]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/vfs/vfs_cache.c
xnu-792.17.14.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cache.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * This code is derived from software contributed to Berkeley by
34 * Poul-Henning Kamp of the FreeBSD Project.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 *
65 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
66 */
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/time.h>
70#include <sys/mount_internal.h>
71#include <sys/vnode_internal.h>
72#include <sys/namei.h>
73#include <sys/errno.h>
74#include <sys/malloc.h>
75#include <sys/kauth.h>
76#include <sys/user.h>
77
78/*
79 * Name caching works as follows:
80 *
81 * Names found by directory scans are retained in a cache
82 * for future reference. It is managed LRU, so frequently
83 * used names will hang around. Cache is indexed by hash value
84 * obtained from (vp, name) where vp refers to the directory
85 * containing name.
86 *
87 * If it is a "negative" entry, (i.e. for a name that is known NOT to
88 * exist) the vnode pointer will be NULL.
89 *
90 * Upon reaching the last segment of a path, if the reference
91 * is for DELETE, or NOCACHE is set (rewrite), and the
92 * name is located in the cache, it will be dropped.
93 */
94
95/*
96 * Structures associated with name cacheing.
97 */
98
99LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
100u_long nchashmask;
101u_long nchash; /* size of hash table - 1 */
102long numcache; /* number of cache entries allocated */
103int desiredNodes;
104int desiredNegNodes;
105TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
106TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
107struct nchstats nchstats; /* cache effectiveness statistics */
108
109/* vars for name cache list lock */
110lck_grp_t * namecache_lck_grp;
111lck_grp_attr_t * namecache_lck_grp_attr;
112lck_attr_t * namecache_lck_attr;
113lck_mtx_t * namecache_mtx_lock;
114
115static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
116static int remove_name_locked(const char *);
117static char *add_name_locked(const char *, size_t, u_int, u_int);
118static void init_string_table(void);
119static void cache_delete(struct namecache *, int);
120static void dump_string_table(void);
121
122static void init_crc32(void);
123static unsigned int crc32tab[256];
124
125
126#define NCHHASH(dvp, hash_val) \
127 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
128
129
130
131//
132// This function builds the path to a filename in "buff". The
133// length of the buffer *INCLUDING* the trailing zero byte is
134// returned in outlen. NOTE: the length includes the trailing
135// zero byte and thus the length is one greater than what strlen
136// would return. This is important and lots of code elsewhere
137// in the kernel assumes this behavior.
138//
139int
140build_path(vnode_t first_vp, char *buff, int buflen, int *outlen)
141{
142 vnode_t vp = first_vp;
143 char *end, *str;
144 int len, ret=0, counter=0;
145
146 end = &buff[buflen-1];
147 *end = '\0';
148
149 /*
150 * if this is the root dir of a file system...
151 */
152 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
153 /*
154 * then if it's the root fs, just put in a '/' and get out of here
155 */
156 if (vp->v_mount->mnt_flag & MNT_ROOTFS) {
157 *--end = '/';
158 goto out;
159 } else {
160 /*
161 * else just use the covered vnode to get the mount path
162 */
163 vp = vp->v_mount->mnt_vnodecovered;
164 }
165 }
166 name_cache_lock();
167
168 while (vp && vp->v_parent != vp) {
169 /*
170 * the maximum depth of a file system hierarchy is MAXPATHLEN/2
171 * (with single-char names separated by slashes). we panic if
172 * we've ever looped more than that.
173 */
174 if (counter++ > MAXPATHLEN/2) {
175 panic("build_path: vnode parent chain is too long! vp 0x%x\n", vp);
176 }
177 str = vp->v_name;
178
179 if (str == NULL) {
180 if (vp->v_parent != NULL) {
181 ret = EINVAL;
182 }
183 break;
184 }
185 len = strlen(str);
186
187 /*
188 * check that there's enough space (make sure to include space for the '/')
189 */
190 if ((end - buff) < (len + 1)) {
191 ret = ENOSPC;
192 break;
193 }
194 /*
195 * copy it backwards
196 */
197 str += len;
198
199 for (; len > 0; len--) {
200 *--end = *--str;
201 }
202 /*
203 * put in the path separator
204 */
205 *--end = '/';
206
207 /*
208 * walk up the chain (as long as we're not the root)
209 */
210 if (vp == first_vp && (vp->v_flag & VROOT)) {
211 if (vp->v_mount && vp->v_mount->mnt_vnodecovered) {
212 vp = vp->v_mount->mnt_vnodecovered->v_parent;
213 } else {
214 vp = NULLVP;
215 }
216 } else {
217 vp = vp->v_parent;
218 }
219 /*
220 * check if we're crossing a mount point and
221 * switch the vp if we are.
222 */
223 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
224 vp = vp->v_mount->mnt_vnodecovered;
225 }
226 }
227 name_cache_unlock();
228out:
229 /*
230 * slide it down to the beginning of the buffer
231 */
232 memmove(buff, end, &buff[buflen] - end);
233
234 *outlen = &buff[buflen] - end; // length includes the trailing zero byte
235
236 return ret;
237}
238
239
240/*
241 * return NULLVP if vp's parent doesn't
242 * exist, or we can't get a valid iocount
243 * else return the parent of vp
244 */
245vnode_t
246vnode_getparent(vnode_t vp)
247{
248 vnode_t pvp = NULLVP;
249 int pvid;
250
251 name_cache_lock();
252 /*
253 * v_parent is stable behind the name_cache lock
254 * however, the only thing we can really guarantee
255 * is that we've grabbed a valid iocount on the
256 * parent of 'vp' at the time we took the name_cache lock...
257 * once we drop the lock, vp could get re-parented
258 */
259 if ( (pvp = vp->v_parent) != NULLVP ) {
260 pvid = pvp->v_id;
261
262 name_cache_unlock();
263
264 if (vnode_getwithvid(pvp, pvid) != 0)
265 pvp = NULL;
266 } else
267 name_cache_unlock();
268
269 return (pvp);
270}
271
272char *
273vnode_getname(vnode_t vp)
274{
275 char *name = NULL;
276
277 name_cache_lock();
278
279 if (vp->v_name)
280 name = add_name_locked(vp->v_name, strlen(vp->v_name), 0, 0);
281 name_cache_unlock();
282
283 return (name);
284}
285
286void
287vnode_putname(char *name)
288{
289 name_cache_lock();
290
291 remove_name_locked(name);
292
293 name_cache_unlock();
294}
295
296
297/*
298 * if VNODE_UPDATE_PARENT, and we can take
299 * a reference on dvp, then update vp with
300 * it's new parent... if vp already has a parent,
301 * then drop the reference vp held on it
302 *
303 * if VNODE_UPDATE_NAME,
304 * then drop string ref on v_name if it exists, and if name is non-NULL
305 * then pick up a string reference on name and record it in v_name...
306 * optionally pass in the length and hashval of name if known
307 *
308 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
309 */
310void
311vnode_update_identity(vnode_t vp, vnode_t dvp, char *name, int name_len, int name_hashval, int flags)
312{
313 struct namecache *ncp;
314 vnode_t old_parentvp = NULLVP;
315
316
317 if (flags & VNODE_UPDATE_PARENT) {
318 if (dvp && vnode_ref(dvp) != 0)
319 dvp = NULLVP;
320 } else
321 dvp = NULLVP;
322 name_cache_lock();
323
324 if ( (flags & VNODE_UPDATE_NAME) && (name != vp->v_name) ) {
325 if (vp->v_name != NULL) {
326 remove_name_locked(vp->v_name);
327 vp->v_name = NULL;
328 }
329 if (name && *name) {
330 if (name_len == 0)
331 name_len = strlen(name);
332 vp->v_name = add_name_locked(name, name_len, name_hashval, 0);
333 }
334 }
335 if (flags & VNODE_UPDATE_PARENT) {
336 if (dvp != vp && dvp != vp->v_parent) {
337 old_parentvp = vp->v_parent;
338 vp->v_parent = dvp;
339 dvp = NULLVP;
340
341 if (old_parentvp)
342 flags |= VNODE_UPDATE_CACHE;
343 }
344 }
345 if (flags & VNODE_UPDATE_CACHE) {
346 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
347 cache_delete(ncp, 1);
348 }
349 name_cache_unlock();
350
351 if (dvp != NULLVP)
352 vnode_rele(dvp);
353
354 if (old_parentvp) {
355 struct uthread *ut;
356
357 ut = get_bsdthread_info(current_thread());
358
359 /*
360 * indicated to vnode_rele that it shouldn't do a
361 * vnode_reclaim at this time... instead it will
362 * chain the vnode to the uu_vreclaims list...
363 * we'll be responsible for calling vnode_reclaim
364 * on each of the vnodes in this list...
365 */
366 ut->uu_defer_reclaims = 1;
367 ut->uu_vreclaims = NULLVP;
368
369 while ( (vp = old_parentvp) != NULLVP ) {
370
371 vnode_lock(vp);
372
373 vnode_rele_internal(vp, 0, 0, 1);
374
375 /*
376 * check to see if the vnode is now in the state
377 * that would have triggered a vnode_reclaim in vnode_rele
378 * if it is, we save it's parent pointer and then NULL
379 * out the v_parent field... we'll drop the reference
380 * that was held on the next iteration of this loop...
381 * this short circuits a potential deep recursion if we
382 * have a long chain of parents in this state...
383 * we'll sit in this loop until we run into
384 * a parent in this chain that is not in this state
385 *
386 * make our check and the node_rele atomic
387 * with respect to the current vnode we're working on
388 * by holding the vnode lock
389 * if vnode_rele deferred the vnode_reclaim and has put
390 * this vnode on the list to be reaped by us, than
391 * it has left this vnode with an iocount == 1
392 */
393 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
394 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
395 /*
396 * vnode_rele wanted to do a vnode_reclaim on this vnode
397 * it should be sitting on the head of the uu_vreclaims chain
398 * pull the parent pointer now so that when we do the
399 * vnode_reclaim for each of the vnodes in the uu_vreclaims
400 * list, we won't recurse back through here
401 */
402 name_cache_lock();
403 old_parentvp = vp->v_parent;
404 vp->v_parent = NULLVP;
405 name_cache_unlock();
406 } else {
407 /*
408 * we're done... we ran into a vnode that isn't
409 * being terminated
410 */
411 old_parentvp = NULLVP;
412 }
413 vnode_unlock(vp);
414 }
415 ut->uu_defer_reclaims = 0;
416
417 while ( (vp = ut->uu_vreclaims) != NULLVP) {
418 ut->uu_vreclaims = vp->v_defer_reclaimlist;
419
420 /*
421 * vnode_put will drive the vnode_reclaim if
422 * we are still the only reference on this vnode
423 */
424 vnode_put(vp);
425 }
426 }
427}
428
429
430/*
431 * Mark a vnode as having multiple hard links. HFS makes use of this
432 * because it keeps track of each link separately, and wants to know
433 * which link was actually used.
434 *
435 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
436 * so that HFS can post-process the lookup. Also, volfs will call
437 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
438 */
439void vnode_set_hard_link(vnode_t vp)
440{
441 vnode_lock(vp);
442
443 /*
444 * In theory, we're changing the vnode's identity as far as the
445 * name cache is concerned, so we ought to grab the name cache lock
446 * here. However, there is already a race, and grabbing the name
447 * cache lock only makes the race window slightly smaller.
448 *
449 * The race happens because the vnode already exists in the name
450 * cache, and could be found by one thread before another thread
451 * can set the hard link flag.
452 */
453
454 vp->v_flag |= VISHARDLINK;
455
456 vnode_unlock(vp);
457}
458
459
460void vnode_uncache_credentials(vnode_t vp)
461{
462 kauth_cred_t ucred = NULL;
463
464 if (vp->v_cred) {
465 vnode_lock(vp);
466
467 ucred = vp->v_cred;
468 vp->v_cred = NULL;
469
470 vnode_unlock(vp);
471
472 if (ucred)
473 kauth_cred_rele(ucred);
474 }
475}
476
477
478void vnode_cache_credentials(vnode_t vp, vfs_context_t context)
479{
480 kauth_cred_t ucred;
481 kauth_cred_t tcred = NOCRED;
482 struct timeval tv;
483
484 ucred = vfs_context_ucred(context);
485
486 if (vp->v_cred != ucred || (vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE)) {
487 vnode_lock(vp);
488
489 microuptime(&tv);
490 vp->v_cred_timestamp = tv.tv_sec;
491
492 if (vp->v_cred != ucred) {
493 kauth_cred_ref(ucred);
494
495 tcred = vp->v_cred;
496 vp->v_cred = ucred;
497 }
498 vnode_unlock(vp);
499
500 if (tcred)
501 kauth_cred_rele(tcred);
502 }
503}
504
505/* reverse_lookup - lookup by walking back up the parent chain while leveraging
506 * use of the name cache lock in order to protect our starting vnode.
507 * NOTE - assumes you already have search access to starting point.
508 * returns 0 when we have reached the root, current working dir, or chroot root
509 *
510 */
511int
512reverse_lookup(vnode_t start_vp, vnode_t *lookup_vpp, struct filedesc *fdp, vfs_context_t context, int *dp_authorized)
513{
514 int vid, done = 0;
515 int auth_opaque = 0;
516 vnode_t dp = start_vp;
517 vnode_t vp = NULLVP;
518 kauth_cred_t ucred;
519 struct timeval tv;
520
521 ucred = vfs_context_ucred(context);
522 *lookup_vpp = start_vp;
523
524 name_cache_lock();
525
526 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
527 auth_opaque = 1;
528 microuptime(&tv);
529 }
530 for (;;) {
531 *dp_authorized = 0;
532
533 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
534 break;
535 if (dp->v_cred != ucred)
536 break;
537 /*
538 * indicate that we're allowed to traverse this directory...
539 * even if we bail for some reason, this information is valid and is used
540 * to avoid doing a vnode_authorize
541 */
542 *dp_authorized = 1;
543
544 if ((dp->v_flag & VROOT) != 0 || /* Hit "/" */
545 (dp == fdp->fd_cdir) || /* Hit process's working directory */
546 (dp == fdp->fd_rdir)) { /* Hit process chroot()-ed root */
547 done = 1;
548 break;
549 }
550
551 if ( (vp = dp->v_parent) == NULLVP)
552 break;
553
554 dp = vp;
555 *lookup_vpp = dp;
556 } /* for (;;) */
557
558 vid = dp->v_id;
559
560 name_cache_unlock();
561
562 if (done == 0 && dp != start_vp) {
563 if (vnode_getwithvid(dp, vid) != 0) {
564 *lookup_vpp = start_vp;
565 }
566 }
567
568 return((done == 1) ? 0 : -1);
569}
570
571int
572cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp, vfs_context_t context, int *trailing_slash, int *dp_authorized)
573{
574 char *cp; /* pointer into pathname argument */
575 int vid, vvid;
576 int auth_opaque = 0;
577 vnode_t vp = NULLVP;
578 vnode_t tdp = NULLVP;
579 kauth_cred_t ucred;
580 struct timeval tv;
581 unsigned int hash;
582
583 ucred = vfs_context_ucred(context);
584 *trailing_slash = 0;
585
586 name_cache_lock();
587
588
589 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
590 auth_opaque = 1;
591 microuptime(&tv);
592 }
593 for (;;) {
594 /*
595 * Search a directory.
596 *
597 * The cn_hash value is for use by cache_lookup
598 * The last component of the filename is left accessible via
599 * cnp->cn_nameptr for callers that need the name.
600 */
601 hash = 0;
602 cp = cnp->cn_nameptr;
603
604 while (*cp && (*cp != '/')) {
605 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
606 }
607 /*
608 * the crc generator can legitimately generate
609 * a 0... however, 0 for us means that we
610 * haven't computed a hash, so use 1 instead
611 */
612 if (hash == 0)
613 hash = 1;
614 cnp->cn_hash = hash;
615 cnp->cn_namelen = cp - cnp->cn_nameptr;
616
617 ndp->ni_pathlen -= cnp->cn_namelen;
618 ndp->ni_next = cp;
619
620 /*
621 * Replace multiple slashes by a single slash and trailing slashes
622 * by a null. This must be done before VNOP_LOOKUP() because some
623 * fs's don't know about trailing slashes. Remember if there were
624 * trailing slashes to handle symlinks, existing non-directories
625 * and non-existing files that won't be directories specially later.
626 */
627 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
628 cp++;
629 ndp->ni_pathlen--;
630
631 if (*cp == '\0') {
632 *trailing_slash = 1;
633 *ndp->ni_next = '\0';
634 }
635 }
636 ndp->ni_next = cp;
637
638 cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
639
640 if (*cp == '\0')
641 cnp->cn_flags |= ISLASTCN;
642
643 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
644 cnp->cn_flags |= ISDOTDOT;
645
646 *dp_authorized = 0;
647
648 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
649 break;
650
651 if (dp->v_cred != ucred)
652 break;
653 /*
654 * indicate that we're allowed to traverse this directory...
655 * even if we fail the cache lookup or decide to bail for
656 * some other reason, this information is valid and is used
657 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
658 */
659 *dp_authorized = 1;
660
661 if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
662 if (cnp->cn_nameiop != LOOKUP)
663 break;
664 if (cnp->cn_flags & (LOCKPARENT | NOCACHE))
665 break;
666 if (cnp->cn_flags & ISDOTDOT) {
667 /*
668 * Quit here only if we can't use
669 * the parent directory pointer or
670 * don't have one. Otherwise, we'll
671 * use it below.
672 */
673 if ((dp->v_flag & VROOT) ||
674 dp->v_parent == NULLVP)
675 break;
676 }
677 }
678
679 /*
680 * "." and ".." aren't supposed to be cached, so check
681 * for them before checking the cache.
682 */
683 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')
684 vp = dp;
685 else if (cnp->cn_flags & ISDOTDOT)
686 vp = dp->v_parent;
687 else {
688 if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
689 break;
690 }
691
692 if ( (cnp->cn_flags & ISLASTCN) )
693 break;
694
695 if (vp->v_type != VDIR) {
696 if (vp->v_type != VLNK)
697 vp = NULL;
698 break;
699 }
700 if (vp->v_mountedhere && ((cnp->cn_flags & NOCROSSMOUNT) == 0))
701 break;
702
703 dp = vp;
704 vp = NULLVP;
705
706 cnp->cn_nameptr = ndp->ni_next + 1;
707 ndp->ni_pathlen--;
708 while (*cnp->cn_nameptr == '/') {
709 cnp->cn_nameptr++;
710 ndp->ni_pathlen--;
711 }
712 }
713 if (vp != NULLVP)
714 vvid = vp->v_id;
715 vid = dp->v_id;
716
717 name_cache_unlock();
718
719
720 if ((vp != NULLVP) && (vp->v_type != VLNK) &&
721 ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
722 /*
723 * if we've got a child and it's the last component, and
724 * the lookup doesn't need to return the parent then we
725 * can skip grabbing an iocount on the parent, since all
726 * we're going to do with it is a vnode_put just before
727 * we return from 'lookup'. If it's a symbolic link,
728 * we need the parent in case the link happens to be
729 * a relative pathname.
730 */
731 tdp = dp;
732 dp = NULLVP;
733 } else {
734need_dp:
735 /*
736 * return the last directory we looked at
737 * with an io reference held
738 */
739 if (dp == ndp->ni_usedvp) {
740 /*
741 * if this vnode matches the one passed in via USEDVP
742 * than this context already holds an io_count... just
743 * use vnode_get to get an extra ref for lookup to play
744 * with... can't use the getwithvid variant here because
745 * it will block behind a vnode_drain which would result
746 * in a deadlock (since we already own an io_count that the
747 * vnode_drain is waiting on)... vnode_get grabs the io_count
748 * immediately w/o waiting... it always succeeds
749 */
750 vnode_get(dp);
751 } else if ( (vnode_getwithvid(dp, vid)) ) {
752 /*
753 * failure indicates the vnode
754 * changed identity or is being
755 * TERMINATED... in either case
756 * punt this lookup
757 */
758 return (ENOENT);
759 }
760 }
761 if (vp != NULLVP) {
762 if ( (vnode_getwithvid(vp, vvid)) ) {
763 vp = NULLVP;
764
765 /*
766 * can't get reference on the vp we'd like
767 * to return... if we didn't grab a reference
768 * on the directory (due to fast path bypass),
769 * then we need to do it now... we can't return
770 * with both ni_dvp and ni_vp NULL, and no
771 * error condition
772 */
773 if (dp == NULLVP) {
774 dp = tdp;
775 goto need_dp;
776 }
777 }
778 }
779 ndp->ni_dvp = dp;
780 ndp->ni_vp = vp;
781
782 return (0);
783}
784
785
786static vnode_t
787cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
788{
789 register struct namecache *ncp;
790 register struct nchashhead *ncpp;
791 register long namelen = cnp->cn_namelen;
792 char *nameptr = cnp->cn_nameptr;
793 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
794 vnode_t vp;
795
796 ncpp = NCHHASH(dvp, cnp->cn_hash);
797 LIST_FOREACH(ncp, ncpp, nc_hash) {
798 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
799 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
800 break;
801 }
802 }
803 if (ncp == 0)
804 /*
805 * We failed to find an entry
806 */
807 return (NULL);
808
809 vp = ncp->nc_vp;
810 if (vp && (vp->v_flag & VISHARDLINK)) {
811 /*
812 * The file system wants a VNOP_LOOKUP on this vnode
813 */
814 vp = NULL;
815 }
816
817 return (vp);
818}
819
820
821//
822// Have to take a len argument because we may only need to
823// hash part of a componentname.
824//
825static unsigned int
826hash_string(const char *cp, int len)
827{
828 unsigned hash = 0;
829
830 if (len) {
831 while (len--) {
832 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
833 }
834 } else {
835 while (*cp != '\0') {
836 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
837 }
838 }
839 /*
840 * the crc generator can legitimately generate
841 * a 0... however, 0 for us means that we
842 * haven't computed a hash, so use 1 instead
843 */
844 if (hash == 0)
845 hash = 1;
846 return hash;
847}
848
849
850/*
851 * Lookup an entry in the cache
852 *
853 * We don't do this if the segment name is long, simply so the cache
854 * can avoid holding long names (which would either waste space, or
855 * add greatly to the complexity).
856 *
857 * Lookup is called with dvp pointing to the directory to search,
858 * cnp pointing to the name of the entry being sought. If the lookup
859 * succeeds, the vnode is returned in *vpp, and a status of -1 is
860 * returned. If the lookup determines that the name does not exist
861 * (negative cacheing), a status of ENOENT is returned. If the lookup
862 * fails, a status of zero is returned.
863 */
864
865int
866cache_lookup(dvp, vpp, cnp)
867 struct vnode *dvp;
868 struct vnode **vpp;
869 struct componentname *cnp;
870{
871 register struct namecache *ncp;
872 register struct nchashhead *ncpp;
873 register long namelen = cnp->cn_namelen;
874 char *nameptr = cnp->cn_nameptr;
875 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
876 uint32_t vid;
877 vnode_t vp;
878
879 name_cache_lock();
880
881 ncpp = NCHHASH(dvp, cnp->cn_hash);
882 LIST_FOREACH(ncp, ncpp, nc_hash) {
883 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
884 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
885 break;
886 }
887 }
888 /* We failed to find an entry */
889 if (ncp == 0) {
890 nchstats.ncs_miss++;
891 name_cache_unlock();
892 return (0);
893 }
894
895 /* We don't want to have an entry, so dump it */
896 if ((cnp->cn_flags & MAKEENTRY) == 0) {
897 nchstats.ncs_badhits++;
898 cache_delete(ncp, 1);
899 name_cache_unlock();
900 return (0);
901 }
902 vp = ncp->nc_vp;
903
904 /* We found a "positive" match, return the vnode */
905 if (vp) {
906 nchstats.ncs_goodhits++;
907
908 vid = vp->v_id;
909 name_cache_unlock();
910
911 if (vnode_getwithvid(vp, vid)) {
912 name_cache_lock();
913 nchstats.ncs_badvid++;
914 name_cache_unlock();
915 return (0);
916 }
917 *vpp = vp;
918 return (-1);
919 }
920
921 /* We found a negative match, and want to create it, so purge */
922 if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
923 nchstats.ncs_badhits++;
924 cache_delete(ncp, 1);
925 name_cache_unlock();
926 return (0);
927 }
928
929 /*
930 * We found a "negative" match, ENOENT notifies client of this match.
931 * The nc_whiteout field records whether this is a whiteout.
932 */
933 nchstats.ncs_neghits++;
934
935 if (ncp->nc_whiteout)
936 cnp->cn_flags |= ISWHITEOUT;
937 name_cache_unlock();
938 return (ENOENT);
939}
940
941/*
942 * Add an entry to the cache.
943 */
944void
945cache_enter(dvp, vp, cnp)
946 struct vnode *dvp;
947 struct vnode *vp;
948 struct componentname *cnp;
949{
950 register struct namecache *ncp, *negp;
951 register struct nchashhead *ncpp;
952
953 if (cnp->cn_hash == 0)
954 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
955
956 name_cache_lock();
957
958 /* if the entry is for -ve caching vp is null */
959 if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
960 /*
961 * someone beat us to the punch..
962 * this vnode is already in the cache
963 */
964 name_cache_unlock();
965 return;
966 }
967 /*
968 * We allocate a new entry if we are less than the maximum
969 * allowed and the one at the front of the list is in use.
970 * Otherwise we use the one at the front of the list.
971 */
972 if (numcache < desiredNodes &&
973 ((ncp = nchead.tqh_first) == NULL ||
974 ncp->nc_hash.le_prev != 0)) {
975 /*
976 * Allocate one more entry
977 */
978 ncp = (struct namecache *)_MALLOC_ZONE((u_long)sizeof *ncp, M_CACHE, M_WAITOK);
979 numcache++;
980 } else {
981 /*
982 * reuse an old entry
983 */
984 ncp = TAILQ_FIRST(&nchead);
985 TAILQ_REMOVE(&nchead, ncp, nc_entry);
986
987 if (ncp->nc_hash.le_prev != 0) {
988 /*
989 * still in use... we need to
990 * delete it before re-using it
991 */
992 nchstats.ncs_stolen++;
993 cache_delete(ncp, 0);
994 }
995 }
996 nchstats.ncs_enters++;
997
998 /*
999 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
1000 */
1001 ncp->nc_vp = vp;
1002 ncp->nc_dvp = dvp;
1003 ncp->nc_hashval = cnp->cn_hash;
1004 ncp->nc_whiteout = FALSE;
1005 ncp->nc_name = add_name_locked(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
1006
1007 /*
1008 * make us the newest entry in the cache
1009 * i.e. we'll be the last to be stolen
1010 */
1011 TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
1012
1013 ncpp = NCHHASH(dvp, cnp->cn_hash);
1014#if DIAGNOSTIC
1015 {
1016 register struct namecache *p;
1017
1018 for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
1019 if (p == ncp)
1020 panic("cache_enter: duplicate");
1021 }
1022#endif
1023 /*
1024 * make us available to be found via lookup
1025 */
1026 LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
1027
1028 if (vp) {
1029 /*
1030 * add to the list of name cache entries
1031 * that point at vp
1032 */
1033 LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
1034 } else {
1035 /*
1036 * this is a negative cache entry (vp == NULL)
1037 * stick it on the negative cache list
1038 * and record the whiteout state
1039 */
1040 TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
1041
1042 if (cnp->cn_flags & ISWHITEOUT)
1043 ncp->nc_whiteout = TRUE;
1044 nchstats.ncs_negtotal++;
1045
1046 if (nchstats.ncs_negtotal > desiredNegNodes) {
1047 /*
1048 * if we've reached our desired limit
1049 * of negative cache entries, delete
1050 * the oldest
1051 */
1052 negp = TAILQ_FIRST(&neghead);
1053 TAILQ_REMOVE(&neghead, negp, nc_un.nc_negentry);
1054
1055 cache_delete(negp, 1);
1056 }
1057 }
1058 /*
1059 * add us to the list of name cache entries that
1060 * are children of dvp
1061 */
1062 LIST_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
1063
1064 name_cache_unlock();
1065}
1066
1067
1068/*
1069 * Initialize CRC-32 remainder table.
1070 */
1071static void init_crc32(void)
1072{
1073 /*
1074 * the CRC-32 generator polynomial is:
1075 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1076 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
1077 */
1078 unsigned int crc32_polynomial = 0x04c11db7;
1079 unsigned int i,j;
1080
1081 /*
1082 * pre-calculate the CRC-32 remainder for each possible octet encoding
1083 */
1084 for (i = 0; i < 256; i++) {
1085 unsigned int crc_rem = i << 24;
1086
1087 for (j = 0; j < 8; j++) {
1088 if (crc_rem & 0x80000000)
1089 crc_rem = (crc_rem << 1) ^ crc32_polynomial;
1090 else
1091 crc_rem = (crc_rem << 1);
1092 }
1093 crc32tab[i] = crc_rem;
1094 }
1095}
1096
1097
1098/*
1099 * Name cache initialization, from vfs_init() when we are booting
1100 */
1101void
1102nchinit(void)
1103{
1104 desiredNegNodes = (desiredvnodes / 10);
1105 desiredNodes = desiredvnodes + desiredNegNodes;
1106
1107 TAILQ_INIT(&nchead);
1108 TAILQ_INIT(&neghead);
1109
1110 init_crc32();
1111
1112 nchashtbl = hashinit(MAX(4096, (2 *desiredNodes)), M_CACHE, &nchash);
1113 nchashmask = nchash;
1114 nchash++;
1115
1116 init_string_table();
1117
1118 /* Allocate mount list lock group attribute and group */
1119 namecache_lck_grp_attr= lck_grp_attr_alloc_init();
1120 lck_grp_attr_setstat(namecache_lck_grp_attr);
1121
1122 namecache_lck_grp = lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr);
1123
1124 /* Allocate mount list lock attribute */
1125 namecache_lck_attr = lck_attr_alloc_init();
1126 //lck_attr_setdebug(namecache_lck_attr);
1127
1128 /* Allocate mount list lock */
1129 namecache_mtx_lock = lck_mtx_alloc_init(namecache_lck_grp, namecache_lck_attr);
1130
1131
1132}
1133
1134void
1135name_cache_lock(void)
1136{
1137 lck_mtx_lock(namecache_mtx_lock);
1138}
1139
1140void
1141name_cache_unlock(void)
1142{
1143 lck_mtx_unlock(namecache_mtx_lock);
1144
1145}
1146
1147
1148int
1149resize_namecache(u_int newsize)
1150{
1151 struct nchashhead *new_table;
1152 struct nchashhead *old_table;
1153 struct nchashhead *old_head, *head;
1154 struct namecache *entry, *next;
1155 uint32_t i, hashval;
1156 int dNodes, dNegNodes;
1157 u_long new_size, old_size;
1158
1159 dNegNodes = (newsize / 10);
1160 dNodes = newsize + dNegNodes;
1161
1162 // we don't support shrinking yet
1163 if (dNodes < desiredNodes) {
1164 return 0;
1165 }
1166 new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
1167 new_size = nchashmask + 1;
1168
1169 if (new_table == NULL) {
1170 return ENOMEM;
1171 }
1172
1173 name_cache_lock();
1174 // do the switch!
1175 old_table = nchashtbl;
1176 nchashtbl = new_table;
1177 old_size = nchash;
1178 nchash = new_size;
1179
1180 // walk the old table and insert all the entries into
1181 // the new table
1182 //
1183 for(i=0; i < old_size; i++) {
1184 old_head = &old_table[i];
1185 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1186 //
1187 // XXXdbg - Beware: this assumes that hash_string() does
1188 // the same thing as what happens in
1189 // lookup() over in vfs_lookup.c
1190 hashval = hash_string(entry->nc_name, 0);
1191 entry->nc_hashval = hashval;
1192 head = NCHHASH(entry->nc_dvp, hashval);
1193
1194 next = entry->nc_hash.le_next;
1195 LIST_INSERT_HEAD(head, entry, nc_hash);
1196 }
1197 }
1198 desiredNodes = dNodes;
1199 desiredNegNodes = dNegNodes;
1200
1201 name_cache_unlock();
1202 FREE(old_table, M_CACHE);
1203
1204 return 0;
1205}
1206
1207static void
1208cache_delete(struct namecache *ncp, int age_entry)
1209{
1210 nchstats.ncs_deletes++;
1211
1212 if (ncp->nc_vp) {
1213 LIST_REMOVE(ncp, nc_un.nc_link);
1214 } else {
1215 TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
1216 nchstats.ncs_negtotal--;
1217 }
1218 LIST_REMOVE(ncp, nc_child);
1219
1220 LIST_REMOVE(ncp, nc_hash);
1221 /*
1222 * this field is used to indicate
1223 * that the entry is in use and
1224 * must be deleted before it can
1225 * be reused...
1226 */
1227 ncp->nc_hash.le_prev = NULL;
1228
1229 if (age_entry) {
1230 /*
1231 * make it the next one available
1232 * for cache_enter's use
1233 */
1234 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1235 TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
1236 }
1237 remove_name_locked(ncp->nc_name);
1238 ncp->nc_name = NULL;
1239}
1240
1241
1242/*
1243 * purge the entry associated with the
1244 * specified vnode from the name cache
1245 */
1246void
1247cache_purge(vnode_t vp)
1248{
1249 struct namecache *ncp;
1250
1251 if ((LIST_FIRST(&vp->v_nclinks) == NULL) && (LIST_FIRST(&vp->v_ncchildren) == NULL))
1252 return;
1253
1254 name_cache_lock();
1255
1256 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
1257 cache_delete(ncp, 1);
1258
1259 while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
1260 cache_delete(ncp, 1);
1261
1262 name_cache_unlock();
1263}
1264
1265/*
1266 * Purge all negative cache entries that are children of the
1267 * given vnode. A case-insensitive file system (or any file
1268 * system that has multiple equivalent names for the same
1269 * directory entry) can use this when creating or renaming
1270 * to remove negative entries that may no longer apply.
1271 */
1272void
1273cache_purge_negatives(vnode_t vp)
1274{
1275 struct namecache *ncp;
1276
1277 name_cache_lock();
1278
1279 LIST_FOREACH(ncp, &vp->v_ncchildren, nc_child)
1280 if (ncp->nc_vp == NULL)
1281 cache_delete(ncp , 1);
1282
1283 name_cache_unlock();
1284}
1285
1286/*
1287 * Flush all entries referencing a particular filesystem.
1288 *
1289 * Since we need to check it anyway, we will flush all the invalid
1290 * entries at the same time.
1291 */
1292void
1293cache_purgevfs(mp)
1294 struct mount *mp;
1295{
1296 struct nchashhead *ncpp;
1297 struct namecache *ncp;
1298
1299 name_cache_lock();
1300 /* Scan hash tables for applicable entries */
1301 for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
1302restart:
1303 for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
1304 if (ncp->nc_dvp->v_mount == mp) {
1305 cache_delete(ncp, 0);
1306 goto restart;
1307 }
1308 }
1309 }
1310 name_cache_unlock();
1311}
1312
1313
1314
1315//
1316// String ref routines
1317//
1318static LIST_HEAD(stringhead, string_t) *string_ref_table;
1319static u_long string_table_mask;
1320static uint32_t max_chain_len=0;
1321static struct stringhead *long_chain_head=NULL;
1322static uint32_t filled_buckets=0;
1323static uint32_t num_dups=0;
1324static uint32_t nstrings=0;
1325
1326typedef struct string_t {
1327 LIST_ENTRY(string_t) hash_chain;
1328 unsigned char *str;
1329 uint32_t refcount;
1330} string_t;
1331
1332
1333
1334static int
1335resize_string_ref_table(void)
1336{
1337 struct stringhead *new_table;
1338 struct stringhead *old_table;
1339 struct stringhead *old_head, *head;
1340 string_t *entry, *next;
1341 uint32_t i, hashval;
1342 u_long new_mask, old_mask;
1343
1344 new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
1345 if (new_table == NULL) {
1346 return ENOMEM;
1347 }
1348
1349 // do the switch!
1350 old_table = string_ref_table;
1351 string_ref_table = new_table;
1352 old_mask = string_table_mask;
1353 string_table_mask = new_mask;
1354
1355 printf("resize: max chain len %d, new table size %d\n",
1356 max_chain_len, new_mask + 1);
1357 max_chain_len = 0;
1358 long_chain_head = NULL;
1359 filled_buckets = 0;
1360
1361 // walk the old table and insert all the entries into
1362 // the new table
1363 //
1364 for(i=0; i <= old_mask; i++) {
1365 old_head = &old_table[i];
1366 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1367 hashval = hash_string(entry->str, 0);
1368 head = &string_ref_table[hashval & string_table_mask];
1369 if (head->lh_first == NULL) {
1370 filled_buckets++;
1371 }
1372
1373 next = entry->hash_chain.le_next;
1374 LIST_INSERT_HEAD(head, entry, hash_chain);
1375 }
1376 }
1377
1378 FREE(old_table, M_CACHE);
1379
1380 return 0;
1381}
1382
1383
1384static void
1385init_string_table(void)
1386{
1387 string_ref_table = hashinit(4096, M_CACHE, &string_table_mask);
1388}
1389
1390
1391char *
1392vfs_addname(const char *name, size_t len, u_int hashval, u_int flags)
1393{
1394 char * ptr;
1395
1396 name_cache_lock();
1397 ptr = add_name_locked(name, len, hashval, flags);
1398 name_cache_unlock();
1399
1400 return(ptr);
1401}
1402
1403static char *
1404add_name_locked(const char *name, size_t len, u_int hashval, __unused u_int flags)
1405{
1406 struct stringhead *head;
1407 string_t *entry;
1408 uint32_t chain_len = 0;
1409
1410 //
1411 // If the table gets more than 3/4 full, resize it
1412 //
1413 if (4*filled_buckets >= ((string_table_mask + 1) * 3)) {
1414 if (resize_string_ref_table() != 0) {
1415 printf("failed to resize the hash table.\n");
1416 }
1417 }
1418 if (hashval == 0) {
1419 hashval = hash_string(name, 0);
1420 }
1421
1422 head = &string_ref_table[hashval & string_table_mask];
1423 for (entry=head->lh_first; entry != NULL; chain_len++, entry=entry->hash_chain.le_next) {
1424 if (memcmp(entry->str, name, len) == 0 && entry->str[len] == '\0') {
1425 entry->refcount++;
1426 num_dups++;
1427 break;
1428 }
1429 }
1430
1431 if (entry == NULL) {
1432 // it wasn't already there so add it.
1433 MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
1434
1435 // have to get "head" again because we could have blocked
1436 // in malloc and thus head could have changed.
1437 //
1438 head = &string_ref_table[hashval & string_table_mask];
1439 if (head->lh_first == NULL) {
1440 filled_buckets++;
1441 }
1442
1443 entry->str = (char *)((char *)entry + sizeof(string_t));
1444 strncpy(entry->str, name, len);
1445 entry->str[len] = '\0';
1446 entry->refcount = 1;
1447 LIST_INSERT_HEAD(head, entry, hash_chain);
1448
1449 if (chain_len > max_chain_len) {
1450 max_chain_len = chain_len;
1451 long_chain_head = head;
1452 }
1453
1454 nstrings++;
1455 }
1456
1457 return entry->str;
1458}
1459
1460int
1461vfs_removename(const char *nameref)
1462{
1463 int i;
1464
1465 name_cache_lock();
1466 i = remove_name_locked(nameref);
1467 name_cache_unlock();
1468
1469 return(i);
1470
1471}
1472
1473
1474static int
1475remove_name_locked(const char *nameref)
1476{
1477 struct stringhead *head;
1478 string_t *entry;
1479 uint32_t hashval;
1480 char * ptr;
1481
1482 hashval = hash_string(nameref, 0);
1483 head = &string_ref_table[hashval & string_table_mask];
1484 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1485 if (entry->str == (unsigned char *)nameref) {
1486 entry->refcount--;
1487 if (entry->refcount == 0) {
1488 LIST_REMOVE(entry, hash_chain);
1489 if (head->lh_first == NULL) {
1490 filled_buckets--;
1491 }
1492 ptr = entry->str;
1493 entry->str = NULL;
1494 nstrings--;
1495
1496 FREE(entry, M_TEMP);
1497 } else {
1498 num_dups--;
1499 }
1500
1501 return 0;
1502 }
1503 }
1504
1505 return ENOENT;
1506}
1507
1508
1509void
1510dump_string_table(void)
1511{
1512 struct stringhead *head;
1513 string_t *entry;
1514 u_long i;
1515
1516 name_cache_lock();
1517 for (i = 0; i <= string_table_mask; i++) {
1518 head = &string_ref_table[i];
1519 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1520 printf("%6d - %s\n", entry->refcount, entry->str);
1521 }
1522 }
1523 name_cache_unlock();
1524}