]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_page.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Resident memory management module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <libkern/OSAtomic.h> | |
67 | #include <libkern/OSDebug.h> | |
68 | ||
69 | #include <mach/clock_types.h> | |
70 | #include <mach/vm_prot.h> | |
71 | #include <mach/vm_statistics.h> | |
72 | #include <mach/sdt.h> | |
73 | #include <kern/counters.h> | |
74 | #include <kern/sched_prim.h> | |
75 | #include <kern/policy_internal.h> | |
76 | #include <kern/task.h> | |
77 | #include <kern/thread.h> | |
78 | #include <kern/kalloc.h> | |
79 | #include <kern/zalloc.h> | |
80 | #include <kern/xpr.h> | |
81 | #include <kern/ledger.h> | |
82 | #include <vm/pmap.h> | |
83 | #include <vm/vm_init.h> | |
84 | #include <vm/vm_map.h> | |
85 | #include <vm/vm_page.h> | |
86 | #include <vm/vm_pageout.h> | |
87 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
88 | #include <kern/misc_protos.h> | |
89 | #include <zone_debug.h> | |
90 | #include <mach_debug/zone_info.h> | |
91 | #include <vm/cpm.h> | |
92 | #include <pexpert/pexpert.h> | |
93 | ||
94 | #include <vm/vm_protos.h> | |
95 | #include <vm/memory_object.h> | |
96 | #include <vm/vm_purgeable_internal.h> | |
97 | #include <vm/vm_compressor.h> | |
98 | ||
99 | #if CONFIG_PHANTOM_CACHE | |
100 | #include <vm/vm_phantom_cache.h> | |
101 | #endif | |
102 | ||
103 | #include <IOKit/IOHibernatePrivate.h> | |
104 | ||
105 | #include <sys/kdebug.h> | |
106 | ||
107 | ||
108 | char vm_page_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; | |
109 | char vm_page_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; | |
110 | char vm_page_non_speculative_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; | |
111 | char vm_page_active_or_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; | |
112 | ||
113 | #if CONFIG_SECLUDED_MEMORY | |
114 | struct vm_page_secluded_data vm_page_secluded; | |
115 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
116 | ||
117 | boolean_t hibernate_cleaning_in_progress = FALSE; | |
118 | boolean_t vm_page_free_verify = TRUE; | |
119 | ||
120 | uint32_t vm_lopage_free_count = 0; | |
121 | uint32_t vm_lopage_free_limit = 0; | |
122 | uint32_t vm_lopage_lowater = 0; | |
123 | boolean_t vm_lopage_refill = FALSE; | |
124 | boolean_t vm_lopage_needed = FALSE; | |
125 | ||
126 | lck_mtx_ext_t vm_page_queue_lock_ext; | |
127 | lck_mtx_ext_t vm_page_queue_free_lock_ext; | |
128 | lck_mtx_ext_t vm_purgeable_queue_lock_ext; | |
129 | ||
130 | int speculative_age_index = 0; | |
131 | int speculative_steal_index = 0; | |
132 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; | |
133 | ||
134 | ||
135 | __private_extern__ void vm_page_init_lck_grp(void); | |
136 | ||
137 | static void vm_page_free_prepare(vm_page_t page); | |
138 | static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr); | |
139 | ||
140 | static void vm_tag_init(void); | |
141 | ||
142 | uint64_t vm_min_kernel_and_kext_address = VM_MIN_KERNEL_AND_KEXT_ADDRESS; | |
143 | uint32_t vm_packed_from_vm_pages_array_mask = VM_PACKED_FROM_VM_PAGES_ARRAY; | |
144 | uint32_t vm_packed_pointer_shift = VM_PACKED_POINTER_SHIFT; | |
145 | ||
146 | /* | |
147 | * Associated with page of user-allocatable memory is a | |
148 | * page structure. | |
149 | */ | |
150 | ||
151 | /* | |
152 | * These variables record the values returned by vm_page_bootstrap, | |
153 | * for debugging purposes. The implementation of pmap_steal_memory | |
154 | * and pmap_startup here also uses them internally. | |
155 | */ | |
156 | ||
157 | vm_offset_t virtual_space_start; | |
158 | vm_offset_t virtual_space_end; | |
159 | uint32_t vm_page_pages; | |
160 | ||
161 | /* | |
162 | * The vm_page_lookup() routine, which provides for fast | |
163 | * (virtual memory object, offset) to page lookup, employs | |
164 | * the following hash table. The vm_page_{insert,remove} | |
165 | * routines install and remove associations in the table. | |
166 | * [This table is often called the virtual-to-physical, | |
167 | * or VP, table.] | |
168 | */ | |
169 | typedef struct { | |
170 | vm_page_packed_t page_list; | |
171 | #if MACH_PAGE_HASH_STATS | |
172 | int cur_count; /* current count */ | |
173 | int hi_count; /* high water mark */ | |
174 | #endif /* MACH_PAGE_HASH_STATS */ | |
175 | } vm_page_bucket_t; | |
176 | ||
177 | ||
178 | #define BUCKETS_PER_LOCK 16 | |
179 | ||
180 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
181 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
182 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
183 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
184 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ | |
185 | unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */ | |
186 | ||
187 | lck_spin_t *vm_page_bucket_locks; | |
188 | lck_spin_t vm_objects_wired_lock; | |
189 | lck_spin_t vm_allocation_sites_lock; | |
190 | ||
191 | #if VM_PAGE_BUCKETS_CHECK | |
192 | boolean_t vm_page_buckets_check_ready = FALSE; | |
193 | #if VM_PAGE_FAKE_BUCKETS | |
194 | vm_page_bucket_t *vm_page_fake_buckets; /* decoy buckets */ | |
195 | vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; | |
196 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
197 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
198 | ||
199 | ||
200 | ||
201 | #if MACH_PAGE_HASH_STATS | |
202 | /* This routine is only for debug. It is intended to be called by | |
203 | * hand by a developer using a kernel debugger. This routine prints | |
204 | * out vm_page_hash table statistics to the kernel debug console. | |
205 | */ | |
206 | void | |
207 | hash_debug(void) | |
208 | { | |
209 | int i; | |
210 | int numbuckets = 0; | |
211 | int highsum = 0; | |
212 | int maxdepth = 0; | |
213 | ||
214 | for (i = 0; i < vm_page_bucket_count; i++) { | |
215 | if (vm_page_buckets[i].hi_count) { | |
216 | numbuckets++; | |
217 | highsum += vm_page_buckets[i].hi_count; | |
218 | if (vm_page_buckets[i].hi_count > maxdepth) | |
219 | maxdepth = vm_page_buckets[i].hi_count; | |
220 | } | |
221 | } | |
222 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
223 | printf("Number used buckets: %d = %d%%\n", | |
224 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
225 | printf("Number unused buckets: %d = %d%%\n", | |
226 | vm_page_bucket_count - numbuckets, | |
227 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
228 | printf("Sum of bucket max depth: %d\n", highsum); | |
229 | printf("Average bucket depth: %d.%2d\n", | |
230 | highsum/vm_page_bucket_count, | |
231 | highsum%vm_page_bucket_count); | |
232 | printf("Maximum bucket depth: %d\n", maxdepth); | |
233 | } | |
234 | #endif /* MACH_PAGE_HASH_STATS */ | |
235 | ||
236 | /* | |
237 | * The virtual page size is currently implemented as a runtime | |
238 | * variable, but is constant once initialized using vm_set_page_size. | |
239 | * This initialization must be done in the machine-dependent | |
240 | * bootstrap sequence, before calling other machine-independent | |
241 | * initializations. | |
242 | * | |
243 | * All references to the virtual page size outside this | |
244 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
245 | * constants. | |
246 | */ | |
247 | vm_size_t page_size = PAGE_SIZE; | |
248 | vm_size_t page_mask = PAGE_MASK; | |
249 | int page_shift = PAGE_SHIFT; | |
250 | ||
251 | /* | |
252 | * Resident page structures are initialized from | |
253 | * a template (see vm_page_alloc). | |
254 | * | |
255 | * When adding a new field to the virtual memory | |
256 | * object structure, be sure to add initialization | |
257 | * (see vm_page_bootstrap). | |
258 | */ | |
259 | struct vm_page vm_page_template; | |
260 | ||
261 | vm_page_t vm_pages = VM_PAGE_NULL; | |
262 | vm_page_t vm_page_array_beginning_addr; | |
263 | vm_page_t vm_page_array_ending_addr; | |
264 | ||
265 | unsigned int vm_pages_count = 0; | |
266 | ppnum_t vm_page_lowest = 0; | |
267 | ||
268 | /* | |
269 | * Resident pages that represent real memory | |
270 | * are allocated from a set of free lists, | |
271 | * one per color. | |
272 | */ | |
273 | unsigned int vm_colors; | |
274 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ | |
275 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ | |
276 | unsigned int vm_free_magazine_refill_limit = 0; | |
277 | ||
278 | ||
279 | struct vm_page_queue_free_head { | |
280 | vm_page_queue_head_t qhead; | |
281 | } __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
282 | ||
283 | struct vm_page_queue_free_head vm_page_queue_free[MAX_COLORS]; | |
284 | ||
285 | ||
286 | unsigned int vm_page_free_wanted; | |
287 | unsigned int vm_page_free_wanted_privileged; | |
288 | #if CONFIG_SECLUDED_MEMORY | |
289 | unsigned int vm_page_free_wanted_secluded; | |
290 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
291 | unsigned int vm_page_free_count; | |
292 | ||
293 | /* | |
294 | * Occasionally, the virtual memory system uses | |
295 | * resident page structures that do not refer to | |
296 | * real pages, for example to leave a page with | |
297 | * important state information in the VP table. | |
298 | * | |
299 | * These page structures are allocated the way | |
300 | * most other kernel structures are. | |
301 | */ | |
302 | zone_t vm_page_array_zone; | |
303 | zone_t vm_page_zone; | |
304 | vm_locks_array_t vm_page_locks; | |
305 | decl_lck_mtx_data(,vm_page_alloc_lock) | |
306 | lck_mtx_ext_t vm_page_alloc_lock_ext; | |
307 | ||
308 | unsigned int io_throttle_zero_fill; | |
309 | ||
310 | unsigned int vm_page_local_q_count = 0; | |
311 | unsigned int vm_page_local_q_soft_limit = 250; | |
312 | unsigned int vm_page_local_q_hard_limit = 500; | |
313 | struct vplq *vm_page_local_q = NULL; | |
314 | ||
315 | /* N.B. Guard and fictitious pages must not | |
316 | * be assigned a zero phys_page value. | |
317 | */ | |
318 | /* | |
319 | * Fictitious pages don't have a physical address, | |
320 | * but we must initialize phys_page to something. | |
321 | * For debugging, this should be a strange value | |
322 | * that the pmap module can recognize in assertions. | |
323 | */ | |
324 | ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; | |
325 | ||
326 | /* | |
327 | * Guard pages are not accessible so they don't | |
328 | * need a physical address, but we need to enter | |
329 | * one in the pmap. | |
330 | * Let's make it recognizable and make sure that | |
331 | * we don't use a real physical page with that | |
332 | * physical address. | |
333 | */ | |
334 | ppnum_t vm_page_guard_addr = (ppnum_t) -2; | |
335 | ||
336 | /* | |
337 | * Resident page structures are also chained on | |
338 | * queues that are used by the page replacement | |
339 | * system (pageout daemon). These queues are | |
340 | * defined here, but are shared by the pageout | |
341 | * module. The inactive queue is broken into | |
342 | * file backed and anonymous for convenience as the | |
343 | * pageout daemon often assignes a higher | |
344 | * importance to anonymous pages (less likely to pick) | |
345 | */ | |
346 | vm_page_queue_head_t vm_page_queue_active __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
347 | vm_page_queue_head_t vm_page_queue_inactive __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
348 | #if CONFIG_SECLUDED_MEMORY | |
349 | vm_page_queue_head_t vm_page_queue_secluded __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
350 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
351 | vm_page_queue_head_t vm_page_queue_anonymous __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); /* inactive memory queue for anonymous pages */ | |
352 | vm_page_queue_head_t vm_page_queue_throttled __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
353 | ||
354 | queue_head_t vm_objects_wired; | |
355 | ||
356 | #if CONFIG_BACKGROUND_QUEUE | |
357 | vm_page_queue_head_t vm_page_queue_background __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
358 | uint32_t vm_page_background_limit; | |
359 | uint32_t vm_page_background_target; | |
360 | uint32_t vm_page_background_count; | |
361 | uint64_t vm_page_background_promoted_count; | |
362 | ||
363 | uint32_t vm_page_background_internal_count; | |
364 | uint32_t vm_page_background_external_count; | |
365 | ||
366 | uint32_t vm_page_background_mode; | |
367 | uint32_t vm_page_background_exclude_external; | |
368 | #endif | |
369 | ||
370 | unsigned int vm_page_active_count; | |
371 | unsigned int vm_page_inactive_count; | |
372 | #if CONFIG_SECLUDED_MEMORY | |
373 | unsigned int vm_page_secluded_count; | |
374 | unsigned int vm_page_secluded_count_free; | |
375 | unsigned int vm_page_secluded_count_inuse; | |
376 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
377 | unsigned int vm_page_anonymous_count; | |
378 | unsigned int vm_page_throttled_count; | |
379 | unsigned int vm_page_speculative_count; | |
380 | ||
381 | unsigned int vm_page_wire_count; | |
382 | unsigned int vm_page_stolen_count; | |
383 | unsigned int vm_page_wire_count_initial; | |
384 | unsigned int vm_page_pages_initial; | |
385 | unsigned int vm_page_gobble_count = 0; | |
386 | ||
387 | #define VM_PAGE_WIRE_COUNT_WARNING 0 | |
388 | #define VM_PAGE_GOBBLE_COUNT_WARNING 0 | |
389 | ||
390 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ | |
391 | unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ | |
392 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ | |
393 | ||
394 | unsigned int vm_page_xpmapped_external_count = 0; | |
395 | unsigned int vm_page_external_count = 0; | |
396 | unsigned int vm_page_internal_count = 0; | |
397 | unsigned int vm_page_pageable_external_count = 0; | |
398 | unsigned int vm_page_pageable_internal_count = 0; | |
399 | ||
400 | #if DEVELOPMENT || DEBUG | |
401 | unsigned int vm_page_speculative_recreated = 0; | |
402 | unsigned int vm_page_speculative_created = 0; | |
403 | unsigned int vm_page_speculative_used = 0; | |
404 | #endif | |
405 | ||
406 | vm_page_queue_head_t vm_page_queue_cleaned __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
407 | ||
408 | unsigned int vm_page_cleaned_count = 0; | |
409 | unsigned int vm_pageout_enqueued_cleaned = 0; | |
410 | ||
411 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; | |
412 | ppnum_t max_valid_low_ppnum = 0xffffffff; | |
413 | ||
414 | ||
415 | /* | |
416 | * Several page replacement parameters are also | |
417 | * shared with this module, so that page allocation | |
418 | * (done here in vm_page_alloc) can trigger the | |
419 | * pageout daemon. | |
420 | */ | |
421 | unsigned int vm_page_free_target = 0; | |
422 | unsigned int vm_page_free_min = 0; | |
423 | unsigned int vm_page_throttle_limit = 0; | |
424 | unsigned int vm_page_inactive_target = 0; | |
425 | #if CONFIG_SECLUDED_MEMORY | |
426 | unsigned int vm_page_secluded_target = 0; | |
427 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
428 | unsigned int vm_page_anonymous_min = 0; | |
429 | unsigned int vm_page_inactive_min = 0; | |
430 | unsigned int vm_page_free_reserved = 0; | |
431 | unsigned int vm_page_throttle_count = 0; | |
432 | ||
433 | ||
434 | /* | |
435 | * The VM system has a couple of heuristics for deciding | |
436 | * that pages are "uninteresting" and should be placed | |
437 | * on the inactive queue as likely candidates for replacement. | |
438 | * These variables let the heuristics be controlled at run-time | |
439 | * to make experimentation easier. | |
440 | */ | |
441 | ||
442 | boolean_t vm_page_deactivate_hint = TRUE; | |
443 | ||
444 | struct vm_page_stats_reusable vm_page_stats_reusable; | |
445 | ||
446 | /* | |
447 | * vm_set_page_size: | |
448 | * | |
449 | * Sets the page size, perhaps based upon the memory | |
450 | * size. Must be called before any use of page-size | |
451 | * dependent functions. | |
452 | * | |
453 | * Sets page_shift and page_mask from page_size. | |
454 | */ | |
455 | void | |
456 | vm_set_page_size(void) | |
457 | { | |
458 | page_size = PAGE_SIZE; | |
459 | page_mask = PAGE_MASK; | |
460 | page_shift = PAGE_SHIFT; | |
461 | ||
462 | if ((page_mask & page_size) != 0) | |
463 | panic("vm_set_page_size: page size not a power of two"); | |
464 | ||
465 | for (page_shift = 0; ; page_shift++) | |
466 | if ((1U << page_shift) == page_size) | |
467 | break; | |
468 | } | |
469 | ||
470 | #define COLOR_GROUPS_TO_STEAL 4 | |
471 | ||
472 | ||
473 | /* Called once during statup, once the cache geometry is known. | |
474 | */ | |
475 | static void | |
476 | vm_page_set_colors( void ) | |
477 | { | |
478 | unsigned int n, override; | |
479 | ||
480 | if ( PE_parse_boot_argn("colors", &override, sizeof (override)) ) /* colors specified as a boot-arg? */ | |
481 | n = override; | |
482 | else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ | |
483 | n = vm_cache_geometry_colors; | |
484 | else n = DEFAULT_COLORS; /* use default if all else fails */ | |
485 | ||
486 | if ( n == 0 ) | |
487 | n = 1; | |
488 | if ( n > MAX_COLORS ) | |
489 | n = MAX_COLORS; | |
490 | ||
491 | /* the count must be a power of 2 */ | |
492 | if ( ( n & (n - 1)) != 0 ) | |
493 | panic("vm_page_set_colors"); | |
494 | ||
495 | vm_colors = n; | |
496 | vm_color_mask = n - 1; | |
497 | ||
498 | vm_free_magazine_refill_limit = vm_colors * COLOR_GROUPS_TO_STEAL; | |
499 | } | |
500 | ||
501 | ||
502 | lck_grp_t vm_page_lck_grp_free; | |
503 | lck_grp_t vm_page_lck_grp_queue; | |
504 | lck_grp_t vm_page_lck_grp_local; | |
505 | lck_grp_t vm_page_lck_grp_purge; | |
506 | lck_grp_t vm_page_lck_grp_alloc; | |
507 | lck_grp_t vm_page_lck_grp_bucket; | |
508 | lck_grp_attr_t vm_page_lck_grp_attr; | |
509 | lck_attr_t vm_page_lck_attr; | |
510 | ||
511 | ||
512 | __private_extern__ void | |
513 | vm_page_init_lck_grp(void) | |
514 | { | |
515 | /* | |
516 | * initialze the vm_page lock world | |
517 | */ | |
518 | lck_grp_attr_setdefault(&vm_page_lck_grp_attr); | |
519 | lck_grp_init(&vm_page_lck_grp_free, "vm_page_free", &vm_page_lck_grp_attr); | |
520 | lck_grp_init(&vm_page_lck_grp_queue, "vm_page_queue", &vm_page_lck_grp_attr); | |
521 | lck_grp_init(&vm_page_lck_grp_local, "vm_page_queue_local", &vm_page_lck_grp_attr); | |
522 | lck_grp_init(&vm_page_lck_grp_purge, "vm_page_purge", &vm_page_lck_grp_attr); | |
523 | lck_grp_init(&vm_page_lck_grp_alloc, "vm_page_alloc", &vm_page_lck_grp_attr); | |
524 | lck_grp_init(&vm_page_lck_grp_bucket, "vm_page_bucket", &vm_page_lck_grp_attr); | |
525 | lck_attr_setdefault(&vm_page_lck_attr); | |
526 | lck_mtx_init_ext(&vm_page_alloc_lock, &vm_page_alloc_lock_ext, &vm_page_lck_grp_alloc, &vm_page_lck_attr); | |
527 | ||
528 | vm_compressor_init_locks(); | |
529 | } | |
530 | ||
531 | void | |
532 | vm_page_init_local_q() | |
533 | { | |
534 | unsigned int num_cpus; | |
535 | unsigned int i; | |
536 | struct vplq *t_local_q; | |
537 | ||
538 | num_cpus = ml_get_max_cpus(); | |
539 | ||
540 | /* | |
541 | * no point in this for a uni-processor system | |
542 | */ | |
543 | if (num_cpus >= 2) { | |
544 | t_local_q = (struct vplq *)kalloc(num_cpus * sizeof(struct vplq)); | |
545 | ||
546 | for (i = 0; i < num_cpus; i++) { | |
547 | struct vpl *lq; | |
548 | ||
549 | lq = &t_local_q[i].vpl_un.vpl; | |
550 | VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); | |
551 | vm_page_queue_init(&lq->vpl_queue); | |
552 | lq->vpl_count = 0; | |
553 | lq->vpl_internal_count = 0; | |
554 | lq->vpl_external_count = 0; | |
555 | } | |
556 | vm_page_local_q_count = num_cpus; | |
557 | ||
558 | vm_page_local_q = (struct vplq *)t_local_q; | |
559 | } | |
560 | } | |
561 | ||
562 | ||
563 | /* | |
564 | * vm_page_bootstrap: | |
565 | * | |
566 | * Initializes the resident memory module. | |
567 | * | |
568 | * Allocates memory for the page cells, and | |
569 | * for the object/offset-to-page hash table headers. | |
570 | * Each page cell is initialized and placed on the free list. | |
571 | * Returns the range of available kernel virtual memory. | |
572 | */ | |
573 | ||
574 | void | |
575 | vm_page_bootstrap( | |
576 | vm_offset_t *startp, | |
577 | vm_offset_t *endp) | |
578 | { | |
579 | vm_page_t m; | |
580 | unsigned int i; | |
581 | unsigned int log1; | |
582 | unsigned int log2; | |
583 | unsigned int size; | |
584 | ||
585 | /* | |
586 | * Initialize the vm_page template. | |
587 | */ | |
588 | ||
589 | m = &vm_page_template; | |
590 | bzero(m, sizeof (*m)); | |
591 | ||
592 | #if CONFIG_BACKGROUND_QUEUE | |
593 | m->vm_page_backgroundq.next = 0; | |
594 | m->vm_page_backgroundq.prev = 0; | |
595 | m->vm_page_in_background = FALSE; | |
596 | m->vm_page_on_backgroundq = FALSE; | |
597 | #endif | |
598 | ||
599 | VM_PAGE_ZERO_PAGEQ_ENTRY(m); | |
600 | m->listq.next = 0; | |
601 | m->listq.prev = 0; | |
602 | m->next_m = 0; | |
603 | ||
604 | m->vm_page_object = 0; /* reset later */ | |
605 | m->offset = (vm_object_offset_t) -1; /* reset later */ | |
606 | ||
607 | m->wire_count = 0; | |
608 | m->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
609 | m->laundry = FALSE; | |
610 | m->reference = FALSE; | |
611 | m->gobbled = FALSE; | |
612 | m->private = FALSE; | |
613 | m->__unused_pageq_bits = 0; | |
614 | ||
615 | VM_PAGE_SET_PHYS_PAGE(m, 0); /* reset later */ | |
616 | m->busy = TRUE; | |
617 | m->wanted = FALSE; | |
618 | m->tabled = FALSE; | |
619 | m->hashed = FALSE; | |
620 | m->fictitious = FALSE; | |
621 | m->pmapped = FALSE; | |
622 | m->wpmapped = FALSE; | |
623 | m->free_when_done = FALSE; | |
624 | m->absent = FALSE; | |
625 | m->error = FALSE; | |
626 | m->dirty = FALSE; | |
627 | m->cleaning = FALSE; | |
628 | m->precious = FALSE; | |
629 | m->clustered = FALSE; | |
630 | m->overwriting = FALSE; | |
631 | m->restart = FALSE; | |
632 | m->unusual = FALSE; | |
633 | m->encrypted = FALSE; | |
634 | m->encrypted_cleaning = FALSE; | |
635 | m->cs_validated = FALSE; | |
636 | m->cs_tainted = FALSE; | |
637 | m->cs_nx = FALSE; | |
638 | m->no_cache = FALSE; | |
639 | m->reusable = FALSE; | |
640 | m->slid = FALSE; | |
641 | m->xpmapped = FALSE; | |
642 | m->written_by_kernel = FALSE; | |
643 | m->__unused_object_bits = 0; | |
644 | ||
645 | /* | |
646 | * Initialize the page queues. | |
647 | */ | |
648 | vm_page_init_lck_grp(); | |
649 | ||
650 | lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr); | |
651 | lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr); | |
652 | lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr); | |
653 | ||
654 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
655 | int group; | |
656 | ||
657 | purgeable_queues[i].token_q_head = 0; | |
658 | purgeable_queues[i].token_q_tail = 0; | |
659 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
660 | queue_init(&purgeable_queues[i].objq[group]); | |
661 | ||
662 | purgeable_queues[i].type = i; | |
663 | purgeable_queues[i].new_pages = 0; | |
664 | #if MACH_ASSERT | |
665 | purgeable_queues[i].debug_count_tokens = 0; | |
666 | purgeable_queues[i].debug_count_objects = 0; | |
667 | #endif | |
668 | }; | |
669 | purgeable_nonvolatile_count = 0; | |
670 | queue_init(&purgeable_nonvolatile_queue); | |
671 | ||
672 | for (i = 0; i < MAX_COLORS; i++ ) | |
673 | vm_page_queue_init(&vm_page_queue_free[i].qhead); | |
674 | ||
675 | vm_page_queue_init(&vm_lopage_queue_free); | |
676 | vm_page_queue_init(&vm_page_queue_active); | |
677 | vm_page_queue_init(&vm_page_queue_inactive); | |
678 | #if CONFIG_SECLUDED_MEMORY | |
679 | vm_page_queue_init(&vm_page_queue_secluded); | |
680 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
681 | vm_page_queue_init(&vm_page_queue_cleaned); | |
682 | vm_page_queue_init(&vm_page_queue_throttled); | |
683 | vm_page_queue_init(&vm_page_queue_anonymous); | |
684 | queue_init(&vm_objects_wired); | |
685 | ||
686 | for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { | |
687 | vm_page_queue_init(&vm_page_queue_speculative[i].age_q); | |
688 | ||
689 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; | |
690 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; | |
691 | } | |
692 | #if CONFIG_BACKGROUND_QUEUE | |
693 | vm_page_queue_init(&vm_page_queue_background); | |
694 | ||
695 | vm_page_background_count = 0; | |
696 | vm_page_background_internal_count = 0; | |
697 | vm_page_background_external_count = 0; | |
698 | vm_page_background_promoted_count = 0; | |
699 | ||
700 | vm_page_background_target = (unsigned int)(atop_64(max_mem) / 25); | |
701 | ||
702 | if (vm_page_background_target > VM_PAGE_BACKGROUND_TARGET_MAX) | |
703 | vm_page_background_target = VM_PAGE_BACKGROUND_TARGET_MAX; | |
704 | vm_page_background_limit = vm_page_background_target + 256; | |
705 | ||
706 | vm_page_background_mode = VM_PAGE_BG_LEVEL_1; | |
707 | vm_page_background_exclude_external = 0; | |
708 | ||
709 | PE_parse_boot_argn("vm_page_bg_mode", &vm_page_background_mode, sizeof(vm_page_background_mode)); | |
710 | PE_parse_boot_argn("vm_page_bg_exclude_external", &vm_page_background_exclude_external, sizeof(vm_page_background_exclude_external)); | |
711 | PE_parse_boot_argn("vm_page_bg_target", &vm_page_background_target, sizeof(vm_page_background_target)); | |
712 | PE_parse_boot_argn("vm_page_bg_limit", &vm_page_background_limit, sizeof(vm_page_background_limit)); | |
713 | ||
714 | if (vm_page_background_mode > VM_PAGE_BG_LEVEL_3) | |
715 | vm_page_background_mode = VM_PAGE_BG_LEVEL_1; | |
716 | ||
717 | if (vm_page_background_limit <= vm_page_background_target) | |
718 | vm_page_background_limit = vm_page_background_target + 256; | |
719 | #endif | |
720 | vm_page_free_wanted = 0; | |
721 | vm_page_free_wanted_privileged = 0; | |
722 | #if CONFIG_SECLUDED_MEMORY | |
723 | vm_page_free_wanted_secluded = 0; | |
724 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
725 | ||
726 | vm_page_set_colors(); | |
727 | ||
728 | bzero(vm_page_inactive_states, sizeof(vm_page_inactive_states)); | |
729 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; | |
730 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; | |
731 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; | |
732 | ||
733 | bzero(vm_page_pageable_states, sizeof(vm_page_pageable_states)); | |
734 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; | |
735 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; | |
736 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; | |
737 | vm_page_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; | |
738 | vm_page_pageable_states[VM_PAGE_ON_SPECULATIVE_Q] = 1; | |
739 | vm_page_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; | |
740 | #if CONFIG_SECLUDED_MEMORY | |
741 | vm_page_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; | |
742 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
743 | ||
744 | bzero(vm_page_non_speculative_pageable_states, sizeof(vm_page_non_speculative_pageable_states)); | |
745 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; | |
746 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; | |
747 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; | |
748 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; | |
749 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; | |
750 | #if CONFIG_SECLUDED_MEMORY | |
751 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; | |
752 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
753 | ||
754 | bzero(vm_page_active_or_inactive_states, sizeof(vm_page_active_or_inactive_states)); | |
755 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; | |
756 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; | |
757 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; | |
758 | vm_page_active_or_inactive_states[VM_PAGE_ON_ACTIVE_Q] = 1; | |
759 | #if CONFIG_SECLUDED_MEMORY | |
760 | vm_page_active_or_inactive_states[VM_PAGE_ON_SECLUDED_Q] = 1; | |
761 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
762 | ||
763 | ||
764 | /* | |
765 | * Steal memory for the map and zone subsystems. | |
766 | */ | |
767 | #if CONFIG_GZALLOC | |
768 | gzalloc_configure(); | |
769 | #endif | |
770 | kernel_debug_string_early("vm_map_steal_memory"); | |
771 | vm_map_steal_memory(); | |
772 | ||
773 | /* | |
774 | * Allocate (and initialize) the virtual-to-physical | |
775 | * table hash buckets. | |
776 | * | |
777 | * The number of buckets should be a power of two to | |
778 | * get a good hash function. The following computation | |
779 | * chooses the first power of two that is greater | |
780 | * than the number of physical pages in the system. | |
781 | */ | |
782 | ||
783 | if (vm_page_bucket_count == 0) { | |
784 | unsigned int npages = pmap_free_pages(); | |
785 | ||
786 | vm_page_bucket_count = 1; | |
787 | while (vm_page_bucket_count < npages) | |
788 | vm_page_bucket_count <<= 1; | |
789 | } | |
790 | vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; | |
791 | ||
792 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
793 | ||
794 | /* | |
795 | * Calculate object shift value for hashing algorithm: | |
796 | * O = log2(sizeof(struct vm_object)) | |
797 | * B = log2(vm_page_bucket_count) | |
798 | * hash shifts the object left by | |
799 | * B/2 - O | |
800 | */ | |
801 | size = vm_page_bucket_count; | |
802 | for (log1 = 0; size > 1; log1++) | |
803 | size /= 2; | |
804 | size = sizeof(struct vm_object); | |
805 | for (log2 = 0; size > 1; log2++) | |
806 | size /= 2; | |
807 | vm_page_hash_shift = log1/2 - log2 + 1; | |
808 | ||
809 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
810 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
811 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
812 | ||
813 | if (vm_page_hash_mask & vm_page_bucket_count) | |
814 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
815 | ||
816 | #if VM_PAGE_BUCKETS_CHECK | |
817 | #if VM_PAGE_FAKE_BUCKETS | |
818 | /* | |
819 | * Allocate a decoy set of page buckets, to detect | |
820 | * any stomping there. | |
821 | */ | |
822 | vm_page_fake_buckets = (vm_page_bucket_t *) | |
823 | pmap_steal_memory(vm_page_bucket_count * | |
824 | sizeof(vm_page_bucket_t)); | |
825 | vm_page_fake_buckets_start = (vm_map_offset_t) vm_page_fake_buckets; | |
826 | vm_page_fake_buckets_end = | |
827 | vm_map_round_page((vm_page_fake_buckets_start + | |
828 | (vm_page_bucket_count * | |
829 | sizeof (vm_page_bucket_t))), | |
830 | PAGE_MASK); | |
831 | char *cp; | |
832 | for (cp = (char *)vm_page_fake_buckets_start; | |
833 | cp < (char *)vm_page_fake_buckets_end; | |
834 | cp++) { | |
835 | *cp = 0x5a; | |
836 | } | |
837 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
838 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
839 | ||
840 | kernel_debug_string_early("vm_page_buckets"); | |
841 | vm_page_buckets = (vm_page_bucket_t *) | |
842 | pmap_steal_memory(vm_page_bucket_count * | |
843 | sizeof(vm_page_bucket_t)); | |
844 | ||
845 | kernel_debug_string_early("vm_page_bucket_locks"); | |
846 | vm_page_bucket_locks = (lck_spin_t *) | |
847 | pmap_steal_memory(vm_page_bucket_lock_count * | |
848 | sizeof(lck_spin_t)); | |
849 | ||
850 | for (i = 0; i < vm_page_bucket_count; i++) { | |
851 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
852 | ||
853 | bucket->page_list = VM_PAGE_PACK_PTR(VM_PAGE_NULL); | |
854 | #if MACH_PAGE_HASH_STATS | |
855 | bucket->cur_count = 0; | |
856 | bucket->hi_count = 0; | |
857 | #endif /* MACH_PAGE_HASH_STATS */ | |
858 | } | |
859 | ||
860 | for (i = 0; i < vm_page_bucket_lock_count; i++) | |
861 | lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
862 | ||
863 | lck_spin_init(&vm_objects_wired_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
864 | lck_spin_init(&vm_allocation_sites_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
865 | vm_tag_init(); | |
866 | ||
867 | #if VM_PAGE_BUCKETS_CHECK | |
868 | vm_page_buckets_check_ready = TRUE; | |
869 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
870 | ||
871 | /* | |
872 | * Machine-dependent code allocates the resident page table. | |
873 | * It uses vm_page_init to initialize the page frames. | |
874 | * The code also returns to us the virtual space available | |
875 | * to the kernel. We don't trust the pmap module | |
876 | * to get the alignment right. | |
877 | */ | |
878 | ||
879 | kernel_debug_string_early("pmap_startup"); | |
880 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
881 | virtual_space_start = round_page(virtual_space_start); | |
882 | virtual_space_end = trunc_page(virtual_space_end); | |
883 | ||
884 | *startp = virtual_space_start; | |
885 | *endp = virtual_space_end; | |
886 | ||
887 | /* | |
888 | * Compute the initial "wire" count. | |
889 | * Up until now, the pages which have been set aside are not under | |
890 | * the VM system's control, so although they aren't explicitly | |
891 | * wired, they nonetheless can't be moved. At this moment, | |
892 | * all VM managed pages are "free", courtesy of pmap_startup. | |
893 | */ | |
894 | assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); | |
895 | vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - vm_page_free_count - vm_lopage_free_count; /* initial value */ | |
896 | #if CONFIG_SECLUDED_MEMORY | |
897 | vm_page_wire_count -= vm_page_secluded_count; | |
898 | #endif | |
899 | vm_page_wire_count_initial = vm_page_wire_count; | |
900 | vm_page_pages_initial = vm_page_pages; | |
901 | ||
902 | printf("vm_page_bootstrap: %d free pages and %d wired pages\n", | |
903 | vm_page_free_count, vm_page_wire_count); | |
904 | ||
905 | kernel_debug_string_early("vm_page_bootstrap complete"); | |
906 | simple_lock_init(&vm_paging_lock, 0); | |
907 | } | |
908 | ||
909 | #ifndef MACHINE_PAGES | |
910 | /* | |
911 | * We implement pmap_steal_memory and pmap_startup with the help | |
912 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
913 | */ | |
914 | ||
915 | void * | |
916 | pmap_steal_memory( | |
917 | vm_size_t size) | |
918 | { | |
919 | vm_offset_t addr, vaddr; | |
920 | ppnum_t phys_page; | |
921 | ||
922 | /* | |
923 | * We round the size to a round multiple. | |
924 | */ | |
925 | ||
926 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
927 | ||
928 | /* | |
929 | * If this is the first call to pmap_steal_memory, | |
930 | * we have to initialize ourself. | |
931 | */ | |
932 | ||
933 | if (virtual_space_start == virtual_space_end) { | |
934 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
935 | ||
936 | /* | |
937 | * The initial values must be aligned properly, and | |
938 | * we don't trust the pmap module to do it right. | |
939 | */ | |
940 | ||
941 | virtual_space_start = round_page(virtual_space_start); | |
942 | virtual_space_end = trunc_page(virtual_space_end); | |
943 | } | |
944 | ||
945 | /* | |
946 | * Allocate virtual memory for this request. | |
947 | */ | |
948 | ||
949 | addr = virtual_space_start; | |
950 | virtual_space_start += size; | |
951 | ||
952 | //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ | |
953 | ||
954 | /* | |
955 | * Allocate and map physical pages to back new virtual pages. | |
956 | */ | |
957 | ||
958 | for (vaddr = round_page(addr); | |
959 | vaddr < addr + size; | |
960 | vaddr += PAGE_SIZE) { | |
961 | ||
962 | if (!pmap_next_page_hi(&phys_page)) | |
963 | panic("pmap_steal_memory() size: 0x%llx\n", (uint64_t)size); | |
964 | ||
965 | /* | |
966 | * XXX Logically, these mappings should be wired, | |
967 | * but some pmap modules barf if they are. | |
968 | */ | |
969 | #if defined(__LP64__) | |
970 | pmap_pre_expand(kernel_pmap, vaddr); | |
971 | #endif | |
972 | ||
973 | pmap_enter(kernel_pmap, vaddr, phys_page, | |
974 | VM_PROT_READ|VM_PROT_WRITE, VM_PROT_NONE, | |
975 | VM_WIMG_USE_DEFAULT, FALSE); | |
976 | /* | |
977 | * Account for newly stolen memory | |
978 | */ | |
979 | vm_page_wire_count++; | |
980 | vm_page_stolen_count++; | |
981 | } | |
982 | ||
983 | return (void *) addr; | |
984 | } | |
985 | ||
986 | #if CONFIG_SECLUDED_MEMORY | |
987 | /* boot-args to control secluded memory */ | |
988 | unsigned int secluded_mem_mb = 0; /* # of MBs of RAM to seclude */ | |
989 | int secluded_for_iokit = 1; /* IOKit can use secluded memory */ | |
990 | int secluded_for_apps = 1; /* apps can use secluded memory */ | |
991 | int secluded_for_filecache = 2; /* filecache can use seclude memory */ | |
992 | #if 11 | |
993 | int secluded_for_fbdp = 0; | |
994 | #endif | |
995 | int secluded_aging_policy = SECLUDED_AGING_BEFORE_ACTIVE; | |
996 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
997 | ||
998 | ||
999 | ||
1000 | ||
1001 | void vm_page_release_startup(vm_page_t mem); | |
1002 | void | |
1003 | pmap_startup( | |
1004 | vm_offset_t *startp, | |
1005 | vm_offset_t *endp) | |
1006 | { | |
1007 | unsigned int i, npages, pages_initialized, fill, fillval; | |
1008 | ppnum_t phys_page; | |
1009 | addr64_t tmpaddr; | |
1010 | ||
1011 | #if defined(__LP64__) | |
1012 | /* | |
1013 | * make sure we are aligned on a 64 byte boundary | |
1014 | * for VM_PAGE_PACK_PTR (it clips off the low-order | |
1015 | * 6 bits of the pointer) | |
1016 | */ | |
1017 | if (virtual_space_start != virtual_space_end) | |
1018 | virtual_space_start = round_page(virtual_space_start); | |
1019 | #endif | |
1020 | ||
1021 | /* | |
1022 | * We calculate how many page frames we will have | |
1023 | * and then allocate the page structures in one chunk. | |
1024 | */ | |
1025 | ||
1026 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ | |
1027 | tmpaddr = tmpaddr + (addr64_t)(round_page(virtual_space_start) - virtual_space_start); /* Account for any slop */ | |
1028 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ | |
1029 | ||
1030 | vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); | |
1031 | ||
1032 | /* | |
1033 | * Initialize the page frames. | |
1034 | */ | |
1035 | kernel_debug_string_early("Initialize the page frames"); | |
1036 | ||
1037 | vm_page_array_beginning_addr = &vm_pages[0]; | |
1038 | vm_page_array_ending_addr = &vm_pages[npages]; | |
1039 | ||
1040 | ||
1041 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
1042 | if (!pmap_next_page(&phys_page)) | |
1043 | break; | |
1044 | if (pages_initialized == 0 || phys_page < vm_page_lowest) | |
1045 | vm_page_lowest = phys_page; | |
1046 | ||
1047 | vm_page_init(&vm_pages[i], phys_page, FALSE); | |
1048 | vm_page_pages++; | |
1049 | pages_initialized++; | |
1050 | } | |
1051 | vm_pages_count = pages_initialized; | |
1052 | ||
1053 | #if defined(__LP64__) | |
1054 | ||
1055 | if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[0]))) != &vm_pages[0]) | |
1056 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[0] - %p", (void *)&vm_pages[0]); | |
1057 | ||
1058 | if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[vm_pages_count-1]))) != &vm_pages[vm_pages_count-1]) | |
1059 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[vm_pages_count-1] - %p", (void *)&vm_pages[vm_pages_count-1]); | |
1060 | #endif | |
1061 | kernel_debug_string_early("page fill/release"); | |
1062 | /* | |
1063 | * Check if we want to initialize pages to a known value | |
1064 | */ | |
1065 | fill = 0; /* Assume no fill */ | |
1066 | if (PE_parse_boot_argn("fill", &fillval, sizeof (fillval))) fill = 1; /* Set fill */ | |
1067 | #if DEBUG | |
1068 | /* This slows down booting the DEBUG kernel, particularly on | |
1069 | * large memory systems, but is worthwhile in deterministically | |
1070 | * trapping uninitialized memory usage. | |
1071 | */ | |
1072 | if (fill == 0) { | |
1073 | fill = 1; | |
1074 | fillval = 0xDEB8F177; | |
1075 | } | |
1076 | #endif | |
1077 | if (fill) | |
1078 | kprintf("Filling vm_pages with pattern: 0x%x\n", fillval); | |
1079 | ||
1080 | #if CONFIG_SECLUDED_MEMORY | |
1081 | /* default: no secluded mem */ | |
1082 | secluded_mem_mb = 0; | |
1083 | if (max_mem > 1*1024*1024*1024) { | |
1084 | /* default to 90MB for devices with > 1GB of RAM */ | |
1085 | secluded_mem_mb = 90; | |
1086 | } | |
1087 | /* override with value from device tree, if provided */ | |
1088 | PE_get_default("kern.secluded_mem_mb", | |
1089 | &secluded_mem_mb, sizeof(secluded_mem_mb)); | |
1090 | /* override with value from boot-args, if provided */ | |
1091 | PE_parse_boot_argn("secluded_mem_mb", | |
1092 | &secluded_mem_mb, | |
1093 | sizeof (secluded_mem_mb)); | |
1094 | ||
1095 | vm_page_secluded_target = (unsigned int) | |
1096 | ((secluded_mem_mb * 1024ULL * 1024ULL) / PAGE_SIZE); | |
1097 | PE_parse_boot_argn("secluded_for_iokit", | |
1098 | &secluded_for_iokit, | |
1099 | sizeof (secluded_for_iokit)); | |
1100 | PE_parse_boot_argn("secluded_for_apps", | |
1101 | &secluded_for_apps, | |
1102 | sizeof (secluded_for_apps)); | |
1103 | PE_parse_boot_argn("secluded_for_filecache", | |
1104 | &secluded_for_filecache, | |
1105 | sizeof (secluded_for_filecache)); | |
1106 | #if 11 | |
1107 | PE_parse_boot_argn("secluded_for_fbdp", | |
1108 | &secluded_for_fbdp, | |
1109 | sizeof (secluded_for_fbdp)); | |
1110 | #endif | |
1111 | PE_parse_boot_argn("secluded_aging_policy", | |
1112 | &secluded_aging_policy, | |
1113 | sizeof (secluded_aging_policy)); | |
1114 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1115 | ||
1116 | // -debug code remove | |
1117 | if (2 == vm_himemory_mode) { | |
1118 | // free low -> high so high is preferred | |
1119 | for (i = 1; i <= pages_initialized; i++) { | |
1120 | if(fill) fillPage(VM_PAGE_GET_PHYS_PAGE(&vm_pages[i - 1]), fillval); /* Fill the page with a know value if requested at boot */ | |
1121 | vm_page_release_startup(&vm_pages[i - 1]); | |
1122 | } | |
1123 | } | |
1124 | else | |
1125 | // debug code remove- | |
1126 | ||
1127 | /* | |
1128 | * Release pages in reverse order so that physical pages | |
1129 | * initially get allocated in ascending addresses. This keeps | |
1130 | * the devices (which must address physical memory) happy if | |
1131 | * they require several consecutive pages. | |
1132 | */ | |
1133 | for (i = pages_initialized; i > 0; i--) { | |
1134 | if(fill) fillPage(VM_PAGE_GET_PHYS_PAGE(&vm_pages[i - 1]), fillval); /* Fill the page with a know value if requested at boot */ | |
1135 | vm_page_release_startup(&vm_pages[i - 1]); | |
1136 | } | |
1137 | ||
1138 | VM_CHECK_MEMORYSTATUS; | |
1139 | ||
1140 | #if 0 | |
1141 | { | |
1142 | vm_page_t xx, xxo, xxl; | |
1143 | int i, j, k, l; | |
1144 | ||
1145 | j = 0; /* (BRINGUP) */ | |
1146 | xxl = 0; | |
1147 | ||
1148 | for( i = 0; i < vm_colors; i++ ) { | |
1149 | queue_iterate(&vm_page_queue_free[i].qhead, | |
1150 | xx, | |
1151 | vm_page_t, | |
1152 | pageq) { /* BRINGUP */ | |
1153 | j++; /* (BRINGUP) */ | |
1154 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
1155 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
1156 | } | |
1157 | ||
1158 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
1159 | k = 0; /* (BRINGUP) */ | |
1160 | ||
1161 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
1162 | ||
1163 | for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i].qhead; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
1164 | k++; | |
1165 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
1166 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
1167 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
1168 | } | |
1169 | } | |
1170 | ||
1171 | xxl = xx; | |
1172 | } | |
1173 | } | |
1174 | ||
1175 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
1176 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
1177 | } | |
1178 | } | |
1179 | #endif | |
1180 | ||
1181 | ||
1182 | /* | |
1183 | * We have to re-align virtual_space_start, | |
1184 | * because pmap_steal_memory has been using it. | |
1185 | */ | |
1186 | ||
1187 | virtual_space_start = round_page(virtual_space_start); | |
1188 | ||
1189 | *startp = virtual_space_start; | |
1190 | *endp = virtual_space_end; | |
1191 | } | |
1192 | #endif /* MACHINE_PAGES */ | |
1193 | ||
1194 | /* | |
1195 | * Routine: vm_page_module_init | |
1196 | * Purpose: | |
1197 | * Second initialization pass, to be done after | |
1198 | * the basic VM system is ready. | |
1199 | */ | |
1200 | void | |
1201 | vm_page_module_init(void) | |
1202 | { | |
1203 | uint64_t vm_page_zone_pages, vm_page_array_zone_data_size; | |
1204 | vm_size_t vm_page_with_ppnum_size; | |
1205 | ||
1206 | vm_page_array_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
1207 | 0, PAGE_SIZE, "vm pages array"); | |
1208 | ||
1209 | zone_change(vm_page_array_zone, Z_CALLERACCT, FALSE); | |
1210 | zone_change(vm_page_array_zone, Z_EXPAND, FALSE); | |
1211 | zone_change(vm_page_array_zone, Z_EXHAUST, TRUE); | |
1212 | zone_change(vm_page_array_zone, Z_FOREIGN, TRUE); | |
1213 | zone_change(vm_page_array_zone, Z_GZALLOC_EXEMPT, TRUE); | |
1214 | /* | |
1215 | * Adjust zone statistics to account for the real pages allocated | |
1216 | * in vm_page_create(). [Q: is this really what we want?] | |
1217 | */ | |
1218 | vm_page_array_zone->count += vm_page_pages; | |
1219 | vm_page_array_zone->sum_count += vm_page_pages; | |
1220 | vm_page_array_zone_data_size = vm_page_pages * vm_page_array_zone->elem_size; | |
1221 | vm_page_array_zone->cur_size += vm_page_array_zone_data_size; | |
1222 | vm_page_zone_pages = ((round_page(vm_page_array_zone_data_size)) / PAGE_SIZE); | |
1223 | OSAddAtomic64(vm_page_zone_pages, &(vm_page_array_zone->page_count)); | |
1224 | /* since zone accounts for these, take them out of stolen */ | |
1225 | VM_PAGE_MOVE_STOLEN(vm_page_zone_pages); | |
1226 | ||
1227 | vm_page_with_ppnum_size = (sizeof(struct vm_page_with_ppnum) + (VM_PACKED_POINTER_ALIGNMENT-1)) & ~(VM_PACKED_POINTER_ALIGNMENT - 1); | |
1228 | ||
1229 | vm_page_zone = zinit(vm_page_with_ppnum_size, | |
1230 | 0, PAGE_SIZE, "vm pages"); | |
1231 | ||
1232 | zone_change(vm_page_zone, Z_CALLERACCT, FALSE); | |
1233 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
1234 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
1235 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
1236 | zone_change(vm_page_zone, Z_GZALLOC_EXEMPT, TRUE); | |
1237 | } | |
1238 | ||
1239 | /* | |
1240 | * Routine: vm_page_create | |
1241 | * Purpose: | |
1242 | * After the VM system is up, machine-dependent code | |
1243 | * may stumble across more physical memory. For example, | |
1244 | * memory that it was reserving for a frame buffer. | |
1245 | * vm_page_create turns this memory into available pages. | |
1246 | */ | |
1247 | ||
1248 | void | |
1249 | vm_page_create( | |
1250 | ppnum_t start, | |
1251 | ppnum_t end) | |
1252 | { | |
1253 | ppnum_t phys_page; | |
1254 | vm_page_t m; | |
1255 | ||
1256 | for (phys_page = start; | |
1257 | phys_page < end; | |
1258 | phys_page++) { | |
1259 | while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page)) | |
1260 | == VM_PAGE_NULL) | |
1261 | vm_page_more_fictitious(); | |
1262 | ||
1263 | m->fictitious = FALSE; | |
1264 | pmap_clear_noencrypt(phys_page); | |
1265 | ||
1266 | vm_page_pages++; | |
1267 | vm_page_release(m, FALSE); | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | /* | |
1272 | * vm_page_hash: | |
1273 | * | |
1274 | * Distributes the object/offset key pair among hash buckets. | |
1275 | * | |
1276 | * NOTE: The bucket count must be a power of 2 | |
1277 | */ | |
1278 | #define vm_page_hash(object, offset) (\ | |
1279 | ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ | |
1280 | & vm_page_hash_mask) | |
1281 | ||
1282 | ||
1283 | /* | |
1284 | * vm_page_insert: [ internal use only ] | |
1285 | * | |
1286 | * Inserts the given mem entry into the object/object-page | |
1287 | * table and object list. | |
1288 | * | |
1289 | * The object must be locked. | |
1290 | */ | |
1291 | void | |
1292 | vm_page_insert( | |
1293 | vm_page_t mem, | |
1294 | vm_object_t object, | |
1295 | vm_object_offset_t offset) | |
1296 | { | |
1297 | vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, FALSE, FALSE, NULL); | |
1298 | } | |
1299 | ||
1300 | void | |
1301 | vm_page_insert_wired( | |
1302 | vm_page_t mem, | |
1303 | vm_object_t object, | |
1304 | vm_object_offset_t offset, | |
1305 | vm_tag_t tag) | |
1306 | { | |
1307 | vm_page_insert_internal(mem, object, offset, tag, FALSE, TRUE, FALSE, FALSE, NULL); | |
1308 | } | |
1309 | ||
1310 | void | |
1311 | vm_page_insert_internal( | |
1312 | vm_page_t mem, | |
1313 | vm_object_t object, | |
1314 | vm_object_offset_t offset, | |
1315 | vm_tag_t tag, | |
1316 | boolean_t queues_lock_held, | |
1317 | boolean_t insert_in_hash, | |
1318 | boolean_t batch_pmap_op, | |
1319 | boolean_t batch_accounting, | |
1320 | uint64_t *delayed_ledger_update) | |
1321 | { | |
1322 | vm_page_bucket_t *bucket; | |
1323 | lck_spin_t *bucket_lock; | |
1324 | int hash_id; | |
1325 | task_t owner; | |
1326 | ||
1327 | XPR(XPR_VM_PAGE, | |
1328 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
1329 | object, offset, mem, 0,0); | |
1330 | #if 0 | |
1331 | /* | |
1332 | * we may not hold the page queue lock | |
1333 | * so this check isn't safe to make | |
1334 | */ | |
1335 | VM_PAGE_CHECK(mem); | |
1336 | #endif | |
1337 | ||
1338 | assert(page_aligned(offset)); | |
1339 | ||
1340 | assert(!VM_PAGE_WIRED(mem) || mem->private || mem->fictitious || (tag != VM_KERN_MEMORY_NONE)); | |
1341 | ||
1342 | /* the vm_submap_object is only a placeholder for submaps */ | |
1343 | assert(object != vm_submap_object); | |
1344 | ||
1345 | vm_object_lock_assert_exclusive(object); | |
1346 | LCK_MTX_ASSERT(&vm_page_queue_lock, | |
1347 | queues_lock_held ? LCK_MTX_ASSERT_OWNED | |
1348 | : LCK_MTX_ASSERT_NOTOWNED); | |
1349 | if (queues_lock_held == FALSE) | |
1350 | assert(!VM_PAGE_PAGEABLE(mem)); | |
1351 | ||
1352 | if (insert_in_hash == TRUE) { | |
1353 | #if DEBUG || VM_PAGE_CHECK_BUCKETS | |
1354 | if (mem->tabled || mem->vm_page_object) | |
1355 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " | |
1356 | "already in (obj=%p,off=0x%llx)", | |
1357 | mem, object, offset, VM_PAGE_OBJECT(mem), mem->offset); | |
1358 | #endif | |
1359 | assert(!object->internal || offset < object->vo_size); | |
1360 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); | |
1361 | ||
1362 | /* | |
1363 | * Record the object/offset pair in this page | |
1364 | */ | |
1365 | ||
1366 | mem->vm_page_object = VM_PAGE_PACK_OBJECT(object); | |
1367 | mem->offset = offset; | |
1368 | ||
1369 | #if CONFIG_SECLUDED_MEMORY | |
1370 | if (object->eligible_for_secluded) { | |
1371 | vm_page_secluded.eligible_for_secluded++; | |
1372 | } | |
1373 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1374 | ||
1375 | /* | |
1376 | * Insert it into the object_object/offset hash table | |
1377 | */ | |
1378 | hash_id = vm_page_hash(object, offset); | |
1379 | bucket = &vm_page_buckets[hash_id]; | |
1380 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1381 | ||
1382 | lck_spin_lock(bucket_lock); | |
1383 | ||
1384 | mem->next_m = bucket->page_list; | |
1385 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
1386 | assert(mem == (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))); | |
1387 | ||
1388 | #if MACH_PAGE_HASH_STATS | |
1389 | if (++bucket->cur_count > bucket->hi_count) | |
1390 | bucket->hi_count = bucket->cur_count; | |
1391 | #endif /* MACH_PAGE_HASH_STATS */ | |
1392 | mem->hashed = TRUE; | |
1393 | lck_spin_unlock(bucket_lock); | |
1394 | } | |
1395 | ||
1396 | { | |
1397 | unsigned int cache_attr; | |
1398 | ||
1399 | cache_attr = object->wimg_bits & VM_WIMG_MASK; | |
1400 | ||
1401 | if (cache_attr != VM_WIMG_USE_DEFAULT) { | |
1402 | PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op); | |
1403 | } | |
1404 | } | |
1405 | /* | |
1406 | * Now link into the object's list of backed pages. | |
1407 | */ | |
1408 | vm_page_queue_enter(&object->memq, mem, vm_page_t, listq); | |
1409 | object->memq_hint = mem; | |
1410 | mem->tabled = TRUE; | |
1411 | ||
1412 | /* | |
1413 | * Show that the object has one more resident page. | |
1414 | */ | |
1415 | ||
1416 | object->resident_page_count++; | |
1417 | if (VM_PAGE_WIRED(mem)) { | |
1418 | assert(mem->wire_count > 0); | |
1419 | ||
1420 | if (!mem->private && !mem->fictitious) | |
1421 | { | |
1422 | if (!object->wired_page_count) | |
1423 | { | |
1424 | assert(VM_KERN_MEMORY_NONE != tag); | |
1425 | object->wire_tag = tag; | |
1426 | VM_OBJECT_WIRED(object); | |
1427 | } | |
1428 | } | |
1429 | object->wired_page_count++; | |
1430 | } | |
1431 | assert(object->resident_page_count >= object->wired_page_count); | |
1432 | ||
1433 | if (batch_accounting == FALSE) { | |
1434 | if (object->internal) { | |
1435 | OSAddAtomic(1, &vm_page_internal_count); | |
1436 | } else { | |
1437 | OSAddAtomic(1, &vm_page_external_count); | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | /* | |
1442 | * It wouldn't make sense to insert a "reusable" page in | |
1443 | * an object (the page would have been marked "reusable" only | |
1444 | * at the time of a madvise(MADV_FREE_REUSABLE) if it was already | |
1445 | * in the object at that time). | |
1446 | * But a page could be inserted in a "all_reusable" object, if | |
1447 | * something faults it in (a vm_read() from another task or a | |
1448 | * "use-after-free" issue in user space, for example). It can | |
1449 | * also happen if we're relocating a page from that object to | |
1450 | * a different physical page during a physically-contiguous | |
1451 | * allocation. | |
1452 | */ | |
1453 | assert(!mem->reusable); | |
1454 | if (object->all_reusable) { | |
1455 | OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count); | |
1456 | } | |
1457 | ||
1458 | if (object->purgable == VM_PURGABLE_DENY) { | |
1459 | owner = TASK_NULL; | |
1460 | } else { | |
1461 | owner = object->vo_purgeable_owner; | |
1462 | } | |
1463 | if (owner && | |
1464 | (object->purgable == VM_PURGABLE_NONVOLATILE || | |
1465 | VM_PAGE_WIRED(mem))) { | |
1466 | ||
1467 | if (delayed_ledger_update) | |
1468 | *delayed_ledger_update += PAGE_SIZE; | |
1469 | else { | |
1470 | /* more non-volatile bytes */ | |
1471 | ledger_credit(owner->ledger, | |
1472 | task_ledgers.purgeable_nonvolatile, | |
1473 | PAGE_SIZE); | |
1474 | /* more footprint */ | |
1475 | ledger_credit(owner->ledger, | |
1476 | task_ledgers.phys_footprint, | |
1477 | PAGE_SIZE); | |
1478 | } | |
1479 | ||
1480 | } else if (owner && | |
1481 | (object->purgable == VM_PURGABLE_VOLATILE || | |
1482 | object->purgable == VM_PURGABLE_EMPTY)) { | |
1483 | assert(! VM_PAGE_WIRED(mem)); | |
1484 | /* more volatile bytes */ | |
1485 | ledger_credit(owner->ledger, | |
1486 | task_ledgers.purgeable_volatile, | |
1487 | PAGE_SIZE); | |
1488 | } | |
1489 | ||
1490 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
1491 | if (VM_PAGE_WIRED(mem)) { | |
1492 | OSAddAtomic(+1, &vm_page_purgeable_wired_count); | |
1493 | } else { | |
1494 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
1495 | } | |
1496 | } else if (object->purgable == VM_PURGABLE_EMPTY && | |
1497 | mem->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q) { | |
1498 | /* | |
1499 | * This page belongs to a purged VM object but hasn't | |
1500 | * been purged (because it was "busy"). | |
1501 | * It's in the "throttled" queue and hence not | |
1502 | * visible to vm_pageout_scan(). Move it to a pageable | |
1503 | * queue, so that it can eventually be reclaimed, instead | |
1504 | * of lingering in the "empty" object. | |
1505 | */ | |
1506 | if (queues_lock_held == FALSE) | |
1507 | vm_page_lockspin_queues(); | |
1508 | vm_page_deactivate(mem); | |
1509 | if (queues_lock_held == FALSE) | |
1510 | vm_page_unlock_queues(); | |
1511 | } | |
1512 | ||
1513 | #if VM_OBJECT_TRACKING_OP_MODIFIED | |
1514 | if (vm_object_tracking_inited && | |
1515 | object->internal && | |
1516 | object->resident_page_count == 0 && | |
1517 | object->pager == NULL && | |
1518 | object->shadow != NULL && | |
1519 | object->shadow->copy == object) { | |
1520 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
1521 | int numsaved = 0; | |
1522 | ||
1523 | numsaved =OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH); | |
1524 | btlog_add_entry(vm_object_tracking_btlog, | |
1525 | object, | |
1526 | VM_OBJECT_TRACKING_OP_MODIFIED, | |
1527 | bt, | |
1528 | numsaved); | |
1529 | } | |
1530 | #endif /* VM_OBJECT_TRACKING_OP_MODIFIED */ | |
1531 | } | |
1532 | ||
1533 | /* | |
1534 | * vm_page_replace: | |
1535 | * | |
1536 | * Exactly like vm_page_insert, except that we first | |
1537 | * remove any existing page at the given offset in object. | |
1538 | * | |
1539 | * The object must be locked. | |
1540 | */ | |
1541 | void | |
1542 | vm_page_replace( | |
1543 | vm_page_t mem, | |
1544 | vm_object_t object, | |
1545 | vm_object_offset_t offset) | |
1546 | { | |
1547 | vm_page_bucket_t *bucket; | |
1548 | vm_page_t found_m = VM_PAGE_NULL; | |
1549 | lck_spin_t *bucket_lock; | |
1550 | int hash_id; | |
1551 | ||
1552 | #if 0 | |
1553 | /* | |
1554 | * we don't hold the page queue lock | |
1555 | * so this check isn't safe to make | |
1556 | */ | |
1557 | VM_PAGE_CHECK(mem); | |
1558 | #endif | |
1559 | vm_object_lock_assert_exclusive(object); | |
1560 | #if DEBUG || VM_PAGE_CHECK_BUCKETS | |
1561 | if (mem->tabled || mem->vm_page_object) | |
1562 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " | |
1563 | "already in (obj=%p,off=0x%llx)", | |
1564 | mem, object, offset, VM_PAGE_OBJECT(mem), mem->offset); | |
1565 | #endif | |
1566 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
1567 | ||
1568 | assert(!VM_PAGE_PAGEABLE(mem)); | |
1569 | ||
1570 | /* | |
1571 | * Record the object/offset pair in this page | |
1572 | */ | |
1573 | mem->vm_page_object = VM_PAGE_PACK_OBJECT(object); | |
1574 | mem->offset = offset; | |
1575 | ||
1576 | /* | |
1577 | * Insert it into the object_object/offset hash table, | |
1578 | * replacing any page that might have been there. | |
1579 | */ | |
1580 | ||
1581 | hash_id = vm_page_hash(object, offset); | |
1582 | bucket = &vm_page_buckets[hash_id]; | |
1583 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1584 | ||
1585 | lck_spin_lock(bucket_lock); | |
1586 | ||
1587 | if (bucket->page_list) { | |
1588 | vm_page_packed_t *mp = &bucket->page_list; | |
1589 | vm_page_t m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)); | |
1590 | ||
1591 | do { | |
1592 | /* | |
1593 | * compare packed object pointers | |
1594 | */ | |
1595 | if (m->vm_page_object == mem->vm_page_object && m->offset == offset) { | |
1596 | /* | |
1597 | * Remove old page from hash list | |
1598 | */ | |
1599 | *mp = m->next_m; | |
1600 | m->hashed = FALSE; | |
1601 | m->next_m = VM_PAGE_PACK_PTR(NULL); | |
1602 | ||
1603 | found_m = m; | |
1604 | break; | |
1605 | } | |
1606 | mp = &m->next_m; | |
1607 | } while ((m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)))); | |
1608 | ||
1609 | mem->next_m = bucket->page_list; | |
1610 | } else { | |
1611 | mem->next_m = VM_PAGE_PACK_PTR(NULL); | |
1612 | } | |
1613 | /* | |
1614 | * insert new page at head of hash list | |
1615 | */ | |
1616 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
1617 | mem->hashed = TRUE; | |
1618 | ||
1619 | lck_spin_unlock(bucket_lock); | |
1620 | ||
1621 | if (found_m) { | |
1622 | /* | |
1623 | * there was already a page at the specified | |
1624 | * offset for this object... remove it from | |
1625 | * the object and free it back to the free list | |
1626 | */ | |
1627 | vm_page_free_unlocked(found_m, FALSE); | |
1628 | } | |
1629 | vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL); | |
1630 | } | |
1631 | ||
1632 | /* | |
1633 | * vm_page_remove: [ internal use only ] | |
1634 | * | |
1635 | * Removes the given mem entry from the object/offset-page | |
1636 | * table and the object page list. | |
1637 | * | |
1638 | * The object must be locked. | |
1639 | */ | |
1640 | ||
1641 | void | |
1642 | vm_page_remove( | |
1643 | vm_page_t mem, | |
1644 | boolean_t remove_from_hash) | |
1645 | { | |
1646 | vm_page_bucket_t *bucket; | |
1647 | vm_page_t this; | |
1648 | lck_spin_t *bucket_lock; | |
1649 | int hash_id; | |
1650 | task_t owner; | |
1651 | vm_object_t m_object; | |
1652 | ||
1653 | m_object = VM_PAGE_OBJECT(mem); | |
1654 | ||
1655 | XPR(XPR_VM_PAGE, | |
1656 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
1657 | m_object, mem->offset, | |
1658 | mem, 0,0); | |
1659 | ||
1660 | vm_object_lock_assert_exclusive(m_object); | |
1661 | assert(mem->tabled); | |
1662 | assert(!mem->cleaning); | |
1663 | assert(!mem->laundry); | |
1664 | ||
1665 | if (VM_PAGE_PAGEABLE(mem)) { | |
1666 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
1667 | } | |
1668 | #if 0 | |
1669 | /* | |
1670 | * we don't hold the page queue lock | |
1671 | * so this check isn't safe to make | |
1672 | */ | |
1673 | VM_PAGE_CHECK(mem); | |
1674 | #endif | |
1675 | if (remove_from_hash == TRUE) { | |
1676 | /* | |
1677 | * Remove from the object_object/offset hash table | |
1678 | */ | |
1679 | hash_id = vm_page_hash(m_object, mem->offset); | |
1680 | bucket = &vm_page_buckets[hash_id]; | |
1681 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1682 | ||
1683 | lck_spin_lock(bucket_lock); | |
1684 | ||
1685 | if ((this = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))) == mem) { | |
1686 | /* optimize for common case */ | |
1687 | ||
1688 | bucket->page_list = mem->next_m; | |
1689 | } else { | |
1690 | vm_page_packed_t *prev; | |
1691 | ||
1692 | for (prev = &this->next_m; | |
1693 | (this = (vm_page_t)(VM_PAGE_UNPACK_PTR(*prev))) != mem; | |
1694 | prev = &this->next_m) | |
1695 | continue; | |
1696 | *prev = this->next_m; | |
1697 | } | |
1698 | #if MACH_PAGE_HASH_STATS | |
1699 | bucket->cur_count--; | |
1700 | #endif /* MACH_PAGE_HASH_STATS */ | |
1701 | mem->hashed = FALSE; | |
1702 | this->next_m = VM_PAGE_PACK_PTR(NULL); | |
1703 | lck_spin_unlock(bucket_lock); | |
1704 | } | |
1705 | /* | |
1706 | * Now remove from the object's list of backed pages. | |
1707 | */ | |
1708 | ||
1709 | vm_page_remove_internal(mem); | |
1710 | ||
1711 | /* | |
1712 | * And show that the object has one fewer resident | |
1713 | * page. | |
1714 | */ | |
1715 | ||
1716 | assert(m_object->resident_page_count > 0); | |
1717 | m_object->resident_page_count--; | |
1718 | ||
1719 | if (m_object->internal) { | |
1720 | #if DEBUG | |
1721 | assert(vm_page_internal_count); | |
1722 | #endif /* DEBUG */ | |
1723 | ||
1724 | OSAddAtomic(-1, &vm_page_internal_count); | |
1725 | } else { | |
1726 | assert(vm_page_external_count); | |
1727 | OSAddAtomic(-1, &vm_page_external_count); | |
1728 | ||
1729 | if (mem->xpmapped) { | |
1730 | assert(vm_page_xpmapped_external_count); | |
1731 | OSAddAtomic(-1, &vm_page_xpmapped_external_count); | |
1732 | } | |
1733 | } | |
1734 | if (!m_object->internal && (m_object->objq.next || m_object->objq.prev)) { | |
1735 | if (m_object->resident_page_count == 0) | |
1736 | vm_object_cache_remove(m_object); | |
1737 | } | |
1738 | ||
1739 | if (VM_PAGE_WIRED(mem)) { | |
1740 | assert(mem->wire_count > 0); | |
1741 | assert(m_object->wired_page_count > 0); | |
1742 | m_object->wired_page_count--; | |
1743 | if (!m_object->wired_page_count) { | |
1744 | VM_OBJECT_UNWIRED(m_object); | |
1745 | } | |
1746 | } | |
1747 | assert(m_object->resident_page_count >= | |
1748 | m_object->wired_page_count); | |
1749 | if (mem->reusable) { | |
1750 | assert(m_object->reusable_page_count > 0); | |
1751 | m_object->reusable_page_count--; | |
1752 | assert(m_object->reusable_page_count <= | |
1753 | m_object->resident_page_count); | |
1754 | mem->reusable = FALSE; | |
1755 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1756 | vm_page_stats_reusable.reused_remove++; | |
1757 | } else if (m_object->all_reusable) { | |
1758 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1759 | vm_page_stats_reusable.reused_remove++; | |
1760 | } | |
1761 | ||
1762 | if (m_object->purgable == VM_PURGABLE_DENY) { | |
1763 | owner = TASK_NULL; | |
1764 | } else { | |
1765 | owner = m_object->vo_purgeable_owner; | |
1766 | } | |
1767 | if (owner && | |
1768 | (m_object->purgable == VM_PURGABLE_NONVOLATILE || | |
1769 | VM_PAGE_WIRED(mem))) { | |
1770 | /* less non-volatile bytes */ | |
1771 | ledger_debit(owner->ledger, | |
1772 | task_ledgers.purgeable_nonvolatile, | |
1773 | PAGE_SIZE); | |
1774 | /* less footprint */ | |
1775 | ledger_debit(owner->ledger, | |
1776 | task_ledgers.phys_footprint, | |
1777 | PAGE_SIZE); | |
1778 | } else if (owner && | |
1779 | (m_object->purgable == VM_PURGABLE_VOLATILE || | |
1780 | m_object->purgable == VM_PURGABLE_EMPTY)) { | |
1781 | assert(! VM_PAGE_WIRED(mem)); | |
1782 | /* less volatile bytes */ | |
1783 | ledger_debit(owner->ledger, | |
1784 | task_ledgers.purgeable_volatile, | |
1785 | PAGE_SIZE); | |
1786 | } | |
1787 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { | |
1788 | if (VM_PAGE_WIRED(mem)) { | |
1789 | assert(vm_page_purgeable_wired_count > 0); | |
1790 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
1791 | } else { | |
1792 | assert(vm_page_purgeable_count > 0); | |
1793 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
1794 | } | |
1795 | } | |
1796 | if (m_object->set_cache_attr == TRUE) | |
1797 | pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(mem), 0); | |
1798 | ||
1799 | mem->tabled = FALSE; | |
1800 | mem->vm_page_object = 0; | |
1801 | mem->offset = (vm_object_offset_t) -1; | |
1802 | } | |
1803 | ||
1804 | ||
1805 | /* | |
1806 | * vm_page_lookup: | |
1807 | * | |
1808 | * Returns the page associated with the object/offset | |
1809 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
1810 | * | |
1811 | * The object must be locked. No side effects. | |
1812 | */ | |
1813 | ||
1814 | #define VM_PAGE_HASH_LOOKUP_THRESHOLD 10 | |
1815 | ||
1816 | #if DEBUG_VM_PAGE_LOOKUP | |
1817 | ||
1818 | struct { | |
1819 | uint64_t vpl_total; | |
1820 | uint64_t vpl_empty_obj; | |
1821 | uint64_t vpl_bucket_NULL; | |
1822 | uint64_t vpl_hit_hint; | |
1823 | uint64_t vpl_hit_hint_next; | |
1824 | uint64_t vpl_hit_hint_prev; | |
1825 | uint64_t vpl_fast; | |
1826 | uint64_t vpl_slow; | |
1827 | uint64_t vpl_hit; | |
1828 | uint64_t vpl_miss; | |
1829 | ||
1830 | uint64_t vpl_fast_elapsed; | |
1831 | uint64_t vpl_slow_elapsed; | |
1832 | } vm_page_lookup_stats __attribute__((aligned(8))); | |
1833 | ||
1834 | #endif | |
1835 | ||
1836 | #define KDP_VM_PAGE_WALK_MAX 1000 | |
1837 | ||
1838 | vm_page_t | |
1839 | kdp_vm_page_lookup( | |
1840 | vm_object_t object, | |
1841 | vm_object_offset_t offset) | |
1842 | { | |
1843 | vm_page_t cur_page; | |
1844 | int num_traversed = 0; | |
1845 | ||
1846 | if (not_in_kdp) { | |
1847 | panic("panic: kdp_vm_page_lookup done outside of kernel debugger"); | |
1848 | } | |
1849 | ||
1850 | vm_page_queue_iterate(&object->memq, cur_page, vm_page_t, listq) { | |
1851 | if (cur_page->offset == offset) { | |
1852 | return cur_page; | |
1853 | } | |
1854 | num_traversed++; | |
1855 | ||
1856 | if (num_traversed >= KDP_VM_PAGE_WALK_MAX) { | |
1857 | return VM_PAGE_NULL; | |
1858 | } | |
1859 | } | |
1860 | ||
1861 | return VM_PAGE_NULL; | |
1862 | } | |
1863 | ||
1864 | vm_page_t | |
1865 | vm_page_lookup( | |
1866 | vm_object_t object, | |
1867 | vm_object_offset_t offset) | |
1868 | { | |
1869 | vm_page_t mem; | |
1870 | vm_page_bucket_t *bucket; | |
1871 | vm_page_queue_entry_t qe; | |
1872 | lck_spin_t *bucket_lock = NULL; | |
1873 | int hash_id; | |
1874 | #if DEBUG_VM_PAGE_LOOKUP | |
1875 | uint64_t start, elapsed; | |
1876 | ||
1877 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total); | |
1878 | #endif | |
1879 | vm_object_lock_assert_held(object); | |
1880 | ||
1881 | if (object->resident_page_count == 0) { | |
1882 | #if DEBUG_VM_PAGE_LOOKUP | |
1883 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj); | |
1884 | #endif | |
1885 | return (VM_PAGE_NULL); | |
1886 | } | |
1887 | ||
1888 | mem = object->memq_hint; | |
1889 | ||
1890 | if (mem != VM_PAGE_NULL) { | |
1891 | assert(VM_PAGE_OBJECT(mem) == object); | |
1892 | ||
1893 | if (mem->offset == offset) { | |
1894 | #if DEBUG_VM_PAGE_LOOKUP | |
1895 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint); | |
1896 | #endif | |
1897 | return (mem); | |
1898 | } | |
1899 | qe = (vm_page_queue_entry_t)vm_page_queue_next(&mem->listq); | |
1900 | ||
1901 | if (! vm_page_queue_end(&object->memq, qe)) { | |
1902 | vm_page_t next_page; | |
1903 | ||
1904 | next_page = (vm_page_t)((uintptr_t)qe); | |
1905 | assert(VM_PAGE_OBJECT(next_page) == object); | |
1906 | ||
1907 | if (next_page->offset == offset) { | |
1908 | object->memq_hint = next_page; /* new hint */ | |
1909 | #if DEBUG_VM_PAGE_LOOKUP | |
1910 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next); | |
1911 | #endif | |
1912 | return (next_page); | |
1913 | } | |
1914 | } | |
1915 | qe = (vm_page_queue_entry_t)vm_page_queue_prev(&mem->listq); | |
1916 | ||
1917 | if (! vm_page_queue_end(&object->memq, qe)) { | |
1918 | vm_page_t prev_page; | |
1919 | ||
1920 | prev_page = (vm_page_t)((uintptr_t)qe); | |
1921 | assert(VM_PAGE_OBJECT(prev_page) == object); | |
1922 | ||
1923 | if (prev_page->offset == offset) { | |
1924 | object->memq_hint = prev_page; /* new hint */ | |
1925 | #if DEBUG_VM_PAGE_LOOKUP | |
1926 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev); | |
1927 | #endif | |
1928 | return (prev_page); | |
1929 | } | |
1930 | } | |
1931 | } | |
1932 | /* | |
1933 | * Search the hash table for this object/offset pair | |
1934 | */ | |
1935 | hash_id = vm_page_hash(object, offset); | |
1936 | bucket = &vm_page_buckets[hash_id]; | |
1937 | ||
1938 | /* | |
1939 | * since we hold the object lock, we are guaranteed that no | |
1940 | * new pages can be inserted into this object... this in turn | |
1941 | * guarantess that the page we're looking for can't exist | |
1942 | * if the bucket it hashes to is currently NULL even when looked | |
1943 | * at outside the scope of the hash bucket lock... this is a | |
1944 | * really cheap optimiztion to avoid taking the lock | |
1945 | */ | |
1946 | if (!bucket->page_list) { | |
1947 | #if DEBUG_VM_PAGE_LOOKUP | |
1948 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL); | |
1949 | #endif | |
1950 | return (VM_PAGE_NULL); | |
1951 | } | |
1952 | ||
1953 | #if DEBUG_VM_PAGE_LOOKUP | |
1954 | start = mach_absolute_time(); | |
1955 | #endif | |
1956 | if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) { | |
1957 | /* | |
1958 | * on average, it's roughly 3 times faster to run a short memq list | |
1959 | * than to take the spin lock and go through the hash list | |
1960 | */ | |
1961 | mem = (vm_page_t)vm_page_queue_first(&object->memq); | |
1962 | ||
1963 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) { | |
1964 | ||
1965 | if (mem->offset == offset) | |
1966 | break; | |
1967 | ||
1968 | mem = (vm_page_t)vm_page_queue_next(&mem->listq); | |
1969 | } | |
1970 | if (vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) | |
1971 | mem = NULL; | |
1972 | } else { | |
1973 | vm_page_object_t packed_object; | |
1974 | ||
1975 | packed_object = VM_PAGE_PACK_OBJECT(object); | |
1976 | ||
1977 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1978 | ||
1979 | lck_spin_lock(bucket_lock); | |
1980 | ||
1981 | for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); | |
1982 | mem != VM_PAGE_NULL; | |
1983 | mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->next_m))) { | |
1984 | #if 0 | |
1985 | /* | |
1986 | * we don't hold the page queue lock | |
1987 | * so this check isn't safe to make | |
1988 | */ | |
1989 | VM_PAGE_CHECK(mem); | |
1990 | #endif | |
1991 | if ((mem->vm_page_object == packed_object) && (mem->offset == offset)) | |
1992 | break; | |
1993 | } | |
1994 | lck_spin_unlock(bucket_lock); | |
1995 | } | |
1996 | ||
1997 | #if DEBUG_VM_PAGE_LOOKUP | |
1998 | elapsed = mach_absolute_time() - start; | |
1999 | ||
2000 | if (bucket_lock) { | |
2001 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow); | |
2002 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed); | |
2003 | } else { | |
2004 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast); | |
2005 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed); | |
2006 | } | |
2007 | if (mem != VM_PAGE_NULL) | |
2008 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit); | |
2009 | else | |
2010 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss); | |
2011 | #endif | |
2012 | if (mem != VM_PAGE_NULL) { | |
2013 | assert(VM_PAGE_OBJECT(mem) == object); | |
2014 | ||
2015 | object->memq_hint = mem; | |
2016 | } | |
2017 | return (mem); | |
2018 | } | |
2019 | ||
2020 | ||
2021 | /* | |
2022 | * vm_page_rename: | |
2023 | * | |
2024 | * Move the given memory entry from its | |
2025 | * current object to the specified target object/offset. | |
2026 | * | |
2027 | * The object must be locked. | |
2028 | */ | |
2029 | void | |
2030 | vm_page_rename( | |
2031 | vm_page_t mem, | |
2032 | vm_object_t new_object, | |
2033 | vm_object_offset_t new_offset, | |
2034 | boolean_t encrypted_ok) | |
2035 | { | |
2036 | boolean_t internal_to_external, external_to_internal; | |
2037 | vm_tag_t tag; | |
2038 | vm_object_t m_object; | |
2039 | ||
2040 | m_object = VM_PAGE_OBJECT(mem); | |
2041 | ||
2042 | assert(m_object != new_object); | |
2043 | assert(m_object); | |
2044 | ||
2045 | /* | |
2046 | * ENCRYPTED SWAP: | |
2047 | * The encryption key is based on the page's memory object | |
2048 | * (aka "pager") and paging offset. Moving the page to | |
2049 | * another VM object changes its "pager" and "paging_offset" | |
2050 | * so it has to be decrypted first, or we would lose the key. | |
2051 | * | |
2052 | * One exception is VM object collapsing, where we transfer pages | |
2053 | * from one backing object to its parent object. This operation also | |
2054 | * transfers the paging information, so the <pager,paging_offset> info | |
2055 | * should remain consistent. The caller (vm_object_do_collapse()) | |
2056 | * sets "encrypted_ok" in this case. | |
2057 | */ | |
2058 | if (!encrypted_ok && mem->encrypted) { | |
2059 | panic("vm_page_rename: page %p is encrypted\n", mem); | |
2060 | } | |
2061 | ||
2062 | XPR(XPR_VM_PAGE, | |
2063 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
2064 | new_object, new_offset, | |
2065 | mem, 0,0); | |
2066 | ||
2067 | /* | |
2068 | * Changes to mem->object require the page lock because | |
2069 | * the pageout daemon uses that lock to get the object. | |
2070 | */ | |
2071 | vm_page_lockspin_queues(); | |
2072 | ||
2073 | internal_to_external = FALSE; | |
2074 | external_to_internal = FALSE; | |
2075 | ||
2076 | if (mem->vm_page_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q) { | |
2077 | /* | |
2078 | * it's much easier to get the vm_page_pageable_xxx accounting correct | |
2079 | * if we first move the page to the active queue... it's going to end | |
2080 | * up there anyway, and we don't do vm_page_rename's frequently enough | |
2081 | * for this to matter. | |
2082 | */ | |
2083 | vm_page_queues_remove(mem, FALSE); | |
2084 | vm_page_activate(mem); | |
2085 | } | |
2086 | if (VM_PAGE_PAGEABLE(mem)) { | |
2087 | if (m_object->internal && !new_object->internal) { | |
2088 | internal_to_external = TRUE; | |
2089 | } | |
2090 | if (!m_object->internal && new_object->internal) { | |
2091 | external_to_internal = TRUE; | |
2092 | } | |
2093 | } | |
2094 | ||
2095 | tag = m_object->wire_tag; | |
2096 | vm_page_remove(mem, TRUE); | |
2097 | vm_page_insert_internal(mem, new_object, new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL); | |
2098 | ||
2099 | if (internal_to_external) { | |
2100 | vm_page_pageable_internal_count--; | |
2101 | vm_page_pageable_external_count++; | |
2102 | } else if (external_to_internal) { | |
2103 | vm_page_pageable_external_count--; | |
2104 | vm_page_pageable_internal_count++; | |
2105 | } | |
2106 | ||
2107 | vm_page_unlock_queues(); | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | * vm_page_init: | |
2112 | * | |
2113 | * Initialize the fields in a new page. | |
2114 | * This takes a structure with random values and initializes it | |
2115 | * so that it can be given to vm_page_release or vm_page_insert. | |
2116 | */ | |
2117 | void | |
2118 | vm_page_init( | |
2119 | vm_page_t mem, | |
2120 | ppnum_t phys_page, | |
2121 | boolean_t lopage) | |
2122 | { | |
2123 | assert(phys_page); | |
2124 | ||
2125 | #if DEBUG | |
2126 | if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) { | |
2127 | if (!(pmap_valid_page(phys_page))) { | |
2128 | panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page); | |
2129 | } | |
2130 | } | |
2131 | #endif | |
2132 | *mem = vm_page_template; | |
2133 | ||
2134 | VM_PAGE_SET_PHYS_PAGE(mem, phys_page); | |
2135 | #if 0 | |
2136 | /* | |
2137 | * we're leaving this turned off for now... currently pages | |
2138 | * come off the free list and are either immediately dirtied/referenced | |
2139 | * due to zero-fill or COW faults, or are used to read or write files... | |
2140 | * in the file I/O case, the UPL mechanism takes care of clearing | |
2141 | * the state of the HW ref/mod bits in a somewhat fragile way. | |
2142 | * Since we may change the way this works in the future (to toughen it up), | |
2143 | * I'm leaving this as a reminder of where these bits could get cleared | |
2144 | */ | |
2145 | ||
2146 | /* | |
2147 | * make sure both the h/w referenced and modified bits are | |
2148 | * clear at this point... we are especially dependent on | |
2149 | * not finding a 'stale' h/w modified in a number of spots | |
2150 | * once this page goes back into use | |
2151 | */ | |
2152 | pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
2153 | #endif | |
2154 | mem->lopage = lopage; | |
2155 | } | |
2156 | ||
2157 | /* | |
2158 | * vm_page_grab_fictitious: | |
2159 | * | |
2160 | * Remove a fictitious page from the free list. | |
2161 | * Returns VM_PAGE_NULL if there are no free pages. | |
2162 | */ | |
2163 | int c_vm_page_grab_fictitious = 0; | |
2164 | int c_vm_page_grab_fictitious_failed = 0; | |
2165 | int c_vm_page_release_fictitious = 0; | |
2166 | int c_vm_page_more_fictitious = 0; | |
2167 | ||
2168 | vm_page_t | |
2169 | vm_page_grab_fictitious_common( | |
2170 | ppnum_t phys_addr) | |
2171 | { | |
2172 | vm_page_t m; | |
2173 | ||
2174 | if ((m = (vm_page_t)zget(vm_page_zone))) { | |
2175 | ||
2176 | vm_page_init(m, phys_addr, FALSE); | |
2177 | m->fictitious = TRUE; | |
2178 | ||
2179 | c_vm_page_grab_fictitious++; | |
2180 | } else | |
2181 | c_vm_page_grab_fictitious_failed++; | |
2182 | ||
2183 | return m; | |
2184 | } | |
2185 | ||
2186 | vm_page_t | |
2187 | vm_page_grab_fictitious(void) | |
2188 | { | |
2189 | return vm_page_grab_fictitious_common(vm_page_fictitious_addr); | |
2190 | } | |
2191 | ||
2192 | vm_page_t | |
2193 | vm_page_grab_guard(void) | |
2194 | { | |
2195 | return vm_page_grab_fictitious_common(vm_page_guard_addr); | |
2196 | } | |
2197 | ||
2198 | ||
2199 | /* | |
2200 | * vm_page_release_fictitious: | |
2201 | * | |
2202 | * Release a fictitious page to the zone pool | |
2203 | */ | |
2204 | void | |
2205 | vm_page_release_fictitious( | |
2206 | vm_page_t m) | |
2207 | { | |
2208 | assert((m->vm_page_q_state == VM_PAGE_NOT_ON_Q) || (m->vm_page_q_state == VM_PAGE_IS_WIRED)); | |
2209 | assert(m->fictitious); | |
2210 | assert(VM_PAGE_GET_PHYS_PAGE(m) == vm_page_fictitious_addr || | |
2211 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr); | |
2212 | ||
2213 | c_vm_page_release_fictitious++; | |
2214 | ||
2215 | zfree(vm_page_zone, m); | |
2216 | } | |
2217 | ||
2218 | /* | |
2219 | * vm_page_more_fictitious: | |
2220 | * | |
2221 | * Add more fictitious pages to the zone. | |
2222 | * Allowed to block. This routine is way intimate | |
2223 | * with the zones code, for several reasons: | |
2224 | * 1. we need to carve some page structures out of physical | |
2225 | * memory before zones work, so they _cannot_ come from | |
2226 | * the zone_map. | |
2227 | * 2. the zone needs to be collectable in order to prevent | |
2228 | * growth without bound. These structures are used by | |
2229 | * the device pager (by the hundreds and thousands), as | |
2230 | * private pages for pageout, and as blocking pages for | |
2231 | * pagein. Temporary bursts in demand should not result in | |
2232 | * permanent allocation of a resource. | |
2233 | * 3. To smooth allocation humps, we allocate single pages | |
2234 | * with kernel_memory_allocate(), and cram them into the | |
2235 | * zone. | |
2236 | */ | |
2237 | ||
2238 | void vm_page_more_fictitious(void) | |
2239 | { | |
2240 | vm_offset_t addr; | |
2241 | kern_return_t retval; | |
2242 | ||
2243 | c_vm_page_more_fictitious++; | |
2244 | ||
2245 | /* | |
2246 | * Allocate a single page from the zone_map. Do not wait if no physical | |
2247 | * pages are immediately available, and do not zero the space. We need | |
2248 | * our own blocking lock here to prevent having multiple, | |
2249 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
2250 | * one (of our) threads should be potentially waiting on the map lock. | |
2251 | * If winner is not vm-privileged, then the page allocation will fail, | |
2252 | * and it will temporarily block here in the vm_page_wait(). | |
2253 | */ | |
2254 | lck_mtx_lock(&vm_page_alloc_lock); | |
2255 | /* | |
2256 | * If another thread allocated space, just bail out now. | |
2257 | */ | |
2258 | if (zone_free_count(vm_page_zone) > 5) { | |
2259 | /* | |
2260 | * The number "5" is a small number that is larger than the | |
2261 | * number of fictitious pages that any single caller will | |
2262 | * attempt to allocate. Otherwise, a thread will attempt to | |
2263 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
2264 | * release all of the resources and locks already acquired, | |
2265 | * and then call this routine. This routine finds the pages | |
2266 | * that the caller released, so fails to allocate new space. | |
2267 | * The process repeats infinitely. The largest known number | |
2268 | * of fictitious pages required in this manner is 2. 5 is | |
2269 | * simply a somewhat larger number. | |
2270 | */ | |
2271 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2272 | return; | |
2273 | } | |
2274 | ||
2275 | retval = kernel_memory_allocate(zone_map, | |
2276 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
2277 | KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_ZONE); | |
2278 | if (retval != KERN_SUCCESS) { | |
2279 | /* | |
2280 | * No page was available. Drop the | |
2281 | * lock to give another thread a chance at it, and | |
2282 | * wait for the pageout daemon to make progress. | |
2283 | */ | |
2284 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2285 | vm_page_wait(THREAD_UNINT); | |
2286 | return; | |
2287 | } | |
2288 | ||
2289 | zcram(vm_page_zone, addr, PAGE_SIZE); | |
2290 | ||
2291 | lck_mtx_unlock(&vm_page_alloc_lock); | |
2292 | } | |
2293 | ||
2294 | ||
2295 | /* | |
2296 | * vm_pool_low(): | |
2297 | * | |
2298 | * Return true if it is not likely that a non-vm_privileged thread | |
2299 | * can get memory without blocking. Advisory only, since the | |
2300 | * situation may change under us. | |
2301 | */ | |
2302 | int | |
2303 | vm_pool_low(void) | |
2304 | { | |
2305 | /* No locking, at worst we will fib. */ | |
2306 | return( vm_page_free_count <= vm_page_free_reserved ); | |
2307 | } | |
2308 | ||
2309 | ||
2310 | #if CONFIG_BACKGROUND_QUEUE | |
2311 | ||
2312 | void | |
2313 | vm_page_update_background_state(vm_page_t mem) | |
2314 | { | |
2315 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) | |
2316 | return; | |
2317 | ||
2318 | if (mem->vm_page_in_background == FALSE) | |
2319 | return; | |
2320 | ||
2321 | #if BACKGROUNDQ_BASED_ON_QOS | |
2322 | if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) | |
2323 | return; | |
2324 | #else | |
2325 | task_t my_task; | |
2326 | ||
2327 | my_task = current_task(); | |
2328 | ||
2329 | if (my_task) { | |
2330 | if (proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG)) | |
2331 | return; | |
2332 | } | |
2333 | #endif | |
2334 | vm_page_lockspin_queues(); | |
2335 | ||
2336 | mem->vm_page_in_background = FALSE; | |
2337 | vm_page_background_promoted_count++; | |
2338 | ||
2339 | vm_page_remove_from_backgroundq(mem); | |
2340 | ||
2341 | vm_page_unlock_queues(); | |
2342 | } | |
2343 | ||
2344 | ||
2345 | void | |
2346 | vm_page_assign_background_state(vm_page_t mem) | |
2347 | { | |
2348 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) | |
2349 | return; | |
2350 | ||
2351 | #if BACKGROUNDQ_BASED_ON_QOS | |
2352 | if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) | |
2353 | mem->vm_page_in_background = TRUE; | |
2354 | else | |
2355 | mem->vm_page_in_background = FALSE; | |
2356 | #else | |
2357 | task_t my_task; | |
2358 | ||
2359 | my_task = current_task(); | |
2360 | ||
2361 | if (my_task) | |
2362 | mem->vm_page_in_background = proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG); | |
2363 | #endif | |
2364 | } | |
2365 | ||
2366 | ||
2367 | void | |
2368 | vm_page_remove_from_backgroundq( | |
2369 | vm_page_t mem) | |
2370 | { | |
2371 | vm_object_t m_object; | |
2372 | ||
2373 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2374 | ||
2375 | if (mem->vm_page_on_backgroundq) { | |
2376 | vm_page_queue_remove(&vm_page_queue_background, mem, vm_page_t, vm_page_backgroundq); | |
2377 | ||
2378 | mem->vm_page_backgroundq.next = 0; | |
2379 | mem->vm_page_backgroundq.prev = 0; | |
2380 | mem->vm_page_on_backgroundq = FALSE; | |
2381 | ||
2382 | vm_page_background_count--; | |
2383 | ||
2384 | m_object = VM_PAGE_OBJECT(mem); | |
2385 | ||
2386 | if (m_object->internal) | |
2387 | vm_page_background_internal_count--; | |
2388 | else | |
2389 | vm_page_background_external_count--; | |
2390 | } else { | |
2391 | assert(VM_PAGE_UNPACK_PTR(mem->vm_page_backgroundq.next) == (uintptr_t)NULL && | |
2392 | VM_PAGE_UNPACK_PTR(mem->vm_page_backgroundq.prev) == (uintptr_t)NULL); | |
2393 | } | |
2394 | } | |
2395 | ||
2396 | ||
2397 | void | |
2398 | vm_page_add_to_backgroundq( | |
2399 | vm_page_t mem, | |
2400 | boolean_t first) | |
2401 | { | |
2402 | vm_object_t m_object; | |
2403 | ||
2404 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2405 | ||
2406 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) | |
2407 | return; | |
2408 | ||
2409 | if (mem->vm_page_on_backgroundq == FALSE) { | |
2410 | ||
2411 | m_object = VM_PAGE_OBJECT(mem); | |
2412 | ||
2413 | if (vm_page_background_exclude_external && !m_object->internal) | |
2414 | return; | |
2415 | ||
2416 | if (first == TRUE) | |
2417 | vm_page_queue_enter_first(&vm_page_queue_background, mem, vm_page_t, vm_page_backgroundq); | |
2418 | else | |
2419 | vm_page_queue_enter(&vm_page_queue_background, mem, vm_page_t, vm_page_backgroundq); | |
2420 | mem->vm_page_on_backgroundq = TRUE; | |
2421 | ||
2422 | vm_page_background_count++; | |
2423 | ||
2424 | if (m_object->internal) | |
2425 | vm_page_background_internal_count++; | |
2426 | else | |
2427 | vm_page_background_external_count++; | |
2428 | } | |
2429 | } | |
2430 | ||
2431 | #endif | |
2432 | ||
2433 | /* | |
2434 | * this is an interface to support bring-up of drivers | |
2435 | * on platforms with physical memory > 4G... | |
2436 | */ | |
2437 | int vm_himemory_mode = 2; | |
2438 | ||
2439 | ||
2440 | /* | |
2441 | * this interface exists to support hardware controllers | |
2442 | * incapable of generating DMAs with more than 32 bits | |
2443 | * of address on platforms with physical memory > 4G... | |
2444 | */ | |
2445 | unsigned int vm_lopages_allocated_q = 0; | |
2446 | unsigned int vm_lopages_allocated_cpm_success = 0; | |
2447 | unsigned int vm_lopages_allocated_cpm_failed = 0; | |
2448 | vm_page_queue_head_t vm_lopage_queue_free __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
2449 | ||
2450 | vm_page_t | |
2451 | vm_page_grablo(void) | |
2452 | { | |
2453 | vm_page_t mem; | |
2454 | ||
2455 | if (vm_lopage_needed == FALSE) | |
2456 | return (vm_page_grab()); | |
2457 | ||
2458 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2459 | ||
2460 | if ( !vm_page_queue_empty(&vm_lopage_queue_free)) { | |
2461 | vm_page_queue_remove_first(&vm_lopage_queue_free, | |
2462 | mem, | |
2463 | vm_page_t, | |
2464 | pageq); | |
2465 | assert(vm_lopage_free_count); | |
2466 | assert(mem->vm_page_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); | |
2467 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
2468 | ||
2469 | vm_lopage_free_count--; | |
2470 | vm_lopages_allocated_q++; | |
2471 | ||
2472 | if (vm_lopage_free_count < vm_lopage_lowater) | |
2473 | vm_lopage_refill = TRUE; | |
2474 | ||
2475 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2476 | ||
2477 | #if CONFIG_BACKGROUND_QUEUE | |
2478 | vm_page_assign_background_state(mem); | |
2479 | #endif | |
2480 | } else { | |
2481 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2482 | ||
2483 | if (cpm_allocate(PAGE_SIZE, &mem, atop(0xffffffff), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) { | |
2484 | ||
2485 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2486 | vm_lopages_allocated_cpm_failed++; | |
2487 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2488 | ||
2489 | return (VM_PAGE_NULL); | |
2490 | } | |
2491 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
2492 | ||
2493 | mem->busy = TRUE; | |
2494 | ||
2495 | vm_page_lockspin_queues(); | |
2496 | ||
2497 | mem->gobbled = FALSE; | |
2498 | vm_page_gobble_count--; | |
2499 | vm_page_wire_count--; | |
2500 | ||
2501 | vm_lopages_allocated_cpm_success++; | |
2502 | vm_page_unlock_queues(); | |
2503 | } | |
2504 | assert(mem->busy); | |
2505 | assert(!mem->pmapped); | |
2506 | assert(!mem->wpmapped); | |
2507 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2508 | ||
2509 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
2510 | ||
2511 | return (mem); | |
2512 | } | |
2513 | ||
2514 | ||
2515 | /* | |
2516 | * vm_page_grab: | |
2517 | * | |
2518 | * first try to grab a page from the per-cpu free list... | |
2519 | * this must be done while pre-emption is disabled... if | |
2520 | * a page is available, we're done... | |
2521 | * if no page is available, grab the vm_page_queue_free_lock | |
2522 | * and see if current number of free pages would allow us | |
2523 | * to grab at least 1... if not, return VM_PAGE_NULL as before... | |
2524 | * if there are pages available, disable preemption and | |
2525 | * recheck the state of the per-cpu free list... we could | |
2526 | * have been preempted and moved to a different cpu, or | |
2527 | * some other thread could have re-filled it... if still | |
2528 | * empty, figure out how many pages we can steal from the | |
2529 | * global free queue and move to the per-cpu queue... | |
2530 | * return 1 of these pages when done... only wakeup the | |
2531 | * pageout_scan thread if we moved pages from the global | |
2532 | * list... no need for the wakeup if we've satisfied the | |
2533 | * request from the per-cpu queue. | |
2534 | */ | |
2535 | ||
2536 | #if CONFIG_SECLUDED_MEMORY | |
2537 | vm_page_t vm_page_grab_secluded(void); | |
2538 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2539 | ||
2540 | vm_page_t | |
2541 | vm_page_grab(void) | |
2542 | { | |
2543 | return vm_page_grab_options(0); | |
2544 | } | |
2545 | ||
2546 | vm_page_t | |
2547 | vm_page_grab_options( | |
2548 | int grab_options) | |
2549 | { | |
2550 | vm_page_t mem; | |
2551 | ||
2552 | disable_preemption(); | |
2553 | ||
2554 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
2555 | return_page_from_cpu_list: | |
2556 | assert(mem->vm_page_q_state == VM_PAGE_ON_FREE_LOCAL_Q); | |
2557 | ||
2558 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
2559 | PROCESSOR_DATA(current_processor(), free_pages) = mem->snext; | |
2560 | ||
2561 | enable_preemption(); | |
2562 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
2563 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
2564 | ||
2565 | assert(mem->listq.next == 0 && mem->listq.prev == 0); | |
2566 | assert(mem->tabled == FALSE); | |
2567 | assert(mem->vm_page_object == 0); | |
2568 | assert(!mem->laundry); | |
2569 | assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2570 | assert(mem->busy); | |
2571 | assert(!mem->encrypted); | |
2572 | assert(!mem->pmapped); | |
2573 | assert(!mem->wpmapped); | |
2574 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2575 | ||
2576 | #if CONFIG_BACKGROUND_QUEUE | |
2577 | vm_page_assign_background_state(mem); | |
2578 | #endif | |
2579 | return mem; | |
2580 | } | |
2581 | enable_preemption(); | |
2582 | ||
2583 | ||
2584 | /* | |
2585 | * Optionally produce warnings if the wire or gobble | |
2586 | * counts exceed some threshold. | |
2587 | */ | |
2588 | #if VM_PAGE_WIRE_COUNT_WARNING | |
2589 | if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) { | |
2590 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
2591 | vm_page_wire_count); | |
2592 | } | |
2593 | #endif | |
2594 | #if VM_PAGE_GOBBLE_COUNT_WARNING | |
2595 | if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) { | |
2596 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
2597 | vm_page_gobble_count); | |
2598 | } | |
2599 | #endif | |
2600 | ||
2601 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2602 | ||
2603 | /* | |
2604 | * Only let privileged threads (involved in pageout) | |
2605 | * dip into the reserved pool. | |
2606 | */ | |
2607 | if ((vm_page_free_count < vm_page_free_reserved) && | |
2608 | !(current_thread()->options & TH_OPT_VMPRIV)) { | |
2609 | /* no page for us in the free queue... */ | |
2610 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2611 | mem = VM_PAGE_NULL; | |
2612 | ||
2613 | #if CONFIG_SECLUDED_MEMORY | |
2614 | /* ... but can we try and grab from the secluded queue? */ | |
2615 | if (vm_page_secluded_count > 0 && | |
2616 | ((grab_options & VM_PAGE_GRAB_SECLUDED) || | |
2617 | task_can_use_secluded_mem(current_task()))) { | |
2618 | mem = vm_page_grab_secluded(); | |
2619 | if (grab_options & VM_PAGE_GRAB_SECLUDED) { | |
2620 | vm_page_secluded.grab_for_iokit++; | |
2621 | if (mem) { | |
2622 | vm_page_secluded.grab_for_iokit_success++; | |
2623 | } | |
2624 | } | |
2625 | if (mem) { | |
2626 | VM_CHECK_MEMORYSTATUS; | |
2627 | return mem; | |
2628 | } | |
2629 | } | |
2630 | #else /* CONFIG_SECLUDED_MEMORY */ | |
2631 | (void) grab_options; | |
2632 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2633 | } | |
2634 | else { | |
2635 | vm_page_t head; | |
2636 | vm_page_t tail; | |
2637 | unsigned int pages_to_steal; | |
2638 | unsigned int color; | |
2639 | ||
2640 | while ( vm_page_free_count == 0 ) { | |
2641 | ||
2642 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2643 | /* | |
2644 | * must be a privileged thread to be | |
2645 | * in this state since a non-privileged | |
2646 | * thread would have bailed if we were | |
2647 | * under the vm_page_free_reserved mark | |
2648 | */ | |
2649 | VM_PAGE_WAIT(); | |
2650 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2651 | } | |
2652 | ||
2653 | disable_preemption(); | |
2654 | ||
2655 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
2656 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2657 | ||
2658 | /* | |
2659 | * we got preempted and moved to another processor | |
2660 | * or we got preempted and someone else ran and filled the cache | |
2661 | */ | |
2662 | goto return_page_from_cpu_list; | |
2663 | } | |
2664 | if (vm_page_free_count <= vm_page_free_reserved) | |
2665 | pages_to_steal = 1; | |
2666 | else { | |
2667 | if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) | |
2668 | pages_to_steal = vm_free_magazine_refill_limit; | |
2669 | else | |
2670 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); | |
2671 | } | |
2672 | color = PROCESSOR_DATA(current_processor(), start_color); | |
2673 | head = tail = NULL; | |
2674 | ||
2675 | vm_page_free_count -= pages_to_steal; | |
2676 | ||
2677 | while (pages_to_steal--) { | |
2678 | ||
2679 | while (vm_page_queue_empty(&vm_page_queue_free[color].qhead)) | |
2680 | color = (color + 1) & vm_color_mask; | |
2681 | ||
2682 | vm_page_queue_remove_first(&vm_page_queue_free[color].qhead, | |
2683 | mem, | |
2684 | vm_page_t, | |
2685 | pageq); | |
2686 | assert(mem->vm_page_q_state == VM_PAGE_ON_FREE_Q); | |
2687 | ||
2688 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
2689 | ||
2690 | color = (color + 1) & vm_color_mask; | |
2691 | ||
2692 | if (head == NULL) | |
2693 | head = mem; | |
2694 | else | |
2695 | tail->snext = mem; | |
2696 | tail = mem; | |
2697 | ||
2698 | assert(mem->listq.next == 0 && mem->listq.prev == 0); | |
2699 | assert(mem->tabled == FALSE); | |
2700 | assert(mem->vm_page_object == 0); | |
2701 | assert(!mem->laundry); | |
2702 | ||
2703 | mem->vm_page_q_state = VM_PAGE_ON_FREE_LOCAL_Q; | |
2704 | ||
2705 | assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2706 | assert(mem->busy); | |
2707 | assert(!mem->encrypted); | |
2708 | assert(!mem->pmapped); | |
2709 | assert(!mem->wpmapped); | |
2710 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2711 | } | |
2712 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2713 | ||
2714 | PROCESSOR_DATA(current_processor(), free_pages) = head->snext; | |
2715 | PROCESSOR_DATA(current_processor(), start_color) = color; | |
2716 | ||
2717 | /* | |
2718 | * satisfy this request | |
2719 | */ | |
2720 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
2721 | mem = head; | |
2722 | assert(mem->vm_page_q_state == VM_PAGE_ON_FREE_LOCAL_Q); | |
2723 | ||
2724 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
2725 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
2726 | ||
2727 | enable_preemption(); | |
2728 | } | |
2729 | /* | |
2730 | * Decide if we should poke the pageout daemon. | |
2731 | * We do this if the free count is less than the low | |
2732 | * water mark, or if the free count is less than the high | |
2733 | * water mark (but above the low water mark) and the inactive | |
2734 | * count is less than its target. | |
2735 | * | |
2736 | * We don't have the counts locked ... if they change a little, | |
2737 | * it doesn't really matter. | |
2738 | */ | |
2739 | if ((vm_page_free_count < vm_page_free_min) || | |
2740 | ((vm_page_free_count < vm_page_free_target) && | |
2741 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
2742 | thread_wakeup((event_t) &vm_page_free_wanted); | |
2743 | #if CONFIG_BACKGROUND_QUEUE | |
2744 | if (vm_page_background_mode == VM_PAGE_BG_LEVEL_3 && (vm_page_background_count > vm_page_background_limit)) | |
2745 | thread_wakeup((event_t) &vm_page_free_wanted); | |
2746 | #endif | |
2747 | ||
2748 | VM_CHECK_MEMORYSTATUS; | |
2749 | ||
2750 | if (mem) { | |
2751 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ | |
2752 | ||
2753 | #if CONFIG_BACKGROUND_QUEUE | |
2754 | vm_page_assign_background_state(mem); | |
2755 | #endif | |
2756 | } | |
2757 | return mem; | |
2758 | } | |
2759 | ||
2760 | #if CONFIG_SECLUDED_MEMORY | |
2761 | vm_page_t | |
2762 | vm_page_grab_secluded(void) | |
2763 | { | |
2764 | vm_page_t mem; | |
2765 | vm_object_t object; | |
2766 | int refmod_state; | |
2767 | ||
2768 | if (vm_page_secluded_count == 0) { | |
2769 | /* no secluded pages to grab... */ | |
2770 | return VM_PAGE_NULL; | |
2771 | } | |
2772 | ||
2773 | /* secluded queue is protected by the VM page queue lock */ | |
2774 | vm_page_lock_queues(); | |
2775 | ||
2776 | if (vm_page_secluded_count == 0) { | |
2777 | /* no secluded pages to grab... */ | |
2778 | vm_page_unlock_queues(); | |
2779 | return VM_PAGE_NULL; | |
2780 | } | |
2781 | ||
2782 | #if 00 | |
2783 | /* can we grab from the secluded queue? */ | |
2784 | if (vm_page_secluded_count > vm_page_secluded_target || | |
2785 | (vm_page_secluded_count > 0 && | |
2786 | task_can_use_secluded_mem(current_task()))) { | |
2787 | /* OK */ | |
2788 | } else { | |
2789 | /* can't grab from secluded queue... */ | |
2790 | vm_page_unlock_queues(); | |
2791 | return VM_PAGE_NULL; | |
2792 | } | |
2793 | #endif | |
2794 | ||
2795 | /* we can grab a page from secluded queue! */ | |
2796 | assert((vm_page_secluded_count_free + | |
2797 | vm_page_secluded_count_inuse) == | |
2798 | vm_page_secluded_count); | |
2799 | if (current_task()->task_can_use_secluded_mem) { | |
2800 | assert(num_tasks_can_use_secluded_mem > 0); | |
2801 | } | |
2802 | assert(!vm_page_queue_empty(&vm_page_queue_secluded)); | |
2803 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2804 | mem = vm_page_queue_first(&vm_page_queue_secluded); | |
2805 | assert(mem->vm_page_q_state == VM_PAGE_ON_SECLUDED_Q); | |
2806 | vm_page_queues_remove(mem, TRUE); | |
2807 | ||
2808 | object = VM_PAGE_OBJECT(mem); | |
2809 | ||
2810 | assert(!mem->fictitious); | |
2811 | assert(!VM_PAGE_WIRED(mem)); | |
2812 | if (object == VM_OBJECT_NULL) { | |
2813 | /* free for grab! */ | |
2814 | vm_page_unlock_queues(); | |
2815 | vm_page_secluded.grab_success_free++; | |
2816 | ||
2817 | assert(mem->busy); | |
2818 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
2819 | assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); | |
2820 | assert(mem->pageq.next == 0); | |
2821 | assert(mem->pageq.prev == 0); | |
2822 | assert(mem->listq.next == 0); | |
2823 | assert(mem->listq.prev == 0); | |
2824 | #if CONFIG_BACKGROUND_QUEUE | |
2825 | assert(mem->vm_page_on_backgroundq == 0); | |
2826 | assert(mem->vm_page_backgroundq.next == 0); | |
2827 | assert(mem->vm_page_backgroundq.prev == 0); | |
2828 | #endif /* CONFIG_BACKGROUND_QUEUE */ | |
2829 | return mem; | |
2830 | } | |
2831 | ||
2832 | assert(!object->internal); | |
2833 | // vm_page_pageable_external_count--; | |
2834 | ||
2835 | if (!vm_object_lock_try(object)) { | |
2836 | // printf("SECLUDED: page %p: object %p locked\n", mem, object); | |
2837 | vm_page_secluded.grab_failure_locked++; | |
2838 | reactivate_secluded_page: | |
2839 | vm_page_activate(mem); | |
2840 | vm_page_unlock_queues(); | |
2841 | return VM_PAGE_NULL; | |
2842 | } | |
2843 | if (mem->busy || | |
2844 | mem->cleaning || | |
2845 | mem->laundry) { | |
2846 | /* can't steal page in this state... */ | |
2847 | vm_object_unlock(object); | |
2848 | vm_page_secluded.grab_failure_state++; | |
2849 | goto reactivate_secluded_page; | |
2850 | } | |
2851 | ||
2852 | mem->busy = TRUE; | |
2853 | refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem)); | |
2854 | if (refmod_state & VM_MEM_REFERENCED) { | |
2855 | mem->reference = TRUE; | |
2856 | } | |
2857 | if (refmod_state & VM_MEM_MODIFIED) { | |
2858 | SET_PAGE_DIRTY(mem, FALSE); | |
2859 | } | |
2860 | if (mem->dirty || mem->precious) { | |
2861 | /* can't grab a dirty page; re-activate */ | |
2862 | // printf("SECLUDED: dirty page %p\n", mem); | |
2863 | PAGE_WAKEUP_DONE(mem); | |
2864 | vm_page_secluded.grab_failure_dirty++; | |
2865 | vm_object_unlock(object); | |
2866 | goto reactivate_secluded_page; | |
2867 | } | |
2868 | if (mem->reference) { | |
2869 | /* it's been used but we do need to grab a page... */ | |
2870 | } | |
2871 | ||
2872 | vm_page_unlock_queues(); | |
2873 | ||
2874 | /* finish what vm_page_free() would have done... */ | |
2875 | vm_page_free_prepare_object(mem, TRUE); | |
2876 | vm_object_unlock(object); | |
2877 | object = VM_OBJECT_NULL; | |
2878 | if (vm_page_free_verify) { | |
2879 | assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2880 | } | |
2881 | pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); | |
2882 | vm_page_secluded.grab_success_other++; | |
2883 | ||
2884 | assert(mem->busy); | |
2885 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
2886 | assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); | |
2887 | assert(mem->pageq.next == 0); | |
2888 | assert(mem->pageq.prev == 0); | |
2889 | assert(mem->listq.next == 0); | |
2890 | assert(mem->listq.prev == 0); | |
2891 | #if CONFIG_BACKGROUND_QUEUE | |
2892 | assert(mem->vm_page_on_backgroundq == 0); | |
2893 | assert(mem->vm_page_backgroundq.next == 0); | |
2894 | assert(mem->vm_page_backgroundq.prev == 0); | |
2895 | #endif /* CONFIG_BACKGROUND_QUEUE */ | |
2896 | ||
2897 | return mem; | |
2898 | } | |
2899 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2900 | ||
2901 | /* | |
2902 | * vm_page_release: | |
2903 | * | |
2904 | * Return a page to the free list. | |
2905 | */ | |
2906 | ||
2907 | void | |
2908 | vm_page_release( | |
2909 | vm_page_t mem, | |
2910 | boolean_t page_queues_locked) | |
2911 | { | |
2912 | unsigned int color; | |
2913 | int need_wakeup = 0; | |
2914 | int need_priv_wakeup = 0; | |
2915 | #if CONFIG_SECLUDED_MEMORY | |
2916 | int need_secluded_wakeup = 0; | |
2917 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2918 | ||
2919 | if (page_queues_locked) { | |
2920 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2921 | } else { | |
2922 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
2923 | } | |
2924 | ||
2925 | assert(!mem->private && !mem->fictitious); | |
2926 | if (vm_page_free_verify) { | |
2927 | assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(mem))); | |
2928 | } | |
2929 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ | |
2930 | ||
2931 | pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); | |
2932 | ||
2933 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2934 | ||
2935 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
2936 | assert(mem->busy); | |
2937 | assert(!mem->laundry); | |
2938 | assert(mem->vm_page_object == 0); | |
2939 | assert(mem->pageq.next == 0 && mem->pageq.prev == 0); | |
2940 | assert(mem->listq.next == 0 && mem->listq.prev == 0); | |
2941 | #if CONFIG_BACKGROUND_QUEUE | |
2942 | assert(mem->vm_page_backgroundq.next == 0 && | |
2943 | mem->vm_page_backgroundq.prev == 0 && | |
2944 | mem->vm_page_on_backgroundq == FALSE); | |
2945 | #endif | |
2946 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
2947 | vm_lopage_free_count < vm_lopage_free_limit && | |
2948 | VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { | |
2949 | /* | |
2950 | * this exists to support hardware controllers | |
2951 | * incapable of generating DMAs with more than 32 bits | |
2952 | * of address on platforms with physical memory > 4G... | |
2953 | */ | |
2954 | vm_page_queue_enter_first(&vm_lopage_queue_free, | |
2955 | mem, | |
2956 | vm_page_t, | |
2957 | pageq); | |
2958 | vm_lopage_free_count++; | |
2959 | ||
2960 | if (vm_lopage_free_count >= vm_lopage_free_limit) | |
2961 | vm_lopage_refill = FALSE; | |
2962 | ||
2963 | mem->vm_page_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; | |
2964 | mem->lopage = TRUE; | |
2965 | #if CONFIG_SECLUDED_MEMORY | |
2966 | } else if (vm_page_free_count > vm_page_free_reserved && | |
2967 | vm_page_secluded_count < vm_page_secluded_target && | |
2968 | num_tasks_can_use_secluded_mem == 0) { | |
2969 | /* | |
2970 | * XXX FBDP TODO: also avoid refilling secluded queue | |
2971 | * when some IOKit objects are already grabbing from it... | |
2972 | */ | |
2973 | if (!page_queues_locked) { | |
2974 | if (!vm_page_trylock_queues()) { | |
2975 | /* take locks in right order */ | |
2976 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2977 | vm_page_lock_queues(); | |
2978 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
2979 | } | |
2980 | } | |
2981 | mem->lopage = FALSE; | |
2982 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
2983 | vm_page_queue_enter_first(&vm_page_queue_secluded, | |
2984 | mem, | |
2985 | vm_page_t, | |
2986 | pageq); | |
2987 | mem->vm_page_q_state = VM_PAGE_ON_SECLUDED_Q; | |
2988 | vm_page_secluded_count++; | |
2989 | vm_page_secluded_count_free++; | |
2990 | if (!page_queues_locked) { | |
2991 | vm_page_unlock_queues(); | |
2992 | } | |
2993 | LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_OWNED); | |
2994 | if (vm_page_free_wanted_secluded > 0) { | |
2995 | vm_page_free_wanted_secluded--; | |
2996 | need_secluded_wakeup = 1; | |
2997 | } | |
2998 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2999 | } else { | |
3000 | mem->lopage = FALSE; | |
3001 | mem->vm_page_q_state = VM_PAGE_ON_FREE_Q; | |
3002 | ||
3003 | color = VM_PAGE_GET_PHYS_PAGE(mem) & vm_color_mask; | |
3004 | vm_page_queue_enter_first(&vm_page_queue_free[color].qhead, | |
3005 | mem, | |
3006 | vm_page_t, | |
3007 | pageq); | |
3008 | vm_page_free_count++; | |
3009 | /* | |
3010 | * Check if we should wake up someone waiting for page. | |
3011 | * But don't bother waking them unless they can allocate. | |
3012 | * | |
3013 | * We wakeup only one thread, to prevent starvation. | |
3014 | * Because the scheduling system handles wait queues FIFO, | |
3015 | * if we wakeup all waiting threads, one greedy thread | |
3016 | * can starve multiple niceguy threads. When the threads | |
3017 | * all wakeup, the greedy threads runs first, grabs the page, | |
3018 | * and waits for another page. It will be the first to run | |
3019 | * when the next page is freed. | |
3020 | * | |
3021 | * However, there is a slight danger here. | |
3022 | * The thread we wake might not use the free page. | |
3023 | * Then the other threads could wait indefinitely | |
3024 | * while the page goes unused. To forestall this, | |
3025 | * the pageout daemon will keep making free pages | |
3026 | * as long as vm_page_free_wanted is non-zero. | |
3027 | */ | |
3028 | ||
3029 | assert(vm_page_free_count > 0); | |
3030 | if (vm_page_free_wanted_privileged > 0) { | |
3031 | vm_page_free_wanted_privileged--; | |
3032 | need_priv_wakeup = 1; | |
3033 | #if CONFIG_SECLUDED_MEMORY | |
3034 | } else if (vm_page_free_wanted_secluded > 0 && | |
3035 | vm_page_free_count > vm_page_free_reserved) { | |
3036 | vm_page_free_wanted_secluded--; | |
3037 | need_secluded_wakeup = 1; | |
3038 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3039 | } else if (vm_page_free_wanted > 0 && | |
3040 | vm_page_free_count > vm_page_free_reserved) { | |
3041 | vm_page_free_wanted--; | |
3042 | need_wakeup = 1; | |
3043 | } | |
3044 | } | |
3045 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3046 | ||
3047 | if (need_priv_wakeup) | |
3048 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
3049 | #if CONFIG_SECLUDED_MEMORY | |
3050 | else if (need_secluded_wakeup) | |
3051 | thread_wakeup_one((event_t) &vm_page_free_wanted_secluded); | |
3052 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3053 | else if (need_wakeup) | |
3054 | thread_wakeup_one((event_t) &vm_page_free_count); | |
3055 | ||
3056 | VM_CHECK_MEMORYSTATUS; | |
3057 | } | |
3058 | ||
3059 | /* | |
3060 | * This version of vm_page_release() is used only at startup | |
3061 | * when we are single-threaded and pages are being released | |
3062 | * for the first time. Hence, no locking or unnecessary checks are made. | |
3063 | * Note: VM_CHECK_MEMORYSTATUS invoked by the caller. | |
3064 | */ | |
3065 | void | |
3066 | vm_page_release_startup( | |
3067 | vm_page_t mem) | |
3068 | { | |
3069 | vm_page_queue_t queue_free; | |
3070 | ||
3071 | if (vm_lopage_free_count < vm_lopage_free_limit && | |
3072 | VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { | |
3073 | mem->lopage = TRUE; | |
3074 | mem->vm_page_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; | |
3075 | vm_lopage_free_count++; | |
3076 | queue_free = &vm_lopage_queue_free; | |
3077 | #if CONFIG_SECLUDED_MEMORY | |
3078 | } else if (vm_page_secluded_count < vm_page_secluded_target) { | |
3079 | mem->lopage = FALSE; | |
3080 | mem->vm_page_q_state = VM_PAGE_ON_SECLUDED_Q; | |
3081 | vm_page_secluded_count++; | |
3082 | vm_page_secluded_count_free++; | |
3083 | queue_free = &vm_page_queue_secluded; | |
3084 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3085 | } else { | |
3086 | mem->lopage = FALSE; | |
3087 | mem->vm_page_q_state = VM_PAGE_ON_FREE_Q; | |
3088 | vm_page_free_count++; | |
3089 | queue_free = &vm_page_queue_free[VM_PAGE_GET_PHYS_PAGE(mem) & vm_color_mask].qhead; | |
3090 | } | |
3091 | vm_page_queue_enter_first(queue_free, mem, vm_page_t, pageq); | |
3092 | } | |
3093 | ||
3094 | /* | |
3095 | * vm_page_wait: | |
3096 | * | |
3097 | * Wait for a page to become available. | |
3098 | * If there are plenty of free pages, then we don't sleep. | |
3099 | * | |
3100 | * Returns: | |
3101 | * TRUE: There may be another page, try again | |
3102 | * FALSE: We were interrupted out of our wait, don't try again | |
3103 | */ | |
3104 | ||
3105 | boolean_t | |
3106 | vm_page_wait( | |
3107 | int interruptible ) | |
3108 | { | |
3109 | /* | |
3110 | * We can't use vm_page_free_reserved to make this | |
3111 | * determination. Consider: some thread might | |
3112 | * need to allocate two pages. The first allocation | |
3113 | * succeeds, the second fails. After the first page is freed, | |
3114 | * a call to vm_page_wait must really block. | |
3115 | */ | |
3116 | kern_return_t wait_result; | |
3117 | int need_wakeup = 0; | |
3118 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; | |
3119 | ||
3120 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
3121 | ||
3122 | if (is_privileged && vm_page_free_count) { | |
3123 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3124 | return TRUE; | |
3125 | } | |
3126 | ||
3127 | if (vm_page_free_count >= vm_page_free_target) { | |
3128 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3129 | return TRUE; | |
3130 | } | |
3131 | ||
3132 | if (is_privileged) { | |
3133 | if (vm_page_free_wanted_privileged++ == 0) | |
3134 | need_wakeup = 1; | |
3135 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); | |
3136 | #if CONFIG_SECLUDED_MEMORY | |
3137 | } else if (secluded_for_apps && | |
3138 | task_can_use_secluded_mem(current_task())) { | |
3139 | #if 00 | |
3140 | /* XXX FBDP: need pageq lock for this... */ | |
3141 | /* XXX FBDP: might wait even if pages available, */ | |
3142 | /* XXX FBDP: hopefully not for too long... */ | |
3143 | if (vm_page_secluded_count > 0) { | |
3144 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3145 | return TRUE; | |
3146 | } | |
3147 | #endif | |
3148 | if (vm_page_free_wanted_secluded++ == 0) { | |
3149 | need_wakeup = 1; | |
3150 | } | |
3151 | wait_result = assert_wait( | |
3152 | (event_t)&vm_page_free_wanted_secluded, | |
3153 | interruptible); | |
3154 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3155 | } else { | |
3156 | if (vm_page_free_wanted++ == 0) | |
3157 | need_wakeup = 1; | |
3158 | wait_result = assert_wait((event_t)&vm_page_free_count, | |
3159 | interruptible); | |
3160 | } | |
3161 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3162 | counter(c_vm_page_wait_block++); | |
3163 | ||
3164 | if (need_wakeup) | |
3165 | thread_wakeup((event_t)&vm_page_free_wanted); | |
3166 | ||
3167 | if (wait_result == THREAD_WAITING) { | |
3168 | VM_DEBUG_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, | |
3169 | vm_page_free_wanted_privileged, | |
3170 | vm_page_free_wanted, | |
3171 | #if CONFIG_SECLUDED_MEMORY | |
3172 | vm_page_free_wanted_secluded, | |
3173 | #else /* CONFIG_SECLUDED_MEMORY */ | |
3174 | 0, | |
3175 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3176 | 0); | |
3177 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
3178 | VM_DEBUG_EVENT(vm_page_wait_block, | |
3179 | VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0); | |
3180 | } | |
3181 | ||
3182 | return (wait_result == THREAD_AWAKENED); | |
3183 | } | |
3184 | ||
3185 | /* | |
3186 | * vm_page_alloc: | |
3187 | * | |
3188 | * Allocate and return a memory cell associated | |
3189 | * with this VM object/offset pair. | |
3190 | * | |
3191 | * Object must be locked. | |
3192 | */ | |
3193 | ||
3194 | vm_page_t | |
3195 | vm_page_alloc( | |
3196 | vm_object_t object, | |
3197 | vm_object_offset_t offset) | |
3198 | { | |
3199 | vm_page_t mem; | |
3200 | int grab_options; | |
3201 | ||
3202 | vm_object_lock_assert_exclusive(object); | |
3203 | grab_options = 0; | |
3204 | #if CONFIG_SECLUDED_MEMORY | |
3205 | if (object->can_grab_secluded) { | |
3206 | grab_options |= VM_PAGE_GRAB_SECLUDED; | |
3207 | } | |
3208 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3209 | mem = vm_page_grab_options(grab_options); | |
3210 | if (mem == VM_PAGE_NULL) | |
3211 | return VM_PAGE_NULL; | |
3212 | ||
3213 | vm_page_insert(mem, object, offset); | |
3214 | ||
3215 | return(mem); | |
3216 | } | |
3217 | ||
3218 | /* | |
3219 | * vm_page_alloc_guard: | |
3220 | * | |
3221 | * Allocate a fictitious page which will be used | |
3222 | * as a guard page. The page will be inserted into | |
3223 | * the object and returned to the caller. | |
3224 | */ | |
3225 | ||
3226 | vm_page_t | |
3227 | vm_page_alloc_guard( | |
3228 | vm_object_t object, | |
3229 | vm_object_offset_t offset) | |
3230 | { | |
3231 | vm_page_t mem; | |
3232 | ||
3233 | vm_object_lock_assert_exclusive(object); | |
3234 | mem = vm_page_grab_guard(); | |
3235 | if (mem == VM_PAGE_NULL) | |
3236 | return VM_PAGE_NULL; | |
3237 | ||
3238 | vm_page_insert(mem, object, offset); | |
3239 | ||
3240 | return(mem); | |
3241 | } | |
3242 | ||
3243 | ||
3244 | counter(unsigned int c_laundry_pages_freed = 0;) | |
3245 | ||
3246 | /* | |
3247 | * vm_page_free_prepare: | |
3248 | * | |
3249 | * Removes page from any queue it may be on | |
3250 | * and disassociates it from its VM object. | |
3251 | * | |
3252 | * Object and page queues must be locked prior to entry. | |
3253 | */ | |
3254 | static void | |
3255 | vm_page_free_prepare( | |
3256 | vm_page_t mem) | |
3257 | { | |
3258 | vm_page_free_prepare_queues(mem); | |
3259 | vm_page_free_prepare_object(mem, TRUE); | |
3260 | } | |
3261 | ||
3262 | ||
3263 | void | |
3264 | vm_page_free_prepare_queues( | |
3265 | vm_page_t mem) | |
3266 | { | |
3267 | vm_object_t m_object; | |
3268 | ||
3269 | VM_PAGE_CHECK(mem); | |
3270 | ||
3271 | assert(mem->vm_page_q_state != VM_PAGE_ON_FREE_Q); | |
3272 | assert(!mem->cleaning); | |
3273 | m_object = VM_PAGE_OBJECT(mem); | |
3274 | ||
3275 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3276 | if (m_object) { | |
3277 | vm_object_lock_assert_exclusive(m_object); | |
3278 | } | |
3279 | if (mem->laundry) { | |
3280 | /* | |
3281 | * We may have to free a page while it's being laundered | |
3282 | * if we lost its pager (due to a forced unmount, for example). | |
3283 | * We need to call vm_pageout_steal_laundry() before removing | |
3284 | * the page from its VM object, so that we can remove it | |
3285 | * from its pageout queue and adjust the laundry accounting | |
3286 | */ | |
3287 | vm_pageout_steal_laundry(mem, TRUE); | |
3288 | counter(++c_laundry_pages_freed); | |
3289 | } | |
3290 | ||
3291 | vm_page_queues_remove(mem, TRUE); | |
3292 | ||
3293 | if (VM_PAGE_WIRED(mem)) { | |
3294 | assert(mem->wire_count > 0); | |
3295 | ||
3296 | if (m_object) { | |
3297 | assert(m_object->wired_page_count > 0); | |
3298 | m_object->wired_page_count--; | |
3299 | if (!m_object->wired_page_count) { | |
3300 | VM_OBJECT_UNWIRED(m_object); | |
3301 | } | |
3302 | ||
3303 | assert(m_object->resident_page_count >= | |
3304 | m_object->wired_page_count); | |
3305 | ||
3306 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { | |
3307 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
3308 | assert(vm_page_purgeable_wired_count > 0); | |
3309 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
3310 | } | |
3311 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || | |
3312 | m_object->purgable == VM_PURGABLE_EMPTY) && | |
3313 | m_object->vo_purgeable_owner != TASK_NULL) { | |
3314 | task_t owner; | |
3315 | ||
3316 | owner = m_object->vo_purgeable_owner; | |
3317 | /* | |
3318 | * While wired, this page was accounted | |
3319 | * as "non-volatile" but it should now | |
3320 | * be accounted as "volatile". | |
3321 | */ | |
3322 | /* one less "non-volatile"... */ | |
3323 | ledger_debit(owner->ledger, | |
3324 | task_ledgers.purgeable_nonvolatile, | |
3325 | PAGE_SIZE); | |
3326 | /* ... and "phys_footprint" */ | |
3327 | ledger_debit(owner->ledger, | |
3328 | task_ledgers.phys_footprint, | |
3329 | PAGE_SIZE); | |
3330 | /* one more "volatile" */ | |
3331 | ledger_credit(owner->ledger, | |
3332 | task_ledgers.purgeable_volatile, | |
3333 | PAGE_SIZE); | |
3334 | } | |
3335 | } | |
3336 | if (!mem->private && !mem->fictitious) | |
3337 | vm_page_wire_count--; | |
3338 | ||
3339 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
3340 | mem->wire_count = 0; | |
3341 | assert(!mem->gobbled); | |
3342 | } else if (mem->gobbled) { | |
3343 | if (!mem->private && !mem->fictitious) | |
3344 | vm_page_wire_count--; | |
3345 | vm_page_gobble_count--; | |
3346 | } | |
3347 | } | |
3348 | ||
3349 | ||
3350 | void | |
3351 | vm_page_free_prepare_object( | |
3352 | vm_page_t mem, | |
3353 | boolean_t remove_from_hash) | |
3354 | { | |
3355 | if (mem->tabled) | |
3356 | vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ | |
3357 | ||
3358 | PAGE_WAKEUP(mem); /* clears wanted */ | |
3359 | ||
3360 | if (mem->private) { | |
3361 | mem->private = FALSE; | |
3362 | mem->fictitious = TRUE; | |
3363 | VM_PAGE_SET_PHYS_PAGE(mem, vm_page_fictitious_addr); | |
3364 | } | |
3365 | if ( !mem->fictitious) { | |
3366 | assert(mem->pageq.next == 0); | |
3367 | assert(mem->pageq.prev == 0); | |
3368 | assert(mem->listq.next == 0); | |
3369 | assert(mem->listq.prev == 0); | |
3370 | #if CONFIG_BACKGROUND_QUEUE | |
3371 | assert(mem->vm_page_backgroundq.next == 0); | |
3372 | assert(mem->vm_page_backgroundq.prev == 0); | |
3373 | #endif /* CONFIG_BACKGROUND_QUEUE */ | |
3374 | assert(mem->next_m == 0); | |
3375 | vm_page_init(mem, VM_PAGE_GET_PHYS_PAGE(mem), mem->lopage); | |
3376 | } | |
3377 | } | |
3378 | ||
3379 | ||
3380 | /* | |
3381 | * vm_page_free: | |
3382 | * | |
3383 | * Returns the given page to the free list, | |
3384 | * disassociating it with any VM object. | |
3385 | * | |
3386 | * Object and page queues must be locked prior to entry. | |
3387 | */ | |
3388 | void | |
3389 | vm_page_free( | |
3390 | vm_page_t mem) | |
3391 | { | |
3392 | vm_page_free_prepare(mem); | |
3393 | ||
3394 | if (mem->fictitious) { | |
3395 | vm_page_release_fictitious(mem); | |
3396 | } else { | |
3397 | vm_page_release(mem, | |
3398 | TRUE); /* page queues are locked */ | |
3399 | } | |
3400 | } | |
3401 | ||
3402 | ||
3403 | void | |
3404 | vm_page_free_unlocked( | |
3405 | vm_page_t mem, | |
3406 | boolean_t remove_from_hash) | |
3407 | { | |
3408 | vm_page_lockspin_queues(); | |
3409 | vm_page_free_prepare_queues(mem); | |
3410 | vm_page_unlock_queues(); | |
3411 | ||
3412 | vm_page_free_prepare_object(mem, remove_from_hash); | |
3413 | ||
3414 | if (mem->fictitious) { | |
3415 | vm_page_release_fictitious(mem); | |
3416 | } else { | |
3417 | vm_page_release(mem, FALSE); /* page queues are not locked */ | |
3418 | } | |
3419 | } | |
3420 | ||
3421 | ||
3422 | /* | |
3423 | * Free a list of pages. The list can be up to several hundred pages, | |
3424 | * as blocked up by vm_pageout_scan(). | |
3425 | * The big win is not having to take the free list lock once | |
3426 | * per page. | |
3427 | * | |
3428 | * The VM page queues lock (vm_page_queue_lock) should NOT be held. | |
3429 | * The VM page free queues lock (vm_page_queue_free_lock) should NOT be held. | |
3430 | */ | |
3431 | void | |
3432 | vm_page_free_list( | |
3433 | vm_page_t freeq, | |
3434 | boolean_t prepare_object) | |
3435 | { | |
3436 | vm_page_t mem; | |
3437 | vm_page_t nxt; | |
3438 | vm_page_t local_freeq; | |
3439 | int pg_count; | |
3440 | ||
3441 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); | |
3442 | LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_NOTOWNED); | |
3443 | ||
3444 | while (freeq) { | |
3445 | ||
3446 | pg_count = 0; | |
3447 | local_freeq = VM_PAGE_NULL; | |
3448 | mem = freeq; | |
3449 | ||
3450 | /* | |
3451 | * break up the processing into smaller chunks so | |
3452 | * that we can 'pipeline' the pages onto the | |
3453 | * free list w/o introducing too much | |
3454 | * contention on the global free queue lock | |
3455 | */ | |
3456 | while (mem && pg_count < 64) { | |
3457 | ||
3458 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
3459 | #if CONFIG_BACKGROUND_QUEUE | |
3460 | assert(mem->vm_page_backgroundq.next == 0 && | |
3461 | mem->vm_page_backgroundq.prev == 0 && | |
3462 | mem->vm_page_on_backgroundq == FALSE); | |
3463 | #endif | |
3464 | nxt = mem->snext; | |
3465 | mem->snext = NULL; | |
3466 | assert(mem->pageq.prev == 0); | |
3467 | ||
3468 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { | |
3469 | assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(mem))); | |
3470 | } | |
3471 | if (prepare_object == TRUE) | |
3472 | vm_page_free_prepare_object(mem, TRUE); | |
3473 | ||
3474 | if (!mem->fictitious) { | |
3475 | assert(mem->busy); | |
3476 | ||
3477 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && | |
3478 | vm_lopage_free_count < vm_lopage_free_limit && | |
3479 | VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { | |
3480 | vm_page_release(mem, FALSE); /* page queues are not locked */ | |
3481 | #if CONFIG_SECLUDED_MEMORY | |
3482 | } else if (vm_page_secluded_count < vm_page_secluded_target && | |
3483 | num_tasks_can_use_secluded_mem == 0) { | |
3484 | vm_page_release(mem, | |
3485 | FALSE); /* page queues are not locked */ | |
3486 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3487 | } else { | |
3488 | /* | |
3489 | * IMPORTANT: we can't set the page "free" here | |
3490 | * because that would make the page eligible for | |
3491 | * a physically-contiguous allocation (see | |
3492 | * vm_page_find_contiguous()) right away (we don't | |
3493 | * hold the vm_page_queue_free lock). That would | |
3494 | * cause trouble because the page is not actually | |
3495 | * in the free queue yet... | |
3496 | */ | |
3497 | mem->snext = local_freeq; | |
3498 | local_freeq = mem; | |
3499 | pg_count++; | |
3500 | ||
3501 | pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); | |
3502 | } | |
3503 | } else { | |
3504 | assert(VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_fictitious_addr || | |
3505 | VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_guard_addr); | |
3506 | vm_page_release_fictitious(mem); | |
3507 | } | |
3508 | mem = nxt; | |
3509 | } | |
3510 | freeq = mem; | |
3511 | ||
3512 | if ( (mem = local_freeq) ) { | |
3513 | unsigned int avail_free_count; | |
3514 | unsigned int need_wakeup = 0; | |
3515 | unsigned int need_priv_wakeup = 0; | |
3516 | #if CONFIG_SECLUDED_MEMORY | |
3517 | unsigned int need_wakeup_secluded = 0; | |
3518 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3519 | ||
3520 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
3521 | ||
3522 | while (mem) { | |
3523 | int color; | |
3524 | ||
3525 | nxt = mem->snext; | |
3526 | ||
3527 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
3528 | assert(mem->busy); | |
3529 | mem->lopage = FALSE; | |
3530 | mem->vm_page_q_state = VM_PAGE_ON_FREE_Q; | |
3531 | ||
3532 | color = VM_PAGE_GET_PHYS_PAGE(mem) & vm_color_mask; | |
3533 | vm_page_queue_enter_first(&vm_page_queue_free[color].qhead, | |
3534 | mem, | |
3535 | vm_page_t, | |
3536 | pageq); | |
3537 | mem = nxt; | |
3538 | } | |
3539 | vm_page_free_count += pg_count; | |
3540 | avail_free_count = vm_page_free_count; | |
3541 | ||
3542 | if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) { | |
3543 | ||
3544 | if (avail_free_count < vm_page_free_wanted_privileged) { | |
3545 | need_priv_wakeup = avail_free_count; | |
3546 | vm_page_free_wanted_privileged -= avail_free_count; | |
3547 | avail_free_count = 0; | |
3548 | } else { | |
3549 | need_priv_wakeup = vm_page_free_wanted_privileged; | |
3550 | avail_free_count -= vm_page_free_wanted_privileged; | |
3551 | vm_page_free_wanted_privileged = 0; | |
3552 | } | |
3553 | } | |
3554 | #if CONFIG_SECLUDED_MEMORY | |
3555 | if (vm_page_free_wanted_secluded > 0 && | |
3556 | avail_free_count > vm_page_free_reserved) { | |
3557 | unsigned int available_pages; | |
3558 | available_pages = (avail_free_count - | |
3559 | vm_page_free_reserved); | |
3560 | if (available_pages < | |
3561 | vm_page_free_wanted_secluded) { | |
3562 | need_wakeup_secluded = available_pages; | |
3563 | vm_page_free_wanted_secluded -= | |
3564 | available_pages; | |
3565 | avail_free_count -= available_pages; | |
3566 | } else { | |
3567 | need_wakeup_secluded = | |
3568 | vm_page_free_wanted_secluded; | |
3569 | avail_free_count -= | |
3570 | vm_page_free_wanted_secluded; | |
3571 | vm_page_free_wanted_secluded = 0; | |
3572 | } | |
3573 | } | |
3574 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3575 | if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) { | |
3576 | unsigned int available_pages; | |
3577 | ||
3578 | available_pages = avail_free_count - vm_page_free_reserved; | |
3579 | ||
3580 | if (available_pages >= vm_page_free_wanted) { | |
3581 | need_wakeup = vm_page_free_wanted; | |
3582 | vm_page_free_wanted = 0; | |
3583 | } else { | |
3584 | need_wakeup = available_pages; | |
3585 | vm_page_free_wanted -= available_pages; | |
3586 | } | |
3587 | } | |
3588 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3589 | ||
3590 | if (need_priv_wakeup != 0) { | |
3591 | /* | |
3592 | * There shouldn't be that many VM-privileged threads, | |
3593 | * so let's wake them all up, even if we don't quite | |
3594 | * have enough pages to satisfy them all. | |
3595 | */ | |
3596 | thread_wakeup((event_t)&vm_page_free_wanted_privileged); | |
3597 | } | |
3598 | #if CONFIG_SECLUDED_MEMORY | |
3599 | if (need_wakeup_secluded != 0 && | |
3600 | vm_page_free_wanted_secluded == 0) { | |
3601 | thread_wakeup((event_t) | |
3602 | &vm_page_free_wanted_secluded); | |
3603 | } else { | |
3604 | for (; | |
3605 | need_wakeup_secluded != 0; | |
3606 | need_wakeup_secluded--) { | |
3607 | thread_wakeup_one( | |
3608 | (event_t) | |
3609 | &vm_page_free_wanted_secluded); | |
3610 | } | |
3611 | } | |
3612 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3613 | if (need_wakeup != 0 && vm_page_free_wanted == 0) { | |
3614 | /* | |
3615 | * We don't expect to have any more waiters | |
3616 | * after this, so let's wake them all up at | |
3617 | * once. | |
3618 | */ | |
3619 | thread_wakeup((event_t) &vm_page_free_count); | |
3620 | } else for (; need_wakeup != 0; need_wakeup--) { | |
3621 | /* | |
3622 | * Wake up one waiter per page we just released. | |
3623 | */ | |
3624 | thread_wakeup_one((event_t) &vm_page_free_count); | |
3625 | } | |
3626 | ||
3627 | VM_CHECK_MEMORYSTATUS; | |
3628 | } | |
3629 | } | |
3630 | } | |
3631 | ||
3632 | ||
3633 | /* | |
3634 | * vm_page_wire: | |
3635 | * | |
3636 | * Mark this page as wired down by yet | |
3637 | * another map, removing it from paging queues | |
3638 | * as necessary. | |
3639 | * | |
3640 | * The page's object and the page queues must be locked. | |
3641 | */ | |
3642 | ||
3643 | ||
3644 | void | |
3645 | vm_page_wire( | |
3646 | vm_page_t mem, | |
3647 | vm_tag_t tag, | |
3648 | boolean_t check_memorystatus) | |
3649 | { | |
3650 | vm_object_t m_object; | |
3651 | ||
3652 | m_object = VM_PAGE_OBJECT(mem); | |
3653 | ||
3654 | // dbgLog(current_thread(), mem->offset, m_object, 1); /* (TEST/DEBUG) */ | |
3655 | ||
3656 | VM_PAGE_CHECK(mem); | |
3657 | if (m_object) { | |
3658 | vm_object_lock_assert_exclusive(m_object); | |
3659 | } else { | |
3660 | /* | |
3661 | * In theory, the page should be in an object before it | |
3662 | * gets wired, since we need to hold the object lock | |
3663 | * to update some fields in the page structure. | |
3664 | * However, some code (i386 pmap, for example) might want | |
3665 | * to wire a page before it gets inserted into an object. | |
3666 | * That's somewhat OK, as long as nobody else can get to | |
3667 | * that page and update it at the same time. | |
3668 | */ | |
3669 | } | |
3670 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3671 | if ( !VM_PAGE_WIRED(mem)) { | |
3672 | ||
3673 | if (mem->laundry) | |
3674 | vm_pageout_steal_laundry(mem, TRUE); | |
3675 | ||
3676 | vm_page_queues_remove(mem, TRUE); | |
3677 | ||
3678 | assert(mem->wire_count == 0); | |
3679 | mem->vm_page_q_state = VM_PAGE_IS_WIRED; | |
3680 | ||
3681 | if (m_object) { | |
3682 | ||
3683 | if (!mem->private && !mem->fictitious) | |
3684 | { | |
3685 | if (!m_object->wired_page_count) | |
3686 | { | |
3687 | assert(VM_KERN_MEMORY_NONE != tag); | |
3688 | m_object->wire_tag = tag; | |
3689 | VM_OBJECT_WIRED(m_object); | |
3690 | } | |
3691 | } | |
3692 | m_object->wired_page_count++; | |
3693 | ||
3694 | assert(m_object->resident_page_count >= | |
3695 | m_object->wired_page_count); | |
3696 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { | |
3697 | assert(vm_page_purgeable_count > 0); | |
3698 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
3699 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
3700 | } | |
3701 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || | |
3702 | m_object->purgable == VM_PURGABLE_EMPTY) && | |
3703 | m_object->vo_purgeable_owner != TASK_NULL) { | |
3704 | task_t owner; | |
3705 | ||
3706 | owner = m_object->vo_purgeable_owner; | |
3707 | /* less volatile bytes */ | |
3708 | ledger_debit(owner->ledger, | |
3709 | task_ledgers.purgeable_volatile, | |
3710 | PAGE_SIZE); | |
3711 | /* more not-quite-volatile bytes */ | |
3712 | ledger_credit(owner->ledger, | |
3713 | task_ledgers.purgeable_nonvolatile, | |
3714 | PAGE_SIZE); | |
3715 | /* more footprint */ | |
3716 | ledger_credit(owner->ledger, | |
3717 | task_ledgers.phys_footprint, | |
3718 | PAGE_SIZE); | |
3719 | } | |
3720 | if (m_object->all_reusable) { | |
3721 | /* | |
3722 | * Wired pages are not counted as "re-usable" | |
3723 | * in "all_reusable" VM objects, so nothing | |
3724 | * to do here. | |
3725 | */ | |
3726 | } else if (mem->reusable) { | |
3727 | /* | |
3728 | * This page is not "re-usable" when it's | |
3729 | * wired, so adjust its state and the | |
3730 | * accounting. | |
3731 | */ | |
3732 | vm_object_reuse_pages(m_object, | |
3733 | mem->offset, | |
3734 | mem->offset+PAGE_SIZE_64, | |
3735 | FALSE); | |
3736 | } | |
3737 | } | |
3738 | assert(!mem->reusable); | |
3739 | ||
3740 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
3741 | vm_page_wire_count++; | |
3742 | if (mem->gobbled) | |
3743 | vm_page_gobble_count--; | |
3744 | mem->gobbled = FALSE; | |
3745 | ||
3746 | if (check_memorystatus == TRUE) { | |
3747 | VM_CHECK_MEMORYSTATUS; | |
3748 | } | |
3749 | /* | |
3750 | * ENCRYPTED SWAP: | |
3751 | * The page could be encrypted, but | |
3752 | * We don't have to decrypt it here | |
3753 | * because we don't guarantee that the | |
3754 | * data is actually valid at this point. | |
3755 | * The page will get decrypted in | |
3756 | * vm_fault_wire() if needed. | |
3757 | */ | |
3758 | } | |
3759 | assert(!mem->gobbled); | |
3760 | assert(mem->vm_page_q_state == VM_PAGE_IS_WIRED); | |
3761 | mem->wire_count++; | |
3762 | if (__improbable(mem->wire_count == 0)) { | |
3763 | panic("vm_page_wire(%p): wire_count overflow", mem); | |
3764 | } | |
3765 | VM_PAGE_CHECK(mem); | |
3766 | } | |
3767 | ||
3768 | /* | |
3769 | * vm_page_unwire: | |
3770 | * | |
3771 | * Release one wiring of this page, potentially | |
3772 | * enabling it to be paged again. | |
3773 | * | |
3774 | * The page's object and the page queues must be locked. | |
3775 | */ | |
3776 | void | |
3777 | vm_page_unwire( | |
3778 | vm_page_t mem, | |
3779 | boolean_t queueit) | |
3780 | { | |
3781 | vm_object_t m_object; | |
3782 | ||
3783 | m_object = VM_PAGE_OBJECT(mem); | |
3784 | ||
3785 | // dbgLog(current_thread(), mem->offset, m_object, 0); /* (TEST/DEBUG) */ | |
3786 | ||
3787 | VM_PAGE_CHECK(mem); | |
3788 | assert(VM_PAGE_WIRED(mem)); | |
3789 | assert(mem->wire_count > 0); | |
3790 | assert(!mem->gobbled); | |
3791 | assert(m_object != VM_OBJECT_NULL); | |
3792 | vm_object_lock_assert_exclusive(m_object); | |
3793 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3794 | if (--mem->wire_count == 0) { | |
3795 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
3796 | ||
3797 | if (!mem->private && !mem->fictitious) { | |
3798 | vm_page_wire_count--; | |
3799 | } | |
3800 | assert(m_object->wired_page_count > 0); | |
3801 | m_object->wired_page_count--; | |
3802 | if (!m_object->wired_page_count) { | |
3803 | VM_OBJECT_UNWIRED(m_object); | |
3804 | } | |
3805 | assert(m_object->resident_page_count >= | |
3806 | m_object->wired_page_count); | |
3807 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { | |
3808 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
3809 | assert(vm_page_purgeable_wired_count > 0); | |
3810 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
3811 | } | |
3812 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || | |
3813 | m_object->purgable == VM_PURGABLE_EMPTY) && | |
3814 | m_object->vo_purgeable_owner != TASK_NULL) { | |
3815 | task_t owner; | |
3816 | ||
3817 | owner = m_object->vo_purgeable_owner; | |
3818 | /* more volatile bytes */ | |
3819 | ledger_credit(owner->ledger, | |
3820 | task_ledgers.purgeable_volatile, | |
3821 | PAGE_SIZE); | |
3822 | /* less not-quite-volatile bytes */ | |
3823 | ledger_debit(owner->ledger, | |
3824 | task_ledgers.purgeable_nonvolatile, | |
3825 | PAGE_SIZE); | |
3826 | /* less footprint */ | |
3827 | ledger_debit(owner->ledger, | |
3828 | task_ledgers.phys_footprint, | |
3829 | PAGE_SIZE); | |
3830 | } | |
3831 | assert(m_object != kernel_object); | |
3832 | assert(mem->pageq.next == 0 && mem->pageq.prev == 0); | |
3833 | ||
3834 | if (queueit == TRUE) { | |
3835 | if (m_object->purgable == VM_PURGABLE_EMPTY) { | |
3836 | vm_page_deactivate(mem); | |
3837 | } else { | |
3838 | vm_page_activate(mem); | |
3839 | } | |
3840 | } | |
3841 | ||
3842 | VM_CHECK_MEMORYSTATUS; | |
3843 | ||
3844 | } | |
3845 | VM_PAGE_CHECK(mem); | |
3846 | } | |
3847 | ||
3848 | /* | |
3849 | * vm_page_deactivate: | |
3850 | * | |
3851 | * Returns the given page to the inactive list, | |
3852 | * indicating that no physical maps have access | |
3853 | * to this page. [Used by the physical mapping system.] | |
3854 | * | |
3855 | * The page queues must be locked. | |
3856 | */ | |
3857 | void | |
3858 | vm_page_deactivate( | |
3859 | vm_page_t m) | |
3860 | { | |
3861 | vm_page_deactivate_internal(m, TRUE); | |
3862 | } | |
3863 | ||
3864 | ||
3865 | void | |
3866 | vm_page_deactivate_internal( | |
3867 | vm_page_t m, | |
3868 | boolean_t clear_hw_reference) | |
3869 | { | |
3870 | vm_object_t m_object; | |
3871 | ||
3872 | m_object = VM_PAGE_OBJECT(m); | |
3873 | ||
3874 | VM_PAGE_CHECK(m); | |
3875 | assert(m_object != kernel_object); | |
3876 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); | |
3877 | ||
3878 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(m), vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ | |
3879 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3880 | /* | |
3881 | * This page is no longer very interesting. If it was | |
3882 | * interesting (active or inactive/referenced), then we | |
3883 | * clear the reference bit and (re)enter it in the | |
3884 | * inactive queue. Note wired pages should not have | |
3885 | * their reference bit cleared. | |
3886 | */ | |
3887 | assert ( !(m->absent && !m->unusual)); | |
3888 | ||
3889 | if (m->gobbled) { /* can this happen? */ | |
3890 | assert( !VM_PAGE_WIRED(m)); | |
3891 | ||
3892 | if (!m->private && !m->fictitious) | |
3893 | vm_page_wire_count--; | |
3894 | vm_page_gobble_count--; | |
3895 | m->gobbled = FALSE; | |
3896 | } | |
3897 | /* | |
3898 | * if this page is currently on the pageout queue, we can't do the | |
3899 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3900 | * and we can't remove it manually since we would need the object lock | |
3901 | * (which is not required here) to decrement the activity_in_progress | |
3902 | * reference which is held on the object while the page is in the pageout queue... | |
3903 | * just let the normal laundry processing proceed | |
3904 | */ | |
3905 | if (m->laundry || m->private || m->fictitious || | |
3906 | (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) || | |
3907 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) || | |
3908 | VM_PAGE_WIRED(m)) { | |
3909 | return; | |
3910 | } | |
3911 | if (!m->absent && clear_hw_reference == TRUE) | |
3912 | pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m)); | |
3913 | ||
3914 | m->reference = FALSE; | |
3915 | m->no_cache = FALSE; | |
3916 | ||
3917 | if ( !VM_PAGE_INACTIVE(m)) { | |
3918 | vm_page_queues_remove(m, FALSE); | |
3919 | ||
3920 | if (!VM_DYNAMIC_PAGING_ENABLED() && | |
3921 | m->dirty && m_object->internal && | |
3922 | (m_object->purgable == VM_PURGABLE_DENY || | |
3923 | m_object->purgable == VM_PURGABLE_NONVOLATILE || | |
3924 | m_object->purgable == VM_PURGABLE_VOLATILE)) { | |
3925 | vm_page_check_pageable_safe(m); | |
3926 | vm_page_queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
3927 | m->vm_page_q_state = VM_PAGE_ON_THROTTLED_Q; | |
3928 | vm_page_throttled_count++; | |
3929 | } else { | |
3930 | if (m_object->named && m_object->ref_count == 1) { | |
3931 | vm_page_speculate(m, FALSE); | |
3932 | #if DEVELOPMENT || DEBUG | |
3933 | vm_page_speculative_recreated++; | |
3934 | #endif | |
3935 | } else { | |
3936 | vm_page_enqueue_inactive(m, FALSE); | |
3937 | } | |
3938 | } | |
3939 | } | |
3940 | } | |
3941 | ||
3942 | /* | |
3943 | * vm_page_enqueue_cleaned | |
3944 | * | |
3945 | * Put the page on the cleaned queue, mark it cleaned, etc. | |
3946 | * Being on the cleaned queue (and having m->clean_queue set) | |
3947 | * does ** NOT ** guarantee that the page is clean! | |
3948 | * | |
3949 | * Call with the queues lock held. | |
3950 | */ | |
3951 | ||
3952 | void vm_page_enqueue_cleaned(vm_page_t m) | |
3953 | { | |
3954 | vm_object_t m_object; | |
3955 | ||
3956 | m_object = VM_PAGE_OBJECT(m); | |
3957 | ||
3958 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); | |
3959 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
3960 | assert( !(m->absent && !m->unusual)); | |
3961 | assert( !VM_PAGE_WIRED(m)); | |
3962 | ||
3963 | if (m->gobbled) { | |
3964 | if (!m->private && !m->fictitious) | |
3965 | vm_page_wire_count--; | |
3966 | vm_page_gobble_count--; | |
3967 | m->gobbled = FALSE; | |
3968 | } | |
3969 | /* | |
3970 | * if this page is currently on the pageout queue, we can't do the | |
3971 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
3972 | * and we can't remove it manually since we would need the object lock | |
3973 | * (which is not required here) to decrement the activity_in_progress | |
3974 | * reference which is held on the object while the page is in the pageout queue... | |
3975 | * just let the normal laundry processing proceed | |
3976 | */ | |
3977 | if (m->laundry || m->private || m->fictitious || | |
3978 | (m->vm_page_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || | |
3979 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) { | |
3980 | return; | |
3981 | } | |
3982 | vm_page_queues_remove(m, FALSE); | |
3983 | ||
3984 | vm_page_check_pageable_safe(m); | |
3985 | vm_page_queue_enter(&vm_page_queue_cleaned, m, vm_page_t, pageq); | |
3986 | m->vm_page_q_state = VM_PAGE_ON_INACTIVE_CLEANED_Q; | |
3987 | vm_page_cleaned_count++; | |
3988 | ||
3989 | vm_page_inactive_count++; | |
3990 | if (m_object->internal) { | |
3991 | vm_page_pageable_internal_count++; | |
3992 | } else { | |
3993 | vm_page_pageable_external_count++; | |
3994 | } | |
3995 | #if CONFIG_BACKGROUND_QUEUE | |
3996 | if (m->vm_page_in_background) | |
3997 | vm_page_add_to_backgroundq(m, TRUE); | |
3998 | #endif | |
3999 | vm_pageout_enqueued_cleaned++; | |
4000 | } | |
4001 | ||
4002 | /* | |
4003 | * vm_page_activate: | |
4004 | * | |
4005 | * Put the specified page on the active list (if appropriate). | |
4006 | * | |
4007 | * The page queues must be locked. | |
4008 | */ | |
4009 | ||
4010 | void | |
4011 | vm_page_activate( | |
4012 | vm_page_t m) | |
4013 | { | |
4014 | vm_object_t m_object; | |
4015 | ||
4016 | m_object = VM_PAGE_OBJECT(m); | |
4017 | ||
4018 | VM_PAGE_CHECK(m); | |
4019 | #ifdef FIXME_4778297 | |
4020 | assert(m_object != kernel_object); | |
4021 | #endif | |
4022 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); | |
4023 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
4024 | assert( !(m->absent && !m->unusual)); | |
4025 | ||
4026 | if (m->gobbled) { | |
4027 | assert( !VM_PAGE_WIRED(m)); | |
4028 | if (!m->private && !m->fictitious) | |
4029 | vm_page_wire_count--; | |
4030 | vm_page_gobble_count--; | |
4031 | m->gobbled = FALSE; | |
4032 | } | |
4033 | /* | |
4034 | * if this page is currently on the pageout queue, we can't do the | |
4035 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
4036 | * and we can't remove it manually since we would need the object lock | |
4037 | * (which is not required here) to decrement the activity_in_progress | |
4038 | * reference which is held on the object while the page is in the pageout queue... | |
4039 | * just let the normal laundry processing proceed | |
4040 | */ | |
4041 | if (m->laundry || m->private || m->fictitious || | |
4042 | (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) || | |
4043 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) | |
4044 | return; | |
4045 | ||
4046 | #if DEBUG | |
4047 | if (m->vm_page_q_state == VM_PAGE_ON_ACTIVE_Q) | |
4048 | panic("vm_page_activate: already active"); | |
4049 | #endif | |
4050 | ||
4051 | if (m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q) { | |
4052 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
4053 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); | |
4054 | } | |
4055 | ||
4056 | vm_page_queues_remove(m, FALSE); | |
4057 | ||
4058 | if ( !VM_PAGE_WIRED(m)) { | |
4059 | vm_page_check_pageable_safe(m); | |
4060 | if (!VM_DYNAMIC_PAGING_ENABLED() && | |
4061 | m->dirty && m_object->internal && | |
4062 | (m_object->purgable == VM_PURGABLE_DENY || | |
4063 | m_object->purgable == VM_PURGABLE_NONVOLATILE || | |
4064 | m_object->purgable == VM_PURGABLE_VOLATILE)) { | |
4065 | vm_page_queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
4066 | m->vm_page_q_state = VM_PAGE_ON_THROTTLED_Q; | |
4067 | vm_page_throttled_count++; | |
4068 | } else { | |
4069 | #if CONFIG_SECLUDED_MEMORY | |
4070 | if (secluded_for_filecache && | |
4071 | vm_page_secluded_target != 0 && | |
4072 | num_tasks_can_use_secluded_mem == 0 && | |
4073 | m_object->eligible_for_secluded && | |
4074 | ((secluded_aging_policy == SECLUDED_AGING_FIFO) || | |
4075 | (secluded_aging_policy == | |
4076 | SECLUDED_AGING_ALONG_ACTIVE) || | |
4077 | (secluded_aging_policy == | |
4078 | SECLUDED_AGING_BEFORE_ACTIVE))) { | |
4079 | vm_page_queue_enter(&vm_page_queue_secluded, m, | |
4080 | vm_page_t, pageq); | |
4081 | m->vm_page_q_state = VM_PAGE_ON_SECLUDED_Q; | |
4082 | vm_page_secluded_count++; | |
4083 | vm_page_secluded_count_inuse++; | |
4084 | assert(!m_object->internal); | |
4085 | // vm_page_pageable_external_count++; | |
4086 | } else | |
4087 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
4088 | vm_page_enqueue_active(m, FALSE); | |
4089 | } | |
4090 | m->reference = TRUE; | |
4091 | m->no_cache = FALSE; | |
4092 | } | |
4093 | VM_PAGE_CHECK(m); | |
4094 | } | |
4095 | ||
4096 | ||
4097 | /* | |
4098 | * vm_page_speculate: | |
4099 | * | |
4100 | * Put the specified page on the speculative list (if appropriate). | |
4101 | * | |
4102 | * The page queues must be locked. | |
4103 | */ | |
4104 | void | |
4105 | vm_page_speculate( | |
4106 | vm_page_t m, | |
4107 | boolean_t new) | |
4108 | { | |
4109 | struct vm_speculative_age_q *aq; | |
4110 | vm_object_t m_object; | |
4111 | ||
4112 | m_object = VM_PAGE_OBJECT(m); | |
4113 | ||
4114 | VM_PAGE_CHECK(m); | |
4115 | vm_page_check_pageable_safe(m); | |
4116 | ||
4117 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); | |
4118 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
4119 | assert( !(m->absent && !m->unusual)); | |
4120 | assert(m_object->internal == FALSE); | |
4121 | ||
4122 | /* | |
4123 | * if this page is currently on the pageout queue, we can't do the | |
4124 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
4125 | * and we can't remove it manually since we would need the object lock | |
4126 | * (which is not required here) to decrement the activity_in_progress | |
4127 | * reference which is held on the object while the page is in the pageout queue... | |
4128 | * just let the normal laundry processing proceed | |
4129 | */ | |
4130 | if (m->laundry || m->private || m->fictitious || | |
4131 | (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) || | |
4132 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) | |
4133 | return; | |
4134 | ||
4135 | vm_page_queues_remove(m, FALSE); | |
4136 | ||
4137 | if ( !VM_PAGE_WIRED(m)) { | |
4138 | mach_timespec_t ts; | |
4139 | clock_sec_t sec; | |
4140 | clock_nsec_t nsec; | |
4141 | ||
4142 | clock_get_system_nanotime(&sec, &nsec); | |
4143 | ts.tv_sec = (unsigned int) sec; | |
4144 | ts.tv_nsec = nsec; | |
4145 | ||
4146 | if (vm_page_speculative_count == 0) { | |
4147 | ||
4148 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
4149 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
4150 | ||
4151 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
4152 | ||
4153 | /* | |
4154 | * set the timer to begin a new group | |
4155 | */ | |
4156 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
4157 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
4158 | ||
4159 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
4160 | } else { | |
4161 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
4162 | ||
4163 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { | |
4164 | ||
4165 | speculative_age_index++; | |
4166 | ||
4167 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
4168 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
4169 | if (speculative_age_index == speculative_steal_index) { | |
4170 | speculative_steal_index = speculative_age_index + 1; | |
4171 | ||
4172 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
4173 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
4174 | } | |
4175 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
4176 | ||
4177 | if (!vm_page_queue_empty(&aq->age_q)) | |
4178 | vm_page_speculate_ageit(aq); | |
4179 | ||
4180 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; | |
4181 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
4182 | ||
4183 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
4184 | } | |
4185 | } | |
4186 | vm_page_enqueue_tail(&aq->age_q, &m->pageq); | |
4187 | m->vm_page_q_state = VM_PAGE_ON_SPECULATIVE_Q; | |
4188 | vm_page_speculative_count++; | |
4189 | vm_page_pageable_external_count++; | |
4190 | ||
4191 | if (new == TRUE) { | |
4192 | vm_object_lock_assert_exclusive(m_object); | |
4193 | ||
4194 | m_object->pages_created++; | |
4195 | #if DEVELOPMENT || DEBUG | |
4196 | vm_page_speculative_created++; | |
4197 | #endif | |
4198 | } | |
4199 | } | |
4200 | VM_PAGE_CHECK(m); | |
4201 | } | |
4202 | ||
4203 | ||
4204 | /* | |
4205 | * move pages from the specified aging bin to | |
4206 | * the speculative bin that pageout_scan claims from | |
4207 | * | |
4208 | * The page queues must be locked. | |
4209 | */ | |
4210 | void | |
4211 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) | |
4212 | { | |
4213 | struct vm_speculative_age_q *sq; | |
4214 | vm_page_t t; | |
4215 | ||
4216 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
4217 | ||
4218 | if (vm_page_queue_empty(&sq->age_q)) { | |
4219 | sq->age_q.next = aq->age_q.next; | |
4220 | sq->age_q.prev = aq->age_q.prev; | |
4221 | ||
4222 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.next); | |
4223 | t->pageq.prev = VM_PAGE_PACK_PTR(&sq->age_q); | |
4224 | ||
4225 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); | |
4226 | t->pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); | |
4227 | } else { | |
4228 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); | |
4229 | t->pageq.next = aq->age_q.next; | |
4230 | ||
4231 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.next); | |
4232 | t->pageq.prev = sq->age_q.prev; | |
4233 | ||
4234 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.prev); | |
4235 | t->pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); | |
4236 | ||
4237 | sq->age_q.prev = aq->age_q.prev; | |
4238 | } | |
4239 | vm_page_queue_init(&aq->age_q); | |
4240 | } | |
4241 | ||
4242 | ||
4243 | void | |
4244 | vm_page_lru( | |
4245 | vm_page_t m) | |
4246 | { | |
4247 | VM_PAGE_CHECK(m); | |
4248 | assert(VM_PAGE_OBJECT(m) != kernel_object); | |
4249 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); | |
4250 | ||
4251 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
4252 | /* | |
4253 | * if this page is currently on the pageout queue, we can't do the | |
4254 | * vm_page_queues_remove (which doesn't handle the pageout queue case) | |
4255 | * and we can't remove it manually since we would need the object lock | |
4256 | * (which is not required here) to decrement the activity_in_progress | |
4257 | * reference which is held on the object while the page is in the pageout queue... | |
4258 | * just let the normal laundry processing proceed | |
4259 | */ | |
4260 | if (m->laundry || m->private || | |
4261 | (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) || | |
4262 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) || | |
4263 | VM_PAGE_WIRED(m)) | |
4264 | return; | |
4265 | ||
4266 | m->no_cache = FALSE; | |
4267 | ||
4268 | vm_page_queues_remove(m, FALSE); | |
4269 | ||
4270 | vm_page_enqueue_inactive(m, FALSE); | |
4271 | } | |
4272 | ||
4273 | ||
4274 | void | |
4275 | vm_page_reactivate_all_throttled(void) | |
4276 | { | |
4277 | vm_page_t first_throttled, last_throttled; | |
4278 | vm_page_t first_active; | |
4279 | vm_page_t m; | |
4280 | int extra_active_count; | |
4281 | int extra_internal_count, extra_external_count; | |
4282 | vm_object_t m_object; | |
4283 | ||
4284 | if (!VM_DYNAMIC_PAGING_ENABLED()) | |
4285 | return; | |
4286 | ||
4287 | extra_active_count = 0; | |
4288 | extra_internal_count = 0; | |
4289 | extra_external_count = 0; | |
4290 | vm_page_lock_queues(); | |
4291 | if (! vm_page_queue_empty(&vm_page_queue_throttled)) { | |
4292 | /* | |
4293 | * Switch "throttled" pages to "active". | |
4294 | */ | |
4295 | vm_page_queue_iterate(&vm_page_queue_throttled, m, vm_page_t, pageq) { | |
4296 | VM_PAGE_CHECK(m); | |
4297 | assert(m->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q); | |
4298 | ||
4299 | m_object = VM_PAGE_OBJECT(m); | |
4300 | ||
4301 | extra_active_count++; | |
4302 | if (m_object->internal) { | |
4303 | extra_internal_count++; | |
4304 | } else { | |
4305 | extra_external_count++; | |
4306 | } | |
4307 | ||
4308 | m->vm_page_q_state = VM_PAGE_ON_ACTIVE_Q; | |
4309 | VM_PAGE_CHECK(m); | |
4310 | #if CONFIG_BACKGROUND_QUEUE | |
4311 | if (m->vm_page_in_background) | |
4312 | vm_page_add_to_backgroundq(m, FALSE); | |
4313 | #endif | |
4314 | } | |
4315 | ||
4316 | /* | |
4317 | * Transfer the entire throttled queue to a regular LRU page queues. | |
4318 | * We insert it at the head of the active queue, so that these pages | |
4319 | * get re-evaluated by the LRU algorithm first, since they've been | |
4320 | * completely out of it until now. | |
4321 | */ | |
4322 | first_throttled = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); | |
4323 | last_throttled = (vm_page_t) vm_page_queue_last(&vm_page_queue_throttled); | |
4324 | first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); | |
4325 | if (vm_page_queue_empty(&vm_page_queue_active)) { | |
4326 | vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); | |
4327 | } else { | |
4328 | first_active->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); | |
4329 | } | |
4330 | vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_throttled); | |
4331 | first_throttled->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); | |
4332 | last_throttled->pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); | |
4333 | ||
4334 | #if DEBUG | |
4335 | printf("reactivated %d throttled pages\n", vm_page_throttled_count); | |
4336 | #endif | |
4337 | vm_page_queue_init(&vm_page_queue_throttled); | |
4338 | /* | |
4339 | * Adjust the global page counts. | |
4340 | */ | |
4341 | vm_page_active_count += extra_active_count; | |
4342 | vm_page_pageable_internal_count += extra_internal_count; | |
4343 | vm_page_pageable_external_count += extra_external_count; | |
4344 | vm_page_throttled_count = 0; | |
4345 | } | |
4346 | assert(vm_page_throttled_count == 0); | |
4347 | assert(vm_page_queue_empty(&vm_page_queue_throttled)); | |
4348 | vm_page_unlock_queues(); | |
4349 | } | |
4350 | ||
4351 | ||
4352 | /* | |
4353 | * move pages from the indicated local queue to the global active queue | |
4354 | * its ok to fail if we're below the hard limit and force == FALSE | |
4355 | * the nolocks == TRUE case is to allow this function to be run on | |
4356 | * the hibernate path | |
4357 | */ | |
4358 | ||
4359 | void | |
4360 | vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) | |
4361 | { | |
4362 | struct vpl *lq; | |
4363 | vm_page_t first_local, last_local; | |
4364 | vm_page_t first_active; | |
4365 | vm_page_t m; | |
4366 | uint32_t count = 0; | |
4367 | ||
4368 | if (vm_page_local_q == NULL) | |
4369 | return; | |
4370 | ||
4371 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
4372 | ||
4373 | if (nolocks == FALSE) { | |
4374 | if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { | |
4375 | if ( !vm_page_trylockspin_queues()) | |
4376 | return; | |
4377 | } else | |
4378 | vm_page_lockspin_queues(); | |
4379 | ||
4380 | VPL_LOCK(&lq->vpl_lock); | |
4381 | } | |
4382 | if (lq->vpl_count) { | |
4383 | /* | |
4384 | * Switch "local" pages to "active". | |
4385 | */ | |
4386 | assert(!vm_page_queue_empty(&lq->vpl_queue)); | |
4387 | ||
4388 | vm_page_queue_iterate(&lq->vpl_queue, m, vm_page_t, pageq) { | |
4389 | VM_PAGE_CHECK(m); | |
4390 | vm_page_check_pageable_safe(m); | |
4391 | assert(m->vm_page_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q); | |
4392 | assert(!m->fictitious); | |
4393 | ||
4394 | if (m->local_id != lid) | |
4395 | panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m); | |
4396 | ||
4397 | m->local_id = 0; | |
4398 | m->vm_page_q_state = VM_PAGE_ON_ACTIVE_Q; | |
4399 | VM_PAGE_CHECK(m); | |
4400 | #if CONFIG_BACKGROUND_QUEUE | |
4401 | if (m->vm_page_in_background) | |
4402 | vm_page_add_to_backgroundq(m, FALSE); | |
4403 | #endif | |
4404 | count++; | |
4405 | } | |
4406 | if (count != lq->vpl_count) | |
4407 | panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count); | |
4408 | ||
4409 | /* | |
4410 | * Transfer the entire local queue to a regular LRU page queues. | |
4411 | */ | |
4412 | first_local = (vm_page_t) vm_page_queue_first(&lq->vpl_queue); | |
4413 | last_local = (vm_page_t) vm_page_queue_last(&lq->vpl_queue); | |
4414 | first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); | |
4415 | ||
4416 | if (vm_page_queue_empty(&vm_page_queue_active)) { | |
4417 | vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); | |
4418 | } else { | |
4419 | first_active->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); | |
4420 | } | |
4421 | vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local); | |
4422 | first_local->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); | |
4423 | last_local->pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); | |
4424 | ||
4425 | vm_page_queue_init(&lq->vpl_queue); | |
4426 | /* | |
4427 | * Adjust the global page counts. | |
4428 | */ | |
4429 | vm_page_active_count += lq->vpl_count; | |
4430 | vm_page_pageable_internal_count += lq->vpl_internal_count; | |
4431 | vm_page_pageable_external_count += lq->vpl_external_count; | |
4432 | lq->vpl_count = 0; | |
4433 | lq->vpl_internal_count = 0; | |
4434 | lq->vpl_external_count = 0; | |
4435 | } | |
4436 | assert(vm_page_queue_empty(&lq->vpl_queue)); | |
4437 | ||
4438 | if (nolocks == FALSE) { | |
4439 | VPL_UNLOCK(&lq->vpl_lock); | |
4440 | vm_page_unlock_queues(); | |
4441 | } | |
4442 | } | |
4443 | ||
4444 | /* | |
4445 | * vm_page_part_zero_fill: | |
4446 | * | |
4447 | * Zero-fill a part of the page. | |
4448 | */ | |
4449 | #define PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
4450 | void | |
4451 | vm_page_part_zero_fill( | |
4452 | vm_page_t m, | |
4453 | vm_offset_t m_pa, | |
4454 | vm_size_t len) | |
4455 | { | |
4456 | ||
4457 | #if 0 | |
4458 | /* | |
4459 | * we don't hold the page queue lock | |
4460 | * so this check isn't safe to make | |
4461 | */ | |
4462 | VM_PAGE_CHECK(m); | |
4463 | #endif | |
4464 | ||
4465 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
4466 | pmap_zero_part_page(VM_PAGE_GET_PHYS_PAGE(m), m_pa, len); | |
4467 | #else | |
4468 | vm_page_t tmp; | |
4469 | while (1) { | |
4470 | tmp = vm_page_grab(); | |
4471 | if (tmp == VM_PAGE_NULL) { | |
4472 | vm_page_wait(THREAD_UNINT); | |
4473 | continue; | |
4474 | } | |
4475 | break; | |
4476 | } | |
4477 | vm_page_zero_fill(tmp); | |
4478 | if(m_pa != 0) { | |
4479 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
4480 | } | |
4481 | if((m_pa + len) < PAGE_SIZE) { | |
4482 | vm_page_part_copy(m, m_pa + len, tmp, | |
4483 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
4484 | } | |
4485 | vm_page_copy(tmp,m); | |
4486 | VM_PAGE_FREE(tmp); | |
4487 | #endif | |
4488 | ||
4489 | } | |
4490 | ||
4491 | /* | |
4492 | * vm_page_zero_fill: | |
4493 | * | |
4494 | * Zero-fill the specified page. | |
4495 | */ | |
4496 | void | |
4497 | vm_page_zero_fill( | |
4498 | vm_page_t m) | |
4499 | { | |
4500 | XPR(XPR_VM_PAGE, | |
4501 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
4502 | VM_PAGE_OBJECT(m), m->offset, m, 0,0); | |
4503 | #if 0 | |
4504 | /* | |
4505 | * we don't hold the page queue lock | |
4506 | * so this check isn't safe to make | |
4507 | */ | |
4508 | VM_PAGE_CHECK(m); | |
4509 | #endif | |
4510 | ||
4511 | // dbgTrace(0xAEAEAEAE, VM_PAGE_GET_PHYS_PAGE(m), 0); /* (BRINGUP) */ | |
4512 | pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m)); | |
4513 | } | |
4514 | ||
4515 | /* | |
4516 | * vm_page_part_copy: | |
4517 | * | |
4518 | * copy part of one page to another | |
4519 | */ | |
4520 | ||
4521 | void | |
4522 | vm_page_part_copy( | |
4523 | vm_page_t src_m, | |
4524 | vm_offset_t src_pa, | |
4525 | vm_page_t dst_m, | |
4526 | vm_offset_t dst_pa, | |
4527 | vm_size_t len) | |
4528 | { | |
4529 | #if 0 | |
4530 | /* | |
4531 | * we don't hold the page queue lock | |
4532 | * so this check isn't safe to make | |
4533 | */ | |
4534 | VM_PAGE_CHECK(src_m); | |
4535 | VM_PAGE_CHECK(dst_m); | |
4536 | #endif | |
4537 | pmap_copy_part_page(VM_PAGE_GET_PHYS_PAGE(src_m), src_pa, | |
4538 | VM_PAGE_GET_PHYS_PAGE(dst_m), dst_pa, len); | |
4539 | } | |
4540 | ||
4541 | /* | |
4542 | * vm_page_copy: | |
4543 | * | |
4544 | * Copy one page to another | |
4545 | * | |
4546 | * ENCRYPTED SWAP: | |
4547 | * The source page should not be encrypted. The caller should | |
4548 | * make sure the page is decrypted first, if necessary. | |
4549 | */ | |
4550 | ||
4551 | int vm_page_copy_cs_validations = 0; | |
4552 | int vm_page_copy_cs_tainted = 0; | |
4553 | ||
4554 | void | |
4555 | vm_page_copy( | |
4556 | vm_page_t src_m, | |
4557 | vm_page_t dest_m) | |
4558 | { | |
4559 | vm_object_t src_m_object; | |
4560 | ||
4561 | src_m_object = VM_PAGE_OBJECT(src_m); | |
4562 | ||
4563 | XPR(XPR_VM_PAGE, | |
4564 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
4565 | src_m_object, src_m->offset, | |
4566 | VM_PAGE_OBJECT(dest_m), dest_m->offset, | |
4567 | 0); | |
4568 | #if 0 | |
4569 | /* | |
4570 | * we don't hold the page queue lock | |
4571 | * so this check isn't safe to make | |
4572 | */ | |
4573 | VM_PAGE_CHECK(src_m); | |
4574 | VM_PAGE_CHECK(dest_m); | |
4575 | #endif | |
4576 | vm_object_lock_assert_held(src_m_object); | |
4577 | ||
4578 | /* | |
4579 | * ENCRYPTED SWAP: | |
4580 | * The source page should not be encrypted at this point. | |
4581 | * The destination page will therefore not contain encrypted | |
4582 | * data after the copy. | |
4583 | */ | |
4584 | if (src_m->encrypted) { | |
4585 | panic("vm_page_copy: source page %p is encrypted\n", src_m); | |
4586 | } | |
4587 | dest_m->encrypted = FALSE; | |
4588 | ||
4589 | if (src_m_object != VM_OBJECT_NULL && | |
4590 | src_m_object->code_signed) { | |
4591 | /* | |
4592 | * We're copying a page from a code-signed object. | |
4593 | * Whoever ends up mapping the copy page might care about | |
4594 | * the original page's integrity, so let's validate the | |
4595 | * source page now. | |
4596 | */ | |
4597 | vm_page_copy_cs_validations++; | |
4598 | vm_page_validate_cs(src_m); | |
4599 | #if DEVELOPMENT || DEBUG | |
4600 | DTRACE_VM4(codesigned_copy, | |
4601 | vm_object_t, src_m_object, | |
4602 | vm_object_offset_t, src_m->offset, | |
4603 | int, src_m->cs_validated, | |
4604 | int, src_m->cs_tainted); | |
4605 | #endif /* DEVELOPMENT || DEBUG */ | |
4606 | ||
4607 | } | |
4608 | ||
4609 | if (vm_page_is_slideable(src_m)) { | |
4610 | boolean_t was_busy = src_m->busy; | |
4611 | src_m->busy = TRUE; | |
4612 | (void) vm_page_slide(src_m, 0); | |
4613 | assert(src_m->busy); | |
4614 | if (!was_busy) { | |
4615 | PAGE_WAKEUP_DONE(src_m); | |
4616 | } | |
4617 | } | |
4618 | ||
4619 | /* | |
4620 | * Propagate the cs_tainted bit to the copy page. Do not propagate | |
4621 | * the cs_validated bit. | |
4622 | */ | |
4623 | dest_m->cs_tainted = src_m->cs_tainted; | |
4624 | if (dest_m->cs_tainted) { | |
4625 | vm_page_copy_cs_tainted++; | |
4626 | } | |
4627 | dest_m->slid = src_m->slid; | |
4628 | dest_m->error = src_m->error; /* sliding src_m might have failed... */ | |
4629 | pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(src_m), VM_PAGE_GET_PHYS_PAGE(dest_m)); | |
4630 | } | |
4631 | ||
4632 | #if MACH_ASSERT | |
4633 | static void | |
4634 | _vm_page_print( | |
4635 | vm_page_t p) | |
4636 | { | |
4637 | printf("vm_page %p: \n", p); | |
4638 | printf(" pageq: next=%p prev=%p\n", | |
4639 | (vm_page_t)VM_PAGE_UNPACK_PTR(p->pageq.next), | |
4640 | (vm_page_t)VM_PAGE_UNPACK_PTR(p->pageq.prev)); | |
4641 | printf(" listq: next=%p prev=%p\n", | |
4642 | (vm_page_t)(VM_PAGE_UNPACK_PTR(p->listq.next)), | |
4643 | (vm_page_t)(VM_PAGE_UNPACK_PTR(p->listq.prev))); | |
4644 | printf(" next=%p\n", (vm_page_t)(VM_PAGE_UNPACK_PTR(p->next_m))); | |
4645 | printf(" object=%p offset=0x%llx\n",VM_PAGE_OBJECT(p), p->offset); | |
4646 | printf(" wire_count=%u\n", p->wire_count); | |
4647 | printf(" q_state=%u\n", p->vm_page_q_state); | |
4648 | ||
4649 | printf(" %slaundry, %sref, %sgobbled, %sprivate\n", | |
4650 | (p->laundry ? "" : "!"), | |
4651 | (p->reference ? "" : "!"), | |
4652 | (p->gobbled ? "" : "!"), | |
4653 | (p->private ? "" : "!")); | |
4654 | printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n", | |
4655 | (p->busy ? "" : "!"), | |
4656 | (p->wanted ? "" : "!"), | |
4657 | (p->tabled ? "" : "!"), | |
4658 | (p->fictitious ? "" : "!"), | |
4659 | (p->pmapped ? "" : "!"), | |
4660 | (p->wpmapped ? "" : "!")); | |
4661 | printf(" %sfree_when_done, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n", | |
4662 | (p->free_when_done ? "" : "!"), | |
4663 | (p->absent ? "" : "!"), | |
4664 | (p->error ? "" : "!"), | |
4665 | (p->dirty ? "" : "!"), | |
4666 | (p->cleaning ? "" : "!"), | |
4667 | (p->precious ? "" : "!"), | |
4668 | (p->clustered ? "" : "!")); | |
4669 | printf(" %soverwriting, %srestart, %sunusual, %sencrypted, %sencrypted_cleaning\n", | |
4670 | (p->overwriting ? "" : "!"), | |
4671 | (p->restart ? "" : "!"), | |
4672 | (p->unusual ? "" : "!"), | |
4673 | (p->encrypted ? "" : "!"), | |
4674 | (p->encrypted_cleaning ? "" : "!")); | |
4675 | printf(" %scs_validated, %scs_tainted, %scs_nx, %sno_cache\n", | |
4676 | (p->cs_validated ? "" : "!"), | |
4677 | (p->cs_tainted ? "" : "!"), | |
4678 | (p->cs_nx ? "" : "!"), | |
4679 | (p->no_cache ? "" : "!")); | |
4680 | ||
4681 | printf("phys_page=0x%x\n", VM_PAGE_GET_PHYS_PAGE(p)); | |
4682 | } | |
4683 | ||
4684 | /* | |
4685 | * Check that the list of pages is ordered by | |
4686 | * ascending physical address and has no holes. | |
4687 | */ | |
4688 | static int | |
4689 | vm_page_verify_contiguous( | |
4690 | vm_page_t pages, | |
4691 | unsigned int npages) | |
4692 | { | |
4693 | vm_page_t m; | |
4694 | unsigned int page_count; | |
4695 | vm_offset_t prev_addr; | |
4696 | ||
4697 | prev_addr = VM_PAGE_GET_PHYS_PAGE(pages); | |
4698 | page_count = 1; | |
4699 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
4700 | if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) { | |
4701 | printf("m %p prev_addr 0x%lx, current addr 0x%x\n", | |
4702 | m, (long)prev_addr, VM_PAGE_GET_PHYS_PAGE(m)); | |
4703 | printf("pages %p page_count %d npages %d\n", pages, page_count, npages); | |
4704 | panic("vm_page_verify_contiguous: not contiguous!"); | |
4705 | } | |
4706 | prev_addr = VM_PAGE_GET_PHYS_PAGE(m); | |
4707 | ++page_count; | |
4708 | } | |
4709 | if (page_count != npages) { | |
4710 | printf("pages %p actual count 0x%x but requested 0x%x\n", | |
4711 | pages, page_count, npages); | |
4712 | panic("vm_page_verify_contiguous: count error"); | |
4713 | } | |
4714 | return 1; | |
4715 | } | |
4716 | ||
4717 | ||
4718 | /* | |
4719 | * Check the free lists for proper length etc. | |
4720 | */ | |
4721 | static boolean_t vm_page_verify_this_free_list_enabled = FALSE; | |
4722 | static unsigned int | |
4723 | vm_page_verify_free_list( | |
4724 | vm_page_queue_head_t *vm_page_queue, | |
4725 | unsigned int color, | |
4726 | vm_page_t look_for_page, | |
4727 | boolean_t expect_page) | |
4728 | { | |
4729 | unsigned int npages; | |
4730 | vm_page_t m; | |
4731 | vm_page_t prev_m; | |
4732 | boolean_t found_page; | |
4733 | ||
4734 | if (! vm_page_verify_this_free_list_enabled) | |
4735 | return 0; | |
4736 | ||
4737 | found_page = FALSE; | |
4738 | npages = 0; | |
4739 | prev_m = (vm_page_t)((uintptr_t)vm_page_queue); | |
4740 | ||
4741 | vm_page_queue_iterate(vm_page_queue, | |
4742 | m, | |
4743 | vm_page_t, | |
4744 | pageq) { | |
4745 | ||
4746 | if (m == look_for_page) { | |
4747 | found_page = TRUE; | |
4748 | } | |
4749 | if ((vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.prev) != prev_m) | |
4750 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n", | |
4751 | color, npages, m, (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.prev), prev_m); | |
4752 | if ( ! m->busy ) | |
4753 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n", | |
4754 | color, npages, m); | |
4755 | if (color != (unsigned int) -1) { | |
4756 | if ((VM_PAGE_GET_PHYS_PAGE(m) & vm_color_mask) != color) | |
4757 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n", | |
4758 | color, npages, m, VM_PAGE_GET_PHYS_PAGE(m) & vm_color_mask, color); | |
4759 | if (m->vm_page_q_state != VM_PAGE_ON_FREE_Q) | |
4760 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p - expecting q_state == VM_PAGE_ON_FREE_Q, found %d\n", | |
4761 | color, npages, m, m->vm_page_q_state); | |
4762 | } else { | |
4763 | if (m->vm_page_q_state != VM_PAGE_ON_FREE_LOCAL_Q) | |
4764 | panic("vm_page_verify_free_list(npages=%u): local page %p - expecting q_state == VM_PAGE_ON_FREE_LOCAL_Q, found %d\n", | |
4765 | npages, m, m->vm_page_q_state); | |
4766 | } | |
4767 | ++npages; | |
4768 | prev_m = m; | |
4769 | } | |
4770 | if (look_for_page != VM_PAGE_NULL) { | |
4771 | unsigned int other_color; | |
4772 | ||
4773 | if (expect_page && !found_page) { | |
4774 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n", | |
4775 | color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); | |
4776 | _vm_page_print(look_for_page); | |
4777 | for (other_color = 0; | |
4778 | other_color < vm_colors; | |
4779 | other_color++) { | |
4780 | if (other_color == color) | |
4781 | continue; | |
4782 | vm_page_verify_free_list(&vm_page_queue_free[other_color].qhead, | |
4783 | other_color, look_for_page, FALSE); | |
4784 | } | |
4785 | if (color == (unsigned int) -1) { | |
4786 | vm_page_verify_free_list(&vm_lopage_queue_free, | |
4787 | (unsigned int) -1, look_for_page, FALSE); | |
4788 | } | |
4789 | panic("vm_page_verify_free_list(color=%u)\n", color); | |
4790 | } | |
4791 | if (!expect_page && found_page) { | |
4792 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n", | |
4793 | color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); | |
4794 | } | |
4795 | } | |
4796 | return npages; | |
4797 | } | |
4798 | ||
4799 | static boolean_t vm_page_verify_all_free_lists_enabled = FALSE; | |
4800 | static void | |
4801 | vm_page_verify_free_lists( void ) | |
4802 | { | |
4803 | unsigned int color, npages, nlopages; | |
4804 | boolean_t toggle = TRUE; | |
4805 | ||
4806 | if (! vm_page_verify_all_free_lists_enabled) | |
4807 | return; | |
4808 | ||
4809 | npages = 0; | |
4810 | ||
4811 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4812 | ||
4813 | if (vm_page_verify_this_free_list_enabled == TRUE) { | |
4814 | /* | |
4815 | * This variable has been set globally for extra checking of | |
4816 | * each free list Q. Since we didn't set it, we don't own it | |
4817 | * and we shouldn't toggle it. | |
4818 | */ | |
4819 | toggle = FALSE; | |
4820 | } | |
4821 | ||
4822 | if (toggle == TRUE) { | |
4823 | vm_page_verify_this_free_list_enabled = TRUE; | |
4824 | } | |
4825 | ||
4826 | for( color = 0; color < vm_colors; color++ ) { | |
4827 | npages += vm_page_verify_free_list(&vm_page_queue_free[color].qhead, | |
4828 | color, VM_PAGE_NULL, FALSE); | |
4829 | } | |
4830 | nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, | |
4831 | (unsigned int) -1, | |
4832 | VM_PAGE_NULL, FALSE); | |
4833 | if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) | |
4834 | panic("vm_page_verify_free_lists: " | |
4835 | "npages %u free_count %d nlopages %u lo_free_count %u", | |
4836 | npages, vm_page_free_count, nlopages, vm_lopage_free_count); | |
4837 | ||
4838 | if (toggle == TRUE) { | |
4839 | vm_page_verify_this_free_list_enabled = FALSE; | |
4840 | } | |
4841 | ||
4842 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
4843 | } | |
4844 | ||
4845 | #endif /* MACH_ASSERT */ | |
4846 | ||
4847 | ||
4848 | ||
4849 | ||
4850 | ||
4851 | extern boolean_t (* volatile consider_buffer_cache_collect)(int); | |
4852 | ||
4853 | /* | |
4854 | * CONTIGUOUS PAGE ALLOCATION | |
4855 | * | |
4856 | * Find a region large enough to contain at least n pages | |
4857 | * of contiguous physical memory. | |
4858 | * | |
4859 | * This is done by traversing the vm_page_t array in a linear fashion | |
4860 | * we assume that the vm_page_t array has the avaiable physical pages in an | |
4861 | * ordered, ascending list... this is currently true of all our implementations | |
4862 | * and must remain so... there can be 'holes' in the array... we also can | |
4863 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed | |
4864 | * which use to happen via 'vm_page_convert'... that function was no longer | |
4865 | * being called and was removed... | |
4866 | * | |
4867 | * The basic flow consists of stabilizing some of the interesting state of | |
4868 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our | |
4869 | * sweep at the beginning of the array looking for pages that meet our criterea | |
4870 | * for a 'stealable' page... currently we are pretty conservative... if the page | |
4871 | * meets this criterea and is physically contiguous to the previous page in the 'run' | |
4872 | * we keep developing it. If we hit a page that doesn't fit, we reset our state | |
4873 | * and start to develop a new run... if at this point we've already considered | |
4874 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, | |
4875 | * and mutex_pause (which will yield the processor), to keep the latency low w/r | |
4876 | * to other threads trying to acquire free pages (or move pages from q to q), | |
4877 | * and then continue from the spot we left off... we only make 1 pass through the | |
4878 | * array. Once we have a 'run' that is long enough, we'll go into the loop which | |
4879 | * which steals the pages from the queues they're currently on... pages on the free | |
4880 | * queue can be stolen directly... pages that are on any of the other queues | |
4881 | * must be removed from the object they are tabled on... this requires taking the | |
4882 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails | |
4883 | * or if the state of the page behind the vm_object lock is no longer viable, we'll | |
4884 | * dump the pages we've currently stolen back to the free list, and pick up our | |
4885 | * scan from the point where we aborted the 'current' run. | |
4886 | * | |
4887 | * | |
4888 | * Requirements: | |
4889 | * - neither vm_page_queue nor vm_free_list lock can be held on entry | |
4890 | * | |
4891 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. | |
4892 | * | |
4893 | * Algorithm: | |
4894 | */ | |
4895 | ||
4896 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 | |
4897 | ||
4898 | ||
4899 | #define RESET_STATE_OF_RUN() \ | |
4900 | MACRO_BEGIN \ | |
4901 | prevcontaddr = -2; \ | |
4902 | start_pnum = -1; \ | |
4903 | free_considered = 0; \ | |
4904 | substitute_needed = 0; \ | |
4905 | npages = 0; \ | |
4906 | MACRO_END | |
4907 | ||
4908 | /* | |
4909 | * Can we steal in-use (i.e. not free) pages when searching for | |
4910 | * physically-contiguous pages ? | |
4911 | */ | |
4912 | #define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 | |
4913 | ||
4914 | static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; | |
4915 | #if DEBUG | |
4916 | int vm_page_find_contig_debug = 0; | |
4917 | #endif | |
4918 | ||
4919 | static vm_page_t | |
4920 | vm_page_find_contiguous( | |
4921 | unsigned int contig_pages, | |
4922 | ppnum_t max_pnum, | |
4923 | ppnum_t pnum_mask, | |
4924 | boolean_t wire, | |
4925 | int flags) | |
4926 | { | |
4927 | vm_page_t m = NULL; | |
4928 | ppnum_t prevcontaddr; | |
4929 | ppnum_t start_pnum; | |
4930 | unsigned int npages, considered, scanned; | |
4931 | unsigned int page_idx, start_idx, last_idx, orig_last_idx; | |
4932 | unsigned int idx_last_contig_page_found = 0; | |
4933 | int free_considered, free_available; | |
4934 | int substitute_needed; | |
4935 | boolean_t wrapped, zone_gc_called = FALSE; | |
4936 | #if DEBUG | |
4937 | clock_sec_t tv_start_sec, tv_end_sec; | |
4938 | clock_usec_t tv_start_usec, tv_end_usec; | |
4939 | #endif | |
4940 | ||
4941 | int yielded = 0; | |
4942 | int dumped_run = 0; | |
4943 | int stolen_pages = 0; | |
4944 | int compressed_pages = 0; | |
4945 | ||
4946 | ||
4947 | if (contig_pages == 0) | |
4948 | return VM_PAGE_NULL; | |
4949 | ||
4950 | full_scan_again: | |
4951 | ||
4952 | #if MACH_ASSERT | |
4953 | vm_page_verify_free_lists(); | |
4954 | #endif | |
4955 | #if DEBUG | |
4956 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); | |
4957 | #endif | |
4958 | PAGE_REPLACEMENT_ALLOWED(TRUE); | |
4959 | ||
4960 | vm_page_lock_queues(); | |
4961 | ||
4962 | ||
4963 | lck_mtx_lock(&vm_page_queue_free_lock); | |
4964 | ||
4965 | RESET_STATE_OF_RUN(); | |
4966 | ||
4967 | scanned = 0; | |
4968 | considered = 0; | |
4969 | free_available = vm_page_free_count - vm_page_free_reserved; | |
4970 | ||
4971 | wrapped = FALSE; | |
4972 | ||
4973 | if(flags & KMA_LOMEM) | |
4974 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; | |
4975 | else | |
4976 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx; | |
4977 | ||
4978 | orig_last_idx = idx_last_contig_page_found; | |
4979 | last_idx = orig_last_idx; | |
4980 | ||
4981 | for (page_idx = last_idx, start_idx = last_idx; | |
4982 | npages < contig_pages && page_idx < vm_pages_count; | |
4983 | page_idx++) { | |
4984 | retry: | |
4985 | if (wrapped && | |
4986 | npages == 0 && | |
4987 | page_idx >= orig_last_idx) { | |
4988 | /* | |
4989 | * We're back where we started and we haven't | |
4990 | * found any suitable contiguous range. Let's | |
4991 | * give up. | |
4992 | */ | |
4993 | break; | |
4994 | } | |
4995 | scanned++; | |
4996 | m = &vm_pages[page_idx]; | |
4997 | ||
4998 | assert(!m->fictitious); | |
4999 | assert(!m->private); | |
5000 | ||
5001 | if (max_pnum && VM_PAGE_GET_PHYS_PAGE(m) > max_pnum) { | |
5002 | /* no more low pages... */ | |
5003 | break; | |
5004 | } | |
5005 | if (!npages & ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0)) { | |
5006 | /* | |
5007 | * not aligned | |
5008 | */ | |
5009 | RESET_STATE_OF_RUN(); | |
5010 | ||
5011 | } else if (VM_PAGE_WIRED(m) || m->gobbled || | |
5012 | m->encrypted_cleaning || m->laundry || m->wanted || | |
5013 | m->cleaning || m->overwriting || m->free_when_done) { | |
5014 | /* | |
5015 | * page is in a transient state | |
5016 | * or a state we don't want to deal | |
5017 | * with, so don't consider it which | |
5018 | * means starting a new run | |
5019 | */ | |
5020 | RESET_STATE_OF_RUN(); | |
5021 | ||
5022 | } else if ((m->vm_page_q_state == VM_PAGE_NOT_ON_Q) || | |
5023 | (m->vm_page_q_state == VM_PAGE_ON_FREE_LOCAL_Q) || | |
5024 | (m->vm_page_q_state == VM_PAGE_ON_FREE_LOPAGE_Q) || | |
5025 | (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) { | |
5026 | /* | |
5027 | * page needs to be on one of our queues (other then the pageout or special free queues) | |
5028 | * or it needs to belong to the compressor pool (which is now indicated | |
5029 | * by vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR and falls out | |
5030 | * from the check for VM_PAGE_NOT_ON_Q) | |
5031 | * in order for it to be stable behind the | |
5032 | * locks we hold at this point... | |
5033 | * if not, don't consider it which | |
5034 | * means starting a new run | |
5035 | */ | |
5036 | RESET_STATE_OF_RUN(); | |
5037 | ||
5038 | } else if ((m->vm_page_q_state != VM_PAGE_ON_FREE_Q) && (!m->tabled || m->busy)) { | |
5039 | /* | |
5040 | * pages on the free list are always 'busy' | |
5041 | * so we couldn't test for 'busy' in the check | |
5042 | * for the transient states... pages that are | |
5043 | * 'free' are never 'tabled', so we also couldn't | |
5044 | * test for 'tabled'. So we check here to make | |
5045 | * sure that a non-free page is not busy and is | |
5046 | * tabled on an object... | |
5047 | * if not, don't consider it which | |
5048 | * means starting a new run | |
5049 | */ | |
5050 | RESET_STATE_OF_RUN(); | |
5051 | ||
5052 | } else { | |
5053 | if (VM_PAGE_GET_PHYS_PAGE(m) != prevcontaddr + 1) { | |
5054 | if ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0) { | |
5055 | RESET_STATE_OF_RUN(); | |
5056 | goto did_consider; | |
5057 | } else { | |
5058 | npages = 1; | |
5059 | start_idx = page_idx; | |
5060 | start_pnum = VM_PAGE_GET_PHYS_PAGE(m); | |
5061 | } | |
5062 | } else { | |
5063 | npages++; | |
5064 | } | |
5065 | prevcontaddr = VM_PAGE_GET_PHYS_PAGE(m); | |
5066 | ||
5067 | VM_PAGE_CHECK(m); | |
5068 | if (m->vm_page_q_state == VM_PAGE_ON_FREE_Q) { | |
5069 | free_considered++; | |
5070 | } else { | |
5071 | /* | |
5072 | * This page is not free. | |
5073 | * If we can't steal used pages, | |
5074 | * we have to give up this run | |
5075 | * and keep looking. | |
5076 | * Otherwise, we might need to | |
5077 | * move the contents of this page | |
5078 | * into a substitute page. | |
5079 | */ | |
5080 | #if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
5081 | if (m->pmapped || m->dirty || m->precious) { | |
5082 | substitute_needed++; | |
5083 | } | |
5084 | #else | |
5085 | RESET_STATE_OF_RUN(); | |
5086 | #endif | |
5087 | } | |
5088 | ||
5089 | if ((free_considered + substitute_needed) > free_available) { | |
5090 | /* | |
5091 | * if we let this run continue | |
5092 | * we will end up dropping the vm_page_free_count | |
5093 | * below the reserve limit... we need to abort | |
5094 | * this run, but we can at least re-consider this | |
5095 | * page... thus the jump back to 'retry' | |
5096 | */ | |
5097 | RESET_STATE_OF_RUN(); | |
5098 | ||
5099 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { | |
5100 | considered++; | |
5101 | goto retry; | |
5102 | } | |
5103 | /* | |
5104 | * free_available == 0 | |
5105 | * so can't consider any free pages... if | |
5106 | * we went to retry in this case, we'd | |
5107 | * get stuck looking at the same page | |
5108 | * w/o making any forward progress | |
5109 | * we also want to take this path if we've already | |
5110 | * reached our limit that controls the lock latency | |
5111 | */ | |
5112 | } | |
5113 | } | |
5114 | did_consider: | |
5115 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { | |
5116 | ||
5117 | PAGE_REPLACEMENT_ALLOWED(FALSE); | |
5118 | ||
5119 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
5120 | vm_page_unlock_queues(); | |
5121 | ||
5122 | mutex_pause(0); | |
5123 | ||
5124 | PAGE_REPLACEMENT_ALLOWED(TRUE); | |
5125 | ||
5126 | vm_page_lock_queues(); | |
5127 | lck_mtx_lock(&vm_page_queue_free_lock); | |
5128 | ||
5129 | RESET_STATE_OF_RUN(); | |
5130 | /* | |
5131 | * reset our free page limit since we | |
5132 | * dropped the lock protecting the vm_page_free_queue | |
5133 | */ | |
5134 | free_available = vm_page_free_count - vm_page_free_reserved; | |
5135 | considered = 0; | |
5136 | ||
5137 | yielded++; | |
5138 | ||
5139 | goto retry; | |
5140 | } | |
5141 | considered++; | |
5142 | } | |
5143 | m = VM_PAGE_NULL; | |
5144 | ||
5145 | if (npages != contig_pages) { | |
5146 | if (!wrapped) { | |
5147 | /* | |
5148 | * We didn't find a contiguous range but we didn't | |
5149 | * start from the very first page. | |
5150 | * Start again from the very first page. | |
5151 | */ | |
5152 | RESET_STATE_OF_RUN(); | |
5153 | if( flags & KMA_LOMEM) | |
5154 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; | |
5155 | else | |
5156 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; | |
5157 | last_idx = 0; | |
5158 | page_idx = last_idx; | |
5159 | wrapped = TRUE; | |
5160 | goto retry; | |
5161 | } | |
5162 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
5163 | } else { | |
5164 | vm_page_t m1; | |
5165 | vm_page_t m2; | |
5166 | unsigned int cur_idx; | |
5167 | unsigned int tmp_start_idx; | |
5168 | vm_object_t locked_object = VM_OBJECT_NULL; | |
5169 | boolean_t abort_run = FALSE; | |
5170 | ||
5171 | assert(page_idx - start_idx == contig_pages); | |
5172 | ||
5173 | tmp_start_idx = start_idx; | |
5174 | ||
5175 | /* | |
5176 | * first pass through to pull the free pages | |
5177 | * off of the free queue so that in case we | |
5178 | * need substitute pages, we won't grab any | |
5179 | * of the free pages in the run... we'll clear | |
5180 | * the 'free' bit in the 2nd pass, and even in | |
5181 | * an abort_run case, we'll collect all of the | |
5182 | * free pages in this run and return them to the free list | |
5183 | */ | |
5184 | while (start_idx < page_idx) { | |
5185 | ||
5186 | m1 = &vm_pages[start_idx++]; | |
5187 | ||
5188 | #if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
5189 | assert(m1->vm_page_q_state == VM_PAGE_ON_FREE_Q); | |
5190 | #endif | |
5191 | ||
5192 | if (m1->vm_page_q_state == VM_PAGE_ON_FREE_Q) { | |
5193 | unsigned int color; | |
5194 | ||
5195 | color = VM_PAGE_GET_PHYS_PAGE(m1) & vm_color_mask; | |
5196 | #if MACH_ASSERT | |
5197 | vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, m1, TRUE); | |
5198 | #endif | |
5199 | vm_page_queue_remove(&vm_page_queue_free[color].qhead, | |
5200 | m1, | |
5201 | vm_page_t, | |
5202 | pageq); | |
5203 | ||
5204 | VM_PAGE_ZERO_PAGEQ_ENTRY(m1); | |
5205 | #if MACH_ASSERT | |
5206 | vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, VM_PAGE_NULL, FALSE); | |
5207 | #endif | |
5208 | /* | |
5209 | * Clear the "free" bit so that this page | |
5210 | * does not get considered for another | |
5211 | * concurrent physically-contiguous allocation. | |
5212 | */ | |
5213 | m1->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
5214 | assert(m1->busy); | |
5215 | ||
5216 | vm_page_free_count--; | |
5217 | } | |
5218 | } | |
5219 | if( flags & KMA_LOMEM) | |
5220 | vm_page_lomem_find_contiguous_last_idx = page_idx; | |
5221 | else | |
5222 | vm_page_find_contiguous_last_idx = page_idx; | |
5223 | ||
5224 | /* | |
5225 | * we can drop the free queue lock at this point since | |
5226 | * we've pulled any 'free' candidates off of the list | |
5227 | * we need it dropped so that we can do a vm_page_grab | |
5228 | * when substituing for pmapped/dirty pages | |
5229 | */ | |
5230 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
5231 | ||
5232 | start_idx = tmp_start_idx; | |
5233 | cur_idx = page_idx - 1; | |
5234 | ||
5235 | while (start_idx++ < page_idx) { | |
5236 | /* | |
5237 | * must go through the list from back to front | |
5238 | * so that the page list is created in the | |
5239 | * correct order - low -> high phys addresses | |
5240 | */ | |
5241 | m1 = &vm_pages[cur_idx--]; | |
5242 | ||
5243 | if (m1->vm_page_object == 0) { | |
5244 | /* | |
5245 | * page has already been removed from | |
5246 | * the free list in the 1st pass | |
5247 | */ | |
5248 | assert(m1->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
5249 | assert(m1->offset == (vm_object_offset_t) -1); | |
5250 | assert(m1->busy); | |
5251 | assert(!m1->wanted); | |
5252 | assert(!m1->laundry); | |
5253 | } else { | |
5254 | vm_object_t object; | |
5255 | int refmod; | |
5256 | boolean_t disconnected, reusable; | |
5257 | ||
5258 | if (abort_run == TRUE) | |
5259 | continue; | |
5260 | ||
5261 | assert(m1->vm_page_q_state != VM_PAGE_NOT_ON_Q); | |
5262 | ||
5263 | object = VM_PAGE_OBJECT(m1); | |
5264 | ||
5265 | if (object != locked_object) { | |
5266 | if (locked_object) { | |
5267 | vm_object_unlock(locked_object); | |
5268 | locked_object = VM_OBJECT_NULL; | |
5269 | } | |
5270 | if (vm_object_lock_try(object)) | |
5271 | locked_object = object; | |
5272 | } | |
5273 | if (locked_object == VM_OBJECT_NULL || | |
5274 | (VM_PAGE_WIRED(m1) || m1->gobbled || | |
5275 | m1->encrypted_cleaning || m1->laundry || m1->wanted || | |
5276 | m1->cleaning || m1->overwriting || m1->free_when_done || m1->busy) || | |
5277 | (m1->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) { | |
5278 | ||
5279 | if (locked_object) { | |
5280 | vm_object_unlock(locked_object); | |
5281 | locked_object = VM_OBJECT_NULL; | |
5282 | } | |
5283 | tmp_start_idx = cur_idx; | |
5284 | abort_run = TRUE; | |
5285 | continue; | |
5286 | } | |
5287 | ||
5288 | disconnected = FALSE; | |
5289 | reusable = FALSE; | |
5290 | ||
5291 | if ((m1->reusable || | |
5292 | object->all_reusable) && | |
5293 | (m1->vm_page_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) && | |
5294 | !m1->dirty && | |
5295 | !m1->reference) { | |
5296 | /* reusable page... */ | |
5297 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1)); | |
5298 | disconnected = TRUE; | |
5299 | if (refmod == 0) { | |
5300 | /* | |
5301 | * ... not reused: can steal | |
5302 | * without relocating contents. | |
5303 | */ | |
5304 | reusable = TRUE; | |
5305 | } | |
5306 | } | |
5307 | ||
5308 | if ((m1->pmapped && | |
5309 | ! reusable) || | |
5310 | m1->dirty || | |
5311 | m1->precious) { | |
5312 | vm_object_offset_t offset; | |
5313 | ||
5314 | m2 = vm_page_grab(); | |
5315 | ||
5316 | if (m2 == VM_PAGE_NULL) { | |
5317 | if (locked_object) { | |
5318 | vm_object_unlock(locked_object); | |
5319 | locked_object = VM_OBJECT_NULL; | |
5320 | } | |
5321 | tmp_start_idx = cur_idx; | |
5322 | abort_run = TRUE; | |
5323 | continue; | |
5324 | } | |
5325 | if (! disconnected) { | |
5326 | if (m1->pmapped) | |
5327 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1)); | |
5328 | else | |
5329 | refmod = 0; | |
5330 | } | |
5331 | ||
5332 | /* copy the page's contents */ | |
5333 | pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(m1), VM_PAGE_GET_PHYS_PAGE(m2)); | |
5334 | /* copy the page's state */ | |
5335 | assert(!VM_PAGE_WIRED(m1)); | |
5336 | assert(m1->vm_page_q_state != VM_PAGE_ON_FREE_Q); | |
5337 | assert(m1->vm_page_q_state != VM_PAGE_ON_PAGEOUT_Q); | |
5338 | assert(!m1->laundry); | |
5339 | m2->reference = m1->reference; | |
5340 | assert(!m1->gobbled); | |
5341 | assert(!m1->private); | |
5342 | m2->no_cache = m1->no_cache; | |
5343 | m2->xpmapped = 0; | |
5344 | assert(!m1->busy); | |
5345 | assert(!m1->wanted); | |
5346 | assert(!m1->fictitious); | |
5347 | m2->pmapped = m1->pmapped; /* should flush cache ? */ | |
5348 | m2->wpmapped = m1->wpmapped; | |
5349 | assert(!m1->free_when_done); | |
5350 | m2->absent = m1->absent; | |
5351 | m2->error = m1->error; | |
5352 | m2->dirty = m1->dirty; | |
5353 | assert(!m1->cleaning); | |
5354 | m2->precious = m1->precious; | |
5355 | m2->clustered = m1->clustered; | |
5356 | assert(!m1->overwriting); | |
5357 | m2->restart = m1->restart; | |
5358 | m2->unusual = m1->unusual; | |
5359 | m2->encrypted = m1->encrypted; | |
5360 | assert(!m1->encrypted_cleaning); | |
5361 | m2->cs_validated = m1->cs_validated; | |
5362 | m2->cs_tainted = m1->cs_tainted; | |
5363 | m2->cs_nx = m1->cs_nx; | |
5364 | ||
5365 | /* | |
5366 | * If m1 had really been reusable, | |
5367 | * we would have just stolen it, so | |
5368 | * let's not propagate it's "reusable" | |
5369 | * bit and assert that m2 is not | |
5370 | * marked as "reusable". | |
5371 | */ | |
5372 | // m2->reusable = m1->reusable; | |
5373 | assert(!m2->reusable); | |
5374 | ||
5375 | // assert(!m1->lopage); | |
5376 | m2->slid = m1->slid; | |
5377 | ||
5378 | if (m1->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) | |
5379 | m2->vm_page_q_state = VM_PAGE_USED_BY_COMPRESSOR; | |
5380 | ||
5381 | /* | |
5382 | * page may need to be flushed if | |
5383 | * it is marshalled into a UPL | |
5384 | * that is going to be used by a device | |
5385 | * that doesn't support coherency | |
5386 | */ | |
5387 | m2->written_by_kernel = TRUE; | |
5388 | ||
5389 | /* | |
5390 | * make sure we clear the ref/mod state | |
5391 | * from the pmap layer... else we risk | |
5392 | * inheriting state from the last time | |
5393 | * this page was used... | |
5394 | */ | |
5395 | pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m2), VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
5396 | ||
5397 | if (refmod & VM_MEM_REFERENCED) | |
5398 | m2->reference = TRUE; | |
5399 | if (refmod & VM_MEM_MODIFIED) { | |
5400 | SET_PAGE_DIRTY(m2, TRUE); | |
5401 | } | |
5402 | offset = m1->offset; | |
5403 | ||
5404 | /* | |
5405 | * completely cleans up the state | |
5406 | * of the page so that it is ready | |
5407 | * to be put onto the free list, or | |
5408 | * for this purpose it looks like it | |
5409 | * just came off of the free list | |
5410 | */ | |
5411 | vm_page_free_prepare(m1); | |
5412 | ||
5413 | /* | |
5414 | * now put the substitute page | |
5415 | * on the object | |
5416 | */ | |
5417 | vm_page_insert_internal(m2, locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL); | |
5418 | ||
5419 | if (m2->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) { | |
5420 | m2->pmapped = TRUE; | |
5421 | m2->wpmapped = TRUE; | |
5422 | ||
5423 | PMAP_ENTER(kernel_pmap, m2->offset, m2, | |
5424 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE); | |
5425 | ||
5426 | compressed_pages++; | |
5427 | ||
5428 | } else { | |
5429 | if (m2->reference) | |
5430 | vm_page_activate(m2); | |
5431 | else | |
5432 | vm_page_deactivate(m2); | |
5433 | } | |
5434 | PAGE_WAKEUP_DONE(m2); | |
5435 | ||
5436 | } else { | |
5437 | assert(m1->vm_page_q_state != VM_PAGE_USED_BY_COMPRESSOR); | |
5438 | ||
5439 | /* | |
5440 | * completely cleans up the state | |
5441 | * of the page so that it is ready | |
5442 | * to be put onto the free list, or | |
5443 | * for this purpose it looks like it | |
5444 | * just came off of the free list | |
5445 | */ | |
5446 | vm_page_free_prepare(m1); | |
5447 | } | |
5448 | ||
5449 | stolen_pages++; | |
5450 | ||
5451 | } | |
5452 | #if CONFIG_BACKGROUND_QUEUE | |
5453 | vm_page_assign_background_state(m1); | |
5454 | #endif | |
5455 | VM_PAGE_ZERO_PAGEQ_ENTRY(m1); | |
5456 | m1->snext = m; | |
5457 | m = m1; | |
5458 | } | |
5459 | if (locked_object) { | |
5460 | vm_object_unlock(locked_object); | |
5461 | locked_object = VM_OBJECT_NULL; | |
5462 | } | |
5463 | ||
5464 | if (abort_run == TRUE) { | |
5465 | /* | |
5466 | * want the index of the last | |
5467 | * page in this run that was | |
5468 | * successfully 'stolen', so back | |
5469 | * it up 1 for the auto-decrement on use | |
5470 | * and 1 more to bump back over this page | |
5471 | */ | |
5472 | page_idx = tmp_start_idx + 2; | |
5473 | if (page_idx >= vm_pages_count) { | |
5474 | if (wrapped) { | |
5475 | if (m != VM_PAGE_NULL) { | |
5476 | vm_page_unlock_queues(); | |
5477 | vm_page_free_list(m, FALSE); | |
5478 | vm_page_lock_queues(); | |
5479 | m = VM_PAGE_NULL; | |
5480 | } | |
5481 | dumped_run++; | |
5482 | goto done_scanning; | |
5483 | } | |
5484 | page_idx = last_idx = 0; | |
5485 | wrapped = TRUE; | |
5486 | } | |
5487 | abort_run = FALSE; | |
5488 | ||
5489 | /* | |
5490 | * We didn't find a contiguous range but we didn't | |
5491 | * start from the very first page. | |
5492 | * Start again from the very first page. | |
5493 | */ | |
5494 | RESET_STATE_OF_RUN(); | |
5495 | ||
5496 | if( flags & KMA_LOMEM) | |
5497 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; | |
5498 | else | |
5499 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; | |
5500 | ||
5501 | last_idx = page_idx; | |
5502 | ||
5503 | if (m != VM_PAGE_NULL) { | |
5504 | vm_page_unlock_queues(); | |
5505 | vm_page_free_list(m, FALSE); | |
5506 | vm_page_lock_queues(); | |
5507 | m = VM_PAGE_NULL; | |
5508 | } | |
5509 | dumped_run++; | |
5510 | ||
5511 | lck_mtx_lock(&vm_page_queue_free_lock); | |
5512 | /* | |
5513 | * reset our free page limit since we | |
5514 | * dropped the lock protecting the vm_page_free_queue | |
5515 | */ | |
5516 | free_available = vm_page_free_count - vm_page_free_reserved; | |
5517 | goto retry; | |
5518 | } | |
5519 | ||
5520 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { | |
5521 | ||
5522 | assert(m1->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
5523 | assert(m1->wire_count == 0); | |
5524 | ||
5525 | if (wire == TRUE) { | |
5526 | m1->wire_count++; | |
5527 | m1->vm_page_q_state = VM_PAGE_IS_WIRED; | |
5528 | } else | |
5529 | m1->gobbled = TRUE; | |
5530 | } | |
5531 | if (wire == FALSE) | |
5532 | vm_page_gobble_count += npages; | |
5533 | ||
5534 | /* | |
5535 | * gobbled pages are also counted as wired pages | |
5536 | */ | |
5537 | vm_page_wire_count += npages; | |
5538 | ||
5539 | assert(vm_page_verify_contiguous(m, npages)); | |
5540 | } | |
5541 | done_scanning: | |
5542 | PAGE_REPLACEMENT_ALLOWED(FALSE); | |
5543 | ||
5544 | vm_page_unlock_queues(); | |
5545 | ||
5546 | #if DEBUG | |
5547 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); | |
5548 | ||
5549 | tv_end_sec -= tv_start_sec; | |
5550 | if (tv_end_usec < tv_start_usec) { | |
5551 | tv_end_sec--; | |
5552 | tv_end_usec += 1000000; | |
5553 | } | |
5554 | tv_end_usec -= tv_start_usec; | |
5555 | if (tv_end_usec >= 1000000) { | |
5556 | tv_end_sec++; | |
5557 | tv_end_sec -= 1000000; | |
5558 | } | |
5559 | if (vm_page_find_contig_debug) { | |
5560 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n", | |
5561 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
5562 | (long)tv_end_sec, tv_end_usec, orig_last_idx, | |
5563 | scanned, yielded, dumped_run, stolen_pages, compressed_pages); | |
5564 | } | |
5565 | ||
5566 | #endif | |
5567 | #if MACH_ASSERT | |
5568 | vm_page_verify_free_lists(); | |
5569 | #endif | |
5570 | if (m == NULL && zone_gc_called == FALSE) { | |
5571 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n", | |
5572 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
5573 | scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count); | |
5574 | ||
5575 | if (consider_buffer_cache_collect != NULL) { | |
5576 | (void)(*consider_buffer_cache_collect)(1); | |
5577 | } | |
5578 | ||
5579 | consider_zone_gc(); | |
5580 | ||
5581 | zone_gc_called = TRUE; | |
5582 | ||
5583 | printf("vm_page_find_contiguous: zone_gc called... wired count is %d\n", vm_page_wire_count); | |
5584 | goto full_scan_again; | |
5585 | } | |
5586 | ||
5587 | return m; | |
5588 | } | |
5589 | ||
5590 | /* | |
5591 | * Allocate a list of contiguous, wired pages. | |
5592 | */ | |
5593 | kern_return_t | |
5594 | cpm_allocate( | |
5595 | vm_size_t size, | |
5596 | vm_page_t *list, | |
5597 | ppnum_t max_pnum, | |
5598 | ppnum_t pnum_mask, | |
5599 | boolean_t wire, | |
5600 | int flags) | |
5601 | { | |
5602 | vm_page_t pages; | |
5603 | unsigned int npages; | |
5604 | ||
5605 | if (size % PAGE_SIZE != 0) | |
5606 | return KERN_INVALID_ARGUMENT; | |
5607 | ||
5608 | npages = (unsigned int) (size / PAGE_SIZE); | |
5609 | if (npages != size / PAGE_SIZE) { | |
5610 | /* 32-bit overflow */ | |
5611 | return KERN_INVALID_ARGUMENT; | |
5612 | } | |
5613 | ||
5614 | /* | |
5615 | * Obtain a pointer to a subset of the free | |
5616 | * list large enough to satisfy the request; | |
5617 | * the region will be physically contiguous. | |
5618 | */ | |
5619 | pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags); | |
5620 | ||
5621 | if (pages == VM_PAGE_NULL) | |
5622 | return KERN_NO_SPACE; | |
5623 | /* | |
5624 | * determine need for wakeups | |
5625 | */ | |
5626 | if ((vm_page_free_count < vm_page_free_min) || | |
5627 | ((vm_page_free_count < vm_page_free_target) && | |
5628 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
5629 | thread_wakeup((event_t) &vm_page_free_wanted); | |
5630 | ||
5631 | VM_CHECK_MEMORYSTATUS; | |
5632 | ||
5633 | /* | |
5634 | * The CPM pages should now be available and | |
5635 | * ordered by ascending physical address. | |
5636 | */ | |
5637 | assert(vm_page_verify_contiguous(pages, npages)); | |
5638 | ||
5639 | *list = pages; | |
5640 | return KERN_SUCCESS; | |
5641 | } | |
5642 | ||
5643 | ||
5644 | unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; | |
5645 | ||
5646 | /* | |
5647 | * when working on a 'run' of pages, it is necessary to hold | |
5648 | * the vm_page_queue_lock (a hot global lock) for certain operations | |
5649 | * on the page... however, the majority of the work can be done | |
5650 | * while merely holding the object lock... in fact there are certain | |
5651 | * collections of pages that don't require any work brokered by the | |
5652 | * vm_page_queue_lock... to mitigate the time spent behind the global | |
5653 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT | |
5654 | * while doing all of the work that doesn't require the vm_page_queue_lock... | |
5655 | * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the | |
5656 | * necessary work for each page... we will grab the busy bit on the page | |
5657 | * if it's not already held so that vm_page_do_delayed_work can drop the object lock | |
5658 | * if it can't immediately take the vm_page_queue_lock in order to compete | |
5659 | * for the locks in the same order that vm_pageout_scan takes them. | |
5660 | * the operation names are modeled after the names of the routines that | |
5661 | * need to be called in order to make the changes very obvious in the | |
5662 | * original loop | |
5663 | */ | |
5664 | ||
5665 | void | |
5666 | vm_page_do_delayed_work( | |
5667 | vm_object_t object, | |
5668 | vm_tag_t tag, | |
5669 | struct vm_page_delayed_work *dwp, | |
5670 | int dw_count) | |
5671 | { | |
5672 | int j; | |
5673 | vm_page_t m; | |
5674 | vm_page_t local_free_q = VM_PAGE_NULL; | |
5675 | ||
5676 | /* | |
5677 | * pageout_scan takes the vm_page_lock_queues first | |
5678 | * then tries for the object lock... to avoid what | |
5679 | * is effectively a lock inversion, we'll go to the | |
5680 | * trouble of taking them in that same order... otherwise | |
5681 | * if this object contains the majority of the pages resident | |
5682 | * in the UBC (or a small set of large objects actively being | |
5683 | * worked on contain the majority of the pages), we could | |
5684 | * cause the pageout_scan thread to 'starve' in its attempt | |
5685 | * to find pages to move to the free queue, since it has to | |
5686 | * successfully acquire the object lock of any candidate page | |
5687 | * before it can steal/clean it. | |
5688 | */ | |
5689 | if (!vm_page_trylockspin_queues()) { | |
5690 | vm_object_unlock(object); | |
5691 | ||
5692 | vm_page_lockspin_queues(); | |
5693 | ||
5694 | for (j = 0; ; j++) { | |
5695 | if (!vm_object_lock_avoid(object) && | |
5696 | _vm_object_lock_try(object)) | |
5697 | break; | |
5698 | vm_page_unlock_queues(); | |
5699 | mutex_pause(j); | |
5700 | vm_page_lockspin_queues(); | |
5701 | } | |
5702 | } | |
5703 | for (j = 0; j < dw_count; j++, dwp++) { | |
5704 | ||
5705 | m = dwp->dw_m; | |
5706 | ||
5707 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) | |
5708 | vm_pageout_throttle_up(m); | |
5709 | #if CONFIG_PHANTOM_CACHE | |
5710 | if (dwp->dw_mask & DW_vm_phantom_cache_update) | |
5711 | vm_phantom_cache_update(m); | |
5712 | #endif | |
5713 | if (dwp->dw_mask & DW_vm_page_wire) | |
5714 | vm_page_wire(m, tag, FALSE); | |
5715 | else if (dwp->dw_mask & DW_vm_page_unwire) { | |
5716 | boolean_t queueit; | |
5717 | ||
5718 | queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE; | |
5719 | ||
5720 | vm_page_unwire(m, queueit); | |
5721 | } | |
5722 | if (dwp->dw_mask & DW_vm_page_free) { | |
5723 | vm_page_free_prepare_queues(m); | |
5724 | ||
5725 | assert(m->pageq.next == 0 && m->pageq.prev == 0); | |
5726 | /* | |
5727 | * Add this page to our list of reclaimed pages, | |
5728 | * to be freed later. | |
5729 | */ | |
5730 | m->snext = local_free_q; | |
5731 | local_free_q = m; | |
5732 | } else { | |
5733 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) | |
5734 | vm_page_deactivate_internal(m, FALSE); | |
5735 | else if (dwp->dw_mask & DW_vm_page_activate) { | |
5736 | if (m->vm_page_q_state != VM_PAGE_ON_ACTIVE_Q) { | |
5737 | vm_page_activate(m); | |
5738 | } | |
5739 | } | |
5740 | else if (dwp->dw_mask & DW_vm_page_speculate) | |
5741 | vm_page_speculate(m, TRUE); | |
5742 | else if (dwp->dw_mask & DW_enqueue_cleaned) { | |
5743 | /* | |
5744 | * if we didn't hold the object lock and did this, | |
5745 | * we might disconnect the page, then someone might | |
5746 | * soft fault it back in, then we would put it on the | |
5747 | * cleaned queue, and so we would have a referenced (maybe even dirty) | |
5748 | * page on that queue, which we don't want | |
5749 | */ | |
5750 | int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
5751 | ||
5752 | if ((refmod_state & VM_MEM_REFERENCED)) { | |
5753 | /* | |
5754 | * this page has been touched since it got cleaned; let's activate it | |
5755 | * if it hasn't already been | |
5756 | */ | |
5757 | vm_pageout_enqueued_cleaned++; | |
5758 | vm_pageout_cleaned_reactivated++; | |
5759 | vm_pageout_cleaned_commit_reactivated++; | |
5760 | ||
5761 | if (m->vm_page_q_state != VM_PAGE_ON_ACTIVE_Q) | |
5762 | vm_page_activate(m); | |
5763 | } else { | |
5764 | m->reference = FALSE; | |
5765 | vm_page_enqueue_cleaned(m); | |
5766 | } | |
5767 | } | |
5768 | else if (dwp->dw_mask & DW_vm_page_lru) | |
5769 | vm_page_lru(m); | |
5770 | else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) { | |
5771 | if (m->vm_page_q_state != VM_PAGE_ON_PAGEOUT_Q) | |
5772 | vm_page_queues_remove(m, TRUE); | |
5773 | } | |
5774 | if (dwp->dw_mask & DW_set_reference) | |
5775 | m->reference = TRUE; | |
5776 | else if (dwp->dw_mask & DW_clear_reference) | |
5777 | m->reference = FALSE; | |
5778 | ||
5779 | if (dwp->dw_mask & DW_move_page) { | |
5780 | if (m->vm_page_q_state != VM_PAGE_ON_PAGEOUT_Q) { | |
5781 | vm_page_queues_remove(m, FALSE); | |
5782 | ||
5783 | assert(VM_PAGE_OBJECT(m) != kernel_object); | |
5784 | ||
5785 | vm_page_enqueue_inactive(m, FALSE); | |
5786 | } | |
5787 | } | |
5788 | if (dwp->dw_mask & DW_clear_busy) | |
5789 | m->busy = FALSE; | |
5790 | ||
5791 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
5792 | PAGE_WAKEUP(m); | |
5793 | } | |
5794 | } | |
5795 | vm_page_unlock_queues(); | |
5796 | ||
5797 | if (local_free_q) | |
5798 | vm_page_free_list(local_free_q, TRUE); | |
5799 | ||
5800 | VM_CHECK_MEMORYSTATUS; | |
5801 | ||
5802 | } | |
5803 | ||
5804 | kern_return_t | |
5805 | vm_page_alloc_list( | |
5806 | int page_count, | |
5807 | int flags, | |
5808 | vm_page_t *list) | |
5809 | { | |
5810 | vm_page_t lo_page_list = VM_PAGE_NULL; | |
5811 | vm_page_t mem; | |
5812 | int i; | |
5813 | ||
5814 | if ( !(flags & KMA_LOMEM)) | |
5815 | panic("vm_page_alloc_list: called w/o KMA_LOMEM"); | |
5816 | ||
5817 | for (i = 0; i < page_count; i++) { | |
5818 | ||
5819 | mem = vm_page_grablo(); | |
5820 | ||
5821 | if (mem == VM_PAGE_NULL) { | |
5822 | if (lo_page_list) | |
5823 | vm_page_free_list(lo_page_list, FALSE); | |
5824 | ||
5825 | *list = VM_PAGE_NULL; | |
5826 | ||
5827 | return (KERN_RESOURCE_SHORTAGE); | |
5828 | } | |
5829 | mem->snext = lo_page_list; | |
5830 | lo_page_list = mem; | |
5831 | } | |
5832 | *list = lo_page_list; | |
5833 | ||
5834 | return (KERN_SUCCESS); | |
5835 | } | |
5836 | ||
5837 | void | |
5838 | vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) | |
5839 | { | |
5840 | page->offset = offset; | |
5841 | } | |
5842 | ||
5843 | vm_page_t | |
5844 | vm_page_get_next(vm_page_t page) | |
5845 | { | |
5846 | return (page->snext); | |
5847 | } | |
5848 | ||
5849 | vm_object_offset_t | |
5850 | vm_page_get_offset(vm_page_t page) | |
5851 | { | |
5852 | return (page->offset); | |
5853 | } | |
5854 | ||
5855 | ppnum_t | |
5856 | vm_page_get_phys_page(vm_page_t page) | |
5857 | { | |
5858 | return (VM_PAGE_GET_PHYS_PAGE(page)); | |
5859 | } | |
5860 | ||
5861 | ||
5862 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
5863 | ||
5864 | #if HIBERNATION | |
5865 | ||
5866 | static vm_page_t hibernate_gobble_queue; | |
5867 | ||
5868 | static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); | |
5869 | static int hibernate_flush_dirty_pages(int); | |
5870 | static int hibernate_flush_queue(vm_page_queue_head_t *, int); | |
5871 | ||
5872 | void hibernate_flush_wait(void); | |
5873 | void hibernate_mark_in_progress(void); | |
5874 | void hibernate_clear_in_progress(void); | |
5875 | ||
5876 | void hibernate_free_range(int, int); | |
5877 | void hibernate_hash_insert_page(vm_page_t); | |
5878 | uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *); | |
5879 | void hibernate_rebuild_vm_structs(void); | |
5880 | uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *); | |
5881 | ppnum_t hibernate_lookup_paddr(unsigned int); | |
5882 | ||
5883 | struct hibernate_statistics { | |
5884 | int hibernate_considered; | |
5885 | int hibernate_reentered_on_q; | |
5886 | int hibernate_found_dirty; | |
5887 | int hibernate_skipped_cleaning; | |
5888 | int hibernate_skipped_transient; | |
5889 | int hibernate_skipped_precious; | |
5890 | int hibernate_skipped_external; | |
5891 | int hibernate_queue_nolock; | |
5892 | int hibernate_queue_paused; | |
5893 | int hibernate_throttled; | |
5894 | int hibernate_throttle_timeout; | |
5895 | int hibernate_drained; | |
5896 | int hibernate_drain_timeout; | |
5897 | int cd_lock_failed; | |
5898 | int cd_found_precious; | |
5899 | int cd_found_wired; | |
5900 | int cd_found_busy; | |
5901 | int cd_found_unusual; | |
5902 | int cd_found_cleaning; | |
5903 | int cd_found_laundry; | |
5904 | int cd_found_dirty; | |
5905 | int cd_found_xpmapped; | |
5906 | int cd_skipped_xpmapped; | |
5907 | int cd_local_free; | |
5908 | int cd_total_free; | |
5909 | int cd_vm_page_wire_count; | |
5910 | int cd_vm_struct_pages_unneeded; | |
5911 | int cd_pages; | |
5912 | int cd_discarded; | |
5913 | int cd_count_wire; | |
5914 | } hibernate_stats; | |
5915 | ||
5916 | ||
5917 | /* | |
5918 | * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image | |
5919 | * so that we don't overrun the estimated image size, which would | |
5920 | * result in a hibernation failure. | |
5921 | */ | |
5922 | #define HIBERNATE_XPMAPPED_LIMIT 40000 | |
5923 | ||
5924 | ||
5925 | static int | |
5926 | hibernate_drain_pageout_queue(struct vm_pageout_queue *q) | |
5927 | { | |
5928 | wait_result_t wait_result; | |
5929 | ||
5930 | vm_page_lock_queues(); | |
5931 | ||
5932 | while ( !vm_page_queue_empty(&q->pgo_pending) ) { | |
5933 | ||
5934 | q->pgo_draining = TRUE; | |
5935 | ||
5936 | assert_wait_timeout((event_t) (&q->pgo_laundry+1), THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC); | |
5937 | ||
5938 | vm_page_unlock_queues(); | |
5939 | ||
5940 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
5941 | ||
5942 | if (wait_result == THREAD_TIMED_OUT && !vm_page_queue_empty(&q->pgo_pending)) { | |
5943 | hibernate_stats.hibernate_drain_timeout++; | |
5944 | ||
5945 | if (q == &vm_pageout_queue_external) | |
5946 | return (0); | |
5947 | ||
5948 | return (1); | |
5949 | } | |
5950 | vm_page_lock_queues(); | |
5951 | ||
5952 | hibernate_stats.hibernate_drained++; | |
5953 | } | |
5954 | vm_page_unlock_queues(); | |
5955 | ||
5956 | return (0); | |
5957 | } | |
5958 | ||
5959 | ||
5960 | boolean_t hibernate_skip_external = FALSE; | |
5961 | ||
5962 | static int | |
5963 | hibernate_flush_queue(vm_page_queue_head_t *q, int qcount) | |
5964 | { | |
5965 | vm_page_t m; | |
5966 | vm_object_t l_object = NULL; | |
5967 | vm_object_t m_object = NULL; | |
5968 | int refmod_state = 0; | |
5969 | int try_failed_count = 0; | |
5970 | int retval = 0; | |
5971 | int current_run = 0; | |
5972 | struct vm_pageout_queue *iq; | |
5973 | struct vm_pageout_queue *eq; | |
5974 | struct vm_pageout_queue *tq; | |
5975 | ||
5976 | ||
5977 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, q, qcount, 0, 0, 0); | |
5978 | ||
5979 | iq = &vm_pageout_queue_internal; | |
5980 | eq = &vm_pageout_queue_external; | |
5981 | ||
5982 | vm_page_lock_queues(); | |
5983 | ||
5984 | while (qcount && !vm_page_queue_empty(q)) { | |
5985 | ||
5986 | if (current_run++ == 1000) { | |
5987 | if (hibernate_should_abort()) { | |
5988 | retval = 1; | |
5989 | break; | |
5990 | } | |
5991 | current_run = 0; | |
5992 | } | |
5993 | ||
5994 | m = (vm_page_t) vm_page_queue_first(q); | |
5995 | m_object = VM_PAGE_OBJECT(m); | |
5996 | ||
5997 | /* | |
5998 | * check to see if we currently are working | |
5999 | * with the same object... if so, we've | |
6000 | * already got the lock | |
6001 | */ | |
6002 | if (m_object != l_object) { | |
6003 | /* | |
6004 | * the object associated with candidate page is | |
6005 | * different from the one we were just working | |
6006 | * with... dump the lock if we still own it | |
6007 | */ | |
6008 | if (l_object != NULL) { | |
6009 | vm_object_unlock(l_object); | |
6010 | l_object = NULL; | |
6011 | } | |
6012 | /* | |
6013 | * Try to lock object; since we've alread got the | |
6014 | * page queues lock, we can only 'try' for this one. | |
6015 | * if the 'try' fails, we need to do a mutex_pause | |
6016 | * to allow the owner of the object lock a chance to | |
6017 | * run... | |
6018 | */ | |
6019 | if ( !vm_object_lock_try_scan(m_object)) { | |
6020 | ||
6021 | if (try_failed_count > 20) { | |
6022 | hibernate_stats.hibernate_queue_nolock++; | |
6023 | ||
6024 | goto reenter_pg_on_q; | |
6025 | } | |
6026 | ||
6027 | vm_page_unlock_queues(); | |
6028 | mutex_pause(try_failed_count++); | |
6029 | vm_page_lock_queues(); | |
6030 | ||
6031 | hibernate_stats.hibernate_queue_paused++; | |
6032 | continue; | |
6033 | } else { | |
6034 | l_object = m_object; | |
6035 | } | |
6036 | } | |
6037 | if ( !m_object->alive || m->encrypted_cleaning || m->cleaning || m->laundry || m->busy || m->absent || m->error) { | |
6038 | /* | |
6039 | * page is not to be cleaned | |
6040 | * put it back on the head of its queue | |
6041 | */ | |
6042 | if (m->cleaning) | |
6043 | hibernate_stats.hibernate_skipped_cleaning++; | |
6044 | else | |
6045 | hibernate_stats.hibernate_skipped_transient++; | |
6046 | ||
6047 | goto reenter_pg_on_q; | |
6048 | } | |
6049 | if (m_object->copy == VM_OBJECT_NULL) { | |
6050 | if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { | |
6051 | /* | |
6052 | * let the normal hibernate image path | |
6053 | * deal with these | |
6054 | */ | |
6055 | goto reenter_pg_on_q; | |
6056 | } | |
6057 | } | |
6058 | if ( !m->dirty && m->pmapped) { | |
6059 | refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); | |
6060 | ||
6061 | if ((refmod_state & VM_MEM_MODIFIED)) { | |
6062 | SET_PAGE_DIRTY(m, FALSE); | |
6063 | } | |
6064 | } else | |
6065 | refmod_state = 0; | |
6066 | ||
6067 | if ( !m->dirty) { | |
6068 | /* | |
6069 | * page is not to be cleaned | |
6070 | * put it back on the head of its queue | |
6071 | */ | |
6072 | if (m->precious) | |
6073 | hibernate_stats.hibernate_skipped_precious++; | |
6074 | ||
6075 | goto reenter_pg_on_q; | |
6076 | } | |
6077 | ||
6078 | if (hibernate_skip_external == TRUE && !m_object->internal) { | |
6079 | ||
6080 | hibernate_stats.hibernate_skipped_external++; | |
6081 | ||
6082 | goto reenter_pg_on_q; | |
6083 | } | |
6084 | tq = NULL; | |
6085 | ||
6086 | if (m_object->internal) { | |
6087 | if (VM_PAGE_Q_THROTTLED(iq)) | |
6088 | tq = iq; | |
6089 | } else if (VM_PAGE_Q_THROTTLED(eq)) | |
6090 | tq = eq; | |
6091 | ||
6092 | if (tq != NULL) { | |
6093 | wait_result_t wait_result; | |
6094 | int wait_count = 5; | |
6095 | ||
6096 | if (l_object != NULL) { | |
6097 | vm_object_unlock(l_object); | |
6098 | l_object = NULL; | |
6099 | } | |
6100 | ||
6101 | while (retval == 0) { | |
6102 | ||
6103 | tq->pgo_throttled = TRUE; | |
6104 | ||
6105 | assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000*NSEC_PER_USEC); | |
6106 | ||
6107 | vm_page_unlock_queues(); | |
6108 | ||
6109 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
6110 | ||
6111 | vm_page_lock_queues(); | |
6112 | ||
6113 | if (wait_result != THREAD_TIMED_OUT) | |
6114 | break; | |
6115 | if (!VM_PAGE_Q_THROTTLED(tq)) | |
6116 | break; | |
6117 | ||
6118 | if (hibernate_should_abort()) | |
6119 | retval = 1; | |
6120 | ||
6121 | if (--wait_count == 0) { | |
6122 | ||
6123 | hibernate_stats.hibernate_throttle_timeout++; | |
6124 | ||
6125 | if (tq == eq) { | |
6126 | hibernate_skip_external = TRUE; | |
6127 | break; | |
6128 | } | |
6129 | retval = 1; | |
6130 | } | |
6131 | } | |
6132 | if (retval) | |
6133 | break; | |
6134 | ||
6135 | hibernate_stats.hibernate_throttled++; | |
6136 | ||
6137 | continue; | |
6138 | } | |
6139 | /* | |
6140 | * we've already factored out pages in the laundry which | |
6141 | * means this page can't be on the pageout queue so it's | |
6142 | * safe to do the vm_page_queues_remove | |
6143 | */ | |
6144 | vm_page_queues_remove(m, TRUE); | |
6145 | ||
6146 | if (m_object->internal == TRUE) | |
6147 | pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m), PMAP_OPTIONS_COMPRESSOR, NULL); | |
6148 | ||
6149 | (void)vm_pageout_cluster(m, FALSE, FALSE); | |
6150 | ||
6151 | hibernate_stats.hibernate_found_dirty++; | |
6152 | ||
6153 | goto next_pg; | |
6154 | ||
6155 | reenter_pg_on_q: | |
6156 | vm_page_queue_remove(q, m, vm_page_t, pageq); | |
6157 | vm_page_queue_enter(q, m, vm_page_t, pageq); | |
6158 | ||
6159 | hibernate_stats.hibernate_reentered_on_q++; | |
6160 | next_pg: | |
6161 | hibernate_stats.hibernate_considered++; | |
6162 | ||
6163 | qcount--; | |
6164 | try_failed_count = 0; | |
6165 | } | |
6166 | if (l_object != NULL) { | |
6167 | vm_object_unlock(l_object); | |
6168 | l_object = NULL; | |
6169 | } | |
6170 | ||
6171 | vm_page_unlock_queues(); | |
6172 | ||
6173 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); | |
6174 | ||
6175 | return (retval); | |
6176 | } | |
6177 | ||
6178 | ||
6179 | static int | |
6180 | hibernate_flush_dirty_pages(int pass) | |
6181 | { | |
6182 | struct vm_speculative_age_q *aq; | |
6183 | uint32_t i; | |
6184 | ||
6185 | if (vm_page_local_q) { | |
6186 | for (i = 0; i < vm_page_local_q_count; i++) | |
6187 | vm_page_reactivate_local(i, TRUE, FALSE); | |
6188 | } | |
6189 | ||
6190 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { | |
6191 | int qcount; | |
6192 | vm_page_t m; | |
6193 | ||
6194 | aq = &vm_page_queue_speculative[i]; | |
6195 | ||
6196 | if (vm_page_queue_empty(&aq->age_q)) | |
6197 | continue; | |
6198 | qcount = 0; | |
6199 | ||
6200 | vm_page_lockspin_queues(); | |
6201 | ||
6202 | vm_page_queue_iterate(&aq->age_q, | |
6203 | m, | |
6204 | vm_page_t, | |
6205 | pageq) | |
6206 | { | |
6207 | qcount++; | |
6208 | } | |
6209 | vm_page_unlock_queues(); | |
6210 | ||
6211 | if (qcount) { | |
6212 | if (hibernate_flush_queue(&aq->age_q, qcount)) | |
6213 | return (1); | |
6214 | } | |
6215 | } | |
6216 | if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) | |
6217 | return (1); | |
6218 | /* XXX FBDP TODO: flush secluded queue */ | |
6219 | if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) | |
6220 | return (1); | |
6221 | if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) | |
6222 | return (1); | |
6223 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) | |
6224 | return (1); | |
6225 | ||
6226 | if (pass == 1) | |
6227 | vm_compressor_record_warmup_start(); | |
6228 | ||
6229 | if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) { | |
6230 | if (pass == 1) | |
6231 | vm_compressor_record_warmup_end(); | |
6232 | return (1); | |
6233 | } | |
6234 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { | |
6235 | if (pass == 1) | |
6236 | vm_compressor_record_warmup_end(); | |
6237 | return (1); | |
6238 | } | |
6239 | if (pass == 1) | |
6240 | vm_compressor_record_warmup_end(); | |
6241 | ||
6242 | if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) | |
6243 | return (1); | |
6244 | ||
6245 | return (0); | |
6246 | } | |
6247 | ||
6248 | ||
6249 | void | |
6250 | hibernate_reset_stats() | |
6251 | { | |
6252 | bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); | |
6253 | } | |
6254 | ||
6255 | ||
6256 | int | |
6257 | hibernate_flush_memory() | |
6258 | { | |
6259 | int retval; | |
6260 | ||
6261 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
6262 | ||
6263 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); | |
6264 | ||
6265 | hibernate_cleaning_in_progress = TRUE; | |
6266 | hibernate_skip_external = FALSE; | |
6267 | ||
6268 | if ((retval = hibernate_flush_dirty_pages(1)) == 0) { | |
6269 | ||
6270 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); | |
6271 | ||
6272 | vm_compressor_flush(); | |
6273 | ||
6274 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); | |
6275 | ||
6276 | if (consider_buffer_cache_collect != NULL) { | |
6277 | unsigned int orig_wire_count; | |
6278 | ||
6279 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
6280 | orig_wire_count = vm_page_wire_count; | |
6281 | ||
6282 | (void)(*consider_buffer_cache_collect)(1); | |
6283 | consider_zone_gc(); | |
6284 | ||
6285 | HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n", orig_wire_count - vm_page_wire_count); | |
6286 | ||
6287 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0); | |
6288 | } | |
6289 | } | |
6290 | hibernate_cleaning_in_progress = FALSE; | |
6291 | ||
6292 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); | |
6293 | ||
6294 | if (retval) | |
6295 | HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n", VM_PAGE_COMPRESSOR_COUNT); | |
6296 | ||
6297 | ||
6298 | HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n", | |
6299 | hibernate_stats.hibernate_considered, | |
6300 | hibernate_stats.hibernate_reentered_on_q, | |
6301 | hibernate_stats.hibernate_found_dirty); | |
6302 | HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n", | |
6303 | hibernate_stats.hibernate_skipped_cleaning, | |
6304 | hibernate_stats.hibernate_skipped_transient, | |
6305 | hibernate_stats.hibernate_skipped_precious, | |
6306 | hibernate_stats.hibernate_skipped_external, | |
6307 | hibernate_stats.hibernate_queue_nolock); | |
6308 | HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n", | |
6309 | hibernate_stats.hibernate_queue_paused, | |
6310 | hibernate_stats.hibernate_throttled, | |
6311 | hibernate_stats.hibernate_throttle_timeout, | |
6312 | hibernate_stats.hibernate_drained, | |
6313 | hibernate_stats.hibernate_drain_timeout); | |
6314 | ||
6315 | return (retval); | |
6316 | } | |
6317 | ||
6318 | ||
6319 | static void | |
6320 | hibernate_page_list_zero(hibernate_page_list_t *list) | |
6321 | { | |
6322 | uint32_t bank; | |
6323 | hibernate_bitmap_t * bitmap; | |
6324 | ||
6325 | bitmap = &list->bank_bitmap[0]; | |
6326 | for (bank = 0; bank < list->bank_count; bank++) | |
6327 | { | |
6328 | uint32_t last_bit; | |
6329 | ||
6330 | bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); | |
6331 | // set out-of-bound bits at end of bitmap. | |
6332 | last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); | |
6333 | if (last_bit) | |
6334 | bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); | |
6335 | ||
6336 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; | |
6337 | } | |
6338 | } | |
6339 | ||
6340 | void | |
6341 | hibernate_free_gobble_pages(void) | |
6342 | { | |
6343 | vm_page_t m, next; | |
6344 | uint32_t count = 0; | |
6345 | ||
6346 | m = (vm_page_t) hibernate_gobble_queue; | |
6347 | while(m) | |
6348 | { | |
6349 | next = m->snext; | |
6350 | vm_page_free(m); | |
6351 | count++; | |
6352 | m = next; | |
6353 | } | |
6354 | hibernate_gobble_queue = VM_PAGE_NULL; | |
6355 | ||
6356 | if (count) | |
6357 | HIBLOG("Freed %d pages\n", count); | |
6358 | } | |
6359 | ||
6360 | static boolean_t | |
6361 | hibernate_consider_discard(vm_page_t m, boolean_t preflight) | |
6362 | { | |
6363 | vm_object_t object = NULL; | |
6364 | int refmod_state; | |
6365 | boolean_t discard = FALSE; | |
6366 | ||
6367 | do | |
6368 | { | |
6369 | if (m->private) | |
6370 | panic("hibernate_consider_discard: private"); | |
6371 | ||
6372 | object = VM_PAGE_OBJECT(m); | |
6373 | ||
6374 | if (!vm_object_lock_try(object)) { | |
6375 | object = NULL; | |
6376 | if (!preflight) hibernate_stats.cd_lock_failed++; | |
6377 | break; | |
6378 | } | |
6379 | if (VM_PAGE_WIRED(m)) { | |
6380 | if (!preflight) hibernate_stats.cd_found_wired++; | |
6381 | break; | |
6382 | } | |
6383 | if (m->precious) { | |
6384 | if (!preflight) hibernate_stats.cd_found_precious++; | |
6385 | break; | |
6386 | } | |
6387 | if (m->busy || !object->alive) { | |
6388 | /* | |
6389 | * Somebody is playing with this page. | |
6390 | */ | |
6391 | if (!preflight) hibernate_stats.cd_found_busy++; | |
6392 | break; | |
6393 | } | |
6394 | if (m->absent || m->unusual || m->error) { | |
6395 | /* | |
6396 | * If it's unusual in anyway, ignore it | |
6397 | */ | |
6398 | if (!preflight) hibernate_stats.cd_found_unusual++; | |
6399 | break; | |
6400 | } | |
6401 | if (m->cleaning) { | |
6402 | if (!preflight) hibernate_stats.cd_found_cleaning++; | |
6403 | break; | |
6404 | } | |
6405 | if (m->laundry) { | |
6406 | if (!preflight) hibernate_stats.cd_found_laundry++; | |
6407 | break; | |
6408 | } | |
6409 | if (!m->dirty) | |
6410 | { | |
6411 | refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); | |
6412 | ||
6413 | if (refmod_state & VM_MEM_REFERENCED) | |
6414 | m->reference = TRUE; | |
6415 | if (refmod_state & VM_MEM_MODIFIED) { | |
6416 | SET_PAGE_DIRTY(m, FALSE); | |
6417 | } | |
6418 | } | |
6419 | ||
6420 | /* | |
6421 | * If it's clean or purgeable we can discard the page on wakeup. | |
6422 | */ | |
6423 | discard = (!m->dirty) | |
6424 | || (VM_PURGABLE_VOLATILE == object->purgable) | |
6425 | || (VM_PURGABLE_EMPTY == object->purgable); | |
6426 | ||
6427 | ||
6428 | if (discard == FALSE) { | |
6429 | if (!preflight) | |
6430 | hibernate_stats.cd_found_dirty++; | |
6431 | } else if (m->xpmapped && m->reference && !object->internal) { | |
6432 | if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) { | |
6433 | if (!preflight) | |
6434 | hibernate_stats.cd_found_xpmapped++; | |
6435 | discard = FALSE; | |
6436 | } else { | |
6437 | if (!preflight) | |
6438 | hibernate_stats.cd_skipped_xpmapped++; | |
6439 | } | |
6440 | } | |
6441 | } | |
6442 | while (FALSE); | |
6443 | ||
6444 | if (object) | |
6445 | vm_object_unlock(object); | |
6446 | ||
6447 | return (discard); | |
6448 | } | |
6449 | ||
6450 | ||
6451 | static void | |
6452 | hibernate_discard_page(vm_page_t m) | |
6453 | { | |
6454 | vm_object_t m_object; | |
6455 | ||
6456 | if (m->absent || m->unusual || m->error) | |
6457 | /* | |
6458 | * If it's unusual in anyway, ignore | |
6459 | */ | |
6460 | return; | |
6461 | ||
6462 | m_object = VM_PAGE_OBJECT(m); | |
6463 | ||
6464 | #if MACH_ASSERT || DEBUG | |
6465 | if (!vm_object_lock_try(m_object)) | |
6466 | panic("hibernate_discard_page(%p) !vm_object_lock_try", m); | |
6467 | #else | |
6468 | /* No need to lock page queue for token delete, hibernate_vm_unlock() | |
6469 | makes sure these locks are uncontended before sleep */ | |
6470 | #endif /* MACH_ASSERT || DEBUG */ | |
6471 | ||
6472 | if (m->pmapped == TRUE) | |
6473 | { | |
6474 | __unused int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
6475 | } | |
6476 | ||
6477 | if (m->laundry) | |
6478 | panic("hibernate_discard_page(%p) laundry", m); | |
6479 | if (m->private) | |
6480 | panic("hibernate_discard_page(%p) private", m); | |
6481 | if (m->fictitious) | |
6482 | panic("hibernate_discard_page(%p) fictitious", m); | |
6483 | ||
6484 | if (VM_PURGABLE_VOLATILE == m_object->purgable) | |
6485 | { | |
6486 | /* object should be on a queue */ | |
6487 | assert((m_object->objq.next != NULL) && (m_object->objq.prev != NULL)); | |
6488 | purgeable_q_t old_queue = vm_purgeable_object_remove(m_object); | |
6489 | assert(old_queue); | |
6490 | if (m_object->purgeable_when_ripe) { | |
6491 | vm_purgeable_token_delete_first(old_queue); | |
6492 | } | |
6493 | vm_object_lock_assert_exclusive(m_object); | |
6494 | m_object->purgable = VM_PURGABLE_EMPTY; | |
6495 | ||
6496 | /* | |
6497 | * Purgeable ledgers: pages of VOLATILE and EMPTY objects are | |
6498 | * accounted in the "volatile" ledger, so no change here. | |
6499 | * We have to update vm_page_purgeable_count, though, since we're | |
6500 | * effectively purging this object. | |
6501 | */ | |
6502 | unsigned int delta; | |
6503 | assert(m_object->resident_page_count >= m_object->wired_page_count); | |
6504 | delta = (m_object->resident_page_count - m_object->wired_page_count); | |
6505 | assert(vm_page_purgeable_count >= delta); | |
6506 | assert(delta > 0); | |
6507 | OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count); | |
6508 | } | |
6509 | ||
6510 | vm_page_free(m); | |
6511 | ||
6512 | #if MACH_ASSERT || DEBUG | |
6513 | vm_object_unlock(m_object); | |
6514 | #endif /* MACH_ASSERT || DEBUG */ | |
6515 | } | |
6516 | ||
6517 | /* | |
6518 | Grab locks for hibernate_page_list_setall() | |
6519 | */ | |
6520 | void | |
6521 | hibernate_vm_lock_queues(void) | |
6522 | { | |
6523 | vm_object_lock(compressor_object); | |
6524 | vm_page_lock_queues(); | |
6525 | lck_mtx_lock(&vm_page_queue_free_lock); | |
6526 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
6527 | ||
6528 | if (vm_page_local_q) { | |
6529 | uint32_t i; | |
6530 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6531 | struct vpl *lq; | |
6532 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6533 | VPL_LOCK(&lq->vpl_lock); | |
6534 | } | |
6535 | } | |
6536 | } | |
6537 | ||
6538 | void | |
6539 | hibernate_vm_unlock_queues(void) | |
6540 | { | |
6541 | if (vm_page_local_q) { | |
6542 | uint32_t i; | |
6543 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6544 | struct vpl *lq; | |
6545 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6546 | VPL_UNLOCK(&lq->vpl_lock); | |
6547 | } | |
6548 | } | |
6549 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
6550 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
6551 | vm_page_unlock_queues(); | |
6552 | vm_object_unlock(compressor_object); | |
6553 | } | |
6554 | ||
6555 | /* | |
6556 | Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, | |
6557 | pages known to VM to not need saving are subtracted. | |
6558 | Wired pages to be saved are present in page_list_wired, pageable in page_list. | |
6559 | */ | |
6560 | ||
6561 | void | |
6562 | hibernate_page_list_setall(hibernate_page_list_t * page_list, | |
6563 | hibernate_page_list_t * page_list_wired, | |
6564 | hibernate_page_list_t * page_list_pal, | |
6565 | boolean_t preflight, | |
6566 | boolean_t will_discard, | |
6567 | uint32_t * pagesOut) | |
6568 | { | |
6569 | uint64_t start, end, nsec; | |
6570 | vm_page_t m; | |
6571 | vm_page_t next; | |
6572 | uint32_t pages = page_list->page_count; | |
6573 | uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0; | |
6574 | uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0; | |
6575 | uint32_t count_wire = pages; | |
6576 | uint32_t count_discard_active = 0; | |
6577 | uint32_t count_discard_inactive = 0; | |
6578 | uint32_t count_discard_cleaned = 0; | |
6579 | uint32_t count_discard_purgeable = 0; | |
6580 | uint32_t count_discard_speculative = 0; | |
6581 | uint32_t count_discard_vm_struct_pages = 0; | |
6582 | uint32_t i; | |
6583 | uint32_t bank; | |
6584 | hibernate_bitmap_t * bitmap; | |
6585 | hibernate_bitmap_t * bitmap_wired; | |
6586 | boolean_t discard_all; | |
6587 | boolean_t discard; | |
6588 | ||
6589 | HIBLOG("hibernate_page_list_setall(preflight %d) start\n", preflight); | |
6590 | ||
6591 | if (preflight) { | |
6592 | page_list = NULL; | |
6593 | page_list_wired = NULL; | |
6594 | page_list_pal = NULL; | |
6595 | discard_all = FALSE; | |
6596 | } else { | |
6597 | discard_all = will_discard; | |
6598 | } | |
6599 | ||
6600 | #if MACH_ASSERT || DEBUG | |
6601 | if (!preflight) | |
6602 | { | |
6603 | vm_page_lock_queues(); | |
6604 | if (vm_page_local_q) { | |
6605 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6606 | struct vpl *lq; | |
6607 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6608 | VPL_LOCK(&lq->vpl_lock); | |
6609 | } | |
6610 | } | |
6611 | } | |
6612 | #endif /* MACH_ASSERT || DEBUG */ | |
6613 | ||
6614 | ||
6615 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); | |
6616 | ||
6617 | clock_get_uptime(&start); | |
6618 | ||
6619 | if (!preflight) { | |
6620 | hibernate_page_list_zero(page_list); | |
6621 | hibernate_page_list_zero(page_list_wired); | |
6622 | hibernate_page_list_zero(page_list_pal); | |
6623 | ||
6624 | hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; | |
6625 | hibernate_stats.cd_pages = pages; | |
6626 | } | |
6627 | ||
6628 | if (vm_page_local_q) { | |
6629 | for (i = 0; i < vm_page_local_q_count; i++) | |
6630 | vm_page_reactivate_local(i, TRUE, !preflight); | |
6631 | } | |
6632 | ||
6633 | if (preflight) { | |
6634 | vm_object_lock(compressor_object); | |
6635 | vm_page_lock_queues(); | |
6636 | lck_mtx_lock(&vm_page_queue_free_lock); | |
6637 | } | |
6638 | ||
6639 | m = (vm_page_t) hibernate_gobble_queue; | |
6640 | while (m) | |
6641 | { | |
6642 | pages--; | |
6643 | count_wire--; | |
6644 | if (!preflight) { | |
6645 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6646 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6647 | } | |
6648 | m = m->snext; | |
6649 | } | |
6650 | ||
6651 | if (!preflight) for( i = 0; i < real_ncpus; i++ ) | |
6652 | { | |
6653 | if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) | |
6654 | { | |
6655 | for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = m->snext) | |
6656 | { | |
6657 | assert(m->vm_page_q_state == VM_PAGE_ON_FREE_LOCAL_Q); | |
6658 | ||
6659 | pages--; | |
6660 | count_wire--; | |
6661 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6662 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6663 | ||
6664 | hibernate_stats.cd_local_free++; | |
6665 | hibernate_stats.cd_total_free++; | |
6666 | } | |
6667 | } | |
6668 | } | |
6669 | ||
6670 | for( i = 0; i < vm_colors; i++ ) | |
6671 | { | |
6672 | vm_page_queue_iterate(&vm_page_queue_free[i].qhead, | |
6673 | m, | |
6674 | vm_page_t, | |
6675 | pageq) | |
6676 | { | |
6677 | assert(m->vm_page_q_state == VM_PAGE_ON_FREE_Q); | |
6678 | ||
6679 | pages--; | |
6680 | count_wire--; | |
6681 | if (!preflight) { | |
6682 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6683 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6684 | ||
6685 | hibernate_stats.cd_total_free++; | |
6686 | } | |
6687 | } | |
6688 | } | |
6689 | ||
6690 | vm_page_queue_iterate(&vm_lopage_queue_free, | |
6691 | m, | |
6692 | vm_page_t, | |
6693 | pageq) | |
6694 | { | |
6695 | assert(m->vm_page_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); | |
6696 | ||
6697 | pages--; | |
6698 | count_wire--; | |
6699 | if (!preflight) { | |
6700 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6701 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6702 | ||
6703 | hibernate_stats.cd_total_free++; | |
6704 | } | |
6705 | } | |
6706 | ||
6707 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); | |
6708 | while (m && !vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t)m)) | |
6709 | { | |
6710 | assert(m->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q); | |
6711 | ||
6712 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6713 | discard = FALSE; | |
6714 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6715 | && hibernate_consider_discard(m, preflight)) | |
6716 | { | |
6717 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6718 | count_discard_inactive++; | |
6719 | discard = discard_all; | |
6720 | } | |
6721 | else | |
6722 | count_throttled++; | |
6723 | count_wire--; | |
6724 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6725 | ||
6726 | if (discard) hibernate_discard_page(m); | |
6727 | m = next; | |
6728 | } | |
6729 | ||
6730 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); | |
6731 | while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) | |
6732 | { | |
6733 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); | |
6734 | ||
6735 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6736 | discard = FALSE; | |
6737 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6738 | && hibernate_consider_discard(m, preflight)) | |
6739 | { | |
6740 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6741 | if (m->dirty) | |
6742 | count_discard_purgeable++; | |
6743 | else | |
6744 | count_discard_inactive++; | |
6745 | discard = discard_all; | |
6746 | } | |
6747 | else | |
6748 | count_anonymous++; | |
6749 | count_wire--; | |
6750 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6751 | if (discard) hibernate_discard_page(m); | |
6752 | m = next; | |
6753 | } | |
6754 | ||
6755 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); | |
6756 | while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) | |
6757 | { | |
6758 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); | |
6759 | ||
6760 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6761 | discard = FALSE; | |
6762 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6763 | && hibernate_consider_discard(m, preflight)) | |
6764 | { | |
6765 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6766 | if (m->dirty) | |
6767 | count_discard_purgeable++; | |
6768 | else | |
6769 | count_discard_cleaned++; | |
6770 | discard = discard_all; | |
6771 | } | |
6772 | else | |
6773 | count_cleaned++; | |
6774 | count_wire--; | |
6775 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6776 | if (discard) hibernate_discard_page(m); | |
6777 | m = next; | |
6778 | } | |
6779 | ||
6780 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); | |
6781 | while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) | |
6782 | { | |
6783 | assert(m->vm_page_q_state == VM_PAGE_ON_ACTIVE_Q); | |
6784 | ||
6785 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6786 | discard = FALSE; | |
6787 | if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) | |
6788 | && hibernate_consider_discard(m, preflight)) | |
6789 | { | |
6790 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6791 | if (m->dirty) | |
6792 | count_discard_purgeable++; | |
6793 | else | |
6794 | count_discard_active++; | |
6795 | discard = discard_all; | |
6796 | } | |
6797 | else | |
6798 | count_active++; | |
6799 | count_wire--; | |
6800 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6801 | if (discard) hibernate_discard_page(m); | |
6802 | m = next; | |
6803 | } | |
6804 | ||
6805 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); | |
6806 | while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) | |
6807 | { | |
6808 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); | |
6809 | ||
6810 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6811 | discard = FALSE; | |
6812 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6813 | && hibernate_consider_discard(m, preflight)) | |
6814 | { | |
6815 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6816 | if (m->dirty) | |
6817 | count_discard_purgeable++; | |
6818 | else | |
6819 | count_discard_inactive++; | |
6820 | discard = discard_all; | |
6821 | } | |
6822 | else | |
6823 | count_inactive++; | |
6824 | count_wire--; | |
6825 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6826 | if (discard) hibernate_discard_page(m); | |
6827 | m = next; | |
6828 | } | |
6829 | /* XXX FBDP TODO: secluded queue */ | |
6830 | ||
6831 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
6832 | { | |
6833 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); | |
6834 | while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) | |
6835 | { | |
6836 | assert(m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q); | |
6837 | ||
6838 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6839 | discard = FALSE; | |
6840 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
6841 | && hibernate_consider_discard(m, preflight)) | |
6842 | { | |
6843 | if (!preflight) hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6844 | count_discard_speculative++; | |
6845 | discard = discard_all; | |
6846 | } | |
6847 | else | |
6848 | count_speculative++; | |
6849 | count_wire--; | |
6850 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6851 | if (discard) hibernate_discard_page(m); | |
6852 | m = next; | |
6853 | } | |
6854 | } | |
6855 | ||
6856 | vm_page_queue_iterate(&compressor_object->memq, m, vm_page_t, listq) | |
6857 | { | |
6858 | assert(m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR); | |
6859 | ||
6860 | count_compressor++; | |
6861 | count_wire--; | |
6862 | if (!preflight) hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); | |
6863 | } | |
6864 | ||
6865 | if (preflight == FALSE && discard_all == TRUE) { | |
6866 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
6867 | ||
6868 | HIBLOG("hibernate_teardown started\n"); | |
6869 | count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired); | |
6870 | HIBLOG("hibernate_teardown completed - discarded %d\n", count_discard_vm_struct_pages); | |
6871 | ||
6872 | pages -= count_discard_vm_struct_pages; | |
6873 | count_wire -= count_discard_vm_struct_pages; | |
6874 | ||
6875 | hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages; | |
6876 | ||
6877 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
6878 | } | |
6879 | ||
6880 | if (!preflight) { | |
6881 | // pull wired from hibernate_bitmap | |
6882 | bitmap = &page_list->bank_bitmap[0]; | |
6883 | bitmap_wired = &page_list_wired->bank_bitmap[0]; | |
6884 | for (bank = 0; bank < page_list->bank_count; bank++) | |
6885 | { | |
6886 | for (i = 0; i < bitmap->bitmapwords; i++) | |
6887 | bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; | |
6888 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap [bitmap->bitmapwords]; | |
6889 | bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; | |
6890 | } | |
6891 | } | |
6892 | ||
6893 | // machine dependent adjustments | |
6894 | hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages); | |
6895 | ||
6896 | if (!preflight) { | |
6897 | hibernate_stats.cd_count_wire = count_wire; | |
6898 | hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + | |
6899 | count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages; | |
6900 | } | |
6901 | ||
6902 | clock_get_uptime(&end); | |
6903 | absolutetime_to_nanoseconds(end - start, &nsec); | |
6904 | HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL); | |
6905 | ||
6906 | HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d\n", | |
6907 | pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped, | |
6908 | discard_all ? "did" : "could", | |
6909 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
6910 | ||
6911 | if (hibernate_stats.cd_skipped_xpmapped) | |
6912 | HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n", hibernate_stats.cd_skipped_xpmapped); | |
6913 | ||
6914 | *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned; | |
6915 | ||
6916 | if (preflight && will_discard) *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active; | |
6917 | ||
6918 | #if MACH_ASSERT || DEBUG | |
6919 | if (!preflight) | |
6920 | { | |
6921 | if (vm_page_local_q) { | |
6922 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6923 | struct vpl *lq; | |
6924 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6925 | VPL_UNLOCK(&lq->vpl_lock); | |
6926 | } | |
6927 | } | |
6928 | vm_page_unlock_queues(); | |
6929 | } | |
6930 | #endif /* MACH_ASSERT || DEBUG */ | |
6931 | ||
6932 | if (preflight) { | |
6933 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
6934 | vm_page_unlock_queues(); | |
6935 | vm_object_unlock(compressor_object); | |
6936 | } | |
6937 | ||
6938 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); | |
6939 | } | |
6940 | ||
6941 | void | |
6942 | hibernate_page_list_discard(hibernate_page_list_t * page_list) | |
6943 | { | |
6944 | uint64_t start, end, nsec; | |
6945 | vm_page_t m; | |
6946 | vm_page_t next; | |
6947 | uint32_t i; | |
6948 | uint32_t count_discard_active = 0; | |
6949 | uint32_t count_discard_inactive = 0; | |
6950 | uint32_t count_discard_purgeable = 0; | |
6951 | uint32_t count_discard_cleaned = 0; | |
6952 | uint32_t count_discard_speculative = 0; | |
6953 | ||
6954 | ||
6955 | #if MACH_ASSERT || DEBUG | |
6956 | vm_page_lock_queues(); | |
6957 | if (vm_page_local_q) { | |
6958 | for (i = 0; i < vm_page_local_q_count; i++) { | |
6959 | struct vpl *lq; | |
6960 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
6961 | VPL_LOCK(&lq->vpl_lock); | |
6962 | } | |
6963 | } | |
6964 | #endif /* MACH_ASSERT || DEBUG */ | |
6965 | ||
6966 | clock_get_uptime(&start); | |
6967 | ||
6968 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); | |
6969 | while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) | |
6970 | { | |
6971 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); | |
6972 | ||
6973 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6974 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) | |
6975 | { | |
6976 | if (m->dirty) | |
6977 | count_discard_purgeable++; | |
6978 | else | |
6979 | count_discard_inactive++; | |
6980 | hibernate_discard_page(m); | |
6981 | } | |
6982 | m = next; | |
6983 | } | |
6984 | ||
6985 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
6986 | { | |
6987 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); | |
6988 | while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) | |
6989 | { | |
6990 | assert(m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q); | |
6991 | ||
6992 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->pageq.next); | |
6993 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) | |
6994 | { | |
6995 | count_discard_speculative++; | |
6996 | hibernate_discard_page(m); | |
6997 | } | |
6998 | m = next; | |
6999 | } | |
7000 | } | |
7001 | ||
7002 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); | |
7003 | while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) | |
7004 | { | |
7005 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); | |
7006 | ||
7007 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->pageq.next); | |
7008 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) | |
7009 | { | |
7010 | if (m->dirty) | |
7011 | count_discard_purgeable++; | |
7012 | else | |
7013 | count_discard_inactive++; | |
7014 | hibernate_discard_page(m); | |
7015 | } | |
7016 | m = next; | |
7017 | } | |
7018 | /* XXX FBDP TODO: secluded queue */ | |
7019 | ||
7020 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); | |
7021 | while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) | |
7022 | { | |
7023 | assert(m->vm_page_q_state == VM_PAGE_ON_ACTIVE_Q); | |
7024 | ||
7025 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->pageq.next); | |
7026 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) | |
7027 | { | |
7028 | if (m->dirty) | |
7029 | count_discard_purgeable++; | |
7030 | else | |
7031 | count_discard_active++; | |
7032 | hibernate_discard_page(m); | |
7033 | } | |
7034 | m = next; | |
7035 | } | |
7036 | ||
7037 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); | |
7038 | while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) | |
7039 | { | |
7040 | assert(m->vm_page_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); | |
7041 | ||
7042 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->pageq.next); | |
7043 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) | |
7044 | { | |
7045 | if (m->dirty) | |
7046 | count_discard_purgeable++; | |
7047 | else | |
7048 | count_discard_cleaned++; | |
7049 | hibernate_discard_page(m); | |
7050 | } | |
7051 | m = next; | |
7052 | } | |
7053 | ||
7054 | #if MACH_ASSERT || DEBUG | |
7055 | if (vm_page_local_q) { | |
7056 | for (i = 0; i < vm_page_local_q_count; i++) { | |
7057 | struct vpl *lq; | |
7058 | lq = &vm_page_local_q[i].vpl_un.vpl; | |
7059 | VPL_UNLOCK(&lq->vpl_lock); | |
7060 | } | |
7061 | } | |
7062 | vm_page_unlock_queues(); | |
7063 | #endif /* MACH_ASSERT || DEBUG */ | |
7064 | ||
7065 | clock_get_uptime(&end); | |
7066 | absolutetime_to_nanoseconds(end - start, &nsec); | |
7067 | HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n", | |
7068 | nsec / 1000000ULL, | |
7069 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); | |
7070 | } | |
7071 | ||
7072 | boolean_t hibernate_paddr_map_inited = FALSE; | |
7073 | boolean_t hibernate_rebuild_needed = FALSE; | |
7074 | unsigned int hibernate_teardown_last_valid_compact_indx = -1; | |
7075 | vm_page_t hibernate_rebuild_hash_list = NULL; | |
7076 | ||
7077 | unsigned int hibernate_teardown_found_tabled_pages = 0; | |
7078 | unsigned int hibernate_teardown_found_created_pages = 0; | |
7079 | unsigned int hibernate_teardown_found_free_pages = 0; | |
7080 | unsigned int hibernate_teardown_vm_page_free_count; | |
7081 | ||
7082 | ||
7083 | struct ppnum_mapping { | |
7084 | struct ppnum_mapping *ppnm_next; | |
7085 | ppnum_t ppnm_base_paddr; | |
7086 | unsigned int ppnm_sindx; | |
7087 | unsigned int ppnm_eindx; | |
7088 | }; | |
7089 | ||
7090 | struct ppnum_mapping *ppnm_head; | |
7091 | struct ppnum_mapping *ppnm_last_found = NULL; | |
7092 | ||
7093 | ||
7094 | void | |
7095 | hibernate_create_paddr_map() | |
7096 | { | |
7097 | unsigned int i; | |
7098 | ppnum_t next_ppnum_in_run = 0; | |
7099 | struct ppnum_mapping *ppnm = NULL; | |
7100 | ||
7101 | if (hibernate_paddr_map_inited == FALSE) { | |
7102 | ||
7103 | for (i = 0; i < vm_pages_count; i++) { | |
7104 | ||
7105 | if (ppnm) | |
7106 | ppnm->ppnm_eindx = i; | |
7107 | ||
7108 | if (ppnm == NULL || VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) != next_ppnum_in_run) { | |
7109 | ||
7110 | ppnm = kalloc(sizeof(struct ppnum_mapping)); | |
7111 | ||
7112 | ppnm->ppnm_next = ppnm_head; | |
7113 | ppnm_head = ppnm; | |
7114 | ||
7115 | ppnm->ppnm_sindx = i; | |
7116 | ppnm->ppnm_base_paddr = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]); | |
7117 | } | |
7118 | next_ppnum_in_run = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) + 1; | |
7119 | } | |
7120 | ppnm->ppnm_eindx++; | |
7121 | ||
7122 | hibernate_paddr_map_inited = TRUE; | |
7123 | } | |
7124 | } | |
7125 | ||
7126 | ppnum_t | |
7127 | hibernate_lookup_paddr(unsigned int indx) | |
7128 | { | |
7129 | struct ppnum_mapping *ppnm = NULL; | |
7130 | ||
7131 | ppnm = ppnm_last_found; | |
7132 | ||
7133 | if (ppnm) { | |
7134 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) | |
7135 | goto done; | |
7136 | } | |
7137 | for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) { | |
7138 | ||
7139 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { | |
7140 | ppnm_last_found = ppnm; | |
7141 | break; | |
7142 | } | |
7143 | } | |
7144 | if (ppnm == NULL) | |
7145 | panic("hibernate_lookup_paddr of %d failed\n", indx); | |
7146 | done: | |
7147 | return (ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx)); | |
7148 | } | |
7149 | ||
7150 | ||
7151 | uint32_t | |
7152 | hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) | |
7153 | { | |
7154 | addr64_t saddr_aligned; | |
7155 | addr64_t eaddr_aligned; | |
7156 | addr64_t addr; | |
7157 | ppnum_t paddr; | |
7158 | unsigned int mark_as_unneeded_pages = 0; | |
7159 | ||
7160 | saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64; | |
7161 | eaddr_aligned = eaddr & ~PAGE_MASK_64; | |
7162 | ||
7163 | for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) { | |
7164 | ||
7165 | paddr = pmap_find_phys(kernel_pmap, addr); | |
7166 | ||
7167 | assert(paddr); | |
7168 | ||
7169 | hibernate_page_bitset(page_list, TRUE, paddr); | |
7170 | hibernate_page_bitset(page_list_wired, TRUE, paddr); | |
7171 | ||
7172 | mark_as_unneeded_pages++; | |
7173 | } | |
7174 | return (mark_as_unneeded_pages); | |
7175 | } | |
7176 | ||
7177 | ||
7178 | void | |
7179 | hibernate_hash_insert_page(vm_page_t mem) | |
7180 | { | |
7181 | vm_page_bucket_t *bucket; | |
7182 | int hash_id; | |
7183 | vm_object_t m_object; | |
7184 | ||
7185 | m_object = VM_PAGE_OBJECT(mem); | |
7186 | ||
7187 | assert(mem->hashed); | |
7188 | assert(m_object); | |
7189 | assert(mem->offset != (vm_object_offset_t) -1); | |
7190 | ||
7191 | /* | |
7192 | * Insert it into the object_object/offset hash table | |
7193 | */ | |
7194 | hash_id = vm_page_hash(m_object, mem->offset); | |
7195 | bucket = &vm_page_buckets[hash_id]; | |
7196 | ||
7197 | mem->next_m = bucket->page_list; | |
7198 | bucket->page_list = VM_PAGE_PACK_PTR(mem); | |
7199 | } | |
7200 | ||
7201 | ||
7202 | void | |
7203 | hibernate_free_range(int sindx, int eindx) | |
7204 | { | |
7205 | vm_page_t mem; | |
7206 | unsigned int color; | |
7207 | ||
7208 | while (sindx < eindx) { | |
7209 | mem = &vm_pages[sindx]; | |
7210 | ||
7211 | vm_page_init(mem, hibernate_lookup_paddr(sindx), FALSE); | |
7212 | ||
7213 | mem->lopage = FALSE; | |
7214 | mem->vm_page_q_state = VM_PAGE_ON_FREE_Q; | |
7215 | ||
7216 | color = VM_PAGE_GET_PHYS_PAGE(mem) & vm_color_mask; | |
7217 | vm_page_queue_enter_first(&vm_page_queue_free[color].qhead, | |
7218 | mem, | |
7219 | vm_page_t, | |
7220 | pageq); | |
7221 | vm_page_free_count++; | |
7222 | ||
7223 | sindx++; | |
7224 | } | |
7225 | } | |
7226 | ||
7227 | ||
7228 | extern void hibernate_rebuild_pmap_structs(void); | |
7229 | ||
7230 | void | |
7231 | hibernate_rebuild_vm_structs(void) | |
7232 | { | |
7233 | int cindx, sindx, eindx; | |
7234 | vm_page_t mem, tmem, mem_next; | |
7235 | AbsoluteTime startTime, endTime; | |
7236 | uint64_t nsec; | |
7237 | ||
7238 | if (hibernate_rebuild_needed == FALSE) | |
7239 | return; | |
7240 | ||
7241 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
7242 | HIBLOG("hibernate_rebuild started\n"); | |
7243 | ||
7244 | clock_get_uptime(&startTime); | |
7245 | ||
7246 | hibernate_rebuild_pmap_structs(); | |
7247 | ||
7248 | bzero(&vm_page_buckets[0], vm_page_bucket_count * sizeof(vm_page_bucket_t)); | |
7249 | eindx = vm_pages_count; | |
7250 | ||
7251 | for (cindx = hibernate_teardown_last_valid_compact_indx; cindx >= 0; cindx--) { | |
7252 | ||
7253 | mem = &vm_pages[cindx]; | |
7254 | /* | |
7255 | * hibernate_teardown_vm_structs leaves the location where | |
7256 | * this vm_page_t must be located in "next". | |
7257 | */ | |
7258 | tmem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->next_m)); | |
7259 | mem->next_m = VM_PAGE_PACK_PTR(NULL); | |
7260 | ||
7261 | sindx = (int)(tmem - &vm_pages[0]); | |
7262 | ||
7263 | if (mem != tmem) { | |
7264 | /* | |
7265 | * this vm_page_t was moved by hibernate_teardown_vm_structs, | |
7266 | * so move it back to its real location | |
7267 | */ | |
7268 | *tmem = *mem; | |
7269 | mem = tmem; | |
7270 | } | |
7271 | if (mem->hashed) | |
7272 | hibernate_hash_insert_page(mem); | |
7273 | /* | |
7274 | * the 'hole' between this vm_page_t and the previous | |
7275 | * vm_page_t we moved needs to be initialized as | |
7276 | * a range of free vm_page_t's | |
7277 | */ | |
7278 | hibernate_free_range(sindx + 1, eindx); | |
7279 | ||
7280 | eindx = sindx; | |
7281 | } | |
7282 | if (sindx) | |
7283 | hibernate_free_range(0, sindx); | |
7284 | ||
7285 | assert(vm_page_free_count == hibernate_teardown_vm_page_free_count); | |
7286 | ||
7287 | /* | |
7288 | * process the list of vm_page_t's that were entered in the hash, | |
7289 | * but were not located in the vm_pages arrary... these are | |
7290 | * vm_page_t's that were created on the fly (i.e. fictitious) | |
7291 | */ | |
7292 | for (mem = hibernate_rebuild_hash_list; mem; mem = mem_next) { | |
7293 | mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->next_m)); | |
7294 | ||
7295 | mem->next_m = 0; | |
7296 | hibernate_hash_insert_page(mem); | |
7297 | } | |
7298 | hibernate_rebuild_hash_list = NULL; | |
7299 | ||
7300 | clock_get_uptime(&endTime); | |
7301 | SUB_ABSOLUTETIME(&endTime, &startTime); | |
7302 | absolutetime_to_nanoseconds(endTime, &nsec); | |
7303 | ||
7304 | HIBLOG("hibernate_rebuild completed - took %qd msecs\n", nsec / 1000000ULL); | |
7305 | ||
7306 | hibernate_rebuild_needed = FALSE; | |
7307 | ||
7308 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
7309 | } | |
7310 | ||
7311 | ||
7312 | extern void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *); | |
7313 | ||
7314 | uint32_t | |
7315 | hibernate_teardown_vm_structs(hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) | |
7316 | { | |
7317 | unsigned int i; | |
7318 | unsigned int compact_target_indx; | |
7319 | vm_page_t mem, mem_next; | |
7320 | vm_page_bucket_t *bucket; | |
7321 | unsigned int mark_as_unneeded_pages = 0; | |
7322 | unsigned int unneeded_vm_page_bucket_pages = 0; | |
7323 | unsigned int unneeded_vm_pages_pages = 0; | |
7324 | unsigned int unneeded_pmap_pages = 0; | |
7325 | addr64_t start_of_unneeded = 0; | |
7326 | addr64_t end_of_unneeded = 0; | |
7327 | ||
7328 | ||
7329 | if (hibernate_should_abort()) | |
7330 | return (0); | |
7331 | ||
7332 | HIBLOG("hibernate_teardown: wired_pages %d, free_pages %d, active_pages %d, inactive_pages %d, speculative_pages %d, cleaned_pages %d, compressor_pages %d\n", | |
7333 | vm_page_wire_count, vm_page_free_count, vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, | |
7334 | vm_page_cleaned_count, compressor_object->resident_page_count); | |
7335 | ||
7336 | for (i = 0; i < vm_page_bucket_count; i++) { | |
7337 | ||
7338 | bucket = &vm_page_buckets[i]; | |
7339 | ||
7340 | for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); mem != VM_PAGE_NULL; mem = mem_next) { | |
7341 | assert(mem->hashed); | |
7342 | ||
7343 | mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->next_m)); | |
7344 | ||
7345 | if (mem < &vm_pages[0] || mem >= &vm_pages[vm_pages_count]) { | |
7346 | mem->next_m = VM_PAGE_PACK_PTR(hibernate_rebuild_hash_list); | |
7347 | hibernate_rebuild_hash_list = mem; | |
7348 | } | |
7349 | } | |
7350 | } | |
7351 | unneeded_vm_page_bucket_pages = hibernate_mark_as_unneeded((addr64_t)&vm_page_buckets[0], (addr64_t)&vm_page_buckets[vm_page_bucket_count], page_list, page_list_wired); | |
7352 | mark_as_unneeded_pages += unneeded_vm_page_bucket_pages; | |
7353 | ||
7354 | hibernate_teardown_vm_page_free_count = vm_page_free_count; | |
7355 | ||
7356 | compact_target_indx = 0; | |
7357 | ||
7358 | for (i = 0; i < vm_pages_count; i++) { | |
7359 | ||
7360 | mem = &vm_pages[i]; | |
7361 | ||
7362 | if (mem->vm_page_q_state == VM_PAGE_ON_FREE_Q) { | |
7363 | unsigned int color; | |
7364 | ||
7365 | assert(mem->busy); | |
7366 | assert(!mem->lopage); | |
7367 | ||
7368 | color = VM_PAGE_GET_PHYS_PAGE(mem) & vm_color_mask; | |
7369 | ||
7370 | vm_page_queue_remove(&vm_page_queue_free[color].qhead, | |
7371 | mem, | |
7372 | vm_page_t, | |
7373 | pageq); | |
7374 | ||
7375 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
7376 | ||
7377 | vm_page_free_count--; | |
7378 | ||
7379 | hibernate_teardown_found_free_pages++; | |
7380 | ||
7381 | if (vm_pages[compact_target_indx].vm_page_q_state != VM_PAGE_ON_FREE_Q) | |
7382 | compact_target_indx = i; | |
7383 | } else { | |
7384 | /* | |
7385 | * record this vm_page_t's original location | |
7386 | * we need this even if it doesn't get moved | |
7387 | * as an indicator to the rebuild function that | |
7388 | * we don't have to move it | |
7389 | */ | |
7390 | mem->next_m = VM_PAGE_PACK_PTR(mem); | |
7391 | ||
7392 | if (vm_pages[compact_target_indx].vm_page_q_state == VM_PAGE_ON_FREE_Q) { | |
7393 | /* | |
7394 | * we've got a hole to fill, so | |
7395 | * move this vm_page_t to it's new home | |
7396 | */ | |
7397 | vm_pages[compact_target_indx] = *mem; | |
7398 | mem->vm_page_q_state = VM_PAGE_ON_FREE_Q; | |
7399 | ||
7400 | hibernate_teardown_last_valid_compact_indx = compact_target_indx; | |
7401 | compact_target_indx++; | |
7402 | } else | |
7403 | hibernate_teardown_last_valid_compact_indx = i; | |
7404 | } | |
7405 | } | |
7406 | unneeded_vm_pages_pages = hibernate_mark_as_unneeded((addr64_t)&vm_pages[hibernate_teardown_last_valid_compact_indx+1], | |
7407 | (addr64_t)&vm_pages[vm_pages_count-1], page_list, page_list_wired); | |
7408 | mark_as_unneeded_pages += unneeded_vm_pages_pages; | |
7409 | ||
7410 | hibernate_teardown_pmap_structs(&start_of_unneeded, &end_of_unneeded); | |
7411 | ||
7412 | if (start_of_unneeded) { | |
7413 | unneeded_pmap_pages = hibernate_mark_as_unneeded(start_of_unneeded, end_of_unneeded, page_list, page_list_wired); | |
7414 | mark_as_unneeded_pages += unneeded_pmap_pages; | |
7415 | } | |
7416 | HIBLOG("hibernate_teardown: mark_as_unneeded_pages %d, %d, %d\n", unneeded_vm_page_bucket_pages, unneeded_vm_pages_pages, unneeded_pmap_pages); | |
7417 | ||
7418 | hibernate_rebuild_needed = TRUE; | |
7419 | ||
7420 | return (mark_as_unneeded_pages); | |
7421 | } | |
7422 | ||
7423 | ||
7424 | #endif /* HIBERNATION */ | |
7425 | ||
7426 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
7427 | ||
7428 | #include <mach_vm_debug.h> | |
7429 | #if MACH_VM_DEBUG | |
7430 | ||
7431 | #include <mach_debug/hash_info.h> | |
7432 | #include <vm/vm_debug.h> | |
7433 | ||
7434 | /* | |
7435 | * Routine: vm_page_info | |
7436 | * Purpose: | |
7437 | * Return information about the global VP table. | |
7438 | * Fills the buffer with as much information as possible | |
7439 | * and returns the desired size of the buffer. | |
7440 | * Conditions: | |
7441 | * Nothing locked. The caller should provide | |
7442 | * possibly-pageable memory. | |
7443 | */ | |
7444 | ||
7445 | unsigned int | |
7446 | vm_page_info( | |
7447 | hash_info_bucket_t *info, | |
7448 | unsigned int count) | |
7449 | { | |
7450 | unsigned int i; | |
7451 | lck_spin_t *bucket_lock; | |
7452 | ||
7453 | if (vm_page_bucket_count < count) | |
7454 | count = vm_page_bucket_count; | |
7455 | ||
7456 | for (i = 0; i < count; i++) { | |
7457 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
7458 | unsigned int bucket_count = 0; | |
7459 | vm_page_t m; | |
7460 | ||
7461 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; | |
7462 | lck_spin_lock(bucket_lock); | |
7463 | ||
7464 | for (m = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); | |
7465 | m != VM_PAGE_NULL; | |
7466 | m = (vm_page_t)(VM_PAGE_UNPACK_PTR(m->next_m))) | |
7467 | bucket_count++; | |
7468 | ||
7469 | lck_spin_unlock(bucket_lock); | |
7470 | ||
7471 | /* don't touch pageable memory while holding locks */ | |
7472 | info[i].hib_count = bucket_count; | |
7473 | } | |
7474 | ||
7475 | return vm_page_bucket_count; | |
7476 | } | |
7477 | #endif /* MACH_VM_DEBUG */ | |
7478 | ||
7479 | #if VM_PAGE_BUCKETS_CHECK | |
7480 | void | |
7481 | vm_page_buckets_check(void) | |
7482 | { | |
7483 | unsigned int i; | |
7484 | vm_page_t p; | |
7485 | unsigned int p_hash; | |
7486 | vm_page_bucket_t *bucket; | |
7487 | lck_spin_t *bucket_lock; | |
7488 | ||
7489 | if (!vm_page_buckets_check_ready) { | |
7490 | return; | |
7491 | } | |
7492 | ||
7493 | #if HIBERNATION | |
7494 | if (hibernate_rebuild_needed || | |
7495 | hibernate_rebuild_hash_list) { | |
7496 | panic("BUCKET_CHECK: hibernation in progress: " | |
7497 | "rebuild_needed=%d rebuild_hash_list=%p\n", | |
7498 | hibernate_rebuild_needed, | |
7499 | hibernate_rebuild_hash_list); | |
7500 | } | |
7501 | #endif /* HIBERNATION */ | |
7502 | ||
7503 | #if VM_PAGE_FAKE_BUCKETS | |
7504 | char *cp; | |
7505 | for (cp = (char *) vm_page_fake_buckets_start; | |
7506 | cp < (char *) vm_page_fake_buckets_end; | |
7507 | cp++) { | |
7508 | if (*cp != 0x5a) { | |
7509 | panic("BUCKET_CHECK: corruption at %p in fake buckets " | |
7510 | "[0x%llx:0x%llx]\n", | |
7511 | cp, | |
7512 | (uint64_t) vm_page_fake_buckets_start, | |
7513 | (uint64_t) vm_page_fake_buckets_end); | |
7514 | } | |
7515 | } | |
7516 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
7517 | ||
7518 | for (i = 0; i < vm_page_bucket_count; i++) { | |
7519 | vm_object_t p_object; | |
7520 | ||
7521 | bucket = &vm_page_buckets[i]; | |
7522 | if (!bucket->page_list) { | |
7523 | continue; | |
7524 | } | |
7525 | ||
7526 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; | |
7527 | lck_spin_lock(bucket_lock); | |
7528 | p = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); | |
7529 | ||
7530 | while (p != VM_PAGE_NULL) { | |
7531 | p_object = VM_PAGE_OBJECT(p); | |
7532 | ||
7533 | if (!p->hashed) { | |
7534 | panic("BUCKET_CHECK: page %p (%p,0x%llx) " | |
7535 | "hash %d in bucket %d at %p " | |
7536 | "is not hashed\n", | |
7537 | p, p_object, p->offset, | |
7538 | p_hash, i, bucket); | |
7539 | } | |
7540 | p_hash = vm_page_hash(p_object, p->offset); | |
7541 | if (p_hash != i) { | |
7542 | panic("BUCKET_CHECK: corruption in bucket %d " | |
7543 | "at %p: page %p object %p offset 0x%llx " | |
7544 | "hash %d\n", | |
7545 | i, bucket, p, p_object, p->offset, | |
7546 | p_hash); | |
7547 | } | |
7548 | p = (vm_page_t)(VM_PAGE_UNPACK_PTR(p->next_m)); | |
7549 | } | |
7550 | lck_spin_unlock(bucket_lock); | |
7551 | } | |
7552 | ||
7553 | // printf("BUCKET_CHECK: checked buckets\n"); | |
7554 | } | |
7555 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
7556 | ||
7557 | /* | |
7558 | * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the | |
7559 | * local queues if they exist... its the only spot in the system where we add pages | |
7560 | * to those queues... once on those queues, those pages can only move to one of the | |
7561 | * global page queues or the free queues... they NEVER move from local q to local q. | |
7562 | * the 'local' state is stable when vm_page_queues_remove is called since we're behind | |
7563 | * the global vm_page_queue_lock at this point... we still need to take the local lock | |
7564 | * in case this operation is being run on a different CPU then the local queue's identity, | |
7565 | * but we don't have to worry about the page moving to a global queue or becoming wired | |
7566 | * while we're grabbing the local lock since those operations would require the global | |
7567 | * vm_page_queue_lock to be held, and we already own it. | |
7568 | * | |
7569 | * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id... | |
7570 | * 'wired' and local are ALWAYS mutually exclusive conditions. | |
7571 | */ | |
7572 | ||
7573 | #if CONFIG_BACKGROUND_QUEUE | |
7574 | void | |
7575 | vm_page_queues_remove(vm_page_t mem, boolean_t remove_from_backgroundq) | |
7576 | #else | |
7577 | void | |
7578 | vm_page_queues_remove(vm_page_t mem, boolean_t __unused remove_from_backgroundq) | |
7579 | #endif | |
7580 | { | |
7581 | boolean_t was_pageable = TRUE; | |
7582 | vm_object_t m_object; | |
7583 | ||
7584 | m_object = VM_PAGE_OBJECT(mem); | |
7585 | ||
7586 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
7587 | ||
7588 | if (mem->vm_page_q_state == VM_PAGE_NOT_ON_Q) | |
7589 | { | |
7590 | assert(mem->pageq.next == 0 && mem->pageq.prev == 0); | |
7591 | #if CONFIG_BACKGROUND_QUEUE | |
7592 | if (remove_from_backgroundq == TRUE) { | |
7593 | vm_page_remove_from_backgroundq(mem); | |
7594 | } | |
7595 | if (mem->vm_page_on_backgroundq) { | |
7596 | assert(mem->vm_page_backgroundq.next != 0); | |
7597 | assert(mem->vm_page_backgroundq.prev != 0); | |
7598 | } else { | |
7599 | assert(mem->vm_page_backgroundq.next == 0); | |
7600 | assert(mem->vm_page_backgroundq.prev == 0); | |
7601 | } | |
7602 | #endif /* CONFIG_BACKGROUND_QUEUE */ | |
7603 | return; | |
7604 | } | |
7605 | ||
7606 | if (mem->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) | |
7607 | { | |
7608 | assert(mem->pageq.next == 0 && mem->pageq.prev == 0); | |
7609 | #if CONFIG_BACKGROUND_QUEUE | |
7610 | assert(mem->vm_page_backgroundq.next == 0 && | |
7611 | mem->vm_page_backgroundq.prev == 0 && | |
7612 | mem->vm_page_on_backgroundq == FALSE); | |
7613 | #endif | |
7614 | return; | |
7615 | } | |
7616 | if (mem->vm_page_q_state == VM_PAGE_IS_WIRED) { | |
7617 | /* | |
7618 | * might put these guys on a list for debugging purposes | |
7619 | * if we do, we'll need to remove this assert | |
7620 | */ | |
7621 | assert(mem->pageq.next == 0 && mem->pageq.prev == 0); | |
7622 | #if CONFIG_BACKGROUND_QUEUE | |
7623 | assert(mem->vm_page_backgroundq.next == 0 && | |
7624 | mem->vm_page_backgroundq.prev == 0 && | |
7625 | mem->vm_page_on_backgroundq == FALSE); | |
7626 | #endif | |
7627 | return; | |
7628 | } | |
7629 | ||
7630 | assert(m_object != compressor_object); | |
7631 | assert(m_object != kernel_object); | |
7632 | assert(m_object != vm_submap_object); | |
7633 | assert(!mem->fictitious); | |
7634 | ||
7635 | switch(mem->vm_page_q_state) { | |
7636 | ||
7637 | case VM_PAGE_ON_ACTIVE_LOCAL_Q: | |
7638 | { | |
7639 | struct vpl *lq; | |
7640 | ||
7641 | lq = &vm_page_local_q[mem->local_id].vpl_un.vpl; | |
7642 | VPL_LOCK(&lq->vpl_lock); | |
7643 | vm_page_queue_remove(&lq->vpl_queue, | |
7644 | mem, vm_page_t, pageq); | |
7645 | mem->local_id = 0; | |
7646 | lq->vpl_count--; | |
7647 | if (m_object->internal) { | |
7648 | lq->vpl_internal_count--; | |
7649 | } else { | |
7650 | lq->vpl_external_count--; | |
7651 | } | |
7652 | VPL_UNLOCK(&lq->vpl_lock); | |
7653 | was_pageable = FALSE; | |
7654 | break; | |
7655 | } | |
7656 | case VM_PAGE_ON_ACTIVE_Q: | |
7657 | { | |
7658 | vm_page_queue_remove(&vm_page_queue_active, | |
7659 | mem, vm_page_t, pageq); | |
7660 | vm_page_active_count--; | |
7661 | break; | |
7662 | } | |
7663 | ||
7664 | case VM_PAGE_ON_INACTIVE_INTERNAL_Q: | |
7665 | { | |
7666 | assert(m_object->internal == TRUE); | |
7667 | ||
7668 | vm_page_inactive_count--; | |
7669 | vm_page_queue_remove(&vm_page_queue_anonymous, | |
7670 | mem, vm_page_t, pageq); | |
7671 | vm_page_anonymous_count--; | |
7672 | vm_purgeable_q_advance_all(); | |
7673 | break; | |
7674 | } | |
7675 | ||
7676 | case VM_PAGE_ON_INACTIVE_EXTERNAL_Q: | |
7677 | { | |
7678 | assert(m_object->internal == FALSE); | |
7679 | ||
7680 | vm_page_inactive_count--; | |
7681 | vm_page_queue_remove(&vm_page_queue_inactive, | |
7682 | mem, vm_page_t, pageq); | |
7683 | vm_purgeable_q_advance_all(); | |
7684 | break; | |
7685 | } | |
7686 | ||
7687 | case VM_PAGE_ON_INACTIVE_CLEANED_Q: | |
7688 | { | |
7689 | assert(m_object->internal == FALSE); | |
7690 | ||
7691 | vm_page_inactive_count--; | |
7692 | vm_page_queue_remove(&vm_page_queue_cleaned, | |
7693 | mem, vm_page_t, pageq); | |
7694 | vm_page_cleaned_count--; | |
7695 | break; | |
7696 | } | |
7697 | ||
7698 | case VM_PAGE_ON_THROTTLED_Q: | |
7699 | { | |
7700 | assert(m_object->internal == TRUE); | |
7701 | ||
7702 | vm_page_queue_remove(&vm_page_queue_throttled, | |
7703 | mem, vm_page_t, pageq); | |
7704 | vm_page_throttled_count--; | |
7705 | was_pageable = FALSE; | |
7706 | break; | |
7707 | } | |
7708 | ||
7709 | case VM_PAGE_ON_SPECULATIVE_Q: | |
7710 | { | |
7711 | assert(m_object->internal == FALSE); | |
7712 | ||
7713 | vm_page_remque(&mem->pageq); | |
7714 | vm_page_speculative_count--; | |
7715 | break; | |
7716 | } | |
7717 | ||
7718 | #if CONFIG_SECLUDED_MEMORY | |
7719 | case VM_PAGE_ON_SECLUDED_Q: | |
7720 | { | |
7721 | vm_page_queue_remove(&vm_page_queue_secluded, | |
7722 | mem, vm_page_t, pageq); | |
7723 | vm_page_secluded_count--; | |
7724 | if (m_object == VM_OBJECT_NULL) { | |
7725 | vm_page_secluded_count_free--; | |
7726 | was_pageable = FALSE; | |
7727 | } else { | |
7728 | assert(!m_object->internal); | |
7729 | vm_page_secluded_count_inuse--; | |
7730 | was_pageable = FALSE; | |
7731 | // was_pageable = TRUE; | |
7732 | } | |
7733 | break; | |
7734 | } | |
7735 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
7736 | ||
7737 | default: | |
7738 | { | |
7739 | /* | |
7740 | * if (mem->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) | |
7741 | * NOTE: vm_page_queues_remove does not deal with removing pages from the pageout queue... | |
7742 | * the caller is responsible for determing if the page is on that queue, and if so, must | |
7743 | * either first remove it (it needs both the page queues lock and the object lock to do | |
7744 | * this via vm_pageout_steal_laundry), or avoid the call to vm_page_queues_remove | |
7745 | * | |
7746 | * we also don't expect to encounter VM_PAGE_ON_FREE_Q, VM_PAGE_ON_FREE_LOCAL_Q, VM_PAGE_ON_FREE_LOPAGE_Q | |
7747 | * or any of the undefined states | |
7748 | */ | |
7749 | panic("vm_page_queues_remove - bad page q_state (%p, %d)\n", mem, mem->vm_page_q_state); | |
7750 | break; | |
7751 | } | |
7752 | ||
7753 | } | |
7754 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); | |
7755 | mem->vm_page_q_state = VM_PAGE_NOT_ON_Q; | |
7756 | ||
7757 | #if CONFIG_BACKGROUND_QUEUE | |
7758 | if (remove_from_backgroundq == TRUE) | |
7759 | vm_page_remove_from_backgroundq(mem); | |
7760 | #endif | |
7761 | if (was_pageable) { | |
7762 | if (m_object->internal) { | |
7763 | vm_page_pageable_internal_count--; | |
7764 | } else { | |
7765 | vm_page_pageable_external_count--; | |
7766 | } | |
7767 | } | |
7768 | } | |
7769 | ||
7770 | void | |
7771 | vm_page_remove_internal(vm_page_t page) | |
7772 | { | |
7773 | vm_object_t __object = VM_PAGE_OBJECT(page); | |
7774 | if (page == __object->memq_hint) { | |
7775 | vm_page_t __new_hint; | |
7776 | vm_page_queue_entry_t __qe; | |
7777 | __qe = (vm_page_queue_entry_t)vm_page_queue_next(&page->listq); | |
7778 | if (vm_page_queue_end(&__object->memq, __qe)) { | |
7779 | __qe = (vm_page_queue_entry_t)vm_page_queue_prev(&page->listq); | |
7780 | if (vm_page_queue_end(&__object->memq, __qe)) { | |
7781 | __qe = NULL; | |
7782 | } | |
7783 | } | |
7784 | __new_hint = (vm_page_t)((uintptr_t) __qe); | |
7785 | __object->memq_hint = __new_hint; | |
7786 | } | |
7787 | vm_page_queue_remove(&__object->memq, page, vm_page_t, listq); | |
7788 | #if CONFIG_SECLUDED_MEMORY | |
7789 | if (__object->eligible_for_secluded) { | |
7790 | vm_page_secluded.eligible_for_secluded--; | |
7791 | } | |
7792 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
7793 | } | |
7794 | ||
7795 | void | |
7796 | vm_page_enqueue_inactive(vm_page_t mem, boolean_t first) | |
7797 | { | |
7798 | vm_object_t m_object; | |
7799 | ||
7800 | m_object = VM_PAGE_OBJECT(mem); | |
7801 | ||
7802 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
7803 | assert(!mem->fictitious); | |
7804 | assert(!mem->laundry); | |
7805 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
7806 | vm_page_check_pageable_safe(mem); | |
7807 | ||
7808 | #if CONFIG_SECLUDED_MEMORY | |
7809 | if (secluded_for_filecache && | |
7810 | vm_page_secluded_target != 0 && | |
7811 | num_tasks_can_use_secluded_mem == 0 && | |
7812 | m_object->eligible_for_secluded && | |
7813 | secluded_aging_policy == SECLUDED_AGING_FIFO) { | |
7814 | mem->vm_page_q_state = VM_PAGE_ON_SECLUDED_Q; | |
7815 | vm_page_queue_enter(&vm_page_queue_secluded, mem, | |
7816 | vm_page_t, pageq); | |
7817 | vm_page_secluded_count++; | |
7818 | vm_page_secluded_count_inuse++; | |
7819 | assert(!m_object->internal); | |
7820 | // vm_page_pageable_external_count++; | |
7821 | return; | |
7822 | } | |
7823 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
7824 | ||
7825 | if (m_object->internal) { | |
7826 | mem->vm_page_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q; | |
7827 | ||
7828 | if (first == TRUE) | |
7829 | vm_page_queue_enter_first(&vm_page_queue_anonymous, mem, vm_page_t, pageq); | |
7830 | else | |
7831 | vm_page_queue_enter(&vm_page_queue_anonymous, mem, vm_page_t, pageq); | |
7832 | ||
7833 | vm_page_anonymous_count++; | |
7834 | vm_page_pageable_internal_count++; | |
7835 | } else { | |
7836 | mem->vm_page_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q; | |
7837 | ||
7838 | if (first == TRUE) | |
7839 | vm_page_queue_enter_first(&vm_page_queue_inactive, mem, vm_page_t, pageq); | |
7840 | else | |
7841 | vm_page_queue_enter(&vm_page_queue_inactive, mem, vm_page_t, pageq); | |
7842 | ||
7843 | vm_page_pageable_external_count++; | |
7844 | } | |
7845 | vm_page_inactive_count++; | |
7846 | token_new_pagecount++; | |
7847 | ||
7848 | #if CONFIG_BACKGROUND_QUEUE | |
7849 | if (mem->vm_page_in_background) | |
7850 | vm_page_add_to_backgroundq(mem, FALSE); | |
7851 | #endif | |
7852 | } | |
7853 | ||
7854 | void | |
7855 | vm_page_enqueue_active(vm_page_t mem, boolean_t first) | |
7856 | { | |
7857 | vm_object_t m_object; | |
7858 | ||
7859 | m_object = VM_PAGE_OBJECT(mem); | |
7860 | ||
7861 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
7862 | assert(!mem->fictitious); | |
7863 | assert(!mem->laundry); | |
7864 | assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q); | |
7865 | vm_page_check_pageable_safe(mem); | |
7866 | ||
7867 | mem->vm_page_q_state = VM_PAGE_ON_ACTIVE_Q; | |
7868 | if (first == TRUE) | |
7869 | vm_page_queue_enter_first(&vm_page_queue_active, mem, vm_page_t, pageq); | |
7870 | else | |
7871 | vm_page_queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq); | |
7872 | vm_page_active_count++; | |
7873 | ||
7874 | if (m_object->internal) { | |
7875 | vm_page_pageable_internal_count++; | |
7876 | } else { | |
7877 | vm_page_pageable_external_count++; | |
7878 | } | |
7879 | ||
7880 | #if CONFIG_BACKGROUND_QUEUE | |
7881 | if (mem->vm_page_in_background) | |
7882 | vm_page_add_to_backgroundq(mem, FALSE); | |
7883 | #endif | |
7884 | } | |
7885 | ||
7886 | /* | |
7887 | * Pages from special kernel objects shouldn't | |
7888 | * be placed on pageable queues. | |
7889 | */ | |
7890 | void | |
7891 | vm_page_check_pageable_safe(vm_page_t page) | |
7892 | { | |
7893 | vm_object_t page_object; | |
7894 | ||
7895 | page_object = VM_PAGE_OBJECT(page); | |
7896 | ||
7897 | if (page_object == kernel_object) { | |
7898 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
7899 | "from kernel object (%p) to pageable queue", kernel_object); | |
7900 | } | |
7901 | ||
7902 | if (page_object == compressor_object) { | |
7903 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
7904 | "from compressor object (%p) to pageable queue", compressor_object); | |
7905 | } | |
7906 | ||
7907 | if (page_object == vm_submap_object) { | |
7908 | panic("vm_page_check_pageable_safe: trying to add page" \ | |
7909 | "from submap object (%p) to pageable queue", vm_submap_object); | |
7910 | } | |
7911 | } | |
7912 | ||
7913 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
7914 | * wired page diagnose | |
7915 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
7916 | ||
7917 | #include <libkern/OSKextLibPrivate.h> | |
7918 | ||
7919 | vm_allocation_site_t * | |
7920 | vm_allocation_sites[VM_KERN_MEMORY_COUNT]; | |
7921 | ||
7922 | vm_tag_t | |
7923 | vm_tag_bt(void) | |
7924 | { | |
7925 | uintptr_t* frameptr; | |
7926 | uintptr_t* frameptr_next; | |
7927 | uintptr_t retaddr; | |
7928 | uintptr_t kstackb, kstackt; | |
7929 | const vm_allocation_site_t * site; | |
7930 | thread_t cthread; | |
7931 | ||
7932 | cthread = current_thread(); | |
7933 | if (__improbable(cthread == NULL)) return VM_KERN_MEMORY_OSFMK; | |
7934 | ||
7935 | kstackb = cthread->kernel_stack; | |
7936 | kstackt = kstackb + kernel_stack_size; | |
7937 | ||
7938 | /* Load stack frame pointer (EBP on x86) into frameptr */ | |
7939 | frameptr = __builtin_frame_address(0); | |
7940 | site = NULL; | |
7941 | while (frameptr != NULL) | |
7942 | { | |
7943 | /* Verify thread stack bounds */ | |
7944 | if (((uintptr_t)(frameptr + 2) > kstackt) || ((uintptr_t)frameptr < kstackb)) break; | |
7945 | ||
7946 | /* Next frame pointer is pointed to by the previous one */ | |
7947 | frameptr_next = (uintptr_t*) *frameptr; | |
7948 | ||
7949 | /* Pull return address from one spot above the frame pointer */ | |
7950 | retaddr = *(frameptr + 1); | |
7951 | ||
7952 | if ((retaddr < vm_kernel_stext) || (retaddr > vm_kernel_top)) | |
7953 | { | |
7954 | site = OSKextGetAllocationSiteForCaller(retaddr); | |
7955 | break; | |
7956 | } | |
7957 | ||
7958 | frameptr = frameptr_next; | |
7959 | } | |
7960 | return (site ? site->tag : VM_KERN_MEMORY_NONE); | |
7961 | } | |
7962 | ||
7963 | static uint64_t free_tag_bits[256/64]; | |
7964 | ||
7965 | void | |
7966 | vm_tag_alloc_locked(vm_allocation_site_t * site) | |
7967 | { | |
7968 | vm_tag_t tag; | |
7969 | uint64_t avail; | |
7970 | uint64_t idx; | |
7971 | ||
7972 | if (site->tag) return; | |
7973 | ||
7974 | idx = 0; | |
7975 | while (TRUE) | |
7976 | { | |
7977 | avail = free_tag_bits[idx]; | |
7978 | if (avail) | |
7979 | { | |
7980 | tag = __builtin_clzll(avail); | |
7981 | avail &= ~(1ULL << (63 - tag)); | |
7982 | free_tag_bits[idx] = avail; | |
7983 | tag += (idx << 6); | |
7984 | break; | |
7985 | } | |
7986 | idx++; | |
7987 | if (idx >= (sizeof(free_tag_bits) / sizeof(free_tag_bits[0]))) | |
7988 | { | |
7989 | tag = VM_KERN_MEMORY_ANY; | |
7990 | break; | |
7991 | } | |
7992 | } | |
7993 | site->tag = tag; | |
7994 | if (VM_KERN_MEMORY_ANY != tag) | |
7995 | { | |
7996 | assert(!vm_allocation_sites[tag]); | |
7997 | vm_allocation_sites[tag] = site; | |
7998 | } | |
7999 | } | |
8000 | ||
8001 | static void | |
8002 | vm_tag_free_locked(vm_tag_t tag) | |
8003 | { | |
8004 | uint64_t avail; | |
8005 | uint32_t idx; | |
8006 | uint64_t bit; | |
8007 | ||
8008 | if (VM_KERN_MEMORY_ANY == tag) return; | |
8009 | ||
8010 | idx = (tag >> 6); | |
8011 | avail = free_tag_bits[idx]; | |
8012 | tag &= 63; | |
8013 | bit = (1ULL << (63 - tag)); | |
8014 | assert(!(avail & bit)); | |
8015 | free_tag_bits[idx] = (avail | bit); | |
8016 | } | |
8017 | ||
8018 | static void | |
8019 | vm_tag_init(void) | |
8020 | { | |
8021 | vm_tag_t tag; | |
8022 | for (tag = VM_KERN_MEMORY_FIRST_DYNAMIC; tag < VM_KERN_MEMORY_ANY; tag++) | |
8023 | { | |
8024 | vm_tag_free_locked(tag); | |
8025 | } | |
8026 | } | |
8027 | ||
8028 | vm_tag_t | |
8029 | vm_tag_alloc(vm_allocation_site_t * site) | |
8030 | { | |
8031 | vm_tag_t tag; | |
8032 | ||
8033 | if (VM_TAG_BT & site->flags) | |
8034 | { | |
8035 | tag = vm_tag_bt(); | |
8036 | if (VM_KERN_MEMORY_NONE != tag) return (tag); | |
8037 | } | |
8038 | ||
8039 | if (!site->tag) | |
8040 | { | |
8041 | lck_spin_lock(&vm_allocation_sites_lock); | |
8042 | vm_tag_alloc_locked(site); | |
8043 | lck_spin_unlock(&vm_allocation_sites_lock); | |
8044 | } | |
8045 | ||
8046 | return (site->tag); | |
8047 | } | |
8048 | ||
8049 | static void | |
8050 | vm_page_count_object(mach_memory_info_t * sites, unsigned int __unused num_sites, vm_object_t object) | |
8051 | { | |
8052 | if (!object->wired_page_count) return; | |
8053 | if (object != kernel_object) | |
8054 | { | |
8055 | assert(object->wire_tag < num_sites); | |
8056 | sites[object->wire_tag].size += ptoa_64(object->wired_page_count); | |
8057 | } | |
8058 | } | |
8059 | ||
8060 | typedef void (*vm_page_iterate_proc)(mach_memory_info_t * sites, | |
8061 | unsigned int num_sites, vm_object_t object); | |
8062 | ||
8063 | static void | |
8064 | vm_page_iterate_purgeable_objects(mach_memory_info_t * sites, unsigned int num_sites, | |
8065 | vm_page_iterate_proc proc, purgeable_q_t queue, | |
8066 | int group) | |
8067 | { | |
8068 | vm_object_t object; | |
8069 | ||
8070 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
8071 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
8072 | object = (vm_object_t) queue_next(&object->objq)) | |
8073 | { | |
8074 | proc(sites, num_sites, object); | |
8075 | } | |
8076 | } | |
8077 | ||
8078 | static void | |
8079 | vm_page_iterate_objects(mach_memory_info_t * sites, unsigned int num_sites, | |
8080 | vm_page_iterate_proc proc) | |
8081 | { | |
8082 | purgeable_q_t volatile_q; | |
8083 | queue_head_t * nonvolatile_q; | |
8084 | vm_object_t object; | |
8085 | int group; | |
8086 | ||
8087 | lck_spin_lock(&vm_objects_wired_lock); | |
8088 | queue_iterate(&vm_objects_wired, | |
8089 | object, | |
8090 | vm_object_t, | |
8091 | objq) | |
8092 | { | |
8093 | proc(sites, num_sites, object); | |
8094 | } | |
8095 | lck_spin_unlock(&vm_objects_wired_lock); | |
8096 | ||
8097 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
8098 | nonvolatile_q = &purgeable_nonvolatile_queue; | |
8099 | for (object = (vm_object_t) queue_first(nonvolatile_q); | |
8100 | !queue_end(nonvolatile_q, (queue_entry_t) object); | |
8101 | object = (vm_object_t) queue_next(&object->objq)) | |
8102 | { | |
8103 | proc(sites, num_sites, object); | |
8104 | } | |
8105 | ||
8106 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
8107 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, 0); | |
8108 | ||
8109 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
8110 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
8111 | { | |
8112 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, group); | |
8113 | } | |
8114 | ||
8115 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
8116 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
8117 | { | |
8118 | vm_page_iterate_purgeable_objects(sites, num_sites, proc, volatile_q, group); | |
8119 | } | |
8120 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
8121 | } | |
8122 | ||
8123 | static uint64_t | |
8124 | process_account(mach_memory_info_t * sites, unsigned int __unused num_sites, uint64_t zones_collectable_bytes) | |
8125 | { | |
8126 | uint64_t found; | |
8127 | unsigned int idx; | |
8128 | vm_allocation_site_t * site; | |
8129 | ||
8130 | assert(num_sites >= VM_KERN_MEMORY_COUNT); | |
8131 | found = 0; | |
8132 | for (idx = 0; idx < VM_KERN_MEMORY_COUNT; idx++) | |
8133 | { | |
8134 | found += sites[idx].size; | |
8135 | if (idx < VM_KERN_MEMORY_FIRST_DYNAMIC) | |
8136 | { | |
8137 | sites[idx].site = idx; | |
8138 | sites[idx].flags |= VM_KERN_SITE_TAG; | |
8139 | if (VM_KERN_MEMORY_ZONE == idx) | |
8140 | { | |
8141 | sites[idx].flags |= VM_KERN_SITE_HIDE; | |
8142 | sites[idx].collectable_bytes = zones_collectable_bytes; | |
8143 | } else sites[idx].flags |= VM_KERN_SITE_WIRED; | |
8144 | continue; | |
8145 | } | |
8146 | lck_spin_lock(&vm_allocation_sites_lock); | |
8147 | if ((site = vm_allocation_sites[idx])) | |
8148 | { | |
8149 | if (sites[idx].size) | |
8150 | { | |
8151 | sites[idx].flags |= VM_KERN_SITE_WIRED; | |
8152 | if (VM_TAG_KMOD == (VM_KERN_SITE_TYPE & site->flags)) | |
8153 | { | |
8154 | sites[idx].site = OSKextGetKmodIDForSite(site, NULL, 0); | |
8155 | sites[idx].flags |= VM_KERN_SITE_KMOD; | |
8156 | } | |
8157 | else | |
8158 | { | |
8159 | sites[idx].site = VM_KERNEL_UNSLIDE(site); | |
8160 | sites[idx].flags |= VM_KERN_SITE_KERNEL; | |
8161 | } | |
8162 | site = NULL; | |
8163 | } | |
8164 | else | |
8165 | { | |
8166 | #if 1 | |
8167 | site = NULL; | |
8168 | #else | |
8169 | /* this code would free a site with no allocations but can race a new | |
8170 | * allocation being made */ | |
8171 | vm_tag_free_locked(site->tag); | |
8172 | site->tag = VM_KERN_MEMORY_NONE; | |
8173 | vm_allocation_sites[idx] = NULL; | |
8174 | if (!(VM_TAG_UNLOAD & site->flags)) site = NULL; | |
8175 | #endif | |
8176 | } | |
8177 | } | |
8178 | lck_spin_unlock(&vm_allocation_sites_lock); | |
8179 | if (site) OSKextFreeSite(site); | |
8180 | } | |
8181 | ||
8182 | return (found); | |
8183 | } | |
8184 | ||
8185 | kern_return_t | |
8186 | vm_page_diagnose(mach_memory_info_t * sites, unsigned int num_sites, uint64_t zones_collectable_bytes) | |
8187 | { | |
8188 | enum { kMaxKernelDepth = 1 }; | |
8189 | vm_map_t maps [kMaxKernelDepth]; | |
8190 | vm_map_entry_t entries[kMaxKernelDepth]; | |
8191 | vm_map_t map; | |
8192 | vm_map_entry_t entry; | |
8193 | vm_object_offset_t offset; | |
8194 | vm_page_t page; | |
8195 | int stackIdx, count; | |
8196 | uint64_t wired_size; | |
8197 | uint64_t wired_managed_size; | |
8198 | uint64_t wired_reserved_size; | |
8199 | mach_memory_info_t * counts; | |
8200 | ||
8201 | bzero(sites, num_sites * sizeof(mach_memory_info_t)); | |
8202 | ||
8203 | if (!vm_page_wire_count_initial) return (KERN_ABORTED); | |
8204 | ||
8205 | vm_page_iterate_objects(sites, num_sites, &vm_page_count_object); | |
8206 | ||
8207 | wired_size = ptoa_64(vm_page_wire_count + vm_lopage_free_count + vm_page_throttled_count); | |
8208 | wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count + vm_page_throttled_count); | |
8209 | wired_managed_size = ptoa_64(vm_page_wire_count - vm_page_wire_count_initial); | |
8210 | ||
8211 | assert(num_sites >= (VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT)); | |
8212 | counts = &sites[VM_KERN_MEMORY_COUNT]; | |
8213 | ||
8214 | #define SET_COUNT(xcount, xsize, xflags) \ | |
8215 | counts[xcount].site = (xcount); \ | |
8216 | counts[xcount].size = (xsize); \ | |
8217 | counts[xcount].flags = VM_KERN_SITE_COUNTER | xflags; | |
8218 | ||
8219 | SET_COUNT(VM_KERN_COUNT_MANAGED, ptoa_64(vm_page_pages), 0); | |
8220 | SET_COUNT(VM_KERN_COUNT_WIRED, wired_size, 0); | |
8221 | SET_COUNT(VM_KERN_COUNT_WIRED_MANAGED, wired_managed_size, 0); | |
8222 | SET_COUNT(VM_KERN_COUNT_RESERVED, wired_reserved_size, VM_KERN_SITE_WIRED); | |
8223 | SET_COUNT(VM_KERN_COUNT_STOLEN, ptoa_64(vm_page_stolen_count), VM_KERN_SITE_WIRED); | |
8224 | SET_COUNT(VM_KERN_COUNT_LOPAGE, ptoa_64(vm_lopage_free_count), VM_KERN_SITE_WIRED); | |
8225 | ||
8226 | #define SET_MAP(xcount, xsize, xfree, xlargest) \ | |
8227 | counts[xcount].site = (xcount); \ | |
8228 | counts[xcount].size = (xsize); \ | |
8229 | counts[xcount].free = (xfree); \ | |
8230 | counts[xcount].largest = (xlargest); \ | |
8231 | counts[xcount].flags = VM_KERN_SITE_COUNTER; | |
8232 | ||
8233 | vm_map_size_t map_size, map_free, map_largest; | |
8234 | ||
8235 | vm_map_sizes(kernel_map, &map_size, &map_free, &map_largest); | |
8236 | SET_MAP(VM_KERN_COUNT_MAP_KERNEL, map_size, map_free, map_largest); | |
8237 | ||
8238 | vm_map_sizes(zone_map, &map_size, &map_free, &map_largest); | |
8239 | SET_MAP(VM_KERN_COUNT_MAP_ZONE, map_size, map_free, map_largest); | |
8240 | ||
8241 | vm_map_sizes(kalloc_map, &map_size, &map_free, &map_largest); | |
8242 | SET_MAP(VM_KERN_COUNT_MAP_KALLOC, map_size, map_free, map_largest); | |
8243 | ||
8244 | map = kernel_map; | |
8245 | stackIdx = 0; | |
8246 | while (map) | |
8247 | { | |
8248 | vm_map_lock(map); | |
8249 | for (entry = map->hdr.links.next; map; entry = entry->links.next) | |
8250 | { | |
8251 | if (entry->is_sub_map) | |
8252 | { | |
8253 | assert(stackIdx < kMaxKernelDepth); | |
8254 | maps[stackIdx] = map; | |
8255 | entries[stackIdx] = entry; | |
8256 | stackIdx++; | |
8257 | map = VME_SUBMAP(entry); | |
8258 | entry = NULL; | |
8259 | break; | |
8260 | } | |
8261 | if (VME_OBJECT(entry) == kernel_object) | |
8262 | { | |
8263 | count = 0; | |
8264 | vm_object_lock(VME_OBJECT(entry)); | |
8265 | for (offset = entry->links.start; offset < entry->links.end; offset += page_size) | |
8266 | { | |
8267 | page = vm_page_lookup(VME_OBJECT(entry), offset); | |
8268 | if (page && VM_PAGE_WIRED(page)) count++; | |
8269 | } | |
8270 | vm_object_unlock(VME_OBJECT(entry)); | |
8271 | ||
8272 | if (count) | |
8273 | { | |
8274 | assert(VME_ALIAS(entry) < num_sites); | |
8275 | sites[VME_ALIAS(entry)].size += ptoa_64(count); | |
8276 | } | |
8277 | } | |
8278 | while (map && (entry == vm_map_last_entry(map))) | |
8279 | { | |
8280 | vm_map_unlock(map); | |
8281 | if (!stackIdx) map = NULL; | |
8282 | else | |
8283 | { | |
8284 | --stackIdx; | |
8285 | map = maps[stackIdx]; | |
8286 | entry = entries[stackIdx]; | |
8287 | } | |
8288 | } | |
8289 | } | |
8290 | } | |
8291 | ||
8292 | process_account(sites, num_sites, zones_collectable_bytes); | |
8293 | ||
8294 | return (KERN_SUCCESS); | |
8295 | } | |
8296 | ||
8297 | uint32_t | |
8298 | vm_tag_get_kext(vm_tag_t tag, char * name, vm_size_t namelen) | |
8299 | { | |
8300 | vm_allocation_site_t * site; | |
8301 | uint32_t kmodId; | |
8302 | ||
8303 | kmodId = 0; | |
8304 | lck_spin_lock(&vm_allocation_sites_lock); | |
8305 | if ((site = vm_allocation_sites[tag])) | |
8306 | { | |
8307 | if (VM_TAG_KMOD == (VM_KERN_SITE_TYPE & site->flags)) | |
8308 | { | |
8309 | kmodId = OSKextGetKmodIDForSite(site, name, namelen); | |
8310 | } | |
8311 | } | |
8312 | lck_spin_unlock(&vm_allocation_sites_lock); | |
8313 | ||
8314 | return (kmodId); | |
8315 | } | |
8316 | ||
8317 | #if DEBUG || DEVELOPMENT | |
8318 | ||
8319 | #define vm_tag_set_lock(set) lck_spin_lock(&set->lock) | |
8320 | #define vm_tag_set_unlock(set) lck_spin_unlock(&set->lock) | |
8321 | ||
8322 | void | |
8323 | vm_tag_set_init(vm_tag_set_t set, uint32_t count) | |
8324 | { | |
8325 | lck_spin_init(&set->lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
8326 | bzero(&set->entries, count * sizeof(struct vm_tag_set_entry)); | |
8327 | } | |
8328 | ||
8329 | kern_return_t | |
8330 | vm_tag_set_enter(vm_tag_set_t set, uint32_t count, vm_tag_t tag) | |
8331 | { | |
8332 | kern_return_t kr; | |
8333 | uint32_t idx, free; | |
8334 | ||
8335 | vm_tag_set_lock(set); | |
8336 | ||
8337 | assert(tag != VM_KERN_MEMORY_NONE); | |
8338 | ||
8339 | kr = KERN_NO_SPACE; | |
8340 | free = -1U; | |
8341 | for (idx = 0; idx < count; idx++) | |
8342 | { | |
8343 | if (tag == set->entries[idx].tag) | |
8344 | { | |
8345 | set->entries[idx].count++; | |
8346 | kr = KERN_SUCCESS; | |
8347 | break; | |
8348 | } | |
8349 | if ((free == -1U) && !set->entries[idx].count) free = idx; | |
8350 | } | |
8351 | ||
8352 | if ((KERN_SUCCESS != kr) && (free != -1U)) | |
8353 | { | |
8354 | set->entries[free].tag = tag; | |
8355 | set->entries[free].count = 1; | |
8356 | kr = KERN_SUCCESS; | |
8357 | } | |
8358 | ||
8359 | vm_tag_set_unlock(set); | |
8360 | ||
8361 | return (kr); | |
8362 | } | |
8363 | ||
8364 | kern_return_t | |
8365 | vm_tag_set_remove(vm_tag_set_t set, uint32_t count, vm_tag_t tag, vm_tag_t * new_tagp) | |
8366 | { | |
8367 | kern_return_t kr; | |
8368 | uint32_t idx; | |
8369 | vm_tag_t new_tag; | |
8370 | ||
8371 | assert(tag != VM_KERN_MEMORY_NONE); | |
8372 | new_tag = VM_KERN_MEMORY_NONE; | |
8373 | vm_tag_set_lock(set); | |
8374 | ||
8375 | kr = KERN_NOT_IN_SET; | |
8376 | for (idx = 0; idx < count; idx++) | |
8377 | { | |
8378 | if ((tag != VM_KERN_MEMORY_NONE) | |
8379 | && (tag == set->entries[idx].tag) | |
8380 | && set->entries[idx].count) | |
8381 | { | |
8382 | set->entries[idx].count--; | |
8383 | kr = KERN_SUCCESS; | |
8384 | if (set->entries[idx].count) | |
8385 | { | |
8386 | new_tag = tag; | |
8387 | break; | |
8388 | } | |
8389 | if (!new_tagp) break; | |
8390 | tag = VM_KERN_MEMORY_NONE; | |
8391 | } | |
8392 | ||
8393 | if (set->entries[idx].count && (VM_KERN_MEMORY_NONE == new_tag)) | |
8394 | { | |
8395 | new_tag = set->entries[idx].tag; | |
8396 | if (VM_KERN_MEMORY_NONE == tag) break; | |
8397 | } | |
8398 | } | |
8399 | ||
8400 | vm_tag_set_unlock(set); | |
8401 | if (new_tagp) *new_tagp = new_tag; | |
8402 | ||
8403 | return (kr); | |
8404 | } | |
8405 | ||
8406 | #endif /* DEBUG || DEVELOPMENT */ |