]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | #include <platforms.h> | |
32 | #include <mach_kdb.h> | |
33 | #include <vm/vm_page.h> | |
34 | #include <pexpert/pexpert.h> | |
35 | ||
36 | #include <i386/cpuid.h> | |
37 | #if MACH_KDB | |
38 | #include <machine/db_machdep.h> | |
39 | #include <ddb/db_aout.h> | |
40 | #include <ddb/db_access.h> | |
41 | #include <ddb/db_sym.h> | |
42 | #include <ddb/db_variables.h> | |
43 | #include <ddb/db_command.h> | |
44 | #include <ddb/db_output.h> | |
45 | #include <ddb/db_expr.h> | |
46 | #endif | |
47 | ||
48 | #define min(a,b) ((a) < (b) ? (a) : (b)) | |
49 | #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo)) | |
50 | ||
51 | /* Only for 32bit values */ | |
52 | #define bit32(n) (1U << (n)) | |
53 | #define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1)) | |
54 | #define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l)) | |
55 | ||
56 | /* | |
57 | * Leaf 2 cache descriptor encodings. | |
58 | */ | |
59 | typedef enum { | |
60 | _NULL_, /* NULL (empty) descriptor */ | |
61 | CACHE, /* Cache */ | |
62 | TLB, /* TLB */ | |
63 | STLB, /* Shared second-level unified TLB */ | |
64 | PREFETCH /* Prefetch size */ | |
65 | } cpuid_leaf2_desc_type_t; | |
66 | ||
67 | typedef enum { | |
68 | NA, /* Not Applicable */ | |
69 | FULLY, /* Fully-associative */ | |
70 | TRACE, /* Trace Cache (P4 only) */ | |
71 | INST, /* Instruction TLB */ | |
72 | DATA, /* Data TLB */ | |
73 | DATA0, /* Data TLB, 1st level */ | |
74 | DATA1, /* Data TLB, 2nd level */ | |
75 | L1, /* L1 (unified) cache */ | |
76 | L1_INST, /* L1 Instruction cache */ | |
77 | L1_DATA, /* L1 Data cache */ | |
78 | L2, /* L2 (unified) cache */ | |
79 | L3, /* L3 (unified) cache */ | |
80 | L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */ | |
81 | L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */ | |
82 | SMALL, /* Small page TLB */ | |
83 | LARGE, /* Large page TLB */ | |
84 | BOTH /* Small and Large page TLB */ | |
85 | } cpuid_leaf2_qualifier_t; | |
86 | ||
87 | typedef struct cpuid_cache_descriptor { | |
88 | uint8_t value; /* descriptor code */ | |
89 | uint8_t type; /* cpuid_leaf2_desc_type_t */ | |
90 | uint8_t level; /* level of cache/TLB hierachy */ | |
91 | uint8_t ways; /* wayness of cache */ | |
92 | uint16_t size; /* cachesize or TLB pagesize */ | |
93 | uint16_t entries; /* number of TLB entries or linesize */ | |
94 | } cpuid_cache_descriptor_t; | |
95 | ||
96 | /* | |
97 | * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field | |
98 | */ | |
99 | #define K (1) | |
100 | #define M (1024) | |
101 | ||
102 | /* | |
103 | * Intel cache descriptor table: | |
104 | */ | |
105 | static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = { | |
106 | // ------------------------------------------------------- | |
107 | // value type level ways size entries | |
108 | // ------------------------------------------------------- | |
109 | { 0x00, _NULL_, NA, NA, NA, NA }, | |
110 | { 0x01, TLB, INST, 4, SMALL, 32 }, | |
111 | { 0x02, TLB, INST, FULLY, LARGE, 2 }, | |
112 | { 0x03, TLB, DATA, 4, SMALL, 64 }, | |
113 | { 0x04, TLB, DATA, 4, LARGE, 8 }, | |
114 | { 0x05, TLB, DATA1, 4, LARGE, 32 }, | |
115 | { 0x06, CACHE, L1_INST, 4, 8*K, 32 }, | |
116 | { 0x08, CACHE, L1_INST, 4, 16*K, 32 }, | |
117 | { 0x09, CACHE, L1_INST, 4, 32*K, 64 }, | |
118 | { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 }, | |
119 | { 0x0B, TLB, INST, 4, LARGE, 4 }, | |
120 | { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 }, | |
121 | { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 }, | |
122 | { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 }, | |
123 | { 0x21, CACHE, L2, 8, 256*K, 64 }, | |
124 | { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 }, | |
125 | { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 }, | |
126 | { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 }, | |
127 | { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 }, | |
128 | { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 }, | |
129 | { 0x30, CACHE, L1_INST, 8, 32*K, 64 }, | |
130 | { 0x40, CACHE, L2, NA, 0, NA }, | |
131 | { 0x41, CACHE, L2, 4, 128*K, 32 }, | |
132 | { 0x42, CACHE, L2, 4, 256*K, 32 }, | |
133 | { 0x43, CACHE, L2, 4, 512*K, 32 }, | |
134 | { 0x44, CACHE, L2, 4, 1*M, 32 }, | |
135 | { 0x45, CACHE, L2, 4, 2*M, 32 }, | |
136 | { 0x46, CACHE, L3, 4, 4*M, 64 }, | |
137 | { 0x47, CACHE, L3, 8, 8*M, 64 }, | |
138 | { 0x48, CACHE, L2, 12, 3*M, 64 }, | |
139 | { 0x49, CACHE, L2, 16, 4*M, 64 }, | |
140 | { 0x4A, CACHE, L3, 12, 6*M, 64 }, | |
141 | { 0x4B, CACHE, L3, 16, 8*M, 64 }, | |
142 | { 0x4C, CACHE, L3, 12, 12*M, 64 }, | |
143 | { 0x4D, CACHE, L3, 16, 16*M, 64 }, | |
144 | { 0x4E, CACHE, L2, 24, 6*M, 64 }, | |
145 | { 0x4F, TLB, INST, NA, SMALL, 32 }, | |
146 | { 0x50, TLB, INST, NA, BOTH, 64 }, | |
147 | { 0x51, TLB, INST, NA, BOTH, 128 }, | |
148 | { 0x52, TLB, INST, NA, BOTH, 256 }, | |
149 | { 0x55, TLB, INST, FULLY, BOTH, 7 }, | |
150 | { 0x56, TLB, DATA0, 4, LARGE, 16 }, | |
151 | { 0x57, TLB, DATA0, 4, SMALL, 16 }, | |
152 | { 0x59, TLB, DATA0, FULLY, SMALL, 16 }, | |
153 | { 0x5A, TLB, DATA0, 4, LARGE, 32 }, | |
154 | { 0x5B, TLB, DATA, NA, BOTH, 64 }, | |
155 | { 0x5C, TLB, DATA, NA, BOTH, 128 }, | |
156 | { 0x5D, TLB, DATA, NA, BOTH, 256 }, | |
157 | { 0x60, CACHE, L1, 16*K, 8, 64 }, | |
158 | { 0x61, CACHE, L1, 4, 8*K, 64 }, | |
159 | { 0x62, CACHE, L1, 4, 16*K, 64 }, | |
160 | { 0x63, CACHE, L1, 4, 32*K, 64 }, | |
161 | { 0x70, CACHE, TRACE, 8, 12*K, NA }, | |
162 | { 0x71, CACHE, TRACE, 8, 16*K, NA }, | |
163 | { 0x72, CACHE, TRACE, 8, 32*K, NA }, | |
164 | { 0x78, CACHE, L2, 4, 1*M, 64 }, | |
165 | { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 }, | |
166 | { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 }, | |
167 | { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 }, | |
168 | { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 }, | |
169 | { 0x7D, CACHE, L2, 8, 2*M, 64 }, | |
170 | { 0x7F, CACHE, L2, 2, 512*K, 64 }, | |
171 | { 0x80, CACHE, L2, 8, 512*K, 64 }, | |
172 | { 0x82, CACHE, L2, 8, 256*K, 32 }, | |
173 | { 0x83, CACHE, L2, 8, 512*K, 32 }, | |
174 | { 0x84, CACHE, L2, 8, 1*M, 32 }, | |
175 | { 0x85, CACHE, L2, 8, 2*M, 32 }, | |
176 | { 0x86, CACHE, L2, 4, 512*K, 64 }, | |
177 | { 0x87, CACHE, L2, 8, 1*M, 64 }, | |
178 | { 0xB0, TLB, INST, 4, SMALL, 128 }, | |
179 | { 0xB1, TLB, INST, 4, LARGE, 8 }, | |
180 | { 0xB2, TLB, INST, 4, SMALL, 64 }, | |
181 | { 0xB3, TLB, DATA, 4, SMALL, 128 }, | |
182 | { 0xB4, TLB, DATA1, 4, SMALL, 256 }, | |
183 | { 0xBA, TLB, DATA1, 4, BOTH, 64 }, | |
184 | { 0xCA, STLB, DATA1, 4, BOTH, 512 }, | |
185 | { 0xD0, CACHE, L3, 4, 512*K, 64 }, | |
186 | { 0xD1, CACHE, L3, 4, 1*M, 64 }, | |
187 | { 0xD2, CACHE, L3, 4, 2*M, 64 }, | |
188 | { 0xD3, CACHE, L3, 4, 4*M, 64 }, | |
189 | { 0xD4, CACHE, L3, 4, 8*M, 64 }, | |
190 | { 0xD6, CACHE, L3, 8, 1*M, 64 }, | |
191 | { 0xD7, CACHE, L3, 8, 2*M, 64 }, | |
192 | { 0xD8, CACHE, L3, 8, 4*M, 64 }, | |
193 | { 0xD9, CACHE, L3, 8, 8*M, 64 }, | |
194 | { 0xDA, CACHE, L3, 8, 12*M, 64 }, | |
195 | { 0xDC, CACHE, L3, 12, 1536*K, 64 }, | |
196 | { 0xDD, CACHE, L3, 12, 3*M, 64 }, | |
197 | { 0xDE, CACHE, L3, 12, 6*M, 64 }, | |
198 | { 0xDF, CACHE, L3, 12, 12*M, 64 }, | |
199 | { 0xE0, CACHE, L3, 12, 18*M, 64 }, | |
200 | { 0xE2, CACHE, L3, 16, 2*M, 64 }, | |
201 | { 0xE3, CACHE, L3, 16, 4*M, 64 }, | |
202 | { 0xE4, CACHE, L3, 16, 8*M, 64 }, | |
203 | { 0xE5, CACHE, L3, 16, 16*M, 64 }, | |
204 | { 0xE6, CACHE, L3, 16, 24*M, 64 }, | |
205 | { 0xF0, PREFETCH, NA, NA, 64, NA }, | |
206 | { 0xF1, PREFETCH, NA, NA, 128, NA } | |
207 | }; | |
208 | #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \ | |
209 | sizeof(cpuid_cache_descriptor_t)) | |
210 | ||
211 | static inline cpuid_cache_descriptor_t * | |
212 | cpuid_leaf2_find(uint8_t value) | |
213 | { | |
214 | unsigned int i; | |
215 | ||
216 | for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++) | |
217 | if (intel_cpuid_leaf2_descriptor_table[i].value == value) | |
218 | return &intel_cpuid_leaf2_descriptor_table[i]; | |
219 | return NULL; | |
220 | } | |
221 | ||
222 | /* | |
223 | * CPU identification routines. | |
224 | */ | |
225 | ||
226 | static i386_cpu_info_t *cpuid_cpu_infop = NULL; | |
227 | static i386_cpu_info_t cpuid_cpu_info; | |
228 | ||
229 | #if defined(__x86_64__) | |
230 | static void cpuid_fn(uint32_t selector, uint32_t *result) | |
231 | { | |
232 | do_cpuid(selector, result); | |
233 | } | |
234 | #else | |
235 | static void cpuid_fn(uint32_t selector, uint32_t *result) | |
236 | { | |
237 | if (cpu_mode_is64bit()) { | |
238 | asm("call _cpuid64" | |
239 | : "=a" (result[0]), | |
240 | "=b" (result[1]), | |
241 | "=c" (result[2]), | |
242 | "=d" (result[3]) | |
243 | : "a"(selector)); | |
244 | } else { | |
245 | do_cpuid(selector, result); | |
246 | } | |
247 | } | |
248 | #endif | |
249 | ||
250 | /* this function is Intel-specific */ | |
251 | static void | |
252 | cpuid_set_cache_info( i386_cpu_info_t * info_p ) | |
253 | { | |
254 | uint32_t cpuid_result[4]; | |
255 | uint32_t reg[4]; | |
256 | uint32_t index; | |
257 | uint32_t linesizes[LCACHE_MAX]; | |
258 | unsigned int i; | |
259 | unsigned int j; | |
260 | boolean_t cpuid_deterministic_supported = FALSE; | |
261 | ||
262 | bzero( linesizes, sizeof(linesizes) ); | |
263 | ||
264 | /* Get processor cache descriptor info using leaf 2. We don't use | |
265 | * this internally, but must publish it for KEXTs. | |
266 | */ | |
267 | cpuid_fn(2, cpuid_result); | |
268 | for (j = 0; j < 4; j++) { | |
269 | if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */ | |
270 | continue; | |
271 | ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j]; | |
272 | } | |
273 | /* first byte gives number of cpuid calls to get all descriptors */ | |
274 | for (i = 1; i < info_p->cache_info[0]; i++) { | |
275 | if (i*16 > sizeof(info_p->cache_info)) | |
276 | break; | |
277 | cpuid_fn(2, cpuid_result); | |
278 | for (j = 0; j < 4; j++) { | |
279 | if ((cpuid_result[j] >> 31) == 1) | |
280 | continue; | |
281 | ((uint32_t *) info_p->cache_info)[4*i+j] = | |
282 | cpuid_result[j]; | |
283 | } | |
284 | } | |
285 | ||
286 | /* | |
287 | * Get cache info using leaf 4, the "deterministic cache parameters." | |
288 | * Most processors Mac OS X supports implement this flavor of CPUID. | |
289 | * Loop over each cache on the processor. | |
290 | */ | |
291 | cpuid_fn(0, cpuid_result); | |
292 | if (cpuid_result[eax] >= 4) | |
293 | cpuid_deterministic_supported = TRUE; | |
294 | ||
295 | for (index = 0; cpuid_deterministic_supported; index++) { | |
296 | cache_type_t type = Lnone; | |
297 | uint32_t cache_type; | |
298 | uint32_t cache_level; | |
299 | uint32_t cache_sharing; | |
300 | uint32_t cache_linesize; | |
301 | uint32_t cache_sets; | |
302 | uint32_t cache_associativity; | |
303 | uint32_t cache_size; | |
304 | uint32_t cache_partitions; | |
305 | uint32_t colors; | |
306 | ||
307 | reg[eax] = 4; /* cpuid request 4 */ | |
308 | reg[ecx] = index; /* index starting at 0 */ | |
309 | cpuid(reg); | |
310 | //kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]); | |
311 | cache_type = bitfield32(reg[eax], 4, 0); | |
312 | if (cache_type == 0) | |
313 | break; /* no more caches */ | |
314 | cache_level = bitfield32(reg[eax], 7, 5); | |
315 | cache_sharing = bitfield32(reg[eax], 25, 14) + 1; | |
316 | info_p->cpuid_cores_per_package | |
317 | = bitfield32(reg[eax], 31, 26) + 1; | |
318 | cache_linesize = bitfield32(reg[ebx], 11, 0) + 1; | |
319 | cache_partitions = bitfield32(reg[ebx], 21, 12) + 1; | |
320 | cache_associativity = bitfield32(reg[ebx], 31, 22) + 1; | |
321 | cache_sets = bitfield32(reg[ecx], 31, 0) + 1; | |
322 | ||
323 | /* Map type/levels returned by CPUID into cache_type_t */ | |
324 | switch (cache_level) { | |
325 | case 1: | |
326 | type = cache_type == 1 ? L1D : | |
327 | cache_type == 2 ? L1I : | |
328 | Lnone; | |
329 | break; | |
330 | case 2: | |
331 | type = cache_type == 3 ? L2U : | |
332 | Lnone; | |
333 | break; | |
334 | case 3: | |
335 | type = cache_type == 3 ? L3U : | |
336 | Lnone; | |
337 | break; | |
338 | default: | |
339 | type = Lnone; | |
340 | } | |
341 | ||
342 | /* The total size of a cache is: | |
343 | * ( linesize * sets * associativity * partitions ) | |
344 | */ | |
345 | if (type != Lnone) { | |
346 | cache_size = cache_linesize * cache_sets * | |
347 | cache_associativity * cache_partitions; | |
348 | info_p->cache_size[type] = cache_size; | |
349 | info_p->cache_sharing[type] = cache_sharing; | |
350 | info_p->cache_partitions[type] = cache_partitions; | |
351 | linesizes[type] = cache_linesize; | |
352 | ||
353 | /* Compute the number of page colors for this cache, | |
354 | * which is: | |
355 | * ( linesize * sets ) / page_size | |
356 | * | |
357 | * To help visualize this, consider two views of a | |
358 | * physical address. To the cache, it is composed | |
359 | * of a line offset, a set selector, and a tag. | |
360 | * To VM, it is composed of a page offset, a page | |
361 | * color, and other bits in the pageframe number: | |
362 | * | |
363 | * +-----------------+---------+--------+ | |
364 | * cache: | tag | set | offset | | |
365 | * +-----------------+---------+--------+ | |
366 | * | |
367 | * +-----------------+-------+----------+ | |
368 | * VM: | don't care | color | pg offset| | |
369 | * +-----------------+-------+----------+ | |
370 | * | |
371 | * The color is those bits in (set+offset) not covered | |
372 | * by the page offset. | |
373 | */ | |
374 | colors = ( cache_linesize * cache_sets ) >> 12; | |
375 | ||
376 | if ( colors > vm_cache_geometry_colors ) | |
377 | vm_cache_geometry_colors = colors; | |
378 | } | |
379 | } | |
380 | ||
381 | /* | |
382 | * If deterministic cache parameters are not available, use | |
383 | * something else | |
384 | */ | |
385 | if (info_p->cpuid_cores_per_package == 0) { | |
386 | info_p->cpuid_cores_per_package = 1; | |
387 | ||
388 | /* cpuid define in 1024 quantities */ | |
389 | info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024; | |
390 | info_p->cache_sharing[L2U] = 1; | |
391 | info_p->cache_partitions[L2U] = 1; | |
392 | ||
393 | linesizes[L2U] = info_p->cpuid_cache_linesize; | |
394 | } | |
395 | ||
396 | /* | |
397 | * What linesize to publish? We use the L2 linesize if any, | |
398 | * else the L1D. | |
399 | */ | |
400 | if ( linesizes[L2U] ) | |
401 | info_p->cache_linesize = linesizes[L2U]; | |
402 | else if (linesizes[L1D]) | |
403 | info_p->cache_linesize = linesizes[L1D]; | |
404 | else panic("no linesize"); | |
405 | ||
406 | /* | |
407 | * Extract and publish TLB information from Leaf 2 descriptors. | |
408 | */ | |
409 | for (i = 1; i < sizeof(info_p->cache_info); i++) { | |
410 | cpuid_cache_descriptor_t *descp; | |
411 | int id; | |
412 | int level; | |
413 | int page; | |
414 | ||
415 | descp = cpuid_leaf2_find(info_p->cache_info[i]); | |
416 | if (descp == NULL) | |
417 | continue; | |
418 | ||
419 | switch (descp->type) { | |
420 | case TLB: | |
421 | page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE; | |
422 | /* determine I or D: */ | |
423 | switch (descp->level) { | |
424 | case INST: | |
425 | id = TLB_INST; | |
426 | break; | |
427 | case DATA: | |
428 | case DATA0: | |
429 | case DATA1: | |
430 | id = TLB_DATA; | |
431 | break; | |
432 | default: | |
433 | continue; | |
434 | } | |
435 | /* determine level: */ | |
436 | switch (descp->level) { | |
437 | case DATA1: | |
438 | level = 1; | |
439 | break; | |
440 | default: | |
441 | level = 0; | |
442 | } | |
443 | info_p->cpuid_tlb[id][page][level] = descp->entries; | |
444 | break; | |
445 | case STLB: | |
446 | info_p->cpuid_stlb = descp->entries; | |
447 | } | |
448 | } | |
449 | } | |
450 | ||
451 | static void | |
452 | cpuid_set_generic_info(i386_cpu_info_t *info_p) | |
453 | { | |
454 | uint32_t reg[4]; | |
455 | char str[128], *p; | |
456 | ||
457 | /* do cpuid 0 to get vendor */ | |
458 | cpuid_fn(0, reg); | |
459 | info_p->cpuid_max_basic = reg[eax]; | |
460 | bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */ | |
461 | bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4); | |
462 | bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4); | |
463 | info_p->cpuid_vendor[12] = 0; | |
464 | ||
465 | /* get extended cpuid results */ | |
466 | cpuid_fn(0x80000000, reg); | |
467 | info_p->cpuid_max_ext = reg[eax]; | |
468 | ||
469 | /* check to see if we can get brand string */ | |
470 | if (info_p->cpuid_max_ext >= 0x80000004) { | |
471 | /* | |
472 | * The brand string 48 bytes (max), guaranteed to | |
473 | * be NUL terminated. | |
474 | */ | |
475 | cpuid_fn(0x80000002, reg); | |
476 | bcopy((char *)reg, &str[0], 16); | |
477 | cpuid_fn(0x80000003, reg); | |
478 | bcopy((char *)reg, &str[16], 16); | |
479 | cpuid_fn(0x80000004, reg); | |
480 | bcopy((char *)reg, &str[32], 16); | |
481 | for (p = str; *p != '\0'; p++) { | |
482 | if (*p != ' ') break; | |
483 | } | |
484 | strlcpy(info_p->cpuid_brand_string, | |
485 | p, sizeof(info_p->cpuid_brand_string)); | |
486 | ||
487 | if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN, | |
488 | min(sizeof(info_p->cpuid_brand_string), | |
489 | strlen(CPUID_STRING_UNKNOWN) + 1))) { | |
490 | /* | |
491 | * This string means we have a firmware-programmable brand string, | |
492 | * and the firmware couldn't figure out what sort of CPU we have. | |
493 | */ | |
494 | info_p->cpuid_brand_string[0] = '\0'; | |
495 | } | |
496 | } | |
497 | ||
498 | /* Get cache and addressing info. */ | |
499 | if (info_p->cpuid_max_ext >= 0x80000006) { | |
500 | cpuid_fn(0x80000006, reg); | |
501 | info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0); | |
502 | info_p->cpuid_cache_L2_associativity = | |
503 | bitfield32(reg[ecx],15,12); | |
504 | info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16); | |
505 | cpuid_fn(0x80000008, reg); | |
506 | info_p->cpuid_address_bits_physical = | |
507 | bitfield32(reg[eax], 7, 0); | |
508 | info_p->cpuid_address_bits_virtual = | |
509 | bitfield32(reg[eax],15, 8); | |
510 | } | |
511 | ||
512 | /* get processor signature and decode */ | |
513 | cpuid_fn(1, reg); | |
514 | info_p->cpuid_signature = reg[eax]; | |
515 | info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0); | |
516 | info_p->cpuid_model = bitfield32(reg[eax], 7, 4); | |
517 | info_p->cpuid_family = bitfield32(reg[eax], 11, 8); | |
518 | info_p->cpuid_type = bitfield32(reg[eax], 13, 12); | |
519 | info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16); | |
520 | info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20); | |
521 | info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0); | |
522 | info_p->cpuid_features = quad(reg[ecx], reg[edx]); | |
523 | ||
524 | /* Fold extensions into family/model */ | |
525 | if (info_p->cpuid_family == 0x0f) | |
526 | info_p->cpuid_family += info_p->cpuid_extfamily; | |
527 | if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06) | |
528 | info_p->cpuid_model += (info_p->cpuid_extmodel << 4); | |
529 | ||
530 | if (info_p->cpuid_features & CPUID_FEATURE_HTT) | |
531 | info_p->cpuid_logical_per_package = | |
532 | bitfield32(reg[ebx], 23, 16); | |
533 | else | |
534 | info_p->cpuid_logical_per_package = 1; | |
535 | ||
536 | if (info_p->cpuid_max_ext >= 0x80000001) { | |
537 | cpuid_fn(0x80000001, reg); | |
538 | info_p->cpuid_extfeatures = | |
539 | quad(reg[ecx], reg[edx]); | |
540 | } | |
541 | ||
542 | /* Fold in the Invariant TSC feature bit, if present */ | |
543 | if (info_p->cpuid_max_ext >= 0x80000007) { | |
544 | cpuid_fn(0x80000007, reg); | |
545 | info_p->cpuid_extfeatures |= | |
546 | reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI; | |
547 | } | |
548 | ||
549 | /* Find the microcode version number a.k.a. signature a.k.a. BIOS ID */ | |
550 | info_p->cpuid_microcode_version = | |
551 | (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32); | |
552 | ||
553 | if (info_p->cpuid_max_basic >= 0x5) { | |
554 | cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf; | |
555 | ||
556 | /* | |
557 | * Extract the Monitor/Mwait Leaf info: | |
558 | */ | |
559 | cpuid_fn(5, reg); | |
560 | cmp->linesize_min = reg[eax]; | |
561 | cmp->linesize_max = reg[ebx]; | |
562 | cmp->extensions = reg[ecx]; | |
563 | cmp->sub_Cstates = reg[edx]; | |
564 | info_p->cpuid_mwait_leafp = cmp; | |
565 | } | |
566 | ||
567 | if (info_p->cpuid_max_basic >= 0x6) { | |
568 | cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf; | |
569 | ||
570 | /* | |
571 | * The thermal and Power Leaf: | |
572 | */ | |
573 | cpuid_fn(6, reg); | |
574 | ctp->sensor = bitfield32(reg[eax], 0, 0); | |
575 | ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1); | |
576 | ctp->thresholds = bitfield32(reg[ebx], 3, 0); | |
577 | ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0); | |
578 | info_p->cpuid_thermal_leafp = ctp; | |
579 | } | |
580 | ||
581 | if (info_p->cpuid_max_basic >= 0xa) { | |
582 | cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf; | |
583 | ||
584 | /* | |
585 | * Architectural Performance Monitoring Leaf: | |
586 | */ | |
587 | cpuid_fn(0xa, reg); | |
588 | capp->version = bitfield32(reg[eax], 7, 0); | |
589 | capp->number = bitfield32(reg[eax], 15, 8); | |
590 | capp->width = bitfield32(reg[eax], 23, 16); | |
591 | capp->events_number = bitfield32(reg[eax], 31, 24); | |
592 | capp->events = reg[ebx]; | |
593 | capp->fixed_number = bitfield32(reg[edx], 4, 0); | |
594 | capp->fixed_width = bitfield32(reg[edx], 12, 5); | |
595 | info_p->cpuid_arch_perf_leafp = capp; | |
596 | } | |
597 | ||
598 | return; | |
599 | } | |
600 | ||
601 | static uint32_t | |
602 | cpuid_set_cpufamily(i386_cpu_info_t *info_p) | |
603 | { | |
604 | uint32_t cpufamily = CPUFAMILY_UNKNOWN; | |
605 | ||
606 | switch (info_p->cpuid_family) { | |
607 | case 6: | |
608 | switch (info_p->cpuid_model) { | |
609 | case 13: | |
610 | cpufamily = CPUFAMILY_INTEL_6_13; | |
611 | break; | |
612 | case 14: | |
613 | cpufamily = CPUFAMILY_INTEL_YONAH; | |
614 | break; | |
615 | case 15: | |
616 | cpufamily = CPUFAMILY_INTEL_MEROM; | |
617 | break; | |
618 | case 23: | |
619 | cpufamily = CPUFAMILY_INTEL_PENRYN; | |
620 | break; | |
621 | case CPUID_MODEL_NEHALEM: | |
622 | case CPUID_MODEL_FIELDS: | |
623 | case CPUID_MODEL_DALES: | |
624 | case CPUID_MODEL_NEHALEM_EX: | |
625 | cpufamily = CPUFAMILY_INTEL_NEHALEM; | |
626 | break; | |
627 | } | |
628 | break; | |
629 | } | |
630 | ||
631 | info_p->cpuid_cpufamily = cpufamily; | |
632 | return cpufamily; | |
633 | } | |
634 | ||
635 | void | |
636 | cpuid_set_info(void) | |
637 | { | |
638 | i386_cpu_info_t *info_p = &cpuid_cpu_info; | |
639 | ||
640 | bzero((void *)info_p, sizeof(cpuid_cpu_info)); | |
641 | ||
642 | cpuid_set_generic_info(info_p); | |
643 | ||
644 | /* verify we are running on a supported CPU */ | |
645 | if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor, | |
646 | min(strlen(CPUID_STRING_UNKNOWN) + 1, | |
647 | sizeof(info_p->cpuid_vendor)))) || | |
648 | (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN)) | |
649 | panic("Unsupported CPU"); | |
650 | ||
651 | info_p->cpuid_cpu_type = CPU_TYPE_X86; | |
652 | info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1; | |
653 | ||
654 | cpuid_set_cache_info(&cpuid_cpu_info); | |
655 | ||
656 | /* | |
657 | * Find the number of enabled cores and threads | |
658 | * (which determines whether SMT/Hyperthreading is active). | |
659 | */ | |
660 | switch (info_p->cpuid_cpufamily) { | |
661 | case CPUFAMILY_INTEL_NEHALEM: { | |
662 | uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT); | |
663 | info_p->core_count = bitfield32((uint32_t)msr, 31, 16); | |
664 | info_p->thread_count = bitfield32((uint32_t)msr, 15, 0); | |
665 | break; | |
666 | } | |
667 | } | |
668 | if (info_p->core_count == 0) { | |
669 | info_p->core_count = info_p->cpuid_cores_per_package; | |
670 | info_p->thread_count = info_p->cpuid_logical_per_package; | |
671 | } | |
672 | ||
673 | cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */ | |
674 | } | |
675 | ||
676 | static struct { | |
677 | uint64_t mask; | |
678 | const char *name; | |
679 | } feature_map[] = { | |
680 | {CPUID_FEATURE_FPU, "FPU",}, | |
681 | {CPUID_FEATURE_VME, "VME",}, | |
682 | {CPUID_FEATURE_DE, "DE",}, | |
683 | {CPUID_FEATURE_PSE, "PSE",}, | |
684 | {CPUID_FEATURE_TSC, "TSC",}, | |
685 | {CPUID_FEATURE_MSR, "MSR",}, | |
686 | {CPUID_FEATURE_PAE, "PAE",}, | |
687 | {CPUID_FEATURE_MCE, "MCE",}, | |
688 | {CPUID_FEATURE_CX8, "CX8",}, | |
689 | {CPUID_FEATURE_APIC, "APIC",}, | |
690 | {CPUID_FEATURE_SEP, "SEP",}, | |
691 | {CPUID_FEATURE_MTRR, "MTRR",}, | |
692 | {CPUID_FEATURE_PGE, "PGE",}, | |
693 | {CPUID_FEATURE_MCA, "MCA",}, | |
694 | {CPUID_FEATURE_CMOV, "CMOV",}, | |
695 | {CPUID_FEATURE_PAT, "PAT",}, | |
696 | {CPUID_FEATURE_PSE36, "PSE36",}, | |
697 | {CPUID_FEATURE_PSN, "PSN",}, | |
698 | {CPUID_FEATURE_CLFSH, "CLFSH",}, | |
699 | {CPUID_FEATURE_DS, "DS",}, | |
700 | {CPUID_FEATURE_ACPI, "ACPI",}, | |
701 | {CPUID_FEATURE_MMX, "MMX",}, | |
702 | {CPUID_FEATURE_FXSR, "FXSR",}, | |
703 | {CPUID_FEATURE_SSE, "SSE",}, | |
704 | {CPUID_FEATURE_SSE2, "SSE2",}, | |
705 | {CPUID_FEATURE_SS, "SS",}, | |
706 | {CPUID_FEATURE_HTT, "HTT",}, | |
707 | {CPUID_FEATURE_TM, "TM",}, | |
708 | {CPUID_FEATURE_SSE3, "SSE3"}, | |
709 | {CPUID_FEATURE_MONITOR, "MON"}, | |
710 | {CPUID_FEATURE_DSCPL, "DSCPL"}, | |
711 | {CPUID_FEATURE_VMX, "VMX"}, | |
712 | {CPUID_FEATURE_SMX, "SMX"}, | |
713 | {CPUID_FEATURE_EST, "EST"}, | |
714 | {CPUID_FEATURE_TM2, "TM2"}, | |
715 | {CPUID_FEATURE_SSSE3, "SSSE3"}, | |
716 | {CPUID_FEATURE_CID, "CID"}, | |
717 | {CPUID_FEATURE_CX16, "CX16"}, | |
718 | {CPUID_FEATURE_xTPR, "TPR"}, | |
719 | {CPUID_FEATURE_PDCM, "PDCM"}, | |
720 | {CPUID_FEATURE_SSE4_1, "SSE4.1"}, | |
721 | {CPUID_FEATURE_SSE4_2, "SSE4.2"}, | |
722 | {CPUID_FEATURE_xAPIC, "xAPIC"}, | |
723 | {CPUID_FEATURE_POPCNT, "POPCNT"}, | |
724 | {CPUID_FEATURE_VMM, "VMM"}, | |
725 | {0, 0} | |
726 | }, | |
727 | extfeature_map[] = { | |
728 | {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"}, | |
729 | {CPUID_EXTFEATURE_XD, "XD"}, | |
730 | {CPUID_EXTFEATURE_EM64T, "EM64T"}, | |
731 | {CPUID_EXTFEATURE_LAHF, "LAHF"}, | |
732 | {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"}, | |
733 | {CPUID_EXTFEATURE_TSCI, "TSCI"}, | |
734 | {0, 0} | |
735 | }; | |
736 | ||
737 | i386_cpu_info_t * | |
738 | cpuid_info(void) | |
739 | { | |
740 | /* Set-up the cpuid_info stucture lazily */ | |
741 | if (cpuid_cpu_infop == NULL) { | |
742 | cpuid_set_info(); | |
743 | cpuid_cpu_infop = &cpuid_cpu_info; | |
744 | } | |
745 | return cpuid_cpu_infop; | |
746 | } | |
747 | ||
748 | char * | |
749 | cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len) | |
750 | { | |
751 | size_t len = -1; | |
752 | char *p = buf; | |
753 | int i; | |
754 | ||
755 | for (i = 0; feature_map[i].mask != 0; i++) { | |
756 | if ((features & feature_map[i].mask) == 0) | |
757 | continue; | |
758 | if (len > 0) | |
759 | *p++ = ' '; | |
760 | len = min(strlen(feature_map[i].name), (size_t) ((buf_len-1) - (p-buf))); | |
761 | if (len == 0) | |
762 | break; | |
763 | bcopy(feature_map[i].name, p, len); | |
764 | p += len; | |
765 | } | |
766 | *p = '\0'; | |
767 | return buf; | |
768 | } | |
769 | ||
770 | char * | |
771 | cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len) | |
772 | { | |
773 | size_t len = -1; | |
774 | char *p = buf; | |
775 | int i; | |
776 | ||
777 | for (i = 0; extfeature_map[i].mask != 0; i++) { | |
778 | if ((extfeatures & extfeature_map[i].mask) == 0) | |
779 | continue; | |
780 | if (len > 0) | |
781 | *p++ = ' '; | |
782 | len = min(strlen(extfeature_map[i].name), (size_t) ((buf_len-1)-(p-buf))); | |
783 | if (len == 0) | |
784 | break; | |
785 | bcopy(extfeature_map[i].name, p, len); | |
786 | p += len; | |
787 | } | |
788 | *p = '\0'; | |
789 | return buf; | |
790 | } | |
791 | ||
792 | ||
793 | void | |
794 | cpuid_feature_display( | |
795 | const char *header) | |
796 | { | |
797 | char buf[256]; | |
798 | ||
799 | kprintf("%s: %s\n", header, | |
800 | cpuid_get_feature_names(cpuid_features(), | |
801 | buf, sizeof(buf))); | |
802 | if (cpuid_features() & CPUID_FEATURE_HTT) { | |
803 | #define s_if_plural(n) ((n > 1) ? "s" : "") | |
804 | kprintf(" HTT: %d core%s per package;" | |
805 | " %d logical cpu%s per package\n", | |
806 | cpuid_cpu_info.cpuid_cores_per_package, | |
807 | s_if_plural(cpuid_cpu_info.cpuid_cores_per_package), | |
808 | cpuid_cpu_info.cpuid_logical_per_package, | |
809 | s_if_plural(cpuid_cpu_info.cpuid_logical_per_package)); | |
810 | } | |
811 | } | |
812 | ||
813 | void | |
814 | cpuid_extfeature_display( | |
815 | const char *header) | |
816 | { | |
817 | char buf[256]; | |
818 | ||
819 | kprintf("%s: %s\n", header, | |
820 | cpuid_get_extfeature_names(cpuid_extfeatures(), | |
821 | buf, sizeof(buf))); | |
822 | } | |
823 | ||
824 | void | |
825 | cpuid_cpu_display( | |
826 | const char *header) | |
827 | { | |
828 | if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') { | |
829 | kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string); | |
830 | } | |
831 | } | |
832 | ||
833 | unsigned int | |
834 | cpuid_family(void) | |
835 | { | |
836 | return cpuid_info()->cpuid_family; | |
837 | } | |
838 | ||
839 | uint32_t | |
840 | cpuid_cpufamily(void) | |
841 | { | |
842 | return cpuid_info()->cpuid_cpufamily; | |
843 | } | |
844 | ||
845 | cpu_type_t | |
846 | cpuid_cputype(void) | |
847 | { | |
848 | return cpuid_info()->cpuid_cpu_type; | |
849 | } | |
850 | ||
851 | cpu_subtype_t | |
852 | cpuid_cpusubtype(void) | |
853 | { | |
854 | return cpuid_info()->cpuid_cpu_subtype; | |
855 | } | |
856 | ||
857 | uint64_t | |
858 | cpuid_features(void) | |
859 | { | |
860 | static int checked = 0; | |
861 | char fpu_arg[20] = { 0 }; | |
862 | ||
863 | (void) cpuid_info(); | |
864 | if (!checked) { | |
865 | /* check for boot-time fpu limitations */ | |
866 | if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) { | |
867 | printf("limiting fpu features to: %s\n", fpu_arg); | |
868 | if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) { | |
869 | printf("no sse or sse2\n"); | |
870 | cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR); | |
871 | } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) { | |
872 | printf("no sse2\n"); | |
873 | cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2); | |
874 | } | |
875 | } | |
876 | checked = 1; | |
877 | } | |
878 | return cpuid_cpu_info.cpuid_features; | |
879 | } | |
880 | ||
881 | uint64_t | |
882 | cpuid_extfeatures(void) | |
883 | { | |
884 | return cpuid_info()->cpuid_extfeatures; | |
885 | } | |
886 | ||
887 | ||
888 | #if MACH_KDB | |
889 | ||
890 | /* | |
891 | * Display the cpuid | |
892 | * * | |
893 | * cp | |
894 | */ | |
895 | void | |
896 | db_cpuid(__unused db_expr_t addr, | |
897 | __unused int have_addr, | |
898 | __unused db_expr_t count, | |
899 | __unused char *modif) | |
900 | { | |
901 | ||
902 | uint32_t i, mid; | |
903 | uint32_t cpid[4]; | |
904 | ||
905 | do_cpuid(0, cpid); /* Get the first cpuid which is the number of | |
906 | * basic ids */ | |
907 | db_printf("%08X - %08X %08X %08X %08X\n", | |
908 | 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
909 | ||
910 | mid = cpid[eax]; /* Set the number */ | |
911 | for (i = 1; i <= mid; i++) { /* Dump 'em out */ | |
912 | do_cpuid(i, cpid); /* Get the next */ | |
913 | db_printf("%08X - %08X %08X %08X %08X\n", | |
914 | i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
915 | } | |
916 | db_printf("\n"); | |
917 | ||
918 | do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which | |
919 | * is the number of extended ids */ | |
920 | db_printf("%08X - %08X %08X %08X %08X\n", | |
921 | 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
922 | ||
923 | mid = cpid[eax]; /* Set the number */ | |
924 | for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */ | |
925 | do_cpuid(i, cpid); /* Get the next */ | |
926 | db_printf("%08X - %08X %08X %08X %08X\n", | |
927 | i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]); | |
928 | } | |
929 | } | |
930 | ||
931 | #endif |