]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2006-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* | |
30 | * Memory allocator with per-CPU caching, derived from the kmem magazine | |
31 | * concept and implementation as described in the following paper: | |
32 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf | |
33 | * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights | |
34 | * reserved. Use is subject to license terms. | |
35 | * | |
36 | * There are several major differences between this and the original kmem | |
37 | * magazine: this derivative implementation allows for multiple objects to | |
38 | * be allocated and freed from/to the object cache in one call; in addition, | |
39 | * it provides for better flexibility where the user is allowed to define | |
40 | * its own slab allocator (instead of the default zone allocator). Finally, | |
41 | * no object construction/destruction takes place at the moment, although | |
42 | * this could be added in future to improve efficiency. | |
43 | */ | |
44 | ||
45 | #include <sys/param.h> | |
46 | #include <sys/types.h> | |
47 | #include <sys/malloc.h> | |
48 | #include <sys/mbuf.h> | |
49 | #include <sys/queue.h> | |
50 | #include <sys/kernel.h> | |
51 | #include <sys/systm.h> | |
52 | ||
53 | #include <kern/debug.h> | |
54 | #include <kern/zalloc.h> | |
55 | #include <kern/cpu_number.h> | |
56 | #include <kern/locks.h> | |
57 | ||
58 | #include <libkern/libkern.h> | |
59 | #include <libkern/OSAtomic.h> | |
60 | #include <libkern/OSDebug.h> | |
61 | ||
62 | #include <mach/vm_param.h> | |
63 | #include <machine/limits.h> | |
64 | #include <machine/machine_routines.h> | |
65 | ||
66 | #include <string.h> | |
67 | ||
68 | #include <sys/mcache.h> | |
69 | ||
70 | #define MCACHE_SIZE(n) \ | |
71 | ((size_t)(&((mcache_t *)0)->mc_cpu[n])) | |
72 | ||
73 | /* Allocate extra in case we need to manually align the pointer */ | |
74 | #define MCACHE_ALLOC_SIZE \ | |
75 | (sizeof (void *) + MCACHE_SIZE(ncpu) + CPU_CACHE_LINE_SIZE) | |
76 | ||
77 | #define MCACHE_CPU(c) \ | |
78 | (mcache_cpu_t *)((void *)((char *)(c) + MCACHE_SIZE(cpu_number()))) | |
79 | ||
80 | /* | |
81 | * MCACHE_LIST_LOCK() and MCACHE_LIST_UNLOCK() are macros used | |
82 | * to serialize accesses to the global list of caches in the system. | |
83 | * They also record the thread currently running in the critical | |
84 | * section, so that we can avoid recursive requests to reap the | |
85 | * caches when memory runs low. | |
86 | */ | |
87 | #define MCACHE_LIST_LOCK() { \ | |
88 | lck_mtx_lock(mcache_llock); \ | |
89 | mcache_llock_owner = current_thread(); \ | |
90 | } | |
91 | ||
92 | #define MCACHE_LIST_UNLOCK() { \ | |
93 | mcache_llock_owner = NULL; \ | |
94 | lck_mtx_unlock(mcache_llock); \ | |
95 | } | |
96 | ||
97 | #define MCACHE_LOCK(l) lck_mtx_lock(l) | |
98 | #define MCACHE_UNLOCK(l) lck_mtx_unlock(l) | |
99 | #define MCACHE_LOCK_TRY(l) lck_mtx_try_lock(l) | |
100 | ||
101 | static int ncpu; | |
102 | static unsigned int cache_line_size; | |
103 | static lck_mtx_t *mcache_llock; | |
104 | static struct thread *mcache_llock_owner; | |
105 | static lck_attr_t *mcache_llock_attr; | |
106 | static lck_grp_t *mcache_llock_grp; | |
107 | static lck_grp_attr_t *mcache_llock_grp_attr; | |
108 | static struct zone *mcache_zone; | |
109 | static unsigned int mcache_reap_interval; | |
110 | static UInt32 mcache_reaping; | |
111 | static int mcache_ready; | |
112 | static int mcache_updating; | |
113 | ||
114 | static int mcache_bkt_contention = 3; | |
115 | #if DEBUG | |
116 | static unsigned int mcache_flags = MCF_DEBUG; | |
117 | #else | |
118 | static unsigned int mcache_flags = 0; | |
119 | #endif | |
120 | ||
121 | #define DUMP_MCA_BUF_SIZE 512 | |
122 | static char *mca_dump_buf; | |
123 | ||
124 | static mcache_bkttype_t mcache_bkttype[] = { | |
125 | { 1, 4096, 32768, NULL }, | |
126 | { 3, 2048, 16384, NULL }, | |
127 | { 7, 1024, 12288, NULL }, | |
128 | { 15, 256, 8192, NULL }, | |
129 | { 31, 64, 4096, NULL }, | |
130 | { 47, 0, 2048, NULL }, | |
131 | { 63, 0, 1024, NULL }, | |
132 | { 95, 0, 512, NULL }, | |
133 | { 143, 0, 256, NULL }, | |
134 | { 165, 0, 0, NULL }, | |
135 | }; | |
136 | ||
137 | static mcache_t *mcache_create_common(const char *, size_t, size_t, | |
138 | mcache_allocfn_t, mcache_freefn_t, mcache_auditfn_t, mcache_logfn_t, | |
139 | mcache_notifyfn_t, void *, u_int32_t, int, int); | |
140 | static unsigned int mcache_slab_alloc(void *, mcache_obj_t ***, | |
141 | unsigned int, int); | |
142 | static void mcache_slab_free(void *, mcache_obj_t *, boolean_t); | |
143 | static void mcache_slab_audit(void *, mcache_obj_t *, boolean_t); | |
144 | static void mcache_cpu_refill(mcache_cpu_t *, mcache_bkt_t *, int); | |
145 | static mcache_bkt_t *mcache_bkt_alloc(mcache_t *, mcache_bktlist_t *, | |
146 | mcache_bkttype_t **); | |
147 | static void mcache_bkt_free(mcache_t *, mcache_bktlist_t *, mcache_bkt_t *); | |
148 | static void mcache_cache_bkt_enable(mcache_t *); | |
149 | static void mcache_bkt_purge(mcache_t *); | |
150 | static void mcache_bkt_destroy(mcache_t *, mcache_bkttype_t *, | |
151 | mcache_bkt_t *, int); | |
152 | static void mcache_bkt_ws_update(mcache_t *); | |
153 | static void mcache_bkt_ws_reap(mcache_t *); | |
154 | static void mcache_dispatch(void (*)(void *), void *); | |
155 | static void mcache_cache_reap(mcache_t *); | |
156 | static void mcache_cache_update(mcache_t *); | |
157 | static void mcache_cache_bkt_resize(void *); | |
158 | static void mcache_cache_enable(void *); | |
159 | static void mcache_update(void *); | |
160 | static void mcache_update_timeout(void *); | |
161 | static void mcache_applyall(void (*)(mcache_t *)); | |
162 | static void mcache_reap_start(void *); | |
163 | static void mcache_reap_done(void *); | |
164 | static void mcache_reap_timeout(void *); | |
165 | static void mcache_notify(mcache_t *, u_int32_t); | |
166 | static void mcache_purge(void *); | |
167 | ||
168 | static LIST_HEAD(, mcache) mcache_head; | |
169 | mcache_t *mcache_audit_cache; | |
170 | ||
171 | /* | |
172 | * Initialize the framework; this is currently called as part of BSD init. | |
173 | */ | |
174 | __private_extern__ void | |
175 | mcache_init(void) | |
176 | { | |
177 | mcache_bkttype_t *btp; | |
178 | unsigned int i; | |
179 | char name[32]; | |
180 | ||
181 | ncpu = ml_get_max_cpus(); | |
182 | (void) mcache_cache_line_size(); /* prime it */ | |
183 | ||
184 | mcache_llock_grp_attr = lck_grp_attr_alloc_init(); | |
185 | mcache_llock_grp = lck_grp_alloc_init("mcache.list", | |
186 | mcache_llock_grp_attr); | |
187 | mcache_llock_attr = lck_attr_alloc_init(); | |
188 | mcache_llock = lck_mtx_alloc_init(mcache_llock_grp, mcache_llock_attr); | |
189 | ||
190 | mcache_zone = zinit(MCACHE_ALLOC_SIZE, 256 * MCACHE_ALLOC_SIZE, | |
191 | PAGE_SIZE, "mcache"); | |
192 | if (mcache_zone == NULL) | |
193 | panic("mcache_init: failed to allocate mcache zone\n"); | |
194 | zone_change(mcache_zone, Z_CALLERACCT, FALSE); | |
195 | ||
196 | LIST_INIT(&mcache_head); | |
197 | ||
198 | for (i = 0; i < sizeof (mcache_bkttype) / sizeof (*btp); i++) { | |
199 | btp = &mcache_bkttype[i]; | |
200 | (void) snprintf(name, sizeof (name), "bkt_%d", | |
201 | btp->bt_bktsize); | |
202 | btp->bt_cache = mcache_create(name, | |
203 | (btp->bt_bktsize + 1) * sizeof (void *), 0, 0, MCR_SLEEP); | |
204 | } | |
205 | ||
206 | PE_parse_boot_argn("mcache_flags", &mcache_flags, sizeof (mcache_flags)); | |
207 | mcache_flags &= MCF_FLAGS_MASK; | |
208 | ||
209 | mcache_audit_cache = mcache_create("audit", sizeof (mcache_audit_t), | |
210 | 0, 0, MCR_SLEEP); | |
211 | ||
212 | mcache_reap_interval = 15 * hz; | |
213 | mcache_applyall(mcache_cache_bkt_enable); | |
214 | mcache_ready = 1; | |
215 | ||
216 | printf("mcache: %d CPU(s), %d bytes CPU cache line size\n", | |
217 | ncpu, CPU_CACHE_LINE_SIZE); | |
218 | } | |
219 | ||
220 | /* | |
221 | * Return the global mcache flags. | |
222 | */ | |
223 | __private_extern__ unsigned int | |
224 | mcache_getflags(void) | |
225 | { | |
226 | return (mcache_flags); | |
227 | } | |
228 | ||
229 | /* | |
230 | * Return the CPU cache line size. | |
231 | */ | |
232 | __private_extern__ unsigned int | |
233 | mcache_cache_line_size(void) | |
234 | { | |
235 | if (cache_line_size == 0) { | |
236 | ml_cpu_info_t cpu_info; | |
237 | ml_cpu_get_info(&cpu_info); | |
238 | cache_line_size = cpu_info.cache_line_size; | |
239 | } | |
240 | return (cache_line_size); | |
241 | } | |
242 | ||
243 | /* | |
244 | * Create a cache using the zone allocator as the backend slab allocator. | |
245 | * The caller may specify any alignment for the object; if it specifies 0 | |
246 | * the default alignment (MCACHE_ALIGN) will be used. | |
247 | */ | |
248 | __private_extern__ mcache_t * | |
249 | mcache_create(const char *name, size_t bufsize, size_t align, | |
250 | u_int32_t flags, int wait) | |
251 | { | |
252 | return (mcache_create_common(name, bufsize, align, mcache_slab_alloc, | |
253 | mcache_slab_free, mcache_slab_audit, NULL, NULL, NULL, flags, 1, | |
254 | wait)); | |
255 | } | |
256 | ||
257 | /* | |
258 | * Create a cache using a custom backend slab allocator. Since the caller | |
259 | * is responsible for allocation, no alignment guarantee will be provided | |
260 | * by this framework. | |
261 | */ | |
262 | __private_extern__ mcache_t * | |
263 | mcache_create_ext(const char *name, size_t bufsize, | |
264 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, | |
265 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, | |
266 | u_int32_t flags, int wait) | |
267 | { | |
268 | return (mcache_create_common(name, bufsize, 0, allocfn, | |
269 | freefn, auditfn, logfn, notifyfn, arg, flags, 0, wait)); | |
270 | } | |
271 | ||
272 | /* | |
273 | * Common cache creation routine. | |
274 | */ | |
275 | static mcache_t * | |
276 | mcache_create_common(const char *name, size_t bufsize, size_t align, | |
277 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, | |
278 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, | |
279 | u_int32_t flags, int need_zone, int wait) | |
280 | { | |
281 | mcache_bkttype_t *btp; | |
282 | mcache_t *cp = NULL; | |
283 | size_t chunksize; | |
284 | void *buf, **pbuf; | |
285 | int c; | |
286 | char lck_name[64]; | |
287 | ||
288 | /* If auditing is on and print buffer is NULL, allocate it now */ | |
289 | if ((flags & MCF_DEBUG) && mca_dump_buf == NULL) { | |
290 | int malloc_wait = (wait & MCR_NOSLEEP) ? M_NOWAIT : M_WAITOK; | |
291 | MALLOC(mca_dump_buf, char *, DUMP_MCA_BUF_SIZE, M_TEMP, | |
292 | malloc_wait | M_ZERO); | |
293 | if (mca_dump_buf == NULL) | |
294 | return (NULL); | |
295 | } | |
296 | ||
297 | if (!(wait & MCR_NOSLEEP)) | |
298 | buf = zalloc(mcache_zone); | |
299 | else | |
300 | buf = zalloc_noblock(mcache_zone); | |
301 | ||
302 | if (buf == NULL) | |
303 | goto fail; | |
304 | ||
305 | bzero(buf, MCACHE_ALLOC_SIZE); | |
306 | ||
307 | /* | |
308 | * In case we didn't get a cache-aligned memory, round it up | |
309 | * accordingly. This is needed in order to get the rest of | |
310 | * structure members aligned properly. It also means that | |
311 | * the memory span gets shifted due to the round up, but it | |
312 | * is okay since we've allocated extra space for this. | |
313 | */ | |
314 | cp = (mcache_t *) | |
315 | P2ROUNDUP((intptr_t)buf + sizeof (void *), CPU_CACHE_LINE_SIZE); | |
316 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); | |
317 | *pbuf = buf; | |
318 | ||
319 | /* | |
320 | * Guaranteed alignment is valid only when we use the internal | |
321 | * slab allocator (currently set to use the zone allocator). | |
322 | */ | |
323 | if (!need_zone) | |
324 | align = 1; | |
325 | else if (align == 0) | |
326 | align = MCACHE_ALIGN; | |
327 | ||
328 | if ((align & (align - 1)) != 0) | |
329 | panic("mcache_create: bad alignment %lu", align); | |
330 | ||
331 | cp->mc_align = align; | |
332 | cp->mc_slab_alloc = allocfn; | |
333 | cp->mc_slab_free = freefn; | |
334 | cp->mc_slab_audit = auditfn; | |
335 | cp->mc_slab_log = logfn; | |
336 | cp->mc_slab_notify = notifyfn; | |
337 | cp->mc_private = need_zone ? cp : arg; | |
338 | cp->mc_bufsize = bufsize; | |
339 | cp->mc_flags = (flags & MCF_FLAGS_MASK) | mcache_flags; | |
340 | ||
341 | (void) snprintf(cp->mc_name, sizeof (cp->mc_name), "mcache.%s", name); | |
342 | ||
343 | (void) snprintf(lck_name, sizeof (lck_name), "%s.cpu", cp->mc_name); | |
344 | cp->mc_cpu_lock_grp_attr = lck_grp_attr_alloc_init(); | |
345 | cp->mc_cpu_lock_grp = lck_grp_alloc_init(lck_name, | |
346 | cp->mc_cpu_lock_grp_attr); | |
347 | cp->mc_cpu_lock_attr = lck_attr_alloc_init(); | |
348 | ||
349 | /* | |
350 | * Allocation chunk size is the object's size plus any extra size | |
351 | * needed to satisfy the object's alignment. It is enforced to be | |
352 | * at least the size of an LP64 pointer to simplify auditing and to | |
353 | * handle multiple-element allocation requests, where the elements | |
354 | * returned are linked together in a list. | |
355 | */ | |
356 | chunksize = MAX(bufsize, sizeof (u_int64_t)); | |
357 | if (need_zone) { | |
358 | /* Enforce 64-bit minimum alignment for zone-based buffers */ | |
359 | align = MAX(align, sizeof (u_int64_t)); | |
360 | chunksize += sizeof (void *) + align; | |
361 | chunksize = P2ROUNDUP(chunksize, align); | |
362 | if ((cp->mc_slab_zone = zinit(chunksize, 64 * 1024 * ncpu, | |
363 | PAGE_SIZE, cp->mc_name)) == NULL) | |
364 | goto fail; | |
365 | zone_change(cp->mc_slab_zone, Z_EXPAND, TRUE); | |
366 | } | |
367 | cp->mc_chunksize = chunksize; | |
368 | ||
369 | /* | |
370 | * Initialize the bucket layer. | |
371 | */ | |
372 | (void) snprintf(lck_name, sizeof (lck_name), "%s.bkt", cp->mc_name); | |
373 | cp->mc_bkt_lock_grp_attr = lck_grp_attr_alloc_init(); | |
374 | cp->mc_bkt_lock_grp = lck_grp_alloc_init(lck_name, | |
375 | cp->mc_bkt_lock_grp_attr); | |
376 | cp->mc_bkt_lock_attr = lck_attr_alloc_init(); | |
377 | lck_mtx_init(&cp->mc_bkt_lock, cp->mc_bkt_lock_grp, | |
378 | cp->mc_bkt_lock_attr); | |
379 | ||
380 | (void) snprintf(lck_name, sizeof (lck_name), "%s.sync", cp->mc_name); | |
381 | cp->mc_sync_lock_grp_attr = lck_grp_attr_alloc_init(); | |
382 | cp->mc_sync_lock_grp = lck_grp_alloc_init(lck_name, | |
383 | cp->mc_sync_lock_grp_attr); | |
384 | cp->mc_sync_lock_attr = lck_attr_alloc_init(); | |
385 | lck_mtx_init(&cp->mc_sync_lock, cp->mc_sync_lock_grp, | |
386 | cp->mc_sync_lock_attr); | |
387 | ||
388 | for (btp = mcache_bkttype; chunksize <= btp->bt_minbuf; btp++) | |
389 | continue; | |
390 | ||
391 | cp->cache_bkttype = btp; | |
392 | ||
393 | /* | |
394 | * Initialize the CPU layer. Each per-CPU structure is aligned | |
395 | * on the CPU cache line boundary to prevent false sharing. | |
396 | */ | |
397 | for (c = 0; c < ncpu; c++) { | |
398 | mcache_cpu_t *ccp = &cp->mc_cpu[c]; | |
399 | ||
400 | VERIFY(IS_P2ALIGNED(ccp, CPU_CACHE_LINE_SIZE)); | |
401 | lck_mtx_init(&ccp->cc_lock, cp->mc_cpu_lock_grp, | |
402 | cp->mc_cpu_lock_attr); | |
403 | ccp->cc_objs = -1; | |
404 | ccp->cc_pobjs = -1; | |
405 | } | |
406 | ||
407 | if (mcache_ready) | |
408 | mcache_cache_bkt_enable(cp); | |
409 | ||
410 | /* TODO: dynamically create sysctl for stats */ | |
411 | ||
412 | MCACHE_LIST_LOCK(); | |
413 | LIST_INSERT_HEAD(&mcache_head, cp, mc_list); | |
414 | MCACHE_LIST_UNLOCK(); | |
415 | ||
416 | /* | |
417 | * If cache buckets are enabled and this is the first cache | |
418 | * created, start the periodic cache update. | |
419 | */ | |
420 | if (!(mcache_flags & MCF_NOCPUCACHE) && !mcache_updating) { | |
421 | mcache_updating = 1; | |
422 | mcache_update_timeout(NULL); | |
423 | } | |
424 | if (cp->mc_flags & MCF_DEBUG) { | |
425 | printf("mcache_create: %s (%s) arg %p bufsize %lu align %lu " | |
426 | "chunksize %lu bktsize %d\n", name, need_zone ? "i" : "e", | |
427 | arg, bufsize, cp->mc_align, chunksize, btp->bt_bktsize); | |
428 | } | |
429 | return (cp); | |
430 | ||
431 | fail: | |
432 | if (buf != NULL) | |
433 | zfree(mcache_zone, buf); | |
434 | return (NULL); | |
435 | } | |
436 | ||
437 | /* | |
438 | * Allocate one or more objects from a cache. | |
439 | */ | |
440 | __private_extern__ unsigned int | |
441 | mcache_alloc_ext(mcache_t *cp, mcache_obj_t **list, unsigned int num, int wait) | |
442 | { | |
443 | mcache_cpu_t *ccp; | |
444 | mcache_obj_t **top = &(*list); | |
445 | mcache_bkt_t *bkt; | |
446 | unsigned int need = num; | |
447 | boolean_t nwretry = FALSE; | |
448 | ||
449 | /* MCR_NOSLEEP and MCR_FAILOK are mutually exclusive */ | |
450 | VERIFY((wait & (MCR_NOSLEEP|MCR_FAILOK)) != (MCR_NOSLEEP|MCR_FAILOK)); | |
451 | ||
452 | ASSERT(list != NULL); | |
453 | *list = NULL; | |
454 | ||
455 | if (num == 0) | |
456 | return (0); | |
457 | ||
458 | retry_alloc: | |
459 | /* We may not always be running in the same CPU in case of retries */ | |
460 | ccp = MCACHE_CPU(cp); | |
461 | ||
462 | MCACHE_LOCK(&ccp->cc_lock); | |
463 | for (;;) { | |
464 | /* | |
465 | * If we have an object in the current CPU's filled bucket, | |
466 | * chain the object to any previous objects and return if | |
467 | * we've satisfied the number of requested objects. | |
468 | */ | |
469 | if (ccp->cc_objs > 0) { | |
470 | mcache_obj_t *tail; | |
471 | int objs; | |
472 | ||
473 | /* | |
474 | * Objects in the bucket are already linked together | |
475 | * with the most recently freed object at the head of | |
476 | * the list; grab as many objects as we can. | |
477 | */ | |
478 | objs = MIN((unsigned int)ccp->cc_objs, need); | |
479 | *list = ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; | |
480 | ccp->cc_objs -= objs; | |
481 | ccp->cc_alloc += objs; | |
482 | ||
483 | tail = ccp->cc_filled->bkt_obj[ccp->cc_objs]; | |
484 | list = &tail->obj_next; | |
485 | *list = NULL; | |
486 | ||
487 | /* If we got them all, return to caller */ | |
488 | if ((need -= objs) == 0) { | |
489 | MCACHE_UNLOCK(&ccp->cc_lock); | |
490 | ||
491 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && | |
492 | cp->mc_slab_log != NULL) | |
493 | (*cp->mc_slab_log)(num, *top, TRUE); | |
494 | ||
495 | if (cp->mc_flags & MCF_DEBUG) | |
496 | goto debug_alloc; | |
497 | ||
498 | return (num); | |
499 | } | |
500 | } | |
501 | ||
502 | /* | |
503 | * The CPU's filled bucket is empty. If the previous filled | |
504 | * bucket was full, exchange and try again. | |
505 | */ | |
506 | if (ccp->cc_pobjs > 0) { | |
507 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); | |
508 | continue; | |
509 | } | |
510 | ||
511 | /* | |
512 | * If the bucket layer is disabled, allocate from slab. This | |
513 | * can happen either because MCF_NOCPUCACHE is set, or because | |
514 | * the bucket layer is currently being resized. | |
515 | */ | |
516 | if (ccp->cc_bktsize == 0) | |
517 | break; | |
518 | ||
519 | /* | |
520 | * Both of the CPU's buckets are empty; try to get a full | |
521 | * bucket from the bucket layer. Upon success, refill this | |
522 | * CPU and place any empty bucket into the empty list. | |
523 | */ | |
524 | bkt = mcache_bkt_alloc(cp, &cp->mc_full, NULL); | |
525 | if (bkt != NULL) { | |
526 | if (ccp->cc_pfilled != NULL) | |
527 | mcache_bkt_free(cp, &cp->mc_empty, | |
528 | ccp->cc_pfilled); | |
529 | mcache_cpu_refill(ccp, bkt, ccp->cc_bktsize); | |
530 | continue; | |
531 | } | |
532 | ||
533 | /* | |
534 | * The bucket layer has no full buckets; allocate the | |
535 | * object(s) directly from the slab layer. | |
536 | */ | |
537 | break; | |
538 | } | |
539 | MCACHE_UNLOCK(&ccp->cc_lock); | |
540 | ||
541 | need -= (*cp->mc_slab_alloc)(cp->mc_private, &list, need, wait); | |
542 | ||
543 | /* | |
544 | * If this is a blocking allocation, or if it is non-blocking and | |
545 | * the cache's full bucket is non-empty, then retry the allocation. | |
546 | */ | |
547 | if (need > 0) { | |
548 | if (!(wait & MCR_NONBLOCKING)) { | |
549 | atomic_add_32(&cp->mc_wretry_cnt, 1); | |
550 | goto retry_alloc; | |
551 | } else if ((wait & (MCR_NOSLEEP | MCR_TRYHARD)) && | |
552 | !mcache_bkt_isempty(cp)) { | |
553 | if (!nwretry) | |
554 | nwretry = TRUE; | |
555 | atomic_add_32(&cp->mc_nwretry_cnt, 1); | |
556 | goto retry_alloc; | |
557 | } else if (nwretry) { | |
558 | atomic_add_32(&cp->mc_nwfail_cnt, 1); | |
559 | } | |
560 | } | |
561 | ||
562 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) | |
563 | (*cp->mc_slab_log)((num - need), *top, TRUE); | |
564 | ||
565 | if (!(cp->mc_flags & MCF_DEBUG)) | |
566 | return (num - need); | |
567 | ||
568 | debug_alloc: | |
569 | if (cp->mc_flags & MCF_DEBUG) { | |
570 | mcache_obj_t **o = top; | |
571 | unsigned int n; | |
572 | ||
573 | n = 0; | |
574 | /* | |
575 | * Verify that the chain of objects have the same count as | |
576 | * what we are about to report to the caller. Any mismatch | |
577 | * here means that the object list is insanely broken and | |
578 | * therefore we must panic. | |
579 | */ | |
580 | while (*o != NULL) { | |
581 | o = &(*o)->obj_next; | |
582 | ++n; | |
583 | } | |
584 | if (n != (num - need)) { | |
585 | panic("mcache_alloc_ext: %s cp %p corrupted list " | |
586 | "(got %d actual %d)\n", cp->mc_name, | |
587 | (void *)cp, num - need, n); | |
588 | } | |
589 | } | |
590 | ||
591 | /* Invoke the slab layer audit callback if auditing is enabled */ | |
592 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) | |
593 | (*cp->mc_slab_audit)(cp->mc_private, *top, TRUE); | |
594 | ||
595 | return (num - need); | |
596 | } | |
597 | ||
598 | /* | |
599 | * Allocate a single object from a cache. | |
600 | */ | |
601 | __private_extern__ void * | |
602 | mcache_alloc(mcache_t *cp, int wait) | |
603 | { | |
604 | mcache_obj_t *buf; | |
605 | ||
606 | (void) mcache_alloc_ext(cp, &buf, 1, wait); | |
607 | return (buf); | |
608 | } | |
609 | ||
610 | __private_extern__ void | |
611 | mcache_waiter_inc(mcache_t *cp) | |
612 | { | |
613 | atomic_add_32(&cp->mc_waiter_cnt, 1); | |
614 | } | |
615 | ||
616 | __private_extern__ void | |
617 | mcache_waiter_dec(mcache_t *cp) | |
618 | { | |
619 | atomic_add_32(&cp->mc_waiter_cnt, -1); | |
620 | } | |
621 | ||
622 | __private_extern__ boolean_t | |
623 | mcache_bkt_isempty(mcache_t *cp) | |
624 | { | |
625 | /* | |
626 | * This isn't meant to accurately tell whether there are | |
627 | * any full buckets in the cache; it is simply a way to | |
628 | * obtain "hints" about the state of the cache. | |
629 | */ | |
630 | return (cp->mc_full.bl_total == 0); | |
631 | } | |
632 | ||
633 | /* | |
634 | * Notify the slab layer about an event. | |
635 | */ | |
636 | static void | |
637 | mcache_notify(mcache_t *cp, u_int32_t event) | |
638 | { | |
639 | if (cp->mc_slab_notify != NULL) | |
640 | (*cp->mc_slab_notify)(cp->mc_private, event); | |
641 | } | |
642 | ||
643 | /* | |
644 | * Purge the cache and disable its buckets. | |
645 | */ | |
646 | static void | |
647 | mcache_purge(void *arg) | |
648 | { | |
649 | mcache_t *cp = arg; | |
650 | ||
651 | mcache_bkt_purge(cp); | |
652 | /* | |
653 | * We cannot simply call mcache_cache_bkt_enable() from here as | |
654 | * a bucket resize may be in flight and we would cause the CPU | |
655 | * layers of the cache to point to different sizes. Therefore, | |
656 | * we simply increment the enable count so that during the next | |
657 | * periodic cache update the buckets can be reenabled. | |
658 | */ | |
659 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
660 | cp->mc_enable_cnt++; | |
661 | lck_mtx_unlock(&cp->mc_sync_lock); | |
662 | ||
663 | } | |
664 | ||
665 | __private_extern__ boolean_t | |
666 | mcache_purge_cache(mcache_t *cp) | |
667 | { | |
668 | /* | |
669 | * Purging a cache that has no per-CPU caches or is already | |
670 | * in the process of being purged is rather pointless. | |
671 | */ | |
672 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
673 | return (FALSE); | |
674 | ||
675 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
676 | if (cp->mc_purge_cnt > 0) { | |
677 | lck_mtx_unlock(&cp->mc_sync_lock); | |
678 | return (FALSE); | |
679 | } | |
680 | cp->mc_purge_cnt++; | |
681 | lck_mtx_unlock(&cp->mc_sync_lock); | |
682 | ||
683 | mcache_dispatch(mcache_purge, cp); | |
684 | ||
685 | return (TRUE); | |
686 | } | |
687 | ||
688 | /* | |
689 | * Free a single object to a cache. | |
690 | */ | |
691 | __private_extern__ void | |
692 | mcache_free(mcache_t *cp, void *buf) | |
693 | { | |
694 | ((mcache_obj_t *)buf)->obj_next = NULL; | |
695 | mcache_free_ext(cp, (mcache_obj_t *)buf); | |
696 | } | |
697 | ||
698 | /* | |
699 | * Free one or more objects to a cache. | |
700 | */ | |
701 | __private_extern__ void | |
702 | mcache_free_ext(mcache_t *cp, mcache_obj_t *list) | |
703 | { | |
704 | mcache_cpu_t *ccp = MCACHE_CPU(cp); | |
705 | mcache_bkttype_t *btp; | |
706 | mcache_obj_t *nlist; | |
707 | mcache_bkt_t *bkt; | |
708 | ||
709 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) | |
710 | (*cp->mc_slab_log)(0, list, FALSE); | |
711 | ||
712 | /* Invoke the slab layer audit callback if auditing is enabled */ | |
713 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) | |
714 | (*cp->mc_slab_audit)(cp->mc_private, list, FALSE); | |
715 | ||
716 | MCACHE_LOCK(&ccp->cc_lock); | |
717 | for (;;) { | |
718 | /* | |
719 | * If there is space in the current CPU's filled bucket, put | |
720 | * the object there and return once all objects are freed. | |
721 | * Note the cast to unsigned integer takes care of the case | |
722 | * where the bucket layer is disabled (when cc_objs is -1). | |
723 | */ | |
724 | if ((unsigned int)ccp->cc_objs < | |
725 | (unsigned int)ccp->cc_bktsize) { | |
726 | /* | |
727 | * Reverse the list while we place the object into the | |
728 | * bucket; this effectively causes the most recently | |
729 | * freed object(s) to be reused during allocation. | |
730 | */ | |
731 | nlist = list->obj_next; | |
732 | list->obj_next = (ccp->cc_objs == 0) ? NULL : | |
733 | ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; | |
734 | ccp->cc_filled->bkt_obj[ccp->cc_objs++] = list; | |
735 | ccp->cc_free++; | |
736 | ||
737 | if ((list = nlist) != NULL) | |
738 | continue; | |
739 | ||
740 | /* We are done; return to caller */ | |
741 | MCACHE_UNLOCK(&ccp->cc_lock); | |
742 | ||
743 | /* If there is a waiter below, notify it */ | |
744 | if (cp->mc_waiter_cnt > 0) | |
745 | mcache_notify(cp, MCN_RETRYALLOC); | |
746 | return; | |
747 | } | |
748 | ||
749 | /* | |
750 | * The CPU's filled bucket is full. If the previous filled | |
751 | * bucket was empty, exchange and try again. | |
752 | */ | |
753 | if (ccp->cc_pobjs == 0) { | |
754 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); | |
755 | continue; | |
756 | } | |
757 | ||
758 | /* | |
759 | * If the bucket layer is disabled, free to slab. This can | |
760 | * happen either because MCF_NOCPUCACHE is set, or because | |
761 | * the bucket layer is currently being resized. | |
762 | */ | |
763 | if (ccp->cc_bktsize == 0) | |
764 | break; | |
765 | ||
766 | /* | |
767 | * Both of the CPU's buckets are full; try to get an empty | |
768 | * bucket from the bucket layer. Upon success, empty this | |
769 | * CPU and place any full bucket into the full list. | |
770 | */ | |
771 | bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp); | |
772 | if (bkt != NULL) { | |
773 | if (ccp->cc_pfilled != NULL) | |
774 | mcache_bkt_free(cp, &cp->mc_full, | |
775 | ccp->cc_pfilled); | |
776 | mcache_cpu_refill(ccp, bkt, 0); | |
777 | continue; | |
778 | } | |
779 | ||
780 | /* | |
781 | * We need an empty bucket to put our freed objects into | |
782 | * but couldn't get an empty bucket from the bucket layer; | |
783 | * attempt to allocate one. We do not want to block for | |
784 | * allocation here, and if the bucket allocation fails | |
785 | * we will simply fall through to the slab layer. | |
786 | */ | |
787 | MCACHE_UNLOCK(&ccp->cc_lock); | |
788 | bkt = mcache_alloc(btp->bt_cache, MCR_NOSLEEP); | |
789 | MCACHE_LOCK(&ccp->cc_lock); | |
790 | ||
791 | if (bkt != NULL) { | |
792 | /* | |
793 | * We have an empty bucket, but since we drop the | |
794 | * CPU lock above, the cache's bucket size may have | |
795 | * changed. If so, free the bucket and try again. | |
796 | */ | |
797 | if (ccp->cc_bktsize != btp->bt_bktsize) { | |
798 | MCACHE_UNLOCK(&ccp->cc_lock); | |
799 | mcache_free(btp->bt_cache, bkt); | |
800 | MCACHE_LOCK(&ccp->cc_lock); | |
801 | continue; | |
802 | } | |
803 | ||
804 | /* | |
805 | * We have an empty bucket of the right size; | |
806 | * add it to the bucket layer and try again. | |
807 | */ | |
808 | mcache_bkt_free(cp, &cp->mc_empty, bkt); | |
809 | continue; | |
810 | } | |
811 | ||
812 | /* | |
813 | * The bucket layer has no empty buckets; free the | |
814 | * object(s) directly to the slab layer. | |
815 | */ | |
816 | break; | |
817 | } | |
818 | MCACHE_UNLOCK(&ccp->cc_lock); | |
819 | ||
820 | /* If there is a waiter below, notify it */ | |
821 | if (cp->mc_waiter_cnt > 0) | |
822 | mcache_notify(cp, MCN_RETRYALLOC); | |
823 | ||
824 | /* Advise the slab layer to purge the object(s) */ | |
825 | (*cp->mc_slab_free)(cp->mc_private, list, | |
826 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); | |
827 | } | |
828 | ||
829 | /* | |
830 | * Cache destruction routine. | |
831 | */ | |
832 | __private_extern__ void | |
833 | mcache_destroy(mcache_t *cp) | |
834 | { | |
835 | void **pbuf; | |
836 | ||
837 | MCACHE_LIST_LOCK(); | |
838 | LIST_REMOVE(cp, mc_list); | |
839 | MCACHE_LIST_UNLOCK(); | |
840 | ||
841 | mcache_bkt_purge(cp); | |
842 | ||
843 | /* | |
844 | * This cache is dead; there should be no further transaction. | |
845 | * If it's still invoked, make sure that it induces a fault. | |
846 | */ | |
847 | cp->mc_slab_alloc = NULL; | |
848 | cp->mc_slab_free = NULL; | |
849 | cp->mc_slab_audit = NULL; | |
850 | ||
851 | lck_attr_free(cp->mc_bkt_lock_attr); | |
852 | lck_grp_free(cp->mc_bkt_lock_grp); | |
853 | lck_grp_attr_free(cp->mc_bkt_lock_grp_attr); | |
854 | ||
855 | lck_attr_free(cp->mc_cpu_lock_attr); | |
856 | lck_grp_free(cp->mc_cpu_lock_grp); | |
857 | lck_grp_attr_free(cp->mc_cpu_lock_grp_attr); | |
858 | ||
859 | lck_attr_free(cp->mc_sync_lock_attr); | |
860 | lck_grp_free(cp->mc_sync_lock_grp); | |
861 | lck_grp_attr_free(cp->mc_sync_lock_grp_attr); | |
862 | ||
863 | /* | |
864 | * TODO: We need to destroy the zone here, but cannot do it | |
865 | * because there is no such way to achieve that. Until then | |
866 | * the memory allocated for the zone structure is leaked. | |
867 | * Once it is achievable, uncomment these lines: | |
868 | * | |
869 | * if (cp->mc_slab_zone != NULL) { | |
870 | * zdestroy(cp->mc_slab_zone); | |
871 | * cp->mc_slab_zone = NULL; | |
872 | * } | |
873 | */ | |
874 | ||
875 | /* Get the original address since we're about to free it */ | |
876 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); | |
877 | ||
878 | zfree(mcache_zone, *pbuf); | |
879 | } | |
880 | ||
881 | /* | |
882 | * Internal slab allocator used as a backend for simple caches. The current | |
883 | * implementation uses the zone allocator for simplicity reasons. | |
884 | */ | |
885 | static unsigned int | |
886 | mcache_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) | |
887 | { | |
888 | mcache_t *cp = arg; | |
889 | unsigned int need = num; | |
890 | size_t offset = 0; | |
891 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
892 | u_int32_t flags = cp->mc_flags; | |
893 | void *buf, *base, **pbuf; | |
894 | mcache_obj_t **list = *plist; | |
895 | ||
896 | *list = NULL; | |
897 | ||
898 | /* | |
899 | * The address of the object returned to the caller is an | |
900 | * offset from the 64-bit aligned base address only if the | |
901 | * cache's alignment requirement is neither 1 nor 8 bytes. | |
902 | */ | |
903 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
904 | offset = cp->mc_align; | |
905 | ||
906 | for (;;) { | |
907 | if (!(wait & MCR_NOSLEEP)) | |
908 | buf = zalloc(cp->mc_slab_zone); | |
909 | else | |
910 | buf = zalloc_noblock(cp->mc_slab_zone); | |
911 | ||
912 | if (buf == NULL) | |
913 | break; | |
914 | ||
915 | /* Get the 64-bit aligned base address for this object */ | |
916 | base = (void *)P2ROUNDUP((intptr_t)buf + sizeof (u_int64_t), | |
917 | sizeof (u_int64_t)); | |
918 | ||
919 | /* | |
920 | * Wind back a pointer size from the aligned base and | |
921 | * save the original address so we can free it later. | |
922 | */ | |
923 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
924 | *pbuf = buf; | |
925 | ||
926 | /* | |
927 | * If auditing is enabled, patternize the contents of | |
928 | * the buffer starting from the 64-bit aligned base to | |
929 | * the end of the buffer; the length is rounded up to | |
930 | * the nearest 64-bit multiply; this is because we use | |
931 | * 64-bit memory access to set/check the pattern. | |
932 | */ | |
933 | if (flags & MCF_DEBUG) { | |
934 | VERIFY(((intptr_t)base + rsize) <= | |
935 | ((intptr_t)buf + cp->mc_chunksize)); | |
936 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); | |
937 | } | |
938 | ||
939 | /* | |
940 | * Fix up the object's address to fulfill the cache's | |
941 | * alignment requirement (if needed) and return this | |
942 | * to the caller. | |
943 | */ | |
944 | VERIFY(((intptr_t)base + offset + cp->mc_bufsize) <= | |
945 | ((intptr_t)buf + cp->mc_chunksize)); | |
946 | *list = (mcache_obj_t *)((intptr_t)base + offset); | |
947 | ||
948 | (*list)->obj_next = NULL; | |
949 | list = *plist = &(*list)->obj_next; | |
950 | ||
951 | /* If we got them all, return to mcache */ | |
952 | if (--need == 0) | |
953 | break; | |
954 | } | |
955 | ||
956 | return (num - need); | |
957 | } | |
958 | ||
959 | /* | |
960 | * Internal slab deallocator used as a backend for simple caches. | |
961 | */ | |
962 | static void | |
963 | mcache_slab_free(void *arg, mcache_obj_t *list, __unused boolean_t purged) | |
964 | { | |
965 | mcache_t *cp = arg; | |
966 | mcache_obj_t *nlist; | |
967 | size_t offset = 0; | |
968 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
969 | u_int32_t flags = cp->mc_flags; | |
970 | void *base; | |
971 | void **pbuf; | |
972 | ||
973 | /* | |
974 | * The address of the object is an offset from a 64-bit | |
975 | * aligned base address only if the cache's alignment | |
976 | * requirement is neither 1 nor 8 bytes. | |
977 | */ | |
978 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
979 | offset = cp->mc_align; | |
980 | ||
981 | for (;;) { | |
982 | nlist = list->obj_next; | |
983 | list->obj_next = NULL; | |
984 | ||
985 | /* Get the 64-bit aligned base address of this object */ | |
986 | base = (void *)((intptr_t)list - offset); | |
987 | VERIFY(IS_P2ALIGNED(base, sizeof (u_int64_t))); | |
988 | ||
989 | /* Get the original address since we're about to free it */ | |
990 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
991 | ||
992 | if (flags & MCF_DEBUG) { | |
993 | VERIFY(((intptr_t)base + rsize) <= | |
994 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
995 | mcache_audit_free_verify(NULL, base, offset, rsize); | |
996 | } | |
997 | ||
998 | /* Free it to zone */ | |
999 | VERIFY(((intptr_t)base + offset + cp->mc_bufsize) <= | |
1000 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
1001 | zfree(cp->mc_slab_zone, *pbuf); | |
1002 | ||
1003 | /* No more objects to free; return to mcache */ | |
1004 | if ((list = nlist) == NULL) | |
1005 | break; | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * Internal slab auditor for simple caches. | |
1011 | */ | |
1012 | static void | |
1013 | mcache_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
1014 | { | |
1015 | mcache_t *cp = arg; | |
1016 | size_t offset = 0; | |
1017 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); | |
1018 | void *base, **pbuf; | |
1019 | ||
1020 | /* | |
1021 | * The address of the object returned to the caller is an | |
1022 | * offset from the 64-bit aligned base address only if the | |
1023 | * cache's alignment requirement is neither 1 nor 8 bytes. | |
1024 | */ | |
1025 | if (cp->mc_align != 1 && cp->mc_align != sizeof (u_int64_t)) | |
1026 | offset = cp->mc_align; | |
1027 | ||
1028 | while (list != NULL) { | |
1029 | mcache_obj_t *next = list->obj_next; | |
1030 | ||
1031 | /* Get the 64-bit aligned base address of this object */ | |
1032 | base = (void *)((intptr_t)list - offset); | |
1033 | VERIFY(IS_P2ALIGNED(base, sizeof (u_int64_t))); | |
1034 | ||
1035 | /* Get the original address */ | |
1036 | pbuf = (void **)((intptr_t)base - sizeof (void *)); | |
1037 | ||
1038 | VERIFY(((intptr_t)base + rsize) <= | |
1039 | ((intptr_t)*pbuf + cp->mc_chunksize)); | |
1040 | ||
1041 | if (!alloc) | |
1042 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); | |
1043 | else | |
1044 | mcache_audit_free_verify_set(NULL, base, offset, rsize); | |
1045 | ||
1046 | list = list->obj_next = next; | |
1047 | } | |
1048 | } | |
1049 | ||
1050 | /* | |
1051 | * Refill the CPU's filled bucket with bkt and save the previous one. | |
1052 | */ | |
1053 | static void | |
1054 | mcache_cpu_refill(mcache_cpu_t *ccp, mcache_bkt_t *bkt, int objs) | |
1055 | { | |
1056 | ASSERT((ccp->cc_filled == NULL && ccp->cc_objs == -1) || | |
1057 | (ccp->cc_filled && ccp->cc_objs + objs == ccp->cc_bktsize)); | |
1058 | ASSERT(ccp->cc_bktsize > 0); | |
1059 | ||
1060 | ccp->cc_pfilled = ccp->cc_filled; | |
1061 | ccp->cc_pobjs = ccp->cc_objs; | |
1062 | ccp->cc_filled = bkt; | |
1063 | ccp->cc_objs = objs; | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * Allocate a bucket from the bucket layer. | |
1068 | */ | |
1069 | static mcache_bkt_t * | |
1070 | mcache_bkt_alloc(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkttype_t **btp) | |
1071 | { | |
1072 | mcache_bkt_t *bkt; | |
1073 | ||
1074 | if (!MCACHE_LOCK_TRY(&cp->mc_bkt_lock)) { | |
1075 | /* | |
1076 | * The bucket layer lock is held by another CPU; increase | |
1077 | * the contention count so that we can later resize the | |
1078 | * bucket size accordingly. | |
1079 | */ | |
1080 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1081 | cp->mc_bkt_contention++; | |
1082 | } | |
1083 | ||
1084 | if ((bkt = blp->bl_list) != NULL) { | |
1085 | blp->bl_list = bkt->bkt_next; | |
1086 | if (--blp->bl_total < blp->bl_min) | |
1087 | blp->bl_min = blp->bl_total; | |
1088 | blp->bl_alloc++; | |
1089 | } | |
1090 | ||
1091 | if (btp != NULL) | |
1092 | *btp = cp->cache_bkttype; | |
1093 | ||
1094 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1095 | ||
1096 | return (bkt); | |
1097 | } | |
1098 | ||
1099 | /* | |
1100 | * Free a bucket to the bucket layer. | |
1101 | */ | |
1102 | static void | |
1103 | mcache_bkt_free(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkt_t *bkt) | |
1104 | { | |
1105 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1106 | ||
1107 | bkt->bkt_next = blp->bl_list; | |
1108 | blp->bl_list = bkt; | |
1109 | blp->bl_total++; | |
1110 | ||
1111 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * Enable the bucket layer of a cache. | |
1116 | */ | |
1117 | static void | |
1118 | mcache_cache_bkt_enable(mcache_t *cp) | |
1119 | { | |
1120 | mcache_cpu_t *ccp; | |
1121 | int cpu; | |
1122 | ||
1123 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
1124 | return; | |
1125 | ||
1126 | for (cpu = 0; cpu < ncpu; cpu++) { | |
1127 | ccp = &cp->mc_cpu[cpu]; | |
1128 | MCACHE_LOCK(&ccp->cc_lock); | |
1129 | ccp->cc_bktsize = cp->cache_bkttype->bt_bktsize; | |
1130 | MCACHE_UNLOCK(&ccp->cc_lock); | |
1131 | } | |
1132 | } | |
1133 | ||
1134 | /* | |
1135 | * Purge all buckets from a cache and disable its bucket layer. | |
1136 | */ | |
1137 | static void | |
1138 | mcache_bkt_purge(mcache_t *cp) | |
1139 | { | |
1140 | mcache_cpu_t *ccp; | |
1141 | mcache_bkt_t *bp, *pbp; | |
1142 | mcache_bkttype_t *btp; | |
1143 | int cpu, objs, pobjs; | |
1144 | ||
1145 | for (cpu = 0; cpu < ncpu; cpu++) { | |
1146 | ccp = &cp->mc_cpu[cpu]; | |
1147 | ||
1148 | MCACHE_LOCK(&ccp->cc_lock); | |
1149 | ||
1150 | btp = cp->cache_bkttype; | |
1151 | bp = ccp->cc_filled; | |
1152 | pbp = ccp->cc_pfilled; | |
1153 | objs = ccp->cc_objs; | |
1154 | pobjs = ccp->cc_pobjs; | |
1155 | ccp->cc_filled = NULL; | |
1156 | ccp->cc_pfilled = NULL; | |
1157 | ccp->cc_objs = -1; | |
1158 | ccp->cc_pobjs = -1; | |
1159 | ccp->cc_bktsize = 0; | |
1160 | ||
1161 | MCACHE_UNLOCK(&ccp->cc_lock); | |
1162 | ||
1163 | if (bp != NULL) | |
1164 | mcache_bkt_destroy(cp, btp, bp, objs); | |
1165 | if (pbp != NULL) | |
1166 | mcache_bkt_destroy(cp, btp, pbp, pobjs); | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * Updating the working set back to back essentially sets | |
1171 | * the working set size to zero, so everything is reapable. | |
1172 | */ | |
1173 | mcache_bkt_ws_update(cp); | |
1174 | mcache_bkt_ws_update(cp); | |
1175 | ||
1176 | mcache_bkt_ws_reap(cp); | |
1177 | } | |
1178 | ||
1179 | /* | |
1180 | * Free one or more objects in the bucket to the slab layer, | |
1181 | * and also free the bucket itself. | |
1182 | */ | |
1183 | static void | |
1184 | mcache_bkt_destroy(mcache_t *cp, mcache_bkttype_t *btp, mcache_bkt_t *bkt, | |
1185 | int nobjs) | |
1186 | { | |
1187 | if (nobjs > 0) { | |
1188 | mcache_obj_t *top = bkt->bkt_obj[nobjs - 1]; | |
1189 | ||
1190 | if (cp->mc_flags & MCF_DEBUG) { | |
1191 | mcache_obj_t *o = top; | |
1192 | int cnt = 0; | |
1193 | ||
1194 | /* | |
1195 | * Verify that the chain of objects in the bucket is | |
1196 | * valid. Any mismatch here means a mistake when the | |
1197 | * object(s) were freed to the CPU layer, so we panic. | |
1198 | */ | |
1199 | while (o != NULL) { | |
1200 | o = o->obj_next; | |
1201 | ++cnt; | |
1202 | } | |
1203 | if (cnt != nobjs) { | |
1204 | panic("mcache_bkt_destroy: %s cp %p corrupted " | |
1205 | "list in bkt %p (nobjs %d actual %d)\n", | |
1206 | cp->mc_name, (void *)cp, (void *)bkt, | |
1207 | nobjs, cnt); | |
1208 | } | |
1209 | } | |
1210 | ||
1211 | /* Advise the slab layer to purge the object(s) */ | |
1212 | (*cp->mc_slab_free)(cp->mc_private, top, | |
1213 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); | |
1214 | } | |
1215 | mcache_free(btp->bt_cache, bkt); | |
1216 | } | |
1217 | ||
1218 | /* | |
1219 | * Update the bucket layer working set statistics. | |
1220 | */ | |
1221 | static void | |
1222 | mcache_bkt_ws_update(mcache_t *cp) | |
1223 | { | |
1224 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1225 | ||
1226 | cp->mc_full.bl_reaplimit = cp->mc_full.bl_min; | |
1227 | cp->mc_full.bl_min = cp->mc_full.bl_total; | |
1228 | cp->mc_empty.bl_reaplimit = cp->mc_empty.bl_min; | |
1229 | cp->mc_empty.bl_min = cp->mc_empty.bl_total; | |
1230 | ||
1231 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * Reap all buckets that are beyond the working set. | |
1236 | */ | |
1237 | static void | |
1238 | mcache_bkt_ws_reap(mcache_t *cp) | |
1239 | { | |
1240 | long reap; | |
1241 | mcache_bkt_t *bkt; | |
1242 | mcache_bkttype_t *btp; | |
1243 | ||
1244 | reap = MIN(cp->mc_full.bl_reaplimit, cp->mc_full.bl_min); | |
1245 | while (reap-- && | |
1246 | (bkt = mcache_bkt_alloc(cp, &cp->mc_full, &btp)) != NULL) | |
1247 | mcache_bkt_destroy(cp, btp, bkt, btp->bt_bktsize); | |
1248 | ||
1249 | reap = MIN(cp->mc_empty.bl_reaplimit, cp->mc_empty.bl_min); | |
1250 | while (reap-- && | |
1251 | (bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp)) != NULL) | |
1252 | mcache_bkt_destroy(cp, btp, bkt, 0); | |
1253 | } | |
1254 | ||
1255 | static void | |
1256 | mcache_reap_timeout(void *arg) | |
1257 | { | |
1258 | volatile UInt32 *flag = arg; | |
1259 | ||
1260 | ASSERT(flag == &mcache_reaping); | |
1261 | ||
1262 | *flag = 0; | |
1263 | } | |
1264 | ||
1265 | static void | |
1266 | mcache_reap_done(void *flag) | |
1267 | { | |
1268 | timeout(mcache_reap_timeout, flag, mcache_reap_interval); | |
1269 | } | |
1270 | ||
1271 | static void | |
1272 | mcache_reap_start(void *arg) | |
1273 | { | |
1274 | UInt32 *flag = arg; | |
1275 | ||
1276 | ASSERT(flag == &mcache_reaping); | |
1277 | ||
1278 | mcache_applyall(mcache_cache_reap); | |
1279 | mcache_dispatch(mcache_reap_done, flag); | |
1280 | } | |
1281 | ||
1282 | __private_extern__ void | |
1283 | mcache_reap(void) | |
1284 | { | |
1285 | UInt32 *flag = &mcache_reaping; | |
1286 | ||
1287 | if (mcache_llock_owner == current_thread() || | |
1288 | !OSCompareAndSwap(0, 1, flag)) | |
1289 | return; | |
1290 | ||
1291 | mcache_dispatch(mcache_reap_start, flag); | |
1292 | } | |
1293 | ||
1294 | static void | |
1295 | mcache_cache_reap(mcache_t *cp) | |
1296 | { | |
1297 | mcache_bkt_ws_reap(cp); | |
1298 | } | |
1299 | ||
1300 | /* | |
1301 | * Performs period maintenance on a cache. | |
1302 | */ | |
1303 | static void | |
1304 | mcache_cache_update(mcache_t *cp) | |
1305 | { | |
1306 | int need_bkt_resize = 0; | |
1307 | int need_bkt_reenable = 0; | |
1308 | ||
1309 | lck_mtx_assert(mcache_llock, LCK_MTX_ASSERT_OWNED); | |
1310 | ||
1311 | mcache_bkt_ws_update(cp); | |
1312 | ||
1313 | /* | |
1314 | * Cache resize and post-purge reenable are mutually exclusive. | |
1315 | * If the cache was previously purged, there is no point of | |
1316 | * increasing the bucket size as there was an indication of | |
1317 | * memory pressure on the system. | |
1318 | */ | |
1319 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
1320 | if (!(cp->mc_flags & MCF_NOCPUCACHE) && cp->mc_enable_cnt) | |
1321 | need_bkt_reenable = 1; | |
1322 | lck_mtx_unlock(&cp->mc_sync_lock); | |
1323 | ||
1324 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1325 | /* | |
1326 | * If the contention count is greater than the threshold, and if | |
1327 | * we are not already at the maximum bucket size, increase it. | |
1328 | * Otherwise, if this cache was previously purged by the user | |
1329 | * then we simply reenable it. | |
1330 | */ | |
1331 | if ((unsigned int)cp->mc_chunksize < cp->cache_bkttype->bt_maxbuf && | |
1332 | (int)(cp->mc_bkt_contention - cp->mc_bkt_contention_prev) > | |
1333 | mcache_bkt_contention && !need_bkt_reenable) | |
1334 | need_bkt_resize = 1; | |
1335 | ||
1336 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention; | |
1337 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1338 | ||
1339 | if (need_bkt_resize) | |
1340 | mcache_dispatch(mcache_cache_bkt_resize, cp); | |
1341 | else if (need_bkt_reenable) | |
1342 | mcache_dispatch(mcache_cache_enable, cp); | |
1343 | } | |
1344 | ||
1345 | /* | |
1346 | * Recompute a cache's bucket size. This is an expensive operation | |
1347 | * and should not be done frequently; larger buckets provide for a | |
1348 | * higher transfer rate with the bucket while smaller buckets reduce | |
1349 | * the memory consumption. | |
1350 | */ | |
1351 | static void | |
1352 | mcache_cache_bkt_resize(void *arg) | |
1353 | { | |
1354 | mcache_t *cp = arg; | |
1355 | mcache_bkttype_t *btp = cp->cache_bkttype; | |
1356 | ||
1357 | if ((unsigned int)cp->mc_chunksize < btp->bt_maxbuf) { | |
1358 | mcache_bkt_purge(cp); | |
1359 | ||
1360 | /* | |
1361 | * Upgrade to the next bucket type with larger bucket size; | |
1362 | * temporarily set the previous contention snapshot to a | |
1363 | * negative number to prevent unnecessary resize request. | |
1364 | */ | |
1365 | MCACHE_LOCK(&cp->mc_bkt_lock); | |
1366 | cp->cache_bkttype = ++btp; | |
1367 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention + INT_MAX; | |
1368 | MCACHE_UNLOCK(&cp->mc_bkt_lock); | |
1369 | ||
1370 | mcache_cache_enable(cp); | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | /* | |
1375 | * Reenable a previously disabled cache due to purge. | |
1376 | */ | |
1377 | static void | |
1378 | mcache_cache_enable(void *arg) | |
1379 | { | |
1380 | mcache_t *cp = arg; | |
1381 | ||
1382 | lck_mtx_lock_spin(&cp->mc_sync_lock); | |
1383 | cp->mc_purge_cnt = 0; | |
1384 | cp->mc_enable_cnt = 0; | |
1385 | lck_mtx_unlock(&cp->mc_sync_lock); | |
1386 | ||
1387 | mcache_cache_bkt_enable(cp); | |
1388 | } | |
1389 | ||
1390 | static void | |
1391 | mcache_update_timeout(__unused void *arg) | |
1392 | { | |
1393 | timeout(mcache_update, NULL, mcache_reap_interval); | |
1394 | } | |
1395 | ||
1396 | static void | |
1397 | mcache_update(__unused void *arg) | |
1398 | { | |
1399 | mcache_applyall(mcache_cache_update); | |
1400 | mcache_dispatch(mcache_update_timeout, NULL); | |
1401 | } | |
1402 | ||
1403 | static void | |
1404 | mcache_applyall(void (*func)(mcache_t *)) | |
1405 | { | |
1406 | mcache_t *cp; | |
1407 | ||
1408 | MCACHE_LIST_LOCK(); | |
1409 | LIST_FOREACH(cp, &mcache_head, mc_list) { | |
1410 | func(cp); | |
1411 | } | |
1412 | MCACHE_LIST_UNLOCK(); | |
1413 | } | |
1414 | ||
1415 | static void | |
1416 | mcache_dispatch(void (*func)(void *), void *arg) | |
1417 | { | |
1418 | ASSERT(func != NULL); | |
1419 | timeout(func, arg, hz/1000); | |
1420 | } | |
1421 | ||
1422 | __private_extern__ void | |
1423 | mcache_buffer_log(mcache_audit_t *mca, void *addr, mcache_t *cp, | |
1424 | struct timeval *base_ts) | |
1425 | { | |
1426 | struct timeval now, base = { 0, 0 }; | |
1427 | void *stack[MCACHE_STACK_DEPTH + 1]; | |
1428 | ||
1429 | mca->mca_addr = addr; | |
1430 | mca->mca_cache = cp; | |
1431 | mca->mca_pthread = mca->mca_thread; | |
1432 | mca->mca_thread = current_thread(); | |
1433 | bcopy(mca->mca_stack, mca->mca_pstack, sizeof (mca->mca_pstack)); | |
1434 | mca->mca_pdepth = mca->mca_depth; | |
1435 | bzero(stack, sizeof (stack)); | |
1436 | mca->mca_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; | |
1437 | bcopy(&stack[1], mca->mca_stack, sizeof (mca->mca_pstack)); | |
1438 | ||
1439 | mca->mca_ptstamp = mca->mca_tstamp; | |
1440 | microuptime(&now); | |
1441 | if (base_ts != NULL) | |
1442 | base = *base_ts; | |
1443 | /* tstamp is in ms relative to base_ts */ | |
1444 | mca->mca_tstamp = ((now.tv_usec - base.tv_usec) / 1000); | |
1445 | if ((now.tv_sec - base.tv_sec) > 0) | |
1446 | mca->mca_tstamp += ((now.tv_sec - base.tv_sec) * 1000); | |
1447 | } | |
1448 | ||
1449 | __private_extern__ void | |
1450 | mcache_set_pattern(u_int64_t pattern, void *buf_arg, size_t size) | |
1451 | { | |
1452 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1453 | u_int64_t *buf = (u_int64_t *)buf_arg; | |
1454 | ||
1455 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1456 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1457 | ||
1458 | while (buf < buf_end) | |
1459 | *buf++ = pattern; | |
1460 | } | |
1461 | ||
1462 | __private_extern__ void * | |
1463 | mcache_verify_pattern(u_int64_t pattern, void *buf_arg, size_t size) | |
1464 | { | |
1465 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1466 | u_int64_t *buf; | |
1467 | ||
1468 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1469 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1470 | ||
1471 | for (buf = buf_arg; buf < buf_end; buf++) { | |
1472 | if (*buf != pattern) | |
1473 | return (buf); | |
1474 | } | |
1475 | return (NULL); | |
1476 | } | |
1477 | ||
1478 | __private_extern__ void * | |
1479 | mcache_verify_set_pattern(u_int64_t old, u_int64_t new, void *buf_arg, | |
1480 | size_t size) | |
1481 | { | |
1482 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); | |
1483 | u_int64_t *buf; | |
1484 | ||
1485 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); | |
1486 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); | |
1487 | ||
1488 | for (buf = buf_arg; buf < buf_end; buf++) { | |
1489 | if (*buf != old) { | |
1490 | mcache_set_pattern(old, buf_arg, | |
1491 | (uintptr_t)buf - (uintptr_t)buf_arg); | |
1492 | return (buf); | |
1493 | } | |
1494 | *buf = new; | |
1495 | } | |
1496 | return (NULL); | |
1497 | } | |
1498 | ||
1499 | __private_extern__ void | |
1500 | mcache_audit_free_verify(mcache_audit_t *mca, void *base, size_t offset, | |
1501 | size_t size) | |
1502 | { | |
1503 | void *addr; | |
1504 | u_int64_t *oaddr64; | |
1505 | mcache_obj_t *next; | |
1506 | ||
1507 | addr = (void *)((uintptr_t)base + offset); | |
1508 | next = ((mcache_obj_t *)addr)->obj_next; | |
1509 | ||
1510 | /* For the "obj_next" pointer in the buffer */ | |
1511 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); | |
1512 | *oaddr64 = MCACHE_FREE_PATTERN; | |
1513 | ||
1514 | if ((oaddr64 = mcache_verify_pattern(MCACHE_FREE_PATTERN, | |
1515 | (caddr_t)base, size)) != NULL) { | |
1516 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, | |
1517 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); | |
1518 | /* NOTREACHED */ | |
1519 | } | |
1520 | ((mcache_obj_t *)addr)->obj_next = next; | |
1521 | } | |
1522 | ||
1523 | __private_extern__ void | |
1524 | mcache_audit_free_verify_set(mcache_audit_t *mca, void *base, size_t offset, | |
1525 | size_t size) | |
1526 | { | |
1527 | void *addr; | |
1528 | u_int64_t *oaddr64; | |
1529 | mcache_obj_t *next; | |
1530 | ||
1531 | addr = (void *)((uintptr_t)base + offset); | |
1532 | next = ((mcache_obj_t *)addr)->obj_next; | |
1533 | ||
1534 | /* For the "obj_next" pointer in the buffer */ | |
1535 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); | |
1536 | *oaddr64 = MCACHE_FREE_PATTERN; | |
1537 | ||
1538 | if ((oaddr64 = mcache_verify_set_pattern(MCACHE_FREE_PATTERN, | |
1539 | MCACHE_UNINITIALIZED_PATTERN, (caddr_t)base, size)) != NULL) { | |
1540 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, | |
1541 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); | |
1542 | /* NOTREACHED */ | |
1543 | } | |
1544 | ((mcache_obj_t *)addr)->obj_next = next; | |
1545 | } | |
1546 | ||
1547 | #undef panic | |
1548 | ||
1549 | __private_extern__ char * | |
1550 | mcache_dump_mca(mcache_audit_t *mca) | |
1551 | { | |
1552 | if (mca_dump_buf == NULL) | |
1553 | return (NULL); | |
1554 | ||
1555 | snprintf(mca_dump_buf, DUMP_MCA_BUF_SIZE, | |
1556 | "mca %p: addr %p, cache %p (%s)\n" | |
1557 | "last transaction; thread %p, saved PC stack (%d deep):\n" | |
1558 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" | |
1559 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" | |
1560 | "previous transaction; thread %p, saved PC stack (%d deep):\n" | |
1561 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" | |
1562 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n", | |
1563 | mca, mca->mca_addr, mca->mca_cache, | |
1564 | mca->mca_cache ? mca->mca_cache->mc_name : "?", | |
1565 | mca->mca_thread, mca->mca_depth, | |
1566 | mca->mca_stack[0], mca->mca_stack[1], mca->mca_stack[2], | |
1567 | mca->mca_stack[3], mca->mca_stack[4], mca->mca_stack[5], | |
1568 | mca->mca_stack[6], mca->mca_stack[7], mca->mca_stack[8], | |
1569 | mca->mca_stack[9], mca->mca_stack[10], mca->mca_stack[11], | |
1570 | mca->mca_stack[12], mca->mca_stack[13], mca->mca_stack[14], | |
1571 | mca->mca_stack[15], | |
1572 | mca->mca_pthread, mca->mca_pdepth, | |
1573 | mca->mca_pstack[0], mca->mca_pstack[1], mca->mca_pstack[2], | |
1574 | mca->mca_pstack[3], mca->mca_pstack[4], mca->mca_pstack[5], | |
1575 | mca->mca_pstack[6], mca->mca_pstack[7], mca->mca_pstack[8], | |
1576 | mca->mca_pstack[9], mca->mca_pstack[10], mca->mca_pstack[11], | |
1577 | mca->mca_pstack[12], mca->mca_pstack[13], mca->mca_pstack[14], | |
1578 | mca->mca_pstack[15]); | |
1579 | ||
1580 | return (mca_dump_buf); | |
1581 | } | |
1582 | ||
1583 | __private_extern__ void | |
1584 | mcache_audit_panic(mcache_audit_t *mca, void *addr, size_t offset, | |
1585 | int64_t expected, int64_t got) | |
1586 | { | |
1587 | if (mca == NULL) { | |
1588 | panic("mcache_audit: buffer %p modified after free at " | |
1589 | "offset 0x%lx (0x%llx instead of 0x%llx)\n", addr, | |
1590 | offset, got, expected); | |
1591 | /* NOTREACHED */ | |
1592 | } | |
1593 | ||
1594 | panic("mcache_audit: buffer %p modified after free at offset 0x%lx " | |
1595 | "(0x%llx instead of 0x%llx)\n%s\n", | |
1596 | addr, offset, got, expected, mcache_dump_mca(mca)); | |
1597 | /* NOTREACHED */ | |
1598 | } | |
1599 | ||
1600 | __private_extern__ int | |
1601 | assfail(const char *a, const char *f, int l) | |
1602 | { | |
1603 | panic("assertion failed: %s, file: %s, line: %d", a, f, l); | |
1604 | return (0); | |
1605 | } |