1 << 12); /* set bit 12 to 0 */
203 *dr7 &= ~(0x1 << 14); /* set bit 14 to 0 */
204 *dr7 &= ~(0x1 << 15); /* set bit 15 to 0 */
205
206 /*
207 * We don't allow anything to set the global breakpoints.
208 */
209
210 if (*dr7 & 0x2)
211 return (FALSE);
212
213 if (*dr7 & (0x2<<2))
214 return (FALSE);
215
216 if (*dr7 & (0x2<<4))
217 return (FALSE);
218
219 if (*dr7 & (0x2<<6))
220 return (FALSE);
221
222 return (TRUE);
223}
224
225static inline void
226set_live_debug_state32(cpu_data_t *cdp, x86_debug_state32_t *ds)
227{
228 __asm__ volatile ("movl %0,%%db0" : :"r" (ds->dr0));
229 __asm__ volatile ("movl %0,%%db1" : :"r" (ds->dr1));
230 __asm__ volatile ("movl %0,%%db2" : :"r" (ds->dr2));
231 __asm__ volatile ("movl %0,%%db3" : :"r" (ds->dr3));
232 if (cpu_mode_is64bit())
233 cdp->cpu_dr7 = ds->dr7;
234}
235
236extern void set_64bit_debug_regs(x86_debug_state64_t *ds);
237
238static inline void
239set_live_debug_state64(cpu_data_t *cdp, x86_debug_state64_t *ds)
240{
241 /*
242 * We need to enter 64-bit mode in order to set the full
243 * width of these registers
244 */
245 set_64bit_debug_regs(ds);
246 cdp->cpu_dr7 = ds->dr7;
247}
248
249static kern_return_t
250set_debug_state32(thread_t thread, x86_debug_state32_t *ds)
251{
252 x86_debug_state32_t *ids;
253 pcb_t pcb;
254
255 pcb = thread->machine.pcb;
256 ids = pcb->ids;
257
258 if (ids == NULL) {
259 ids = zalloc(ids_zone);
260 bzero(ids, sizeof *ids);
261
262 simple_lock(&pcb->lock);
263 /* make sure it wasn't already alloc()'d elsewhere */
264 if (pcb->ids == NULL) {
265 pcb->ids = ids;
266 simple_unlock(&pcb->lock);
267 } else {
268 simple_unlock(&pcb->lock);
269 zfree(ids_zone, ids);
270 }
271 }
272
273 if (!dr7_is_valid(&ds->dr7))
274 goto err;
275
276 /*
277 * Only allow local breakpoints and make sure they are not
278 * in the trampoline code.
279 */
280
281 if (ds->dr7 & 0x1)
282 if (ds->dr0 >= (unsigned long)HIGH_MEM_BASE)
283 goto err;
284
285 if (ds->dr7 & (0x1<<2))
286 if (ds->dr1 >= (unsigned long)HIGH_MEM_BASE)
287 goto err;
288
289 if (ds->dr7 & (0x1<<4))
290 if (ds->dr2 >= (unsigned long)HIGH_MEM_BASE)
291 goto err;
292
293 if (ds->dr7 & (0x1<<6))
294 if (ds->dr3 >= (unsigned long)HIGH_MEM_BASE)
295 goto err;
296
297 ids->dr0 = ds->dr0;
298 ids->dr1 = ds->dr1;
299 ids->dr2 = ds->dr2;
300 ids->dr3 = ds->dr3;
301 ids->dr6 = ds->dr6;
302 ids->dr7 = ds->dr7;
303
304 return (KERN_SUCCESS);
305
306err:
307 return (KERN_INVALID_ARGUMENT);
308}
309
310static kern_return_t
311set_debug_state64(thread_t thread, x86_debug_state64_t *ds)
312{
313 x86_debug_state64_t *ids;
314 pcb_t pcb;
315
316 pcb = thread->machine.pcb;
317 ids = pcb->ids;
318
319 if (ids == NULL) {
320 ids = zalloc(ids_zone);
321 bzero(ids, sizeof *ids);
322
323 simple_lock(&pcb->lock);
324 /* make sure it wasn't already alloc()'d elsewhere */
325 if (pcb->ids == NULL) {
326 pcb->ids = ids;
327 simple_unlock(&pcb->lock);
328 } else {
329 simple_unlock(&pcb->lock);
330 zfree(ids_zone, ids);
331 }
332 }
333
334 if (!dr7_is_valid((uint32_t *)&ds->dr7))
335 goto err;
336
337 /*
338 * Don't allow the user to set debug addresses above their max
339 * value
340 */
341 if (ds->dr7 & 0x1)
342 if (ds->dr0 >= VM_MAX_PAGE_ADDRESS)
343 goto err;
344
345 if (ds->dr7 & (0x1<<2))
346 if (ds->dr1 >= VM_MAX_PAGE_ADDRESS)
347 goto err;
348
349 if (ds->dr7 & (0x1<<4))
350 if (ds->dr2 >= VM_MAX_PAGE_ADDRESS)
351 goto err;
352
353 if (ds->dr7 & (0x1<<6))
354 if (ds->dr3 >= VM_MAX_PAGE_ADDRESS)
355 goto err;
356
357 ids->dr0 = ds->dr0;
358 ids->dr1 = ds->dr1;
359 ids->dr2 = ds->dr2;
360 ids->dr3 = ds->dr3;
361 ids->dr6 = ds->dr6;
362 ids->dr7 = ds->dr7;
363
364 return (KERN_SUCCESS);
365
366err:
367 return (KERN_INVALID_ARGUMENT);
368}
369
370static void
371get_debug_state32(thread_t thread, x86_debug_state32_t *ds)
372{
373 x86_debug_state32_t *saved_state;
374
375 saved_state = thread->machine.pcb->ids;
376
377 if (saved_state) {
378 ds->dr0 = saved_state->dr0;
379 ds->dr1 = saved_state->dr1;
380 ds->dr2 = saved_state->dr2;
381 ds->dr3 = saved_state->dr3;
382 ds->dr4 = saved_state->dr4;
383 ds->dr5 = saved_state->dr5;
384 ds->dr6 = saved_state->dr6;
385 ds->dr7 = saved_state->dr7;
386 } else
387 bzero(ds, sizeof *ds);
388}
389
390static void
391get_debug_state64(thread_t thread, x86_debug_state64_t *ds)
392{
393 x86_debug_state64_t *saved_state;
394
395 saved_state = (x86_debug_state64_t *)thread->machine.pcb->ids;
396
397 if (saved_state) {
398 ds->dr0 = saved_state->dr0;
399 ds->dr1 = saved_state->dr1;
400 ds->dr2 = saved_state->dr2;
401 ds->dr3 = saved_state->dr3;
402 ds->dr4 = saved_state->dr4;
403 ds->dr5 = saved_state->dr5;
404 ds->dr6 = saved_state->dr6;
405 ds->dr7 = saved_state->dr7;
406 } else
407 bzero(ds, sizeof *ds);
408}
409
410/*
411 * consider_machine_collect:
412 *
413 * Try to collect machine-dependent pages
414 */
415void
416consider_machine_collect(void)
417{
418}
419
420void
421consider_machine_adjust(void)
422{
423}
424extern void *get_bsduthreadarg(thread_t th);
425
426static void
427act_machine_switch_pcb( thread_t new )
428{
429 pcb_t pcb = new->machine.pcb;
430 struct real_descriptor *ldtp;
431 vm_offset_t pcb_stack_top;
432 vm_offset_t hi_pcb_stack_top;
433 vm_offset_t hi_iss;
434 cpu_data_t *cdp = current_cpu_datap();
435
436 assert(new->kernel_stack != 0);
437 STACK_IEL(new->kernel_stack)->saved_state = pcb->iss;
438
439 if (!cpu_mode_is64bit()) {
440 x86_saved_state32_tagged_t *hi_iss32;
441 /*
442 * Save a pointer to the top of the "kernel" stack -
443 * actually the place in the PCB where a trap into
444 * kernel mode will push the registers.
445 */
446 hi_iss = (vm_offset_t)((unsigned long)
447 pmap_cpu_high_map_vaddr(cpu_number(), HIGH_CPU_ISS0) |
448 ((unsigned long)pcb->iss & PAGE_MASK));
449
450 cdp->cpu_hi_iss = (void *)hi_iss;
451
452 pmap_high_map(pcb->iss_pte0, HIGH_CPU_ISS0);
453 pmap_high_map(pcb->iss_pte1, HIGH_CPU_ISS1);
454
455 hi_iss32 = (x86_saved_state32_tagged_t *) hi_iss;
456 assert(hi_iss32->tag == x86_SAVED_STATE32);
457
458 hi_pcb_stack_top = (int) (hi_iss32 + 1);
459
460 /*
461 * For fast syscall, top of interrupt stack points to pcb stack
462 */
463 *(vm_offset_t *) current_sstk() = hi_pcb_stack_top;
464
465 current_ktss()->esp0 = hi_pcb_stack_top;
466
467 } else if (is_saved_state64(pcb->iss)) {
468 /*
469 * The test above is performed against the thread save state
470 * flavor and not task's 64-bit feature flag because of the
471 * thread/task 64-bit state divergence that can arise in
472 * task_set_64bit() x86: the task state is changed before
473 * the individual thread(s).
474 */
475 x86_saved_state64_tagged_t *iss64;
476 vm_offset_t isf;
477
478 assert(is_saved_state64(pcb->iss));
479
480 iss64 = (x86_saved_state64_tagged_t *) pcb->iss;
481
482 /*
483 * Set pointer to PCB's interrupt stack frame in cpu data.
484 * Used by syscall and double-fault trap handlers.
485 */
486 isf = (vm_offset_t) &iss64->state.isf;
487 cdp->cpu_uber.cu_isf = UBER64(isf);
488 pcb_stack_top = (vm_offset_t) (iss64 + 1);
489 /* require 16-byte alignment */
490 assert((pcb_stack_top & 0xF) == 0);
491 /* Interrupt stack is pcb */
492 current_ktss64()->rsp0 = UBER64(pcb_stack_top);
493
494 /*
495 * Top of temporary sysenter stack points to pcb stack.
496 * Although this is not normally used by 64-bit users,
497 * it needs to be set in case a sysenter is attempted.
498 */
499 *current_sstk64() = UBER64(pcb_stack_top);
500
501 cdp->cpu_task_map = new->map->pmap->pm_task_map;
502
503 /*
504 * Enable the 64-bit user code segment, USER64_CS.
505 * Disable the 32-bit user code segment, USER_CS.
506 */
507 ldt_desc_p(USER64_CS)->access |= ACC_PL_U;
508 ldt_desc_p(USER_CS)->access &= ~ACC_PL_U;
509
510 } else {
511 x86_saved_state_compat32_t *iss32compat;
512 vm_offset_t isf;
513
514 assert(is_saved_state32(pcb->iss));
515 iss32compat = (x86_saved_state_compat32_t *) pcb->iss;
516
517 pcb_stack_top = (int) (iss32compat + 1);
518 /* require 16-byte alignment */
519 assert((pcb_stack_top & 0xF) == 0);
520
521 /*
522 * Set pointer to PCB's interrupt stack frame in cpu data.
523 * Used by debug trap handler.
524 */
525 isf = (vm_offset_t) &iss32compat->isf64;
526 cdp->cpu_uber.cu_isf = UBER64(isf);
527
528 /* Top of temporary sysenter stack points to pcb stack */
529 *current_sstk64() = UBER64(pcb_stack_top);
530
531 /* Interrupt stack is pcb */
532 current_ktss64()->rsp0 = UBER64(pcb_stack_top);
533
534 cdp->cpu_task_map = TASK_MAP_32BIT;
535 /* Precalculate pointers to syscall argument store, for use
536 * in the trampolines.
537 */
538 cdp->cpu_uber_arg_store = UBER64((vm_offset_t)get_bsduthreadarg(new));
539 cdp->cpu_uber_arg_store_valid = UBER64((vm_offset_t)&pcb->arg_store_valid);
540 pcb->arg_store_valid = 0;
541
542 /*
543 * Disable USER64_CS
544 * Enable USER_CS
545 */
546 ldt_desc_p(USER64_CS)->access &= ~ACC_PL_U;
547 ldt_desc_p(USER_CS)->access |= ACC_PL_U;
548 }
549
550 /*
551 * Set the thread`s cthread (a.k.a pthread)
552 * For 32-bit user this involves setting the USER_CTHREAD
553 * descriptor in the LDT to point to the cthread data.
554 * The involves copying in the pre-initialized descriptor.
555 */
556 ldtp = (struct real_descriptor *)current_ldt();
557 ldtp[sel_idx(USER_CTHREAD)] = pcb->cthread_desc;
558 if (pcb->uldt_selector != 0)
559 ldtp[sel_idx(pcb->uldt_selector)] = pcb->uldt_desc;
560 /*
561 * For 64-bit, we additionally set the 64-bit User GS base
562 * address. On return to 64-bit user, the GS.Base MSR will be written.
563 */
564 cdp->cpu_uber.cu_user_gs_base = pcb->cthread_self;
565
566 /*
567 * Set the thread`s LDT or LDT entry.
568 */
569 if (new->task == TASK_NULL || new->task->i386_ldt == 0) {
570 /*
571 * Use system LDT.
572 */
573 ml_cpu_set_ldt(KERNEL_LDT);
574 } else {
575 /*
576 * Task has its own LDT.
577 */
578 user_ldt_set(new);
579 }
580
581 /*
582 * Bump the scheduler generation count in the commpage.
583 * This can be read by user code to detect its preemption.
584 */
585 commpage_sched_gen_inc();
586}
587
588/*
589 * Switch to the first thread on a CPU.
590 */
591void
592machine_load_context(
593 thread_t new)
594{
595 new->machine.specFlags |= OnProc;
596 act_machine_switch_pcb(new);
597 Load_context(new);
598}
599
600/*
601 * Switch to a new thread.
602 * Save the old thread`s kernel state or continuation,
603 * and return it.
604 */
605thread_t
606machine_switch_context(
607 thread_t old,
608 thread_continue_t continuation,
609 thread_t new)
610{
611#if MACH_RT
612 assert(current_cpu_datap()->cpu_active_stack == old->kernel_stack);
613#endif
614
615 /*
616 * Save FP registers if in use.
617 */
618 fpu_save_context(old);
619
620 old->machine.specFlags &= ~OnProc;
621 new->machine.specFlags |= OnProc;
622
623 /*
624 * Switch address maps if need be, even if not switching tasks.
625 * (A server activation may be "borrowing" a client map.)
626 */
627 PMAP_SWITCH_CONTEXT(old, new, cpu_number())
628
629 /*
630 * Load the rest of the user state for the new thread
631 */
632 act_machine_switch_pcb(new);
633
634 return(Switch_context(old, continuation, new));
635}
636
637/*
638 * act_machine_sv_free
639 * release saveareas associated with an act. if flag is true, release
640 * user level savearea(s) too, else don't
641 */
642void
643act_machine_sv_free(__unused thread_t act, __unused int flag)
644{
645}
646
647
648/*
649 * This is where registers that are not normally specified by the mach-o
650 * file on an execve would be nullified, perhaps to avoid a covert channel.
651 */
652kern_return_t
653machine_thread_state_initialize(
654 thread_t thread)
655{
656 /*
657 * If there's an fpu save area, free it.
658 * The initialized state will then be lazily faulted-in, if required.
659 * And if we're target, re-arm the no-fpu trap.
660 */
661 if (thread->machine.pcb->ifps) {
662 (void) fpu_set_fxstate(thread, NULL);
663
664 if (thread == current_thread())
665 clear_fpu();
666 }
667 return KERN_SUCCESS;
668}
669
670uint32_t
671get_eflags_exportmask(void)
672{
673 return EFL_USER_SET;
674}
675
676/*
677 * x86_SAVED_STATE32 - internal save/restore general register state on 32/64 bit processors
678 * for 32bit tasks only
679 * x86_SAVED_STATE64 - internal save/restore general register state on 64 bit processors
680 * for 64bit tasks only
681 * x86_THREAD_STATE32 - external set/get general register state on 32/64 bit processors
682 * for 32bit tasks only
683 * x86_THREAD_STATE64 - external set/get general register state on 64 bit processors
684 * for 64bit tasks only
685 * x86_SAVED_STATE - external set/get general register state on 32/64 bit processors
686 * for either 32bit or 64bit tasks
687 * x86_FLOAT_STATE32 - internal/external save/restore float and xmm state on 32/64 bit processors
688 * for 32bit tasks only
689 * x86_FLOAT_STATE64 - internal/external save/restore float and xmm state on 64 bit processors
690 * for 64bit tasks only
691 * x86_FLOAT_STATE - external save/restore float and xmm state on 32/64 bit processors
692 * for either 32bit or 64bit tasks
693 * x86_EXCEPTION_STATE32 - external get exception state on 32/64 bit processors
694 * for 32bit tasks only
695 * x86_EXCEPTION_STATE64 - external get exception state on 64 bit processors
696 * for 64bit tasks only
697 * x86_EXCEPTION_STATE - external get exception state on 323/64 bit processors
698 * for either 32bit or 64bit tasks
699 */
700
701
702static void
703get_exception_state64(thread_t thread, x86_exception_state64_t *es)
704{
705 x86_saved_state64_t *saved_state;
706
707 saved_state = USER_REGS64(thread);
708
709 es->trapno = saved_state->isf.trapno;
710 es->err = saved_state->isf.err;
711 es->faultvaddr = saved_state->cr2;
712}
713
714static void
715get_exception_state32(thread_t thread, x86_exception_state32_t *es)
716{
717 x86_saved_state32_t *saved_state;
718
719 saved_state = USER_REGS32(thread);
720
721 es->trapno = saved_state->trapno;
722 es->err = saved_state->err;
723 es->faultvaddr = saved_state->cr2;
724}
725
726
727static int
728set_thread_state32(thread_t thread, x86_thread_state32_t *ts)
729{
730 x86_saved_state32_t *saved_state;
731
732 saved_state = USER_REGS32(thread);
733
734 /*
735 * Scrub segment selector values:
736 */
737 if (ts->cs != USER_CS) ts->cs = USER_CS;
738 if (ts->ss == 0) ts->ss = USER_DS;
739 if (ts->ds == 0) ts->ds = USER_DS;
740 if (ts->es == 0) ts->es = USER_DS;
741
742 /* Check segment selectors are safe */
743 if (!valid_user_segment_selectors(ts->cs,
744 ts->ss,
745 ts->ds,
746 ts->es,
747 ts->fs,
748 ts->gs))
749 return(KERN_INVALID_ARGUMENT);
750
751 saved_state->eax = ts->eax;
752 saved_state->ebx = ts->ebx;
753 saved_state->ecx = ts->ecx;
754 saved_state->edx = ts->edx;
755 saved_state->edi = ts->edi;
756 saved_state->esi = ts->esi;
757 saved_state->ebp = ts->ebp;
758 saved_state->uesp = ts->esp;
759 saved_state->efl = (ts->eflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
760 saved_state->eip = ts->eip;
761 saved_state->cs = ts->cs;
762 saved_state->ss = ts->ss;
763 saved_state->ds = ts->ds;
764 saved_state->es = ts->es;
765 saved_state->fs = ts->fs;
766 saved_state->gs = ts->gs;
767
768 /*
769 * If the trace trap bit is being set,
770 * ensure that the user returns via iret
771 * - which is signaled thusly:
772 */
773 if ((saved_state->efl & EFL_TF) && saved_state->cs == SYSENTER_CS)
774 saved_state->cs = SYSENTER_TF_CS;
775
776 return(KERN_SUCCESS);
777}
778
779static int
780set_thread_state64(thread_t thread, x86_thread_state64_t *ts)
781{
782 x86_saved_state64_t *saved_state;
783
784 saved_state = USER_REGS64(thread);
785
786 if (!IS_USERADDR64_CANONICAL(ts->rsp) ||
787 !IS_USERADDR64_CANONICAL(ts->rip))
788 return(KERN_INVALID_ARGUMENT);
789
790 saved_state->r8 = ts->r8;
791 saved_state->r9 = ts->r9;
792 saved_state->r10 = ts->r10;
793 saved_state->r11 = ts->r11;
794 saved_state->r12 = ts->r12;
795 saved_state->r13 = ts->r13;
796 saved_state->r14 = ts->r14;
797 saved_state->r15 = ts->r15;
798 saved_state->rax = ts->rax;
799 saved_state->rbx = ts->rbx;
800 saved_state->rcx = ts->rcx;
801 saved_state->rdx = ts->rdx;
802 saved_state->rdi = ts->rdi;
803 saved_state->rsi = ts->rsi;
804 saved_state->rbp = ts->rbp;
805 saved_state->isf.rsp = ts->rsp;
806 saved_state->isf.rflags = (ts->rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
807 saved_state->isf.rip = ts->rip;
808 saved_state->isf.cs = USER64_CS;
809 saved_state->fs = ts->fs;
810 saved_state->gs = ts->gs;
811
812 return(KERN_SUCCESS);
813}
814
815
816
817static void
818get_thread_state32(thread_t thread, x86_thread_state32_t *ts)
819{
820 x86_saved_state32_t *saved_state;
821
822 saved_state = USER_REGS32(thread);
823
824 ts->eax = saved_state->eax;
825 ts->ebx = saved_state->ebx;
826 ts->ecx = saved_state->ecx;
827 ts->edx = saved_state->edx;
828 ts->edi = saved_state->edi;
829 ts->esi = saved_state->esi;
830 ts->ebp = saved_state->ebp;
831 ts->esp = saved_state->uesp;
832 ts->eflags = saved_state->efl;
833 ts->eip = saved_state->eip;
834 ts->cs = saved_state->cs;
835 ts->ss = saved_state->ss;
836 ts->ds = saved_state->ds;
837 ts->es = saved_state->es;
838 ts->fs = saved_state->fs;
839 ts->gs = saved_state->gs;
840}
841
842
843static void
844get_thread_state64(thread_t thread, x86_thread_state64_t *ts)
845{
846 x86_saved_state64_t *saved_state;
847
848 saved_state = USER_REGS64(thread);
849
850 ts->r8 = saved_state->r8;
851 ts->r9 = saved_state->r9;
852 ts->r10 = saved_state->r10;
853 ts->r11 = saved_state->r11;
854 ts->r12 = saved_state->r12;
855 ts->r13 = saved_state->r13;
856 ts->r14 = saved_state->r14;
857 ts->r15 = saved_state->r15;
858 ts->rax = saved_state->rax;
859 ts->rbx = saved_state->rbx;
860 ts->rcx = saved_state->rcx;
861 ts->rdx = saved_state->rdx;
862 ts->rdi = saved_state->rdi;
863 ts->rsi = saved_state->rsi;
864 ts->rbp = saved_state->rbp;
865 ts->rsp = saved_state->isf.rsp;
866 ts->rflags = saved_state->isf.rflags;
867 ts->rip = saved_state->isf.rip;
868 ts->cs = saved_state->isf.cs;
869 ts->fs = saved_state->fs;
870 ts->gs = saved_state->gs;
871}
872
873
874void
875thread_set_wq_state32(thread_t thread, thread_state_t tstate)
876{
877 x86_thread_state32_t *state;
878 x86_saved_state32_t *saved_state;
879 thread_t curth = current_thread();
880
881 saved_state = USER_REGS32(thread);
882 state = (x86_thread_state32_t *)tstate;
883
884 if (curth != thread)
885 thread_lock(thread);
886
887 saved_state->eip = state->eip;
888 saved_state->eax = state->eax;
889 saved_state->ebx = state->ebx;
890 saved_state->ecx = state->ecx;
891 saved_state->edx = state->edx;
892 saved_state->edi = state->edi;
893 saved_state->esi = state->esi;
894 saved_state->uesp = state->esp;
895 saved_state->efl = EFL_USER_SET;
896
897 saved_state->cs = USER_CS;
898 saved_state->ss = USER_DS;
899 saved_state->ds = USER_DS;
900 saved_state->es = USER_DS;
901
902 if (curth != thread)
903 thread_unlock(thread);
904}
905
906
907void
908thread_set_wq_state64(thread_t thread, thread_state_t tstate)
909{
910 x86_thread_state64_t *state;
911 x86_saved_state64_t *saved_state;
912 thread_t curth = current_thread();
913
914 saved_state = USER_REGS64(thread);
915 state = (x86_thread_state64_t *)tstate;
916
917 if (curth != thread)
918 thread_lock(thread);
919
920 saved_state->rdi = state->rdi;
921 saved_state->rsi = state->rsi;
922 saved_state->rdx = state->rdx;
923 saved_state->rcx = state->rcx;
924 saved_state->r8 = state->r8;
925 saved_state->r9 = state->r9;
926
927 saved_state->isf.rip = state->rip;
928 saved_state->isf.rsp = state->rsp;
929 saved_state->isf.cs = USER64_CS;
930 saved_state->isf.rflags = EFL_USER_SET;
931
932 if (curth != thread)
933 thread_unlock(thread);
934}
935
936
937
938/*
939 * act_machine_set_state:
940 *
941 * Set the status of the specified thread.
942 */
943
944kern_return_t
945machine_thread_set_state(
946 thread_t thr_act,
947 thread_flavor_t flavor,
948 thread_state_t tstate,
949 mach_msg_type_number_t count)
950{
951 switch (flavor) {
952 case x86_SAVED_STATE32:
953 {
954 x86_saved_state32_t *state;
955 x86_saved_state32_t *saved_state;
956
957 if (count < x86_SAVED_STATE32_COUNT)
958 return(KERN_INVALID_ARGUMENT);
959
960 if (thread_is_64bit(thr_act))
961 return(KERN_INVALID_ARGUMENT);
962
963 state = (x86_saved_state32_t *) tstate;
964
965 /* Check segment selectors are safe */
966 if (!valid_user_segment_selectors(state->cs,
967 state->ss,
968 state->ds,
969 state->es,
970 state->fs,
971 state->gs))
972 return KERN_INVALID_ARGUMENT;
973
974 saved_state = USER_REGS32(thr_act);
975
976 /*
977 * General registers
978 */
979 saved_state->edi = state->edi;
980 saved_state->esi = state->esi;
981 saved_state->ebp = state->ebp;
982 saved_state->uesp = state->uesp;
983 saved_state->ebx = state->ebx;
984 saved_state->edx = state->edx;
985 saved_state->ecx = state->ecx;
986 saved_state->eax = state->eax;
987 saved_state->eip = state->eip;
988
989 saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET;
990
991 /*
992 * If the trace trap bit is being set,
993 * ensure that the user returns via iret
994 * - which is signaled thusly:
995 */
996 if ((saved_state->efl & EFL_TF) && state->cs == SYSENTER_CS)
997 state->cs = SYSENTER_TF_CS;
998
999 /*
1000 * User setting segment registers.
1001 * Code and stack selectors have already been
1002 * checked. Others will be reset by 'iret'
1003 * if they are not valid.
1004 */
1005 saved_state->cs = state->cs;
1006 saved_state->ss = state->ss;
1007 saved_state->ds = state->ds;
1008 saved_state->es = state->es;
1009 saved_state->fs = state->fs;
1010 saved_state->gs = state->gs;
1011 break;
1012 }
1013
1014 case x86_SAVED_STATE64:
1015 {
1016 x86_saved_state64_t *state;
1017 x86_saved_state64_t *saved_state;
1018
1019 if (count < x86_SAVED_STATE64_COUNT)
1020 return(KERN_INVALID_ARGUMENT);
1021
1022 if (!thread_is_64bit(thr_act))
1023 return(KERN_INVALID_ARGUMENT);
1024
1025 state = (x86_saved_state64_t *) tstate;
1026
1027 /* Verify that the supplied code segment selector is
1028 * valid. In 64-bit mode, the FS and GS segment overrides
1029 * use the FS.base and GS.base MSRs to calculate
1030 * base addresses, and the trampolines don't directly
1031 * restore the segment registers--hence they are no
1032 * longer relevant for validation.
1033 */
1034 if (!valid_user_code_selector(state->isf.cs))
1035 return KERN_INVALID_ARGUMENT;
1036
1037 /* Check pc and stack are canonical addresses */
1038 if (!IS_USERADDR64_CANONICAL(state->isf.rsp) ||
1039 !IS_USERADDR64_CANONICAL(state->isf.rip))
1040 return KERN_INVALID_ARGUMENT;
1041
1042 saved_state = USER_REGS64(thr_act);
1043
1044 /*
1045 * General registers
1046 */
1047 saved_state->r8 = state->r8;
1048 saved_state->r9 = state->r9;
1049 saved_state->r10 = state->r10;
1050 saved_state->r11 = state->r11;
1051 saved_state->r12 = state->r12;
1052 saved_state->r13 = state->r13;
1053 saved_state->r14 = state->r14;
1054 saved_state->r15 = state->r15;
1055 saved_state->rdi = state->rdi;
1056 saved_state->rsi = state->rsi;
1057 saved_state->rbp = state->rbp;
1058 saved_state->rbx = state->rbx;
1059 saved_state->rdx = state->rdx;
1060 saved_state->rcx = state->rcx;
1061 saved_state->rax = state->rax;
1062 saved_state->isf.rsp = state->isf.rsp;
1063 saved_state->isf.rip = state->isf.rip;
1064
1065 saved_state->isf.rflags = (state->isf.rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
1066
1067 /*
1068 * User setting segment registers.
1069 * Code and stack selectors have already been
1070 * checked. Others will be reset by 'sys'
1071 * if they are not valid.
1072 */
1073 saved_state->isf.cs = state->isf.cs;
1074 saved_state->isf.ss = state->isf.ss;
1075 saved_state->fs = state->fs;
1076 saved_state->gs = state->gs;
1077 break;
1078 }
1079
1080 case x86_FLOAT_STATE32:
1081 {
1082 if (count != x86_FLOAT_STATE32_COUNT)
1083 return(KERN_INVALID_ARGUMENT);
1084
1085 if (thread_is_64bit(thr_act))
1086 return(KERN_INVALID_ARGUMENT);
1087
1088 return fpu_set_fxstate(thr_act, tstate);
1089 }
1090
1091 case x86_FLOAT_STATE64:
1092 {
1093 if (count != x86_FLOAT_STATE64_COUNT)
1094 return(KERN_INVALID_ARGUMENT);
1095
1096 if ( !thread_is_64bit(thr_act))
1097 return(KERN_INVALID_ARGUMENT);
1098
1099 return fpu_set_fxstate(thr_act, tstate);
1100 }
1101
1102 case x86_FLOAT_STATE:
1103 {
1104 x86_float_state_t *state;
1105
1106 if (count != x86_FLOAT_STATE_COUNT)
1107 return(KERN_INVALID_ARGUMENT);
1108
1109 state = (x86_float_state_t *)tstate;
1110 if (state->fsh.flavor == x86_FLOAT_STATE64 && state->fsh.count == x86_FLOAT_STATE64_COUNT &&
1111 thread_is_64bit(thr_act)) {
1112 return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs64);
1113 }
1114 if (state->fsh.flavor == x86_FLOAT_STATE32 && state->fsh.count == x86_FLOAT_STATE32_COUNT &&
1115 !thread_is_64bit(thr_act)) {
1116 return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs32);
1117 }
1118 return(KERN_INVALID_ARGUMENT);
1119 }
1120
1121 case x86_THREAD_STATE32:
1122 {
1123 if (count != x86_THREAD_STATE32_COUNT)
1124 return(KERN_INVALID_ARGUMENT);
1125
1126 if (thread_is_64bit(thr_act))
1127 return(KERN_INVALID_ARGUMENT);
1128
1129 return set_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
1130 }
1131
1132 case x86_THREAD_STATE64:
1133 {
1134 if (count != x86_THREAD_STATE64_COUNT)
1135 return(KERN_INVALID_ARGUMENT);
1136
1137 if (!thread_is_64bit(thr_act))
1138 return(KERN_INVALID_ARGUMENT);
1139
1140 return set_thread_state64(thr_act, (x86_thread_state64_t *)tstate);
1141
1142 }
1143 case x86_THREAD_STATE:
1144 {
1145 x86_thread_state_t *state;
1146
1147 if (count != x86_THREAD_STATE_COUNT)
1148 return(KERN_INVALID_ARGUMENT);
1149
1150 state = (x86_thread_state_t *)tstate;
1151
1152 if (state->tsh.flavor == x86_THREAD_STATE64 &&
1153 state->tsh.count == x86_THREAD_STATE64_COUNT &&
1154 thread_is_64bit(thr_act)) {
1155 return set_thread_state64(thr_act, &state->uts.ts64);
1156 } else if (state->tsh.flavor == x86_THREAD_STATE32 &&
1157 state->tsh.count == x86_THREAD_STATE32_COUNT &&
1158 !thread_is_64bit(thr_act)) {
1159 return set_thread_state32(thr_act, &state->uts.ts32);
1160 } else
1161 return(KERN_INVALID_ARGUMENT);
1162
1163 break;
1164 }
1165 case x86_DEBUG_STATE32:
1166 {
1167 x86_debug_state32_t *state;
1168 kern_return_t ret;
1169
1170 if (thread_is_64bit(thr_act))
1171 return(KERN_INVALID_ARGUMENT);
1172
1173 state = (x86_debug_state32_t *)tstate;
1174
1175 ret = set_debug_state32(thr_act, state);
1176
1177 return ret;
1178 }
1179 case x86_DEBUG_STATE64:
1180 {
1181 x86_debug_state64_t *state;
1182 kern_return_t ret;
1183
1184 if (!thread_is_64bit(thr_act))
1185 return(KERN_INVALID_ARGUMENT);
1186
1187 state = (x86_debug_state64_t *)tstate;
1188
1189 ret = set_debug_state64(thr_act, state);
1190
1191 return ret;
1192 }
1193 case x86_DEBUG_STATE:
1194 {
1195 x86_debug_state_t *state;
1196 kern_return_t ret = KERN_INVALID_ARGUMENT;
1197
1198 if (count != x86_DEBUG_STATE_COUNT)
1199 return (KERN_INVALID_ARGUMENT);
1200
1201 state = (x86_debug_state_t *)tstate;
1202 if (state->dsh.flavor == x86_DEBUG_STATE64 &&
1203 state->dsh.count == x86_DEBUG_STATE64_COUNT &&
1204 thread_is_64bit(thr_act)) {
1205 ret = set_debug_state64(thr_act, &state->uds.ds64);
1206 }
1207 else
1208 if (state->dsh.flavor == x86_DEBUG_STATE32 &&
1209 state->dsh.count == x86_DEBUG_STATE32_COUNT &&
1210 !thread_is_64bit(thr_act)) {
1211 ret = set_debug_state32(thr_act, &state->uds.ds32);
1212 }
1213 return ret;
1214 }
1215 default:
1216 return(KERN_INVALID_ARGUMENT);
1217 }
1218
1219 return(KERN_SUCCESS);
1220}
1221
1222
1223
1224/*
1225 * thread_getstatus:
1226 *
1227 * Get the status of the specified thread.
1228 */
1229
1230kern_return_t
1231machine_thread_get_state(
1232 thread_t thr_act,
1233 thread_flavor_t flavor,
1234 thread_state_t tstate,
1235 mach_msg_type_number_t *count)
1236{
1237
1238 switch (flavor) {
1239
1240 case THREAD_STATE_FLAVOR_LIST:
1241 {
1242 if (*count < 3)
1243 return (KERN_INVALID_ARGUMENT);
1244
1245 tstate[0] = i386_THREAD_STATE;
1246 tstate[1] = i386_FLOAT_STATE;
1247 tstate[2] = i386_EXCEPTION_STATE;
1248
1249 *count = 3;
1250 break;
1251 }
1252
1253 case THREAD_STATE_FLAVOR_LIST_NEW:
1254 {
1255 if (*count < 4)
1256 return (KERN_INVALID_ARGUMENT);
1257
1258 tstate[0] = x86_THREAD_STATE;
1259 tstate[1] = x86_FLOAT_STATE;
1260 tstate[2] = x86_EXCEPTION_STATE;
1261 tstate[3] = x86_DEBUG_STATE;
1262
1263 *count = 4;
1264 break;
1265 }
1266
1267 case x86_SAVED_STATE32:
1268 {
1269 x86_saved_state32_t *state;
1270 x86_saved_state32_t *saved_state;
1271
1272 if (*count < x86_SAVED_STATE32_COUNT)
1273 return(KERN_INVALID_ARGUMENT);
1274
1275 if (thread_is_64bit(thr_act))
1276 return(KERN_INVALID_ARGUMENT);
1277
1278 state = (x86_saved_state32_t *) tstate;
1279 saved_state = USER_REGS32(thr_act);
1280
1281 /*
1282 * First, copy everything:
1283 */
1284 *state = *saved_state;
1285 state->ds = saved_state->ds & 0xffff;
1286 state->es = saved_state->es & 0xffff;
1287 state->fs = saved_state->fs & 0xffff;
1288 state->gs = saved_state->gs & 0xffff;
1289
1290 *count = x86_SAVED_STATE32_COUNT;
1291 break;
1292 }
1293
1294 case x86_SAVED_STATE64:
1295 {
1296 x86_saved_state64_t *state;
1297 x86_saved_state64_t *saved_state;
1298
1299 if (*count < x86_SAVED_STATE64_COUNT)
1300 return(KERN_INVALID_ARGUMENT);
1301
1302 if (!thread_is_64bit(thr_act))
1303 return(KERN_INVALID_ARGUMENT);
1304
1305 state = (x86_saved_state64_t *)tstate;
1306 saved_state = USER_REGS64(thr_act);
1307
1308 /*
1309 * First, copy everything:
1310 */
1311 *state = *saved_state;
1312 state->fs = saved_state->fs & 0xffff;
1313 state->gs = saved_state->gs & 0xffff;
1314
1315 *count = x86_SAVED_STATE64_COUNT;
1316 break;
1317 }
1318
1319 case x86_FLOAT_STATE32:
1320 {
1321 if (*count < x86_FLOAT_STATE32_COUNT)
1322 return(KERN_INVALID_ARGUMENT);
1323
1324 if (thread_is_64bit(thr_act))
1325 return(KERN_INVALID_ARGUMENT);
1326
1327 *count = x86_FLOAT_STATE32_COUNT;
1328
1329 return fpu_get_fxstate(thr_act, tstate);
1330 }
1331
1332 case x86_FLOAT_STATE64:
1333 {
1334 if (*count < x86_FLOAT_STATE64_COUNT)
1335 return(KERN_INVALID_ARGUMENT);
1336
1337 if ( !thread_is_64bit(thr_act))
1338 return(KERN_INVALID_ARGUMENT);
1339
1340 *count = x86_FLOAT_STATE64_COUNT;
1341
1342 return fpu_get_fxstate(thr_act, tstate);
1343 }
1344
1345 case x86_FLOAT_STATE:
1346 {
1347 x86_float_state_t *state;
1348 kern_return_t kret;
1349
1350 if (*count < x86_FLOAT_STATE_COUNT)
1351 return(KERN_INVALID_ARGUMENT);
1352
1353 state = (x86_float_state_t *)tstate;
1354
1355 /*
1356 * no need to bzero... currently
1357 * x86_FLOAT_STATE64_COUNT == x86_FLOAT_STATE32_COUNT
1358 */
1359 if (thread_is_64bit(thr_act)) {
1360 state->fsh.flavor = x86_FLOAT_STATE64;
1361 state->fsh.count = x86_FLOAT_STATE64_COUNT;
1362
1363 kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs64);
1364 } else {
1365 state->fsh.flavor = x86_FLOAT_STATE32;
1366 state->fsh.count = x86_FLOAT_STATE32_COUNT;
1367
1368 kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs32);
1369 }
1370 *count = x86_FLOAT_STATE_COUNT;
1371
1372 return(kret);
1373 }
1374
1375 case x86_THREAD_STATE32:
1376 {
1377 if (*count < x86_THREAD_STATE32_COUNT)
1378 return(KERN_INVALID_ARGUMENT);
1379
1380 if (thread_is_64bit(thr_act))
1381 return(KERN_INVALID_ARGUMENT);
1382
1383 *count = x86_THREAD_STATE32_COUNT;
1384
1385 get_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
1386 break;
1387 }
1388
1389 case x86_THREAD_STATE64:
1390 {
1391 if (*count < x86_THREAD_STATE64_COUNT)
1392 return(KERN_INVALID_ARGUMENT);
1393
1394 if ( !thread_is_64bit(thr_act))
1395 return(KERN_INVALID_ARGUMENT);
1396
1397 *count = x86_THREAD_STATE64_COUNT;
1398
1399 get_thread_state64(thr_act, (x86_thread_state64_t *)tstate);
1400 break;
1401 }
1402
1403 case x86_THREAD_STATE:
1404 {
1405 x86_thread_state_t *state;
1406
1407 if (*count < x86_THREAD_STATE_COUNT)
1408 return(KERN_INVALID_ARGUMENT);
1409
1410 state = (x86_thread_state_t *)tstate;
1411
1412 bzero((char *)state, sizeof(x86_thread_state_t));
1413
1414 if (thread_is_64bit(thr_act)) {
1415 state->tsh.flavor = x86_THREAD_STATE64;
1416 state->tsh.count = x86_THREAD_STATE64_COUNT;
1417
1418 get_thread_state64(thr_act, &state->uts.ts64);
1419 } else {
1420 state->tsh.flavor = x86_THREAD_STATE32;
1421 state->tsh.count = x86_THREAD_STATE32_COUNT;
1422
1423 get_thread_state32(thr_act, &state->uts.ts32);
1424 }
1425 *count = x86_THREAD_STATE_COUNT;
1426
1427 break;
1428 }
1429
1430
1431 case x86_EXCEPTION_STATE32:
1432 {
1433 if (*count < x86_EXCEPTION_STATE32_COUNT)
1434 return(KERN_INVALID_ARGUMENT);
1435
1436 if (thread_is_64bit(thr_act))
1437 return(KERN_INVALID_ARGUMENT);
1438
1439 *count = x86_EXCEPTION_STATE32_COUNT;
1440
1441 get_exception_state32(thr_act, (x86_exception_state32_t *)tstate);
1442 break;
1443 }
1444
1445 case x86_EXCEPTION_STATE64:
1446 {
1447 if (*count < x86_EXCEPTION_STATE64_COUNT)
1448 return(KERN_INVALID_ARGUMENT);
1449
1450 if ( !thread_is_64bit(thr_act))
1451 return(KERN_INVALID_ARGUMENT);
1452
1453 *count = x86_EXCEPTION_STATE64_COUNT;
1454
1455 get_exception_state64(thr_act, (x86_exception_state64_t *)tstate);
1456 break;
1457 }
1458
1459 case x86_EXCEPTION_STATE:
1460 {
1461 x86_exception_state_t *state;
1462
1463 if (*count < x86_EXCEPTION_STATE_COUNT)
1464 return(KERN_INVALID_ARGUMENT);
1465
1466 state = (x86_exception_state_t *)tstate;
1467
1468 bzero((char *)state, sizeof(x86_exception_state_t));
1469
1470 if (thread_is_64bit(thr_act)) {
1471 state->esh.flavor = x86_EXCEPTION_STATE64;
1472 state->esh.count = x86_EXCEPTION_STATE64_COUNT;
1473
1474 get_exception_state64(thr_act, &state->ues.es64);
1475 } else {
1476 state->esh.flavor = x86_EXCEPTION_STATE32;
1477 state->esh.count = x86_EXCEPTION_STATE32_COUNT;
1478
1479 get_exception_state32(thr_act, &state->ues.es32);
1480 }
1481 *count = x86_EXCEPTION_STATE_COUNT;
1482
1483 break;
1484 }
1485 case x86_DEBUG_STATE32:
1486 {
1487 if (*count < x86_DEBUG_STATE32_COUNT)
1488 return(KERN_INVALID_ARGUMENT);
1489
1490 if (thread_is_64bit(thr_act))
1491 return(KERN_INVALID_ARGUMENT);
1492
1493 get_debug_state32(thr_act, (x86_debug_state32_t *)tstate);
1494
1495 *count = x86_DEBUG_STATE32_COUNT;
1496
1497 break;
1498 }
1499 case x86_DEBUG_STATE64:
1500 {
1501 if (*count < x86_DEBUG_STATE64_COUNT)
1502 return(KERN_INVALID_ARGUMENT);
1503
1504 if (!thread_is_64bit(thr_act))
1505 return(KERN_INVALID_ARGUMENT);
1506
1507 get_debug_state64(thr_act, (x86_debug_state64_t *)tstate);
1508
1509 *count = x86_DEBUG_STATE64_COUNT;
1510
1511 break;
1512 }
1513 case x86_DEBUG_STATE:
1514 {
1515 x86_debug_state_t *state;
1516
1517 if (*count < x86_DEBUG_STATE_COUNT)
1518 return(KERN_INVALID_ARGUMENT);
1519
1520 state = (x86_debug_state_t *)tstate;
1521
1522 bzero(state, sizeof *state);
1523
1524 if (thread_is_64bit(thr_act)) {
1525 state->dsh.flavor = x86_DEBUG_STATE64;
1526 state->dsh.count = x86_DEBUG_STATE64_COUNT;
1527
1528 get_debug_state64(thr_act, &state->uds.ds64);
1529 } else {
1530 state->dsh.flavor = x86_DEBUG_STATE32;
1531 state->dsh.count = x86_DEBUG_STATE32_COUNT;
1532
1533 get_debug_state32(thr_act, &state->uds.ds32);
1534 }
1535 *count = x86_DEBUG_STATE_COUNT;
1536 break;
1537 }
1538 default:
1539 return(KERN_INVALID_ARGUMENT);
1540 }
1541
1542 return(KERN_SUCCESS);
1543}
1544
1545kern_return_t
1546machine_thread_get_kern_state(
1547 thread_t thread,
1548 thread_flavor_t flavor,
1549 thread_state_t tstate,
1550 mach_msg_type_number_t *count)
1551{
1552
1553 /*
1554 * This works only for an interrupted kernel thread
1555 */
1556 if (thread != current_thread() || current_cpu_datap()->cpu_int_state == NULL)
1557 return KERN_FAILURE;
1558
1559 switch(flavor) {
1560 case x86_THREAD_STATE32:
1561 {
1562 x86_thread_state32_t *state;
1563 x86_saved_state32_t *saved_state;
1564
1565 if (*count < x86_THREAD_STATE32_COUNT)
1566 return(KERN_INVALID_ARGUMENT);
1567
1568 state = (x86_thread_state32_t *)tstate;
1569
1570 assert(is_saved_state32(current_cpu_datap()->cpu_int_state));
1571 saved_state = saved_state32(current_cpu_datap()->cpu_int_state);
1572 /*
1573 * General registers.
1574 */
1575 state->eax = saved_state->eax;
1576 state->ebx = saved_state->ebx;
1577 state->ecx = saved_state->ecx;
1578 state->edx = saved_state->edx;
1579 state->edi = saved_state->edi;
1580 state->esi = saved_state->esi;
1581 state->ebp = saved_state->ebp;
1582 state->esp = saved_state->uesp;
1583 state->eflags = saved_state->efl;
1584 state->eip = saved_state->eip;
1585 state->cs = saved_state->cs;
1586 state->ss = saved_state->ss;
1587 state->ds = saved_state->ds & 0xffff;
1588 state->es = saved_state->es & 0xffff;
1589 state->fs = saved_state->fs & 0xffff;
1590 state->gs = saved_state->gs & 0xffff;
1591
1592 *count = x86_THREAD_STATE32_COUNT;
1593
1594 return KERN_SUCCESS;
1595 }
1596 break;
1597
1598 case x86_THREAD_STATE:
1599 {
1600 // wrap a 32 bit thread state into a 32/64bit clean thread state
1601 x86_thread_state_t *state;
1602 x86_saved_state32_t *saved_state;
1603
1604 if(*count < x86_THREAD_STATE_COUNT)
1605 return (KERN_INVALID_ARGUMENT);
1606
1607 state = (x86_thread_state_t *)tstate;
1608 assert(is_saved_state32(current_cpu_datap()->cpu_int_state));
1609 saved_state = saved_state32(current_cpu_datap()->cpu_int_state);
1610
1611 state->tsh.flavor = x86_THREAD_STATE32;
1612 state->tsh.count = x86_THREAD_STATE32_COUNT;
1613
1614 /*
1615 * General registers.
1616 */
1617
1618 state->uts.ts32.eax = saved_state->eax;
1619 state->uts.ts32.ebx = saved_state->ebx;
1620 state->uts.ts32.ecx = saved_state->ecx;
1621 state->uts.ts32.edx = saved_state->edx;
1622 state->uts.ts32.edi = saved_state->edi;
1623 state->uts.ts32.esi = saved_state->esi;
1624 state->uts.ts32.ebp = saved_state->ebp;
1625 state->uts.ts32.esp = saved_state->uesp;
1626 state->uts.ts32.eflags = saved_state->efl;
1627 state->uts.ts32.eip = saved_state->eip;
1628 state->uts.ts32.cs = saved_state->cs;
1629 state->uts.ts32.ss = saved_state->ss;
1630 state->uts.ts32.ds = saved_state->ds & 0xffff;
1631 state->uts.ts32.es = saved_state->es & 0xffff;
1632 state->uts.ts32.fs = saved_state->fs & 0xffff;
1633 state->uts.ts32.gs = saved_state->gs & 0xffff;
1634
1635 *count = x86_THREAD_STATE_COUNT;
1636 return KERN_SUCCESS;
1637 }
1638 break;
1639 }
1640 return KERN_FAILURE;
1641}
1642
1643
1644/*
1645 * Initialize the machine-dependent state for a new thread.
1646 */
1647kern_return_t
1648machine_thread_create(
1649 thread_t thread,
1650 task_t task)
1651{
1652 pcb_t pcb = &thread->machine.xxx_pcb;
1653 struct real_descriptor *ldtp;
1654 pmap_paddr_t paddr;
1655 x86_saved_state_t *iss;
1656
1657 inval_copy_windows(thread);
1658
1659 thread->machine.physwindow_pte = 0;
1660 thread->machine.physwindow_busy = 0;
1661
1662 /*
1663 * Allocate pcb only if required.
1664 */
1665 if (pcb->sf == NULL) {
1666 pcb->sf = zalloc(iss_zone);
1667 if (pcb->sf == NULL)
1668 panic("iss_zone");
1669 }
1670
1671 if (task_has_64BitAddr(task)) {
1672 x86_sframe64_t *sf64;
1673
1674 sf64 = (x86_sframe64_t *) pcb->sf;
1675
1676 bzero((char *)sf64, sizeof(x86_sframe64_t));
1677
1678 iss = (x86_saved_state_t *) &sf64->ssf;
1679 iss->flavor = x86_SAVED_STATE64;
1680 /*
1681 * Guarantee that the bootstrapped thread will be in user
1682 * mode.
1683 */
1684 iss->ss_64.isf.rflags = EFL_USER_SET;
1685 iss->ss_64.isf.cs = USER64_CS;
1686 iss->ss_64.isf.ss = USER_DS;
1687 iss->ss_64.fs = USER_DS;
1688 iss->ss_64.gs = USER_DS;
1689 } else {
1690 if (cpu_mode_is64bit()) {
1691 x86_sframe_compat32_t *sfc32;
1692
1693 sfc32 = (x86_sframe_compat32_t *)pcb->sf;
1694
1695 bzero((char *)sfc32, sizeof(x86_sframe_compat32_t));
1696
1697 iss = (x86_saved_state_t *) &sfc32->ssf.iss32;
1698 iss->flavor = x86_SAVED_STATE32;
1699#if DEBUG
1700 {
1701 x86_saved_state_compat32_t *xssc;
1702
1703 xssc = (x86_saved_state_compat32_t *) iss;
1704 xssc->pad_for_16byte_alignment[0] = 0x64326432;
1705 xssc->pad_for_16byte_alignment[1] = 0x64326432;
1706 }
1707#endif
1708 } else {
1709 x86_sframe32_t *sf32;
1710
1711 sf32 = (x86_sframe32_t *) pcb->sf;
1712
1713 bzero((char *)sf32, sizeof(x86_sframe32_t));
1714
1715 iss = (x86_saved_state_t *) &sf32->ssf;
1716 iss->flavor = x86_SAVED_STATE32;
1717 }
1718 /*
1719 * Guarantee that the bootstrapped thread will be in user
1720 * mode.
1721 */
1722 iss->ss_32.cs = USER_CS;
1723 iss->ss_32.ss = USER_DS;
1724 iss->ss_32.ds = USER_DS;
1725 iss->ss_32.es = USER_DS;
1726 iss->ss_32.fs = USER_DS;
1727 iss->ss_32.gs = USER_DS;
1728 iss->ss_32.efl = EFL_USER_SET;
1729
1730 }
1731 pcb->iss = iss;
1732
1733 thread->machine.pcb = pcb;
1734 simple_lock_init(&pcb->lock, 0);
1735
1736 ldtp = (struct real_descriptor *)pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
1737 pcb->cthread_desc = ldtp[sel_idx(USER_DS)];
1738 pcb->uldt_desc = ldtp[sel_idx(USER_DS)];
1739 pcb->uldt_selector = 0;
1740
1741 pcb->iss_pte0 = (uint64_t)pte_kernel_rw(kvtophys((vm_offset_t)pcb->iss));
1742 pcb->arg_store_valid = 0;
1743
1744 if (0 == (paddr = pa_to_pte(kvtophys((vm_offset_t)(pcb->iss) + PAGE_SIZE))))
1745 pcb->iss_pte1 = INTEL_PTE_INVALID;
1746 else
1747 pcb->iss_pte1 = (uint64_t)pte_kernel_rw(paddr);
1748
1749 return(KERN_SUCCESS);
1750}
1751
1752/*
1753 * Machine-dependent cleanup prior to destroying a thread
1754 */
1755void
1756machine_thread_destroy(
1757 thread_t thread)
1758{
1759 register pcb_t pcb = thread->machine.pcb;
1760
1761 assert(pcb);
1762
1763 if (pcb->ifps != 0)
1764 fpu_free(pcb->ifps);
1765 if (pcb->sf != 0) {
1766 zfree(iss_zone, pcb->sf);
1767 pcb->sf = 0;
1768 }
1769 if (pcb->ids) {
1770 zfree(ids_zone, pcb->ids);
1771 pcb->ids = NULL;
1772 }
1773 thread->machine.pcb = (pcb_t)0;
1774
1775}
1776
1777void
1778machine_thread_switch_addrmode(thread_t thread)
1779{
1780 /*
1781 * We don't want to be preempted until we're done
1782 * - particularly if we're switching the current thread
1783 */
1784 disable_preemption();
1785
1786 /*
1787 * Reset the state saveareas.
1788 */
1789 machine_thread_create(thread, thread->task);
1790
1791 /* If we're switching ourselves, reset the pcb addresses etc. */
1792 if (thread == current_thread())
1793 act_machine_switch_pcb(thread);
1794
1795 enable_preemption();
1796}
1797
1798
1799
1800/*
1801 * This is used to set the current thr_act/thread
1802 * when starting up a new processor
1803 */
1804void
1805machine_set_current_thread( thread_t thread )
1806{
1807 current_cpu_datap()->cpu_active_thread = thread;
1808}
1809
1810/*
1811 * This is called when a task is termianted.
1812 */
1813void
1814machine_thread_terminate_self(void)
1815{
1816 task_t self_task = current_task();
1817 if (self_task) {
1818 user_ldt_t user_ldt = self_task->i386_ldt;
1819 if (user_ldt != 0) {
1820 self_task->i386_ldt = 0;
1821 user_ldt_free(user_ldt);
1822 }
1823 }
1824}
1825
1826void
1827act_machine_return(
1828#if CONFIG_NO_PANIC_STRINGS
1829 __unused int code
1830#else
1831 int code
1832#endif
1833 )
1834{
1835 /*
1836 * This code is called with nothing locked.
1837 * It also returns with nothing locked, if it returns.
1838 *
1839 * This routine terminates the current thread activation.
1840 * If this is the only activation associated with its
1841 * thread shuttle, then the entire thread (shuttle plus
1842 * activation) is terminated.
1843 */
1844 assert( code == KERN_TERMINATED );
1845
1846 thread_terminate_self();
1847
1848 /*NOTREACHED*/
1849
1850 panic("act_machine_return(%d): TALKING ZOMBIE! (1)", code);
1851}
1852
1853
1854/*
1855 * Perform machine-dependent per-thread initializations
1856 */
1857void
1858machine_thread_init(void)
1859{
1860 if (cpu_mode_is64bit()) {
1861 assert(sizeof(x86_sframe_compat32_t) % 16 == 0);
1862 iss_zone = zinit(sizeof(x86_sframe64_t),
1863 THREAD_MAX * sizeof(x86_sframe64_t),
1864 THREAD_CHUNK * sizeof(x86_sframe64_t),
1865 "x86_64 saved state");
1866
1867 ids_zone = zinit(sizeof(x86_debug_state64_t),
1868 THREAD_MAX * sizeof(x86_debug_state64_t),
1869 THREAD_CHUNK * sizeof(x86_debug_state64_t),
1870 "x86_64 debug state");
1871
1872 } else {
1873 iss_zone = zinit(sizeof(x86_sframe32_t),
1874 THREAD_MAX * sizeof(x86_sframe32_t),
1875 THREAD_CHUNK * sizeof(x86_sframe32_t),
1876 "x86 saved state");
1877 ids_zone = zinit(sizeof(x86_debug_state32_t),
1878 THREAD_MAX * (sizeof(x86_debug_state32_t)),
1879 THREAD_CHUNK * (sizeof(x86_debug_state32_t)),
1880 "x86 debug state");
1881 }
1882 fpu_module_init();
1883}
1884
1885
1886/*
1887 * Some routines for debugging activation code
1888 */
1889static void dump_handlers(thread_t);
1890void dump_regs(thread_t);
1891int dump_act(thread_t thr_act);
1892
1893static void
1894dump_handlers(thread_t thr_act)
1895{
1896 ReturnHandler *rhp = thr_act->handlers;
1897 int counter = 0;
1898
1899 printf("\t");
1900 while (rhp) {
1901 if (rhp == &thr_act->special_handler){
1902 if (rhp->next)
1903 printf("[NON-Zero next ptr(%p)]", rhp->next);
1904 printf("special_handler()->");
1905 break;
1906 }
1907 printf("hdlr_%d(%p)->", counter, rhp->handler);
1908 rhp = rhp->next;
1909 if (++counter > 32) {
1910 printf("Aborting: HUGE handler chain\n");
1911 break;
1912 }
1913 }
1914 printf("HLDR_NULL\n");
1915}
1916
1917void
1918dump_regs(thread_t thr_act)
1919{
1920 if (thr_act->machine.pcb == NULL)
1921 return;
1922
1923 if (thread_is_64bit(thr_act)) {
1924 x86_saved_state64_t *ssp;
1925
1926 ssp = USER_REGS64(thr_act);
1927
1928 panic("dump_regs: 64bit tasks not yet supported");
1929
1930 } else {
1931 x86_saved_state32_t *ssp;
1932
1933 ssp = USER_REGS32(thr_act);
1934
1935 /*
1936 * Print out user register state
1937 */
1938 printf("\tRegs:\tedi=%x esi=%x ebp=%x ebx=%x edx=%x\n",
1939 ssp->edi, ssp->esi, ssp->ebp, ssp->ebx, ssp->edx);
1940
1941 printf("\t\tecx=%x eax=%x eip=%x efl=%x uesp=%x\n",
1942 ssp->ecx, ssp->eax, ssp->eip, ssp->efl, ssp->uesp);
1943
1944 printf("\t\tcs=%x ss=%x\n", ssp->cs, ssp->ss);
1945 }
1946}
1947
1948int
1949dump_act(thread_t thr_act)
1950{
1951 if (!thr_act)
1952 return(0);
1953
1954 printf("thread(%p)(%d): task=%p(%d)\n",
1955 thr_act, thr_act->ref_count,
1956 thr_act->task,
1957 thr_act->task ? thr_act->task->ref_count : 0);
1958
1959 printf("\tsusp=%d user_stop=%d active=%x ast=%x\n",
1960 thr_act->suspend_count, thr_act->user_stop_count,
1961 thr_act->active, thr_act->ast);
1962 printf("\tpcb=%p\n", thr_act->machine.pcb);
1963
1964 if (thr_act->kernel_stack) {
1965 vm_offset_t stack = thr_act->kernel_stack;
1966
1967 printf("\tk_stk %x eip %x ebx %x esp %x iss %p\n",
1968 stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx,
1969 STACK_IKS(stack)->k_esp, STACK_IEL(stack)->saved_state);
1970 }
1971
1972 dump_handlers(thr_act);
1973 dump_regs(thr_act);
1974 return((int)thr_act);
1975}
1976
1977user_addr_t
1978get_useraddr(void)
1979{
1980 thread_t thr_act = current_thread();
1981
1982 if (thr_act->machine.pcb == NULL)
1983 return(0);
1984
1985 if (thread_is_64bit(thr_act)) {
1986 x86_saved_state64_t *iss64;
1987
1988 iss64 = USER_REGS64(thr_act);
1989
1990 return(iss64->isf.rip);
1991 } else {
1992 x86_saved_state32_t *iss32;
1993
1994 iss32 = USER_REGS32(thr_act);
1995
1996 return(iss32->eip);
1997 }
1998}
1999
2000/*
2001 * detach and return a kernel stack from a thread
2002 */
2003
2004vm_offset_t
2005machine_stack_detach(thread_t thread)
2006{
2007 vm_offset_t stack;
2008
2009 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DETACH),
2010 thread, thread->priority,
2011 thread->sched_pri, 0,
2012 0);
2013
2014 stack = thread->kernel_stack;
2015 thread->kernel_stack = 0;
2016
2017 return (stack);
2018}
2019
2020/*
2021 * attach a kernel stack to a thread and initialize it
2022 */
2023
2024void
2025machine_stack_attach(
2026 thread_t thread,
2027 vm_offset_t stack)
2028{
2029 struct x86_kernel_state32 *statep;
2030
2031 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_ATTACH),
2032 thread, thread->priority,
2033 thread->sched_pri, 0, 0);
2034
2035 assert(stack);
2036 thread->kernel_stack = stack;
2037
2038 statep = STACK_IKS(stack);
2039 statep->k_eip = (unsigned long) Thread_continue;
2040 statep->k_ebx = (unsigned long) thread_continue;
2041 statep->k_esp = (unsigned long) STACK_IEL(stack);
2042
2043 return;
2044}
2045
2046/*
2047 * move a stack from old to new thread
2048 */
2049
2050void
2051machine_stack_handoff(thread_t old,
2052 thread_t new)
2053{
2054 vm_offset_t stack;
2055
2056 assert(new);
2057 assert(old);
2058
2059 stack = old->kernel_stack;
2060 if (stack == old->reserved_stack) {
2061 assert(new->reserved_stack);
2062 old->reserved_stack = new->reserved_stack;
2063 new->reserved_stack = stack;
2064 }
2065 old->kernel_stack = 0;
2066 /*
2067 * A full call to machine_stack_attach() is unnecessry
2068 * because old stack is already initialized.
2069 */
2070 new->kernel_stack = stack;
2071
2072 fpu_save_context(old);
2073
2074 old->machine.specFlags &= ~OnProc;
2075 new->machine.specFlags |= OnProc;
2076
2077 PMAP_SWITCH_CONTEXT(old, new, cpu_number());
2078 act_machine_switch_pcb(new);
2079
2080 machine_set_current_thread(new);
2081
2082 return;
2083}
2084
2085
2086
2087
2088struct x86_act_context32 {
2089 x86_saved_state32_t ss;
2090 x86_float_state32_t fs;
2091 x86_debug_state32_t ds;
2092};
2093
2094struct x86_act_context64 {
2095 x86_saved_state64_t ss;
2096 x86_float_state64_t fs;
2097 x86_debug_state64_t ds;
2098};
2099
2100
2101
2102void *
2103act_thread_csave(void)
2104{
2105 kern_return_t kret;
2106 mach_msg_type_number_t val;
2107 thread_t thr_act = current_thread();
2108
2109 if (thread_is_64bit(thr_act)) {
2110 struct x86_act_context64 *ic64;
2111
2112 ic64 = (struct x86_act_context64 *)kalloc(sizeof(struct x86_act_context64));
2113
2114 if (ic64 == (struct x86_act_context64 *)NULL)
2115 return((void *)0);
2116
2117 val = x86_SAVED_STATE64_COUNT;
2118 kret = machine_thread_get_state(thr_act, x86_SAVED_STATE64,
2119 (thread_state_t) &ic64->ss, &val);
2120 if (kret != KERN_SUCCESS) {
2121 kfree(ic64, sizeof(struct x86_act_context64));
2122 return((void *)0);
2123 }
2124 val = x86_FLOAT_STATE64_COUNT;
2125 kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE64,
2126 (thread_state_t) &ic64->fs, &val);
2127
2128 if (kret != KERN_SUCCESS) {
2129 kfree(ic64, sizeof(struct x86_act_context64));
2130 return((void *)0);
2131 }
2132
2133 val = x86_DEBUG_STATE64_COUNT;
2134 kret = machine_thread_get_state(thr_act,
2135 x86_DEBUG_STATE64,
2136 (thread_state_t)&ic64->ds,
2137 &val);
2138 if (kret != KERN_SUCCESS) {
2139 kfree(ic64, sizeof(struct x86_act_context64));
2140 return((void *)0);
2141 }
2142 return(ic64);
2143
2144 } else {
2145 struct x86_act_context32 *ic32;
2146
2147 ic32 = (struct x86_act_context32 *)kalloc(sizeof(struct x86_act_context32));
2148
2149 if (ic32 == (struct x86_act_context32 *)NULL)
2150 return((void *)0);
2151
2152 val = x86_SAVED_STATE32_COUNT;
2153 kret = machine_thread_get_state(thr_act, x86_SAVED_STATE32,
2154 (thread_state_t) &ic32->ss, &val);
2155 if (kret != KERN_SUCCESS) {
2156 kfree(ic32, sizeof(struct x86_act_context32));
2157 return((void *)0);
2158 }
2159 val = x86_FLOAT_STATE32_COUNT;
2160 kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE32,
2161 (thread_state_t) &ic32->fs, &val);
2162 if (kret != KERN_SUCCESS) {
2163 kfree(ic32, sizeof(struct x86_act_context32));
2164 return((void *)0);
2165 }
2166
2167 val = x86_DEBUG_STATE32_COUNT;
2168 kret = machine_thread_get_state(thr_act,
2169 x86_DEBUG_STATE32,
2170 (thread_state_t)&ic32->ds,
2171 &val);
2172 if (kret != KERN_SUCCESS) {
2173 kfree(ic32, sizeof(struct x86_act_context32));
2174 return((void *)0);
2175 }
2176 return(ic32);
2177 }
2178}
2179
2180
2181void
2182act_thread_catt(void *ctx)
2183{
2184 thread_t thr_act = current_thread();
2185 kern_return_t kret;
2186
2187 if (ctx == (void *)NULL)
2188 return;
2189
2190 if (thread_is_64bit(thr_act)) {
2191 struct x86_act_context64 *ic64;
2192
2193 ic64 = (struct x86_act_context64 *)ctx;
2194
2195 kret = machine_thread_set_state(thr_act, x86_SAVED_STATE64,
2196 (thread_state_t) &ic64->ss, x86_SAVED_STATE64_COUNT);
2197 if (kret == KERN_SUCCESS) {
2198 machine_thread_set_state(thr_act, x86_FLOAT_STATE64,
2199 (thread_state_t) &ic64->fs, x86_FLOAT_STATE64_COUNT);
2200 }
2201 kfree(ic64, sizeof(struct x86_act_context64));
2202 } else {
2203 struct x86_act_context32 *ic32;
2204
2205 ic32 = (struct x86_act_context32 *)ctx;
2206
2207 kret = machine_thread_set_state(thr_act, x86_SAVED_STATE32,
2208 (thread_state_t) &ic32->ss, x86_SAVED_STATE32_COUNT);
2209 if (kret == KERN_SUCCESS) {
2210 kret = machine_thread_set_state(thr_act, x86_FLOAT_STATE32,
2211 (thread_state_t) &ic32->fs, x86_FLOAT_STATE32_COUNT);
2212 if (kret == KERN_SUCCESS && thr_act->machine.pcb->ids)
2213 machine_thread_set_state(thr_act,
2214 x86_DEBUG_STATE32,
2215 (thread_state_t)&ic32->ds,
2216 x86_DEBUG_STATE32_COUNT);
2217 }
2218 kfree(ic32, sizeof(struct x86_act_context32));
2219 }
2220}
2221
2222
2223void act_thread_cfree(__unused void *ctx)
2224{
2225 /* XXX - Unused */
2226}
2227void x86_toggle_sysenter_arg_store(thread_t thread, boolean_t valid);
2228void x86_toggle_sysenter_arg_store(thread_t thread, boolean_t valid) {
2229 thread->machine.pcb->arg_store_valid = valid;
2230}
2231
2232boolean_t x86_sysenter_arg_store_isvalid(thread_t thread);
2233
2234boolean_t x86_sysenter_arg_store_isvalid(thread_t thread) {
2235 return (thread->machine.pcb->arg_store_valid);
2236}