]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_FREE_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | * File: kern/task.c | |
58 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, | |
59 | * David Black | |
60 | * | |
61 | * Task management primitives implementation. | |
62 | */ | |
63 | /* | |
64 | * Copyright (c) 1993 The University of Utah and | |
65 | * the Computer Systems Laboratory (CSL). All rights reserved. | |
66 | * | |
67 | * Permission to use, copy, modify and distribute this software and its | |
68 | * documentation is hereby granted, provided that both the copyright | |
69 | * notice and this permission notice appear in all copies of the | |
70 | * software, derivative works or modified versions, and any portions | |
71 | * thereof, and that both notices appear in supporting documentation. | |
72 | * | |
73 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS | |
74 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF | |
75 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
76 | * | |
77 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any | |
78 | * improvements that they make and grant CSL redistribution rights. | |
79 | * | |
80 | */ | |
81 | ||
82 | #include <mach_kdb.h> | |
83 | #include <mach_host.h> | |
84 | #include <mach_prof.h> | |
85 | #include <fast_tas.h> | |
86 | #include <platforms.h> | |
87 | ||
88 | #include <mach/mach_types.h> | |
89 | #include <mach/boolean.h> | |
90 | #include <mach/host_priv.h> | |
91 | #include <mach/machine/vm_types.h> | |
92 | #include <mach/vm_param.h> | |
93 | #include <mach/semaphore.h> | |
94 | #include <mach/task_info.h> | |
95 | #include <mach/task_special_ports.h> | |
96 | ||
97 | #include <ipc/ipc_types.h> | |
98 | #include <ipc/ipc_space.h> | |
99 | #include <ipc/ipc_entry.h> | |
100 | ||
101 | #include <kern/kern_types.h> | |
102 | #include <kern/mach_param.h> | |
103 | #include <kern/misc_protos.h> | |
104 | #include <kern/task.h> | |
105 | #include <kern/thread.h> | |
106 | #include <kern/zalloc.h> | |
107 | #include <kern/kalloc.h> | |
108 | #include <kern/processor.h> | |
109 | #include <kern/sched_prim.h> /* for thread_wakeup */ | |
110 | #include <kern/ipc_tt.h> | |
111 | #include <kern/ledger.h> | |
112 | #include <kern/host.h> | |
113 | #include <kern/clock.h> | |
114 | #include <kern/timer.h> | |
115 | #include <kern/profile.h> | |
116 | #include <kern/assert.h> | |
117 | #include <kern/sync_lock.h> | |
118 | ||
119 | #include <vm/pmap.h> | |
120 | #include <vm/vm_map.h> | |
121 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ | |
122 | #include <vm/vm_pageout.h> | |
123 | #include <vm/vm_protos.h> /* for vm_map_remove_commpage64 */ | |
124 | ||
125 | #if MACH_KDB | |
126 | #include <ddb/db_sym.h> | |
127 | #endif /* MACH_KDB */ | |
128 | ||
129 | #ifdef __ppc__ | |
130 | #include <ppc/exception.h> | |
131 | #include <ppc/hw_perfmon.h> | |
132 | #endif | |
133 | ||
134 | /* | |
135 | * Exported interfaces | |
136 | */ | |
137 | ||
138 | #include <mach/task_server.h> | |
139 | #include <mach/mach_host_server.h> | |
140 | #include <mach/host_security_server.h> | |
141 | #include <mach/mach_port_server.h> | |
142 | ||
143 | #include <vm/task_working_set.h> | |
144 | #include <vm/vm_shared_memory_server.h> | |
145 | ||
146 | task_t kernel_task; | |
147 | zone_t task_zone; | |
148 | ||
149 | /* Forwards */ | |
150 | ||
151 | void task_hold_locked( | |
152 | task_t task); | |
153 | void task_wait_locked( | |
154 | task_t task); | |
155 | void task_release_locked( | |
156 | task_t task); | |
157 | void task_free( | |
158 | task_t task ); | |
159 | void task_synchronizer_destroy_all( | |
160 | task_t task); | |
161 | ||
162 | kern_return_t task_set_ledger( | |
163 | task_t task, | |
164 | ledger_t wired, | |
165 | ledger_t paged); | |
166 | ||
167 | void | |
168 | task_backing_store_privileged( | |
169 | task_t task) | |
170 | { | |
171 | task_lock(task); | |
172 | task->priv_flags |= VM_BACKING_STORE_PRIV; | |
173 | task_unlock(task); | |
174 | return; | |
175 | } | |
176 | ||
177 | void | |
178 | task_working_set_disable(task_t task) | |
179 | { | |
180 | struct tws_hash *ws; | |
181 | ||
182 | task_lock(task); | |
183 | ws = task->dynamic_working_set; | |
184 | task->dynamic_working_set = NULL; | |
185 | task_unlock(task); | |
186 | if (ws) { | |
187 | tws_hash_ws_flush(ws); | |
188 | tws_hash_destroy(ws); | |
189 | } | |
190 | } | |
191 | ||
192 | void | |
193 | task_set_64bit( | |
194 | task_t task, | |
195 | boolean_t is64bit) | |
196 | { | |
197 | if(is64bit) { | |
198 | /* LP64todo - no task working set for 64-bit */ | |
199 | task_set_64BitAddr(task); | |
200 | task_working_set_disable(task); | |
201 | task->map->max_offset = MACH_VM_MAX_ADDRESS; | |
202 | } else { | |
203 | /* | |
204 | * Deallocate all memory previously allocated | |
205 | * above the 32-bit address space, since it won't | |
206 | * be accessible anymore. | |
207 | */ | |
208 | /* LP64todo - make this clean */ | |
209 | #ifdef __ppc__ | |
210 | vm_map_remove_commpage64(task->map); | |
211 | pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */ | |
212 | #endif | |
213 | (void) vm_map_remove(task->map, | |
214 | (vm_map_offset_t) VM_MAX_ADDRESS, | |
215 | MACH_VM_MAX_ADDRESS, | |
216 | VM_MAP_NO_FLAGS); | |
217 | task_clear_64BitAddr(task); | |
218 | task->map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS; | |
219 | } | |
220 | } | |
221 | ||
222 | void | |
223 | task_init(void) | |
224 | { | |
225 | task_zone = zinit( | |
226 | sizeof(struct task), | |
227 | TASK_MAX * sizeof(struct task), | |
228 | TASK_CHUNK * sizeof(struct task), | |
229 | "tasks"); | |
230 | ||
231 | /* | |
232 | * Create the kernel task as the first task. | |
233 | */ | |
234 | if (task_create_internal(TASK_NULL, FALSE, &kernel_task) != KERN_SUCCESS) | |
235 | panic("task_init\n"); | |
236 | ||
237 | vm_map_deallocate(kernel_task->map); | |
238 | kernel_task->map = kernel_map; | |
239 | } | |
240 | ||
241 | #if MACH_HOST | |
242 | ||
243 | #if 0 | |
244 | static void | |
245 | task_freeze( | |
246 | task_t task) | |
247 | { | |
248 | task_lock(task); | |
249 | /* | |
250 | * If may_assign is false, task is already being assigned, | |
251 | * wait for that to finish. | |
252 | */ | |
253 | while (task->may_assign == FALSE) { | |
254 | wait_result_t res; | |
255 | ||
256 | task->assign_active = TRUE; | |
257 | res = thread_sleep_mutex((event_t) &task->assign_active, | |
258 | &task->lock, THREAD_UNINT); | |
259 | assert(res == THREAD_AWAKENED); | |
260 | } | |
261 | task->may_assign = FALSE; | |
262 | task_unlock(task); | |
263 | return; | |
264 | } | |
265 | #else | |
266 | #define thread_freeze(thread) assert(task->processor_set == &default_pset) | |
267 | #endif | |
268 | ||
269 | #if 0 | |
270 | static void | |
271 | task_unfreeze( | |
272 | task_t task) | |
273 | { | |
274 | task_lock(task); | |
275 | assert(task->may_assign == FALSE); | |
276 | task->may_assign = TRUE; | |
277 | if (task->assign_active == TRUE) { | |
278 | task->assign_active = FALSE; | |
279 | thread_wakeup((event_t)&task->assign_active); | |
280 | } | |
281 | task_unlock(task); | |
282 | return; | |
283 | } | |
284 | #else | |
285 | #define thread_unfreeze(thread) assert(task->processor_set == &default_pset) | |
286 | #endif | |
287 | ||
288 | #endif /* MACH_HOST */ | |
289 | ||
290 | /* | |
291 | * Create a task running in the kernel address space. It may | |
292 | * have its own map of size mem_size and may have ipc privileges. | |
293 | */ | |
294 | kern_return_t | |
295 | kernel_task_create( | |
296 | __unused task_t parent_task, | |
297 | __unused vm_offset_t map_base, | |
298 | __unused vm_size_t map_size, | |
299 | __unused task_t *child_task) | |
300 | { | |
301 | return (KERN_INVALID_ARGUMENT); | |
302 | } | |
303 | ||
304 | kern_return_t | |
305 | task_create( | |
306 | task_t parent_task, | |
307 | __unused ledger_port_array_t ledger_ports, | |
308 | __unused mach_msg_type_number_t num_ledger_ports, | |
309 | boolean_t inherit_memory, | |
310 | task_t *child_task) /* OUT */ | |
311 | { | |
312 | if (parent_task == TASK_NULL) | |
313 | return(KERN_INVALID_ARGUMENT); | |
314 | ||
315 | return task_create_internal( | |
316 | parent_task, inherit_memory, child_task); | |
317 | } | |
318 | ||
319 | kern_return_t | |
320 | host_security_create_task_token( | |
321 | host_security_t host_security, | |
322 | task_t parent_task, | |
323 | security_token_t sec_token, | |
324 | audit_token_t audit_token, | |
325 | host_priv_t host_priv, | |
326 | __unused ledger_port_array_t ledger_ports, | |
327 | __unused mach_msg_type_number_t num_ledger_ports, | |
328 | boolean_t inherit_memory, | |
329 | task_t *child_task) /* OUT */ | |
330 | { | |
331 | kern_return_t result; | |
332 | ||
333 | if (parent_task == TASK_NULL) | |
334 | return(KERN_INVALID_ARGUMENT); | |
335 | ||
336 | if (host_security == HOST_NULL) | |
337 | return(KERN_INVALID_SECURITY); | |
338 | ||
339 | result = task_create_internal( | |
340 | parent_task, inherit_memory, child_task); | |
341 | ||
342 | if (result != KERN_SUCCESS) | |
343 | return(result); | |
344 | ||
345 | result = host_security_set_task_token(host_security, | |
346 | *child_task, | |
347 | sec_token, | |
348 | audit_token, | |
349 | host_priv); | |
350 | ||
351 | if (result != KERN_SUCCESS) | |
352 | return(result); | |
353 | ||
354 | return(result); | |
355 | } | |
356 | ||
357 | kern_return_t | |
358 | task_create_internal( | |
359 | task_t parent_task, | |
360 | boolean_t inherit_memory, | |
361 | task_t *child_task) /* OUT */ | |
362 | { | |
363 | task_t new_task; | |
364 | processor_set_t pset; | |
365 | ||
366 | new_task = (task_t) zalloc(task_zone); | |
367 | ||
368 | if (new_task == TASK_NULL) | |
369 | return(KERN_RESOURCE_SHORTAGE); | |
370 | ||
371 | /* one ref for just being alive; one for our caller */ | |
372 | new_task->ref_count = 2; | |
373 | ||
374 | if (inherit_memory) | |
375 | new_task->map = vm_map_fork(parent_task->map); | |
376 | else | |
377 | new_task->map = vm_map_create(pmap_create(0), | |
378 | (vm_map_offset_t)(VM_MIN_ADDRESS), | |
379 | (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE); | |
380 | ||
381 | mutex_init(&new_task->lock, 0); | |
382 | queue_init(&new_task->threads); | |
383 | new_task->suspend_count = 0; | |
384 | new_task->thread_count = 0; | |
385 | new_task->active_thread_count = 0; | |
386 | new_task->user_stop_count = 0; | |
387 | new_task->role = TASK_UNSPECIFIED; | |
388 | new_task->active = TRUE; | |
389 | new_task->user_data = 0; | |
390 | new_task->faults = 0; | |
391 | new_task->cow_faults = 0; | |
392 | new_task->pageins = 0; | |
393 | new_task->messages_sent = 0; | |
394 | new_task->messages_received = 0; | |
395 | new_task->syscalls_mach = 0; | |
396 | new_task->priv_flags = 0; | |
397 | new_task->syscalls_unix=0; | |
398 | new_task->csw=0; | |
399 | new_task->taskFeatures[0] = 0; /* Init task features */ | |
400 | new_task->taskFeatures[1] = 0; /* Init task features */ | |
401 | new_task->dynamic_working_set = 0; | |
402 | ||
403 | task_working_set_create(new_task, TWS_SMALL_HASH_LINE_COUNT, | |
404 | 0, TWS_HASH_STYLE_DEFAULT); | |
405 | ||
406 | #ifdef MACH_BSD | |
407 | new_task->bsd_info = 0; | |
408 | #endif /* MACH_BSD */ | |
409 | ||
410 | #ifdef __ppc__ | |
411 | if(BootProcInfo.pf.Available & pf64Bit) new_task->taskFeatures[0] |= tf64BitData; /* If 64-bit machine, show we have 64-bit registers at least */ | |
412 | #endif | |
413 | ||
414 | queue_init(&new_task->semaphore_list); | |
415 | queue_init(&new_task->lock_set_list); | |
416 | new_task->semaphores_owned = 0; | |
417 | new_task->lock_sets_owned = 0; | |
418 | ||
419 | #if MACH_HOST | |
420 | new_task->may_assign = TRUE; | |
421 | new_task->assign_active = FALSE; | |
422 | #endif /* MACH_HOST */ | |
423 | ||
424 | ipc_task_init(new_task, parent_task); | |
425 | ||
426 | new_task->total_user_time = 0; | |
427 | new_task->total_system_time = 0; | |
428 | ||
429 | task_prof_init(new_task); | |
430 | ||
431 | if (parent_task != TASK_NULL) { | |
432 | #if MACH_HOST | |
433 | /* | |
434 | * Freeze the parent, so that parent_task->processor_set | |
435 | * cannot change. | |
436 | */ | |
437 | task_freeze(parent_task); | |
438 | #endif /* MACH_HOST */ | |
439 | pset = parent_task->processor_set; | |
440 | if (!pset->active) | |
441 | pset = &default_pset; | |
442 | ||
443 | new_task->sec_token = parent_task->sec_token; | |
444 | new_task->audit_token = parent_task->audit_token; | |
445 | ||
446 | shared_region_mapping_ref(parent_task->system_shared_region); | |
447 | new_task->system_shared_region = parent_task->system_shared_region; | |
448 | ||
449 | new_task->wired_ledger_port = ledger_copy( | |
450 | convert_port_to_ledger(parent_task->wired_ledger_port)); | |
451 | new_task->paged_ledger_port = ledger_copy( | |
452 | convert_port_to_ledger(parent_task->paged_ledger_port)); | |
453 | if(task_has_64BitAddr(parent_task)) | |
454 | task_set_64BitAddr(new_task); | |
455 | } | |
456 | else { | |
457 | pset = &default_pset; | |
458 | ||
459 | new_task->sec_token = KERNEL_SECURITY_TOKEN; | |
460 | new_task->audit_token = KERNEL_AUDIT_TOKEN; | |
461 | new_task->wired_ledger_port = ledger_copy(root_wired_ledger); | |
462 | new_task->paged_ledger_port = ledger_copy(root_paged_ledger); | |
463 | } | |
464 | ||
465 | if (kernel_task == TASK_NULL) { | |
466 | new_task->priority = BASEPRI_KERNEL; | |
467 | new_task->max_priority = MAXPRI_KERNEL; | |
468 | } | |
469 | else { | |
470 | new_task->priority = BASEPRI_DEFAULT; | |
471 | new_task->max_priority = MAXPRI_USER; | |
472 | } | |
473 | ||
474 | pset_lock(pset); | |
475 | pset_add_task(pset, new_task); | |
476 | pset_unlock(pset); | |
477 | #if MACH_HOST | |
478 | if (parent_task != TASK_NULL) | |
479 | task_unfreeze(parent_task); | |
480 | #endif /* MACH_HOST */ | |
481 | ||
482 | if (vm_backing_store_low && parent_task != NULL) | |
483 | new_task->priv_flags |= (parent_task->priv_flags&VM_BACKING_STORE_PRIV); | |
484 | ||
485 | ipc_task_enable(new_task); | |
486 | ||
487 | *child_task = new_task; | |
488 | return(KERN_SUCCESS); | |
489 | } | |
490 | ||
491 | /* | |
492 | * task_deallocate: | |
493 | * | |
494 | * Drop a reference on a task. | |
495 | */ | |
496 | void | |
497 | task_deallocate( | |
498 | task_t task) | |
499 | { | |
500 | processor_set_t pset; | |
501 | ||
502 | if (task == TASK_NULL) | |
503 | return; | |
504 | ||
505 | if (task_deallocate_internal(task) > 0) | |
506 | return; | |
507 | ||
508 | pset = task->processor_set; | |
509 | pset_deallocate(pset); | |
510 | ||
511 | if(task->dynamic_working_set) | |
512 | tws_hash_destroy(task->dynamic_working_set); | |
513 | ||
514 | ipc_task_terminate(task); | |
515 | ||
516 | vm_map_deallocate(task->map); | |
517 | is_release(task->itk_space); | |
518 | ||
519 | task_prof_deallocate(task); | |
520 | zfree(task_zone, task); | |
521 | } | |
522 | ||
523 | /* | |
524 | * task_terminate: | |
525 | * | |
526 | * Terminate the specified task. See comments on thread_terminate | |
527 | * (kern/thread.c) about problems with terminating the "current task." | |
528 | */ | |
529 | ||
530 | kern_return_t | |
531 | task_terminate( | |
532 | task_t task) | |
533 | { | |
534 | if (task == TASK_NULL) | |
535 | return (KERN_INVALID_ARGUMENT); | |
536 | ||
537 | if (task->bsd_info) | |
538 | return (KERN_FAILURE); | |
539 | ||
540 | return (task_terminate_internal(task)); | |
541 | } | |
542 | ||
543 | kern_return_t | |
544 | task_terminate_internal( | |
545 | task_t task) | |
546 | { | |
547 | processor_set_t pset; | |
548 | thread_t thread, self; | |
549 | task_t self_task; | |
550 | boolean_t interrupt_save; | |
551 | ||
552 | assert(task != kernel_task); | |
553 | ||
554 | self = current_thread(); | |
555 | self_task = self->task; | |
556 | ||
557 | /* | |
558 | * Get the task locked and make sure that we are not racing | |
559 | * with someone else trying to terminate us. | |
560 | */ | |
561 | if (task == self_task) | |
562 | task_lock(task); | |
563 | else | |
564 | if (task < self_task) { | |
565 | task_lock(task); | |
566 | task_lock(self_task); | |
567 | } | |
568 | else { | |
569 | task_lock(self_task); | |
570 | task_lock(task); | |
571 | } | |
572 | ||
573 | if (!task->active || !self->active) { | |
574 | /* | |
575 | * Task or current act is already being terminated. | |
576 | * Just return an error. If we are dying, this will | |
577 | * just get us to our AST special handler and that | |
578 | * will get us to finalize the termination of ourselves. | |
579 | */ | |
580 | task_unlock(task); | |
581 | if (self_task != task) | |
582 | task_unlock(self_task); | |
583 | ||
584 | return (KERN_FAILURE); | |
585 | } | |
586 | ||
587 | if (self_task != task) | |
588 | task_unlock(self_task); | |
589 | ||
590 | /* | |
591 | * Make sure the current thread does not get aborted out of | |
592 | * the waits inside these operations. | |
593 | */ | |
594 | interrupt_save = thread_interrupt_level(THREAD_UNINT); | |
595 | ||
596 | /* | |
597 | * Indicate that we want all the threads to stop executing | |
598 | * at user space by holding the task (we would have held | |
599 | * each thread independently in thread_terminate_internal - | |
600 | * but this way we may be more likely to already find it | |
601 | * held there). Mark the task inactive, and prevent | |
602 | * further task operations via the task port. | |
603 | */ | |
604 | task_hold_locked(task); | |
605 | task->active = FALSE; | |
606 | ipc_task_disable(task); | |
607 | ||
608 | /* | |
609 | * Terminate each thread in the task. | |
610 | */ | |
611 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
612 | thread_terminate_internal(thread); | |
613 | } | |
614 | ||
615 | /* | |
616 | * Give the machine dependent code a chance | |
617 | * to perform cleanup before ripping apart | |
618 | * the task. | |
619 | */ | |
620 | if (self_task == task) | |
621 | machine_thread_terminate_self(); | |
622 | ||
623 | task_unlock(task); | |
624 | ||
625 | /* | |
626 | * Destroy all synchronizers owned by the task. | |
627 | */ | |
628 | task_synchronizer_destroy_all(task); | |
629 | ||
630 | /* | |
631 | * Destroy the IPC space, leaving just a reference for it. | |
632 | */ | |
633 | ipc_space_destroy(task->itk_space); | |
634 | ||
635 | /* LP64todo - make this clean */ | |
636 | #ifdef __ppc__ | |
637 | vm_map_remove_commpage64(task->map); | |
638 | pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */ | |
639 | #endif | |
640 | ||
641 | /* | |
642 | * If the current thread is a member of the task | |
643 | * being terminated, then the last reference to | |
644 | * the task will not be dropped until the thread | |
645 | * is finally reaped. To avoid incurring the | |
646 | * expense of removing the address space regions | |
647 | * at reap time, we do it explictly here. | |
648 | */ | |
649 | vm_map_remove(task->map, task->map->min_offset, | |
650 | task->map->max_offset, VM_MAP_NO_FLAGS); | |
651 | ||
652 | shared_region_mapping_dealloc(task->system_shared_region); | |
653 | ||
654 | /* | |
655 | * Flush working set here to avoid I/O in reaper thread | |
656 | */ | |
657 | if (task->dynamic_working_set) | |
658 | tws_hash_ws_flush(task->dynamic_working_set); | |
659 | ||
660 | pset = task->processor_set; | |
661 | pset_lock(pset); | |
662 | pset_remove_task(pset,task); | |
663 | pset_unlock(pset); | |
664 | ||
665 | /* | |
666 | * We no longer need to guard against being aborted, so restore | |
667 | * the previous interruptible state. | |
668 | */ | |
669 | thread_interrupt_level(interrupt_save); | |
670 | ||
671 | #if __ppc__ | |
672 | perfmon_release_facility(task); // notify the perfmon facility | |
673 | #endif | |
674 | ||
675 | /* | |
676 | * Get rid of the task active reference on itself. | |
677 | */ | |
678 | task_deallocate(task); | |
679 | ||
680 | return (KERN_SUCCESS); | |
681 | } | |
682 | ||
683 | /* | |
684 | * task_halt: | |
685 | * | |
686 | * Shut the current task down (except for the current thread) in | |
687 | * preparation for dramatic changes to the task (probably exec). | |
688 | * We hold the task, terminate all other threads in the task and | |
689 | * wait for them to terminate, clean up the portspace, and when | |
690 | * all done, let the current thread go. | |
691 | */ | |
692 | kern_return_t | |
693 | task_halt( | |
694 | task_t task) | |
695 | { | |
696 | thread_t thread, self; | |
697 | ||
698 | assert(task != kernel_task); | |
699 | ||
700 | self = current_thread(); | |
701 | ||
702 | if (task != self->task) | |
703 | return (KERN_INVALID_ARGUMENT); | |
704 | ||
705 | task_lock(task); | |
706 | ||
707 | if (!task->active || !self->active) { | |
708 | /* | |
709 | * Task or current thread is already being terminated. | |
710 | * Hurry up and return out of the current kernel context | |
711 | * so that we run our AST special handler to terminate | |
712 | * ourselves. | |
713 | */ | |
714 | task_unlock(task); | |
715 | ||
716 | return (KERN_FAILURE); | |
717 | } | |
718 | ||
719 | if (task->thread_count > 1) { | |
720 | /* | |
721 | * Mark all the threads to keep them from starting any more | |
722 | * user-level execution. The thread_terminate_internal code | |
723 | * would do this on a thread by thread basis anyway, but this | |
724 | * gives us a better chance of not having to wait there. | |
725 | */ | |
726 | task_hold_locked(task); | |
727 | ||
728 | /* | |
729 | * Terminate all the other threads in the task. | |
730 | */ | |
731 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
732 | if (thread != self) | |
733 | thread_terminate_internal(thread); | |
734 | } | |
735 | ||
736 | task_release_locked(task); | |
737 | } | |
738 | ||
739 | /* | |
740 | * Give the machine dependent code a chance | |
741 | * to perform cleanup before ripping apart | |
742 | * the task. | |
743 | */ | |
744 | machine_thread_terminate_self(); | |
745 | ||
746 | task_unlock(task); | |
747 | ||
748 | /* | |
749 | * Destroy all synchronizers owned by the task. | |
750 | */ | |
751 | task_synchronizer_destroy_all(task); | |
752 | ||
753 | /* | |
754 | * Destroy the contents of the IPC space, leaving just | |
755 | * a reference for it. | |
756 | */ | |
757 | ipc_space_clean(task->itk_space); | |
758 | ||
759 | /* | |
760 | * Clean out the address space, as we are going to be | |
761 | * getting a new one. | |
762 | */ | |
763 | vm_map_remove(task->map, task->map->min_offset, | |
764 | task->map->max_offset, VM_MAP_NO_FLAGS); | |
765 | ||
766 | return (KERN_SUCCESS); | |
767 | } | |
768 | ||
769 | /* | |
770 | * task_hold_locked: | |
771 | * | |
772 | * Suspend execution of the specified task. | |
773 | * This is a recursive-style suspension of the task, a count of | |
774 | * suspends is maintained. | |
775 | * | |
776 | * CONDITIONS: the task is locked and active. | |
777 | */ | |
778 | void | |
779 | task_hold_locked( | |
780 | register task_t task) | |
781 | { | |
782 | register thread_t thread; | |
783 | ||
784 | assert(task->active); | |
785 | ||
786 | if (task->suspend_count++ > 0) | |
787 | return; | |
788 | ||
789 | /* | |
790 | * Iterate through all the threads and hold them. | |
791 | */ | |
792 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
793 | thread_mtx_lock(thread); | |
794 | thread_hold(thread); | |
795 | thread_mtx_unlock(thread); | |
796 | } | |
797 | } | |
798 | ||
799 | /* | |
800 | * task_hold: | |
801 | * | |
802 | * Same as the internal routine above, except that is must lock | |
803 | * and verify that the task is active. This differs from task_suspend | |
804 | * in that it places a kernel hold on the task rather than just a | |
805 | * user-level hold. This keeps users from over resuming and setting | |
806 | * it running out from under the kernel. | |
807 | * | |
808 | * CONDITIONS: the caller holds a reference on the task | |
809 | */ | |
810 | kern_return_t | |
811 | task_hold( | |
812 | register task_t task) | |
813 | { | |
814 | if (task == TASK_NULL) | |
815 | return (KERN_INVALID_ARGUMENT); | |
816 | ||
817 | task_lock(task); | |
818 | ||
819 | if (!task->active) { | |
820 | task_unlock(task); | |
821 | ||
822 | return (KERN_FAILURE); | |
823 | } | |
824 | ||
825 | task_hold_locked(task); | |
826 | task_unlock(task); | |
827 | ||
828 | return (KERN_SUCCESS); | |
829 | } | |
830 | ||
831 | /* | |
832 | * task_wait_locked: | |
833 | * | |
834 | * Wait for all threads in task to stop. | |
835 | * | |
836 | * Conditions: | |
837 | * Called with task locked, active, and held. | |
838 | */ | |
839 | void | |
840 | task_wait_locked( | |
841 | register task_t task) | |
842 | { | |
843 | register thread_t thread, self; | |
844 | ||
845 | assert(task->active); | |
846 | assert(task->suspend_count > 0); | |
847 | ||
848 | self = current_thread(); | |
849 | ||
850 | /* | |
851 | * Iterate through all the threads and wait for them to | |
852 | * stop. Do not wait for the current thread if it is within | |
853 | * the task. | |
854 | */ | |
855 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
856 | if (thread != self) | |
857 | thread_wait(thread); | |
858 | } | |
859 | } | |
860 | ||
861 | /* | |
862 | * task_release_locked: | |
863 | * | |
864 | * Release a kernel hold on a task. | |
865 | * | |
866 | * CONDITIONS: the task is locked and active | |
867 | */ | |
868 | void | |
869 | task_release_locked( | |
870 | register task_t task) | |
871 | { | |
872 | register thread_t thread; | |
873 | ||
874 | assert(task->active); | |
875 | assert(task->suspend_count > 0); | |
876 | ||
877 | if (--task->suspend_count > 0) | |
878 | return; | |
879 | ||
880 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
881 | thread_mtx_lock(thread); | |
882 | thread_release(thread); | |
883 | thread_mtx_unlock(thread); | |
884 | } | |
885 | } | |
886 | ||
887 | /* | |
888 | * task_release: | |
889 | * | |
890 | * Same as the internal routine above, except that it must lock | |
891 | * and verify that the task is active. | |
892 | * | |
893 | * CONDITIONS: The caller holds a reference to the task | |
894 | */ | |
895 | kern_return_t | |
896 | task_release( | |
897 | task_t task) | |
898 | { | |
899 | if (task == TASK_NULL) | |
900 | return (KERN_INVALID_ARGUMENT); | |
901 | ||
902 | task_lock(task); | |
903 | ||
904 | if (!task->active) { | |
905 | task_unlock(task); | |
906 | ||
907 | return (KERN_FAILURE); | |
908 | } | |
909 | ||
910 | task_release_locked(task); | |
911 | task_unlock(task); | |
912 | ||
913 | return (KERN_SUCCESS); | |
914 | } | |
915 | ||
916 | kern_return_t | |
917 | task_threads( | |
918 | task_t task, | |
919 | thread_act_array_t *threads_out, | |
920 | mach_msg_type_number_t *count) | |
921 | { | |
922 | mach_msg_type_number_t actual; | |
923 | thread_t *threads; | |
924 | thread_t thread; | |
925 | vm_size_t size, size_needed; | |
926 | void *addr; | |
927 | unsigned int i, j; | |
928 | ||
929 | if (task == TASK_NULL) | |
930 | return (KERN_INVALID_ARGUMENT); | |
931 | ||
932 | size = 0; addr = 0; | |
933 | ||
934 | for (;;) { | |
935 | task_lock(task); | |
936 | if (!task->active) { | |
937 | task_unlock(task); | |
938 | ||
939 | if (size != 0) | |
940 | kfree(addr, size); | |
941 | ||
942 | return (KERN_FAILURE); | |
943 | } | |
944 | ||
945 | actual = task->thread_count; | |
946 | ||
947 | /* do we have the memory we need? */ | |
948 | size_needed = actual * sizeof (mach_port_t); | |
949 | if (size_needed <= size) | |
950 | break; | |
951 | ||
952 | /* unlock the task and allocate more memory */ | |
953 | task_unlock(task); | |
954 | ||
955 | if (size != 0) | |
956 | kfree(addr, size); | |
957 | ||
958 | assert(size_needed > 0); | |
959 | size = size_needed; | |
960 | ||
961 | addr = kalloc(size); | |
962 | if (addr == 0) | |
963 | return (KERN_RESOURCE_SHORTAGE); | |
964 | } | |
965 | ||
966 | /* OK, have memory and the task is locked & active */ | |
967 | threads = (thread_t *)addr; | |
968 | ||
969 | i = j = 0; | |
970 | ||
971 | for (thread = (thread_t)queue_first(&task->threads); i < actual; | |
972 | ++i, thread = (thread_t)queue_next(&thread->task_threads)) { | |
973 | thread_reference_internal(thread); | |
974 | threads[j++] = thread; | |
975 | } | |
976 | ||
977 | assert(queue_end(&task->threads, (queue_entry_t)thread)); | |
978 | ||
979 | actual = j; | |
980 | size_needed = actual * sizeof (mach_port_t); | |
981 | ||
982 | /* can unlock task now that we've got the thread refs */ | |
983 | task_unlock(task); | |
984 | ||
985 | if (actual == 0) { | |
986 | /* no threads, so return null pointer and deallocate memory */ | |
987 | ||
988 | *threads_out = 0; | |
989 | *count = 0; | |
990 | ||
991 | if (size != 0) | |
992 | kfree(addr, size); | |
993 | } | |
994 | else { | |
995 | /* if we allocated too much, must copy */ | |
996 | ||
997 | if (size_needed < size) { | |
998 | void *newaddr; | |
999 | ||
1000 | newaddr = kalloc(size_needed); | |
1001 | if (newaddr == 0) { | |
1002 | for (i = 0; i < actual; ++i) | |
1003 | thread_deallocate(threads[i]); | |
1004 | kfree(addr, size); | |
1005 | return (KERN_RESOURCE_SHORTAGE); | |
1006 | } | |
1007 | ||
1008 | bcopy(addr, newaddr, size_needed); | |
1009 | kfree(addr, size); | |
1010 | threads = (thread_t *)newaddr; | |
1011 | } | |
1012 | ||
1013 | *threads_out = threads; | |
1014 | *count = actual; | |
1015 | ||
1016 | /* do the conversion that Mig should handle */ | |
1017 | ||
1018 | for (i = 0; i < actual; ++i) | |
1019 | ((ipc_port_t *) threads)[i] = convert_thread_to_port(threads[i]); | |
1020 | } | |
1021 | ||
1022 | return (KERN_SUCCESS); | |
1023 | } | |
1024 | ||
1025 | /* | |
1026 | * task_suspend: | |
1027 | * | |
1028 | * Implement a user-level suspension on a task. | |
1029 | * | |
1030 | * Conditions: | |
1031 | * The caller holds a reference to the task | |
1032 | */ | |
1033 | kern_return_t | |
1034 | task_suspend( | |
1035 | register task_t task) | |
1036 | { | |
1037 | if (task == TASK_NULL || task == kernel_task) | |
1038 | return (KERN_INVALID_ARGUMENT); | |
1039 | ||
1040 | task_lock(task); | |
1041 | ||
1042 | if (!task->active) { | |
1043 | task_unlock(task); | |
1044 | ||
1045 | return (KERN_FAILURE); | |
1046 | } | |
1047 | ||
1048 | if (task->user_stop_count++ > 0) { | |
1049 | /* | |
1050 | * If the stop count was positive, the task is | |
1051 | * already stopped and we can exit. | |
1052 | */ | |
1053 | task_unlock(task); | |
1054 | ||
1055 | return (KERN_SUCCESS); | |
1056 | } | |
1057 | ||
1058 | /* | |
1059 | * Put a kernel-level hold on the threads in the task (all | |
1060 | * user-level task suspensions added together represent a | |
1061 | * single kernel-level hold). We then wait for the threads | |
1062 | * to stop executing user code. | |
1063 | */ | |
1064 | task_hold_locked(task); | |
1065 | task_wait_locked(task); | |
1066 | ||
1067 | task_unlock(task); | |
1068 | ||
1069 | return (KERN_SUCCESS); | |
1070 | } | |
1071 | ||
1072 | /* | |
1073 | * task_resume: | |
1074 | * Release a kernel hold on a task. | |
1075 | * | |
1076 | * Conditions: | |
1077 | * The caller holds a reference to the task | |
1078 | */ | |
1079 | kern_return_t | |
1080 | task_resume( | |
1081 | register task_t task) | |
1082 | { | |
1083 | register boolean_t release = FALSE; | |
1084 | ||
1085 | if (task == TASK_NULL || task == kernel_task) | |
1086 | return (KERN_INVALID_ARGUMENT); | |
1087 | ||
1088 | task_lock(task); | |
1089 | ||
1090 | if (!task->active) { | |
1091 | task_unlock(task); | |
1092 | ||
1093 | return (KERN_FAILURE); | |
1094 | } | |
1095 | ||
1096 | if (task->user_stop_count > 0) { | |
1097 | if (--task->user_stop_count == 0) | |
1098 | release = TRUE; | |
1099 | } | |
1100 | else { | |
1101 | task_unlock(task); | |
1102 | ||
1103 | return (KERN_FAILURE); | |
1104 | } | |
1105 | ||
1106 | /* | |
1107 | * Release the task if necessary. | |
1108 | */ | |
1109 | if (release) | |
1110 | task_release_locked(task); | |
1111 | ||
1112 | task_unlock(task); | |
1113 | ||
1114 | return (KERN_SUCCESS); | |
1115 | } | |
1116 | ||
1117 | kern_return_t | |
1118 | host_security_set_task_token( | |
1119 | host_security_t host_security, | |
1120 | task_t task, | |
1121 | security_token_t sec_token, | |
1122 | audit_token_t audit_token, | |
1123 | host_priv_t host_priv) | |
1124 | { | |
1125 | ipc_port_t host_port; | |
1126 | kern_return_t kr; | |
1127 | ||
1128 | if (task == TASK_NULL) | |
1129 | return(KERN_INVALID_ARGUMENT); | |
1130 | ||
1131 | if (host_security == HOST_NULL) | |
1132 | return(KERN_INVALID_SECURITY); | |
1133 | ||
1134 | task_lock(task); | |
1135 | task->sec_token = sec_token; | |
1136 | task->audit_token = audit_token; | |
1137 | task_unlock(task); | |
1138 | ||
1139 | if (host_priv != HOST_PRIV_NULL) { | |
1140 | kr = host_get_host_priv_port(host_priv, &host_port); | |
1141 | } else { | |
1142 | kr = host_get_host_port(host_priv_self(), &host_port); | |
1143 | } | |
1144 | assert(kr == KERN_SUCCESS); | |
1145 | kr = task_set_special_port(task, TASK_HOST_PORT, host_port); | |
1146 | return(kr); | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * Utility routine to set a ledger | |
1151 | */ | |
1152 | kern_return_t | |
1153 | task_set_ledger( | |
1154 | task_t task, | |
1155 | ledger_t wired, | |
1156 | ledger_t paged) | |
1157 | { | |
1158 | if (task == TASK_NULL) | |
1159 | return(KERN_INVALID_ARGUMENT); | |
1160 | ||
1161 | task_lock(task); | |
1162 | if (wired) { | |
1163 | ipc_port_release_send(task->wired_ledger_port); | |
1164 | task->wired_ledger_port = ledger_copy(wired); | |
1165 | } | |
1166 | if (paged) { | |
1167 | ipc_port_release_send(task->paged_ledger_port); | |
1168 | task->paged_ledger_port = ledger_copy(paged); | |
1169 | } | |
1170 | task_unlock(task); | |
1171 | ||
1172 | return(KERN_SUCCESS); | |
1173 | } | |
1174 | ||
1175 | /* | |
1176 | * This routine was added, pretty much exclusively, for registering the | |
1177 | * RPC glue vector for in-kernel short circuited tasks. Rather than | |
1178 | * removing it completely, I have only disabled that feature (which was | |
1179 | * the only feature at the time). It just appears that we are going to | |
1180 | * want to add some user data to tasks in the future (i.e. bsd info, | |
1181 | * task names, etc...), so I left it in the formal task interface. | |
1182 | */ | |
1183 | kern_return_t | |
1184 | task_set_info( | |
1185 | task_t task, | |
1186 | task_flavor_t flavor, | |
1187 | __unused task_info_t task_info_in, /* pointer to IN array */ | |
1188 | __unused mach_msg_type_number_t task_info_count) | |
1189 | { | |
1190 | if (task == TASK_NULL) | |
1191 | return(KERN_INVALID_ARGUMENT); | |
1192 | ||
1193 | switch (flavor) { | |
1194 | default: | |
1195 | return (KERN_INVALID_ARGUMENT); | |
1196 | } | |
1197 | return (KERN_SUCCESS); | |
1198 | } | |
1199 | ||
1200 | kern_return_t | |
1201 | task_info( | |
1202 | task_t task, | |
1203 | task_flavor_t flavor, | |
1204 | task_info_t task_info_out, | |
1205 | mach_msg_type_number_t *task_info_count) | |
1206 | { | |
1207 | if (task == TASK_NULL) | |
1208 | return (KERN_INVALID_ARGUMENT); | |
1209 | ||
1210 | switch (flavor) { | |
1211 | ||
1212 | case TASK_BASIC_INFO_32: | |
1213 | { | |
1214 | task_basic_info_32_t basic_info; | |
1215 | vm_map_t map; | |
1216 | ||
1217 | if (*task_info_count < TASK_BASIC_INFO_32_COUNT) | |
1218 | return (KERN_INVALID_ARGUMENT); | |
1219 | ||
1220 | basic_info = (task_basic_info_32_t)task_info_out; | |
1221 | ||
1222 | map = (task == kernel_task)? kernel_map: task->map; | |
1223 | basic_info->virtual_size = CAST_DOWN(vm_offset_t,map->size); | |
1224 | basic_info->resident_size = pmap_resident_count(map->pmap) | |
1225 | * PAGE_SIZE; | |
1226 | ||
1227 | task_lock(task); | |
1228 | basic_info->policy = ((task != kernel_task)? | |
1229 | POLICY_TIMESHARE: POLICY_RR); | |
1230 | basic_info->suspend_count = task->user_stop_count; | |
1231 | ||
1232 | absolutetime_to_microtime( | |
1233 | task->total_user_time, | |
1234 | &basic_info->user_time.seconds, | |
1235 | &basic_info->user_time.microseconds); | |
1236 | absolutetime_to_microtime( | |
1237 | task->total_system_time, | |
1238 | &basic_info->system_time.seconds, | |
1239 | &basic_info->system_time.microseconds); | |
1240 | task_unlock(task); | |
1241 | ||
1242 | *task_info_count = TASK_BASIC_INFO_32_COUNT; | |
1243 | break; | |
1244 | } | |
1245 | ||
1246 | case TASK_BASIC_INFO_64: | |
1247 | { | |
1248 | task_basic_info_64_t basic_info; | |
1249 | vm_map_t map; | |
1250 | ||
1251 | if (*task_info_count < TASK_BASIC_INFO_64_COUNT) | |
1252 | return (KERN_INVALID_ARGUMENT); | |
1253 | ||
1254 | basic_info = (task_basic_info_64_t)task_info_out; | |
1255 | ||
1256 | map = (task == kernel_task)? kernel_map: task->map; | |
1257 | basic_info->virtual_size = map->size; | |
1258 | basic_info->resident_size = (mach_vm_size_t)(pmap_resident_count(map->pmap) | |
1259 | * PAGE_SIZE); | |
1260 | ||
1261 | task_lock(task); | |
1262 | basic_info->policy = ((task != kernel_task)? | |
1263 | POLICY_TIMESHARE: POLICY_RR); | |
1264 | basic_info->suspend_count = task->user_stop_count; | |
1265 | ||
1266 | absolutetime_to_microtime( | |
1267 | task->total_user_time, | |
1268 | &basic_info->user_time.seconds, | |
1269 | &basic_info->user_time.microseconds); | |
1270 | absolutetime_to_microtime( | |
1271 | task->total_system_time, | |
1272 | &basic_info->system_time.seconds, | |
1273 | &basic_info->system_time.microseconds); | |
1274 | task_unlock(task); | |
1275 | ||
1276 | *task_info_count = TASK_BASIC_INFO_64_COUNT; | |
1277 | break; | |
1278 | } | |
1279 | ||
1280 | case TASK_THREAD_TIMES_INFO: | |
1281 | { | |
1282 | register task_thread_times_info_t times_info; | |
1283 | register thread_t thread; | |
1284 | ||
1285 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) | |
1286 | return (KERN_INVALID_ARGUMENT); | |
1287 | ||
1288 | times_info = (task_thread_times_info_t) task_info_out; | |
1289 | times_info->user_time.seconds = 0; | |
1290 | times_info->user_time.microseconds = 0; | |
1291 | times_info->system_time.seconds = 0; | |
1292 | times_info->system_time.microseconds = 0; | |
1293 | ||
1294 | task_lock(task); | |
1295 | ||
1296 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1297 | time_value_t user_time, system_time; | |
1298 | ||
1299 | thread_read_times(thread, &user_time, &system_time); | |
1300 | ||
1301 | time_value_add(×_info->user_time, &user_time); | |
1302 | time_value_add(×_info->system_time, &system_time); | |
1303 | } | |
1304 | ||
1305 | task_unlock(task); | |
1306 | ||
1307 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT; | |
1308 | break; | |
1309 | } | |
1310 | ||
1311 | case TASK_ABSOLUTETIME_INFO: | |
1312 | { | |
1313 | task_absolutetime_info_t info; | |
1314 | register thread_t thread; | |
1315 | ||
1316 | if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) | |
1317 | return (KERN_INVALID_ARGUMENT); | |
1318 | ||
1319 | info = (task_absolutetime_info_t)task_info_out; | |
1320 | info->threads_user = info->threads_system = 0; | |
1321 | ||
1322 | task_lock(task); | |
1323 | ||
1324 | info->total_user = task->total_user_time; | |
1325 | info->total_system = task->total_system_time; | |
1326 | ||
1327 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1328 | uint64_t tval; | |
1329 | ||
1330 | tval = timer_grab(&thread->user_timer); | |
1331 | info->threads_user += tval; | |
1332 | info->total_user += tval; | |
1333 | ||
1334 | tval = timer_grab(&thread->system_timer); | |
1335 | info->threads_system += tval; | |
1336 | info->total_system += tval; | |
1337 | } | |
1338 | ||
1339 | task_unlock(task); | |
1340 | ||
1341 | *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT; | |
1342 | break; | |
1343 | } | |
1344 | ||
1345 | /* OBSOLETE */ | |
1346 | case TASK_SCHED_FIFO_INFO: | |
1347 | { | |
1348 | ||
1349 | if (*task_info_count < POLICY_FIFO_BASE_COUNT) | |
1350 | return (KERN_INVALID_ARGUMENT); | |
1351 | ||
1352 | return (KERN_INVALID_POLICY); | |
1353 | } | |
1354 | ||
1355 | /* OBSOLETE */ | |
1356 | case TASK_SCHED_RR_INFO: | |
1357 | { | |
1358 | register policy_rr_base_t rr_base; | |
1359 | ||
1360 | if (*task_info_count < POLICY_RR_BASE_COUNT) | |
1361 | return (KERN_INVALID_ARGUMENT); | |
1362 | ||
1363 | rr_base = (policy_rr_base_t) task_info_out; | |
1364 | ||
1365 | task_lock(task); | |
1366 | if (task != kernel_task) { | |
1367 | task_unlock(task); | |
1368 | return (KERN_INVALID_POLICY); | |
1369 | } | |
1370 | ||
1371 | rr_base->base_priority = task->priority; | |
1372 | task_unlock(task); | |
1373 | ||
1374 | rr_base->quantum = std_quantum_us / 1000; | |
1375 | ||
1376 | *task_info_count = POLICY_RR_BASE_COUNT; | |
1377 | break; | |
1378 | } | |
1379 | ||
1380 | /* OBSOLETE */ | |
1381 | case TASK_SCHED_TIMESHARE_INFO: | |
1382 | { | |
1383 | register policy_timeshare_base_t ts_base; | |
1384 | ||
1385 | if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) | |
1386 | return (KERN_INVALID_ARGUMENT); | |
1387 | ||
1388 | ts_base = (policy_timeshare_base_t) task_info_out; | |
1389 | ||
1390 | task_lock(task); | |
1391 | if (task == kernel_task) { | |
1392 | task_unlock(task); | |
1393 | return (KERN_INVALID_POLICY); | |
1394 | } | |
1395 | ||
1396 | ts_base->base_priority = task->priority; | |
1397 | task_unlock(task); | |
1398 | ||
1399 | *task_info_count = POLICY_TIMESHARE_BASE_COUNT; | |
1400 | break; | |
1401 | } | |
1402 | ||
1403 | case TASK_SECURITY_TOKEN: | |
1404 | { | |
1405 | register security_token_t *sec_token_p; | |
1406 | ||
1407 | if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) | |
1408 | return (KERN_INVALID_ARGUMENT); | |
1409 | ||
1410 | sec_token_p = (security_token_t *) task_info_out; | |
1411 | ||
1412 | task_lock(task); | |
1413 | *sec_token_p = task->sec_token; | |
1414 | task_unlock(task); | |
1415 | ||
1416 | *task_info_count = TASK_SECURITY_TOKEN_COUNT; | |
1417 | break; | |
1418 | } | |
1419 | ||
1420 | case TASK_AUDIT_TOKEN: | |
1421 | { | |
1422 | register audit_token_t *audit_token_p; | |
1423 | ||
1424 | if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) | |
1425 | return (KERN_INVALID_ARGUMENT); | |
1426 | ||
1427 | audit_token_p = (audit_token_t *) task_info_out; | |
1428 | ||
1429 | task_lock(task); | |
1430 | *audit_token_p = task->audit_token; | |
1431 | task_unlock(task); | |
1432 | ||
1433 | *task_info_count = TASK_AUDIT_TOKEN_COUNT; | |
1434 | break; | |
1435 | } | |
1436 | ||
1437 | case TASK_SCHED_INFO: | |
1438 | return (KERN_INVALID_ARGUMENT); | |
1439 | ||
1440 | case TASK_EVENTS_INFO: | |
1441 | { | |
1442 | register task_events_info_t events_info; | |
1443 | ||
1444 | if (*task_info_count < TASK_EVENTS_INFO_COUNT) | |
1445 | return (KERN_INVALID_ARGUMENT); | |
1446 | ||
1447 | events_info = (task_events_info_t) task_info_out; | |
1448 | ||
1449 | task_lock(task); | |
1450 | events_info->faults = task->faults; | |
1451 | events_info->pageins = task->pageins; | |
1452 | events_info->cow_faults = task->cow_faults; | |
1453 | events_info->messages_sent = task->messages_sent; | |
1454 | events_info->messages_received = task->messages_received; | |
1455 | events_info->syscalls_mach = task->syscalls_mach; | |
1456 | events_info->syscalls_unix = task->syscalls_unix; | |
1457 | events_info->csw = task->csw; | |
1458 | task_unlock(task); | |
1459 | ||
1460 | *task_info_count = TASK_EVENTS_INFO_COUNT; | |
1461 | break; | |
1462 | } | |
1463 | ||
1464 | default: | |
1465 | return (KERN_INVALID_ARGUMENT); | |
1466 | } | |
1467 | ||
1468 | return (KERN_SUCCESS); | |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | * task_assign: | |
1473 | * | |
1474 | * Change the assigned processor set for the task | |
1475 | */ | |
1476 | kern_return_t | |
1477 | task_assign( | |
1478 | __unused task_t task, | |
1479 | __unused processor_set_t new_pset, | |
1480 | __unused boolean_t assign_threads) | |
1481 | { | |
1482 | return(KERN_FAILURE); | |
1483 | } | |
1484 | ||
1485 | /* | |
1486 | * task_assign_default: | |
1487 | * | |
1488 | * Version of task_assign to assign to default processor set. | |
1489 | */ | |
1490 | kern_return_t | |
1491 | task_assign_default( | |
1492 | task_t task, | |
1493 | boolean_t assign_threads) | |
1494 | { | |
1495 | return (task_assign(task, &default_pset, assign_threads)); | |
1496 | } | |
1497 | ||
1498 | /* | |
1499 | * task_get_assignment | |
1500 | * | |
1501 | * Return name of processor set that task is assigned to. | |
1502 | */ | |
1503 | kern_return_t | |
1504 | task_get_assignment( | |
1505 | task_t task, | |
1506 | processor_set_t *pset) | |
1507 | { | |
1508 | if (!task->active) | |
1509 | return(KERN_FAILURE); | |
1510 | ||
1511 | *pset = task->processor_set; | |
1512 | pset_reference(*pset); | |
1513 | return(KERN_SUCCESS); | |
1514 | } | |
1515 | ||
1516 | ||
1517 | /* | |
1518 | * task_policy | |
1519 | * | |
1520 | * Set scheduling policy and parameters, both base and limit, for | |
1521 | * the given task. Policy must be a policy which is enabled for the | |
1522 | * processor set. Change contained threads if requested. | |
1523 | */ | |
1524 | kern_return_t | |
1525 | task_policy( | |
1526 | __unused task_t task, | |
1527 | __unused policy_t policy_id, | |
1528 | __unused policy_base_t base, | |
1529 | __unused mach_msg_type_number_t count, | |
1530 | __unused boolean_t set_limit, | |
1531 | __unused boolean_t change) | |
1532 | { | |
1533 | return(KERN_FAILURE); | |
1534 | } | |
1535 | ||
1536 | /* | |
1537 | * task_set_policy | |
1538 | * | |
1539 | * Set scheduling policy and parameters, both base and limit, for | |
1540 | * the given task. Policy can be any policy implemented by the | |
1541 | * processor set, whether enabled or not. Change contained threads | |
1542 | * if requested. | |
1543 | */ | |
1544 | kern_return_t | |
1545 | task_set_policy( | |
1546 | __unused task_t task, | |
1547 | __unused processor_set_t pset, | |
1548 | __unused policy_t policy_id, | |
1549 | __unused policy_base_t base, | |
1550 | __unused mach_msg_type_number_t base_count, | |
1551 | __unused policy_limit_t limit, | |
1552 | __unused mach_msg_type_number_t limit_count, | |
1553 | __unused boolean_t change) | |
1554 | { | |
1555 | return(KERN_FAILURE); | |
1556 | } | |
1557 | ||
1558 | #if FAST_TAS | |
1559 | kern_return_t | |
1560 | task_set_ras_pc( | |
1561 | task_t task, | |
1562 | vm_offset_t pc, | |
1563 | vm_offset_t endpc) | |
1564 | { | |
1565 | extern int fast_tas_debug; | |
1566 | ||
1567 | if (fast_tas_debug) { | |
1568 | printf("task 0x%x: setting fast_tas to [0x%x, 0x%x]\n", | |
1569 | task, pc, endpc); | |
1570 | } | |
1571 | task_lock(task); | |
1572 | task->fast_tas_base = pc; | |
1573 | task->fast_tas_end = endpc; | |
1574 | task_unlock(task); | |
1575 | return KERN_SUCCESS; | |
1576 | } | |
1577 | #else /* FAST_TAS */ | |
1578 | kern_return_t | |
1579 | task_set_ras_pc( | |
1580 | __unused task_t task, | |
1581 | __unused vm_offset_t pc, | |
1582 | __unused vm_offset_t endpc) | |
1583 | { | |
1584 | return KERN_FAILURE; | |
1585 | } | |
1586 | #endif /* FAST_TAS */ | |
1587 | ||
1588 | void | |
1589 | task_synchronizer_destroy_all(task_t task) | |
1590 | { | |
1591 | semaphore_t semaphore; | |
1592 | lock_set_t lock_set; | |
1593 | ||
1594 | /* | |
1595 | * Destroy owned semaphores | |
1596 | */ | |
1597 | ||
1598 | while (!queue_empty(&task->semaphore_list)) { | |
1599 | semaphore = (semaphore_t) queue_first(&task->semaphore_list); | |
1600 | (void) semaphore_destroy(task, semaphore); | |
1601 | } | |
1602 | ||
1603 | /* | |
1604 | * Destroy owned lock sets | |
1605 | */ | |
1606 | ||
1607 | while (!queue_empty(&task->lock_set_list)) { | |
1608 | lock_set = (lock_set_t) queue_first(&task->lock_set_list); | |
1609 | (void) lock_set_destroy(task, lock_set); | |
1610 | } | |
1611 | } | |
1612 | ||
1613 | /* | |
1614 | * We need to export some functions to other components that | |
1615 | * are currently implemented in macros within the osfmk | |
1616 | * component. Just export them as functions of the same name. | |
1617 | */ | |
1618 | boolean_t is_kerneltask(task_t t) | |
1619 | { | |
1620 | if (t == kernel_task) | |
1621 | return (TRUE); | |
1622 | ||
1623 | return (FALSE); | |
1624 | } | |
1625 | ||
1626 | #undef current_task | |
1627 | task_t current_task(void); | |
1628 | task_t current_task(void) | |
1629 | { | |
1630 | return (current_task_fast()); | |
1631 | } | |
1632 | ||
1633 | #undef task_reference | |
1634 | void task_reference(task_t task); | |
1635 | void | |
1636 | task_reference( | |
1637 | task_t task) | |
1638 | { | |
1639 | if (task != TASK_NULL) | |
1640 | task_reference_internal(task); | |
1641 | } |