]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/kern/uipc_socket2.c
xnu-792.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22/* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
24/*
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
57 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/domain.h>
63#include <sys/kernel.h>
64#include <sys/proc_internal.h>
65#include <sys/kauth.h>
66#include <sys/malloc.h>
67#include <sys/mbuf.h>
68#include <sys/protosw.h>
69#include <sys/stat.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/signalvar.h>
73#include <sys/sysctl.h>
74#include <sys/ev.h>
75#include <kern/locks.h>
76#include <net/route.h>
77#include <netinet/in.h>
78#include <netinet/in_pcb.h>
79#include <sys/kdebug.h>
80
81#define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
82#define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
83
84
85/*
86 * Primitive routines for operating on sockets and socket buffers
87 */
88
89u_long sb_max = SB_MAX; /* XXX should be static */
90
91static u_long sb_efficiency = 8; /* parameter for sbreserve() */
92
93/*
94 * Procedures to manipulate state flags of socket
95 * and do appropriate wakeups. Normal sequence from the
96 * active (originating) side is that soisconnecting() is
97 * called during processing of connect() call,
98 * resulting in an eventual call to soisconnected() if/when the
99 * connection is established. When the connection is torn down
100 * soisdisconnecting() is called during processing of disconnect() call,
101 * and soisdisconnected() is called when the connection to the peer
102 * is totally severed. The semantics of these routines are such that
103 * connectionless protocols can call soisconnected() and soisdisconnected()
104 * only, bypassing the in-progress calls when setting up a ``connection''
105 * takes no time.
106 *
107 * From the passive side, a socket is created with
108 * two queues of sockets: so_incomp for connections in progress
109 * and so_comp for connections already made and awaiting user acceptance.
110 * As a protocol is preparing incoming connections, it creates a socket
111 * structure queued on so_incomp by calling sonewconn(). When the connection
112 * is established, soisconnected() is called, and transfers the
113 * socket structure to so_comp, making it available to accept().
114 *
115 * If a socket is closed with sockets on either
116 * so_incomp or so_comp, these sockets are dropped.
117 *
118 * If higher level protocols are implemented in
119 * the kernel, the wakeups done here will sometimes
120 * cause software-interrupt process scheduling.
121 */
122void
123soisconnecting(so)
124 register struct socket *so;
125{
126
127 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
128 so->so_state |= SS_ISCONNECTING;
129
130 sflt_notify(so, sock_evt_connecting, NULL);
131}
132
133void
134soisconnected(so)
135 struct socket *so;
136{
137 struct socket *head = so->so_head;
138
139 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
140 so->so_state |= SS_ISCONNECTED;
141
142 sflt_notify(so, sock_evt_connected, NULL);
143
144 if (head && (so->so_state & SS_INCOMP)) {
145 if (head->so_proto->pr_getlock != NULL)
146 socket_lock(head, 1);
147 postevent(head, 0, EV_RCONN);
148 TAILQ_REMOVE(&head->so_incomp, so, so_list);
149 head->so_incqlen--;
150 so->so_state &= ~SS_INCOMP;
151 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
152 so->so_state |= SS_COMP;
153 sorwakeup(head);
154 wakeup_one((caddr_t)&head->so_timeo);
155 if (head->so_proto->pr_getlock != NULL)
156 socket_unlock(head, 1);
157 } else {
158 postevent(so, 0, EV_WCONN);
159 wakeup((caddr_t)&so->so_timeo);
160 sorwakeup(so);
161 sowwakeup(so);
162 }
163}
164
165void
166soisdisconnecting(so)
167 register struct socket *so;
168{
169 so->so_state &= ~SS_ISCONNECTING;
170 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
171 sflt_notify(so, sock_evt_disconnecting, NULL);
172 wakeup((caddr_t)&so->so_timeo);
173 sowwakeup(so);
174 sorwakeup(so);
175}
176
177void
178soisdisconnected(so)
179 register struct socket *so;
180{
181 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
182 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
183 sflt_notify(so, sock_evt_disconnected, NULL);
184 wakeup((caddr_t)&so->so_timeo);
185 sowwakeup(so);
186 sorwakeup(so);
187}
188
189/*
190 * Return a random connection that hasn't been serviced yet and
191 * is eligible for discard. There is a one in qlen chance that
192 * we will return a null, saying that there are no dropable
193 * requests. In this case, the protocol specific code should drop
194 * the new request. This insures fairness.
195 *
196 * This may be used in conjunction with protocol specific queue
197 * congestion routines.
198 */
199struct socket *
200sodropablereq(head)
201 register struct socket *head;
202{
203 struct socket *so, *sonext = NULL;
204 unsigned int i, j, qlen;
205 static int rnd;
206 static struct timeval old_runtime;
207 static unsigned int cur_cnt, old_cnt;
208 struct timeval tv;
209
210 microtime(&tv);
211 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
212 old_runtime = tv;
213 old_cnt = cur_cnt / i;
214 cur_cnt = 0;
215 }
216
217 so = TAILQ_FIRST(&head->so_incomp);
218 if (!so)
219 return (NULL);
220
221 qlen = head->so_incqlen;
222 if (++cur_cnt > qlen || old_cnt > qlen) {
223 rnd = (314159 * rnd + 66329) & 0xffff;
224 j = ((qlen + 1) * rnd) >> 16;
225//###LD To clean up
226 while (j-- && so) {
227// if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
228 socket_lock(so, 1);
229 sonext = TAILQ_NEXT(so, so_list);
230// in_pcb_check_state(so->so_pcb, WNT_RELEASE, 0);
231 socket_unlock(so, 1);
232 so = sonext;
233 }
234 }
235
236// if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) == WNT_STOPUSING)
237// return (NULL);
238// else
239 return (so);
240}
241
242/*
243 * When an attempt at a new connection is noted on a socket
244 * which accepts connections, sonewconn is called. If the
245 * connection is possible (subject to space constraints, etc.)
246 * then we allocate a new structure, propoerly linked into the
247 * data structure of the original socket, and return this.
248 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
249 */
250static struct socket *
251sonewconn_internal(head, connstatus)
252 register struct socket *head;
253 int connstatus;
254{
255 int error = 0;
256 register struct socket *so;
257 lck_mtx_t *mutex_held;
258
259 if (head->so_proto->pr_getlock != NULL)
260 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
261 else
262 mutex_held = head->so_proto->pr_domain->dom_mtx;
263 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
264
265 if (head->so_qlen > 3 * head->so_qlimit / 2)
266 return ((struct socket *)0);
267 so = soalloc(1, head->so_proto->pr_domain->dom_family, head->so_type);
268 if (so == NULL)
269 return ((struct socket *)0);
270 /* check if head was closed during the soalloc */
271 if (head->so_proto == NULL) {
272 sodealloc(so);
273 return ((struct socket *)0);
274 }
275
276 so->so_head = head;
277 so->so_type = head->so_type;
278 so->so_options = head->so_options &~ SO_ACCEPTCONN;
279 so->so_linger = head->so_linger;
280 so->so_state = head->so_state | SS_NOFDREF;
281 so->so_proto = head->so_proto;
282 so->so_timeo = head->so_timeo;
283 so->so_pgid = head->so_pgid;
284 so->so_uid = head->so_uid;
285 so->so_usecount = 1;
286
287 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
288 sflt_termsock(so);
289 sodealloc(so);
290 return ((struct socket *)0);
291 }
292
293 /*
294 * Must be done with head unlocked to avoid deadlock with pcb list
295 */
296 socket_unlock(head, 0);
297 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) || error) {
298 sflt_termsock(so);
299 sodealloc(so);
300 socket_lock(head, 0);
301 return ((struct socket *)0);
302 }
303 socket_lock(head, 0);
304#ifdef __APPLE__
305 so->so_proto->pr_domain->dom_refs++;
306#endif
307
308 if (connstatus) {
309 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
310 so->so_state |= SS_COMP;
311 } else {
312 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
313 so->so_state |= SS_INCOMP;
314 head->so_incqlen++;
315 }
316 head->so_qlen++;
317#ifdef __APPLE__
318 so->so_rcv.sb_so = so->so_snd.sb_so = so;
319 TAILQ_INIT(&so->so_evlist);
320
321 /* Attach socket filters for this protocol */
322 sflt_initsock(so);
323#endif
324 if (connstatus) {
325 so->so_state |= connstatus;
326 sorwakeup(head);
327 wakeup((caddr_t)&head->so_timeo);
328 }
329 return (so);
330}
331
332
333struct socket *
334sonewconn(
335 struct socket *head,
336 int connstatus,
337 const struct sockaddr *from)
338{
339 int error = 0;
340 struct socket_filter_entry *filter;
341 int filtered = 0;
342
343 error = 0;
344 for (filter = head->so_filt; filter && (error == 0);
345 filter = filter->sfe_next_onsocket) {
346 if (filter->sfe_filter->sf_filter.sf_connect_in) {
347 if (filtered == 0) {
348 filtered = 1;
349 sflt_use(head);
350 socket_unlock(head, 0);
351 }
352 error = filter->sfe_filter->sf_filter.sf_connect_in(
353 filter->sfe_cookie, head, from);
354 }
355 }
356 if (filtered != 0) {
357 socket_lock(head, 0);
358 sflt_unuse(head);
359 }
360
361 if (error) {
362 return NULL;
363 }
364
365 return sonewconn_internal(head, connstatus);
366}
367
368/*
369 * Socantsendmore indicates that no more data will be sent on the
370 * socket; it would normally be applied to a socket when the user
371 * informs the system that no more data is to be sent, by the protocol
372 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
373 * will be received, and will normally be applied to the socket by a
374 * protocol when it detects that the peer will send no more data.
375 * Data queued for reading in the socket may yet be read.
376 */
377
378void
379socantsendmore(so)
380 struct socket *so;
381{
382 so->so_state |= SS_CANTSENDMORE;
383 sflt_notify(so, sock_evt_cantsendmore, NULL);
384 sowwakeup(so);
385}
386
387void
388socantrcvmore(so)
389 struct socket *so;
390{
391 so->so_state |= SS_CANTRCVMORE;
392 sflt_notify(so, sock_evt_cantrecvmore, NULL);
393 sorwakeup(so);
394}
395
396/*
397 * Wait for data to arrive at/drain from a socket buffer.
398 */
399int
400sbwait(sb)
401 struct sockbuf *sb;
402{
403 int error = 0, lr, lr_saved;
404 struct socket *so = sb->sb_so;
405 lck_mtx_t *mutex_held;
406 struct timespec ts;
407
408#ifdef __ppc__
409 __asm__ volatile("mflr %0" : "=r" (lr));
410 lr_saved = lr;
411#endif
412
413
414 if (so->so_proto->pr_getlock != NULL)
415 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
416 else
417 mutex_held = so->so_proto->pr_domain->dom_mtx;
418
419 sb->sb_flags |= SB_WAIT;
420
421 if (so->so_usecount < 1)
422 panic("sbwait: so=%x refcount=%d\n", so, so->so_usecount);
423 ts.tv_sec = sb->sb_timeo.tv_sec;
424 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
425 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
426 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
427 &ts);
428
429 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
430
431 if (so->so_usecount < 1)
432 panic("sbwait: so=%x refcount=%d\n", so, so->so_usecount);
433
434 if ((so->so_state & SS_DRAINING)) {
435 error = EBADF;
436 }
437
438 return (error);
439}
440
441/*
442 * Lock a sockbuf already known to be locked;
443 * return any error returned from sleep (EINTR).
444 */
445int
446sb_lock(sb)
447 register struct sockbuf *sb;
448{
449 struct socket *so = sb->sb_so;
450 lck_mtx_t * mutex_held;
451 int error = 0, lr, lr_saved;
452
453#ifdef __ppc__
454 __asm__ volatile("mflr %0" : "=r" (lr));
455 lr_saved = lr;
456#endif
457
458 if (so == NULL)
459 panic("sb_lock: null so back pointer sb=%x\n", sb);
460
461 while (sb->sb_flags & SB_LOCK) {
462 sb->sb_flags |= SB_WANT;
463 if (so->so_proto->pr_getlock != NULL)
464 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
465 else
466 mutex_held = so->so_proto->pr_domain->dom_mtx;
467 if (so->so_usecount < 1)
468 panic("sb_lock: so=%x refcount=%d\n", so, so->so_usecount);
469 error = msleep((caddr_t)&sb->sb_flags, mutex_held,
470 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sblock", 0);
471 if (so->so_usecount < 1)
472 panic("sb_lock: 2 so=%x refcount=%d\n", so, so->so_usecount);
473 if (error)
474 return (error);
475 }
476 sb->sb_flags |= SB_LOCK;
477 return (0);
478}
479
480/*
481 * Wakeup processes waiting on a socket buffer.
482 * Do asynchronous notification via SIGIO
483 * if the socket has the SS_ASYNC flag set.
484 */
485void
486sowakeup(so, sb)
487 register struct socket *so;
488 register struct sockbuf *sb;
489{
490 struct proc *p = current_proc();
491 sb->sb_flags &= ~SB_SEL;
492 selwakeup(&sb->sb_sel);
493 if (sb->sb_flags & SB_WAIT) {
494 sb->sb_flags &= ~SB_WAIT;
495 wakeup((caddr_t)&sb->sb_cc);
496 }
497 if (so->so_state & SS_ASYNC) {
498 if (so->so_pgid < 0)
499 gsignal(-so->so_pgid, SIGIO);
500 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
501 psignal(p, SIGIO);
502 }
503 if (sb->sb_flags & SB_KNOTE) {
504 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
505 }
506 if (sb->sb_flags & SB_UPCALL) {
507 socket_unlock(so, 0);
508 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
509 socket_lock(so, 0);
510 }
511}
512
513/*
514 * Socket buffer (struct sockbuf) utility routines.
515 *
516 * Each socket contains two socket buffers: one for sending data and
517 * one for receiving data. Each buffer contains a queue of mbufs,
518 * information about the number of mbufs and amount of data in the
519 * queue, and other fields allowing select() statements and notification
520 * on data availability to be implemented.
521 *
522 * Data stored in a socket buffer is maintained as a list of records.
523 * Each record is a list of mbufs chained together with the m_next
524 * field. Records are chained together with the m_nextpkt field. The upper
525 * level routine soreceive() expects the following conventions to be
526 * observed when placing information in the receive buffer:
527 *
528 * 1. If the protocol requires each message be preceded by the sender's
529 * name, then a record containing that name must be present before
530 * any associated data (mbuf's must be of type MT_SONAME).
531 * 2. If the protocol supports the exchange of ``access rights'' (really
532 * just additional data associated with the message), and there are
533 * ``rights'' to be received, then a record containing this data
534 * should be present (mbuf's must be of type MT_RIGHTS).
535 * 3. If a name or rights record exists, then it must be followed by
536 * a data record, perhaps of zero length.
537 *
538 * Before using a new socket structure it is first necessary to reserve
539 * buffer space to the socket, by calling sbreserve(). This should commit
540 * some of the available buffer space in the system buffer pool for the
541 * socket (currently, it does nothing but enforce limits). The space
542 * should be released by calling sbrelease() when the socket is destroyed.
543 */
544
545int
546soreserve(so, sndcc, rcvcc)
547 register struct socket *so;
548 u_long sndcc, rcvcc;
549{
550
551 if (sbreserve(&so->so_snd, sndcc) == 0)
552 goto bad;
553 if (sbreserve(&so->so_rcv, rcvcc) == 0)
554 goto bad2;
555 if (so->so_rcv.sb_lowat == 0)
556 so->so_rcv.sb_lowat = 1;
557 if (so->so_snd.sb_lowat == 0)
558 so->so_snd.sb_lowat = MCLBYTES;
559 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
560 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
561 return (0);
562bad2:
563#ifdef __APPLE__
564 selthreadclear(&so->so_snd.sb_sel);
565#endif
566 sbrelease(&so->so_snd);
567bad:
568 return (ENOBUFS);
569}
570
571/*
572 * Allot mbufs to a sockbuf.
573 * Attempt to scale mbmax so that mbcnt doesn't become limiting
574 * if buffering efficiency is near the normal case.
575 */
576int
577sbreserve(sb, cc)
578 struct sockbuf *sb;
579 u_long cc;
580{
581 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
582 return (0);
583 sb->sb_hiwat = cc;
584 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
585 if (sb->sb_lowat > sb->sb_hiwat)
586 sb->sb_lowat = sb->sb_hiwat;
587 return (1);
588}
589
590/*
591 * Free mbufs held by a socket, and reserved mbuf space.
592 */
593 /* WARNING needs to do selthreadclear() before calling this */
594void
595sbrelease(sb)
596 struct sockbuf *sb;
597{
598
599 sbflush(sb);
600 sb->sb_hiwat = 0;
601 sb->sb_mbmax = 0;
602
603}
604
605/*
606 * Routines to add and remove
607 * data from an mbuf queue.
608 *
609 * The routines sbappend() or sbappendrecord() are normally called to
610 * append new mbufs to a socket buffer, after checking that adequate
611 * space is available, comparing the function sbspace() with the amount
612 * of data to be added. sbappendrecord() differs from sbappend() in
613 * that data supplied is treated as the beginning of a new record.
614 * To place a sender's address, optional access rights, and data in a
615 * socket receive buffer, sbappendaddr() should be used. To place
616 * access rights and data in a socket receive buffer, sbappendrights()
617 * should be used. In either case, the new data begins a new record.
618 * Note that unlike sbappend() and sbappendrecord(), these routines check
619 * for the caller that there will be enough space to store the data.
620 * Each fails if there is not enough space, or if it cannot find mbufs
621 * to store additional information in.
622 *
623 * Reliable protocols may use the socket send buffer to hold data
624 * awaiting acknowledgement. Data is normally copied from a socket
625 * send buffer in a protocol with m_copy for output to a peer,
626 * and then removing the data from the socket buffer with sbdrop()
627 * or sbdroprecord() when the data is acknowledged by the peer.
628 */
629
630/*
631 * Append mbuf chain m to the last record in the
632 * socket buffer sb. The additional space associated
633 * the mbuf chain is recorded in sb. Empty mbufs are
634 * discarded and mbufs are compacted where possible.
635 */
636int
637sbappend(sb, m)
638 struct sockbuf *sb;
639 struct mbuf *m;
640{
641 register struct mbuf *n, *sb_first;
642 int result = 0;
643 int error = 0;
644
645
646 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_START), sb, m->m_len, 0, 0, 0);
647
648 if (m == 0)
649 return 0;
650 sb_first = n = sb->sb_mb;
651 if (n) {
652 while (n->m_nextpkt)
653 n = n->m_nextpkt;
654 do {
655 if (n->m_flags & M_EOR) {
656 result = sbappendrecord(sb, m); /* XXXXXX!!!! */
657 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
658 return result;
659 }
660 } while (n->m_next && (n = n->m_next));
661 }
662
663 if ((sb->sb_flags & SB_RECV) != 0) {
664 error = sflt_data_in(sb->sb_so, NULL, &m, NULL, 0);
665 if (error) {
666 /* no data was appended, caller should not call sowakeup */
667 return 0;
668 }
669 }
670
671 /* 3962537 - sflt_data_in may drop the lock, need to validate state again */
672 if (sb_first != sb->sb_mb) {
673 n = sb->sb_mb;
674 if (n) {
675 while (n->m_nextpkt)
676 n = n->m_nextpkt;
677 }
678 }
679
680 result = sbcompress(sb, m, n);
681
682 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
683
684 return result;
685}
686
687#ifdef SOCKBUF_DEBUG
688void
689sbcheck(sb)
690 register struct sockbuf *sb;
691{
692 register struct mbuf *m;
693 register struct mbuf *n = 0;
694 register u_long len = 0, mbcnt = 0;
695 lck_mtx_t *mutex_held;
696
697 if (sb->sb_so->so_proto->pr_getlock != NULL)
698 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
699 else
700 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
701
702 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
703
704 if (sbchecking == 0)
705 return;
706
707 for (m = sb->sb_mb; m; m = n) {
708 n = m->m_nextpkt;
709 for (; m; m = m->m_next) {
710 len += m->m_len;
711 mbcnt += MSIZE;
712 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
713 mbcnt += m->m_ext.ext_size;
714 }
715 }
716 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
717 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
718 mbcnt, sb->sb_mbcnt);
719 }
720}
721#endif
722
723/*
724 * As above, except the mbuf chain
725 * begins a new record.
726 */
727int
728sbappendrecord(sb, m0)
729 register struct sockbuf *sb;
730 register struct mbuf *m0;
731{
732 register struct mbuf *m;
733 int result = 0;
734
735 if (m0 == 0)
736 return 0;
737
738 if ((sb->sb_flags & SB_RECV) != 0) {
739 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, sock_data_filt_flag_record);
740 if (error != 0) {
741 if (error != EJUSTRETURN)
742 m_freem(m0);
743 return 0;
744 }
745 }
746
747 m = sb->sb_mb;
748 if (m)
749 while (m->m_nextpkt)
750 m = m->m_nextpkt;
751 /*
752 * Put the first mbuf on the queue.
753 * Note this permits zero length records.
754 */
755 sballoc(sb, m0);
756 if (m)
757 m->m_nextpkt = m0;
758 else
759 sb->sb_mb = m0;
760 m = m0->m_next;
761 m0->m_next = 0;
762 if (m && (m0->m_flags & M_EOR)) {
763 m0->m_flags &= ~M_EOR;
764 m->m_flags |= M_EOR;
765 }
766 return sbcompress(sb, m, m0);
767}
768
769/*
770 * As above except that OOB data
771 * is inserted at the beginning of the sockbuf,
772 * but after any other OOB data.
773 */
774int
775sbinsertoob(sb, m0)
776 struct sockbuf *sb;
777 struct mbuf *m0;
778{
779 struct mbuf *m;
780 struct mbuf **mp;
781
782 if (m0 == 0)
783 return 0;
784
785 if ((sb->sb_flags & SB_RECV) != 0) {
786 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
787 sock_data_filt_flag_oob);
788
789 if (error) {
790 if (error != EJUSTRETURN) {
791 m_freem(m0);
792 }
793 return 0;
794 }
795 }
796
797 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
798 m = *mp;
799 again:
800 switch (m->m_type) {
801
802 case MT_OOBDATA:
803 continue; /* WANT next train */
804
805 case MT_CONTROL:
806 m = m->m_next;
807 if (m)
808 goto again; /* inspect THIS train further */
809 }
810 break;
811 }
812 /*
813 * Put the first mbuf on the queue.
814 * Note this permits zero length records.
815 */
816 sballoc(sb, m0);
817 m0->m_nextpkt = *mp;
818 *mp = m0;
819 m = m0->m_next;
820 m0->m_next = 0;
821 if (m && (m0->m_flags & M_EOR)) {
822 m0->m_flags &= ~M_EOR;
823 m->m_flags |= M_EOR;
824 }
825 return sbcompress(sb, m, m0);
826}
827
828/*
829 * Append address and data, and optionally, control (ancillary) data
830 * to the receive queue of a socket. If present,
831 * m0 must include a packet header with total length.
832 * Returns 0 if no space in sockbuf or insufficient mbufs.
833 */
834static int
835sbappendaddr_internal(sb, asa, m0, control)
836 register struct sockbuf *sb;
837 struct sockaddr *asa;
838 struct mbuf *m0, *control;
839{
840 register struct mbuf *m, *n;
841 int space = asa->sa_len;
842
843 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
844 panic("sbappendaddr");
845
846 if (m0)
847 space += m0->m_pkthdr.len;
848 for (n = control; n; n = n->m_next) {
849 space += n->m_len;
850 if (n->m_next == 0) /* keep pointer to last control buf */
851 break;
852 }
853 if (space > sbspace(sb))
854 return (0);
855 if (asa->sa_len > MLEN)
856 return (0);
857 MGET(m, M_DONTWAIT, MT_SONAME);
858 if (m == 0)
859 return (0);
860 m->m_len = asa->sa_len;
861 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
862 if (n)
863 n->m_next = m0; /* concatenate data to control */
864 else
865 control = m0;
866 m->m_next = control;
867 for (n = m; n; n = n->m_next)
868 sballoc(sb, n);
869 n = sb->sb_mb;
870 if (n) {
871 while (n->m_nextpkt)
872 n = n->m_nextpkt;
873 n->m_nextpkt = m;
874 } else
875 sb->sb_mb = m;
876 postevent(0,sb,EV_RWBYTES);
877 return (1);
878}
879
880int
881sbappendaddr(
882 struct sockbuf* sb,
883 struct sockaddr* asa,
884 struct mbuf *m0,
885 struct mbuf *control,
886 int *error_out)
887{
888 int result = 0;
889
890 if (error_out) *error_out = 0;
891
892 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
893 panic("sbappendaddrorfree");
894
895 /* Call socket data in filters */
896 if ((sb->sb_flags & SB_RECV) != 0) {
897 int error;
898 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
899 if (error) {
900 if (error != EJUSTRETURN) {
901 if (m0) m_freem(m0);
902 if (control) m_freem(control);
903 if (error_out) *error_out = error;
904 }
905 return 0;
906 }
907 }
908
909 result = sbappendaddr_internal(sb, asa, m0, control);
910 if (result == 0) {
911 if (m0) m_freem(m0);
912 if (control) m_freem(control);
913 if (error_out) *error_out = ENOBUFS;
914 }
915
916 return result;
917}
918
919static int
920sbappendcontrol_internal(sb, m0, control)
921 struct sockbuf *sb;
922 struct mbuf *control, *m0;
923{
924 register struct mbuf *m, *n;
925 int space = 0;
926
927 if (control == 0)
928 panic("sbappendcontrol");
929
930 for (m = control; ; m = m->m_next) {
931 space += m->m_len;
932 if (m->m_next == 0)
933 break;
934 }
935 n = m; /* save pointer to last control buffer */
936 for (m = m0; m; m = m->m_next)
937 space += m->m_len;
938 if (space > sbspace(sb))
939 return (0);
940 n->m_next = m0; /* concatenate data to control */
941 for (m = control; m; m = m->m_next)
942 sballoc(sb, m);
943 n = sb->sb_mb;
944 if (n) {
945 while (n->m_nextpkt)
946 n = n->m_nextpkt;
947 n->m_nextpkt = control;
948 } else
949 sb->sb_mb = control;
950 postevent(0,sb,EV_RWBYTES);
951 return (1);
952}
953
954int
955sbappendcontrol(
956 struct sockbuf *sb,
957 struct mbuf *m0,
958 struct mbuf *control,
959 int *error_out)
960{
961 int result = 0;
962
963 if (error_out) *error_out = 0;
964
965 if (sb->sb_flags & SB_RECV) {
966 int error;
967 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
968 if (error) {
969 if (error != EJUSTRETURN) {
970 if (m0) m_freem(m0);
971 if (control) m_freem(control);
972 if (error_out) *error_out = error;
973 }
974 return 0;
975 }
976 }
977
978 result = sbappendcontrol_internal(sb, m0, control);
979 if (result == 0) {
980 if (m0) m_freem(m0);
981 if (control) m_freem(control);
982 if (error_out) *error_out = ENOBUFS;
983 }
984
985 return result;
986}
987
988/*
989 * Compress mbuf chain m into the socket
990 * buffer sb following mbuf n. If n
991 * is null, the buffer is presumed empty.
992 */
993static int
994sbcompress(sb, m, n)
995 register struct sockbuf *sb;
996 register struct mbuf *m, *n;
997{
998 register int eor = 0;
999 register struct mbuf *o;
1000
1001 while (m) {
1002 eor |= m->m_flags & M_EOR;
1003 if (m->m_len == 0 &&
1004 (eor == 0 ||
1005 (((o = m->m_next) || (o = n)) &&
1006 o->m_type == m->m_type))) {
1007 m = m_free(m);
1008 continue;
1009 }
1010 if (n && (n->m_flags & M_EOR) == 0 &&
1011#ifndef __APPLE__
1012 M_WRITABLE(n) &&
1013#endif
1014 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1015 m->m_len <= M_TRAILINGSPACE(n) &&
1016 n->m_type == m->m_type) {
1017 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1018 (unsigned)m->m_len);
1019 n->m_len += m->m_len;
1020 sb->sb_cc += m->m_len;
1021 m = m_free(m);
1022 continue;
1023 }
1024 if (n)
1025 n->m_next = m;
1026 else
1027 sb->sb_mb = m;
1028 sballoc(sb, m);
1029 n = m;
1030 m->m_flags &= ~M_EOR;
1031 m = m->m_next;
1032 n->m_next = 0;
1033 }
1034 if (eor) {
1035 if (n)
1036 n->m_flags |= eor;
1037 else
1038 printf("semi-panic: sbcompress\n");
1039 }
1040 postevent(0,sb, EV_RWBYTES);
1041 return 1;
1042}
1043
1044/*
1045 * Free all mbufs in a sockbuf.
1046 * Check that all resources are reclaimed.
1047 */
1048void
1049sbflush(sb)
1050 register struct sockbuf *sb;
1051{
1052 if (sb->sb_so == NULL)
1053 panic ("sbflush sb->sb_so already null sb=%x\n", sb);
1054 (void)sblock(sb, M_WAIT);
1055 while (sb->sb_mbcnt) {
1056 /*
1057 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1058 * we would loop forever. Panic instead.
1059 */
1060 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1061 break;
1062 sbdrop(sb, (int)sb->sb_cc);
1063 }
1064 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_so == NULL)
1065 panic("sbflush: cc %ld || mb %p || mbcnt %ld sb_so=%x", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt, sb->sb_so);
1066
1067 postevent(0, sb, EV_RWBYTES);
1068 sbunlock(sb, 1); /* keep socket locked */
1069
1070}
1071
1072/*
1073 * Drop data from (the front of) a sockbuf.
1074 * use m_freem_list to free the mbuf structures
1075 * under a single lock... this is done by pruning
1076 * the top of the tree from the body by keeping track
1077 * of where we get to in the tree and then zeroing the
1078 * two pertinent pointers m_nextpkt and m_next
1079 * the socket buffer is then updated to point at the new
1080 * top of the tree and the pruned area is released via
1081 * m_freem_list.
1082 */
1083void
1084sbdrop(sb, len)
1085 register struct sockbuf *sb;
1086 register int len;
1087{
1088 register struct mbuf *m, *free_list, *ml;
1089 struct mbuf *next, *last;
1090
1091 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1092
1093 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1094 free_list = last = m;
1095 ml = (struct mbuf *)0;
1096
1097 while (len > 0) {
1098 if (m == 0) {
1099 if (next == 0) {
1100 /* temporarily replacing this panic with printf because
1101 * it occurs occasionally when closing a socket when there
1102 * is no harm in ignoring it. This problem will be investigated
1103 * further.
1104 */
1105 /* panic("sbdrop"); */
1106 printf("sbdrop - count not zero\n");
1107 len = 0;
1108 /* zero the counts. if we have no mbufs, we have no data (PR-2986815) */
1109 sb->sb_cc = 0;
1110 sb->sb_mbcnt = 0;
1111 break;
1112 }
1113 m = last = next;
1114 next = m->m_nextpkt;
1115 continue;
1116 }
1117 if (m->m_len > len) {
1118 m->m_len -= len;
1119 m->m_data += len;
1120 sb->sb_cc -= len;
1121 break;
1122 }
1123 len -= m->m_len;
1124 sbfree(sb, m);
1125
1126 ml = m;
1127 m = m->m_next;
1128 }
1129 while (m && m->m_len == 0) {
1130 sbfree(sb, m);
1131
1132 ml = m;
1133 m = m->m_next;
1134 }
1135 if (ml) {
1136 ml->m_next = (struct mbuf *)0;
1137 last->m_nextpkt = (struct mbuf *)0;
1138 m_freem_list(free_list);
1139 }
1140 if (m) {
1141 sb->sb_mb = m;
1142 m->m_nextpkt = next;
1143 } else
1144 sb->sb_mb = next;
1145
1146 postevent(0, sb, EV_RWBYTES);
1147
1148 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1149}
1150
1151/*
1152 * Drop a record off the front of a sockbuf
1153 * and move the next record to the front.
1154 */
1155void
1156sbdroprecord(sb)
1157 register struct sockbuf *sb;
1158{
1159 register struct mbuf *m, *mn;
1160
1161 m = sb->sb_mb;
1162 if (m) {
1163 sb->sb_mb = m->m_nextpkt;
1164 do {
1165 sbfree(sb, m);
1166 MFREE(m, mn);
1167 m = mn;
1168 } while (m);
1169 }
1170 postevent(0, sb, EV_RWBYTES);
1171}
1172
1173/*
1174 * Create a "control" mbuf containing the specified data
1175 * with the specified type for presentation on a socket buffer.
1176 */
1177struct mbuf *
1178sbcreatecontrol(p, size, type, level)
1179 caddr_t p;
1180 register int size;
1181 int type, level;
1182{
1183 register struct cmsghdr *cp;
1184 struct mbuf *m;
1185
1186 if (CMSG_SPACE((u_int)size) > MLEN)
1187 return ((struct mbuf *) NULL);
1188 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1189 return ((struct mbuf *) NULL);
1190 cp = mtod(m, struct cmsghdr *);
1191 /* XXX check size? */
1192 (void)memcpy(CMSG_DATA(cp), p, size);
1193 m->m_len = CMSG_SPACE(size);
1194 cp->cmsg_len = CMSG_LEN(size);
1195 cp->cmsg_level = level;
1196 cp->cmsg_type = type;
1197 return (m);
1198}
1199
1200/*
1201 * Some routines that return EOPNOTSUPP for entry points that are not
1202 * supported by a protocol. Fill in as needed.
1203 */
1204int
1205pru_abort_notsupp(struct socket *so)
1206{
1207 return EOPNOTSUPP;
1208}
1209
1210
1211int
1212pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
1213{
1214 return EOPNOTSUPP;
1215}
1216
1217int
1218pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
1219{
1220 return EOPNOTSUPP;
1221}
1222
1223int
1224pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1225{
1226 return EOPNOTSUPP;
1227}
1228
1229int
1230pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1231{
1232 return EOPNOTSUPP;
1233}
1234
1235int
1236pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1237{
1238 return EOPNOTSUPP;
1239}
1240
1241int
1242pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1243 struct ifnet *ifp, struct proc *p)
1244{
1245 return EOPNOTSUPP;
1246}
1247
1248int
1249pru_detach_notsupp(struct socket *so)
1250{
1251 return EOPNOTSUPP;
1252}
1253
1254int
1255pru_disconnect_notsupp(struct socket *so)
1256{
1257 return EOPNOTSUPP;
1258}
1259
1260int
1261pru_listen_notsupp(struct socket *so, struct proc *p)
1262{
1263 return EOPNOTSUPP;
1264}
1265
1266int
1267pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
1268{
1269 return EOPNOTSUPP;
1270}
1271
1272int
1273pru_rcvd_notsupp(struct socket *so, int flags)
1274{
1275 return EOPNOTSUPP;
1276}
1277
1278int
1279pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1280{
1281 return EOPNOTSUPP;
1282}
1283
1284int
1285pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
1286 struct sockaddr *addr, struct mbuf *control,
1287 struct proc *p)
1288
1289{
1290 return EOPNOTSUPP;
1291}
1292
1293
1294/*
1295 * This isn't really a ``null'' operation, but it's the default one
1296 * and doesn't do anything destructive.
1297 */
1298int
1299pru_sense_null(struct socket *so, struct stat *sb)
1300{
1301 sb->st_blksize = so->so_snd.sb_hiwat;
1302 return 0;
1303}
1304
1305
1306int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr,
1307 struct uio *uio, struct mbuf *top,
1308 struct mbuf *control, int flags)
1309
1310{
1311 return EOPNOTSUPP;
1312}
1313
1314int pru_soreceive_notsupp(struct socket *so,
1315 struct sockaddr **paddr,
1316 struct uio *uio, struct mbuf **mp0,
1317 struct mbuf **controlp, int *flagsp)
1318{
1319 return EOPNOTSUPP;
1320}
1321
1322int
1323
1324pru_shutdown_notsupp(struct socket *so)
1325{
1326 return EOPNOTSUPP;
1327}
1328
1329int
1330pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
1331{
1332 return EOPNOTSUPP;
1333}
1334
1335int pru_sosend(struct socket *so, struct sockaddr *addr,
1336 struct uio *uio, struct mbuf *top,
1337 struct mbuf *control, int flags)
1338{
1339 return EOPNOTSUPP;
1340}
1341
1342int pru_soreceive(struct socket *so,
1343 struct sockaddr **paddr,
1344 struct uio *uio, struct mbuf **mp0,
1345 struct mbuf **controlp, int *flagsp)
1346{
1347 return EOPNOTSUPP;
1348}
1349
1350
1351int
1352pru_sopoll_notsupp(__unused struct socket *so, __unused int events,
1353 __unused kauth_cred_t cred, __unused void *wql)
1354{
1355 return EOPNOTSUPP;
1356}
1357
1358
1359#ifdef __APPLE__
1360/*
1361 * The following are macros on BSD and functions on Darwin
1362 */
1363
1364/*
1365 * Do we need to notify the other side when I/O is possible?
1366 */
1367
1368int
1369sb_notify(struct sockbuf *sb)
1370{
1371 return ((sb->sb_flags & (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)) != 0);
1372}
1373
1374/*
1375 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1376 * This is problematical if the fields are unsigned, as the space might
1377 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1378 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1379 */
1380long
1381sbspace(struct sockbuf *sb)
1382{
1383 return ((long) imin((int)(sb->sb_hiwat - sb->sb_cc),
1384 (int)(sb->sb_mbmax - sb->sb_mbcnt)));
1385}
1386
1387/* do we have to send all at once on a socket? */
1388int
1389sosendallatonce(struct socket *so)
1390{
1391 return (so->so_proto->pr_flags & PR_ATOMIC);
1392}
1393
1394/* can we read something from so? */
1395int
1396soreadable(struct socket *so)
1397{
1398 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1399 (so->so_state & SS_CANTRCVMORE) ||
1400 so->so_comp.tqh_first || so->so_error);
1401}
1402
1403/* can we write something to so? */
1404
1405int
1406sowriteable(struct socket *so)
1407{
1408 return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1409 ((so->so_state&SS_ISCONNECTED) ||
1410 (so->so_proto->pr_flags&PR_CONNREQUIRED)==0)) ||
1411 (so->so_state & SS_CANTSENDMORE) ||
1412 so->so_error);
1413}
1414
1415/* adjust counters in sb reflecting allocation of m */
1416
1417void
1418sballoc(struct sockbuf *sb, struct mbuf *m)
1419{
1420 sb->sb_cc += m->m_len;
1421 sb->sb_mbcnt += MSIZE;
1422 if (m->m_flags & M_EXT)
1423 sb->sb_mbcnt += m->m_ext.ext_size;
1424}
1425
1426/* adjust counters in sb reflecting freeing of m */
1427void
1428sbfree(struct sockbuf *sb, struct mbuf *m)
1429{
1430 sb->sb_cc -= m->m_len;
1431 sb->sb_mbcnt -= MSIZE;
1432 if (m->m_flags & M_EXT)
1433 sb->sb_mbcnt -= m->m_ext.ext_size;
1434}
1435
1436/*
1437 * Set lock on sockbuf sb; sleep if lock is already held.
1438 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1439 * Returns error without lock if sleep is interrupted.
1440 */
1441int
1442sblock(struct sockbuf *sb, int wf)
1443{
1444 return(sb->sb_flags & SB_LOCK ?
1445 ((wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK) :
1446 (sb->sb_flags |= SB_LOCK), 0);
1447}
1448
1449/* release lock on sockbuf sb */
1450void
1451sbunlock(struct sockbuf *sb, int keeplocked)
1452{
1453 struct socket *so = sb->sb_so;
1454 int lr, lr_saved;
1455 lck_mtx_t *mutex_held;
1456
1457#ifdef __ppc__
1458 __asm__ volatile("mflr %0" : "=r" (lr));
1459 lr_saved = lr;
1460#endif
1461 sb->sb_flags &= ~SB_LOCK;
1462
1463 if (so->so_proto->pr_getlock != NULL)
1464 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
1465 else
1466 mutex_held = so->so_proto->pr_domain->dom_mtx;
1467
1468 if (keeplocked == 0)
1469 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1470
1471 if (sb->sb_flags & SB_WANT) {
1472 sb->sb_flags &= ~SB_WANT;
1473 if (so->so_usecount < 0)
1474 panic("sbunlock: b4 wakeup so=%x ref=%d lr=%x sb_flags=%x\n", sb->sb_so, so->so_usecount, lr_saved, sb->sb_flags);
1475
1476 wakeup((caddr_t)&(sb)->sb_flags);
1477 }
1478 if (keeplocked == 0) { /* unlock on exit */
1479 so->so_usecount--;
1480 if (so->so_usecount < 0)
1481 panic("sbunlock: unlock on exit so=%x lr=%x sb_flags=%x\n", so, so->so_usecount,lr_saved, sb->sb_flags);
1482 so->reserved4= lr_saved;
1483 lck_mtx_unlock(mutex_held);
1484 }
1485}
1486
1487void
1488sorwakeup(struct socket * so)
1489{
1490 if (sb_notify(&so->so_rcv))
1491 sowakeup(so, &so->so_rcv);
1492}
1493
1494void
1495sowwakeup(struct socket * so)
1496{
1497 if (sb_notify(&so->so_snd))
1498 sowakeup(so, &so->so_snd);
1499}
1500#endif __APPLE__
1501
1502/*
1503 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1504 */
1505struct sockaddr *
1506dup_sockaddr(sa, canwait)
1507 struct sockaddr *sa;
1508 int canwait;
1509{
1510 struct sockaddr *sa2;
1511
1512 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1513 canwait ? M_WAITOK : M_NOWAIT);
1514 if (sa2)
1515 bcopy(sa, sa2, sa->sa_len);
1516 return sa2;
1517}
1518
1519/*
1520 * Create an external-format (``xsocket'') structure using the information
1521 * in the kernel-format socket structure pointed to by so. This is done
1522 * to reduce the spew of irrelevant information over this interface,
1523 * to isolate user code from changes in the kernel structure, and
1524 * potentially to provide information-hiding if we decide that
1525 * some of this information should be hidden from users.
1526 */
1527void
1528sotoxsocket(struct socket *so, struct xsocket *xso)
1529{
1530 xso->xso_len = sizeof *xso;
1531 xso->xso_so = so;
1532 xso->so_type = so->so_type;
1533 xso->so_options = so->so_options;
1534 xso->so_linger = so->so_linger;
1535 xso->so_state = so->so_state;
1536 xso->so_pcb = so->so_pcb;
1537 if (so->so_proto) {
1538 xso->xso_protocol = so->so_proto->pr_protocol;
1539 xso->xso_family = so->so_proto->pr_domain->dom_family;
1540 }
1541 else
1542 xso->xso_protocol = xso->xso_family = 0;
1543 xso->so_qlen = so->so_qlen;
1544 xso->so_incqlen = so->so_incqlen;
1545 xso->so_qlimit = so->so_qlimit;
1546 xso->so_timeo = so->so_timeo;
1547 xso->so_error = so->so_error;
1548 xso->so_pgid = so->so_pgid;
1549 xso->so_oobmark = so->so_oobmark;
1550 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1551 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1552 xso->so_uid = so->so_uid;
1553}
1554
1555/*
1556 * This does the same for sockbufs. Note that the xsockbuf structure,
1557 * since it is always embedded in a socket, does not include a self
1558 * pointer nor a length. We make this entry point public in case
1559 * some other mechanism needs it.
1560 */
1561void
1562sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1563{
1564 xsb->sb_cc = sb->sb_cc;
1565 xsb->sb_hiwat = sb->sb_hiwat;
1566 xsb->sb_mbcnt = sb->sb_mbcnt;
1567 xsb->sb_mbmax = sb->sb_mbmax;
1568 xsb->sb_lowat = sb->sb_lowat;
1569 xsb->sb_flags = sb->sb_flags;
1570 xsb->sb_timeo = (u_long)(sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
1571 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
1572 xsb->sb_timeo = 1;
1573}
1574
1575/*
1576 * Here is the definition of some of the basic objects in the kern.ipc
1577 * branch of the MIB.
1578 */
1579SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1580
1581/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1582static int dummy;
1583SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1584
1585SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1586 &sb_max, 0, "Maximum socket buffer size");
1587SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1588 &maxsockets, 0, "Maximum number of sockets avaliable");
1589SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1590 &sb_efficiency, 0, "");
1591SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
1592