]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/i386/cpuid.c
xnu-1699.22.81.tar.gz
[apple/xnu.git] / osfmk / i386 / cpuid.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31#include <platforms.h>
32#include <mach_kdb.h>
33#include <vm/vm_page.h>
34#include <pexpert/pexpert.h>
35
36#include <i386/cpuid.h>
37#if MACH_KDB
38#include <machine/db_machdep.h>
39#include <ddb/db_aout.h>
40#include <ddb/db_access.h>
41#include <ddb/db_sym.h>
42#include <ddb/db_variables.h>
43#include <ddb/db_command.h>
44#include <ddb/db_output.h>
45#include <ddb/db_expr.h>
46#endif
47
48#define min(a,b) ((a) < (b) ? (a) : (b))
49#define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
50
51/* Only for 32bit values */
52#define bit32(n) (1U << (n))
53#define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1))
54#define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l))
55
56/*
57 * Leaf 2 cache descriptor encodings.
58 */
59typedef enum {
60 _NULL_, /* NULL (empty) descriptor */
61 CACHE, /* Cache */
62 TLB, /* TLB */
63 STLB, /* Shared second-level unified TLB */
64 PREFETCH /* Prefetch size */
65} cpuid_leaf2_desc_type_t;
66
67typedef enum {
68 NA, /* Not Applicable */
69 FULLY, /* Fully-associative */
70 TRACE, /* Trace Cache (P4 only) */
71 INST, /* Instruction TLB */
72 DATA, /* Data TLB */
73 DATA0, /* Data TLB, 1st level */
74 DATA1, /* Data TLB, 2nd level */
75 L1, /* L1 (unified) cache */
76 L1_INST, /* L1 Instruction cache */
77 L1_DATA, /* L1 Data cache */
78 L2, /* L2 (unified) cache */
79 L3, /* L3 (unified) cache */
80 L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */
81 L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */
82 SMALL, /* Small page TLB */
83 LARGE, /* Large page TLB */
84 BOTH /* Small and Large page TLB */
85} cpuid_leaf2_qualifier_t;
86
87typedef struct cpuid_cache_descriptor {
88 uint8_t value; /* descriptor code */
89 uint8_t type; /* cpuid_leaf2_desc_type_t */
90 uint8_t level; /* level of cache/TLB hierachy */
91 uint8_t ways; /* wayness of cache */
92 uint16_t size; /* cachesize or TLB pagesize */
93 uint16_t entries; /* number of TLB entries or linesize */
94} cpuid_cache_descriptor_t;
95
96/*
97 * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
98 */
99#define K (1)
100#define M (1024)
101
102/*
103 * Intel cache descriptor table:
104 */
105static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = {
106// -------------------------------------------------------
107// value type level ways size entries
108// -------------------------------------------------------
109 { 0x00, _NULL_, NA, NA, NA, NA },
110 { 0x01, TLB, INST, 4, SMALL, 32 },
111 { 0x02, TLB, INST, FULLY, LARGE, 2 },
112 { 0x03, TLB, DATA, 4, SMALL, 64 },
113 { 0x04, TLB, DATA, 4, LARGE, 8 },
114 { 0x05, TLB, DATA1, 4, LARGE, 32 },
115 { 0x06, CACHE, L1_INST, 4, 8*K, 32 },
116 { 0x08, CACHE, L1_INST, 4, 16*K, 32 },
117 { 0x09, CACHE, L1_INST, 4, 32*K, 64 },
118 { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 },
119 { 0x0B, TLB, INST, 4, LARGE, 4 },
120 { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 },
121 { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 },
122 { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 },
123 { 0x21, CACHE, L2, 8, 256*K, 64 },
124 { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 },
125 { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 },
126 { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 },
127 { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 },
128 { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 },
129 { 0x30, CACHE, L1_INST, 8, 32*K, 64 },
130 { 0x40, CACHE, L2, NA, 0, NA },
131 { 0x41, CACHE, L2, 4, 128*K, 32 },
132 { 0x42, CACHE, L2, 4, 256*K, 32 },
133 { 0x43, CACHE, L2, 4, 512*K, 32 },
134 { 0x44, CACHE, L2, 4, 1*M, 32 },
135 { 0x45, CACHE, L2, 4, 2*M, 32 },
136 { 0x46, CACHE, L3, 4, 4*M, 64 },
137 { 0x47, CACHE, L3, 8, 8*M, 64 },
138 { 0x48, CACHE, L2, 12, 3*M, 64 },
139 { 0x49, CACHE, L2, 16, 4*M, 64 },
140 { 0x4A, CACHE, L3, 12, 6*M, 64 },
141 { 0x4B, CACHE, L3, 16, 8*M, 64 },
142 { 0x4C, CACHE, L3, 12, 12*M, 64 },
143 { 0x4D, CACHE, L3, 16, 16*M, 64 },
144 { 0x4E, CACHE, L2, 24, 6*M, 64 },
145 { 0x4F, TLB, INST, NA, SMALL, 32 },
146 { 0x50, TLB, INST, NA, BOTH, 64 },
147 { 0x51, TLB, INST, NA, BOTH, 128 },
148 { 0x52, TLB, INST, NA, BOTH, 256 },
149 { 0x55, TLB, INST, FULLY, BOTH, 7 },
150 { 0x56, TLB, DATA0, 4, LARGE, 16 },
151 { 0x57, TLB, DATA0, 4, SMALL, 16 },
152 { 0x59, TLB, DATA0, FULLY, SMALL, 16 },
153 { 0x5A, TLB, DATA0, 4, LARGE, 32 },
154 { 0x5B, TLB, DATA, NA, BOTH, 64 },
155 { 0x5C, TLB, DATA, NA, BOTH, 128 },
156 { 0x5D, TLB, DATA, NA, BOTH, 256 },
157 { 0x60, CACHE, L1, 16*K, 8, 64 },
158 { 0x61, CACHE, L1, 4, 8*K, 64 },
159 { 0x62, CACHE, L1, 4, 16*K, 64 },
160 { 0x63, CACHE, L1, 4, 32*K, 64 },
161 { 0x70, CACHE, TRACE, 8, 12*K, NA },
162 { 0x71, CACHE, TRACE, 8, 16*K, NA },
163 { 0x72, CACHE, TRACE, 8, 32*K, NA },
164 { 0x78, CACHE, L2, 4, 1*M, 64 },
165 { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 },
166 { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 },
167 { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 },
168 { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 },
169 { 0x7D, CACHE, L2, 8, 2*M, 64 },
170 { 0x7F, CACHE, L2, 2, 512*K, 64 },
171 { 0x80, CACHE, L2, 8, 512*K, 64 },
172 { 0x82, CACHE, L2, 8, 256*K, 32 },
173 { 0x83, CACHE, L2, 8, 512*K, 32 },
174 { 0x84, CACHE, L2, 8, 1*M, 32 },
175 { 0x85, CACHE, L2, 8, 2*M, 32 },
176 { 0x86, CACHE, L2, 4, 512*K, 64 },
177 { 0x87, CACHE, L2, 8, 1*M, 64 },
178 { 0xB0, TLB, INST, 4, SMALL, 128 },
179 { 0xB1, TLB, INST, 4, LARGE, 8 },
180 { 0xB2, TLB, INST, 4, SMALL, 64 },
181 { 0xB3, TLB, DATA, 4, SMALL, 128 },
182 { 0xB4, TLB, DATA1, 4, SMALL, 256 },
183 { 0xBA, TLB, DATA1, 4, BOTH, 64 },
184 { 0xCA, STLB, DATA1, 4, BOTH, 512 },
185 { 0xD0, CACHE, L3, 4, 512*K, 64 },
186 { 0xD1, CACHE, L3, 4, 1*M, 64 },
187 { 0xD2, CACHE, L3, 4, 2*M, 64 },
188 { 0xD3, CACHE, L3, 4, 4*M, 64 },
189 { 0xD4, CACHE, L3, 4, 8*M, 64 },
190 { 0xD6, CACHE, L3, 8, 1*M, 64 },
191 { 0xD7, CACHE, L3, 8, 2*M, 64 },
192 { 0xD8, CACHE, L3, 8, 4*M, 64 },
193 { 0xD9, CACHE, L3, 8, 8*M, 64 },
194 { 0xDA, CACHE, L3, 8, 12*M, 64 },
195 { 0xDC, CACHE, L3, 12, 1536*K, 64 },
196 { 0xDD, CACHE, L3, 12, 3*M, 64 },
197 { 0xDE, CACHE, L3, 12, 6*M, 64 },
198 { 0xDF, CACHE, L3, 12, 12*M, 64 },
199 { 0xE0, CACHE, L3, 12, 18*M, 64 },
200 { 0xE2, CACHE, L3, 16, 2*M, 64 },
201 { 0xE3, CACHE, L3, 16, 4*M, 64 },
202 { 0xE4, CACHE, L3, 16, 8*M, 64 },
203 { 0xE5, CACHE, L3, 16, 16*M, 64 },
204 { 0xE6, CACHE, L3, 16, 24*M, 64 },
205 { 0xF0, PREFETCH, NA, NA, 64, NA },
206 { 0xF1, PREFETCH, NA, NA, 128, NA },
207 { 0xFF, CACHE, NA, NA, 0, NA }
208};
209#define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
210 sizeof(cpuid_cache_descriptor_t))
211
212static inline cpuid_cache_descriptor_t *
213cpuid_leaf2_find(uint8_t value)
214{
215 unsigned int i;
216
217 for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++)
218 if (intel_cpuid_leaf2_descriptor_table[i].value == value)
219 return &intel_cpuid_leaf2_descriptor_table[i];
220 return NULL;
221}
222
223/*
224 * CPU identification routines.
225 */
226
227static i386_cpu_info_t *cpuid_cpu_infop = NULL;
228static i386_cpu_info_t cpuid_cpu_info;
229
230#if defined(__x86_64__)
231static void cpuid_fn(uint32_t selector, uint32_t *result)
232{
233 do_cpuid(selector, result);
234}
235#else
236static void cpuid_fn(uint32_t selector, uint32_t *result)
237{
238 if (get_is64bit()) {
239 asm("call _cpuid64"
240 : "=a" (result[0]),
241 "=b" (result[1]),
242 "=c" (result[2]),
243 "=d" (result[3])
244 : "a"(selector),
245 "b" (0),
246 "c" (0),
247 "d" (0));
248 } else {
249 do_cpuid(selector, result);
250 }
251}
252#endif
253
254/* this function is Intel-specific */
255static void
256cpuid_set_cache_info( i386_cpu_info_t * info_p )
257{
258 uint32_t cpuid_result[4];
259 uint32_t reg[4];
260 uint32_t index;
261 uint32_t linesizes[LCACHE_MAX];
262 unsigned int i;
263 unsigned int j;
264 boolean_t cpuid_deterministic_supported = FALSE;
265
266 bzero( linesizes, sizeof(linesizes) );
267
268 /* Get processor cache descriptor info using leaf 2. We don't use
269 * this internally, but must publish it for KEXTs.
270 */
271 cpuid_fn(2, cpuid_result);
272 for (j = 0; j < 4; j++) {
273 if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
274 continue;
275 ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
276 }
277 /* first byte gives number of cpuid calls to get all descriptors */
278 for (i = 1; i < info_p->cache_info[0]; i++) {
279 if (i*16 > sizeof(info_p->cache_info))
280 break;
281 cpuid_fn(2, cpuid_result);
282 for (j = 0; j < 4; j++) {
283 if ((cpuid_result[j] >> 31) == 1)
284 continue;
285 ((uint32_t *) info_p->cache_info)[4*i+j] =
286 cpuid_result[j];
287 }
288 }
289
290 /*
291 * Get cache info using leaf 4, the "deterministic cache parameters."
292 * Most processors Mac OS X supports implement this flavor of CPUID.
293 * Loop over each cache on the processor.
294 */
295 cpuid_fn(0, cpuid_result);
296 if (cpuid_result[eax] >= 4)
297 cpuid_deterministic_supported = TRUE;
298
299 for (index = 0; cpuid_deterministic_supported; index++) {
300 cache_type_t type = Lnone;
301 uint32_t cache_type;
302 uint32_t cache_level;
303 uint32_t cache_sharing;
304 uint32_t cache_linesize;
305 uint32_t cache_sets;
306 uint32_t cache_associativity;
307 uint32_t cache_size;
308 uint32_t cache_partitions;
309 uint32_t colors;
310
311 reg[eax] = 4; /* cpuid request 4 */
312 reg[ecx] = index; /* index starting at 0 */
313 cpuid(reg);
314//kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]);
315 cache_type = bitfield32(reg[eax], 4, 0);
316 if (cache_type == 0)
317 break; /* no more caches */
318 cache_level = bitfield32(reg[eax], 7, 5);
319 cache_sharing = bitfield32(reg[eax], 25, 14) + 1;
320 info_p->cpuid_cores_per_package
321 = bitfield32(reg[eax], 31, 26) + 1;
322 cache_linesize = bitfield32(reg[ebx], 11, 0) + 1;
323 cache_partitions = bitfield32(reg[ebx], 21, 12) + 1;
324 cache_associativity = bitfield32(reg[ebx], 31, 22) + 1;
325 cache_sets = bitfield32(reg[ecx], 31, 0) + 1;
326
327 /* Map type/levels returned by CPUID into cache_type_t */
328 switch (cache_level) {
329 case 1:
330 type = cache_type == 1 ? L1D :
331 cache_type == 2 ? L1I :
332 Lnone;
333 break;
334 case 2:
335 type = cache_type == 3 ? L2U :
336 Lnone;
337 break;
338 case 3:
339 type = cache_type == 3 ? L3U :
340 Lnone;
341 break;
342 default:
343 type = Lnone;
344 }
345
346 /* The total size of a cache is:
347 * ( linesize * sets * associativity * partitions )
348 */
349 if (type != Lnone) {
350 cache_size = cache_linesize * cache_sets *
351 cache_associativity * cache_partitions;
352 info_p->cache_size[type] = cache_size;
353 info_p->cache_sharing[type] = cache_sharing;
354 info_p->cache_partitions[type] = cache_partitions;
355 linesizes[type] = cache_linesize;
356
357 /*
358 * Overwrite associativity determined via
359 * CPUID.0x80000006 -- this leaf is more
360 * accurate
361 */
362 if (type == L2U)
363 info_p->cpuid_cache_L2_associativity = cache_associativity;
364
365 /* Compute the number of page colors for this cache,
366 * which is:
367 * ( linesize * sets ) / page_size
368 *
369 * To help visualize this, consider two views of a
370 * physical address. To the cache, it is composed
371 * of a line offset, a set selector, and a tag.
372 * To VM, it is composed of a page offset, a page
373 * color, and other bits in the pageframe number:
374 *
375 * +-----------------+---------+--------+
376 * cache: | tag | set | offset |
377 * +-----------------+---------+--------+
378 *
379 * +-----------------+-------+----------+
380 * VM: | don't care | color | pg offset|
381 * +-----------------+-------+----------+
382 *
383 * The color is those bits in (set+offset) not covered
384 * by the page offset.
385 */
386 colors = ( cache_linesize * cache_sets ) >> 12;
387
388 if ( colors > vm_cache_geometry_colors )
389 vm_cache_geometry_colors = colors;
390 }
391 }
392
393 /*
394 * If deterministic cache parameters are not available, use
395 * something else
396 */
397 if (info_p->cpuid_cores_per_package == 0) {
398 info_p->cpuid_cores_per_package = 1;
399
400 /* cpuid define in 1024 quantities */
401 info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024;
402 info_p->cache_sharing[L2U] = 1;
403 info_p->cache_partitions[L2U] = 1;
404
405 linesizes[L2U] = info_p->cpuid_cache_linesize;
406 }
407
408 /*
409 * What linesize to publish? We use the L2 linesize if any,
410 * else the L1D.
411 */
412 if ( linesizes[L2U] )
413 info_p->cache_linesize = linesizes[L2U];
414 else if (linesizes[L1D])
415 info_p->cache_linesize = linesizes[L1D];
416 else panic("no linesize");
417
418 /*
419 * Extract and publish TLB information from Leaf 2 descriptors.
420 */
421 for (i = 1; i < sizeof(info_p->cache_info); i++) {
422 cpuid_cache_descriptor_t *descp;
423 int id;
424 int level;
425 int page;
426
427 descp = cpuid_leaf2_find(info_p->cache_info[i]);
428 if (descp == NULL)
429 continue;
430
431 switch (descp->type) {
432 case TLB:
433 page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE;
434 /* determine I or D: */
435 switch (descp->level) {
436 case INST:
437 id = TLB_INST;
438 break;
439 case DATA:
440 case DATA0:
441 case DATA1:
442 id = TLB_DATA;
443 break;
444 default:
445 continue;
446 }
447 /* determine level: */
448 switch (descp->level) {
449 case DATA1:
450 level = 1;
451 break;
452 default:
453 level = 0;
454 }
455 info_p->cpuid_tlb[id][page][level] = descp->entries;
456 break;
457 case STLB:
458 info_p->cpuid_stlb = descp->entries;
459 }
460 }
461}
462
463static void
464cpuid_set_generic_info(i386_cpu_info_t *info_p)
465{
466 uint32_t reg[4];
467 char str[128], *p;
468
469 /* do cpuid 0 to get vendor */
470 cpuid_fn(0, reg);
471 info_p->cpuid_max_basic = reg[eax];
472 bcopy((char *)&reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
473 bcopy((char *)&reg[ecx], &info_p->cpuid_vendor[8], 4);
474 bcopy((char *)&reg[edx], &info_p->cpuid_vendor[4], 4);
475 info_p->cpuid_vendor[12] = 0;
476
477 /* get extended cpuid results */
478 cpuid_fn(0x80000000, reg);
479 info_p->cpuid_max_ext = reg[eax];
480
481 /* check to see if we can get brand string */
482 if (info_p->cpuid_max_ext >= 0x80000004) {
483 /*
484 * The brand string 48 bytes (max), guaranteed to
485 * be NUL terminated.
486 */
487 cpuid_fn(0x80000002, reg);
488 bcopy((char *)reg, &str[0], 16);
489 cpuid_fn(0x80000003, reg);
490 bcopy((char *)reg, &str[16], 16);
491 cpuid_fn(0x80000004, reg);
492 bcopy((char *)reg, &str[32], 16);
493 for (p = str; *p != '\0'; p++) {
494 if (*p != ' ') break;
495 }
496 strlcpy(info_p->cpuid_brand_string,
497 p, sizeof(info_p->cpuid_brand_string));
498
499 if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
500 min(sizeof(info_p->cpuid_brand_string),
501 strlen(CPUID_STRING_UNKNOWN) + 1))) {
502 /*
503 * This string means we have a firmware-programmable brand string,
504 * and the firmware couldn't figure out what sort of CPU we have.
505 */
506 info_p->cpuid_brand_string[0] = '\0';
507 }
508 }
509
510 /* Get cache and addressing info. */
511 if (info_p->cpuid_max_ext >= 0x80000006) {
512 uint32_t assoc;
513 cpuid_fn(0x80000006, reg);
514 info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0);
515 assoc = bitfield32(reg[ecx],15,12);
516 /*
517 * L2 associativity is encoded, though in an insufficiently
518 * descriptive fashion, e.g. 24-way is mapped to 16-way.
519 * Represent a fully associative cache as 0xFFFF.
520 * Overwritten by associativity as determined via CPUID.4
521 * if available.
522 */
523 if (assoc == 6)
524 assoc = 8;
525 else if (assoc == 8)
526 assoc = 16;
527 else if (assoc == 0xF)
528 assoc = 0xFFFF;
529 info_p->cpuid_cache_L2_associativity = assoc;
530 info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16);
531 cpuid_fn(0x80000008, reg);
532 info_p->cpuid_address_bits_physical =
533 bitfield32(reg[eax], 7, 0);
534 info_p->cpuid_address_bits_virtual =
535 bitfield32(reg[eax],15, 8);
536 }
537
538 /*
539 * Get processor signature and decode
540 * and bracket this with the approved procedure for reading the
541 * the microcode version number a.k.a. signature a.k.a. BIOS ID
542 */
543 wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0);
544 cpuid_fn(1, reg);
545 info_p->cpuid_microcode_version =
546 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
547 info_p->cpuid_signature = reg[eax];
548 info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0);
549 info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
550 info_p->cpuid_family = bitfield32(reg[eax], 11, 8);
551 info_p->cpuid_type = bitfield32(reg[eax], 13, 12);
552 info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16);
553 info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20);
554 info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0);
555 info_p->cpuid_features = quad(reg[ecx], reg[edx]);
556
557 /* Get "processor flag"; necessary for microcode update matching */
558 info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID)>> 50) & 3;
559
560 /* Fold extensions into family/model */
561 if (info_p->cpuid_family == 0x0f)
562 info_p->cpuid_family += info_p->cpuid_extfamily;
563 if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06)
564 info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
565
566 if (info_p->cpuid_features & CPUID_FEATURE_HTT)
567 info_p->cpuid_logical_per_package =
568 bitfield32(reg[ebx], 23, 16);
569 else
570 info_p->cpuid_logical_per_package = 1;
571
572 if (info_p->cpuid_max_ext >= 0x80000001) {
573 cpuid_fn(0x80000001, reg);
574 info_p->cpuid_extfeatures =
575 quad(reg[ecx], reg[edx]);
576 }
577
578 /* Fold in the Invariant TSC feature bit, if present */
579 if (info_p->cpuid_max_ext >= 0x80000007) {
580 cpuid_fn(0x80000007, reg);
581 info_p->cpuid_extfeatures |=
582 reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
583 }
584
585 if (info_p->cpuid_max_basic >= 0x5) {
586 cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf;
587
588 /*
589 * Extract the Monitor/Mwait Leaf info:
590 */
591 cpuid_fn(5, reg);
592 cmp->linesize_min = reg[eax];
593 cmp->linesize_max = reg[ebx];
594 cmp->extensions = reg[ecx];
595 cmp->sub_Cstates = reg[edx];
596 info_p->cpuid_mwait_leafp = cmp;
597 }
598
599 if (info_p->cpuid_max_basic >= 0x6) {
600 cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf;
601
602 /*
603 * The thermal and Power Leaf:
604 */
605 cpuid_fn(6, reg);
606 ctp->sensor = bitfield32(reg[eax], 0, 0);
607 ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1);
608 ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2);
609 ctp->core_power_limits = bitfield32(reg[eax], 3, 3);
610 ctp->fine_grain_clock_mod = bitfield32(reg[eax], 4, 4);
611 ctp->package_thermal_intr = bitfield32(reg[eax], 5, 5);
612 ctp->thresholds = bitfield32(reg[ebx], 3, 0);
613 ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0);
614 ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1);
615 ctp->energy_policy = bitfield32(reg[ecx], 2, 2);
616 info_p->cpuid_thermal_leafp = ctp;
617 }
618
619 if (info_p->cpuid_max_basic >= 0xa) {
620 cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf;
621
622 /*
623 * Architectural Performance Monitoring Leaf:
624 */
625 cpuid_fn(0xa, reg);
626 capp->version = bitfield32(reg[eax], 7, 0);
627 capp->number = bitfield32(reg[eax], 15, 8);
628 capp->width = bitfield32(reg[eax], 23, 16);
629 capp->events_number = bitfield32(reg[eax], 31, 24);
630 capp->events = reg[ebx];
631 capp->fixed_number = bitfield32(reg[edx], 4, 0);
632 capp->fixed_width = bitfield32(reg[edx], 12, 5);
633 info_p->cpuid_arch_perf_leafp = capp;
634 }
635
636 if (info_p->cpuid_max_basic >= 0xd) {
637 cpuid_xsave_leaf_t *xsp = &info_p->cpuid_xsave_leaf;
638 /*
639 * XSAVE Features:
640 */
641 cpuid_fn(0xd, info_p->cpuid_xsave_leaf.extended_state);
642 info_p->cpuid_xsave_leafp = xsp;
643 }
644
645 return;
646}
647
648static uint32_t
649cpuid_set_cpufamily(i386_cpu_info_t *info_p)
650{
651 uint32_t cpufamily = CPUFAMILY_UNKNOWN;
652
653 switch (info_p->cpuid_family) {
654 case 6:
655 switch (info_p->cpuid_model) {
656#if CONFIG_YONAH
657 case 14:
658 cpufamily = CPUFAMILY_INTEL_YONAH;
659 break;
660#endif
661 case 15:
662 cpufamily = CPUFAMILY_INTEL_MEROM;
663 break;
664 case 23:
665 cpufamily = CPUFAMILY_INTEL_PENRYN;
666 break;
667 case CPUID_MODEL_NEHALEM:
668 case CPUID_MODEL_FIELDS:
669 case CPUID_MODEL_DALES:
670 case CPUID_MODEL_NEHALEM_EX:
671 cpufamily = CPUFAMILY_INTEL_NEHALEM;
672 break;
673 case CPUID_MODEL_DALES_32NM:
674 case CPUID_MODEL_WESTMERE:
675 case CPUID_MODEL_WESTMERE_EX:
676 cpufamily = CPUFAMILY_INTEL_WESTMERE;
677 break;
678 case CPUID_MODEL_SANDYBRIDGE:
679 case CPUID_MODEL_JAKETOWN:
680 cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE;
681 break;
682 }
683 break;
684 }
685
686 info_p->cpuid_cpufamily = cpufamily;
687 return cpufamily;
688}
689/*
690 * Must be invoked either when executing single threaded, or with
691 * independent synchronization.
692 */
693void
694cpuid_set_info(void)
695{
696 i386_cpu_info_t *info_p = &cpuid_cpu_info;
697
698 bzero((void *)info_p, sizeof(cpuid_cpu_info));
699
700 cpuid_set_generic_info(info_p);
701
702 /* verify we are running on a supported CPU */
703 if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor,
704 min(strlen(CPUID_STRING_UNKNOWN) + 1,
705 sizeof(info_p->cpuid_vendor)))) ||
706 (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN))
707 panic("Unsupported CPU");
708
709 info_p->cpuid_cpu_type = CPU_TYPE_X86;
710 info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
711 /* Must be invoked after set_generic_info */
712 cpuid_set_cache_info(&cpuid_cpu_info);
713
714 /*
715 * Find the number of enabled cores and threads
716 * (which determines whether SMT/Hyperthreading is active).
717 */
718 switch (info_p->cpuid_cpufamily) {
719 case CPUFAMILY_INTEL_WESTMERE: {
720 uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
721 info_p->core_count = bitfield32((uint32_t)msr, 19, 16);
722 info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
723 break;
724 }
725 case CPUFAMILY_INTEL_SANDYBRIDGE:
726 case CPUFAMILY_INTEL_NEHALEM: {
727 uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
728 info_p->core_count = bitfield32((uint32_t)msr, 31, 16);
729 info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
730 break;
731 }
732 }
733 if (info_p->core_count == 0) {
734 info_p->core_count = info_p->cpuid_cores_per_package;
735 info_p->thread_count = info_p->cpuid_logical_per_package;
736 }
737
738 cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */
739}
740
741static struct {
742 uint64_t mask;
743 const char *name;
744} feature_map[] = {
745 {CPUID_FEATURE_FPU, "FPU"},
746 {CPUID_FEATURE_VME, "VME"},
747 {CPUID_FEATURE_DE, "DE"},
748 {CPUID_FEATURE_PSE, "PSE"},
749 {CPUID_FEATURE_TSC, "TSC"},
750 {CPUID_FEATURE_MSR, "MSR"},
751 {CPUID_FEATURE_PAE, "PAE"},
752 {CPUID_FEATURE_MCE, "MCE"},
753 {CPUID_FEATURE_CX8, "CX8"},
754 {CPUID_FEATURE_APIC, "APIC"},
755 {CPUID_FEATURE_SEP, "SEP"},
756 {CPUID_FEATURE_MTRR, "MTRR"},
757 {CPUID_FEATURE_PGE, "PGE"},
758 {CPUID_FEATURE_MCA, "MCA"},
759 {CPUID_FEATURE_CMOV, "CMOV"},
760 {CPUID_FEATURE_PAT, "PAT"},
761 {CPUID_FEATURE_PSE36, "PSE36"},
762 {CPUID_FEATURE_PSN, "PSN"},
763 {CPUID_FEATURE_CLFSH, "CLFSH"},
764 {CPUID_FEATURE_DS, "DS"},
765 {CPUID_FEATURE_ACPI, "ACPI"},
766 {CPUID_FEATURE_MMX, "MMX"},
767 {CPUID_FEATURE_FXSR, "FXSR"},
768 {CPUID_FEATURE_SSE, "SSE"},
769 {CPUID_FEATURE_SSE2, "SSE2"},
770 {CPUID_FEATURE_SS, "SS"},
771 {CPUID_FEATURE_HTT, "HTT"},
772 {CPUID_FEATURE_TM, "TM"},
773 {CPUID_FEATURE_PBE, "PBE"},
774 {CPUID_FEATURE_SSE3, "SSE3"},
775 {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ"},
776 {CPUID_FEATURE_DTES64, "DTES64"},
777 {CPUID_FEATURE_MONITOR, "MON"},
778 {CPUID_FEATURE_DSCPL, "DSCPL"},
779 {CPUID_FEATURE_VMX, "VMX"},
780 {CPUID_FEATURE_SMX, "SMX"},
781 {CPUID_FEATURE_EST, "EST"},
782 {CPUID_FEATURE_TM2, "TM2"},
783 {CPUID_FEATURE_SSSE3, "SSSE3"},
784 {CPUID_FEATURE_CID, "CID"},
785 {CPUID_FEATURE_CX16, "CX16"},
786 {CPUID_FEATURE_xTPR, "TPR"},
787 {CPUID_FEATURE_PDCM, "PDCM"},
788 {CPUID_FEATURE_SSE4_1, "SSE4.1"},
789 {CPUID_FEATURE_SSE4_2, "SSE4.2"},
790 {CPUID_FEATURE_xAPIC, "xAPIC"},
791 {CPUID_FEATURE_MOVBE, "MOVBE"},
792 {CPUID_FEATURE_POPCNT, "POPCNT"},
793 {CPUID_FEATURE_AES, "AES"},
794 {CPUID_FEATURE_VMM, "VMM"},
795 {CPUID_FEATURE_PCID, "PCID"},
796 {CPUID_FEATURE_XSAVE, "XSAVE"},
797 {CPUID_FEATURE_OSXSAVE, "OSXSAVE"},
798 {CPUID_FEATURE_SEGLIM64, "SEGLIM64"},
799 {CPUID_FEATURE_TSCTMR, "TSCTMR"},
800 {CPUID_FEATURE_AVX1_0, "AVX1.0"},
801 {0, 0}
802},
803extfeature_map[] = {
804 {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
805 {CPUID_EXTFEATURE_XD, "XD"},
806 {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE"},
807 {CPUID_EXTFEATURE_EM64T, "EM64T"},
808 {CPUID_EXTFEATURE_LAHF, "LAHF"},
809 {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
810 {CPUID_EXTFEATURE_TSCI, "TSCI"},
811 {0, 0}
812};
813
814i386_cpu_info_t *
815cpuid_info(void)
816{
817 /* Set-up the cpuid_info stucture lazily */
818 if (cpuid_cpu_infop == NULL) {
819 cpuid_set_info();
820 cpuid_cpu_infop = &cpuid_cpu_info;
821 }
822 return cpuid_cpu_infop;
823}
824
825char *
826cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
827{
828 size_t len = 0;
829 char *p = buf;
830 int i;
831
832 for (i = 0; feature_map[i].mask != 0; i++) {
833 if ((features & feature_map[i].mask) == 0)
834 continue;
835 if (len && ((size_t)(p - buf) < (buf_len - 1)))
836 *p++ = ' ';
837
838 len = min(strlen(feature_map[i].name), (size_t) ((buf_len-1) - (p-buf)));
839 if (len == 0)
840 break;
841 bcopy(feature_map[i].name, p, len);
842 p += len;
843 }
844 *p = '\0';
845 return buf;
846}
847
848char *
849cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
850{
851 size_t len = 0;
852 char *p = buf;
853 int i;
854
855 for (i = 0; extfeature_map[i].mask != 0; i++) {
856 if ((extfeatures & extfeature_map[i].mask) == 0)
857 continue;
858 if (len && ((size_t) (p - buf) < (buf_len - 1)))
859 *p++ = ' ';
860 len = min(strlen(extfeature_map[i].name), (size_t) ((buf_len-1)-(p-buf)));
861 if (len == 0)
862 break;
863 bcopy(extfeature_map[i].name, p, len);
864 p += len;
865 }
866 *p = '\0';
867 return buf;
868}
869
870
871void
872cpuid_feature_display(
873 const char *header)
874{
875 char buf[256];
876
877 kprintf("%s: %s\n", header,
878 cpuid_get_feature_names(cpuid_features(),
879 buf, sizeof(buf)));
880 if (cpuid_features() & CPUID_FEATURE_HTT) {
881#define s_if_plural(n) ((n > 1) ? "s" : "")
882 kprintf(" HTT: %d core%s per package;"
883 " %d logical cpu%s per package\n",
884 cpuid_cpu_info.cpuid_cores_per_package,
885 s_if_plural(cpuid_cpu_info.cpuid_cores_per_package),
886 cpuid_cpu_info.cpuid_logical_per_package,
887 s_if_plural(cpuid_cpu_info.cpuid_logical_per_package));
888 }
889}
890
891void
892cpuid_extfeature_display(
893 const char *header)
894{
895 char buf[256];
896
897 kprintf("%s: %s\n", header,
898 cpuid_get_extfeature_names(cpuid_extfeatures(),
899 buf, sizeof(buf)));
900}
901
902void
903cpuid_cpu_display(
904 const char *header)
905{
906 if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') {
907 kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string);
908 }
909}
910
911unsigned int
912cpuid_family(void)
913{
914 return cpuid_info()->cpuid_family;
915}
916
917uint32_t
918cpuid_cpufamily(void)
919{
920 return cpuid_info()->cpuid_cpufamily;
921}
922
923cpu_type_t
924cpuid_cputype(void)
925{
926 return cpuid_info()->cpuid_cpu_type;
927}
928
929cpu_subtype_t
930cpuid_cpusubtype(void)
931{
932 return cpuid_info()->cpuid_cpu_subtype;
933}
934
935uint64_t
936cpuid_features(void)
937{
938 static int checked = 0;
939 char fpu_arg[20] = { 0 };
940
941 (void) cpuid_info();
942 if (!checked) {
943 /* check for boot-time fpu limitations */
944 if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) {
945 printf("limiting fpu features to: %s\n", fpu_arg);
946 if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
947 printf("no sse or sse2\n");
948 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
949 } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
950 printf("no sse2\n");
951 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2);
952 }
953 }
954 checked = 1;
955 }
956 return cpuid_cpu_info.cpuid_features;
957}
958
959uint64_t
960cpuid_extfeatures(void)
961{
962 return cpuid_info()->cpuid_extfeatures;
963}
964
965
966#if MACH_KDB
967
968/*
969 * Display the cpuid
970 * *
971 * cp
972 */
973void
974db_cpuid(__unused db_expr_t addr,
975 __unused int have_addr,
976 __unused db_expr_t count,
977 __unused char *modif)
978{
979
980 uint32_t i, mid;
981 uint32_t cpid[4];
982
983 do_cpuid(0, cpid); /* Get the first cpuid which is the number of
984 * basic ids */
985 db_printf("%08X - %08X %08X %08X %08X\n",
986 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
987
988 mid = cpid[eax]; /* Set the number */
989 for (i = 1; i <= mid; i++) { /* Dump 'em out */
990 do_cpuid(i, cpid); /* Get the next */
991 db_printf("%08X - %08X %08X %08X %08X\n",
992 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
993 }
994 db_printf("\n");
995
996 do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which
997 * is the number of extended ids */
998 db_printf("%08X - %08X %08X %08X %08X\n",
999 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
1000
1001 mid = cpid[eax]; /* Set the number */
1002 for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */
1003 do_cpuid(i, cpid); /* Get the next */
1004 db_printf("%08X - %08X %08X %08X %08X\n",
1005 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
1006 }
1007}
1008
1009#endif