]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_FREE_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | * File: kern/task.c | |
52 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, | |
53 | * David Black | |
54 | * | |
55 | * Task management primitives implementation. | |
56 | */ | |
57 | /* | |
58 | * Copyright (c) 1993 The University of Utah and | |
59 | * the Computer Systems Laboratory (CSL). All rights reserved. | |
60 | * | |
61 | * Permission to use, copy, modify and distribute this software and its | |
62 | * documentation is hereby granted, provided that both the copyright | |
63 | * notice and this permission notice appear in all copies of the | |
64 | * software, derivative works or modified versions, and any portions | |
65 | * thereof, and that both notices appear in supporting documentation. | |
66 | * | |
67 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS | |
68 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF | |
69 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
70 | * | |
71 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any | |
72 | * improvements that they make and grant CSL redistribution rights. | |
73 | * | |
74 | */ | |
75 | ||
76 | #include <mach_kdb.h> | |
77 | #include <mach_host.h> | |
78 | #include <mach_prof.h> | |
79 | #include <fast_tas.h> | |
80 | #include <platforms.h> | |
81 | ||
82 | #include <mach/mach_types.h> | |
83 | #include <mach/boolean.h> | |
84 | #include <mach/host_priv.h> | |
85 | #include <mach/machine/vm_types.h> | |
86 | #include <mach/vm_param.h> | |
87 | #include <mach/semaphore.h> | |
88 | #include <mach/task_info.h> | |
89 | #include <mach/task_special_ports.h> | |
90 | ||
91 | #include <ipc/ipc_types.h> | |
92 | #include <ipc/ipc_space.h> | |
93 | #include <ipc/ipc_entry.h> | |
94 | ||
95 | #include <kern/kern_types.h> | |
96 | #include <kern/mach_param.h> | |
97 | #include <kern/misc_protos.h> | |
98 | #include <kern/task.h> | |
99 | #include <kern/thread.h> | |
100 | #include <kern/zalloc.h> | |
101 | #include <kern/kalloc.h> | |
102 | #include <kern/processor.h> | |
103 | #include <kern/sched_prim.h> /* for thread_wakeup */ | |
104 | #include <kern/ipc_tt.h> | |
105 | #include <kern/ledger.h> | |
106 | #include <kern/host.h> | |
107 | #include <kern/clock.h> | |
108 | #include <kern/timer.h> | |
109 | #include <kern/profile.h> | |
110 | #include <kern/assert.h> | |
111 | #include <kern/sync_lock.h> | |
112 | ||
113 | #include <vm/pmap.h> | |
114 | #include <vm/vm_map.h> | |
115 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ | |
116 | #include <vm/vm_pageout.h> | |
117 | #include <vm/vm_protos.h> /* for vm_map_remove_commpage64 */ | |
118 | ||
119 | #if MACH_KDB | |
120 | #include <ddb/db_sym.h> | |
121 | #endif /* MACH_KDB */ | |
122 | ||
123 | #ifdef __ppc__ | |
124 | #include <ppc/exception.h> | |
125 | #include <ppc/hw_perfmon.h> | |
126 | #endif | |
127 | ||
128 | /* | |
129 | * Exported interfaces | |
130 | */ | |
131 | ||
132 | #include <mach/task_server.h> | |
133 | #include <mach/mach_host_server.h> | |
134 | #include <mach/host_security_server.h> | |
135 | #include <mach/mach_port_server.h> | |
136 | ||
137 | #include <vm/task_working_set.h> | |
138 | #include <vm/vm_shared_memory_server.h> | |
139 | ||
140 | task_t kernel_task; | |
141 | zone_t task_zone; | |
142 | ||
143 | /* Forwards */ | |
144 | ||
145 | void task_hold_locked( | |
146 | task_t task); | |
147 | void task_wait_locked( | |
148 | task_t task); | |
149 | void task_release_locked( | |
150 | task_t task); | |
151 | void task_free( | |
152 | task_t task ); | |
153 | void task_synchronizer_destroy_all( | |
154 | task_t task); | |
155 | ||
156 | kern_return_t task_set_ledger( | |
157 | task_t task, | |
158 | ledger_t wired, | |
159 | ledger_t paged); | |
160 | ||
161 | void | |
162 | task_backing_store_privileged( | |
163 | task_t task) | |
164 | { | |
165 | task_lock(task); | |
166 | task->priv_flags |= VM_BACKING_STORE_PRIV; | |
167 | task_unlock(task); | |
168 | return; | |
169 | } | |
170 | ||
171 | void | |
172 | task_working_set_disable(task_t task) | |
173 | { | |
174 | struct tws_hash *ws; | |
175 | ||
176 | task_lock(task); | |
177 | ws = task->dynamic_working_set; | |
178 | task->dynamic_working_set = NULL; | |
179 | task_unlock(task); | |
180 | if (ws) { | |
181 | tws_hash_ws_flush(ws); | |
182 | tws_hash_destroy(ws); | |
183 | } | |
184 | } | |
185 | ||
186 | void | |
187 | task_set_64bit( | |
188 | task_t task, | |
189 | boolean_t is64bit) | |
190 | { | |
191 | if(is64bit) { | |
192 | /* LP64todo - no task working set for 64-bit */ | |
193 | task_set_64BitAddr(task); | |
194 | task_working_set_disable(task); | |
195 | task->map->max_offset = MACH_VM_MAX_ADDRESS; | |
196 | } else { | |
197 | /* | |
198 | * Deallocate all memory previously allocated | |
199 | * above the 32-bit address space, since it won't | |
200 | * be accessible anymore. | |
201 | */ | |
202 | /* LP64todo - make this clean */ | |
203 | #ifdef __ppc__ | |
204 | vm_map_remove_commpage64(task->map); | |
205 | pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */ | |
206 | #endif | |
207 | (void) vm_map_remove(task->map, | |
208 | (vm_map_offset_t) VM_MAX_ADDRESS, | |
209 | MACH_VM_MAX_ADDRESS, | |
210 | VM_MAP_NO_FLAGS); | |
211 | task_clear_64BitAddr(task); | |
212 | task->map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS; | |
213 | } | |
214 | } | |
215 | ||
216 | void | |
217 | task_init(void) | |
218 | { | |
219 | task_zone = zinit( | |
220 | sizeof(struct task), | |
221 | TASK_MAX * sizeof(struct task), | |
222 | TASK_CHUNK * sizeof(struct task), | |
223 | "tasks"); | |
224 | ||
225 | /* | |
226 | * Create the kernel task as the first task. | |
227 | */ | |
228 | if (task_create_internal(TASK_NULL, FALSE, &kernel_task) != KERN_SUCCESS) | |
229 | panic("task_init\n"); | |
230 | ||
231 | vm_map_deallocate(kernel_task->map); | |
232 | kernel_task->map = kernel_map; | |
233 | } | |
234 | ||
235 | #if MACH_HOST | |
236 | ||
237 | #if 0 | |
238 | static void | |
239 | task_freeze( | |
240 | task_t task) | |
241 | { | |
242 | task_lock(task); | |
243 | /* | |
244 | * If may_assign is false, task is already being assigned, | |
245 | * wait for that to finish. | |
246 | */ | |
247 | while (task->may_assign == FALSE) { | |
248 | wait_result_t res; | |
249 | ||
250 | task->assign_active = TRUE; | |
251 | res = thread_sleep_mutex((event_t) &task->assign_active, | |
252 | &task->lock, THREAD_UNINT); | |
253 | assert(res == THREAD_AWAKENED); | |
254 | } | |
255 | task->may_assign = FALSE; | |
256 | task_unlock(task); | |
257 | return; | |
258 | } | |
259 | #else | |
260 | #define thread_freeze(thread) assert(task->processor_set == &default_pset) | |
261 | #endif | |
262 | ||
263 | #if 0 | |
264 | static void | |
265 | task_unfreeze( | |
266 | task_t task) | |
267 | { | |
268 | task_lock(task); | |
269 | assert(task->may_assign == FALSE); | |
270 | task->may_assign = TRUE; | |
271 | if (task->assign_active == TRUE) { | |
272 | task->assign_active = FALSE; | |
273 | thread_wakeup((event_t)&task->assign_active); | |
274 | } | |
275 | task_unlock(task); | |
276 | return; | |
277 | } | |
278 | #else | |
279 | #define thread_unfreeze(thread) assert(task->processor_set == &default_pset) | |
280 | #endif | |
281 | ||
282 | #endif /* MACH_HOST */ | |
283 | ||
284 | /* | |
285 | * Create a task running in the kernel address space. It may | |
286 | * have its own map of size mem_size and may have ipc privileges. | |
287 | */ | |
288 | kern_return_t | |
289 | kernel_task_create( | |
290 | __unused task_t parent_task, | |
291 | __unused vm_offset_t map_base, | |
292 | __unused vm_size_t map_size, | |
293 | __unused task_t *child_task) | |
294 | { | |
295 | return (KERN_INVALID_ARGUMENT); | |
296 | } | |
297 | ||
298 | kern_return_t | |
299 | task_create( | |
300 | task_t parent_task, | |
301 | __unused ledger_port_array_t ledger_ports, | |
302 | __unused mach_msg_type_number_t num_ledger_ports, | |
303 | boolean_t inherit_memory, | |
304 | task_t *child_task) /* OUT */ | |
305 | { | |
306 | if (parent_task == TASK_NULL) | |
307 | return(KERN_INVALID_ARGUMENT); | |
308 | ||
309 | return task_create_internal( | |
310 | parent_task, inherit_memory, child_task); | |
311 | } | |
312 | ||
313 | kern_return_t | |
314 | host_security_create_task_token( | |
315 | host_security_t host_security, | |
316 | task_t parent_task, | |
317 | security_token_t sec_token, | |
318 | audit_token_t audit_token, | |
319 | host_priv_t host_priv, | |
320 | __unused ledger_port_array_t ledger_ports, | |
321 | __unused mach_msg_type_number_t num_ledger_ports, | |
322 | boolean_t inherit_memory, | |
323 | task_t *child_task) /* OUT */ | |
324 | { | |
325 | kern_return_t result; | |
326 | ||
327 | if (parent_task == TASK_NULL) | |
328 | return(KERN_INVALID_ARGUMENT); | |
329 | ||
330 | if (host_security == HOST_NULL) | |
331 | return(KERN_INVALID_SECURITY); | |
332 | ||
333 | result = task_create_internal( | |
334 | parent_task, inherit_memory, child_task); | |
335 | ||
336 | if (result != KERN_SUCCESS) | |
337 | return(result); | |
338 | ||
339 | result = host_security_set_task_token(host_security, | |
340 | *child_task, | |
341 | sec_token, | |
342 | audit_token, | |
343 | host_priv); | |
344 | ||
345 | if (result != KERN_SUCCESS) | |
346 | return(result); | |
347 | ||
348 | return(result); | |
349 | } | |
350 | ||
351 | kern_return_t | |
352 | task_create_internal( | |
353 | task_t parent_task, | |
354 | boolean_t inherit_memory, | |
355 | task_t *child_task) /* OUT */ | |
356 | { | |
357 | task_t new_task; | |
358 | processor_set_t pset; | |
359 | ||
360 | new_task = (task_t) zalloc(task_zone); | |
361 | ||
362 | if (new_task == TASK_NULL) | |
363 | return(KERN_RESOURCE_SHORTAGE); | |
364 | ||
365 | /* one ref for just being alive; one for our caller */ | |
366 | new_task->ref_count = 2; | |
367 | ||
368 | if (inherit_memory) | |
369 | new_task->map = vm_map_fork(parent_task->map); | |
370 | else | |
371 | new_task->map = vm_map_create(pmap_create(0), | |
372 | (vm_map_offset_t)(VM_MIN_ADDRESS), | |
373 | (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE); | |
374 | ||
375 | mutex_init(&new_task->lock, 0); | |
376 | queue_init(&new_task->threads); | |
377 | new_task->suspend_count = 0; | |
378 | new_task->thread_count = 0; | |
379 | new_task->active_thread_count = 0; | |
380 | new_task->user_stop_count = 0; | |
381 | new_task->role = TASK_UNSPECIFIED; | |
382 | new_task->active = TRUE; | |
383 | new_task->user_data = 0; | |
384 | new_task->faults = 0; | |
385 | new_task->cow_faults = 0; | |
386 | new_task->pageins = 0; | |
387 | new_task->messages_sent = 0; | |
388 | new_task->messages_received = 0; | |
389 | new_task->syscalls_mach = 0; | |
390 | new_task->priv_flags = 0; | |
391 | new_task->syscalls_unix=0; | |
392 | new_task->csw=0; | |
393 | new_task->taskFeatures[0] = 0; /* Init task features */ | |
394 | new_task->taskFeatures[1] = 0; /* Init task features */ | |
395 | new_task->dynamic_working_set = 0; | |
396 | ||
397 | task_working_set_create(new_task, TWS_SMALL_HASH_LINE_COUNT, | |
398 | 0, TWS_HASH_STYLE_DEFAULT); | |
399 | ||
400 | #ifdef MACH_BSD | |
401 | new_task->bsd_info = 0; | |
402 | #endif /* MACH_BSD */ | |
403 | ||
404 | #ifdef __ppc__ | |
405 | if(BootProcInfo.pf.Available & pf64Bit) new_task->taskFeatures[0] |= tf64BitData; /* If 64-bit machine, show we have 64-bit registers at least */ | |
406 | #endif | |
407 | ||
408 | queue_init(&new_task->semaphore_list); | |
409 | queue_init(&new_task->lock_set_list); | |
410 | new_task->semaphores_owned = 0; | |
411 | new_task->lock_sets_owned = 0; | |
412 | ||
413 | #if MACH_HOST | |
414 | new_task->may_assign = TRUE; | |
415 | new_task->assign_active = FALSE; | |
416 | #endif /* MACH_HOST */ | |
417 | ||
418 | ipc_task_init(new_task, parent_task); | |
419 | ||
420 | new_task->total_user_time = 0; | |
421 | new_task->total_system_time = 0; | |
422 | ||
423 | task_prof_init(new_task); | |
424 | ||
425 | if (parent_task != TASK_NULL) { | |
426 | #if MACH_HOST | |
427 | /* | |
428 | * Freeze the parent, so that parent_task->processor_set | |
429 | * cannot change. | |
430 | */ | |
431 | task_freeze(parent_task); | |
432 | #endif /* MACH_HOST */ | |
433 | pset = parent_task->processor_set; | |
434 | if (!pset->active) | |
435 | pset = &default_pset; | |
436 | ||
437 | new_task->sec_token = parent_task->sec_token; | |
438 | new_task->audit_token = parent_task->audit_token; | |
439 | ||
440 | shared_region_mapping_ref(parent_task->system_shared_region); | |
441 | new_task->system_shared_region = parent_task->system_shared_region; | |
442 | ||
443 | new_task->wired_ledger_port = ledger_copy( | |
444 | convert_port_to_ledger(parent_task->wired_ledger_port)); | |
445 | new_task->paged_ledger_port = ledger_copy( | |
446 | convert_port_to_ledger(parent_task->paged_ledger_port)); | |
447 | if(task_has_64BitAddr(parent_task)) | |
448 | task_set_64BitAddr(new_task); | |
449 | } | |
450 | else { | |
451 | pset = &default_pset; | |
452 | ||
453 | new_task->sec_token = KERNEL_SECURITY_TOKEN; | |
454 | new_task->audit_token = KERNEL_AUDIT_TOKEN; | |
455 | new_task->wired_ledger_port = ledger_copy(root_wired_ledger); | |
456 | new_task->paged_ledger_port = ledger_copy(root_paged_ledger); | |
457 | } | |
458 | ||
459 | if (kernel_task == TASK_NULL) { | |
460 | new_task->priority = BASEPRI_KERNEL; | |
461 | new_task->max_priority = MAXPRI_KERNEL; | |
462 | } | |
463 | else { | |
464 | new_task->priority = BASEPRI_DEFAULT; | |
465 | new_task->max_priority = MAXPRI_USER; | |
466 | } | |
467 | ||
468 | pset_lock(pset); | |
469 | pset_add_task(pset, new_task); | |
470 | pset_unlock(pset); | |
471 | #if MACH_HOST | |
472 | if (parent_task != TASK_NULL) | |
473 | task_unfreeze(parent_task); | |
474 | #endif /* MACH_HOST */ | |
475 | ||
476 | if (vm_backing_store_low && parent_task != NULL) | |
477 | new_task->priv_flags |= (parent_task->priv_flags&VM_BACKING_STORE_PRIV); | |
478 | ||
479 | ipc_task_enable(new_task); | |
480 | ||
481 | *child_task = new_task; | |
482 | return(KERN_SUCCESS); | |
483 | } | |
484 | ||
485 | /* | |
486 | * task_deallocate: | |
487 | * | |
488 | * Drop a reference on a task. | |
489 | */ | |
490 | void | |
491 | task_deallocate( | |
492 | task_t task) | |
493 | { | |
494 | processor_set_t pset; | |
495 | ||
496 | if (task == TASK_NULL) | |
497 | return; | |
498 | ||
499 | if (task_deallocate_internal(task) > 0) | |
500 | return; | |
501 | ||
502 | pset = task->processor_set; | |
503 | pset_deallocate(pset); | |
504 | ||
505 | if(task->dynamic_working_set) | |
506 | tws_hash_destroy(task->dynamic_working_set); | |
507 | ||
508 | ipc_task_terminate(task); | |
509 | ||
510 | vm_map_deallocate(task->map); | |
511 | is_release(task->itk_space); | |
512 | ||
513 | task_prof_deallocate(task); | |
514 | zfree(task_zone, task); | |
515 | } | |
516 | ||
517 | /* | |
518 | * task_terminate: | |
519 | * | |
520 | * Terminate the specified task. See comments on thread_terminate | |
521 | * (kern/thread.c) about problems with terminating the "current task." | |
522 | */ | |
523 | ||
524 | kern_return_t | |
525 | task_terminate( | |
526 | task_t task) | |
527 | { | |
528 | if (task == TASK_NULL) | |
529 | return (KERN_INVALID_ARGUMENT); | |
530 | ||
531 | if (task->bsd_info) | |
532 | return (KERN_FAILURE); | |
533 | ||
534 | return (task_terminate_internal(task)); | |
535 | } | |
536 | ||
537 | kern_return_t | |
538 | task_terminate_internal( | |
539 | task_t task) | |
540 | { | |
541 | processor_set_t pset; | |
542 | thread_t thread, self; | |
543 | task_t self_task; | |
544 | boolean_t interrupt_save; | |
545 | ||
546 | assert(task != kernel_task); | |
547 | ||
548 | self = current_thread(); | |
549 | self_task = self->task; | |
550 | ||
551 | /* | |
552 | * Get the task locked and make sure that we are not racing | |
553 | * with someone else trying to terminate us. | |
554 | */ | |
555 | if (task == self_task) | |
556 | task_lock(task); | |
557 | else | |
558 | if (task < self_task) { | |
559 | task_lock(task); | |
560 | task_lock(self_task); | |
561 | } | |
562 | else { | |
563 | task_lock(self_task); | |
564 | task_lock(task); | |
565 | } | |
566 | ||
567 | if (!task->active || !self->active) { | |
568 | /* | |
569 | * Task or current act is already being terminated. | |
570 | * Just return an error. If we are dying, this will | |
571 | * just get us to our AST special handler and that | |
572 | * will get us to finalize the termination of ourselves. | |
573 | */ | |
574 | task_unlock(task); | |
575 | if (self_task != task) | |
576 | task_unlock(self_task); | |
577 | ||
578 | return (KERN_FAILURE); | |
579 | } | |
580 | ||
581 | if (self_task != task) | |
582 | task_unlock(self_task); | |
583 | ||
584 | /* | |
585 | * Make sure the current thread does not get aborted out of | |
586 | * the waits inside these operations. | |
587 | */ | |
588 | interrupt_save = thread_interrupt_level(THREAD_UNINT); | |
589 | ||
590 | /* | |
591 | * Indicate that we want all the threads to stop executing | |
592 | * at user space by holding the task (we would have held | |
593 | * each thread independently in thread_terminate_internal - | |
594 | * but this way we may be more likely to already find it | |
595 | * held there). Mark the task inactive, and prevent | |
596 | * further task operations via the task port. | |
597 | */ | |
598 | task_hold_locked(task); | |
599 | task->active = FALSE; | |
600 | ipc_task_disable(task); | |
601 | ||
602 | /* | |
603 | * Terminate each thread in the task. | |
604 | */ | |
605 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
606 | thread_terminate_internal(thread); | |
607 | } | |
608 | ||
609 | /* | |
610 | * Give the machine dependent code a chance | |
611 | * to perform cleanup before ripping apart | |
612 | * the task. | |
613 | */ | |
614 | if (self_task == task) | |
615 | machine_thread_terminate_self(); | |
616 | ||
617 | task_unlock(task); | |
618 | ||
619 | /* | |
620 | * Destroy all synchronizers owned by the task. | |
621 | */ | |
622 | task_synchronizer_destroy_all(task); | |
623 | ||
624 | /* | |
625 | * Destroy the IPC space, leaving just a reference for it. | |
626 | */ | |
627 | ipc_space_destroy(task->itk_space); | |
628 | ||
629 | /* LP64todo - make this clean */ | |
630 | #ifdef __ppc__ | |
631 | vm_map_remove_commpage64(task->map); | |
632 | pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */ | |
633 | #endif | |
634 | ||
635 | /* | |
636 | * If the current thread is a member of the task | |
637 | * being terminated, then the last reference to | |
638 | * the task will not be dropped until the thread | |
639 | * is finally reaped. To avoid incurring the | |
640 | * expense of removing the address space regions | |
641 | * at reap time, we do it explictly here. | |
642 | */ | |
643 | vm_map_remove(task->map, task->map->min_offset, | |
644 | task->map->max_offset, VM_MAP_NO_FLAGS); | |
645 | ||
646 | shared_region_mapping_dealloc(task->system_shared_region); | |
647 | ||
648 | /* | |
649 | * Flush working set here to avoid I/O in reaper thread | |
650 | */ | |
651 | if (task->dynamic_working_set) | |
652 | tws_hash_ws_flush(task->dynamic_working_set); | |
653 | ||
654 | pset = task->processor_set; | |
655 | pset_lock(pset); | |
656 | pset_remove_task(pset,task); | |
657 | pset_unlock(pset); | |
658 | ||
659 | /* | |
660 | * We no longer need to guard against being aborted, so restore | |
661 | * the previous interruptible state. | |
662 | */ | |
663 | thread_interrupt_level(interrupt_save); | |
664 | ||
665 | #if __ppc__ | |
666 | perfmon_release_facility(task); // notify the perfmon facility | |
667 | #endif | |
668 | ||
669 | /* | |
670 | * Get rid of the task active reference on itself. | |
671 | */ | |
672 | task_deallocate(task); | |
673 | ||
674 | return (KERN_SUCCESS); | |
675 | } | |
676 | ||
677 | /* | |
678 | * task_halt: | |
679 | * | |
680 | * Shut the current task down (except for the current thread) in | |
681 | * preparation for dramatic changes to the task (probably exec). | |
682 | * We hold the task, terminate all other threads in the task and | |
683 | * wait for them to terminate, clean up the portspace, and when | |
684 | * all done, let the current thread go. | |
685 | */ | |
686 | kern_return_t | |
687 | task_halt( | |
688 | task_t task) | |
689 | { | |
690 | thread_t thread, self; | |
691 | ||
692 | assert(task != kernel_task); | |
693 | ||
694 | self = current_thread(); | |
695 | ||
696 | if (task != self->task) | |
697 | return (KERN_INVALID_ARGUMENT); | |
698 | ||
699 | task_lock(task); | |
700 | ||
701 | if (!task->active || !self->active) { | |
702 | /* | |
703 | * Task or current thread is already being terminated. | |
704 | * Hurry up and return out of the current kernel context | |
705 | * so that we run our AST special handler to terminate | |
706 | * ourselves. | |
707 | */ | |
708 | task_unlock(task); | |
709 | ||
710 | return (KERN_FAILURE); | |
711 | } | |
712 | ||
713 | if (task->thread_count > 1) { | |
714 | /* | |
715 | * Mark all the threads to keep them from starting any more | |
716 | * user-level execution. The thread_terminate_internal code | |
717 | * would do this on a thread by thread basis anyway, but this | |
718 | * gives us a better chance of not having to wait there. | |
719 | */ | |
720 | task_hold_locked(task); | |
721 | ||
722 | /* | |
723 | * Terminate all the other threads in the task. | |
724 | */ | |
725 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
726 | if (thread != self) | |
727 | thread_terminate_internal(thread); | |
728 | } | |
729 | ||
730 | task_release_locked(task); | |
731 | } | |
732 | ||
733 | /* | |
734 | * Give the machine dependent code a chance | |
735 | * to perform cleanup before ripping apart | |
736 | * the task. | |
737 | */ | |
738 | machine_thread_terminate_self(); | |
739 | ||
740 | task_unlock(task); | |
741 | ||
742 | /* | |
743 | * Destroy all synchronizers owned by the task. | |
744 | */ | |
745 | task_synchronizer_destroy_all(task); | |
746 | ||
747 | /* | |
748 | * Destroy the contents of the IPC space, leaving just | |
749 | * a reference for it. | |
750 | */ | |
751 | ipc_space_clean(task->itk_space); | |
752 | ||
753 | /* | |
754 | * Clean out the address space, as we are going to be | |
755 | * getting a new one. | |
756 | */ | |
757 | vm_map_remove(task->map, task->map->min_offset, | |
758 | task->map->max_offset, VM_MAP_NO_FLAGS); | |
759 | ||
760 | return (KERN_SUCCESS); | |
761 | } | |
762 | ||
763 | /* | |
764 | * task_hold_locked: | |
765 | * | |
766 | * Suspend execution of the specified task. | |
767 | * This is a recursive-style suspension of the task, a count of | |
768 | * suspends is maintained. | |
769 | * | |
770 | * CONDITIONS: the task is locked and active. | |
771 | */ | |
772 | void | |
773 | task_hold_locked( | |
774 | register task_t task) | |
775 | { | |
776 | register thread_t thread; | |
777 | ||
778 | assert(task->active); | |
779 | ||
780 | if (task->suspend_count++ > 0) | |
781 | return; | |
782 | ||
783 | /* | |
784 | * Iterate through all the threads and hold them. | |
785 | */ | |
786 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
787 | thread_mtx_lock(thread); | |
788 | thread_hold(thread); | |
789 | thread_mtx_unlock(thread); | |
790 | } | |
791 | } | |
792 | ||
793 | /* | |
794 | * task_hold: | |
795 | * | |
796 | * Same as the internal routine above, except that is must lock | |
797 | * and verify that the task is active. This differs from task_suspend | |
798 | * in that it places a kernel hold on the task rather than just a | |
799 | * user-level hold. This keeps users from over resuming and setting | |
800 | * it running out from under the kernel. | |
801 | * | |
802 | * CONDITIONS: the caller holds a reference on the task | |
803 | */ | |
804 | kern_return_t | |
805 | task_hold( | |
806 | register task_t task) | |
807 | { | |
808 | if (task == TASK_NULL) | |
809 | return (KERN_INVALID_ARGUMENT); | |
810 | ||
811 | task_lock(task); | |
812 | ||
813 | if (!task->active) { | |
814 | task_unlock(task); | |
815 | ||
816 | return (KERN_FAILURE); | |
817 | } | |
818 | ||
819 | task_hold_locked(task); | |
820 | task_unlock(task); | |
821 | ||
822 | return (KERN_SUCCESS); | |
823 | } | |
824 | ||
825 | /* | |
826 | * task_wait_locked: | |
827 | * | |
828 | * Wait for all threads in task to stop. | |
829 | * | |
830 | * Conditions: | |
831 | * Called with task locked, active, and held. | |
832 | */ | |
833 | void | |
834 | task_wait_locked( | |
835 | register task_t task) | |
836 | { | |
837 | register thread_t thread, self; | |
838 | ||
839 | assert(task->active); | |
840 | assert(task->suspend_count > 0); | |
841 | ||
842 | self = current_thread(); | |
843 | ||
844 | /* | |
845 | * Iterate through all the threads and wait for them to | |
846 | * stop. Do not wait for the current thread if it is within | |
847 | * the task. | |
848 | */ | |
849 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
850 | if (thread != self) | |
851 | thread_wait(thread); | |
852 | } | |
853 | } | |
854 | ||
855 | /* | |
856 | * task_release_locked: | |
857 | * | |
858 | * Release a kernel hold on a task. | |
859 | * | |
860 | * CONDITIONS: the task is locked and active | |
861 | */ | |
862 | void | |
863 | task_release_locked( | |
864 | register task_t task) | |
865 | { | |
866 | register thread_t thread; | |
867 | ||
868 | assert(task->active); | |
869 | assert(task->suspend_count > 0); | |
870 | ||
871 | if (--task->suspend_count > 0) | |
872 | return; | |
873 | ||
874 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
875 | thread_mtx_lock(thread); | |
876 | thread_release(thread); | |
877 | thread_mtx_unlock(thread); | |
878 | } | |
879 | } | |
880 | ||
881 | /* | |
882 | * task_release: | |
883 | * | |
884 | * Same as the internal routine above, except that it must lock | |
885 | * and verify that the task is active. | |
886 | * | |
887 | * CONDITIONS: The caller holds a reference to the task | |
888 | */ | |
889 | kern_return_t | |
890 | task_release( | |
891 | task_t task) | |
892 | { | |
893 | if (task == TASK_NULL) | |
894 | return (KERN_INVALID_ARGUMENT); | |
895 | ||
896 | task_lock(task); | |
897 | ||
898 | if (!task->active) { | |
899 | task_unlock(task); | |
900 | ||
901 | return (KERN_FAILURE); | |
902 | } | |
903 | ||
904 | task_release_locked(task); | |
905 | task_unlock(task); | |
906 | ||
907 | return (KERN_SUCCESS); | |
908 | } | |
909 | ||
910 | kern_return_t | |
911 | task_threads( | |
912 | task_t task, | |
913 | thread_act_array_t *threads_out, | |
914 | mach_msg_type_number_t *count) | |
915 | { | |
916 | mach_msg_type_number_t actual; | |
917 | thread_t *threads; | |
918 | thread_t thread; | |
919 | vm_size_t size, size_needed; | |
920 | void *addr; | |
921 | unsigned int i, j; | |
922 | ||
923 | if (task == TASK_NULL) | |
924 | return (KERN_INVALID_ARGUMENT); | |
925 | ||
926 | size = 0; addr = 0; | |
927 | ||
928 | for (;;) { | |
929 | task_lock(task); | |
930 | if (!task->active) { | |
931 | task_unlock(task); | |
932 | ||
933 | if (size != 0) | |
934 | kfree(addr, size); | |
935 | ||
936 | return (KERN_FAILURE); | |
937 | } | |
938 | ||
939 | actual = task->thread_count; | |
940 | ||
941 | /* do we have the memory we need? */ | |
942 | size_needed = actual * sizeof (mach_port_t); | |
943 | if (size_needed <= size) | |
944 | break; | |
945 | ||
946 | /* unlock the task and allocate more memory */ | |
947 | task_unlock(task); | |
948 | ||
949 | if (size != 0) | |
950 | kfree(addr, size); | |
951 | ||
952 | assert(size_needed > 0); | |
953 | size = size_needed; | |
954 | ||
955 | addr = kalloc(size); | |
956 | if (addr == 0) | |
957 | return (KERN_RESOURCE_SHORTAGE); | |
958 | } | |
959 | ||
960 | /* OK, have memory and the task is locked & active */ | |
961 | threads = (thread_t *)addr; | |
962 | ||
963 | i = j = 0; | |
964 | ||
965 | for (thread = (thread_t)queue_first(&task->threads); i < actual; | |
966 | ++i, thread = (thread_t)queue_next(&thread->task_threads)) { | |
967 | thread_reference_internal(thread); | |
968 | threads[j++] = thread; | |
969 | } | |
970 | ||
971 | assert(queue_end(&task->threads, (queue_entry_t)thread)); | |
972 | ||
973 | actual = j; | |
974 | size_needed = actual * sizeof (mach_port_t); | |
975 | ||
976 | /* can unlock task now that we've got the thread refs */ | |
977 | task_unlock(task); | |
978 | ||
979 | if (actual == 0) { | |
980 | /* no threads, so return null pointer and deallocate memory */ | |
981 | ||
982 | *threads_out = 0; | |
983 | *count = 0; | |
984 | ||
985 | if (size != 0) | |
986 | kfree(addr, size); | |
987 | } | |
988 | else { | |
989 | /* if we allocated too much, must copy */ | |
990 | ||
991 | if (size_needed < size) { | |
992 | void *newaddr; | |
993 | ||
994 | newaddr = kalloc(size_needed); | |
995 | if (newaddr == 0) { | |
996 | for (i = 0; i < actual; ++i) | |
997 | thread_deallocate(threads[i]); | |
998 | kfree(addr, size); | |
999 | return (KERN_RESOURCE_SHORTAGE); | |
1000 | } | |
1001 | ||
1002 | bcopy(addr, newaddr, size_needed); | |
1003 | kfree(addr, size); | |
1004 | threads = (thread_t *)newaddr; | |
1005 | } | |
1006 | ||
1007 | *threads_out = threads; | |
1008 | *count = actual; | |
1009 | ||
1010 | /* do the conversion that Mig should handle */ | |
1011 | ||
1012 | for (i = 0; i < actual; ++i) | |
1013 | ((ipc_port_t *) threads)[i] = convert_thread_to_port(threads[i]); | |
1014 | } | |
1015 | ||
1016 | return (KERN_SUCCESS); | |
1017 | } | |
1018 | ||
1019 | /* | |
1020 | * task_suspend: | |
1021 | * | |
1022 | * Implement a user-level suspension on a task. | |
1023 | * | |
1024 | * Conditions: | |
1025 | * The caller holds a reference to the task | |
1026 | */ | |
1027 | kern_return_t | |
1028 | task_suspend( | |
1029 | register task_t task) | |
1030 | { | |
1031 | if (task == TASK_NULL || task == kernel_task) | |
1032 | return (KERN_INVALID_ARGUMENT); | |
1033 | ||
1034 | task_lock(task); | |
1035 | ||
1036 | if (!task->active) { | |
1037 | task_unlock(task); | |
1038 | ||
1039 | return (KERN_FAILURE); | |
1040 | } | |
1041 | ||
1042 | if (task->user_stop_count++ > 0) { | |
1043 | /* | |
1044 | * If the stop count was positive, the task is | |
1045 | * already stopped and we can exit. | |
1046 | */ | |
1047 | task_unlock(task); | |
1048 | ||
1049 | return (KERN_SUCCESS); | |
1050 | } | |
1051 | ||
1052 | /* | |
1053 | * Put a kernel-level hold on the threads in the task (all | |
1054 | * user-level task suspensions added together represent a | |
1055 | * single kernel-level hold). We then wait for the threads | |
1056 | * to stop executing user code. | |
1057 | */ | |
1058 | task_hold_locked(task); | |
1059 | task_wait_locked(task); | |
1060 | ||
1061 | task_unlock(task); | |
1062 | ||
1063 | return (KERN_SUCCESS); | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * task_resume: | |
1068 | * Release a kernel hold on a task. | |
1069 | * | |
1070 | * Conditions: | |
1071 | * The caller holds a reference to the task | |
1072 | */ | |
1073 | kern_return_t | |
1074 | task_resume( | |
1075 | register task_t task) | |
1076 | { | |
1077 | register boolean_t release = FALSE; | |
1078 | ||
1079 | if (task == TASK_NULL || task == kernel_task) | |
1080 | return (KERN_INVALID_ARGUMENT); | |
1081 | ||
1082 | task_lock(task); | |
1083 | ||
1084 | if (!task->active) { | |
1085 | task_unlock(task); | |
1086 | ||
1087 | return (KERN_FAILURE); | |
1088 | } | |
1089 | ||
1090 | if (task->user_stop_count > 0) { | |
1091 | if (--task->user_stop_count == 0) | |
1092 | release = TRUE; | |
1093 | } | |
1094 | else { | |
1095 | task_unlock(task); | |
1096 | ||
1097 | return (KERN_FAILURE); | |
1098 | } | |
1099 | ||
1100 | /* | |
1101 | * Release the task if necessary. | |
1102 | */ | |
1103 | if (release) | |
1104 | task_release_locked(task); | |
1105 | ||
1106 | task_unlock(task); | |
1107 | ||
1108 | return (KERN_SUCCESS); | |
1109 | } | |
1110 | ||
1111 | kern_return_t | |
1112 | host_security_set_task_token( | |
1113 | host_security_t host_security, | |
1114 | task_t task, | |
1115 | security_token_t sec_token, | |
1116 | audit_token_t audit_token, | |
1117 | host_priv_t host_priv) | |
1118 | { | |
1119 | ipc_port_t host_port; | |
1120 | kern_return_t kr; | |
1121 | ||
1122 | if (task == TASK_NULL) | |
1123 | return(KERN_INVALID_ARGUMENT); | |
1124 | ||
1125 | if (host_security == HOST_NULL) | |
1126 | return(KERN_INVALID_SECURITY); | |
1127 | ||
1128 | task_lock(task); | |
1129 | task->sec_token = sec_token; | |
1130 | task->audit_token = audit_token; | |
1131 | task_unlock(task); | |
1132 | ||
1133 | if (host_priv != HOST_PRIV_NULL) { | |
1134 | kr = host_get_host_priv_port(host_priv, &host_port); | |
1135 | } else { | |
1136 | kr = host_get_host_port(host_priv_self(), &host_port); | |
1137 | } | |
1138 | assert(kr == KERN_SUCCESS); | |
1139 | kr = task_set_special_port(task, TASK_HOST_PORT, host_port); | |
1140 | return(kr); | |
1141 | } | |
1142 | ||
1143 | /* | |
1144 | * Utility routine to set a ledger | |
1145 | */ | |
1146 | kern_return_t | |
1147 | task_set_ledger( | |
1148 | task_t task, | |
1149 | ledger_t wired, | |
1150 | ledger_t paged) | |
1151 | { | |
1152 | if (task == TASK_NULL) | |
1153 | return(KERN_INVALID_ARGUMENT); | |
1154 | ||
1155 | task_lock(task); | |
1156 | if (wired) { | |
1157 | ipc_port_release_send(task->wired_ledger_port); | |
1158 | task->wired_ledger_port = ledger_copy(wired); | |
1159 | } | |
1160 | if (paged) { | |
1161 | ipc_port_release_send(task->paged_ledger_port); | |
1162 | task->paged_ledger_port = ledger_copy(paged); | |
1163 | } | |
1164 | task_unlock(task); | |
1165 | ||
1166 | return(KERN_SUCCESS); | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * This routine was added, pretty much exclusively, for registering the | |
1171 | * RPC glue vector for in-kernel short circuited tasks. Rather than | |
1172 | * removing it completely, I have only disabled that feature (which was | |
1173 | * the only feature at the time). It just appears that we are going to | |
1174 | * want to add some user data to tasks in the future (i.e. bsd info, | |
1175 | * task names, etc...), so I left it in the formal task interface. | |
1176 | */ | |
1177 | kern_return_t | |
1178 | task_set_info( | |
1179 | task_t task, | |
1180 | task_flavor_t flavor, | |
1181 | __unused task_info_t task_info_in, /* pointer to IN array */ | |
1182 | __unused mach_msg_type_number_t task_info_count) | |
1183 | { | |
1184 | if (task == TASK_NULL) | |
1185 | return(KERN_INVALID_ARGUMENT); | |
1186 | ||
1187 | switch (flavor) { | |
1188 | default: | |
1189 | return (KERN_INVALID_ARGUMENT); | |
1190 | } | |
1191 | return (KERN_SUCCESS); | |
1192 | } | |
1193 | ||
1194 | kern_return_t | |
1195 | task_info( | |
1196 | task_t task, | |
1197 | task_flavor_t flavor, | |
1198 | task_info_t task_info_out, | |
1199 | mach_msg_type_number_t *task_info_count) | |
1200 | { | |
1201 | if (task == TASK_NULL) | |
1202 | return (KERN_INVALID_ARGUMENT); | |
1203 | ||
1204 | switch (flavor) { | |
1205 | ||
1206 | case TASK_BASIC_INFO_32: | |
1207 | { | |
1208 | task_basic_info_32_t basic_info; | |
1209 | vm_map_t map; | |
1210 | ||
1211 | if (*task_info_count < TASK_BASIC_INFO_32_COUNT) | |
1212 | return (KERN_INVALID_ARGUMENT); | |
1213 | ||
1214 | basic_info = (task_basic_info_32_t)task_info_out; | |
1215 | ||
1216 | map = (task == kernel_task)? kernel_map: task->map; | |
1217 | basic_info->virtual_size = CAST_DOWN(vm_offset_t,map->size); | |
1218 | basic_info->resident_size = pmap_resident_count(map->pmap) | |
1219 | * PAGE_SIZE; | |
1220 | ||
1221 | task_lock(task); | |
1222 | basic_info->policy = ((task != kernel_task)? | |
1223 | POLICY_TIMESHARE: POLICY_RR); | |
1224 | basic_info->suspend_count = task->user_stop_count; | |
1225 | ||
1226 | absolutetime_to_microtime( | |
1227 | task->total_user_time, | |
1228 | &basic_info->user_time.seconds, | |
1229 | &basic_info->user_time.microseconds); | |
1230 | absolutetime_to_microtime( | |
1231 | task->total_system_time, | |
1232 | &basic_info->system_time.seconds, | |
1233 | &basic_info->system_time.microseconds); | |
1234 | task_unlock(task); | |
1235 | ||
1236 | *task_info_count = TASK_BASIC_INFO_32_COUNT; | |
1237 | break; | |
1238 | } | |
1239 | ||
1240 | case TASK_BASIC_INFO_64: | |
1241 | { | |
1242 | task_basic_info_64_t basic_info; | |
1243 | vm_map_t map; | |
1244 | ||
1245 | if (*task_info_count < TASK_BASIC_INFO_64_COUNT) | |
1246 | return (KERN_INVALID_ARGUMENT); | |
1247 | ||
1248 | basic_info = (task_basic_info_64_t)task_info_out; | |
1249 | ||
1250 | map = (task == kernel_task)? kernel_map: task->map; | |
1251 | basic_info->virtual_size = map->size; | |
1252 | basic_info->resident_size = (mach_vm_size_t)(pmap_resident_count(map->pmap) | |
1253 | * PAGE_SIZE); | |
1254 | ||
1255 | task_lock(task); | |
1256 | basic_info->policy = ((task != kernel_task)? | |
1257 | POLICY_TIMESHARE: POLICY_RR); | |
1258 | basic_info->suspend_count = task->user_stop_count; | |
1259 | ||
1260 | absolutetime_to_microtime( | |
1261 | task->total_user_time, | |
1262 | &basic_info->user_time.seconds, | |
1263 | &basic_info->user_time.microseconds); | |
1264 | absolutetime_to_microtime( | |
1265 | task->total_system_time, | |
1266 | &basic_info->system_time.seconds, | |
1267 | &basic_info->system_time.microseconds); | |
1268 | task_unlock(task); | |
1269 | ||
1270 | *task_info_count = TASK_BASIC_INFO_64_COUNT; | |
1271 | break; | |
1272 | } | |
1273 | ||
1274 | case TASK_THREAD_TIMES_INFO: | |
1275 | { | |
1276 | register task_thread_times_info_t times_info; | |
1277 | register thread_t thread; | |
1278 | ||
1279 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) | |
1280 | return (KERN_INVALID_ARGUMENT); | |
1281 | ||
1282 | times_info = (task_thread_times_info_t) task_info_out; | |
1283 | times_info->user_time.seconds = 0; | |
1284 | times_info->user_time.microseconds = 0; | |
1285 | times_info->system_time.seconds = 0; | |
1286 | times_info->system_time.microseconds = 0; | |
1287 | ||
1288 | task_lock(task); | |
1289 | ||
1290 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1291 | time_value_t user_time, system_time; | |
1292 | ||
1293 | thread_read_times(thread, &user_time, &system_time); | |
1294 | ||
1295 | time_value_add(×_info->user_time, &user_time); | |
1296 | time_value_add(×_info->system_time, &system_time); | |
1297 | } | |
1298 | ||
1299 | task_unlock(task); | |
1300 | ||
1301 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT; | |
1302 | break; | |
1303 | } | |
1304 | ||
1305 | case TASK_ABSOLUTETIME_INFO: | |
1306 | { | |
1307 | task_absolutetime_info_t info; | |
1308 | register thread_t thread; | |
1309 | ||
1310 | if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) | |
1311 | return (KERN_INVALID_ARGUMENT); | |
1312 | ||
1313 | info = (task_absolutetime_info_t)task_info_out; | |
1314 | info->threads_user = info->threads_system = 0; | |
1315 | ||
1316 | task_lock(task); | |
1317 | ||
1318 | info->total_user = task->total_user_time; | |
1319 | info->total_system = task->total_system_time; | |
1320 | ||
1321 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1322 | uint64_t tval; | |
1323 | ||
1324 | tval = timer_grab(&thread->user_timer); | |
1325 | info->threads_user += tval; | |
1326 | info->total_user += tval; | |
1327 | ||
1328 | tval = timer_grab(&thread->system_timer); | |
1329 | info->threads_system += tval; | |
1330 | info->total_system += tval; | |
1331 | } | |
1332 | ||
1333 | task_unlock(task); | |
1334 | ||
1335 | *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT; | |
1336 | break; | |
1337 | } | |
1338 | ||
1339 | /* OBSOLETE */ | |
1340 | case TASK_SCHED_FIFO_INFO: | |
1341 | { | |
1342 | ||
1343 | if (*task_info_count < POLICY_FIFO_BASE_COUNT) | |
1344 | return (KERN_INVALID_ARGUMENT); | |
1345 | ||
1346 | return (KERN_INVALID_POLICY); | |
1347 | } | |
1348 | ||
1349 | /* OBSOLETE */ | |
1350 | case TASK_SCHED_RR_INFO: | |
1351 | { | |
1352 | register policy_rr_base_t rr_base; | |
1353 | ||
1354 | if (*task_info_count < POLICY_RR_BASE_COUNT) | |
1355 | return (KERN_INVALID_ARGUMENT); | |
1356 | ||
1357 | rr_base = (policy_rr_base_t) task_info_out; | |
1358 | ||
1359 | task_lock(task); | |
1360 | if (task != kernel_task) { | |
1361 | task_unlock(task); | |
1362 | return (KERN_INVALID_POLICY); | |
1363 | } | |
1364 | ||
1365 | rr_base->base_priority = task->priority; | |
1366 | task_unlock(task); | |
1367 | ||
1368 | rr_base->quantum = std_quantum_us / 1000; | |
1369 | ||
1370 | *task_info_count = POLICY_RR_BASE_COUNT; | |
1371 | break; | |
1372 | } | |
1373 | ||
1374 | /* OBSOLETE */ | |
1375 | case TASK_SCHED_TIMESHARE_INFO: | |
1376 | { | |
1377 | register policy_timeshare_base_t ts_base; | |
1378 | ||
1379 | if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) | |
1380 | return (KERN_INVALID_ARGUMENT); | |
1381 | ||
1382 | ts_base = (policy_timeshare_base_t) task_info_out; | |
1383 | ||
1384 | task_lock(task); | |
1385 | if (task == kernel_task) { | |
1386 | task_unlock(task); | |
1387 | return (KERN_INVALID_POLICY); | |
1388 | } | |
1389 | ||
1390 | ts_base->base_priority = task->priority; | |
1391 | task_unlock(task); | |
1392 | ||
1393 | *task_info_count = POLICY_TIMESHARE_BASE_COUNT; | |
1394 | break; | |
1395 | } | |
1396 | ||
1397 | case TASK_SECURITY_TOKEN: | |
1398 | { | |
1399 | register security_token_t *sec_token_p; | |
1400 | ||
1401 | if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) | |
1402 | return (KERN_INVALID_ARGUMENT); | |
1403 | ||
1404 | sec_token_p = (security_token_t *) task_info_out; | |
1405 | ||
1406 | task_lock(task); | |
1407 | *sec_token_p = task->sec_token; | |
1408 | task_unlock(task); | |
1409 | ||
1410 | *task_info_count = TASK_SECURITY_TOKEN_COUNT; | |
1411 | break; | |
1412 | } | |
1413 | ||
1414 | case TASK_AUDIT_TOKEN: | |
1415 | { | |
1416 | register audit_token_t *audit_token_p; | |
1417 | ||
1418 | if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) | |
1419 | return (KERN_INVALID_ARGUMENT); | |
1420 | ||
1421 | audit_token_p = (audit_token_t *) task_info_out; | |
1422 | ||
1423 | task_lock(task); | |
1424 | *audit_token_p = task->audit_token; | |
1425 | task_unlock(task); | |
1426 | ||
1427 | *task_info_count = TASK_AUDIT_TOKEN_COUNT; | |
1428 | break; | |
1429 | } | |
1430 | ||
1431 | case TASK_SCHED_INFO: | |
1432 | return (KERN_INVALID_ARGUMENT); | |
1433 | ||
1434 | case TASK_EVENTS_INFO: | |
1435 | { | |
1436 | register task_events_info_t events_info; | |
1437 | ||
1438 | if (*task_info_count < TASK_EVENTS_INFO_COUNT) | |
1439 | return (KERN_INVALID_ARGUMENT); | |
1440 | ||
1441 | events_info = (task_events_info_t) task_info_out; | |
1442 | ||
1443 | task_lock(task); | |
1444 | events_info->faults = task->faults; | |
1445 | events_info->pageins = task->pageins; | |
1446 | events_info->cow_faults = task->cow_faults; | |
1447 | events_info->messages_sent = task->messages_sent; | |
1448 | events_info->messages_received = task->messages_received; | |
1449 | events_info->syscalls_mach = task->syscalls_mach; | |
1450 | events_info->syscalls_unix = task->syscalls_unix; | |
1451 | events_info->csw = task->csw; | |
1452 | task_unlock(task); | |
1453 | ||
1454 | *task_info_count = TASK_EVENTS_INFO_COUNT; | |
1455 | break; | |
1456 | } | |
1457 | ||
1458 | default: | |
1459 | return (KERN_INVALID_ARGUMENT); | |
1460 | } | |
1461 | ||
1462 | return (KERN_SUCCESS); | |
1463 | } | |
1464 | ||
1465 | /* | |
1466 | * task_assign: | |
1467 | * | |
1468 | * Change the assigned processor set for the task | |
1469 | */ | |
1470 | kern_return_t | |
1471 | task_assign( | |
1472 | __unused task_t task, | |
1473 | __unused processor_set_t new_pset, | |
1474 | __unused boolean_t assign_threads) | |
1475 | { | |
1476 | return(KERN_FAILURE); | |
1477 | } | |
1478 | ||
1479 | /* | |
1480 | * task_assign_default: | |
1481 | * | |
1482 | * Version of task_assign to assign to default processor set. | |
1483 | */ | |
1484 | kern_return_t | |
1485 | task_assign_default( | |
1486 | task_t task, | |
1487 | boolean_t assign_threads) | |
1488 | { | |
1489 | return (task_assign(task, &default_pset, assign_threads)); | |
1490 | } | |
1491 | ||
1492 | /* | |
1493 | * task_get_assignment | |
1494 | * | |
1495 | * Return name of processor set that task is assigned to. | |
1496 | */ | |
1497 | kern_return_t | |
1498 | task_get_assignment( | |
1499 | task_t task, | |
1500 | processor_set_t *pset) | |
1501 | { | |
1502 | if (!task->active) | |
1503 | return(KERN_FAILURE); | |
1504 | ||
1505 | *pset = task->processor_set; | |
1506 | pset_reference(*pset); | |
1507 | return(KERN_SUCCESS); | |
1508 | } | |
1509 | ||
1510 | ||
1511 | /* | |
1512 | * task_policy | |
1513 | * | |
1514 | * Set scheduling policy and parameters, both base and limit, for | |
1515 | * the given task. Policy must be a policy which is enabled for the | |
1516 | * processor set. Change contained threads if requested. | |
1517 | */ | |
1518 | kern_return_t | |
1519 | task_policy( | |
1520 | __unused task_t task, | |
1521 | __unused policy_t policy_id, | |
1522 | __unused policy_base_t base, | |
1523 | __unused mach_msg_type_number_t count, | |
1524 | __unused boolean_t set_limit, | |
1525 | __unused boolean_t change) | |
1526 | { | |
1527 | return(KERN_FAILURE); | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | * task_set_policy | |
1532 | * | |
1533 | * Set scheduling policy and parameters, both base and limit, for | |
1534 | * the given task. Policy can be any policy implemented by the | |
1535 | * processor set, whether enabled or not. Change contained threads | |
1536 | * if requested. | |
1537 | */ | |
1538 | kern_return_t | |
1539 | task_set_policy( | |
1540 | __unused task_t task, | |
1541 | __unused processor_set_t pset, | |
1542 | __unused policy_t policy_id, | |
1543 | __unused policy_base_t base, | |
1544 | __unused mach_msg_type_number_t base_count, | |
1545 | __unused policy_limit_t limit, | |
1546 | __unused mach_msg_type_number_t limit_count, | |
1547 | __unused boolean_t change) | |
1548 | { | |
1549 | return(KERN_FAILURE); | |
1550 | } | |
1551 | ||
1552 | #if FAST_TAS | |
1553 | kern_return_t | |
1554 | task_set_ras_pc( | |
1555 | task_t task, | |
1556 | vm_offset_t pc, | |
1557 | vm_offset_t endpc) | |
1558 | { | |
1559 | extern int fast_tas_debug; | |
1560 | ||
1561 | if (fast_tas_debug) { | |
1562 | printf("task 0x%x: setting fast_tas to [0x%x, 0x%x]\n", | |
1563 | task, pc, endpc); | |
1564 | } | |
1565 | task_lock(task); | |
1566 | task->fast_tas_base = pc; | |
1567 | task->fast_tas_end = endpc; | |
1568 | task_unlock(task); | |
1569 | return KERN_SUCCESS; | |
1570 | } | |
1571 | #else /* FAST_TAS */ | |
1572 | kern_return_t | |
1573 | task_set_ras_pc( | |
1574 | __unused task_t task, | |
1575 | __unused vm_offset_t pc, | |
1576 | __unused vm_offset_t endpc) | |
1577 | { | |
1578 | return KERN_FAILURE; | |
1579 | } | |
1580 | #endif /* FAST_TAS */ | |
1581 | ||
1582 | void | |
1583 | task_synchronizer_destroy_all(task_t task) | |
1584 | { | |
1585 | semaphore_t semaphore; | |
1586 | lock_set_t lock_set; | |
1587 | ||
1588 | /* | |
1589 | * Destroy owned semaphores | |
1590 | */ | |
1591 | ||
1592 | while (!queue_empty(&task->semaphore_list)) { | |
1593 | semaphore = (semaphore_t) queue_first(&task->semaphore_list); | |
1594 | (void) semaphore_destroy(task, semaphore); | |
1595 | } | |
1596 | ||
1597 | /* | |
1598 | * Destroy owned lock sets | |
1599 | */ | |
1600 | ||
1601 | while (!queue_empty(&task->lock_set_list)) { | |
1602 | lock_set = (lock_set_t) queue_first(&task->lock_set_list); | |
1603 | (void) lock_set_destroy(task, lock_set); | |
1604 | } | |
1605 | } | |
1606 | ||
1607 | /* | |
1608 | * We need to export some functions to other components that | |
1609 | * are currently implemented in macros within the osfmk | |
1610 | * component. Just export them as functions of the same name. | |
1611 | */ | |
1612 | boolean_t is_kerneltask(task_t t) | |
1613 | { | |
1614 | if (t == kernel_task) | |
1615 | return (TRUE); | |
1616 | ||
1617 | return (FALSE); | |
1618 | } | |
1619 | ||
1620 | #undef current_task | |
1621 | task_t current_task(void); | |
1622 | task_t current_task(void) | |
1623 | { | |
1624 | return (current_task_fast()); | |
1625 | } | |
1626 | ||
1627 | #undef task_reference | |
1628 | void task_reference(task_t task); | |
1629 | void | |
1630 | task_reference( | |
1631 | task_t task) | |
1632 | { | |
1633 | if (task != TASK_NULL) | |
1634 | task_reference_internal(task); | |
1635 | } |