]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet6/nd6.c
xnu-792.18.15.tar.gz
[apple/xnu.git] / bsd / netinet6 / nd6.c
... / ...
CommitLineData
1/* $FreeBSD: src/sys/netinet6/nd6.c,v 1.20 2002/08/02 20:49:14 rwatson Exp $ */
2/* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * XXX
35 * KAME 970409 note:
36 * BSD/OS version heavily modifies this code, related to llinfo.
37 * Since we don't have BSD/OS version of net/route.c in our hand,
38 * I left the code mostly as it was in 970310. -- itojun
39 */
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47#include <sys/time.h>
48#include <sys/kernel.h>
49#include <sys/errno.h>
50#include <sys/syslog.h>
51#include <sys/protosw.h>
52#include <kern/queue.h>
53#include <kern/lock.h>
54
55#define DONT_WARN_OBSOLETE
56#include <net/if.h>
57#include <net/if_dl.h>
58#include <net/if_types.h>
59#include <net/if_atm.h>
60#include <net/route.h>
61#include <net/dlil.h>
62
63#include <netinet/in.h>
64#include <netinet/if_ether.h>
65#include <netinet/if_fddi.h>
66#include <netinet6/in6_var.h>
67#include <netinet/ip6.h>
68#include <netinet6/ip6_var.h>
69#include <netinet6/nd6.h>
70#include <netinet6/in6_prefix.h>
71#include <netinet/icmp6.h>
72
73#include "loop.h"
74
75#include <net/net_osdep.h>
76
77#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
78#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79
80#define SIN6(s) ((struct sockaddr_in6 *)s)
81#define SDL(s) ((struct sockaddr_dl *)s)
82
83/* timer values */
84int nd6_prune = 1; /* walk list every 1 seconds */
85int nd6_delay = 5; /* delay first probe time 5 second */
86int nd6_umaxtries = 3; /* maximum unicast query */
87int nd6_mmaxtries = 3; /* maximum multicast query */
88int nd6_useloopback = 1; /* use loopback interface for local traffic */
89int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
90
91/* preventing too many loops in ND option parsing */
92int nd6_maxndopt = 10; /* max # of ND options allowed */
93
94int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
95
96#if ND6_DEBUG
97int nd6_debug = 1;
98#else
99int nd6_debug = 0;
100#endif
101
102/* for debugging? */
103static int nd6_inuse, nd6_allocated;
104
105struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106size_t nd_ifinfo_indexlim = 8;
107struct nd_ifinfo *nd_ifinfo = NULL;
108struct nd_drhead nd_defrouter;
109struct nd_prhead nd_prefix = { 0 };
110
111int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112static struct sockaddr_in6 all1_sa;
113
114static int regen_tmpaddr(struct in6_ifaddr *);
115extern lck_mtx_t *rt_mtx;
116extern lck_mtx_t *ip6_mutex;
117extern lck_mtx_t *nd6_mutex;
118
119static void nd6_slowtimo(void *ignored_arg);
120
121void
122nd6_init()
123{
124 static int nd6_init_done = 0;
125 int i;
126
127 if (nd6_init_done) {
128 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
129 return;
130 }
131
132 all1_sa.sin6_family = AF_INET6;
133 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
134 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
135 all1_sa.sin6_addr.s6_addr[i] = 0xff;
136
137 /* initialization of the default router list */
138 TAILQ_INIT(&nd_defrouter);
139
140 nd6_init_done = 1;
141
142 /* start timer */
143 timeout(nd6_slowtimo, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz);
144}
145
146void
147nd6_ifattach(
148 struct ifnet *ifp)
149{
150
151 /*
152 * We have some arrays that should be indexed by if_index.
153 * since if_index will grow dynamically, they should grow too.
154 */
155 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) {
156 size_t n;
157 caddr_t q;
158
159 while (if_index >= nd_ifinfo_indexlim)
160 nd_ifinfo_indexlim <<= 1;
161
162 /* grow nd_ifinfo */
163 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo);
164 q = (caddr_t)_MALLOC(n, M_IP6NDP, M_WAITOK);
165 bzero(q, n);
166 if (nd_ifinfo) {
167 bcopy((caddr_t)nd_ifinfo, q, n/2);
168 FREE((caddr_t)nd_ifinfo, M_IP6NDP);
169 }
170 nd_ifinfo = (struct nd_ifinfo *)q;
171 }
172
173#define ND nd_ifinfo[ifp->if_index]
174
175 /*
176 * Don't initialize if called twice.
177 * XXX: to detect this, we should choose a member that is never set
178 * before initialization of the ND structure itself. We formaly used
179 * the linkmtu member, which was not suitable because it could be
180 * initialized via "ifconfig mtu".
181 */
182 if (ND.basereachable)
183 return;
184
185 ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
186 ND.chlim = IPV6_DEFHLIM;
187 ND.basereachable = REACHABLE_TIME;
188 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable);
189 ND.retrans = RETRANS_TIMER;
190 ND.receivedra = 0;
191 ND.flags = ND6_IFF_PERFORMNUD;
192 nd6_setmtu(ifp);
193#undef ND
194}
195
196/*
197 * Reset ND level link MTU. This function is called when the physical MTU
198 * changes, which means we might have to adjust the ND level MTU.
199 */
200void
201nd6_setmtu(
202 struct ifnet *ifp)
203{
204#ifndef MIN
205#define MIN(a,b) ((a) < (b) ? (a) : (b))
206#endif
207
208 struct nd_ifinfo *ndi;
209 u_long oldmaxmtu, oldlinkmtu;
210
211 /*
212 * Make sure IPv6 is enabled for the interface first,
213 * because this can be called directly from SIOCSIFMTU for IPv4
214 */
215
216 if (ifp->if_index >= nd_ifinfo_indexlim) {
217 return; /* we're out of bound for nd_ifinfo */
218 }
219
220 ndi = &nd_ifinfo[ifp->if_index];
221 oldmaxmtu = ndi->maxmtu;
222 oldlinkmtu = ndi->linkmtu;
223
224 switch (ifp->if_type) {
225 case IFT_ARCNET: /* XXX MTU handling needs more work */
226 ndi->maxmtu = MIN(60480, ifp->if_mtu);
227 break;
228 case IFT_L2VLAN: /* XXX what if the VLAN isn't over ethernet? */
229 case IFT_IEEE8023ADLAG:
230 case IFT_ETHER:
231 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
232 break;
233 case IFT_FDDI:
234 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
235 break;
236 case IFT_ATM:
237 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
238 break;
239 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */
240 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
241 break;
242#if IFT_IEEE80211
243 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */
244 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
245 break;
246#endif
247 default:
248 ndi->maxmtu = ifp->if_mtu;
249 break;
250 }
251
252 if (oldmaxmtu != ndi->maxmtu) {
253 /*
254 * If the ND level MTU is not set yet, or if the maxmtu
255 * is reset to a smaller value than the ND level MTU,
256 * also reset the ND level MTU.
257 */
258 if (ndi->linkmtu == 0 ||
259 ndi->maxmtu < ndi->linkmtu) {
260 ndi->linkmtu = ndi->maxmtu;
261 /* also adjust in6_maxmtu if necessary. */
262 if (oldlinkmtu == 0) {
263 /*
264 * XXX: the case analysis is grotty, but
265 * it is not efficient to call in6_setmaxmtu()
266 * here when we are during the initialization
267 * procedure.
268 */
269 if (in6_maxmtu < ndi->linkmtu)
270 in6_maxmtu = ndi->linkmtu;
271 } else
272 in6_setmaxmtu();
273 }
274 }
275#undef MIN
276}
277
278void
279nd6_option_init(
280 void *opt,
281 int icmp6len,
282 union nd_opts *ndopts)
283{
284 bzero(ndopts, sizeof(*ndopts));
285 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
286 ndopts->nd_opts_last
287 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
288
289 if (icmp6len == 0) {
290 ndopts->nd_opts_done = 1;
291 ndopts->nd_opts_search = NULL;
292 }
293}
294
295/*
296 * Take one ND option.
297 */
298struct nd_opt_hdr *
299nd6_option(
300 union nd_opts *ndopts)
301{
302 struct nd_opt_hdr *nd_opt;
303 int olen;
304
305 if (!ndopts)
306 panic("ndopts == NULL in nd6_option\n");
307 if (!ndopts->nd_opts_last)
308 panic("uninitialized ndopts in nd6_option\n");
309 if (!ndopts->nd_opts_search)
310 return NULL;
311 if (ndopts->nd_opts_done)
312 return NULL;
313
314 nd_opt = ndopts->nd_opts_search;
315
316 /* make sure nd_opt_len is inside the buffer */
317 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
318 bzero(ndopts, sizeof(*ndopts));
319 return NULL;
320 }
321
322 olen = nd_opt->nd_opt_len << 3;
323 if (olen == 0) {
324 /*
325 * Message validation requires that all included
326 * options have a length that is greater than zero.
327 */
328 bzero(ndopts, sizeof(*ndopts));
329 return NULL;
330 }
331
332 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
333 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
334 /* option overruns the end of buffer, invalid */
335 bzero(ndopts, sizeof(*ndopts));
336 return NULL;
337 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
338 /* reached the end of options chain */
339 ndopts->nd_opts_done = 1;
340 ndopts->nd_opts_search = NULL;
341 }
342 return nd_opt;
343}
344
345/*
346 * Parse multiple ND options.
347 * This function is much easier to use, for ND routines that do not need
348 * multiple options of the same type.
349 */
350int
351nd6_options(
352 union nd_opts *ndopts)
353{
354 struct nd_opt_hdr *nd_opt;
355 int i = 0;
356
357 if (!ndopts)
358 panic("ndopts == NULL in nd6_options\n");
359 if (!ndopts->nd_opts_last)
360 panic("uninitialized ndopts in nd6_options\n");
361 if (!ndopts->nd_opts_search)
362 return 0;
363
364 while (1) {
365 nd_opt = nd6_option(ndopts);
366 if (!nd_opt && !ndopts->nd_opts_last) {
367 /*
368 * Message validation requires that all included
369 * options have a length that is greater than zero.
370 */
371 icmp6stat.icp6s_nd_badopt++;
372 bzero(ndopts, sizeof(*ndopts));
373 return -1;
374 }
375
376 if (!nd_opt)
377 goto skip1;
378
379 switch (nd_opt->nd_opt_type) {
380 case ND_OPT_SOURCE_LINKADDR:
381 case ND_OPT_TARGET_LINKADDR:
382 case ND_OPT_MTU:
383 case ND_OPT_REDIRECTED_HEADER:
384 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
385 nd6log((LOG_INFO,
386 "duplicated ND6 option found (type=%d)\n",
387 nd_opt->nd_opt_type));
388 /* XXX bark? */
389 } else {
390 ndopts->nd_opt_array[nd_opt->nd_opt_type]
391 = nd_opt;
392 }
393 break;
394 case ND_OPT_PREFIX_INFORMATION:
395 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
396 ndopts->nd_opt_array[nd_opt->nd_opt_type]
397 = nd_opt;
398 }
399 ndopts->nd_opts_pi_end =
400 (struct nd_opt_prefix_info *)nd_opt;
401 break;
402 default:
403 /*
404 * Unknown options must be silently ignored,
405 * to accomodate future extension to the protocol.
406 */
407 nd6log((LOG_DEBUG,
408 "nd6_options: unsupported option %d - "
409 "option ignored\n", nd_opt->nd_opt_type));
410 }
411
412skip1:
413 i++;
414 if (i > nd6_maxndopt) {
415 icmp6stat.icp6s_nd_toomanyopt++;
416 nd6log((LOG_INFO, "too many loop in nd opt\n"));
417 break;
418 }
419
420 if (ndopts->nd_opts_done)
421 break;
422 }
423
424 return 0;
425}
426
427/*
428 * ND6 timer routine to expire default route list and prefix list
429 */
430void
431nd6_timer(
432 void *ignored_arg)
433{
434 struct llinfo_nd6 *ln;
435 struct nd_defrouter *dr;
436 struct nd_prefix *pr;
437 struct ifnet *ifp = NULL;
438 struct in6_ifaddr *ia6, *nia6;
439 struct in6_addrlifetime *lt6;
440 struct timeval timenow;
441
442 getmicrotime(&timenow);
443
444
445
446 ln = llinfo_nd6.ln_next;
447 while (ln && ln != &llinfo_nd6) {
448 struct rtentry *rt;
449 struct sockaddr_in6 *dst;
450 struct llinfo_nd6 *next = ln->ln_next;
451 /* XXX: used for the DELAY case only: */
452 struct nd_ifinfo *ndi = NULL;
453
454 if ((rt = ln->ln_rt) == NULL) {
455 ln = next;
456 continue;
457 }
458 if ((ifp = rt->rt_ifp) == NULL) {
459 ln = next;
460 continue;
461 }
462 ndi = &nd_ifinfo[ifp->if_index];
463 dst = (struct sockaddr_in6 *)rt_key(rt);
464
465 if (ln->ln_expire > timenow.tv_sec) {
466 ln = next;
467 continue;
468 }
469
470 /* sanity check */
471 if (!rt) {
472 printf("rt=0 in nd6_timer(ln=%p)\n", ln);
473 ln = next;
474 continue;
475 }
476 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) {
477 printf("rt_llinfo(%p) is not equal to ln(%p)\n",
478 rt->rt_llinfo, ln);
479 ln = next;
480 continue;
481 }
482 if (!dst) {
483 printf("dst=0 in nd6_timer(ln=%p)\n", ln);
484 ln = next;
485 continue;
486 }
487
488 switch (ln->ln_state) {
489 case ND6_LLINFO_INCOMPLETE:
490 if (ln->ln_asked < nd6_mmaxtries) {
491 ln->ln_asked++;
492 ln->ln_expire = timenow.tv_sec +
493 nd_ifinfo[ifp->if_index].retrans / 1000;
494 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
495 ln, 0, 0);
496 } else {
497 struct mbuf *m = ln->ln_hold;
498 ln->ln_hold = NULL;
499 if (m) {
500 if (rt->rt_ifp) {
501 /*
502 * Fake rcvif to make ICMP error
503 * more helpful in diagnosing
504 * for the receiver.
505 * XXX: should we consider
506 * older rcvif?
507 */
508 m->m_pkthdr.rcvif = rt->rt_ifp;
509 }
510 icmp6_error(m, ICMP6_DST_UNREACH,
511 ICMP6_DST_UNREACH_ADDR, 0);
512 ln->ln_hold = NULL;
513 }
514 next = nd6_free(rt);
515 }
516 break;
517 case ND6_LLINFO_REACHABLE:
518 if (ln->ln_expire) {
519 ln->ln_state = ND6_LLINFO_STALE;
520 ln->ln_expire = timenow.tv_sec + nd6_gctimer;
521 }
522 break;
523
524 case ND6_LLINFO_STALE:
525 /* Garbage Collection(RFC 2461 5.3) */
526 if (ln->ln_expire)
527 next = nd6_free(rt);
528 break;
529
530 case ND6_LLINFO_DELAY:
531 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
532 /* We need NUD */
533 ln->ln_asked = 1;
534 ln->ln_state = ND6_LLINFO_PROBE;
535 ln->ln_expire = timenow.tv_sec +
536 ndi->retrans / 1000;
537 nd6_ns_output(ifp, &dst->sin6_addr,
538 &dst->sin6_addr,
539 ln, 0, 0);
540 } else {
541 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
542 ln->ln_expire = timenow.tv_sec + nd6_gctimer;
543 }
544 break;
545 case ND6_LLINFO_PROBE:
546 if (ln->ln_asked < nd6_umaxtries) {
547 ln->ln_asked++;
548 ln->ln_expire = timenow.tv_sec +
549 nd_ifinfo[ifp->if_index].retrans / 1000;
550 nd6_ns_output(ifp, &dst->sin6_addr,
551 &dst->sin6_addr, ln, 0, 0);
552 } else {
553 next = nd6_free(rt);
554 }
555 break;
556 }
557 ln = next;
558 }
559
560 /* expire default router list */
561 lck_mtx_lock(nd6_mutex);
562 dr = TAILQ_FIRST(&nd_defrouter);
563 while (dr) {
564 if (dr->expire && dr->expire < timenow.tv_sec) {
565 struct nd_defrouter *t;
566 t = TAILQ_NEXT(dr, dr_entry);
567 defrtrlist_del(dr, 1);
568 dr = t;
569 } else {
570 dr = TAILQ_NEXT(dr, dr_entry);
571 }
572 }
573
574 /*
575 * expire interface addresses.
576 * in the past the loop was inside prefix expiry processing.
577 * However, from a stricter speci-confrmance standpoint, we should
578 * rather separate address lifetimes and prefix lifetimes.
579 */
580 addrloop:
581 for (ia6 = in6_ifaddrs; ia6; ia6 = nia6) {
582 nia6 = ia6->ia_next;
583 /* check address lifetime */
584 lt6 = &ia6->ia6_lifetime;
585 if (IFA6_IS_INVALID(ia6)) {
586 int regen = 0;
587
588 /*
589 * If the expiring address is temporary, try
590 * regenerating a new one. This would be useful when
591 * we suspended a laptop PC, then turned it on after a
592 * period that could invalidate all temporary
593 * addresses. Although we may have to restart the
594 * loop (see below), it must be after purging the
595 * address. Otherwise, we'd see an infinite loop of
596 * regeneration.
597 */
598 if (ip6_use_tempaddr &&
599 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
600 if (regen_tmpaddr(ia6) == 0)
601 regen = 1;
602 }
603
604 in6_purgeaddr(&ia6->ia_ifa, 1);
605
606 if (regen)
607 goto addrloop; /* XXX: see below */
608 }
609 if (IFA6_IS_DEPRECATED(ia6)) {
610 int oldflags = ia6->ia6_flags;
611
612 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
613
614 /*
615 * If a temporary address has just become deprecated,
616 * regenerate a new one if possible.
617 */
618 if (ip6_use_tempaddr &&
619 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
620 (oldflags & IN6_IFF_DEPRECATED) == 0) {
621
622 if (regen_tmpaddr(ia6) == 0) {
623 /*
624 * A new temporary address is
625 * generated.
626 * XXX: this means the address chain
627 * has changed while we are still in
628 * the loop. Although the change
629 * would not cause disaster (because
630 * it's not a deletion, but an
631 * addition,) we'd rather restart the
632 * loop just for safety. Or does this
633 * significantly reduce performance??
634 */
635 goto addrloop;
636 }
637 }
638 } else {
639 /*
640 * A new RA might have made a deprecated address
641 * preferred.
642 */
643 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
644 }
645 }
646
647 /* expire prefix list */
648 pr = nd_prefix.lh_first;
649 while (pr) {
650 /*
651 * check prefix lifetime.
652 * since pltime is just for autoconf, pltime processing for
653 * prefix is not necessary.
654 */
655 if (pr->ndpr_expire && pr->ndpr_expire < timenow.tv_sec) {
656 struct nd_prefix *t;
657 t = pr->ndpr_next;
658
659 /*
660 * address expiration and prefix expiration are
661 * separate. NEVER perform in6_purgeaddr here.
662 */
663
664 prelist_remove(pr, 1);
665 pr = t;
666 } else
667 pr = pr->ndpr_next;
668 }
669 lck_mtx_unlock(nd6_mutex);
670 timeout(nd6_timer, (caddr_t)0, nd6_prune * hz);
671}
672
673static int
674regen_tmpaddr(
675 struct in6_ifaddr *ia6) /* deprecated/invalidated temporary address */
676{
677 struct ifaddr *ifa;
678 struct ifnet *ifp;
679 struct in6_ifaddr *public_ifa6 = NULL;
680 struct timeval timenow;
681
682 getmicrotime(&timenow);
683
684 ifp = ia6->ia_ifa.ifa_ifp;
685 ifnet_lock_exclusive(ifp);
686 for (ifa = ifp->if_addrlist.tqh_first; ifa;
687 ifa = ifa->ifa_list.tqe_next)
688 {
689 struct in6_ifaddr *it6;
690
691 if (ifa->ifa_addr->sa_family != AF_INET6)
692 continue;
693
694 it6 = (struct in6_ifaddr *)ifa;
695
696 /* ignore no autoconf addresses. */
697 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
698 continue;
699
700 /* ignore autoconf addresses with different prefixes. */
701 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
702 continue;
703
704 /*
705 * Now we are looking at an autoconf address with the same
706 * prefix as ours. If the address is temporary and is still
707 * preferred, do not create another one. It would be rare, but
708 * could happen, for example, when we resume a laptop PC after
709 * a long period.
710 */
711 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
712 !IFA6_IS_DEPRECATED(it6)) {
713 public_ifa6 = NULL;
714 break;
715 }
716
717 /*
718 * This is a public autoconf address that has the same prefix
719 * as ours. If it is preferred, keep it. We can't break the
720 * loop here, because there may be a still-preferred temporary
721 * address with the prefix.
722 */
723 if (!IFA6_IS_DEPRECATED(it6))
724 public_ifa6 = it6;
725 }
726 ifnet_lock_done(ifp);
727
728 if (public_ifa6 != NULL) {
729 int e;
730
731 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
732 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
733 " tmp addr,errno=%d\n", e);
734 return(-1);
735 }
736 return(0);
737 }
738
739 return(-1);
740}
741
742/*
743 * Nuke neighbor cache/prefix/default router management table, right before
744 * ifp goes away.
745 */
746void
747nd6_purge(
748 struct ifnet *ifp)
749{
750 struct llinfo_nd6 *ln, *nln;
751 struct nd_defrouter *dr, *ndr, drany;
752 struct nd_prefix *pr, *npr;
753
754 /* Nuke default router list entries toward ifp */
755 lck_mtx_lock(nd6_mutex);
756 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
757 /*
758 * The first entry of the list may be stored in
759 * the routing table, so we'll delete it later.
760 */
761 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
762 ndr = TAILQ_NEXT(dr, dr_entry);
763 if (dr->ifp == ifp)
764 defrtrlist_del(dr, 1);
765 }
766 dr = TAILQ_FIRST(&nd_defrouter);
767 if (dr->ifp == ifp)
768 defrtrlist_del(dr, 1);
769 }
770
771 /* Nuke prefix list entries toward ifp */
772 for (pr = nd_prefix.lh_first; pr; pr = npr) {
773 npr = pr->ndpr_next;
774 if (pr->ndpr_ifp == ifp) {
775 /*
776 * Previously, pr->ndpr_addr is removed as well,
777 * but I strongly believe we don't have to do it.
778 * nd6_purge() is only called from in6_ifdetach(),
779 * which removes all the associated interface addresses
780 * by itself.
781 * (jinmei@kame.net 20010129)
782 */
783 prelist_remove(pr, 1);
784 }
785 }
786
787 /* cancel default outgoing interface setting */
788 if (nd6_defifindex == ifp->if_index)
789 nd6_setdefaultiface(0);
790
791 if (!ip6_forwarding && (ip6_accept_rtadv || (ifp->if_eflags & IFEF_ACCEPT_RTADVD))) {
792 /* refresh default router list */
793 bzero(&drany, sizeof(drany));
794 defrouter_delreq(&drany, 0);
795 defrouter_select();
796 }
797 lck_mtx_unlock(nd6_mutex);
798
799 /*
800 * Nuke neighbor cache entries for the ifp.
801 * Note that rt->rt_ifp may not be the same as ifp,
802 * due to KAME goto ours hack. See RTM_RESOLVE case in
803 * nd6_rtrequest(), and ip6_input().
804 */
805 ln = llinfo_nd6.ln_next;
806 while (ln && ln != &llinfo_nd6) {
807 struct rtentry *rt;
808 struct sockaddr_dl *sdl;
809
810 nln = ln->ln_next;
811 rt = ln->ln_rt;
812 if (rt && rt->rt_gateway &&
813 rt->rt_gateway->sa_family == AF_LINK) {
814 sdl = (struct sockaddr_dl *)rt->rt_gateway;
815 if (sdl->sdl_index == ifp->if_index)
816 nln = nd6_free(rt);
817 }
818 ln = nln;
819 }
820}
821
822struct rtentry *
823nd6_lookup(
824 struct in6_addr *addr6,
825 int create,
826 struct ifnet *ifp,
827 int rt_locked)
828{
829 struct rtentry *rt;
830 struct sockaddr_in6 sin6;
831
832 bzero(&sin6, sizeof(sin6));
833 sin6.sin6_len = sizeof(struct sockaddr_in6);
834 sin6.sin6_family = AF_INET6;
835 sin6.sin6_addr = *addr6;
836#if SCOPEDROUTING
837 sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6);
838#endif
839 if (!rt_locked)
840 lck_mtx_lock(rt_mtx);
841 rt = rtalloc1_locked((struct sockaddr *)&sin6, create, 0UL);
842 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
843 /*
844 * This is the case for the default route.
845 * If we want to create a neighbor cache for the address, we
846 * should free the route for the destination and allocate an
847 * interface route.
848 */
849 if (create) {
850 rtfree_locked(rt);
851 rt = 0;
852 }
853 }
854 if (!rt) {
855 if (create && ifp) {
856 int e;
857
858 /*
859 * If no route is available and create is set,
860 * we allocate a host route for the destination
861 * and treat it like an interface route.
862 * This hack is necessary for a neighbor which can't
863 * be covered by our own prefix.
864 */
865 struct ifaddr *ifa =
866 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
867 if (ifa == NULL) {
868 if (!rt_locked)
869 lck_mtx_unlock(rt_mtx);
870 return(NULL);
871 }
872
873 /*
874 * Create a new route. RTF_LLINFO is necessary
875 * to create a Neighbor Cache entry for the
876 * destination in nd6_rtrequest which will be
877 * called in rtrequest via ifa->ifa_rtrequest.
878 */
879 if ((e = rtrequest_locked(RTM_ADD, (struct sockaddr *)&sin6,
880 ifa->ifa_addr,
881 (struct sockaddr *)&all1_sa,
882 (ifa->ifa_flags |
883 RTF_HOST | RTF_LLINFO) &
884 ~RTF_CLONING,
885 &rt)) != 0) {
886 if (e != EEXIST)
887 log(LOG_ERR,
888 "nd6_lookup: failed to add route for a "
889 "neighbor(%s), errno=%d\n",
890 ip6_sprintf(addr6), e);
891 }
892 ifafree(ifa);
893 if (rt == NULL) {
894 if (!rt_locked)
895 lck_mtx_unlock(rt_mtx);
896 return(NULL);
897 }
898 if (rt->rt_llinfo) {
899 struct llinfo_nd6 *ln =
900 (struct llinfo_nd6 *)rt->rt_llinfo;
901 ln->ln_state = ND6_LLINFO_NOSTATE;
902 }
903 } else {
904 if (!rt_locked)
905 lck_mtx_unlock(rt_mtx);
906 return(NULL);
907 }
908 }
909 rtunref(rt);
910 /*
911 * Validation for the entry.
912 * Note that the check for rt_llinfo is necessary because a cloned
913 * route from a parent route that has the L flag (e.g. the default
914 * route to a p2p interface) may have the flag, too, while the
915 * destination is not actually a neighbor.
916 * XXX: we can't use rt->rt_ifp to check for the interface, since
917 * it might be the loopback interface if the entry is for our
918 * own address on a non-loopback interface. Instead, we should
919 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
920 * interface.
921 */
922 if ((ifp->if_type !=IFT_PPP) && ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
923 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
924
925 (ifp && rt->rt_ifa->ifa_ifp != ifp))) {
926 if (!rt_locked)
927 lck_mtx_unlock(rt_mtx);
928 if (create) {
929 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
930 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
931 /* xxx more logs... kazu */
932 }
933 return(NULL);
934 }
935 if (!rt_locked)
936 lck_mtx_unlock(rt_mtx);
937 return(rt);
938}
939
940/*
941 * Detect if a given IPv6 address identifies a neighbor on a given link.
942 * XXX: should take care of the destination of a p2p link?
943 */
944int
945nd6_is_addr_neighbor(
946 struct sockaddr_in6 *addr,
947 struct ifnet *ifp,
948 int rt_locked)
949{
950 struct ifaddr *ifa;
951 int i;
952
953#define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
954#define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
955
956 /*
957 * A link-local address is always a neighbor.
958 * XXX: we should use the sin6_scope_id field rather than the embedded
959 * interface index.
960 */
961 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
962 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
963 return(1);
964
965 /*
966 * If the address matches one of our addresses,
967 * it should be a neighbor.
968 */
969 ifnet_lock_shared(ifp);
970 for (ifa = ifp->if_addrlist.tqh_first;
971 ifa;
972 ifa = ifa->ifa_list.tqe_next)
973 {
974 if (ifa->ifa_addr->sa_family != AF_INET6)
975 continue;
976
977 for (i = 0; i < 4; i++) {
978 if ((IFADDR6(ifa).s6_addr32[i] ^
979 addr->sin6_addr.s6_addr32[i]) &
980 IFMASK6(ifa).s6_addr32[i])
981 continue;
982 }
983 ifnet_lock_done(ifp);
984 return(1);
985 }
986 ifnet_lock_done(ifp);
987
988 /*
989 * Even if the address matches none of our addresses, it might be
990 * in the neighbor cache.
991 */
992 if (nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked) != NULL)
993 return(1);
994
995 return(0);
996#undef IFADDR6
997#undef IFMASK6
998}
999
1000/*
1001 * Free an nd6 llinfo entry.
1002 */
1003struct llinfo_nd6 *
1004nd6_free(
1005 struct rtentry *rt)
1006{
1007 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1008 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1009 struct nd_defrouter *dr;
1010
1011 /*
1012 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1013 * even though it is not harmful, it was not really necessary.
1014 */
1015
1016 if (!ip6_forwarding && (ip6_accept_rtadv || (rt->rt_ifp->if_eflags & IFEF_ACCEPT_RTADVD))) {
1017 lck_mtx_lock(nd6_mutex);
1018 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1019 rt->rt_ifp);
1020
1021 if ((ln && ln->ln_router) || dr) {
1022 /*
1023 * rt6_flush must be called whether or not the neighbor
1024 * is in the Default Router List.
1025 * See a corresponding comment in nd6_na_input().
1026 */
1027 rt6_flush(&in6, rt->rt_ifp);
1028 }
1029
1030 if (dr) {
1031 /*
1032 * Unreachablity of a router might affect the default
1033 * router selection and on-link detection of advertised
1034 * prefixes.
1035 */
1036
1037 /*
1038 * Temporarily fake the state to choose a new default
1039 * router and to perform on-link determination of
1040 * prefixes correctly.
1041 * Below the state will be set correctly,
1042 * or the entry itself will be deleted.
1043 */
1044 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1045
1046 /*
1047 * Since defrouter_select() does not affect the
1048 * on-link determination and MIP6 needs the check
1049 * before the default router selection, we perform
1050 * the check now.
1051 */
1052 pfxlist_onlink_check(1);
1053
1054 if (dr == TAILQ_FIRST(&nd_defrouter)) {
1055 /*
1056 * It is used as the current default router,
1057 * so we have to move it to the end of the
1058 * list and choose a new one.
1059 * XXX: it is not very efficient if this is
1060 * the only router.
1061 */
1062 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1063 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1064
1065 defrouter_select();
1066 }
1067 }
1068 lck_mtx_unlock(nd6_mutex);
1069 }
1070
1071 /*
1072 * Before deleting the entry, remember the next entry as the
1073 * return value. We need this because pfxlist_onlink_check() above
1074 * might have freed other entries (particularly the old next entry) as
1075 * a side effect (XXX).
1076 */
1077 if (ln)
1078 next = ln->ln_next;
1079 else
1080 next = 0;
1081
1082 /*
1083 * Detach the route from the routing tree and the list of neighbor
1084 * caches, and disable the route entry not to be used in already
1085 * cached routes.
1086 */
1087 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1088 rt_mask(rt), 0, (struct rtentry **)0);
1089
1090 return(next);
1091}
1092
1093/*
1094 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1095 *
1096 * XXX cost-effective metods?
1097 */
1098void
1099nd6_nud_hint(
1100 struct rtentry *rt,
1101 struct in6_addr *dst6,
1102 int force)
1103{
1104 struct llinfo_nd6 *ln;
1105 struct timeval timenow;
1106
1107 getmicrotime(&timenow);
1108
1109 /*
1110 * If the caller specified "rt", use that. Otherwise, resolve the
1111 * routing table by supplied "dst6".
1112 */
1113 if (!rt) {
1114 if (!dst6)
1115 return;
1116 if (!(rt = nd6_lookup(dst6, 0, NULL, 0)))
1117 return;
1118 }
1119
1120 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1121 (rt->rt_flags & RTF_LLINFO) == 0 ||
1122 !rt->rt_llinfo || !rt->rt_gateway ||
1123 rt->rt_gateway->sa_family != AF_LINK) {
1124 /* This is not a host route. */
1125 return;
1126 }
1127
1128 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1129 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1130 return;
1131
1132 /*
1133 * if we get upper-layer reachability confirmation many times,
1134 * it is possible we have false information.
1135 */
1136 if (!force) {
1137 ln->ln_byhint++;
1138 if (ln->ln_byhint > nd6_maxnudhint)
1139 return;
1140 }
1141
1142 ln->ln_state = ND6_LLINFO_REACHABLE;
1143 if (ln->ln_expire)
1144 ln->ln_expire = timenow.tv_sec +
1145 nd_ifinfo[rt->rt_ifp->if_index].reachable;
1146}
1147
1148void
1149nd6_rtrequest(
1150 int req,
1151 struct rtentry *rt,
1152 struct sockaddr *sa) /* xxx unused */
1153{
1154 struct sockaddr *gate = rt->rt_gateway;
1155 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1156 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1157 struct ifnet *ifp = rt->rt_ifp;
1158 struct ifaddr *ifa;
1159 struct timeval timenow;
1160
1161
1162 if ((rt->rt_flags & RTF_GATEWAY))
1163 return;
1164
1165 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1166 /*
1167 * This is probably an interface direct route for a link
1168 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1169 * We do not need special treatment below for such a route.
1170 * Moreover, the RTF_LLINFO flag which would be set below
1171 * would annoy the ndp(8) command.
1172 */
1173 return;
1174 }
1175
1176 if (req == RTM_RESOLVE &&
1177 (nd6_need_cache(ifp) == 0 || /* stf case */
1178 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp, 1))) {
1179 /*
1180 * FreeBSD and BSD/OS often make a cloned host route based
1181 * on a less-specific route (e.g. the default route).
1182 * If the less specific route does not have a "gateway"
1183 * (this is the case when the route just goes to a p2p or an
1184 * stf interface), we'll mistakenly make a neighbor cache for
1185 * the host route, and will see strange neighbor solicitation
1186 * for the corresponding destination. In order to avoid the
1187 * confusion, we check if the destination of the route is
1188 * a neighbor in terms of neighbor discovery, and stop the
1189 * process if not. Additionally, we remove the LLINFO flag
1190 * so that ndp(8) will not try to get the neighbor information
1191 * of the destination.
1192 */
1193 rt->rt_flags &= ~RTF_LLINFO;
1194 return;
1195 }
1196
1197 getmicrotime(&timenow);
1198 switch (req) {
1199 case RTM_ADD:
1200 /*
1201 * There is no backward compatibility :)
1202 *
1203 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1204 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1205 * rt->rt_flags |= RTF_CLONING;
1206 */
1207 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1208 /*
1209 * Case 1: This route should come from
1210 * a route to interface. RTF_LLINFO flag is set
1211 * for a host route whose destination should be
1212 * treated as on-link.
1213 */
1214 rt_setgate(rt, rt_key(rt),
1215 (struct sockaddr *)&null_sdl);
1216 gate = rt->rt_gateway;
1217 SDL(gate)->sdl_type = ifp->if_type;
1218 SDL(gate)->sdl_index = ifp->if_index;
1219 if (ln)
1220 ln->ln_expire = timenow.tv_sec;
1221#if 1
1222 if (ln && ln->ln_expire == 0) {
1223 /* kludge for desktops */
1224#if 0
1225 printf("nd6_rtequest: time.tv_sec is zero; "
1226 "treat it as 1\n");
1227#endif
1228 ln->ln_expire = 1;
1229 }
1230#endif
1231 if ((rt->rt_flags & RTF_CLONING))
1232 break;
1233 }
1234 /*
1235 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1236 * We don't do that here since llinfo is not ready yet.
1237 *
1238 * There are also couple of other things to be discussed:
1239 * - unsolicited NA code needs improvement beforehand
1240 * - RFC2461 says we MAY send multicast unsolicited NA
1241 * (7.2.6 paragraph 4), however, it also says that we
1242 * SHOULD provide a mechanism to prevent multicast NA storm.
1243 * we don't have anything like it right now.
1244 * note that the mechanism needs a mutual agreement
1245 * between proxies, which means that we need to implement
1246 * a new protocol, or a new kludge.
1247 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1248 * we need to check ip6forwarding before sending it.
1249 * (or should we allow proxy ND configuration only for
1250 * routers? there's no mention about proxy ND from hosts)
1251 */
1252#if 0
1253 /* XXX it does not work */
1254 if (rt->rt_flags & RTF_ANNOUNCE)
1255 nd6_na_output(ifp,
1256 &SIN6(rt_key(rt))->sin6_addr,
1257 &SIN6(rt_key(rt))->sin6_addr,
1258 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1259 1, NULL);
1260#endif
1261 /* FALLTHROUGH */
1262 case RTM_RESOLVE:
1263 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1264 /*
1265 * Address resolution isn't necessary for a point to
1266 * point link, so we can skip this test for a p2p link.
1267 */
1268 if (gate->sa_family != AF_LINK ||
1269 gate->sa_len < sizeof(null_sdl)) {
1270 log(LOG_DEBUG,
1271 "nd6_rtrequest: bad gateway value: %s\n",
1272 if_name(ifp));
1273 break;
1274 }
1275 SDL(gate)->sdl_type = ifp->if_type;
1276 SDL(gate)->sdl_index = ifp->if_index;
1277 }
1278 if (ln != NULL)
1279 break; /* This happens on a route change */
1280 /*
1281 * Case 2: This route may come from cloning, or a manual route
1282 * add with a LL address.
1283 */
1284 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1285 rt->rt_llinfo = (caddr_t)ln;
1286 if (!ln) {
1287 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1288 break;
1289 }
1290 nd6_inuse++;
1291 nd6_allocated++;
1292 Bzero(ln, sizeof(*ln));
1293 ln->ln_rt = rt;
1294 /* this is required for "ndp" command. - shin */
1295 if (req == RTM_ADD) {
1296 /*
1297 * gate should have some valid AF_LINK entry,
1298 * and ln->ln_expire should have some lifetime
1299 * which is specified by ndp command.
1300 */
1301 ln->ln_state = ND6_LLINFO_REACHABLE;
1302 ln->ln_byhint = 0;
1303 } else {
1304 /*
1305 * When req == RTM_RESOLVE, rt is created and
1306 * initialized in rtrequest(), so rt_expire is 0.
1307 */
1308 ln->ln_state = ND6_LLINFO_NOSTATE;
1309 ln->ln_expire = timenow.tv_sec;
1310 }
1311 rt->rt_flags |= RTF_LLINFO;
1312 ln->ln_next = llinfo_nd6.ln_next;
1313 llinfo_nd6.ln_next = ln;
1314 ln->ln_prev = &llinfo_nd6;
1315 ln->ln_next->ln_prev = ln;
1316
1317 /*
1318 * check if rt_key(rt) is one of my address assigned
1319 * to the interface.
1320 */
1321 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1322 &SIN6(rt_key(rt))->sin6_addr);
1323 if (ifa) {
1324 caddr_t macp = nd6_ifptomac(ifp);
1325 ln->ln_expire = 0;
1326 ln->ln_state = ND6_LLINFO_REACHABLE;
1327 ln->ln_byhint = 0;
1328 if (macp) {
1329 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1330 SDL(gate)->sdl_alen = ifp->if_addrlen;
1331 }
1332 if (nd6_useloopback) {
1333 rt->rt_ifp = &loif[0]; /* XXX */
1334 /*
1335 * Make sure rt_ifa be equal to the ifaddr
1336 * corresponding to the address.
1337 * We need this because when we refer
1338 * rt_ifa->ia6_flags in ip6_input, we assume
1339 * that the rt_ifa points to the address instead
1340 * of the loopback address.
1341 */
1342 if (ifa != rt->rt_ifa) {
1343 rtsetifa(rt, ifa);
1344 }
1345 }
1346 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1347 ln->ln_expire = 0;
1348 ln->ln_state = ND6_LLINFO_REACHABLE;
1349 ln->ln_byhint = 0;
1350
1351 /* join solicited node multicast for proxy ND */
1352 if (ifp->if_flags & IFF_MULTICAST) {
1353 struct in6_addr llsol;
1354 int error;
1355
1356 llsol = SIN6(rt_key(rt))->sin6_addr;
1357 llsol.s6_addr16[0] = htons(0xff02);
1358 llsol.s6_addr16[1] = htons(ifp->if_index);
1359 llsol.s6_addr32[1] = 0;
1360 llsol.s6_addr32[2] = htonl(1);
1361 llsol.s6_addr8[12] = 0xff;
1362
1363 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1364 nd6log((LOG_ERR, "%s: failed to join "
1365 "%s (errno=%d)\n", if_name(ifp),
1366 ip6_sprintf(&llsol), error));
1367 }
1368 }
1369 }
1370 break;
1371
1372 case RTM_DELETE:
1373 if (!ln)
1374 break;
1375 /* leave from solicited node multicast for proxy ND */
1376 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1377 (ifp->if_flags & IFF_MULTICAST) != 0) {
1378 struct in6_addr llsol;
1379 struct in6_multi *in6m;
1380
1381 llsol = SIN6(rt_key(rt))->sin6_addr;
1382 llsol.s6_addr16[0] = htons(0xff02);
1383 llsol.s6_addr16[1] = htons(ifp->if_index);
1384 llsol.s6_addr32[1] = 0;
1385 llsol.s6_addr32[2] = htonl(1);
1386 llsol.s6_addr8[12] = 0xff;
1387
1388 ifnet_lock_shared(ifp);
1389 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1390 ifnet_lock_done(ifp);
1391 if (in6m)
1392 in6_delmulti(in6m, 0);
1393 }
1394 nd6_inuse--;
1395 ln->ln_next->ln_prev = ln->ln_prev;
1396 ln->ln_prev->ln_next = ln->ln_next;
1397 ln->ln_prev = NULL;
1398 rt->rt_llinfo = 0;
1399 rt->rt_flags &= ~RTF_LLINFO;
1400 if (ln->ln_hold)
1401 m_freem(ln->ln_hold);
1402 ln->ln_hold = NULL;
1403 R_Free((caddr_t)ln);
1404 }
1405}
1406
1407int
1408nd6_ioctl(
1409 u_long cmd,
1410 caddr_t data,
1411 struct ifnet *ifp)
1412{
1413 struct in6_drlist *drl = (struct in6_drlist *)data;
1414 struct in6_prlist *prl = (struct in6_prlist *)data;
1415 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1416 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1417 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1418 struct nd_defrouter *dr, any;
1419 struct nd_prefix *pr;
1420 struct rtentry *rt;
1421 int i = 0, error = 0;
1422
1423 switch (cmd) {
1424 case SIOCGDRLST_IN6:
1425 /*
1426 * obsolete API, use sysctl under net.inet6.icmp6
1427 */
1428 lck_mtx_lock(nd6_mutex);
1429 bzero(drl, sizeof(*drl));
1430 dr = TAILQ_FIRST(&nd_defrouter);
1431 while (dr && i < DRLSTSIZ) {
1432 drl->defrouter[i].rtaddr = dr->rtaddr;
1433 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1434 /* XXX: need to this hack for KAME stack */
1435 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1436 } else
1437 log(LOG_ERR,
1438 "default router list contains a "
1439 "non-linklocal address(%s)\n",
1440 ip6_sprintf(&drl->defrouter[i].rtaddr));
1441
1442 drl->defrouter[i].flags = dr->flags;
1443 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1444 drl->defrouter[i].expire = dr->expire;
1445 drl->defrouter[i].if_index = dr->ifp->if_index;
1446 i++;
1447 dr = TAILQ_NEXT(dr, dr_entry);
1448 }
1449 lck_mtx_unlock(nd6_mutex);
1450 break;
1451 case SIOCGPRLST_IN6:
1452 /*
1453 * obsolete API, use sysctl under net.inet6.icmp6
1454 */
1455 /*
1456 * XXX meaning of fields, especialy "raflags", is very
1457 * differnet between RA prefix list and RR/static prefix list.
1458 * how about separating ioctls into two?
1459 */
1460 bzero(prl, sizeof(*prl));
1461 lck_mtx_lock(nd6_mutex);
1462 pr = nd_prefix.lh_first;
1463 while (pr && i < PRLSTSIZ) {
1464 struct nd_pfxrouter *pfr;
1465 int j;
1466
1467 (void)in6_embedscope(&prl->prefix[i].prefix,
1468 &pr->ndpr_prefix, NULL, NULL);
1469 prl->prefix[i].raflags = pr->ndpr_raf;
1470 prl->prefix[i].prefixlen = pr->ndpr_plen;
1471 prl->prefix[i].vltime = pr->ndpr_vltime;
1472 prl->prefix[i].pltime = pr->ndpr_pltime;
1473 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1474 prl->prefix[i].expire = pr->ndpr_expire;
1475
1476 pfr = pr->ndpr_advrtrs.lh_first;
1477 j = 0;
1478 while (pfr) {
1479 if (j < DRLSTSIZ) {
1480#define RTRADDR prl->prefix[i].advrtr[j]
1481 RTRADDR = pfr->router->rtaddr;
1482 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1483 /* XXX: hack for KAME */
1484 RTRADDR.s6_addr16[1] = 0;
1485 } else
1486 log(LOG_ERR,
1487 "a router(%s) advertises "
1488 "a prefix with "
1489 "non-link local address\n",
1490 ip6_sprintf(&RTRADDR));
1491#undef RTRADDR
1492 }
1493 j++;
1494 pfr = pfr->pfr_next;
1495 }
1496 prl->prefix[i].advrtrs = j;
1497 prl->prefix[i].origin = PR_ORIG_RA;
1498
1499 i++;
1500 pr = pr->ndpr_next;
1501 }
1502 {
1503 struct rr_prefix *rpp;
1504
1505 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1506 rpp = LIST_NEXT(rpp, rp_entry)) {
1507 if (i >= PRLSTSIZ)
1508 break;
1509 (void)in6_embedscope(&prl->prefix[i].prefix,
1510 &pr->ndpr_prefix, NULL, NULL);
1511 prl->prefix[i].raflags = rpp->rp_raf;
1512 prl->prefix[i].prefixlen = rpp->rp_plen;
1513 prl->prefix[i].vltime = rpp->rp_vltime;
1514 prl->prefix[i].pltime = rpp->rp_pltime;
1515 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1516 prl->prefix[i].expire = rpp->rp_expire;
1517 prl->prefix[i].advrtrs = 0;
1518 prl->prefix[i].origin = rpp->rp_origin;
1519 i++;
1520 }
1521 }
1522 lck_mtx_unlock(nd6_mutex);
1523 break;
1524 case OSIOCGIFINFO_IN6:
1525 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1526 error = EINVAL;
1527 break;
1528 }
1529 ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu;
1530 ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu;
1531 ndi->ndi.basereachable =
1532 nd_ifinfo[ifp->if_index].basereachable;
1533 ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable;
1534 ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans;
1535 ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags;
1536 ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm;
1537 ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim;
1538 ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra;
1539 break;
1540 case SIOCGIFINFO_IN6:
1541 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1542 error = EINVAL;
1543 break;
1544 }
1545 ndi->ndi = nd_ifinfo[ifp->if_index];
1546 break;
1547 case SIOCSIFINFO_FLAGS:
1548 /* XXX: almost all other fields of ndi->ndi is unused */
1549 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1550 error = EINVAL;
1551 break;
1552 }
1553 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags;
1554 break;
1555 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1556 /* flush default router list */
1557 /*
1558 * xxx sumikawa: should not delete route if default
1559 * route equals to the top of default router list
1560 */
1561 bzero(&any, sizeof(any));
1562 lck_mtx_lock(nd6_mutex);
1563 defrouter_delreq(&any, 1);
1564 defrouter_select();
1565 lck_mtx_unlock(nd6_mutex);
1566 /* xxx sumikawa: flush prefix list */
1567 break;
1568 case SIOCSPFXFLUSH_IN6:
1569 {
1570 /* flush all the prefix advertised by routers */
1571 struct nd_prefix *pr, *next;
1572 lck_mtx_lock(nd6_mutex);
1573
1574 for (pr = nd_prefix.lh_first; pr; pr = next) {
1575 struct in6_ifaddr *ia, *ia_next;
1576
1577 next = pr->ndpr_next;
1578
1579 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1580 continue; /* XXX */
1581
1582 /* do we really have to remove addresses as well? */
1583 for (ia = in6_ifaddrs; ia; ia = ia_next) {
1584 /* ia might be removed. keep the next ptr. */
1585 ia_next = ia->ia_next;
1586
1587 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1588 continue;
1589
1590 if (ia->ia6_ndpr == pr)
1591 in6_purgeaddr(&ia->ia_ifa, 1);
1592 }
1593 prelist_remove(pr, 1);
1594 }
1595 lck_mtx_unlock(nd6_mutex);
1596 break;
1597 }
1598 case SIOCSRTRFLUSH_IN6:
1599 {
1600 /* flush all the default routers */
1601 struct nd_defrouter *dr, *next;
1602
1603 lck_mtx_lock(nd6_mutex);
1604 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1605 /*
1606 * The first entry of the list may be stored in
1607 * the routing table, so we'll delete it later.
1608 */
1609 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1610 next = TAILQ_NEXT(dr, dr_entry);
1611 defrtrlist_del(dr, 1);
1612 }
1613 defrtrlist_del(TAILQ_FIRST(&nd_defrouter), 1);
1614 }
1615 lck_mtx_unlock(nd6_mutex);
1616 break;
1617 }
1618 case SIOCGNBRINFO_IN6:
1619 {
1620 struct llinfo_nd6 *ln;
1621 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1622
1623 /*
1624 * XXX: KAME specific hack for scoped addresses
1625 * XXXX: for other scopes than link-local?
1626 */
1627 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1628 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1629 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1630
1631 if (*idp == 0)
1632 *idp = htons(ifp->if_index);
1633 }
1634
1635 if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) {
1636 error = EINVAL;
1637 break;
1638 }
1639 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1640 nbi->state = ln->ln_state;
1641 nbi->asked = ln->ln_asked;
1642 nbi->isrouter = ln->ln_router;
1643 nbi->expire = ln->ln_expire;
1644
1645 break;
1646 }
1647 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1648 ndif->ifindex = nd6_defifindex;
1649 break;
1650 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1651 return(nd6_setdefaultiface(ndif->ifindex));
1652 break;
1653 }
1654 return(error);
1655}
1656
1657/*
1658 * Create neighbor cache entry and cache link-layer address,
1659 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1660 */
1661struct rtentry *
1662nd6_cache_lladdr(
1663 struct ifnet *ifp,
1664 struct in6_addr *from,
1665 char *lladdr,
1666 int lladdrlen,
1667 int type, /* ICMP6 type */
1668 int code) /* type dependent information */
1669{
1670 struct rtentry *rt = NULL;
1671 struct llinfo_nd6 *ln = NULL;
1672 int is_newentry;
1673 struct sockaddr_dl *sdl = NULL;
1674 int do_update;
1675 int olladdr;
1676 int llchange;
1677 int newstate = 0;
1678 struct timeval timenow;
1679
1680 if (!ifp)
1681 panic("ifp == NULL in nd6_cache_lladdr");
1682 if (!from)
1683 panic("from == NULL in nd6_cache_lladdr");
1684
1685 /* nothing must be updated for unspecified address */
1686 if (IN6_IS_ADDR_UNSPECIFIED(from))
1687 return NULL;
1688
1689 /*
1690 * Validation about ifp->if_addrlen and lladdrlen must be done in
1691 * the caller.
1692 *
1693 * XXX If the link does not have link-layer adderss, what should
1694 * we do? (ifp->if_addrlen == 0)
1695 * Spec says nothing in sections for RA, RS and NA. There's small
1696 * description on it in NS section (RFC 2461 7.2.3).
1697 */
1698 getmicrotime(&timenow);
1699
1700 lck_mtx_lock(rt_mtx);
1701 rt = nd6_lookup(from, 0, ifp, 1);
1702 if (!rt) {
1703#if 0
1704 /* nothing must be done if there's no lladdr */
1705 if (!lladdr || !lladdrlen)
1706 return NULL;
1707#endif
1708
1709 rt = nd6_lookup(from, 1, ifp, 1);
1710 is_newentry = 1;
1711 } else {
1712 /* do nothing if static ndp is set */
1713 if (rt->rt_flags & RTF_STATIC) {
1714 lck_mtx_unlock(rt_mtx);
1715 return NULL;
1716 }
1717 is_newentry = 0;
1718 }
1719
1720 lck_mtx_unlock(rt_mtx);
1721
1722 if (!rt)
1723 return NULL;
1724 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1725fail:
1726 (void)nd6_free(rt);
1727 return NULL;
1728 }
1729 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1730 if (!ln)
1731 goto fail;
1732 if (!rt->rt_gateway)
1733 goto fail;
1734 if (rt->rt_gateway->sa_family != AF_LINK)
1735 goto fail;
1736 sdl = SDL(rt->rt_gateway);
1737
1738 olladdr = (sdl->sdl_alen) ? 1 : 0;
1739 if (olladdr && lladdr) {
1740 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1741 llchange = 1;
1742 else
1743 llchange = 0;
1744 } else
1745 llchange = 0;
1746
1747 /*
1748 * newentry olladdr lladdr llchange (*=record)
1749 * 0 n n -- (1)
1750 * 0 y n -- (2)
1751 * 0 n y -- (3) * STALE
1752 * 0 y y n (4) *
1753 * 0 y y y (5) * STALE
1754 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1755 * 1 -- y -- (7) * STALE
1756 */
1757
1758 if (lladdr) { /* (3-5) and (7) */
1759 /*
1760 * Record source link-layer address
1761 * XXX is it dependent to ifp->if_type?
1762 */
1763 sdl->sdl_alen = ifp->if_addrlen;
1764 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1765 }
1766
1767 if (!is_newentry) {
1768 if ((!olladdr && lladdr) /* (3) */
1769 || (olladdr && lladdr && llchange)) { /* (5) */
1770 do_update = 1;
1771 newstate = ND6_LLINFO_STALE;
1772 } else /* (1-2,4) */
1773 do_update = 0;
1774 } else {
1775 do_update = 1;
1776 if (!lladdr) /* (6) */
1777 newstate = ND6_LLINFO_NOSTATE;
1778 else /* (7) */
1779 newstate = ND6_LLINFO_STALE;
1780 }
1781
1782 if (do_update) {
1783 /*
1784 * Update the state of the neighbor cache.
1785 */
1786 ln->ln_state = newstate;
1787
1788 if (ln->ln_state == ND6_LLINFO_STALE) {
1789 /*
1790 * XXX: since nd6_output() below will cause
1791 * state tansition to DELAY and reset the timer,
1792 * we must set the timer now, although it is actually
1793 * meaningless.
1794 */
1795 ln->ln_expire = timenow.tv_sec + nd6_gctimer;
1796
1797 if (ln->ln_hold) {
1798 /*
1799 * we assume ifp is not a p2p here, so just
1800 * set the 2nd argument as the 1st one.
1801 */
1802 nd6_output(ifp, ifp, ln->ln_hold,
1803 (struct sockaddr_in6 *)rt_key(rt),
1804 rt, 0);
1805 ln->ln_hold = NULL;
1806 }
1807 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1808 /* probe right away */
1809 ln->ln_expire = timenow.tv_sec;
1810 }
1811 }
1812
1813 /*
1814 * ICMP6 type dependent behavior.
1815 *
1816 * NS: clear IsRouter if new entry
1817 * RS: clear IsRouter
1818 * RA: set IsRouter if there's lladdr
1819 * redir: clear IsRouter if new entry
1820 *
1821 * RA case, (1):
1822 * The spec says that we must set IsRouter in the following cases:
1823 * - If lladdr exist, set IsRouter. This means (1-5).
1824 * - If it is old entry (!newentry), set IsRouter. This means (7).
1825 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1826 * A quetion arises for (1) case. (1) case has no lladdr in the
1827 * neighbor cache, this is similar to (6).
1828 * This case is rare but we figured that we MUST NOT set IsRouter.
1829 *
1830 * newentry olladdr lladdr llchange NS RS RA redir
1831 * D R
1832 * 0 n n -- (1) c ? s
1833 * 0 y n -- (2) c s s
1834 * 0 n y -- (3) c s s
1835 * 0 y y n (4) c s s
1836 * 0 y y y (5) c s s
1837 * 1 -- n -- (6) c c c s
1838 * 1 -- y -- (7) c c s c s
1839 *
1840 * (c=clear s=set)
1841 */
1842 switch (type & 0xff) {
1843 case ND_NEIGHBOR_SOLICIT:
1844 /*
1845 * New entry must have is_router flag cleared.
1846 */
1847 if (is_newentry) /* (6-7) */
1848 ln->ln_router = 0;
1849 break;
1850 case ND_REDIRECT:
1851 /*
1852 * If the icmp is a redirect to a better router, always set the
1853 * is_router flag. Otherwise, if the entry is newly created,
1854 * clear the flag. [RFC 2461, sec 8.3]
1855 */
1856 if (code == ND_REDIRECT_ROUTER)
1857 ln->ln_router = 1;
1858 else if (is_newentry) /* (6-7) */
1859 ln->ln_router = 0;
1860 break;
1861 case ND_ROUTER_SOLICIT:
1862 /*
1863 * is_router flag must always be cleared.
1864 */
1865 ln->ln_router = 0;
1866 break;
1867 case ND_ROUTER_ADVERT:
1868 /*
1869 * Mark an entry with lladdr as a router.
1870 */
1871 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1872 || (is_newentry && lladdr)) { /* (7) */
1873 ln->ln_router = 1;
1874 }
1875 break;
1876 }
1877
1878 /*
1879 * When the link-layer address of a router changes, select the
1880 * best router again. In particular, when the neighbor entry is newly
1881 * created, it might affect the selection policy.
1882 * Question: can we restrict the first condition to the "is_newentry"
1883 * case?
1884 * XXX: when we hear an RA from a new router with the link-layer
1885 * address option, defrouter_select() is called twice, since
1886 * defrtrlist_update called the function as well. However, I believe
1887 * we can compromise the overhead, since it only happens the first
1888 * time.
1889 * XXX: although defrouter_select() should not have a bad effect
1890 * for those are not autoconfigured hosts, we explicitly avoid such
1891 * cases for safety.
1892 */
1893 if (do_update && ln->ln_router && !ip6_forwarding && (ip6_accept_rtadv || (ifp->if_eflags & IFEF_ACCEPT_RTADVD))) {
1894 lck_mtx_lock(nd6_mutex);
1895 defrouter_select();
1896 lck_mtx_unlock(nd6_mutex);
1897 }
1898
1899 return rt;
1900}
1901
1902static void
1903nd6_slowtimo(
1904 void *ignored_arg)
1905{
1906 int i;
1907 struct nd_ifinfo *nd6if;
1908
1909 lck_mtx_lock(nd6_mutex);
1910 for (i = 1; i < if_index + 1; i++) {
1911 if (!nd_ifinfo || i >= nd_ifinfo_indexlim)
1912 continue;
1913 nd6if = &nd_ifinfo[i];
1914 if (nd6if->basereachable && /* already initialized */
1915 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1916 /*
1917 * Since reachable time rarely changes by router
1918 * advertisements, we SHOULD insure that a new random
1919 * value gets recomputed at least once every few hours.
1920 * (RFC 2461, 6.3.4)
1921 */
1922 nd6if->recalctm = nd6_recalc_reachtm_interval;
1923 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1924 }
1925 }
1926 lck_mtx_unlock(nd6_mutex);
1927 timeout(nd6_slowtimo, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz);
1928}
1929
1930
1931#define senderr(e) { error = (e); goto bad;}
1932int
1933nd6_output(
1934 struct ifnet *ifp,
1935 struct ifnet *origifp,
1936 struct mbuf *m0,
1937 struct sockaddr_in6 *dst,
1938 struct rtentry *rt0,
1939 int locked)
1940{
1941 struct mbuf *m = m0;
1942 struct rtentry *rt = rt0;
1943 struct sockaddr_in6 *gw6 = NULL;
1944 struct llinfo_nd6 *ln = NULL;
1945 int error = 0;
1946 struct timeval timenow;
1947
1948 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1949 goto sendpkt;
1950
1951 if (nd6_need_cache(ifp) == 0)
1952 goto sendpkt;
1953
1954 /*
1955 * next hop determination. This routine is derived from ether_outpout.
1956 */
1957 lck_mtx_lock(rt_mtx);
1958 if (rt) {
1959 if ((rt->rt_flags & RTF_UP) == 0) {
1960 if ((rt0 = rt = rtalloc1_locked((struct sockaddr *)dst, 1, 0UL)) !=
1961 NULL)
1962 {
1963 rtunref(rt);
1964 if (rt->rt_ifp != ifp) {
1965 /* XXX: loop care? */
1966 lck_mtx_unlock(rt_mtx);
1967 return nd6_output(ifp, origifp, m0,
1968 dst, rt, locked);
1969 }
1970 } else {
1971 lck_mtx_unlock(rt_mtx);
1972 senderr(EHOSTUNREACH);
1973 }
1974 }
1975
1976 if (rt->rt_flags & RTF_GATEWAY) {
1977 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1978
1979 /*
1980 * We skip link-layer address resolution and NUD
1981 * if the gateway is not a neighbor from ND point
1982 * of view, regardless of the value of nd_ifinfo.flags.
1983 * The second condition is a bit tricky; we skip
1984 * if the gateway is our own address, which is
1985 * sometimes used to install a route to a p2p link.
1986 */
1987 if (!nd6_is_addr_neighbor(gw6, ifp, 1) ||
1988 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1989 /*
1990 * We allow this kind of tricky route only
1991 * when the outgoing interface is p2p.
1992 * XXX: we may need a more generic rule here.
1993 */
1994 lck_mtx_unlock(rt_mtx);
1995 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1996 senderr(EHOSTUNREACH);
1997
1998 goto sendpkt;
1999 }
2000
2001 if (rt->rt_gwroute == 0)
2002 goto lookup;
2003 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2004 rtfree_locked(rt); rt = rt0;
2005 lookup: rt->rt_gwroute = rtalloc1_locked(rt->rt_gateway, 1, 0UL);
2006 if ((rt = rt->rt_gwroute) == 0) {
2007 lck_mtx_unlock(rt_mtx);
2008 senderr(EHOSTUNREACH);
2009 }
2010 }
2011 }
2012 }
2013
2014 /*
2015 * Address resolution or Neighbor Unreachability Detection
2016 * for the next hop.
2017 * At this point, the destination of the packet must be a unicast
2018 * or an anycast address(i.e. not a multicast).
2019 */
2020
2021 /* Look up the neighbor cache for the nexthop */
2022 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2023 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2024 else {
2025 /*
2026 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2027 * the condition below is not very efficient. But we believe
2028 * it is tolerable, because this should be a rare case.
2029 */
2030 if (nd6_is_addr_neighbor(dst, ifp, 1) &&
2031 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 1)) != NULL)
2032 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2033 }
2034 lck_mtx_unlock(rt_mtx);
2035 if (!ln || !rt) {
2036 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2037 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) {
2038 log(LOG_DEBUG,
2039 "nd6_output: can't allocate llinfo for %s "
2040 "(ln=%p, rt=%p)\n",
2041 ip6_sprintf(&dst->sin6_addr), ln, rt);
2042 senderr(EIO); /* XXX: good error? */
2043 }
2044
2045 goto sendpkt; /* send anyway */
2046 }
2047
2048 getmicrotime(&timenow);
2049
2050 /* We don't have to do link-layer address resolution on a p2p link. */
2051 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2052 ln->ln_state < ND6_LLINFO_REACHABLE) {
2053 ln->ln_state = ND6_LLINFO_STALE;
2054 ln->ln_expire = timenow.tv_sec + nd6_gctimer;
2055 }
2056
2057 /*
2058 * The first time we send a packet to a neighbor whose entry is
2059 * STALE, we have to change the state to DELAY and a sets a timer to
2060 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2061 * neighbor unreachability detection on expiration.
2062 * (RFC 2461 7.3.3)
2063 */
2064 if (ln->ln_state == ND6_LLINFO_STALE) {
2065 ln->ln_asked = 0;
2066 ln->ln_state = ND6_LLINFO_DELAY;
2067 ln->ln_expire = timenow.tv_sec + nd6_delay;
2068 }
2069
2070 /*
2071 * If the neighbor cache entry has a state other than INCOMPLETE
2072 * (i.e. its link-layer address is already resolved), just
2073 * send the packet.
2074 */
2075 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2076 goto sendpkt;
2077
2078 /*
2079 * There is a neighbor cache entry, but no ethernet address
2080 * response yet. Replace the held mbuf (if any) with this
2081 * latest one.
2082 *
2083 * This code conforms to the rate-limiting rule described in Section
2084 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
2085 * an NS below.
2086 */
2087 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2088 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2089 if (ln->ln_hold)
2090 m_freem(ln->ln_hold);
2091 ln->ln_hold = m;
2092 if (ln->ln_expire) {
2093 if (ln->ln_asked < nd6_mmaxtries &&
2094 ln->ln_expire < timenow.tv_sec) {
2095 ln->ln_asked++;
2096 ln->ln_expire = timenow.tv_sec +
2097 nd_ifinfo[ifp->if_index].retrans / 1000;
2098 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0, locked);
2099 }
2100 }
2101 return(0);
2102
2103 sendpkt:
2104#ifdef __APPLE__
2105
2106 /* Make sure the HW checksum flags are cleaned before sending the packet */
2107
2108 m->m_pkthdr.csum_data = 0;
2109 m->m_pkthdr.csum_flags = 0;
2110
2111 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2112 m->m_pkthdr.rcvif = origifp; /* forwarding rules require the original scope_id */
2113 if (locked)
2114 lck_mtx_unlock(ip6_mutex);
2115 error = dlil_output(origifp, PF_INET6, m, (caddr_t)rt, (struct sockaddr *)dst, 0);
2116 if (locked)
2117 lck_mtx_lock(ip6_mutex);
2118 return error;
2119 } else {
2120 /* Do not allow loopback address to wind up on a wire */
2121 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
2122
2123 if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) ||
2124 IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) {
2125 ip6stat.ip6s_badscope++;
2126 /*
2127 * Do not simply drop the packet just like a firewall -- we want the
2128 * the application to feel the pain.
2129 * Return ENETUNREACH like ip6_output does in some similar cases.
2130 * This can startle the otherwise clueless process that specifies
2131 * loopback as the source address.
2132 */
2133 error = ENETUNREACH;
2134 goto bad;
2135 }
2136 }
2137
2138 m->m_pkthdr.rcvif = 0;
2139 if (locked)
2140 lck_mtx_unlock(ip6_mutex);
2141 error = dlil_output(ifp, PF_INET6, m, (caddr_t)rt, (struct sockaddr *)dst, 0);
2142 if (locked)
2143 lck_mtx_lock(ip6_mutex);
2144 return(error);
2145#else
2146 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2147 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2148 rt));
2149 }
2150 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2151#endif
2152
2153 bad:
2154 if (m)
2155 m_freem(m);
2156 return (error);
2157}
2158#undef senderr
2159
2160int
2161nd6_need_cache(
2162 struct ifnet *ifp)
2163{
2164 /*
2165 * XXX: we currently do not make neighbor cache on any interface
2166 * other than ARCnet, Ethernet, FDDI and GIF.
2167 *
2168 * RFC2893 says:
2169 * - unidirectional tunnels needs no ND
2170 */
2171 switch (ifp->if_type) {
2172 case IFT_ARCNET:
2173 case IFT_ETHER:
2174 case IFT_FDDI:
2175 case IFT_IEEE1394:
2176 case IFT_L2VLAN:
2177 case IFT_IEEE8023ADLAG:
2178#if IFT_IEEE80211
2179 case IFT_IEEE80211:
2180#endif
2181 case IFT_GIF: /* XXX need more cases? */
2182 return(1);
2183 default:
2184 return(0);
2185 }
2186}
2187
2188int
2189nd6_storelladdr(
2190 struct ifnet *ifp,
2191 struct rtentry *rt,
2192 struct mbuf *m,
2193 struct sockaddr *dst,
2194 u_char *desten)
2195{
2196 int i;
2197 struct sockaddr_dl *sdl;
2198
2199 if (m->m_flags & M_MCAST) {
2200 switch (ifp->if_type) {
2201 case IFT_ETHER:
2202 case IFT_FDDI:
2203 case IFT_L2VLAN:
2204 case IFT_IEEE8023ADLAG:
2205#if IFT_IEEE80211
2206 case IFT_IEEE80211:
2207#endif
2208 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2209 desten);
2210 return(1);
2211 case IFT_IEEE1394:
2212 for (i = 0; i < ifp->if_addrlen; i++)
2213 desten[i] = ~0;
2214 return(1);
2215 case IFT_ARCNET:
2216 *desten = 0;
2217 return(1);
2218 default:
2219 return(0); /* caller will free mbuf */
2220 }
2221 }
2222
2223 if (rt == NULL) {
2224 /* this could happen, if we could not allocate memory */
2225 return(0); /* caller will free mbuf */
2226 }
2227 if (rt->rt_gateway->sa_family != AF_LINK) {
2228 printf("nd6_storelladdr: something odd happens\n");
2229 return(0); /* caller will free mbuf */
2230 }
2231 sdl = SDL(rt->rt_gateway);
2232 if (sdl->sdl_alen == 0) {
2233 /* this should be impossible, but we bark here for debugging */
2234 printf("nd6_storelladdr: sdl_alen == 0\n");
2235 return(0); /* caller will free mbuf */
2236 }
2237
2238 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2239 return(1);
2240}
2241
2242extern errno_t arp_route_to_gateway_route(const struct sockaddr *net_dest,
2243 route_t hint, route_t *out_route);
2244
2245errno_t
2246nd6_lookup_ipv6(
2247 ifnet_t ifp,
2248 const struct sockaddr_in6 *ip6_dest,
2249 struct sockaddr_dl *ll_dest,
2250 size_t ll_dest_len,
2251 route_t hint,
2252 mbuf_t packet)
2253{
2254 route_t route = hint;
2255 errno_t result = 0;
2256 struct sockaddr_dl *sdl = NULL;
2257 size_t copy_len;
2258
2259 if (ip6_dest->sin6_family != AF_INET6)
2260 return EAFNOSUPPORT;
2261
2262 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
2263 return ENETDOWN;
2264
2265 if (hint) {
2266 result = arp_route_to_gateway_route((const struct sockaddr*)ip6_dest, hint, &route);
2267 if (result != 0)
2268 return result;
2269 }
2270
2271 if ((packet->m_flags & M_MCAST) != 0) {
2272 return dlil_resolve_multi(ifp, (const struct sockaddr*)ip6_dest,
2273 ll_dest, ll_dest_len);
2274 }
2275
2276 if (route == NULL) {
2277 /* this could happen, if we could not allocate memory */
2278 return ENOBUFS;
2279 }
2280
2281 lck_mtx_lock(rt_mtx);
2282
2283 if (route->rt_gateway->sa_family != AF_LINK) {
2284 printf("nd6_lookup_ipv6: gateway address not AF_LINK\n");
2285 result = EADDRNOTAVAIL;
2286 goto done;
2287 }
2288
2289 sdl = SDL(route->rt_gateway);
2290 if (sdl->sdl_alen == 0) {
2291 /* this should be impossible, but we bark here for debugging */
2292 printf("nd6_storelladdr: sdl_alen == 0\n");
2293 result = EHOSTUNREACH;
2294 }
2295
2296 copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len;
2297 bcopy(sdl, ll_dest, copy_len);
2298
2299done:
2300 lck_mtx_unlock(rt_mtx);
2301 return result;
2302}
2303
2304#ifndef __APPLE__
2305static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS;
2306static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS;
2307SYSCTL_DECL(_net_inet6_icmp6);
2308SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2309 CTLFLAG_RD, nd6_sysctl_drlist, "");
2310SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2311 CTLFLAG_RD, nd6_sysctl_prlist, "");
2312
2313static int
2314nd6_sysctl_drlist SYSCTL_HANDLER_ARGS
2315{
2316 int error;
2317 char buf[1024];
2318 struct in6_defrouter *d, *de;
2319 struct nd_defrouter *dr;
2320
2321 if (req->newptr)
2322 return EPERM;
2323 error = 0;
2324
2325 lck_mtx_lock(nd6_mutex);
2326 for (dr = TAILQ_FIRST(&nd_defrouter);
2327 dr;
2328 dr = TAILQ_NEXT(dr, dr_entry)) {
2329 d = (struct in6_defrouter *)buf;
2330 de = (struct in6_defrouter *)(buf + sizeof(buf));
2331
2332 if (d + 1 <= de) {
2333 bzero(d, sizeof(*d));
2334 d->rtaddr.sin6_family = AF_INET6;
2335 d->rtaddr.sin6_len = sizeof(d->rtaddr);
2336 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2337 dr->ifp) != 0)
2338 log(LOG_ERR,
2339 "scope error in "
2340 "default router list (%s)\n",
2341 ip6_sprintf(&dr->rtaddr));
2342 d->flags = dr->flags;
2343 d->rtlifetime = dr->rtlifetime;
2344 d->expire = dr->expire;
2345 d->if_index = dr->ifp->if_index;
2346 } else
2347 panic("buffer too short");
2348
2349 error = SYSCTL_OUT(req, buf, sizeof(*d));
2350 if (error)
2351 break;
2352 }
2353 lck_mtx_unlock(nd6_mutex);
2354 return error;
2355}
2356
2357static int
2358nd6_sysctl_prlist SYSCTL_HANDLER_ARGS
2359{
2360 int error;
2361 char buf[1024];
2362 struct in6_prefix *p, *pe;
2363 struct nd_prefix *pr;
2364
2365 if (req->newptr)
2366 return EPERM;
2367 error = 0;
2368
2369 lck_mtx_lock(nd6_mutex);
2370
2371 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2372 u_short advrtrs;
2373 size_t advance;
2374 struct sockaddr_in6 *sin6, *s6;
2375 struct nd_pfxrouter *pfr;
2376
2377 p = (struct in6_prefix *)buf;
2378 pe = (struct in6_prefix *)(buf + sizeof(buf));
2379
2380 if (p + 1 <= pe) {
2381 bzero(p, sizeof(*p));
2382 sin6 = (struct sockaddr_in6 *)(p + 1);
2383
2384 p->prefix = pr->ndpr_prefix;
2385 if (in6_recoverscope(&p->prefix,
2386 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2387 log(LOG_ERR,
2388 "scope error in prefix list (%s)\n",
2389 ip6_sprintf(&p->prefix.sin6_addr));
2390 p->raflags = pr->ndpr_raf;
2391 p->prefixlen = pr->ndpr_plen;
2392 p->vltime = pr->ndpr_vltime;
2393 p->pltime = pr->ndpr_pltime;
2394 p->if_index = pr->ndpr_ifp->if_index;
2395 p->expire = pr->ndpr_expire;
2396 p->refcnt = pr->ndpr_refcnt;
2397 p->flags = pr->ndpr_stateflags;
2398 p->origin = PR_ORIG_RA;
2399 advrtrs = 0;
2400 for (pfr = pr->ndpr_advrtrs.lh_first;
2401 pfr;
2402 pfr = pfr->pfr_next) {
2403 if ((void *)&sin6[advrtrs + 1] >
2404 (void *)pe) {
2405 advrtrs++;
2406 continue;
2407 }
2408 s6 = &sin6[advrtrs];
2409 bzero(s6, sizeof(*s6));
2410 s6->sin6_family = AF_INET6;
2411 s6->sin6_len = sizeof(*sin6);
2412 if (in6_recoverscope(s6,
2413 &pfr->router->rtaddr,
2414 pfr->router->ifp) != 0)
2415 log(LOG_ERR,
2416 "scope error in "
2417 "prefix list (%s)\n",
2418 ip6_sprintf(&pfr->router->rtaddr));
2419 advrtrs++;
2420 }
2421 p->advrtrs = advrtrs;
2422 } else
2423 panic("buffer too short");
2424
2425 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2426 error = SYSCTL_OUT(req, buf, advance);
2427 if (error)
2428 break;
2429 }
2430 lck_mtx_unlock(nd6_mutex);
2431 return error;
2432}
2433#endif