]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/kalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * Date: 1985 | |
62 | * | |
63 | * General kernel memory allocator. This allocator is designed | |
64 | * to be used by the kernel to manage dynamic memory fast. | |
65 | */ | |
66 | ||
67 | #include <zone_debug.h> | |
68 | ||
69 | #include <mach/boolean.h> | |
70 | #include <mach/machine/vm_types.h> | |
71 | #include <mach/vm_param.h> | |
72 | #include <kern/misc_protos.h> | |
73 | #include <kern/zalloc.h> | |
74 | #include <kern/kalloc.h> | |
75 | #include <kern/lock.h> | |
76 | #include <vm/vm_kern.h> | |
77 | #include <vm/vm_object.h> | |
78 | #include <vm/vm_map.h> | |
79 | #include <libkern/OSMalloc.h> | |
80 | ||
81 | #ifdef MACH_BSD | |
82 | zone_t kalloc_zone(vm_size_t); | |
83 | #endif | |
84 | ||
85 | vm_map_t kalloc_map; | |
86 | vm_size_t kalloc_map_size = 16 * 1024 * 1024; | |
87 | vm_size_t kalloc_max; | |
88 | vm_size_t kalloc_max_prerounded; | |
89 | ||
90 | unsigned int kalloc_large_inuse; | |
91 | vm_size_t kalloc_large_total; | |
92 | vm_size_t kalloc_large_max; | |
93 | ||
94 | /* | |
95 | * All allocations of size less than kalloc_max are rounded to the | |
96 | * next highest power of 2. This allocator is built on top of | |
97 | * the zone allocator. A zone is created for each potential size | |
98 | * that we are willing to get in small blocks. | |
99 | * | |
100 | * We assume that kalloc_max is not greater than 64K; | |
101 | * thus 16 is a safe array size for k_zone and k_zone_name. | |
102 | * | |
103 | * Note that kalloc_max is somewhat confusingly named. | |
104 | * It represents the first power of two for which no zone exists. | |
105 | * kalloc_max_prerounded is the smallest allocation size, before | |
106 | * rounding, for which no zone exists. | |
107 | */ | |
108 | ||
109 | int first_k_zone = -1; | |
110 | struct zone *k_zone[16]; | |
111 | static const char *k_zone_name[16] = { | |
112 | "kalloc.1", "kalloc.2", | |
113 | "kalloc.4", "kalloc.8", | |
114 | "kalloc.16", "kalloc.32", | |
115 | "kalloc.64", "kalloc.128", | |
116 | "kalloc.256", "kalloc.512", | |
117 | "kalloc.1024", "kalloc.2048", | |
118 | "kalloc.4096", "kalloc.8192", | |
119 | "kalloc.16384", "kalloc.32768" | |
120 | }; | |
121 | ||
122 | /* | |
123 | * Max number of elements per zone. zinit rounds things up correctly | |
124 | * Doing things this way permits each zone to have a different maximum size | |
125 | * based on need, rather than just guessing; it also | |
126 | * means its patchable in case you're wrong! | |
127 | */ | |
128 | unsigned long k_zone_max[16] = { | |
129 | 1024, /* 1 Byte */ | |
130 | 1024, /* 2 Byte */ | |
131 | 1024, /* 4 Byte */ | |
132 | 1024, /* 8 Byte */ | |
133 | 1024, /* 16 Byte */ | |
134 | 4096, /* 32 Byte */ | |
135 | 4096, /* 64 Byte */ | |
136 | 4096, /* 128 Byte */ | |
137 | 4096, /* 256 Byte */ | |
138 | 1024, /* 512 Byte */ | |
139 | 1024, /* 1024 Byte */ | |
140 | 1024, /* 2048 Byte */ | |
141 | 1024, /* 4096 Byte */ | |
142 | 4096, /* 8192 Byte */ | |
143 | 64, /* 16384 Byte */ | |
144 | 64, /* 32768 Byte */ | |
145 | }; | |
146 | ||
147 | /* forward declarations */ | |
148 | void * kalloc_canblock( | |
149 | vm_size_t size, | |
150 | boolean_t canblock); | |
151 | ||
152 | ||
153 | /* OSMalloc local data declarations */ | |
154 | static | |
155 | queue_head_t OSMalloc_tag_list; | |
156 | ||
157 | decl_simple_lock_data(static,OSMalloc_tag_lock) | |
158 | ||
159 | /* OSMalloc forward declarations */ | |
160 | void OSMalloc_init(void); | |
161 | void OSMalloc_Tagref(OSMallocTag tag); | |
162 | void OSMalloc_Tagrele(OSMallocTag tag); | |
163 | ||
164 | /* | |
165 | * Initialize the memory allocator. This should be called only | |
166 | * once on a system wide basis (i.e. first processor to get here | |
167 | * does the initialization). | |
168 | * | |
169 | * This initializes all of the zones. | |
170 | */ | |
171 | ||
172 | void | |
173 | kalloc_init( | |
174 | void) | |
175 | { | |
176 | kern_return_t retval; | |
177 | vm_offset_t min; | |
178 | vm_size_t size; | |
179 | register int i; | |
180 | ||
181 | retval = kmem_suballoc(kernel_map, &min, kalloc_map_size, | |
182 | FALSE, VM_FLAGS_ANYWHERE, &kalloc_map); | |
183 | ||
184 | if (retval != KERN_SUCCESS) | |
185 | panic("kalloc_init: kmem_suballoc failed"); | |
186 | ||
187 | /* | |
188 | * Ensure that zones up to size 8192 bytes exist. | |
189 | * This is desirable because messages are allocated | |
190 | * with kalloc, and messages up through size 8192 are common. | |
191 | */ | |
192 | ||
193 | if (PAGE_SIZE < 16*1024) | |
194 | kalloc_max = 16*1024; | |
195 | else | |
196 | kalloc_max = PAGE_SIZE; | |
197 | kalloc_max_prerounded = kalloc_max / 2 + 1; | |
198 | ||
199 | /* | |
200 | * Allocate a zone for each size we are going to handle. | |
201 | * We specify non-paged memory. | |
202 | */ | |
203 | for (i = 0, size = 1; size < kalloc_max; i++, size <<= 1) { | |
204 | if (size < KALLOC_MINSIZE) { | |
205 | k_zone[i] = 0; | |
206 | continue; | |
207 | } | |
208 | if (size == KALLOC_MINSIZE) { | |
209 | first_k_zone = i; | |
210 | } | |
211 | k_zone[i] = zinit(size, k_zone_max[i] * size, size, | |
212 | k_zone_name[i]); | |
213 | } | |
214 | OSMalloc_init(); | |
215 | } | |
216 | ||
217 | void * | |
218 | kalloc_canblock( | |
219 | vm_size_t size, | |
220 | boolean_t canblock) | |
221 | { | |
222 | register int zindex; | |
223 | register vm_size_t allocsize; | |
224 | ||
225 | /* | |
226 | * If size is too large for a zone, then use kmem_alloc. | |
227 | * (We use kmem_alloc instead of kmem_alloc_wired so that | |
228 | * krealloc can use kmem_realloc.) | |
229 | */ | |
230 | ||
231 | if (size >= kalloc_max_prerounded) { | |
232 | void *addr; | |
233 | ||
234 | /* kmem_alloc could block so we return if noblock */ | |
235 | if (!canblock) { | |
236 | return(0); | |
237 | } | |
238 | if (kmem_alloc(kalloc_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS) | |
239 | addr = 0; | |
240 | ||
241 | if (addr) { | |
242 | kalloc_large_inuse++; | |
243 | kalloc_large_total += size; | |
244 | ||
245 | if (kalloc_large_total > kalloc_large_max) | |
246 | kalloc_large_max = kalloc_large_total; | |
247 | } | |
248 | return(addr); | |
249 | } | |
250 | ||
251 | /* compute the size of the block that we will actually allocate */ | |
252 | ||
253 | allocsize = KALLOC_MINSIZE; | |
254 | zindex = first_k_zone; | |
255 | while (allocsize < size) { | |
256 | allocsize <<= 1; | |
257 | zindex++; | |
258 | } | |
259 | ||
260 | /* allocate from the appropriate zone */ | |
261 | assert(allocsize < kalloc_max); | |
262 | return(zalloc_canblock(k_zone[zindex], canblock)); | |
263 | } | |
264 | ||
265 | void * | |
266 | kalloc( | |
267 | vm_size_t size) | |
268 | { | |
269 | return( kalloc_canblock(size, TRUE) ); | |
270 | } | |
271 | ||
272 | void * | |
273 | kalloc_noblock( | |
274 | vm_size_t size) | |
275 | { | |
276 | return( kalloc_canblock(size, FALSE) ); | |
277 | } | |
278 | ||
279 | ||
280 | void | |
281 | krealloc( | |
282 | void **addrp, | |
283 | vm_size_t old_size, | |
284 | vm_size_t new_size, | |
285 | simple_lock_t lock) | |
286 | { | |
287 | register int zindex; | |
288 | register vm_size_t allocsize; | |
289 | void *naddr; | |
290 | ||
291 | /* can only be used for increasing allocation size */ | |
292 | ||
293 | assert(new_size > old_size); | |
294 | ||
295 | /* if old_size is zero, then we are simply allocating */ | |
296 | ||
297 | if (old_size == 0) { | |
298 | simple_unlock(lock); | |
299 | naddr = kalloc(new_size); | |
300 | simple_lock(lock); | |
301 | *addrp = naddr; | |
302 | return; | |
303 | } | |
304 | ||
305 | /* if old block was kmem_alloc'd, then use kmem_realloc if necessary */ | |
306 | ||
307 | if (old_size >= kalloc_max_prerounded) { | |
308 | old_size = round_page(old_size); | |
309 | new_size = round_page(new_size); | |
310 | if (new_size > old_size) { | |
311 | ||
312 | if (KERN_SUCCESS != kmem_realloc(kalloc_map, | |
313 | (vm_offset_t)*addrp, old_size, | |
314 | (vm_offset_t *)&naddr, new_size)) { | |
315 | panic("krealloc: kmem_realloc"); | |
316 | naddr = 0; | |
317 | } | |
318 | ||
319 | simple_lock(lock); | |
320 | *addrp = (void *) naddr; | |
321 | ||
322 | /* kmem_realloc() doesn't free old page range. */ | |
323 | kmem_free(kalloc_map, (vm_offset_t)*addrp, old_size); | |
324 | ||
325 | kalloc_large_total += (new_size - old_size); | |
326 | ||
327 | if (kalloc_large_total > kalloc_large_max) | |
328 | kalloc_large_max = kalloc_large_total; | |
329 | ||
330 | } | |
331 | return; | |
332 | } | |
333 | ||
334 | /* compute the size of the block that we actually allocated */ | |
335 | ||
336 | allocsize = KALLOC_MINSIZE; | |
337 | zindex = first_k_zone; | |
338 | while (allocsize < old_size) { | |
339 | allocsize <<= 1; | |
340 | zindex++; | |
341 | } | |
342 | ||
343 | /* if new size fits in old block, then return */ | |
344 | ||
345 | if (new_size <= allocsize) { | |
346 | return; | |
347 | } | |
348 | ||
349 | /* if new size does not fit in zone, kmem_alloc it, else zalloc it */ | |
350 | ||
351 | simple_unlock(lock); | |
352 | if (new_size >= kalloc_max_prerounded) { | |
353 | if (KERN_SUCCESS != kmem_alloc(kalloc_map, | |
354 | (vm_offset_t *)&naddr, new_size)) { | |
355 | panic("krealloc: kmem_alloc"); | |
356 | simple_lock(lock); | |
357 | *addrp = NULL; | |
358 | return; | |
359 | } | |
360 | kalloc_large_inuse++; | |
361 | kalloc_large_total += new_size; | |
362 | ||
363 | if (kalloc_large_total > kalloc_large_max) | |
364 | kalloc_large_max = kalloc_large_total; | |
365 | } else { | |
366 | register int new_zindex; | |
367 | ||
368 | allocsize <<= 1; | |
369 | new_zindex = zindex + 1; | |
370 | while (allocsize < new_size) { | |
371 | allocsize <<= 1; | |
372 | new_zindex++; | |
373 | } | |
374 | naddr = zalloc(k_zone[new_zindex]); | |
375 | } | |
376 | simple_lock(lock); | |
377 | ||
378 | /* copy existing data */ | |
379 | ||
380 | bcopy((const char *)*addrp, (char *)naddr, old_size); | |
381 | ||
382 | /* free old block, and return */ | |
383 | ||
384 | zfree(k_zone[zindex], *addrp); | |
385 | ||
386 | /* set up new address */ | |
387 | ||
388 | *addrp = (void *) naddr; | |
389 | } | |
390 | ||
391 | ||
392 | void * | |
393 | kget( | |
394 | vm_size_t size) | |
395 | { | |
396 | register int zindex; | |
397 | register vm_size_t allocsize; | |
398 | ||
399 | /* size must not be too large for a zone */ | |
400 | ||
401 | if (size >= kalloc_max_prerounded) { | |
402 | /* This will never work, so we might as well panic */ | |
403 | panic("kget"); | |
404 | } | |
405 | ||
406 | /* compute the size of the block that we will actually allocate */ | |
407 | ||
408 | allocsize = KALLOC_MINSIZE; | |
409 | zindex = first_k_zone; | |
410 | while (allocsize < size) { | |
411 | allocsize <<= 1; | |
412 | zindex++; | |
413 | } | |
414 | ||
415 | /* allocate from the appropriate zone */ | |
416 | ||
417 | assert(allocsize < kalloc_max); | |
418 | return(zget(k_zone[zindex])); | |
419 | } | |
420 | ||
421 | void | |
422 | kfree( | |
423 | void *data, | |
424 | vm_size_t size) | |
425 | { | |
426 | register int zindex; | |
427 | register vm_size_t freesize; | |
428 | ||
429 | /* if size was too large for a zone, then use kmem_free */ | |
430 | ||
431 | if (size >= kalloc_max_prerounded) { | |
432 | kmem_free(kalloc_map, (vm_offset_t)data, size); | |
433 | ||
434 | kalloc_large_total -= size; | |
435 | kalloc_large_inuse--; | |
436 | ||
437 | return; | |
438 | } | |
439 | ||
440 | /* compute the size of the block that we actually allocated from */ | |
441 | ||
442 | freesize = KALLOC_MINSIZE; | |
443 | zindex = first_k_zone; | |
444 | while (freesize < size) { | |
445 | freesize <<= 1; | |
446 | zindex++; | |
447 | } | |
448 | ||
449 | /* free to the appropriate zone */ | |
450 | ||
451 | assert(freesize < kalloc_max); | |
452 | zfree(k_zone[zindex], data); | |
453 | } | |
454 | ||
455 | #ifdef MACH_BSD | |
456 | zone_t | |
457 | kalloc_zone( | |
458 | vm_size_t size) | |
459 | { | |
460 | register int zindex = 0; | |
461 | register vm_size_t allocsize; | |
462 | ||
463 | /* compute the size of the block that we will actually allocate */ | |
464 | ||
465 | allocsize = size; | |
466 | if (size <= kalloc_max) { | |
467 | allocsize = KALLOC_MINSIZE; | |
468 | zindex = first_k_zone; | |
469 | while (allocsize < size) { | |
470 | allocsize <<= 1; | |
471 | zindex++; | |
472 | } | |
473 | return (k_zone[zindex]); | |
474 | } | |
475 | return (ZONE_NULL); | |
476 | } | |
477 | #endif | |
478 | ||
479 | ||
480 | void | |
481 | kalloc_fake_zone_info(int *count, vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, | |
482 | vm_size_t *alloc_size, int *collectable, int *exhaustable) | |
483 | { | |
484 | *count = kalloc_large_inuse; | |
485 | *cur_size = kalloc_large_total; | |
486 | *max_size = kalloc_large_max; | |
487 | *elem_size = kalloc_large_total / kalloc_large_inuse; | |
488 | *alloc_size = kalloc_large_total / kalloc_large_inuse; | |
489 | *collectable = 0; | |
490 | *exhaustable = 0; | |
491 | } | |
492 | ||
493 | ||
494 | void | |
495 | OSMalloc_init( | |
496 | void) | |
497 | { | |
498 | queue_init(&OSMalloc_tag_list); | |
499 | simple_lock_init(&OSMalloc_tag_lock, 0); | |
500 | } | |
501 | ||
502 | OSMallocTag | |
503 | OSMalloc_Tagalloc( | |
504 | const char *str, | |
505 | uint32_t flags) | |
506 | { | |
507 | OSMallocTag OSMTag; | |
508 | ||
509 | OSMTag = (OSMallocTag)kalloc(sizeof(*OSMTag)); | |
510 | ||
511 | bzero((void *)OSMTag, sizeof(*OSMTag)); | |
512 | ||
513 | if (flags & OSMT_PAGEABLE) | |
514 | OSMTag->OSMT_attr = OSMT_ATTR_PAGEABLE; | |
515 | ||
516 | OSMTag->OSMT_refcnt = 1; | |
517 | ||
518 | strncpy(OSMTag->OSMT_name, str, OSMT_MAX_NAME); | |
519 | ||
520 | simple_lock(&OSMalloc_tag_lock); | |
521 | enqueue_tail(&OSMalloc_tag_list, (queue_entry_t)OSMTag); | |
522 | simple_unlock(&OSMalloc_tag_lock); | |
523 | OSMTag->OSMT_state = OSMT_VALID; | |
524 | return(OSMTag); | |
525 | } | |
526 | ||
527 | void | |
528 | OSMalloc_Tagref( | |
529 | OSMallocTag tag) | |
530 | { | |
531 | if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID)) | |
532 | panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state); | |
533 | ||
534 | (void)hw_atomic_add((uint32_t *)(&tag->OSMT_refcnt), 1); | |
535 | } | |
536 | ||
537 | void | |
538 | OSMalloc_Tagrele( | |
539 | OSMallocTag tag) | |
540 | { | |
541 | if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID)) | |
542 | panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state); | |
543 | ||
544 | if (hw_atomic_sub((uint32_t *)(&tag->OSMT_refcnt), 1) == 0) { | |
545 | if (hw_compare_and_store(OSMT_VALID|OSMT_RELEASED, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state)) { | |
546 | simple_lock(&OSMalloc_tag_lock); | |
547 | (void)remque((queue_entry_t)tag); | |
548 | simple_unlock(&OSMalloc_tag_lock); | |
549 | kfree((void*)tag, sizeof(*tag)); | |
550 | } else | |
551 | panic("OSMalloc_Tagrele(): refcnt 0\n"); | |
552 | } | |
553 | } | |
554 | ||
555 | void | |
556 | OSMalloc_Tagfree( | |
557 | OSMallocTag tag) | |
558 | { | |
559 | if (!hw_compare_and_store(OSMT_VALID, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state)) | |
560 | panic("OSMalloc_Tagfree(): bad state 0x%08X\n", tag->OSMT_state); | |
561 | ||
562 | if (hw_atomic_sub((uint32_t *)(&tag->OSMT_refcnt), 1) == 0) { | |
563 | simple_lock(&OSMalloc_tag_lock); | |
564 | (void)remque((queue_entry_t)tag); | |
565 | simple_unlock(&OSMalloc_tag_lock); | |
566 | kfree((void*)tag, sizeof(*tag)); | |
567 | } | |
568 | } | |
569 | ||
570 | void * | |
571 | OSMalloc( | |
572 | uint32_t size, | |
573 | OSMallocTag tag) | |
574 | { | |
575 | void *addr=NULL; | |
576 | kern_return_t kr; | |
577 | ||
578 | OSMalloc_Tagref(tag); | |
579 | if ((tag->OSMT_attr & OSMT_PAGEABLE) | |
580 | && (size & ~PAGE_MASK)) { | |
581 | ||
582 | if ((kr = kmem_alloc_pageable(kernel_map, (vm_offset_t *)&addr, size)) != KERN_SUCCESS) | |
583 | panic("OSMalloc(): kmem_alloc_pageable() failed 0x%08X\n", kr); | |
584 | } else | |
585 | addr = kalloc((vm_size_t)size); | |
586 | ||
587 | return(addr); | |
588 | } | |
589 | ||
590 | void * | |
591 | OSMalloc_nowait( | |
592 | uint32_t size, | |
593 | OSMallocTag tag) | |
594 | { | |
595 | void *addr=NULL; | |
596 | ||
597 | if (tag->OSMT_attr & OSMT_PAGEABLE) | |
598 | return(NULL); | |
599 | ||
600 | OSMalloc_Tagref(tag); | |
601 | /* XXX: use non-blocking kalloc for now */ | |
602 | addr = kalloc_noblock((vm_size_t)size); | |
603 | if (addr == NULL) | |
604 | OSMalloc_Tagrele(tag); | |
605 | ||
606 | return(addr); | |
607 | } | |
608 | ||
609 | void * | |
610 | OSMalloc_noblock( | |
611 | uint32_t size, | |
612 | OSMallocTag tag) | |
613 | { | |
614 | void *addr=NULL; | |
615 | ||
616 | if (tag->OSMT_attr & OSMT_PAGEABLE) | |
617 | return(NULL); | |
618 | ||
619 | OSMalloc_Tagref(tag); | |
620 | addr = kalloc_noblock((vm_size_t)size); | |
621 | if (addr == NULL) | |
622 | OSMalloc_Tagrele(tag); | |
623 | ||
624 | return(addr); | |
625 | } | |
626 | ||
627 | void | |
628 | OSFree( | |
629 | void *addr, | |
630 | uint32_t size, | |
631 | OSMallocTag tag) | |
632 | { | |
633 | if ((tag->OSMT_attr & OSMT_PAGEABLE) | |
634 | && (size & ~PAGE_MASK)) { | |
635 | kmem_free(kernel_map, (vm_offset_t)addr, size); | |
636 | } else | |
637 | kfree((void*)addr, size); | |
638 | ||
639 | OSMalloc_Tagrele(tag); | |
640 | } |