]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
30 | #include <kern/thread.h> | |
31 | #include <mach/thread_status.h> | |
32 | ||
33 | typedef x86_saved_state_t savearea_t; | |
34 | ||
35 | #include <stdarg.h> | |
36 | #include <string.h> | |
37 | #include <sys/malloc.h> | |
38 | #include <sys/time.h> | |
39 | #include <sys/systm.h> | |
40 | #include <sys/proc.h> | |
41 | #include <sys/proc_internal.h> | |
42 | #include <sys/kauth.h> | |
43 | #include <sys/dtrace.h> | |
44 | #include <sys/dtrace_impl.h> | |
45 | #include <libkern/OSAtomic.h> | |
46 | #include <kern/thread_call.h> | |
47 | #include <kern/task.h> | |
48 | #include <kern/sched_prim.h> | |
49 | #include <miscfs/devfs/devfs.h> | |
50 | #include <mach/vm_param.h> | |
51 | ||
52 | /* | |
53 | * APPLE NOTE: The regmap is used to decode which 64bit uregs[] register | |
54 | * is being accessed when passed the 32bit uregs[] constant (based on | |
55 | * the reg.d translator file). The dtrace_getreg() is smart enough to handle | |
56 | * the register mappings. The register set definitions are the same as | |
57 | * those used by the fasttrap_getreg code. | |
58 | */ | |
59 | #include "fasttrap_regset.h" | |
60 | static const uint8_t regmap[19] = { | |
61 | REG_GS, /* GS */ | |
62 | REG_FS, /* FS */ | |
63 | REG_ES, /* ES */ | |
64 | REG_DS, /* DS */ | |
65 | REG_RDI, /* EDI */ | |
66 | REG_RSI, /* ESI */ | |
67 | REG_RBP, /* EBP, REG_FP */ | |
68 | REG_RSP, /* ESP */ | |
69 | REG_RBX, /* EBX */ | |
70 | REG_RDX, /* EDX, REG_R1 */ | |
71 | REG_RCX, /* ECX */ | |
72 | REG_RAX, /* EAX, REG_R0 */ | |
73 | REG_TRAPNO, /* TRAPNO */ | |
74 | REG_ERR, /* ERR */ | |
75 | REG_RIP, /* EIP, REG_PC */ | |
76 | REG_CS, /* CS */ | |
77 | REG_RFL, /* EFL, REG_PS */ | |
78 | REG_RSP, /* UESP, REG_SP */ | |
79 | REG_SS /* SS */ | |
80 | }; | |
81 | ||
82 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ | |
83 | ||
84 | void | |
85 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, | |
86 | int fltoffs, int fault, uint64_t illval) | |
87 | { | |
88 | /* | |
89 | * For the case of the error probe firing lets | |
90 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. | |
91 | */ | |
92 | state->dts_arg_error_illval = illval; | |
93 | dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault ); | |
94 | } | |
95 | ||
96 | /* | |
97 | * Atomicity and synchronization | |
98 | */ | |
99 | void | |
100 | dtrace_membar_producer(void) | |
101 | { | |
102 | __asm__ volatile("sfence"); | |
103 | } | |
104 | ||
105 | void | |
106 | dtrace_membar_consumer(void) | |
107 | { | |
108 | __asm__ volatile("lfence"); | |
109 | } | |
110 | ||
111 | /* | |
112 | * Interrupt manipulation | |
113 | * XXX dtrace_getipl() can be called from probe context. | |
114 | */ | |
115 | int | |
116 | dtrace_getipl(void) | |
117 | { | |
118 | /* | |
119 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE | |
120 | * in osfmk/kern/cpu_data.h | |
121 | */ | |
122 | /* return get_interrupt_level(); */ | |
123 | return (ml_at_interrupt_context() ? 1: 0); | |
124 | } | |
125 | ||
126 | /* | |
127 | * MP coordination | |
128 | */ | |
129 | ||
130 | extern void mp_broadcast( | |
131 | void (*action_func)(void *), | |
132 | void *arg); | |
133 | ||
134 | typedef struct xcArg { | |
135 | processorid_t cpu; | |
136 | dtrace_xcall_t f; | |
137 | void *arg; | |
138 | } xcArg_t; | |
139 | ||
140 | static void | |
141 | xcRemote( void *foo ) | |
142 | { | |
143 | xcArg_t *pArg = (xcArg_t *)foo; | |
144 | ||
145 | if ( pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL ) { | |
146 | (pArg->f)(pArg->arg); | |
147 | } | |
148 | } | |
149 | ||
150 | /* | |
151 | * dtrace_xcall() is not called from probe context. | |
152 | */ | |
153 | void | |
154 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) | |
155 | { | |
156 | xcArg_t xcArg; | |
157 | ||
158 | xcArg.cpu = cpu; | |
159 | xcArg.f = f; | |
160 | xcArg.arg = arg; | |
161 | ||
162 | mp_broadcast( xcRemote, (void *)&xcArg); | |
163 | } | |
164 | ||
165 | /* | |
166 | * Runtime and ABI | |
167 | */ | |
168 | ||
169 | uint64_t | |
170 | dtrace_getreg(struct regs *savearea, uint_t reg) | |
171 | { | |
172 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
173 | x86_saved_state_t *regs = (x86_saved_state_t *)savearea; | |
174 | ||
175 | if (is64Bit) { | |
176 | if (reg <= SS) { | |
177 | reg = regmap[reg]; | |
178 | } else { | |
179 | reg -= (SS + 1); | |
180 | } | |
181 | ||
182 | switch (reg) { | |
183 | case REG_RDI: | |
184 | return (uint64_t)(regs->ss_64.rdi); | |
185 | case REG_RSI: | |
186 | return (uint64_t)(regs->ss_64.rsi); | |
187 | case REG_RDX: | |
188 | return (uint64_t)(regs->ss_64.rdx); | |
189 | case REG_RCX: | |
190 | return (uint64_t)(regs->ss_64.rcx); | |
191 | case REG_R8: | |
192 | return (uint64_t)(regs->ss_64.r8); | |
193 | case REG_R9: | |
194 | return (uint64_t)(regs->ss_64.r9); | |
195 | case REG_RAX: | |
196 | return (uint64_t)(regs->ss_64.rax); | |
197 | case REG_RBX: | |
198 | return (uint64_t)(regs->ss_64.rbx); | |
199 | case REG_RBP: | |
200 | return (uint64_t)(regs->ss_64.rbp); | |
201 | case REG_R10: | |
202 | return (uint64_t)(regs->ss_64.r10); | |
203 | case REG_R11: | |
204 | return (uint64_t)(regs->ss_64.r11); | |
205 | case REG_R12: | |
206 | return (uint64_t)(regs->ss_64.r12); | |
207 | case REG_R13: | |
208 | return (uint64_t)(regs->ss_64.r13); | |
209 | case REG_R14: | |
210 | return (uint64_t)(regs->ss_64.r14); | |
211 | case REG_R15: | |
212 | return (uint64_t)(regs->ss_64.r15); | |
213 | case REG_FS: | |
214 | return (uint64_t)(regs->ss_64.fs); | |
215 | case REG_GS: | |
216 | return (uint64_t)(regs->ss_64.gs); | |
217 | case REG_TRAPNO: | |
218 | return (uint64_t)(regs->ss_64.isf.trapno); | |
219 | case REG_ERR: | |
220 | return (uint64_t)(regs->ss_64.isf.err); | |
221 | case REG_RIP: | |
222 | return (uint64_t)(regs->ss_64.isf.rip); | |
223 | case REG_CS: | |
224 | return (uint64_t)(regs->ss_64.isf.cs); | |
225 | case REG_SS: | |
226 | return (uint64_t)(regs->ss_64.isf.ss); | |
227 | case REG_RFL: | |
228 | return (uint64_t)(regs->ss_64.isf.rflags); | |
229 | case REG_RSP: | |
230 | return (uint64_t)(regs->ss_64.isf.rsp); | |
231 | case REG_DS: | |
232 | case REG_ES: | |
233 | default: | |
234 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
235 | return (0); | |
236 | } | |
237 | ||
238 | } else { /* is 32bit user */ | |
239 | /* beyond register SS */ | |
240 | if (reg > x86_SAVED_STATE32_COUNT - 1) { | |
241 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
242 | return (0); | |
243 | } | |
244 | return (uint64_t)((unsigned int *)(&(regs->ss_32.gs)))[reg]; | |
245 | } | |
246 | } | |
247 | ||
248 | #define RETURN_OFFSET 4 | |
249 | #define RETURN_OFFSET64 8 | |
250 | ||
251 | static int | |
252 | dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, user_addr_t pc, | |
253 | user_addr_t sp) | |
254 | { | |
255 | #if 0 | |
256 | volatile uint16_t *flags = | |
257 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
258 | ||
259 | uintptr_t oldcontext = lwp->lwp_oldcontext; /* XXX signal stack crawl */ | |
260 | size_t s1, s2; | |
261 | #endif | |
262 | int ret = 0; | |
263 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
264 | ||
265 | ASSERT(pcstack == NULL || pcstack_limit > 0); | |
266 | ||
267 | #if 0 /* XXX signal stack crawl */ | |
268 | if (p->p_model == DATAMODEL_NATIVE) { | |
269 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
270 | s2 = s1 + sizeof (siginfo_t); | |
271 | } else { | |
272 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
273 | s2 = s1 + sizeof (siginfo32_t); | |
274 | } | |
275 | #endif | |
276 | ||
277 | while (pc != 0) { | |
278 | ret++; | |
279 | if (pcstack != NULL) { | |
280 | *pcstack++ = (uint64_t)pc; | |
281 | pcstack_limit--; | |
282 | if (pcstack_limit <= 0) | |
283 | break; | |
284 | } | |
285 | ||
286 | if (sp == 0) | |
287 | break; | |
288 | ||
289 | #if 0 /* XXX signal stack crawl */ | |
290 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
291 | if (p->p_model == DATAMODEL_NATIVE) { | |
292 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
293 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
294 | ||
295 | sp = dtrace_fulword(&gregs[REG_FP]); | |
296 | pc = dtrace_fulword(&gregs[REG_PC]); | |
297 | ||
298 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
299 | } else { | |
300 | ucontext32_t *ucp = (ucontext32_t *)oldcontext; | |
301 | greg32_t *gregs = ucp->uc_mcontext.gregs; | |
302 | ||
303 | sp = dtrace_fuword32(&gregs[EBP]); | |
304 | pc = dtrace_fuword32(&gregs[EIP]); | |
305 | ||
306 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
307 | } | |
308 | } | |
309 | else | |
310 | #endif | |
311 | { | |
312 | if (is64Bit) { | |
313 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
314 | sp = dtrace_fuword64(sp); | |
315 | } else { | |
316 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
317 | sp = dtrace_fuword32(sp); | |
318 | } | |
319 | } | |
320 | ||
321 | #if 0 /* XXX */ | |
322 | /* | |
323 | * This is totally bogus: if we faulted, we're going to clear | |
324 | * the fault and break. This is to deal with the apparently | |
325 | * broken Java stacks on x86. | |
326 | */ | |
327 | if (*flags & CPU_DTRACE_FAULT) { | |
328 | *flags &= ~CPU_DTRACE_FAULT; | |
329 | break; | |
330 | } | |
331 | #endif | |
332 | } | |
333 | ||
334 | return (ret); | |
335 | } | |
336 | ||
337 | ||
338 | /* | |
339 | * The return value indicates if we've modified the stack. | |
340 | */ | |
341 | static int | |
342 | dtrace_adjust_stack(uint64_t **pcstack, int *pcstack_limit, user_addr_t *pc, | |
343 | user_addr_t sp) | |
344 | { | |
345 | int64_t missing_tos; | |
346 | int rc = 0; | |
347 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
348 | ||
349 | ASSERT(pc != NULL); | |
350 | ||
351 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
352 | /* | |
353 | * If we found ourselves in an entry probe, the frame pointer has not | |
354 | * yet been pushed (that happens in the | |
355 | * function prologue). The best approach is to | |
356 | * add the current pc as a missing top of stack, | |
357 | * and back the pc up to the caller, which is stored at the | |
358 | * current stack pointer address since the call | |
359 | * instruction puts it there right before | |
360 | * the branch. | |
361 | */ | |
362 | ||
363 | missing_tos = *pc; | |
364 | ||
365 | if (is64Bit) | |
366 | *pc = dtrace_fuword64(sp); | |
367 | else | |
368 | *pc = dtrace_fuword32(sp); | |
369 | } else { | |
370 | /* | |
371 | * We might have a top of stack override, in which case we just | |
372 | * add that frame without question to the top. This | |
373 | * happens in return probes where you have a valid | |
374 | * frame pointer, but it's for the callers frame | |
375 | * and you'd like to add the pc of the return site | |
376 | * to the frame. | |
377 | */ | |
378 | missing_tos = cpu_core[CPU->cpu_id].cpuc_missing_tos; | |
379 | } | |
380 | ||
381 | if (missing_tos != 0) { | |
382 | if (pcstack != NULL && pcstack_limit != NULL) { | |
383 | /* | |
384 | * If the missing top of stack has been filled out, then | |
385 | * we add it and adjust the size. | |
386 | */ | |
387 | *(*pcstack)++ = missing_tos; | |
388 | (*pcstack_limit)--; | |
389 | } | |
390 | /* | |
391 | * return 1 because we would have changed the | |
392 | * stack whether or not it was passed in. This | |
393 | * ensures the stack count is correct | |
394 | */ | |
395 | rc = 1; | |
396 | } | |
397 | return rc; | |
398 | } | |
399 | ||
400 | void | |
401 | dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) | |
402 | { | |
403 | thread_t thread = current_thread(); | |
404 | x86_saved_state_t *regs; | |
405 | user_addr_t pc, sp, fp; | |
406 | volatile uint16_t *flags = | |
407 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
408 | int n; | |
409 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
410 | ||
411 | if (*flags & CPU_DTRACE_FAULT) | |
412 | return; | |
413 | ||
414 | if (pcstack_limit <= 0) | |
415 | return; | |
416 | ||
417 | /* | |
418 | * If there's no user context we still need to zero the stack. | |
419 | */ | |
420 | if (thread == NULL) | |
421 | goto zero; | |
422 | ||
423 | regs = (x86_saved_state_t *)find_user_regs(thread); | |
424 | if (regs == NULL) | |
425 | goto zero; | |
426 | ||
427 | *pcstack++ = (uint64_t)proc_selfpid(); | |
428 | pcstack_limit--; | |
429 | ||
430 | if (pcstack_limit <= 0) | |
431 | return; | |
432 | ||
433 | if (is64Bit) { | |
434 | pc = regs->ss_64.isf.rip; | |
435 | sp = regs->ss_64.isf.rsp; | |
436 | fp = regs->ss_64.rbp; | |
437 | } else { | |
438 | pc = regs->ss_32.eip; | |
439 | sp = regs->ss_32.uesp; | |
440 | fp = regs->ss_32.ebp; | |
441 | } | |
442 | ||
443 | /* | |
444 | * The return value indicates if we've modified the stack. | |
445 | * Since there is nothing else to fix up in either case, | |
446 | * we can safely ignore it here. | |
447 | */ | |
448 | (void)dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp); | |
449 | ||
450 | if(pcstack_limit <= 0) | |
451 | return; | |
452 | ||
453 | /* | |
454 | * Note that unlike ppc, the x86 code does not use | |
455 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
456 | * traces from the fp, even in syscall/profile/fbt | |
457 | * providers. | |
458 | */ | |
459 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); | |
460 | ASSERT(n >= 0); | |
461 | ASSERT(n <= pcstack_limit); | |
462 | ||
463 | pcstack += n; | |
464 | pcstack_limit -= n; | |
465 | ||
466 | zero: | |
467 | while (pcstack_limit-- > 0) | |
468 | *pcstack++ = 0; | |
469 | } | |
470 | ||
471 | int | |
472 | dtrace_getustackdepth(void) | |
473 | { | |
474 | thread_t thread = current_thread(); | |
475 | x86_saved_state_t *regs; | |
476 | user_addr_t pc, sp, fp; | |
477 | int n = 0; | |
478 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
479 | ||
480 | if (thread == NULL) | |
481 | return 0; | |
482 | ||
483 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) | |
484 | return (-1); | |
485 | ||
486 | regs = (x86_saved_state_t *)find_user_regs(thread); | |
487 | if (regs == NULL) | |
488 | return 0; | |
489 | ||
490 | if (is64Bit) { | |
491 | pc = regs->ss_64.isf.rip; | |
492 | sp = regs->ss_64.isf.rsp; | |
493 | fp = regs->ss_64.rbp; | |
494 | } else { | |
495 | pc = regs->ss_32.eip; | |
496 | sp = regs->ss_32.uesp; | |
497 | fp = regs->ss_32.ebp; | |
498 | } | |
499 | ||
500 | if (dtrace_adjust_stack(NULL, NULL, &pc, sp) == 1) { | |
501 | /* | |
502 | * we would have adjusted the stack if we had | |
503 | * supplied one (that is what rc == 1 means). | |
504 | * Also, as a side effect, the pc might have | |
505 | * been fixed up, which is good for calling | |
506 | * in to dtrace_getustack_common. | |
507 | */ | |
508 | n++; | |
509 | } | |
510 | ||
511 | /* | |
512 | * Note that unlike ppc, the x86 code does not use | |
513 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
514 | * traces from the fp, even in syscall/profile/fbt | |
515 | * providers. | |
516 | */ | |
517 | ||
518 | n += dtrace_getustack_common(NULL, 0, pc, fp); | |
519 | ||
520 | return (n); | |
521 | } | |
522 | ||
523 | void | |
524 | dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) | |
525 | { | |
526 | thread_t thread = current_thread(); | |
527 | savearea_t *regs; | |
528 | user_addr_t pc, sp; | |
529 | volatile uint16_t *flags = | |
530 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
531 | #if 0 | |
532 | uintptr_t oldcontext; | |
533 | size_t s1, s2; | |
534 | #endif | |
535 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
536 | ||
537 | if (*flags & CPU_DTRACE_FAULT) | |
538 | return; | |
539 | ||
540 | if (pcstack_limit <= 0) | |
541 | return; | |
542 | ||
543 | /* | |
544 | * If there's no user context we still need to zero the stack. | |
545 | */ | |
546 | if (thread == NULL) | |
547 | goto zero; | |
548 | ||
549 | regs = (savearea_t *)find_user_regs(thread); | |
550 | if (regs == NULL) | |
551 | goto zero; | |
552 | ||
553 | *pcstack++ = (uint64_t)proc_selfpid(); | |
554 | pcstack_limit--; | |
555 | ||
556 | if (pcstack_limit <= 0) | |
557 | return; | |
558 | ||
559 | pc = regs->ss_32.eip; | |
560 | sp = regs->ss_32.ebp; | |
561 | ||
562 | #if 0 /* XXX signal stack crawl */ | |
563 | oldcontext = lwp->lwp_oldcontext; | |
564 | ||
565 | if (p->p_model == DATAMODEL_NATIVE) { | |
566 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
567 | s2 = s1 + sizeof (siginfo_t); | |
568 | } else { | |
569 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
570 | s2 = s1 + sizeof (siginfo32_t); | |
571 | } | |
572 | #endif | |
573 | ||
574 | if(dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp) == 1) { | |
575 | /* | |
576 | * we made a change. | |
577 | */ | |
578 | *fpstack++ = 0; | |
579 | if (pcstack_limit <= 0) | |
580 | return; | |
581 | } | |
582 | ||
583 | while (pc != 0) { | |
584 | *pcstack++ = (uint64_t)pc; | |
585 | *fpstack++ = sp; | |
586 | pcstack_limit--; | |
587 | if (pcstack_limit <= 0) | |
588 | break; | |
589 | ||
590 | if (sp == 0) | |
591 | break; | |
592 | ||
593 | #if 0 /* XXX signal stack crawl */ | |
594 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
595 | if (p->p_model == DATAMODEL_NATIVE) { | |
596 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
597 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
598 | ||
599 | sp = dtrace_fulword(&gregs[REG_FP]); | |
600 | pc = dtrace_fulword(&gregs[REG_PC]); | |
601 | ||
602 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
603 | } else { | |
604 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
605 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
606 | ||
607 | sp = dtrace_fuword32(&gregs[EBP]); | |
608 | pc = dtrace_fuword32(&gregs[EIP]); | |
609 | ||
610 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
611 | } | |
612 | } | |
613 | else | |
614 | #endif | |
615 | { | |
616 | if (is64Bit) { | |
617 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
618 | sp = dtrace_fuword64(sp); | |
619 | } else { | |
620 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
621 | sp = dtrace_fuword32(sp); | |
622 | } | |
623 | } | |
624 | ||
625 | #if 0 /* XXX */ | |
626 | /* | |
627 | * This is totally bogus: if we faulted, we're going to clear | |
628 | * the fault and break. This is to deal with the apparently | |
629 | * broken Java stacks on x86. | |
630 | */ | |
631 | if (*flags & CPU_DTRACE_FAULT) { | |
632 | *flags &= ~CPU_DTRACE_FAULT; | |
633 | break; | |
634 | } | |
635 | #endif | |
636 | } | |
637 | ||
638 | zero: | |
639 | while (pcstack_limit-- > 0) | |
640 | *pcstack++ = 0; | |
641 | } | |
642 | ||
643 | void | |
644 | dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, | |
645 | uint32_t *intrpc) | |
646 | { | |
647 | struct frame *fp = (struct frame *)__builtin_frame_address(0); | |
648 | struct frame *nextfp, *minfp, *stacktop; | |
649 | int depth = 0; | |
650 | int last = 0; | |
651 | uintptr_t pc; | |
652 | uintptr_t caller = CPU->cpu_dtrace_caller; | |
653 | int on_intr; | |
654 | ||
655 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
656 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
657 | else | |
658 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); | |
659 | ||
660 | minfp = fp; | |
661 | ||
662 | aframes++; | |
663 | ||
664 | if (intrpc != NULL && depth < pcstack_limit) | |
665 | pcstack[depth++] = (pc_t)intrpc; | |
666 | ||
667 | while (depth < pcstack_limit) { | |
668 | nextfp = *(struct frame **)fp; | |
669 | #if defined(__x86_64__) | |
670 | pc = *(uintptr_t *)(((uintptr_t)fp) + RETURN_OFFSET64); | |
671 | #else | |
672 | pc = *(uintptr_t *)(((uintptr_t)fp) + RETURN_OFFSET); | |
673 | #endif | |
674 | ||
675 | if (nextfp <= minfp || nextfp >= stacktop) { | |
676 | if (on_intr) { | |
677 | /* | |
678 | * Hop from interrupt stack to thread stack. | |
679 | */ | |
680 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
681 | ||
682 | minfp = (struct frame *)kstack_base; | |
683 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); | |
684 | ||
685 | on_intr = 0; | |
686 | continue; | |
687 | } | |
688 | /* | |
689 | * This is the last frame we can process; indicate | |
690 | * that we should return after processing this frame. | |
691 | */ | |
692 | last = 1; | |
693 | } | |
694 | ||
695 | if (aframes > 0) { | |
696 | if (--aframes == 0 && caller != 0) { | |
697 | /* | |
698 | * We've just run out of artificial frames, | |
699 | * and we have a valid caller -- fill it in | |
700 | * now. | |
701 | */ | |
702 | ASSERT(depth < pcstack_limit); | |
703 | pcstack[depth++] = (pc_t)caller; | |
704 | caller = 0; | |
705 | } | |
706 | } else { | |
707 | if (depth < pcstack_limit) | |
708 | pcstack[depth++] = (pc_t)pc; | |
709 | } | |
710 | ||
711 | if (last) { | |
712 | while (depth < pcstack_limit) | |
713 | pcstack[depth++] = 0; | |
714 | return; | |
715 | } | |
716 | ||
717 | fp = nextfp; | |
718 | minfp = fp; | |
719 | } | |
720 | } | |
721 | ||
722 | struct frame { | |
723 | struct frame *backchain; | |
724 | uintptr_t retaddr; | |
725 | }; | |
726 | ||
727 | uint64_t | |
728 | dtrace_getarg(int arg, int aframes) | |
729 | { | |
730 | uint64_t val; | |
731 | struct frame *fp = (struct frame *)__builtin_frame_address(0); | |
732 | uintptr_t *stack; | |
733 | uintptr_t pc; | |
734 | int i; | |
735 | ||
736 | ||
737 | #if defined(__x86_64__) | |
738 | /* | |
739 | * A total of 6 arguments are passed via registers; any argument with | |
740 | * index of 5 or lower is therefore in a register. | |
741 | */ | |
742 | int inreg = 5; | |
743 | #endif | |
744 | ||
745 | for (i = 1; i <= aframes; i++) { | |
746 | fp = fp->backchain; | |
747 | pc = fp->retaddr; | |
748 | ||
749 | if (pc == (uintptr_t)dtrace_invop_callsite) { | |
750 | #if defined(__i386__) | |
751 | /* | |
752 | * If we pass through the invalid op handler, we will | |
753 | * use the pointer that it passed to the stack as the | |
754 | * second argument to dtrace_invop() as the pointer to | |
755 | * the frame we're hunting for. | |
756 | */ | |
757 | ||
758 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
759 | fp = (struct frame *)stack[1]; /* Grab *second* argument */ | |
760 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
761 | #elif defined(__x86_64__) | |
762 | /* | |
763 | * In the case of x86_64, we will use the pointer to the | |
764 | * save area structure that was pushed when we took the | |
765 | * trap. To get this structure, we must increment | |
766 | * beyond the frame structure. If the | |
767 | * argument that we're seeking is passed on the stack, | |
768 | * we'll pull the true stack pointer out of the saved | |
769 | * registers and decrement our argument by the number | |
770 | * of arguments passed in registers; if the argument | |
771 | * we're seeking is passed in regsiters, we can just | |
772 | * load it directly. | |
773 | */ | |
774 | ||
775 | /* fp points to frame of dtrace_invop() activation. */ | |
776 | fp = fp->backchain; /* to fbt_perfcallback() activation. */ | |
777 | fp = fp->backchain; /* to kernel_trap() activation. */ | |
778 | fp = fp->backchain; /* to trap_from_kernel() activation. */ | |
779 | ||
780 | x86_saved_state_t *tagged_regs = (x86_saved_state_t *)&fp[1]; | |
781 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); | |
782 | ||
783 | if (arg <= inreg) { | |
784 | stack = (uintptr_t *)&saved_state->rdi; | |
785 | } else { | |
786 | stack = (uintptr_t *)(saved_state->isf.rsp); | |
787 | arg -= inreg; | |
788 | } | |
789 | #else | |
790 | #error Unknown arch | |
791 | #endif | |
792 | goto load; | |
793 | } | |
794 | } | |
795 | ||
796 | /* | |
797 | * Arrive here when provider has called dtrace_probe directly. | |
798 | */ | |
799 | arg++; /* Advance past probeID */ | |
800 | ||
801 | #if defined(__x86_64__) | |
802 | if (arg <= inreg) { | |
803 | /* | |
804 | * This shouldn't happen. If the argument is passed in a | |
805 | * register then it should have been, well, passed in a | |
806 | * register... | |
807 | */ | |
808 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
809 | return (0); | |
810 | } | |
811 | ||
812 | arg -= (inreg + 1); | |
813 | #endif | |
814 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
815 | ||
816 | load: | |
817 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
818 | val = *(((uint64_t *)stack) + arg); /* dtrace_probe arguments arg0 .. arg4 are 64bits wide */ | |
819 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
820 | ||
821 | return (val); | |
822 | } | |
823 | ||
824 | /* | |
825 | * Load/Store Safety | |
826 | */ | |
827 | void | |
828 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) | |
829 | { | |
830 | /* | |
831 | * "base" is the smallest toxic address in the range, "limit" is the first | |
832 | * VALID address greater than "base". | |
833 | */ | |
834 | func(0x0, VM_MIN_KERNEL_AND_KEXT_ADDRESS); | |
835 | if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) | |
836 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); | |
837 | } | |
838 |