]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet/tcp_subr.c
xnu-3248.60.10.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/callout.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/domain.h>
78#include <sys/proc.h>
79#include <sys/kauth.h>
80#include <sys/socket.h>
81#include <sys/socketvar.h>
82#include <sys/protosw.h>
83#include <sys/random.h>
84#include <sys/syslog.h>
85#include <sys/mcache.h>
86#include <kern/locks.h>
87#include <kern/zalloc.h>
88
89#include <dev/random/randomdev.h>
90
91#include <net/route.h>
92#include <net/if.h>
93#include <net/content_filter.h>
94
95#define tcp_minmssoverload fring
96#define _IP_VHL
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/ip.h>
100#include <netinet/ip_icmp.h>
101#if INET6
102#include <netinet/ip6.h>
103#endif
104#include <netinet/in_pcb.h>
105#if INET6
106#include <netinet6/in6_pcb.h>
107#endif
108#include <netinet/in_var.h>
109#include <netinet/ip_var.h>
110#include <netinet/icmp_var.h>
111#if INET6
112#include <netinet6/ip6_var.h>
113#endif
114#include <netinet/tcp.h>
115#include <netinet/tcp_fsm.h>
116#include <netinet/tcp_seq.h>
117#include <netinet/tcp_timer.h>
118#include <netinet/tcp_var.h>
119#include <netinet/tcp_cc.h>
120#include <netinet/tcp_cache.h>
121#include <kern/thread_call.h>
122
123#if INET6
124#include <netinet6/tcp6_var.h>
125#endif
126#include <netinet/tcpip.h>
127#if TCPDEBUG
128#include <netinet/tcp_debug.h>
129#endif
130#include <netinet6/ip6protosw.h>
131
132#if IPSEC
133#include <netinet6/ipsec.h>
134#if INET6
135#include <netinet6/ipsec6.h>
136#endif
137#endif /*IPSEC*/
138
139#if NECP
140#include <net/necp.h>
141#endif /* NECP */
142
143#undef tcp_minmssoverload
144
145#if CONFIG_MACF_NET
146#include <security/mac_framework.h>
147#endif /* MAC_NET */
148
149#include <corecrypto/ccaes.h>
150#include <libkern/crypto/aes.h>
151#include <libkern/crypto/md5.h>
152#include <sys/kdebug.h>
153#include <mach/sdt.h>
154
155#include <netinet/lro_ext.h>
156
157#define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
158
159extern int tcp_lq_overflow;
160
161extern struct tcptimerlist tcp_timer_list;
162extern struct tcptailq tcp_tw_tailq;
163
164int tcp_mssdflt = TCP_MSS;
165SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
166 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
167
168#if INET6
169int tcp_v6mssdflt = TCP6_MSS;
170SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
171 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
172 "Default TCP Maximum Segment Size for IPv6");
173#endif
174
175extern int tcp_do_autorcvbuf;
176
177int tcp_sysctl_fastopenkey(struct sysctl_oid *, void *, int ,
178 struct sysctl_req *);
179SYSCTL_PROC(_net_inet_tcp, OID_AUTO, fastopen_key,
180 CTLTYPE_STRING | CTLFLAG_WR,
181 0 , 0, tcp_sysctl_fastopenkey, "S", "TCP Fastopen key");
182
183/* Current count of half-open TFO connections */
184int tcp_tfo_halfcnt = 0;
185
186/* Maximum of half-open TFO connection backlog */
187int tcp_tfo_backlog = 10;
188SYSCTL_INT(_net_inet_tcp, OID_AUTO, fastopen_backlog, CTLFLAG_RW | CTLFLAG_LOCKED,
189 &tcp_tfo_backlog, 0, "Backlog queue for half-open TFO connections");
190
191int tcp_fastopen = TCP_FASTOPEN_CLIENT | TCP_FASTOPEN_SERVER;
192SYSCTL_INT(_net_inet_tcp, OID_AUTO, fastopen, CTLFLAG_RW | CTLFLAG_LOCKED,
193 &tcp_fastopen, 0, "Enable TCP Fastopen (RFC 7413)");
194
195int tcp_tfo_fallback_min = 10;
196SYSCTL_INT(_net_inet_tcp, OID_AUTO, fastopen_fallback_min, CTLFLAG_RW | CTLFLAG_LOCKED,
197 &tcp_tfo_fallback_min, 0, "Mininum number of trials without TFO when in fallback mode");
198
199/*
200 * Minimum MSS we accept and use. This prevents DoS attacks where
201 * we are forced to a ridiculous low MSS like 20 and send hundreds
202 * of packets instead of one. The effect scales with the available
203 * bandwidth and quickly saturates the CPU and network interface
204 * with packet generation and sending. Set to zero to disable MINMSS
205 * checking. This setting prevents us from sending too small packets.
206 */
207int tcp_minmss = TCP_MINMSS;
208SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
209 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
210int tcp_do_rfc1323 = 1;
211#if (DEVELOPMENT || DEBUG)
212SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
213 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_rfc1323 , 0,
214 "Enable rfc1323 (high performance TCP) extensions");
215#endif /* (DEVELOPMENT || DEBUG) */
216
217// Not used
218static int tcp_do_rfc1644 = 0;
219SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
220 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
221
222static int do_tcpdrain = 0;
223SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
224 "Enable tcp_drain routine for extra help when low on mbufs");
225
226SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
227 &tcbinfo.ipi_count, 0, "Number of active PCBs");
228
229SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount,
230 CTLFLAG_RD | CTLFLAG_LOCKED,
231 &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state");
232
233static int icmp_may_rst = 1;
234SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
235 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
236
237static int tcp_strict_rfc1948 = 0;
238static int tcp_isn_reseed_interval = 0;
239#if (DEVELOPMENT || DEBUG)
240SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948,
241 CTLFLAG_RW | CTLFLAG_LOCKED,
242 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
243
244SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval,
245 CTLFLAG_RW | CTLFLAG_LOCKED,
246 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
247#endif /* (DEVELOPMENT || DEBUG) */
248
249int tcp_TCPTV_MIN = 100; /* 100ms minimum RTT */
250SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
251 &tcp_TCPTV_MIN, 0, "min rtt value allowed");
252
253int tcp_rexmt_slop = TCPTV_REXMTSLOP;
254SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
255 &tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
256
257__private_extern__ int tcp_use_randomport = 0;
258SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
259 &tcp_use_randomport, 0, "Randomize TCP port numbers");
260
261__private_extern__ int tcp_win_scale = 3;
262SYSCTL_INT(_net_inet_tcp, OID_AUTO, win_scale_factor,
263 CTLFLAG_RW | CTLFLAG_LOCKED,
264 &tcp_win_scale, 0, "Window scaling factor");
265
266static void tcp_cleartaocache(void);
267static void tcp_notify(struct inpcb *, int);
268
269struct zone *sack_hole_zone;
270struct zone *tcp_reass_zone;
271struct zone *tcp_bwmeas_zone;
272struct zone *tcp_rxt_seg_zone;
273
274extern int slowlink_wsize; /* window correction for slow links */
275extern int path_mtu_discovery;
276
277extern u_int32_t tcp_autorcvbuf_max;
278extern u_int32_t tcp_autorcvbuf_inc_shift;
279static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
280
281#define TCP_BWMEAS_BURST_MINSIZE 6
282#define TCP_BWMEAS_BURST_MAXSIZE 25
283
284static uint32_t bwmeas_elm_size;
285
286/*
287 * Target size of TCP PCB hash tables. Must be a power of two.
288 *
289 * Note that this can be overridden by the kernel environment
290 * variable net.inet.tcp.tcbhashsize
291 */
292#ifndef TCBHASHSIZE
293#define TCBHASHSIZE CONFIG_TCBHASHSIZE
294#endif
295
296__private_extern__ int tcp_tcbhashsize = TCBHASHSIZE;
297SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
298 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
299
300/*
301 * This is the actual shape of what we allocate using the zone
302 * allocator. Doing it this way allows us to protect both structures
303 * using the same generation count, and also eliminates the overhead
304 * of allocating tcpcbs separately. By hiding the structure here,
305 * we avoid changing most of the rest of the code (although it needs
306 * to be changed, eventually, for greater efficiency).
307 */
308#define ALIGNMENT 32
309struct inp_tp {
310 struct inpcb inp;
311 struct tcpcb tcb __attribute__((aligned(ALIGNMENT)));
312};
313#undef ALIGNMENT
314
315int get_inpcb_str_size(void);
316int get_tcp_str_size(void);
317
318static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
319
320static lck_attr_t *tcp_uptime_mtx_attr = NULL; /* mutex attributes */
321static lck_grp_t *tcp_uptime_mtx_grp = NULL; /* mutex group definition */
322static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL; /* mutex group attributes */
323int tcp_notsent_lowat_check(struct socket *so);
324
325static aes_encrypt_ctx tfo_ctx; /* Crypto-context for TFO */
326
327void
328tcp_tfo_gen_cookie(struct inpcb *inp, u_char *out, size_t blk_size)
329{
330 u_char in[CCAES_BLOCK_SIZE];
331#if INET6
332 int isipv6 = inp->inp_vflag & INP_IPV6;
333#endif
334
335 VERIFY(blk_size == CCAES_BLOCK_SIZE);
336
337 bzero(&in[0], CCAES_BLOCK_SIZE);
338 bzero(&out[0], CCAES_BLOCK_SIZE);
339
340#if INET6
341 if (isipv6)
342 memcpy(in, &inp->in6p_faddr, sizeof(struct in6_addr));
343 else
344#endif /* INET6 */
345 memcpy(in, &inp->inp_faddr, sizeof(struct in_addr));
346
347 aes_encrypt_cbc(in, NULL, 1, out, &tfo_ctx);
348}
349
350__private_extern__ int
351tcp_sysctl_fastopenkey(__unused struct sysctl_oid *oidp, __unused void *arg1,
352 __unused int arg2, struct sysctl_req *req)
353{
354 int error = 0;
355 /* TFO-key is expressed as a string in hex format (+1 to account for \0 char) */
356 char keystring[TCP_FASTOPEN_KEYLEN * 2 + 1];
357 u_int32_t key[TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)];
358 int i;
359
360 /* -1, because newlen is len without the terminating \0 character */
361 if (req->newlen != (sizeof(keystring) - 1)) {
362 error = EINVAL;
363 goto exit;
364 }
365
366 /* sysctl_io_string copies keystring into the oldptr of the sysctl_req.
367 * Make sure everything is zero, to avoid putting garbage in there or
368 * leaking the stack.
369 */
370 bzero(keystring, sizeof(keystring));
371
372 error = sysctl_io_string(req, keystring, sizeof(keystring), 0, NULL);
373 if (error)
374 goto exit;
375
376 for (i = 0; i < (TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)); i++) {
377 /* We jump over the keystring in 8-character (4 byte in hex) steps */
378 if (sscanf(&keystring[i * 8], "%8x", &key[i]) != 1) {
379 error = EINVAL;
380 goto exit;
381 }
382 }
383
384 aes_encrypt_key128((u_char *)key, &tfo_ctx);
385
386exit:
387 return (error);
388}
389
390int get_inpcb_str_size(void)
391{
392 return sizeof(struct inpcb);
393}
394
395int get_tcp_str_size(void)
396{
397 return sizeof(struct tcpcb);
398}
399
400int tcp_freeq(struct tcpcb *tp);
401
402static int scale_to_powerof2(int size);
403
404/*
405 * This helper routine returns one of the following scaled value of size:
406 * 1. Rounded down power of two value of size if the size value passed as
407 * argument is not a power of two and the rounded up value overflows.
408 * OR
409 * 2. Rounded up power of two value of size if the size value passed as
410 * argument is not a power of two and the rounded up value does not overflow
411 * OR
412 * 3. Same value as argument size if it is already a power of two.
413 */
414static int scale_to_powerof2(int size) {
415 /* Handle special case of size = 0 */
416 int ret = size ? size : 1;
417
418 if (!powerof2(ret)) {
419 while(!powerof2(size)) {
420 /*
421 * Clear out least significant
422 * set bit till size is left with
423 * its highest set bit at which point
424 * it is rounded down power of two.
425 */
426 size = size & (size -1);
427 }
428
429 /* Check for overflow when rounding up */
430 if (0 == (size << 1)) {
431 ret = size;
432 } else {
433 ret = size << 1;
434 }
435 }
436
437 return ret;
438}
439
440static void
441tcp_tfo_init()
442{
443 u_char key[TCP_FASTOPEN_KEYLEN];
444
445 read_random(key, sizeof(key));
446 aes_encrypt_key128(key, &tfo_ctx);
447}
448
449/*
450 * Tcp initialization
451 */
452void
453tcp_init(struct protosw *pp, struct domain *dp)
454{
455#pragma unused(dp)
456 static int tcp_initialized = 0;
457 vm_size_t str_size;
458 struct inpcbinfo *pcbinfo;
459
460 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
461
462 if (tcp_initialized)
463 return;
464 tcp_initialized = 1;
465
466 tcp_ccgen = 1;
467 tcp_cleartaocache();
468
469 tcp_keepinit = TCPTV_KEEP_INIT;
470 tcp_keepidle = TCPTV_KEEP_IDLE;
471 tcp_keepintvl = TCPTV_KEEPINTVL;
472 tcp_keepcnt = TCPTV_KEEPCNT;
473 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
474 tcp_msl = TCPTV_MSL;
475
476 microuptime(&tcp_uptime);
477 read_random(&tcp_now, sizeof(tcp_now));
478 tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
479
480 tcp_tfo_init();
481
482 LIST_INIT(&tcb);
483 tcbinfo.ipi_listhead = &tcb;
484
485 pcbinfo = &tcbinfo;
486 /*
487 * allocate lock group attribute and group for tcp pcb mutexes
488 */
489 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
490 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb", pcbinfo->ipi_lock_grp_attr);
491
492 /*
493 * allocate the lock attribute for tcp pcb mutexes
494 */
495 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
496
497 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
498 pcbinfo->ipi_lock_attr)) == NULL) {
499 panic("%s: unable to allocate PCB lock\n", __func__);
500 /* NOTREACHED */
501 }
502
503 if (tcp_tcbhashsize == 0) {
504 /* Set to default */
505 tcp_tcbhashsize = 512;
506 }
507
508 if (!powerof2(tcp_tcbhashsize)) {
509 int old_hash_size = tcp_tcbhashsize;
510 tcp_tcbhashsize = scale_to_powerof2(tcp_tcbhashsize);
511 /* Lower limit of 16 */
512 if (tcp_tcbhashsize < 16) {
513 tcp_tcbhashsize = 16;
514 }
515 printf("WARNING: TCB hash size not a power of 2, "
516 "scaled from %d to %d.\n",
517 old_hash_size,
518 tcp_tcbhashsize);
519 }
520
521 tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.ipi_hashmask);
522 tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
523 &tcbinfo.ipi_porthashmask);
524 str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
525 tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb");
526 zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
527 zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
528
529 tcbinfo.ipi_gc = tcp_gc;
530 tcbinfo.ipi_timer = tcp_itimer;
531 in_pcbinfo_attach(&tcbinfo);
532
533 str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
534 sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
535 zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
536 zone_change(sack_hole_zone, Z_EXPAND, TRUE);
537
538 str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
539 tcp_reass_zone = zinit(str_size, (nmbclusters >> 4) * str_size,
540 0, "tcp_reass_zone");
541 if (tcp_reass_zone == NULL) {
542 panic("%s: failed allocating tcp_reass_zone", __func__);
543 /* NOTREACHED */
544 }
545 zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
546 zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
547
548 bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t));
549 tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, "tcp_bwmeas_zone");
550 if (tcp_bwmeas_zone == NULL) {
551 panic("%s: failed allocating tcp_bwmeas_zone", __func__);
552 /* NOTREACHED */
553 }
554 zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE);
555 zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE);
556
557 str_size = P2ROUNDUP(sizeof(struct tcp_ccstate), sizeof(u_int64_t));
558 tcp_cc_zone = zinit(str_size, 20000 * str_size, 0, "tcp_cc_zone");
559 zone_change(tcp_cc_zone, Z_CALLERACCT, FALSE);
560 zone_change(tcp_cc_zone, Z_EXPAND, TRUE);
561
562 str_size = P2ROUNDUP(sizeof(struct tcp_rxt_seg), sizeof(u_int64_t));
563 tcp_rxt_seg_zone = zinit(str_size, 10000 * str_size, 0,
564 "tcp_rxt_seg_zone");
565 zone_change(tcp_rxt_seg_zone, Z_CALLERACCT, FALSE);
566 zone_change(tcp_rxt_seg_zone, Z_EXPAND, TRUE);
567
568#if INET6
569#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
570#else /* INET6 */
571#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
572#endif /* INET6 */
573 if (max_protohdr < TCP_MINPROTOHDR) {
574 _max_protohdr = TCP_MINPROTOHDR;
575 _max_protohdr = max_protohdr; /* round it up */
576 }
577 if (max_linkhdr + max_protohdr > MCLBYTES)
578 panic("tcp_init");
579#undef TCP_MINPROTOHDR
580
581 /* Initialize time wait and timer lists */
582 TAILQ_INIT(&tcp_tw_tailq);
583
584 bzero(&tcp_timer_list, sizeof(tcp_timer_list));
585 LIST_INIT(&tcp_timer_list.lhead);
586 /*
587 * allocate lock group attribute, group and attribute for the tcp timer list
588 */
589 tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
590 tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
591 tcp_timer_list.mtx_attr = lck_attr_alloc_init();
592 if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
593 panic("failed to allocate memory for tcp_timer_list.mtx\n");
594 };
595 if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
596 panic("failed to allocate call entry 1 in tcp_init\n");
597 }
598
599 /*
600 * allocate lock group attribute, group and attribute for tcp_uptime_lock
601 */
602 tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
603 tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
604 tcp_uptime_mtx_attr = lck_attr_alloc_init();
605 tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
606
607 /* Initialize TCP LRO data structures */
608 tcp_lro_init();
609
610 /* Initialize TCP Cache */
611 tcp_cache_init();
612
613 /*
614 * If more than 60 MB of mbuf pool is available, increase the
615 * maximum allowed receive and send socket buffer size.
616 */
617 if (nmbclusters > 30720) {
618 tcp_autorcvbuf_max = 1024 * 1024;
619 tcp_autosndbuf_max = 1024 * 1024;
620 }
621}
622
623/*
624 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
625 * tcp_template used to store this data in mbufs, but we now recopy it out
626 * of the tcpcb each time to conserve mbufs.
627 */
628void
629tcp_fillheaders(tp, ip_ptr, tcp_ptr)
630 struct tcpcb *tp;
631 void *ip_ptr;
632 void *tcp_ptr;
633{
634 struct inpcb *inp = tp->t_inpcb;
635 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
636
637#if INET6
638 if ((inp->inp_vflag & INP_IPV6) != 0) {
639 struct ip6_hdr *ip6;
640
641 ip6 = (struct ip6_hdr *)ip_ptr;
642 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
643 (inp->inp_flow & IPV6_FLOWINFO_MASK);
644 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
645 (IPV6_VERSION & IPV6_VERSION_MASK);
646 ip6->ip6_nxt = IPPROTO_TCP;
647 ip6->ip6_plen = sizeof(struct tcphdr);
648 ip6->ip6_src = inp->in6p_laddr;
649 ip6->ip6_dst = inp->in6p_faddr;
650 tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
651 htonl(sizeof (struct tcphdr) + IPPROTO_TCP));
652 } else
653#endif
654 {
655 struct ip *ip = (struct ip *) ip_ptr;
656
657 ip->ip_vhl = IP_VHL_BORING;
658 ip->ip_tos = 0;
659 ip->ip_len = 0;
660 ip->ip_id = 0;
661 ip->ip_off = 0;
662 ip->ip_ttl = 0;
663 ip->ip_sum = 0;
664 ip->ip_p = IPPROTO_TCP;
665 ip->ip_src = inp->inp_laddr;
666 ip->ip_dst = inp->inp_faddr;
667 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
668 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
669 }
670
671 tcp_hdr->th_sport = inp->inp_lport;
672 tcp_hdr->th_dport = inp->inp_fport;
673 tcp_hdr->th_seq = 0;
674 tcp_hdr->th_ack = 0;
675 tcp_hdr->th_x2 = 0;
676 tcp_hdr->th_off = 5;
677 tcp_hdr->th_flags = 0;
678 tcp_hdr->th_win = 0;
679 tcp_hdr->th_urp = 0;
680}
681
682/*
683 * Create template to be used to send tcp packets on a connection.
684 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
685 * use for this function is in keepalives, which use tcp_respond.
686 */
687struct tcptemp *
688tcp_maketemplate(tp)
689 struct tcpcb *tp;
690{
691 struct mbuf *m;
692 struct tcptemp *n;
693
694 m = m_get(M_DONTWAIT, MT_HEADER);
695 if (m == NULL)
696 return (0);
697 m->m_len = sizeof(struct tcptemp);
698 n = mtod(m, struct tcptemp *);
699
700 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
701 return (n);
702}
703
704/*
705 * Send a single message to the TCP at address specified by
706 * the given TCP/IP header. If m == 0, then we make a copy
707 * of the tcpiphdr at ti and send directly to the addressed host.
708 * This is used to force keep alive messages out using the TCP
709 * template for a connection. If flags are given then we send
710 * a message back to the TCP which originated the * segment ti,
711 * and discard the mbuf containing it and any other attached mbufs.
712 *
713 * In any case the ack and sequence number of the transmitted
714 * segment are as specified by the parameters.
715 *
716 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
717 */
718void
719tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
720 tcp_seq ack, tcp_seq seq, int flags, struct tcp_respond_args *tra)
721{
722 int tlen;
723 int win = 0;
724 struct route *ro = 0;
725 struct route sro;
726 struct ip *ip;
727 struct tcphdr *nth;
728#if INET6
729 struct route_in6 *ro6 = 0;
730 struct route_in6 sro6;
731 struct ip6_hdr *ip6;
732 int isipv6;
733#endif /* INET6 */
734 struct ifnet *outif;
735
736#if INET6
737 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
738 ip6 = ipgen;
739#endif /* INET6 */
740 ip = ipgen;
741
742 if (tp) {
743 if (!(flags & TH_RST)) {
744 win = tcp_sbspace(tp);
745 if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
746 win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
747 }
748#if INET6
749 if (isipv6)
750 ro6 = &tp->t_inpcb->in6p_route;
751 else
752#endif /* INET6 */
753 ro = &tp->t_inpcb->inp_route;
754 } else {
755#if INET6
756 if (isipv6) {
757 ro6 = &sro6;
758 bzero(ro6, sizeof *ro6);
759 } else
760#endif /* INET6 */
761 {
762 ro = &sro;
763 bzero(ro, sizeof *ro);
764 }
765 }
766 if (m == 0) {
767 m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */
768 if (m == NULL)
769 return;
770 tlen = 0;
771 m->m_data += max_linkhdr;
772#if INET6
773 if (isipv6) {
774 VERIFY((MHLEN - max_linkhdr) >=
775 (sizeof (*ip6) + sizeof (*nth)));
776 bcopy((caddr_t)ip6, mtod(m, caddr_t),
777 sizeof(struct ip6_hdr));
778 ip6 = mtod(m, struct ip6_hdr *);
779 nth = (struct tcphdr *)(void *)(ip6 + 1);
780 } else
781#endif /* INET6 */
782 {
783 VERIFY((MHLEN - max_linkhdr) >=
784 (sizeof (*ip) + sizeof (*nth)));
785 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
786 ip = mtod(m, struct ip *);
787 nth = (struct tcphdr *)(void *)(ip + 1);
788 }
789 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
790#if MPTCP
791 if ((tp) && (tp->t_mpflags & TMPF_RESET))
792 flags = (TH_RST | TH_ACK);
793 else
794#endif
795 flags = TH_ACK;
796 } else {
797 m_freem(m->m_next);
798 m->m_next = 0;
799 m->m_data = (caddr_t)ipgen;
800 /* m_len is set later */
801 tlen = 0;
802#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
803#if INET6
804 if (isipv6) {
805 /* Expect 32-bit aligned IP on strict-align platforms */
806 IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
807 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
808 nth = (struct tcphdr *)(void *)(ip6 + 1);
809 } else
810#endif /* INET6 */
811 {
812 /* Expect 32-bit aligned IP on strict-align platforms */
813 IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
814 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
815 nth = (struct tcphdr *)(void *)(ip + 1);
816 }
817 if (th != nth) {
818 /*
819 * this is usually a case when an extension header
820 * exists between the IPv6 header and the
821 * TCP header.
822 */
823 nth->th_sport = th->th_sport;
824 nth->th_dport = th->th_dport;
825 }
826 xchg(nth->th_dport, nth->th_sport, n_short);
827#undef xchg
828 }
829#if INET6
830 if (isipv6) {
831 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
832 tlen));
833 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
834 } else
835#endif
836 {
837 tlen += sizeof (struct tcpiphdr);
838 ip->ip_len = tlen;
839 ip->ip_ttl = ip_defttl;
840 }
841 m->m_len = tlen;
842 m->m_pkthdr.len = tlen;
843 m->m_pkthdr.rcvif = 0;
844#if CONFIG_MACF_NET
845 if (tp != NULL && tp->t_inpcb != NULL) {
846 /*
847 * Packet is associated with a socket, so allow the
848 * label of the response to reflect the socket label.
849 */
850 mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
851 } else {
852 /*
853 * Packet is not associated with a socket, so possibly
854 * update the label in place.
855 */
856 mac_netinet_tcp_reply(m);
857 }
858#endif
859
860 nth->th_seq = htonl(seq);
861 nth->th_ack = htonl(ack);
862 nth->th_x2 = 0;
863 nth->th_off = sizeof (struct tcphdr) >> 2;
864 nth->th_flags = flags;
865 if (tp)
866 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
867 else
868 nth->th_win = htons((u_short)win);
869 nth->th_urp = 0;
870#if INET6
871 if (isipv6) {
872 nth->th_sum = 0;
873 nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
874 htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP));
875 m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
876 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
877 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
878 ro6 && ro6->ro_rt ?
879 ro6->ro_rt->rt_ifp :
880 NULL);
881 } else
882#endif /* INET6 */
883 {
884 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
885 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
886 m->m_pkthdr.csum_flags = CSUM_TCP;
887 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
888 }
889#if TCPDEBUG
890 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
891 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
892#endif
893
894#if NECP
895 necp_mark_packet_from_socket(m, tp ? tp->t_inpcb : NULL, 0, 0);
896#endif /* NECP */
897
898#if IPSEC
899 if (tp != NULL && tp->t_inpcb->inp_sp != NULL &&
900 ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
901 m_freem(m);
902 return;
903 }
904#endif
905
906 if (tp != NULL) {
907 u_int32_t svc_flags = 0;
908 if (isipv6) {
909 svc_flags |= PKT_SCF_IPV6;
910 }
911 set_packet_service_class(m, tp->t_inpcb->inp_socket,
912 MBUF_SC_UNSPEC, svc_flags);
913
914 /* Embed flowhash and flow control flags */
915 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
916 m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
917 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC;
918#if MPTCP
919 /* Disable flow advisory when using MPTCP. */
920 if (!(tp->t_mpflags & TMPF_MPTCP_TRUE))
921#endif /* MPTCP */
922 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
923 m->m_pkthdr.pkt_proto = IPPROTO_TCP;
924 }
925
926#if INET6
927 if (isipv6) {
928 struct ip6_out_args ip6oa = { tra->ifscope, { 0 },
929 IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR, 0 };
930
931 if (tra->ifscope != IFSCOPE_NONE)
932 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
933 if (tra->nocell)
934 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
935 if (tra->noexpensive)
936 ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
937 if (tra->awdl_unrestricted)
938 ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
939
940 (void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
941 NULL, &ip6oa);
942
943 if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
944 (outif = ro6->ro_rt->rt_ifp) !=
945 tp->t_inpcb->in6p_last_outifp)
946 tp->t_inpcb->in6p_last_outifp = outif;
947
948 if (ro6 == &sro6)
949 ROUTE_RELEASE(ro6);
950 } else
951#endif /* INET6 */
952 {
953 struct ip_out_args ipoa = { tra->ifscope, { 0 },
954 IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR, 0 };
955
956 if (tra->ifscope != IFSCOPE_NONE)
957 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
958 if (tra->nocell)
959 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
960 if (tra->noexpensive)
961 ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
962 if (tra->awdl_unrestricted)
963 ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
964
965 if (ro != &sro) {
966 /* Copy the cached route and take an extra reference */
967 inp_route_copyout(tp->t_inpcb, &sro);
968 }
969 /*
970 * For consistency, pass a local route copy.
971 */
972 (void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
973
974 if (tp != NULL && sro.ro_rt != NULL &&
975 (outif = sro.ro_rt->rt_ifp) !=
976 tp->t_inpcb->inp_last_outifp)
977 tp->t_inpcb->inp_last_outifp = outif;
978
979 if (ro != &sro) {
980 /* Synchronize cached PCB route */
981 inp_route_copyin(tp->t_inpcb, &sro);
982 } else {
983 ROUTE_RELEASE(&sro);
984 }
985 }
986}
987
988/*
989 * Create a new TCP control block, making an
990 * empty reassembly queue and hooking it to the argument
991 * protocol control block. The `inp' parameter must have
992 * come from the zone allocator set up in tcp_init().
993 */
994struct tcpcb *
995tcp_newtcpcb(inp)
996 struct inpcb *inp;
997{
998 struct inp_tp *it;
999 register struct tcpcb *tp;
1000 register struct socket *so = inp->inp_socket;
1001#if INET6
1002 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1003#endif /* INET6 */
1004
1005 calculate_tcp_clock();
1006
1007 if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
1008 it = (struct inp_tp *)(void *)inp;
1009 tp = &it->tcb;
1010 } else {
1011 tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
1012 }
1013
1014 bzero((char *) tp, sizeof(struct tcpcb));
1015 LIST_INIT(&tp->t_segq);
1016 tp->t_maxseg = tp->t_maxopd =
1017#if INET6
1018 isipv6 ? tcp_v6mssdflt :
1019#endif /* INET6 */
1020 tcp_mssdflt;
1021
1022 if (tcp_do_rfc1323)
1023 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1024 if (tcp_do_sack)
1025 tp->t_flagsext |= TF_SACK_ENABLE;
1026
1027 TAILQ_INIT(&tp->snd_holes);
1028 SLIST_INIT(&tp->t_rxt_segments);
1029 tp->t_inpcb = inp; /* XXX */
1030 /*
1031 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1032 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
1033 * reasonable initial retransmit time.
1034 */
1035 tp->t_srtt = TCPTV_SRTTBASE;
1036 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1037 tp->t_rttmin = tcp_TCPTV_MIN;
1038 tp->t_rxtcur = TCPTV_RTOBASE;
1039
1040 if (tcp_use_newreno)
1041 /* use newreno by default */
1042 tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
1043 else
1044 tp->tcp_cc_index = TCP_CC_ALGO_CUBIC_INDEX;
1045
1046 tcp_cc_allocate_state(tp);
1047
1048 if (CC_ALGO(tp)->init != NULL)
1049 CC_ALGO(tp)->init(tp);
1050
1051 tp->snd_cwnd = TCP_CC_CWND_INIT_BYTES;
1052 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1053 tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1054 tp->t_rcvtime = tcp_now;
1055 tp->tentry.timer_start = tcp_now;
1056 tp->t_persist_timeout = tcp_max_persist_timeout;
1057 tp->t_persist_stop = 0;
1058 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
1059 tp->t_rexmtthresh = tcprexmtthresh;
1060
1061 /* Clear time wait tailq entry */
1062 tp->t_twentry.tqe_next = NULL;
1063 tp->t_twentry.tqe_prev = NULL;
1064
1065 /*
1066 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1067 * because the socket may be bound to an IPv6 wildcard address,
1068 * which may match an IPv4-mapped IPv6 address.
1069 */
1070 inp->inp_ip_ttl = ip_defttl;
1071 inp->inp_ppcb = (caddr_t)tp;
1072 return (tp); /* XXX */
1073}
1074
1075/*
1076 * Drop a TCP connection, reporting
1077 * the specified error. If connection is synchronized,
1078 * then send a RST to peer.
1079 */
1080struct tcpcb *
1081tcp_drop(tp, errno)
1082 register struct tcpcb *tp;
1083 int errno;
1084{
1085 struct socket *so = tp->t_inpcb->inp_socket;
1086#if CONFIG_DTRACE
1087 struct inpcb *inp = tp->t_inpcb;
1088#endif
1089
1090 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1091 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1092 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1093 tp->t_state = TCPS_CLOSED;
1094 (void) tcp_output(tp);
1095 tcpstat.tcps_drops++;
1096 } else
1097 tcpstat.tcps_conndrops++;
1098 if (errno == ETIMEDOUT && tp->t_softerror)
1099 errno = tp->t_softerror;
1100 so->so_error = errno;
1101 return (tcp_close(tp));
1102}
1103
1104void
1105tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
1106{
1107 u_int32_t rtt = rt->rt_rmx.rmx_rtt;
1108 int isnetlocal = (tp->t_flags & TF_LOCAL);
1109
1110 if (rtt != 0) {
1111 /*
1112 * XXX the lock bit for RTT indicates that the value
1113 * is also a minimum value; this is subject to time.
1114 */
1115 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1116 tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
1117 else
1118 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
1119 tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1120 tcpstat.tcps_usedrtt++;
1121 if (rt->rt_rmx.rmx_rttvar) {
1122 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1123 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1124 tcpstat.tcps_usedrttvar++;
1125 } else {
1126 /* default variation is +- 1 rtt */
1127 tp->t_rttvar =
1128 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1129 }
1130 TCPT_RANGESET(tp->t_rxtcur,
1131 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1132 tp->t_rttmin, TCPTV_REXMTMAX,
1133 TCP_ADD_REXMTSLOP(tp));
1134 }
1135}
1136
1137static inline void
1138tcp_update_ecn_perf_stats(struct tcpcb *tp,
1139 struct if_tcp_ecn_perf_stat *stat)
1140{
1141 u_int64_t curval, oldval;
1142 struct inpcb *inp = tp->t_inpcb;
1143 stat->total_txpkts += inp->inp_stat->txpackets;
1144 stat->total_rxpkts += inp->inp_stat->rxpackets;
1145 stat->total_rxmitpkts += tp->t_stat.rxmitpkts;
1146 stat->total_oopkts += tp->t_rcvoopack;
1147 stat->total_reorderpkts += (tp->t_reordered_pkts + tp->t_pawsdrop +
1148 tp->t_dsack_sent + tp->t_dsack_recvd);
1149
1150 /* Average RTT */
1151 curval = (tp->t_srtt >> TCP_RTT_SHIFT);
1152 if (curval > 0 && tp->t_rttupdated >= 16) {
1153 if (stat->rtt_avg == 0) {
1154 stat->rtt_avg = curval;
1155 } else {
1156 oldval = stat->rtt_avg;
1157 stat->rtt_avg =
1158 ((oldval << 4) - oldval + curval) >> 4;
1159 }
1160 }
1161
1162 /* RTT variance */
1163 curval = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
1164 if (curval > 0 && tp->t_rttupdated >= 16) {
1165 if (stat->rtt_var == 0) {
1166 stat->rtt_var = curval;
1167 } else {
1168 oldval = stat->rtt_var;
1169 stat->rtt_var =
1170 ((oldval << 4) - oldval + curval) >> 4;
1171 }
1172 }
1173
1174 /* Total number of SACK recovery episodes */
1175 stat->sack_episodes += tp->t_sack_recovery_episode;
1176
1177 if (inp->inp_socket->so_error == ECONNRESET)
1178 stat->rst_drop++;
1179 return;
1180}
1181
1182/*
1183 * Close a TCP control block:
1184 * discard all space held by the tcp
1185 * discard internet protocol block
1186 * wake up any sleepers
1187 */
1188struct tcpcb *
1189tcp_close(tp)
1190 register struct tcpcb *tp;
1191{
1192 struct inpcb *inp = tp->t_inpcb;
1193 struct socket *so = inp->inp_socket;
1194#if INET6
1195 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1196#endif /* INET6 */
1197 struct route *ro;
1198 struct rtentry *rt;
1199 int dosavessthresh;
1200
1201 /* tcp_close was called previously, bail */
1202 if (inp->inp_ppcb == NULL)
1203 return(NULL);
1204
1205 tcp_canceltimers(tp);
1206 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
1207
1208 /*
1209 * If another thread for this tcp is currently in ip (indicated by
1210 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1211 * back to tcp. This is done to serialize the close until after all
1212 * pending output is finished, in order to avoid having the PCB be
1213 * detached and the cached route cleaned, only for ip to cache the
1214 * route back into the PCB again. Note that we've cleared all the
1215 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
1216 * that is should call us again once it returns from ip; at that
1217 * point both flags should be cleared and we can proceed further
1218 * with the cleanup.
1219 */
1220 if ((tp->t_flags & TF_CLOSING) ||
1221 inp->inp_sndinprog_cnt > 0) {
1222 tp->t_flags |= TF_CLOSING;
1223 return (NULL);
1224 }
1225
1226 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1227 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1228
1229#if INET6
1230 ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
1231#else
1232 ro = &inp->inp_route;
1233#endif
1234 rt = ro->ro_rt;
1235 if (rt != NULL)
1236 RT_LOCK_SPIN(rt);
1237
1238 /*
1239 * If we got enough samples through the srtt filter,
1240 * save the rtt and rttvar in the routing entry.
1241 * 'Enough' is arbitrarily defined as the 16 samples.
1242 * 16 samples is enough for the srtt filter to converge
1243 * to within 5% of the correct value; fewer samples and
1244 * we could save a very bogus rtt.
1245 *
1246 * Don't update the default route's characteristics and don't
1247 * update anything that the user "locked".
1248 */
1249 if (tp->t_rttupdated >= 16) {
1250 register u_int32_t i = 0;
1251
1252#if INET6
1253 if (isipv6) {
1254 struct sockaddr_in6 *sin6;
1255
1256 if (rt == NULL)
1257 goto no_valid_rt;
1258 sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt);
1259 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
1260 goto no_valid_rt;
1261 }
1262 else
1263#endif /* INET6 */
1264 if (ROUTE_UNUSABLE(ro) ||
1265 SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
1266 DTRACE_TCP4(state__change, void, NULL,
1267 struct inpcb *, inp, struct tcpcb *, tp,
1268 int32_t, TCPS_CLOSED);
1269 tp->t_state = TCPS_CLOSED;
1270 goto no_valid_rt;
1271 }
1272
1273 RT_LOCK_ASSERT_HELD(rt);
1274 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1275 i = tp->t_srtt *
1276 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1277 if (rt->rt_rmx.rmx_rtt && i)
1278 /*
1279 * filter this update to half the old & half
1280 * the new values, converting scale.
1281 * See route.h and tcp_var.h for a
1282 * description of the scaling constants.
1283 */
1284 rt->rt_rmx.rmx_rtt =
1285 (rt->rt_rmx.rmx_rtt + i) / 2;
1286 else
1287 rt->rt_rmx.rmx_rtt = i;
1288 tcpstat.tcps_cachedrtt++;
1289 }
1290 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1291 i = tp->t_rttvar *
1292 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1293 if (rt->rt_rmx.rmx_rttvar && i)
1294 rt->rt_rmx.rmx_rttvar =
1295 (rt->rt_rmx.rmx_rttvar + i) / 2;
1296 else
1297 rt->rt_rmx.rmx_rttvar = i;
1298 tcpstat.tcps_cachedrttvar++;
1299 }
1300 /*
1301 * The old comment here said:
1302 * update the pipelimit (ssthresh) if it has been updated
1303 * already or if a pipesize was specified & the threshhold
1304 * got below half the pipesize. I.e., wait for bad news
1305 * before we start updating, then update on both good
1306 * and bad news.
1307 *
1308 * But we want to save the ssthresh even if no pipesize is
1309 * specified explicitly in the route, because such
1310 * connections still have an implicit pipesize specified
1311 * by the global tcp_sendspace. In the absence of a reliable
1312 * way to calculate the pipesize, it will have to do.
1313 */
1314 i = tp->snd_ssthresh;
1315 if (rt->rt_rmx.rmx_sendpipe != 0)
1316 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1317 else
1318 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1319 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1320 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1321 || dosavessthresh) {
1322 /*
1323 * convert the limit from user data bytes to
1324 * packets then to packet data bytes.
1325 */
1326 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1327 if (i < 2)
1328 i = 2;
1329 i *= (u_int32_t)(tp->t_maxseg +
1330#if INET6
1331 (isipv6 ? sizeof (struct ip6_hdr) +
1332 sizeof (struct tcphdr) :
1333#endif
1334 sizeof (struct tcpiphdr)
1335#if INET6
1336 )
1337#endif
1338 );
1339 if (rt->rt_rmx.rmx_ssthresh)
1340 rt->rt_rmx.rmx_ssthresh =
1341 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1342 else
1343 rt->rt_rmx.rmx_ssthresh = i;
1344 tcpstat.tcps_cachedssthresh++;
1345 }
1346 }
1347
1348 /*
1349 * Mark route for deletion if no information is cached.
1350 */
1351 if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1352 if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1353 rt->rt_rmx.rmx_rtt == 0) {
1354 rt->rt_flags |= RTF_DELCLONE;
1355 }
1356 }
1357
1358no_valid_rt:
1359 if (rt != NULL)
1360 RT_UNLOCK(rt);
1361
1362 /* free the reassembly queue, if any */
1363 (void) tcp_freeq(tp);
1364
1365 /* Collect ECN related statistics */
1366 if (tp->ecn_flags & TE_SETUPSENT) {
1367 if (tp->ecn_flags & TE_CLIENT_SETUP) {
1368 INP_INC_IFNET_STAT(inp, ecn_client_setup);
1369 if (TCP_ECN_ENABLED(tp)) {
1370 INP_INC_IFNET_STAT(inp,
1371 ecn_client_success);
1372 } else if (tp->ecn_flags & TE_LOST_SYN) {
1373 INP_INC_IFNET_STAT(inp, ecn_syn_lost);
1374 } else {
1375 INP_INC_IFNET_STAT(inp,
1376 ecn_peer_nosupport);
1377 }
1378 } else {
1379 INP_INC_IFNET_STAT(inp, ecn_server_setup);
1380 if (TCP_ECN_ENABLED(tp)) {
1381 INP_INC_IFNET_STAT(inp,
1382 ecn_server_success);
1383 } else if (tp->ecn_flags & TE_LOST_SYNACK) {
1384 INP_INC_IFNET_STAT(inp,
1385 ecn_synack_lost);
1386 } else {
1387 INP_INC_IFNET_STAT(inp,
1388 ecn_peer_nosupport);
1389 }
1390 }
1391 } else {
1392 INP_INC_IFNET_STAT(inp, ecn_off_conn);
1393 }
1394 if (TCP_ECN_ENABLED(tp)) {
1395 if (tp->ecn_flags & TE_RECV_ECN_CE) {
1396 tcpstat.tcps_ecn_conn_recv_ce++;
1397 INP_INC_IFNET_STAT(inp, ecn_conn_recv_ce);
1398 }
1399 if (tp->ecn_flags & TE_RECV_ECN_ECE) {
1400 tcpstat.tcps_ecn_conn_recv_ece++;
1401 INP_INC_IFNET_STAT(inp, ecn_conn_recv_ece);
1402 }
1403 if (tp->ecn_flags & (TE_RECV_ECN_CE | TE_RECV_ECN_ECE)) {
1404 if (tp->t_stat.txretransmitbytes > 0 ||
1405 tp->t_stat.rxoutoforderbytes > 0) {
1406 tcpstat.tcps_ecn_conn_pl_ce++;
1407 INP_INC_IFNET_STAT(inp, ecn_conn_plce);
1408 } else {
1409 tcpstat.tcps_ecn_conn_nopl_ce++;
1410 INP_INC_IFNET_STAT(inp, ecn_conn_noplce);
1411 }
1412 } else {
1413 if (tp->t_stat.txretransmitbytes > 0 ||
1414 tp->t_stat.rxoutoforderbytes > 0) {
1415 tcpstat.tcps_ecn_conn_plnoce++;
1416 INP_INC_IFNET_STAT(inp, ecn_conn_plnoce);
1417 }
1418 }
1419 }
1420
1421 /* Aggregate performance stats */
1422 if (inp->inp_last_outifp != NULL && !(tp->t_flags & TF_LOCAL)) {
1423 struct ifnet *ifp = inp->inp_last_outifp;
1424 ifnet_lock_shared(ifp);
1425 if ((ifp->if_refflags & (IFRF_ATTACHED | IFRF_DETACHING)) ==
1426 IFRF_ATTACHED) {
1427 if (inp->inp_vflag & INP_IPV6) {
1428 ifp->if_ipv6_stat->timestamp = net_uptime();
1429 if (TCP_ECN_ENABLED(tp)) {
1430 tcp_update_ecn_perf_stats(tp,
1431 &ifp->if_ipv6_stat->ecn_on);
1432 } else {
1433 tcp_update_ecn_perf_stats(tp,
1434 &ifp->if_ipv6_stat->ecn_off);
1435 }
1436 } else {
1437 ifp->if_ipv4_stat->timestamp = net_uptime();
1438 if (TCP_ECN_ENABLED(tp)) {
1439 tcp_update_ecn_perf_stats(tp,
1440 &ifp->if_ipv4_stat->ecn_on);
1441 } else {
1442 tcp_update_ecn_perf_stats(tp,
1443 &ifp->if_ipv4_stat->ecn_off);
1444 }
1445 }
1446 }
1447 ifnet_lock_done(ifp);
1448 }
1449
1450 tcp_free_sackholes(tp);
1451 if (tp->t_bwmeas != NULL) {
1452 tcp_bwmeas_free(tp);
1453 }
1454 tcp_rxtseg_clean(tp);
1455 /* Free the packet list */
1456 if (tp->t_pktlist_head != NULL)
1457 m_freem_list(tp->t_pktlist_head);
1458 TCP_PKTLIST_CLEAR(tp);
1459
1460#if MPTCP
1461 /* Clear MPTCP state */
1462 if ((so->so_flags & SOF_MPTCP_TRUE) ||
1463 (so->so_flags & SOF_MP_SUBFLOW)) {
1464 soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_DELETEOK));
1465 }
1466 tp->t_mpflags = 0;
1467 tp->t_mptcb = NULL;
1468#endif /* MPTCP */
1469
1470 if (so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER)
1471 inp->inp_saved_ppcb = (caddr_t) tp;
1472
1473 tp->t_state = TCPS_CLOSED;
1474
1475 /* Issue a wakeup before detach so that we don't miss
1476 * a wakeup
1477 */
1478 sodisconnectwakeup(so);
1479
1480 /*
1481 * Clean up any LRO state
1482 */
1483 if (tp->t_flagsext & TF_LRO_OFFLOADED) {
1484 tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
1485 inp->inp_lport, inp->inp_fport);
1486 tp->t_flagsext &= ~TF_LRO_OFFLOADED;
1487 }
1488
1489 /*
1490 * If this is a socket that does not want to wakeup the device
1491 * for it's traffic, the application might need to know that the
1492 * socket is closed, send a notification.
1493 */
1494 if ((so->so_options & SO_NOWAKEFROMSLEEP) &&
1495 inp->inp_state != INPCB_STATE_DEAD &&
1496 !(inp->inp_flags2 & INP2_TIMEWAIT))
1497 socket_post_kev_msg_closed(so);
1498
1499 if (CC_ALGO(tp)->cleanup != NULL) {
1500 CC_ALGO(tp)->cleanup(tp);
1501 }
1502
1503 if (tp->t_ccstate != NULL) {
1504 zfree(tcp_cc_zone, tp->t_ccstate);
1505 tp->t_ccstate = NULL;
1506 }
1507 tp->tcp_cc_index = TCP_CC_ALGO_NONE;
1508
1509 /* Can happen if we close the socket before receiving the third ACK */
1510 if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) {
1511 OSDecrementAtomic(&tcp_tfo_halfcnt);
1512
1513 /* Panic if something has gone terribly wrong. */
1514 VERIFY(tcp_tfo_halfcnt >= 0);
1515
1516 tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID;
1517 }
1518
1519#if INET6
1520 if (SOCK_CHECK_DOM(so, PF_INET6))
1521 in6_pcbdetach(inp);
1522 else
1523#endif /* INET6 */
1524 in_pcbdetach(inp);
1525
1526 /* Call soisdisconnected after detach because it might unlock the socket */
1527 soisdisconnected(so);
1528 tcpstat.tcps_closed++;
1529 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END,
1530 tcpstat.tcps_closed, 0, 0, 0, 0);
1531 return(NULL);
1532}
1533
1534int
1535tcp_freeq(tp)
1536 struct tcpcb *tp;
1537{
1538
1539 register struct tseg_qent *q;
1540 int rv = 0;
1541
1542 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1543 LIST_REMOVE(q, tqe_q);
1544 m_freem(q->tqe_m);
1545 zfree(tcp_reass_zone, q);
1546 rv = 1;
1547 }
1548 tp->t_reassqlen = 0;
1549 return (rv);
1550}
1551
1552
1553/*
1554 * Walk the tcpbs, if existing, and flush the reassembly queue,
1555 * if there is one when do_tcpdrain is enabled
1556 * Also defunct the extended background idle socket
1557 * Do it next time if the pcbinfo lock is in use
1558 */
1559void
1560tcp_drain()
1561{
1562 struct inpcb *inp;
1563 struct tcpcb *tp;
1564
1565 if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock))
1566 return;
1567
1568 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1569 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
1570 WNT_STOPUSING) {
1571 tcp_lock(inp->inp_socket, 1, 0);
1572 if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
1573 == WNT_STOPUSING) {
1574 /* lost a race, try the next one */
1575 tcp_unlock(inp->inp_socket, 1, 0);
1576 continue;
1577 }
1578 tp = intotcpcb(inp);
1579
1580 if (do_tcpdrain)
1581 tcp_freeq(tp);
1582
1583 so_drain_extended_bk_idle(inp->inp_socket);
1584
1585 tcp_unlock(inp->inp_socket, 1, 0);
1586 }
1587 }
1588 lck_rw_done(tcbinfo.ipi_lock);
1589
1590}
1591
1592/*
1593 * Notify a tcp user of an asynchronous error;
1594 * store error as soft error, but wake up user
1595 * (for now, won't do anything until can select for soft error).
1596 *
1597 * Do not wake up user since there currently is no mechanism for
1598 * reporting soft errors (yet - a kqueue filter may be added).
1599 */
1600static void
1601tcp_notify(inp, error)
1602 struct inpcb *inp;
1603 int error;
1604{
1605 struct tcpcb *tp;
1606
1607 if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1608 return; /* pcb is gone already */
1609
1610 tp = (struct tcpcb *)inp->inp_ppcb;
1611
1612 /*
1613 * Ignore some errors if we are hooked up.
1614 * If connection hasn't completed, has retransmitted several times,
1615 * and receives a second error, give up now. This is better
1616 * than waiting a long time to establish a connection that
1617 * can never complete.
1618 */
1619 if (tp->t_state == TCPS_ESTABLISHED &&
1620 (error == EHOSTUNREACH || error == ENETUNREACH ||
1621 error == EHOSTDOWN)) {
1622 return;
1623 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1624 tp->t_softerror)
1625 tcp_drop(tp, error);
1626 else
1627 tp->t_softerror = error;
1628#if 0
1629 wakeup((caddr_t) &so->so_timeo);
1630 sorwakeup(so);
1631 sowwakeup(so);
1632#endif
1633}
1634
1635struct bwmeas*
1636tcp_bwmeas_alloc(struct tcpcb *tp)
1637{
1638 struct bwmeas *elm;
1639 elm = zalloc(tcp_bwmeas_zone);
1640 if (elm == NULL)
1641 return(elm);
1642
1643 bzero(elm, bwmeas_elm_size);
1644 elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
1645 elm->bw_maxsizepkts = TCP_BWMEAS_BURST_MAXSIZE;
1646 elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
1647 elm->bw_maxsize = elm->bw_maxsizepkts * tp->t_maxseg;
1648 return(elm);
1649}
1650
1651void
1652tcp_bwmeas_free(struct tcpcb* tp)
1653{
1654 zfree(tcp_bwmeas_zone, tp->t_bwmeas);
1655 tp->t_bwmeas = NULL;
1656 tp->t_flagsext &= ~(TF_MEASURESNDBW);
1657}
1658
1659/*
1660 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1661 * The otcpcb data structure is passed to user space and must not change.
1662 */
1663static void
1664tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1665{
1666 otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1667 otp->t_dupacks = tp->t_dupacks;
1668 otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1669 otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1670 otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1671 otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1672 otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))VM_KERNEL_ADDRPERM(tp->t_inpcb);
1673 otp->t_state = tp->t_state;
1674 otp->t_flags = tp->t_flags;
1675 otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1676 otp->snd_una = tp->snd_una;
1677 otp->snd_max = tp->snd_max;
1678 otp->snd_nxt = tp->snd_nxt;
1679 otp->snd_up = tp->snd_up;
1680 otp->snd_wl1 = tp->snd_wl1;
1681 otp->snd_wl2 = tp->snd_wl2;
1682 otp->iss = tp->iss;
1683 otp->irs = tp->irs;
1684 otp->rcv_nxt = tp->rcv_nxt;
1685 otp->rcv_adv = tp->rcv_adv;
1686 otp->rcv_wnd = tp->rcv_wnd;
1687 otp->rcv_up = tp->rcv_up;
1688 otp->snd_wnd = tp->snd_wnd;
1689 otp->snd_cwnd = tp->snd_cwnd;
1690 otp->snd_ssthresh = tp->snd_ssthresh;
1691 otp->t_maxopd = tp->t_maxopd;
1692 otp->t_rcvtime = tp->t_rcvtime;
1693 otp->t_starttime = tp->t_starttime;
1694 otp->t_rtttime = tp->t_rtttime;
1695 otp->t_rtseq = tp->t_rtseq;
1696 otp->t_rxtcur = tp->t_rxtcur;
1697 otp->t_maxseg = tp->t_maxseg;
1698 otp->t_srtt = tp->t_srtt;
1699 otp->t_rttvar = tp->t_rttvar;
1700 otp->t_rxtshift = tp->t_rxtshift;
1701 otp->t_rttmin = tp->t_rttmin;
1702 otp->t_rttupdated = tp->t_rttupdated;
1703 otp->max_sndwnd = tp->max_sndwnd;
1704 otp->t_softerror = tp->t_softerror;
1705 otp->t_oobflags = tp->t_oobflags;
1706 otp->t_iobc = tp->t_iobc;
1707 otp->snd_scale = tp->snd_scale;
1708 otp->rcv_scale = tp->rcv_scale;
1709 otp->request_r_scale = tp->request_r_scale;
1710 otp->requested_s_scale = tp->requested_s_scale;
1711 otp->ts_recent = tp->ts_recent;
1712 otp->ts_recent_age = tp->ts_recent_age;
1713 otp->last_ack_sent = tp->last_ack_sent;
1714 otp->cc_send = 0;
1715 otp->cc_recv = 0;
1716 otp->snd_recover = tp->snd_recover;
1717 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1718 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1719 otp->t_badrxtwin = 0;
1720}
1721
1722static int
1723tcp_pcblist SYSCTL_HANDLER_ARGS
1724{
1725#pragma unused(oidp, arg1, arg2)
1726 int error, i = 0, n;
1727 struct inpcb *inp, **inp_list;
1728 struct tcpcb *tp;
1729 inp_gen_t gencnt;
1730 struct xinpgen xig;
1731
1732 /*
1733 * The process of preparing the TCB list is too time-consuming and
1734 * resource-intensive to repeat twice on every request.
1735 */
1736 lck_rw_lock_shared(tcbinfo.ipi_lock);
1737 if (req->oldptr == USER_ADDR_NULL) {
1738 n = tcbinfo.ipi_count;
1739 req->oldidx = 2 * (sizeof xig)
1740 + (n + n/8) * sizeof(struct xtcpcb);
1741 lck_rw_done(tcbinfo.ipi_lock);
1742 return 0;
1743 }
1744
1745 if (req->newptr != USER_ADDR_NULL) {
1746 lck_rw_done(tcbinfo.ipi_lock);
1747 return EPERM;
1748 }
1749
1750 /*
1751 * OK, now we're committed to doing something.
1752 */
1753 gencnt = tcbinfo.ipi_gencnt;
1754 n = tcbinfo.ipi_count;
1755
1756 bzero(&xig, sizeof(xig));
1757 xig.xig_len = sizeof xig;
1758 xig.xig_count = n;
1759 xig.xig_gen = gencnt;
1760 xig.xig_sogen = so_gencnt;
1761 error = SYSCTL_OUT(req, &xig, sizeof xig);
1762 if (error) {
1763 lck_rw_done(tcbinfo.ipi_lock);
1764 return error;
1765 }
1766 /*
1767 * We are done if there is no pcb
1768 */
1769 if (n == 0) {
1770 lck_rw_done(tcbinfo.ipi_lock);
1771 return 0;
1772 }
1773
1774 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1775 if (inp_list == 0) {
1776 lck_rw_done(tcbinfo.ipi_lock);
1777 return ENOMEM;
1778 }
1779
1780 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1781 if (inp->inp_gencnt <= gencnt &&
1782 inp->inp_state != INPCB_STATE_DEAD)
1783 inp_list[i++] = inp;
1784 if (i >= n) break;
1785 }
1786
1787 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1788 inp = tp->t_inpcb;
1789 if (inp->inp_gencnt <= gencnt &&
1790 inp->inp_state != INPCB_STATE_DEAD)
1791 inp_list[i++] = inp;
1792 if (i >= n) break;
1793 }
1794
1795 n = i;
1796
1797 error = 0;
1798 for (i = 0; i < n; i++) {
1799 inp = inp_list[i];
1800 if (inp->inp_gencnt <= gencnt &&
1801 inp->inp_state != INPCB_STATE_DEAD) {
1802 struct xtcpcb xt;
1803 caddr_t inp_ppcb;
1804
1805 bzero(&xt, sizeof(xt));
1806 xt.xt_len = sizeof xt;
1807 /* XXX should avoid extra copy */
1808 inpcb_to_compat(inp, &xt.xt_inp);
1809 inp_ppcb = inp->inp_ppcb;
1810 if (inp_ppcb != NULL) {
1811 tcpcb_to_otcpcb(
1812 (struct tcpcb *)(void *)inp_ppcb,
1813 &xt.xt_tp);
1814 } else {
1815 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1816 }
1817 if (inp->inp_socket)
1818 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1819 error = SYSCTL_OUT(req, &xt, sizeof xt);
1820 }
1821 }
1822 if (!error) {
1823 /*
1824 * Give the user an updated idea of our state.
1825 * If the generation differs from what we told
1826 * her before, she knows that something happened
1827 * while we were processing this request, and it
1828 * might be necessary to retry.
1829 */
1830 bzero(&xig, sizeof(xig));
1831 xig.xig_len = sizeof xig;
1832 xig.xig_gen = tcbinfo.ipi_gencnt;
1833 xig.xig_sogen = so_gencnt;
1834 xig.xig_count = tcbinfo.ipi_count;
1835 error = SYSCTL_OUT(req, &xig, sizeof xig);
1836 }
1837 FREE(inp_list, M_TEMP);
1838 lck_rw_done(tcbinfo.ipi_lock);
1839 return error;
1840}
1841
1842SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1843 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1844 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1845
1846
1847static void
1848tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1849{
1850 otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1851 otp->t_dupacks = tp->t_dupacks;
1852 otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1853 otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1854 otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1855 otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1856 otp->t_state = tp->t_state;
1857 otp->t_flags = tp->t_flags;
1858 otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1859 otp->snd_una = tp->snd_una;
1860 otp->snd_max = tp->snd_max;
1861 otp->snd_nxt = tp->snd_nxt;
1862 otp->snd_up = tp->snd_up;
1863 otp->snd_wl1 = tp->snd_wl1;
1864 otp->snd_wl2 = tp->snd_wl2;
1865 otp->iss = tp->iss;
1866 otp->irs = tp->irs;
1867 otp->rcv_nxt = tp->rcv_nxt;
1868 otp->rcv_adv = tp->rcv_adv;
1869 otp->rcv_wnd = tp->rcv_wnd;
1870 otp->rcv_up = tp->rcv_up;
1871 otp->snd_wnd = tp->snd_wnd;
1872 otp->snd_cwnd = tp->snd_cwnd;
1873 otp->snd_ssthresh = tp->snd_ssthresh;
1874 otp->t_maxopd = tp->t_maxopd;
1875 otp->t_rcvtime = tp->t_rcvtime;
1876 otp->t_starttime = tp->t_starttime;
1877 otp->t_rtttime = tp->t_rtttime;
1878 otp->t_rtseq = tp->t_rtseq;
1879 otp->t_rxtcur = tp->t_rxtcur;
1880 otp->t_maxseg = tp->t_maxseg;
1881 otp->t_srtt = tp->t_srtt;
1882 otp->t_rttvar = tp->t_rttvar;
1883 otp->t_rxtshift = tp->t_rxtshift;
1884 otp->t_rttmin = tp->t_rttmin;
1885 otp->t_rttupdated = tp->t_rttupdated;
1886 otp->max_sndwnd = tp->max_sndwnd;
1887 otp->t_softerror = tp->t_softerror;
1888 otp->t_oobflags = tp->t_oobflags;
1889 otp->t_iobc = tp->t_iobc;
1890 otp->snd_scale = tp->snd_scale;
1891 otp->rcv_scale = tp->rcv_scale;
1892 otp->request_r_scale = tp->request_r_scale;
1893 otp->requested_s_scale = tp->requested_s_scale;
1894 otp->ts_recent = tp->ts_recent;
1895 otp->ts_recent_age = tp->ts_recent_age;
1896 otp->last_ack_sent = tp->last_ack_sent;
1897 otp->cc_send = 0;
1898 otp->cc_recv = 0;
1899 otp->snd_recover = tp->snd_recover;
1900 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1901 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1902 otp->t_badrxtwin = 0;
1903}
1904
1905
1906static int
1907tcp_pcblist64 SYSCTL_HANDLER_ARGS
1908{
1909#pragma unused(oidp, arg1, arg2)
1910 int error, i = 0, n;
1911 struct inpcb *inp, **inp_list;
1912 struct tcpcb *tp;
1913 inp_gen_t gencnt;
1914 struct xinpgen xig;
1915
1916 /*
1917 * The process of preparing the TCB list is too time-consuming and
1918 * resource-intensive to repeat twice on every request.
1919 */
1920 lck_rw_lock_shared(tcbinfo.ipi_lock);
1921 if (req->oldptr == USER_ADDR_NULL) {
1922 n = tcbinfo.ipi_count;
1923 req->oldidx = 2 * (sizeof xig)
1924 + (n + n/8) * sizeof(struct xtcpcb64);
1925 lck_rw_done(tcbinfo.ipi_lock);
1926 return 0;
1927 }
1928
1929 if (req->newptr != USER_ADDR_NULL) {
1930 lck_rw_done(tcbinfo.ipi_lock);
1931 return EPERM;
1932 }
1933
1934 /*
1935 * OK, now we're committed to doing something.
1936 */
1937 gencnt = tcbinfo.ipi_gencnt;
1938 n = tcbinfo.ipi_count;
1939
1940 bzero(&xig, sizeof(xig));
1941 xig.xig_len = sizeof xig;
1942 xig.xig_count = n;
1943 xig.xig_gen = gencnt;
1944 xig.xig_sogen = so_gencnt;
1945 error = SYSCTL_OUT(req, &xig, sizeof xig);
1946 if (error) {
1947 lck_rw_done(tcbinfo.ipi_lock);
1948 return error;
1949 }
1950 /*
1951 * We are done if there is no pcb
1952 */
1953 if (n == 0) {
1954 lck_rw_done(tcbinfo.ipi_lock);
1955 return 0;
1956 }
1957
1958 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1959 if (inp_list == 0) {
1960 lck_rw_done(tcbinfo.ipi_lock);
1961 return ENOMEM;
1962 }
1963
1964 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1965 if (inp->inp_gencnt <= gencnt &&
1966 inp->inp_state != INPCB_STATE_DEAD)
1967 inp_list[i++] = inp;
1968 if (i >= n) break;
1969 }
1970
1971 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1972 inp = tp->t_inpcb;
1973 if (inp->inp_gencnt <= gencnt &&
1974 inp->inp_state != INPCB_STATE_DEAD)
1975 inp_list[i++] = inp;
1976 if (i >= n) break;
1977 }
1978
1979 n = i;
1980
1981 error = 0;
1982 for (i = 0; i < n; i++) {
1983 inp = inp_list[i];
1984 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1985 struct xtcpcb64 xt;
1986
1987 bzero(&xt, sizeof(xt));
1988 xt.xt_len = sizeof xt;
1989 inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1990 xt.xt_inpcb.inp_ppcb = (uint64_t)VM_KERNEL_ADDRPERM(inp->inp_ppcb);
1991 if (inp->inp_ppcb != NULL)
1992 tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1993 if (inp->inp_socket)
1994 sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1995 error = SYSCTL_OUT(req, &xt, sizeof xt);
1996 }
1997 }
1998 if (!error) {
1999 /*
2000 * Give the user an updated idea of our state.
2001 * If the generation differs from what we told
2002 * her before, she knows that something happened
2003 * while we were processing this request, and it
2004 * might be necessary to retry.
2005 */
2006 bzero(&xig, sizeof(xig));
2007 xig.xig_len = sizeof xig;
2008 xig.xig_gen = tcbinfo.ipi_gencnt;
2009 xig.xig_sogen = so_gencnt;
2010 xig.xig_count = tcbinfo.ipi_count;
2011 error = SYSCTL_OUT(req, &xig, sizeof xig);
2012 }
2013 FREE(inp_list, M_TEMP);
2014 lck_rw_done(tcbinfo.ipi_lock);
2015 return error;
2016}
2017
2018SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64,
2019 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
2020 tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
2021
2022
2023static int
2024tcp_pcblist_n SYSCTL_HANDLER_ARGS
2025{
2026#pragma unused(oidp, arg1, arg2)
2027 int error = 0;
2028
2029 error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
2030
2031 return error;
2032}
2033
2034
2035SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n,
2036 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
2037 tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
2038
2039
2040__private_extern__ void
2041tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags,
2042 bitstr_t *bitfield)
2043{
2044 inpcb_get_ports_used(ifindex, protocol, flags,
2045 bitfield, &tcbinfo);
2046}
2047
2048__private_extern__ uint32_t
2049tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
2050{
2051 return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
2052}
2053
2054__private_extern__ uint32_t
2055tcp_find_anypcb_byaddr(struct ifaddr *ifa)
2056{
2057 return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
2058}
2059
2060void
2061tcp_ctlinput(cmd, sa, vip)
2062 int cmd;
2063 struct sockaddr *sa;
2064 void *vip;
2065{
2066 tcp_seq icmp_tcp_seq;
2067 struct ip *ip = vip;
2068 struct in_addr faddr;
2069 struct inpcb *inp;
2070 struct tcpcb *tp;
2071
2072 void (*notify)(struct inpcb *, int) = tcp_notify;
2073
2074 faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
2075 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
2076 return;
2077
2078 if ((unsigned)cmd >= PRC_NCMDS)
2079 return;
2080
2081 if (cmd == PRC_MSGSIZE)
2082 notify = tcp_mtudisc;
2083 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2084 cmd == PRC_UNREACH_PORT) && ip)
2085 notify = tcp_drop_syn_sent;
2086 else if (PRC_IS_REDIRECT(cmd)) {
2087 ip = 0;
2088 notify = in_rtchange;
2089 } else if (cmd == PRC_HOSTDEAD)
2090 ip = 0;
2091 /* Source quench is deprecated */
2092 else if (cmd == PRC_QUENCH)
2093 return;
2094 else if (inetctlerrmap[cmd] == 0)
2095 return;
2096 if (ip) {
2097 struct tcphdr th;
2098 struct icmp *icp;
2099
2100 icp = (struct icmp *)(void *)
2101 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
2102 bcopy(((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)),
2103 &th, sizeof (th));
2104 inp = in_pcblookup_hash(&tcbinfo, faddr, th.th_dport,
2105 ip->ip_src, th.th_sport, 0, NULL);
2106 if (inp != NULL && inp->inp_socket != NULL) {
2107 tcp_lock(inp->inp_socket, 1, 0);
2108 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
2109 tcp_unlock(inp->inp_socket, 1, 0);
2110 return;
2111 }
2112 icmp_tcp_seq = htonl(th.th_seq);
2113 tp = intotcpcb(inp);
2114 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
2115 SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
2116 if (cmd == PRC_MSGSIZE) {
2117
2118 /*
2119 * MTU discovery:
2120 * If we got a needfrag and there is a host route to the
2121 * original destination, and the MTU is not locked, then
2122 * set the MTU in the route to the suggested new value
2123 * (if given) and then notify as usual. The ULPs will
2124 * notice that the MTU has changed and adapt accordingly.
2125 * If no new MTU was suggested, then we guess a new one
2126 * less than the current value. If the new MTU is
2127 * unreasonably small (defined by sysctl tcp_minmss), then
2128 * we reset the MTU to the interface value and enable the
2129 * lock bit, indicating that we are no longer doing MTU
2130 * discovery.
2131 */
2132 struct rtentry *rt;
2133 int mtu;
2134 struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
2135 0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
2136 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
2137
2138 rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
2139 RTF_CLONING | RTF_PRCLONING);
2140 if (rt != NULL) {
2141 RT_LOCK(rt);
2142 if ((rt->rt_flags & RTF_HOST) &&
2143 !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
2144 mtu = ntohs(icp->icmp_nextmtu);
2145 if (!mtu)
2146 mtu = ip_next_mtu(rt->rt_rmx.
2147 rmx_mtu, 1);
2148#if DEBUG_MTUDISC
2149 printf("MTU for %s reduced to %d\n",
2150 inet_ntop(AF_INET,
2151 &icmpsrc.sin_addr, ipv4str,
2152 sizeof (ipv4str)), mtu);
2153#endif
2154 if (mtu < max(296, (tcp_minmss +
2155 sizeof (struct tcpiphdr)))) {
2156 /* rt->rt_rmx.rmx_mtu =
2157 rt->rt_ifp->if_mtu; */
2158 rt->rt_rmx.rmx_locks |= RTV_MTU;
2159 } else if (rt->rt_rmx.rmx_mtu > mtu) {
2160 rt->rt_rmx.rmx_mtu = mtu;
2161 }
2162 }
2163 RT_UNLOCK(rt);
2164 rtfree(rt);
2165 }
2166 }
2167
2168 (*notify)(inp, inetctlerrmap[cmd]);
2169 }
2170 tcp_unlock(inp->inp_socket, 1, 0);
2171 }
2172 } else
2173 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
2174}
2175
2176#if INET6
2177void
2178tcp6_ctlinput(cmd, sa, d)
2179 int cmd;
2180 struct sockaddr *sa;
2181 void *d;
2182{
2183 struct tcphdr th;
2184 void (*notify)(struct inpcb *, int) = tcp_notify;
2185 struct ip6_hdr *ip6;
2186 struct mbuf *m;
2187 struct ip6ctlparam *ip6cp = NULL;
2188 const struct sockaddr_in6 *sa6_src = NULL;
2189 int off;
2190 struct tcp_portonly {
2191 u_int16_t th_sport;
2192 u_int16_t th_dport;
2193 } *thp;
2194
2195 if (sa->sa_family != AF_INET6 ||
2196 sa->sa_len != sizeof(struct sockaddr_in6))
2197 return;
2198
2199 if ((unsigned)cmd >= PRC_NCMDS)
2200 return;
2201
2202 if (cmd == PRC_MSGSIZE)
2203 notify = tcp_mtudisc;
2204 else if (!PRC_IS_REDIRECT(cmd) && (inet6ctlerrmap[cmd] == 0))
2205 return;
2206 /* Source quench is deprecated */
2207 else if (cmd == PRC_QUENCH)
2208 return;
2209
2210 /* if the parameter is from icmp6, decode it. */
2211 if (d != NULL) {
2212 ip6cp = (struct ip6ctlparam *)d;
2213 m = ip6cp->ip6c_m;
2214 ip6 = ip6cp->ip6c_ip6;
2215 off = ip6cp->ip6c_off;
2216 sa6_src = ip6cp->ip6c_src;
2217 } else {
2218 m = NULL;
2219 ip6 = NULL;
2220 off = 0; /* fool gcc */
2221 sa6_src = &sa6_any;
2222 }
2223
2224 if (ip6) {
2225 /*
2226 * XXX: We assume that when IPV6 is non NULL,
2227 * M and OFF are valid.
2228 */
2229
2230 /* check if we can safely examine src and dst ports */
2231 if (m->m_pkthdr.len < off + sizeof(*thp))
2232 return;
2233
2234 bzero(&th, sizeof(th));
2235 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
2236
2237 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
2238 (struct sockaddr *)ip6cp->ip6c_src,
2239 th.th_sport, cmd, NULL, notify);
2240 } else {
2241 in6_pcbnotify(&tcbinfo, sa, 0,
2242 (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
2243 }
2244}
2245#endif /* INET6 */
2246
2247
2248/*
2249 * Following is where TCP initial sequence number generation occurs.
2250 *
2251 * There are two places where we must use initial sequence numbers:
2252 * 1. In SYN-ACK packets.
2253 * 2. In SYN packets.
2254 *
2255 * The ISNs in SYN-ACK packets have no monotonicity requirement,
2256 * and should be as unpredictable as possible to avoid the possibility
2257 * of spoofing and/or connection hijacking. To satisfy this
2258 * requirement, SYN-ACK ISNs are generated via the arc4random()
2259 * function. If exact RFC 1948 compliance is requested via sysctl,
2260 * these ISNs will be generated just like those in SYN packets.
2261 *
2262 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2263 * depends on this property. In addition, these ISNs should be
2264 * unguessable so as to prevent connection hijacking. To satisfy
2265 * the requirements of this situation, the algorithm outlined in
2266 * RFC 1948 is used to generate sequence numbers.
2267 *
2268 * For more information on the theory of operation, please see
2269 * RFC 1948.
2270 *
2271 * Implementation details:
2272 *
2273 * Time is based off the system timer, and is corrected so that it
2274 * increases by one megabyte per second. This allows for proper
2275 * recycling on high speed LANs while still leaving over an hour
2276 * before rollover.
2277 *
2278 * Two sysctls control the generation of ISNs:
2279 *
2280 * net.inet.tcp.isn_reseed_interval controls the number of seconds
2281 * between seeding of isn_secret. This is normally set to zero,
2282 * as reseeding should not be necessary.
2283 *
2284 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
2285 * strictly. When strict compliance is requested, reseeding is
2286 * disabled and SYN-ACKs will be generated in the same manner as
2287 * SYNs. Strict mode is disabled by default.
2288 *
2289 */
2290
2291#define ISN_BYTES_PER_SECOND 1048576
2292
2293tcp_seq
2294tcp_new_isn(tp)
2295 struct tcpcb *tp;
2296{
2297 u_int32_t md5_buffer[4];
2298 tcp_seq new_isn;
2299 struct timeval timenow;
2300 u_char isn_secret[32];
2301 int isn_last_reseed = 0;
2302 MD5_CTX isn_ctx;
2303
2304 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
2305 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
2306 && tcp_strict_rfc1948 == 0)
2307#ifdef __APPLE__
2308 return RandomULong();
2309#else
2310 return arc4random();
2311#endif
2312 getmicrotime(&timenow);
2313
2314 /* Seed if this is the first use, reseed if requested. */
2315 if ((isn_last_reseed == 0) ||
2316 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
2317 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
2318 < (u_int)timenow.tv_sec))) {
2319#ifdef __APPLE__
2320 read_random(&isn_secret, sizeof(isn_secret));
2321#else
2322 read_random_unlimited(&isn_secret, sizeof(isn_secret));
2323#endif
2324 isn_last_reseed = timenow.tv_sec;
2325 }
2326
2327 /* Compute the md5 hash and return the ISN. */
2328 MD5Init(&isn_ctx);
2329 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2330 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2331#if INET6
2332 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2333 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2334 sizeof(struct in6_addr));
2335 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2336 sizeof(struct in6_addr));
2337 } else
2338#endif
2339 {
2340 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2341 sizeof(struct in_addr));
2342 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2343 sizeof(struct in_addr));
2344 }
2345 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
2346 MD5Final((u_char *) &md5_buffer, &isn_ctx);
2347 new_isn = (tcp_seq) md5_buffer[0];
2348 new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
2349 return new_isn;
2350}
2351
2352
2353/*
2354 * When a specific ICMP unreachable message is received and the
2355 * connection state is SYN-SENT, drop the connection. This behavior
2356 * is controlled by the icmp_may_rst sysctl.
2357 */
2358void
2359tcp_drop_syn_sent(inp, errno)
2360 struct inpcb *inp;
2361 int errno;
2362{
2363 struct tcpcb *tp = intotcpcb(inp);
2364
2365 if (tp && tp->t_state == TCPS_SYN_SENT)
2366 tcp_drop(tp, errno);
2367}
2368
2369/*
2370 * When `need fragmentation' ICMP is received, update our idea of the MSS
2371 * based on the new value in the route. Also nudge TCP to send something,
2372 * since we know the packet we just sent was dropped.
2373 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2374 */
2375void
2376tcp_mtudisc(
2377 struct inpcb *inp,
2378 __unused int errno
2379)
2380{
2381 struct tcpcb *tp = intotcpcb(inp);
2382 struct rtentry *rt;
2383 struct rmxp_tao *taop;
2384 struct socket *so = inp->inp_socket;
2385 int offered;
2386 int mss;
2387 u_int32_t mtu;
2388#if INET6
2389 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
2390#endif /* INET6 */
2391
2392 if (tp) {
2393#if INET6
2394 if (isipv6)
2395 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2396 else
2397#endif /* INET6 */
2398 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2399 if (!rt || !rt->rt_rmx.rmx_mtu) {
2400 tp->t_maxopd = tp->t_maxseg =
2401#if INET6
2402 isipv6 ? tcp_v6mssdflt :
2403#endif /* INET6 */
2404 tcp_mssdflt;
2405
2406 /* Route locked during lookup above */
2407 if (rt != NULL)
2408 RT_UNLOCK(rt);
2409 return;
2410 }
2411 taop = rmx_taop(rt->rt_rmx);
2412 offered = taop->tao_mssopt;
2413 mtu = rt->rt_rmx.rmx_mtu;
2414
2415 /* Route locked during lookup above */
2416 RT_UNLOCK(rt);
2417
2418#if NECP
2419 // Adjust MTU if necessary.
2420 mtu = necp_socket_get_effective_mtu(inp, mtu);
2421#endif /* NECP */
2422
2423 mss = mtu -
2424#if INET6
2425 (isipv6 ?
2426 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2427#endif /* INET6 */
2428 sizeof(struct tcpiphdr)
2429#if INET6
2430 )
2431#endif /* INET6 */
2432 ;
2433
2434 if (offered)
2435 mss = min(mss, offered);
2436 /*
2437 * XXX - The above conditional probably violates the TCP
2438 * spec. The problem is that, since we don't know the
2439 * other end's MSS, we are supposed to use a conservative
2440 * default. But, if we do that, then MTU discovery will
2441 * never actually take place, because the conservative
2442 * default is much less than the MTUs typically seen
2443 * on the Internet today. For the moment, we'll sweep
2444 * this under the carpet.
2445 *
2446 * The conservative default might not actually be a problem
2447 * if the only case this occurs is when sending an initial
2448 * SYN with options and data to a host we've never talked
2449 * to before. Then, they will reply with an MSS value which
2450 * will get recorded and the new parameters should get
2451 * recomputed. For Further Study.
2452 */
2453 if (tp->t_maxopd <= mss)
2454 return;
2455 tp->t_maxopd = mss;
2456
2457 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2458 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2459 mss -= TCPOLEN_TSTAMP_APPA;
2460
2461#if MPTCP
2462 mss -= mptcp_adj_mss(tp, TRUE);
2463#endif
2464 if (so->so_snd.sb_hiwat < mss)
2465 mss = so->so_snd.sb_hiwat;
2466
2467 tp->t_maxseg = mss;
2468
2469 /*
2470 * Reset the slow-start flight size as it may depends on the new MSS
2471 */
2472 if (CC_ALGO(tp)->cwnd_init != NULL)
2473 CC_ALGO(tp)->cwnd_init(tp);
2474 tcpstat.tcps_mturesent++;
2475 tp->t_rtttime = 0;
2476 tp->snd_nxt = tp->snd_una;
2477 tcp_output(tp);
2478 }
2479}
2480
2481/*
2482 * Look-up the routing entry to the peer of this inpcb. If no route
2483 * is found and it cannot be allocated the return NULL. This routine
2484 * is called by TCP routines that access the rmx structure and by tcp_mss
2485 * to get the interface MTU. If a route is found, this routine will
2486 * hold the rtentry lock; the caller is responsible for unlocking.
2487 */
2488struct rtentry *
2489tcp_rtlookup(inp, input_ifscope)
2490 struct inpcb *inp;
2491 unsigned int input_ifscope;
2492{
2493 struct route *ro;
2494 struct rtentry *rt;
2495 struct tcpcb *tp;
2496
2497 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2498
2499 ro = &inp->inp_route;
2500 if ((rt = ro->ro_rt) != NULL)
2501 RT_LOCK(rt);
2502
2503 if (ROUTE_UNUSABLE(ro)) {
2504 if (rt != NULL) {
2505 RT_UNLOCK(rt);
2506 rt = NULL;
2507 }
2508 ROUTE_RELEASE(ro);
2509 /* No route yet, so try to acquire one */
2510 if (inp->inp_faddr.s_addr != INADDR_ANY) {
2511 unsigned int ifscope;
2512
2513 ro->ro_dst.sa_family = AF_INET;
2514 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2515 ((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr =
2516 inp->inp_faddr;
2517
2518 /*
2519 * If the socket was bound to an interface, then
2520 * the bound-to-interface takes precedence over
2521 * the inbound interface passed in by the caller
2522 * (if we get here as part of the output path then
2523 * input_ifscope is IFSCOPE_NONE).
2524 */
2525 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2526 inp->inp_boundifp->if_index : input_ifscope;
2527
2528 rtalloc_scoped(ro, ifscope);
2529 if ((rt = ro->ro_rt) != NULL)
2530 RT_LOCK(rt);
2531 }
2532 }
2533 if (rt != NULL)
2534 RT_LOCK_ASSERT_HELD(rt);
2535
2536 /*
2537 * Update MTU discovery determination. Don't do it if:
2538 * 1) it is disabled via the sysctl
2539 * 2) the route isn't up
2540 * 3) the MTU is locked (if it is, then discovery has been
2541 * disabled)
2542 */
2543
2544 tp = intotcpcb(inp);
2545
2546 if (!path_mtu_discovery || ((rt != NULL) &&
2547 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2548 tp->t_flags &= ~TF_PMTUD;
2549 else
2550 tp->t_flags |= TF_PMTUD;
2551
2552#if CONFIG_IFEF_NOWINDOWSCALE
2553 if (tcp_obey_ifef_nowindowscale &&
2554 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2555 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2556 /* Window scaling is enabled on this interface */
2557 tp->t_flags &= ~TF_REQ_SCALE;
2558 }
2559#endif
2560
2561 if (rt != NULL && rt->rt_ifp != NULL) {
2562 somultipages(inp->inp_socket,
2563 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2564 tcp_set_tso(tp, rt->rt_ifp);
2565 soif2kcl(inp->inp_socket,
2566 (rt->rt_ifp->if_eflags & IFEF_2KCL));
2567 tcp_set_ecn(tp, rt->rt_ifp);
2568 }
2569
2570 /* Note if the peer is local */
2571 if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2572 (rt->rt_gateway->sa_family == AF_LINK ||
2573 rt->rt_ifp->if_flags & IFF_LOOPBACK ||
2574 in_localaddr(inp->inp_faddr))) {
2575 tp->t_flags |= TF_LOCAL;
2576 }
2577
2578 /*
2579 * Caller needs to call RT_UNLOCK(rt).
2580 */
2581 return rt;
2582}
2583
2584#if INET6
2585struct rtentry *
2586tcp_rtlookup6(inp, input_ifscope)
2587 struct inpcb *inp;
2588 unsigned int input_ifscope;
2589{
2590 struct route_in6 *ro6;
2591 struct rtentry *rt;
2592 struct tcpcb *tp;
2593
2594 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2595
2596 ro6 = &inp->in6p_route;
2597 if ((rt = ro6->ro_rt) != NULL)
2598 RT_LOCK(rt);
2599
2600 if (ROUTE_UNUSABLE(ro6)) {
2601 if (rt != NULL) {
2602 RT_UNLOCK(rt);
2603 rt = NULL;
2604 }
2605 ROUTE_RELEASE(ro6);
2606 /* No route yet, so try to acquire one */
2607 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2608 struct sockaddr_in6 *dst6;
2609 unsigned int ifscope;
2610
2611 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2612 dst6->sin6_family = AF_INET6;
2613 dst6->sin6_len = sizeof(*dst6);
2614 dst6->sin6_addr = inp->in6p_faddr;
2615
2616 /*
2617 * If the socket was bound to an interface, then
2618 * the bound-to-interface takes precedence over
2619 * the inbound interface passed in by the caller
2620 * (if we get here as part of the output path then
2621 * input_ifscope is IFSCOPE_NONE).
2622 */
2623 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2624 inp->inp_boundifp->if_index : input_ifscope;
2625
2626 rtalloc_scoped((struct route *)ro6, ifscope);
2627 if ((rt = ro6->ro_rt) != NULL)
2628 RT_LOCK(rt);
2629 }
2630 }
2631 if (rt != NULL)
2632 RT_LOCK_ASSERT_HELD(rt);
2633
2634 /*
2635 * Update path MTU Discovery determination
2636 * while looking up the route:
2637 * 1) we have a valid route to the destination
2638 * 2) the MTU is not locked (if it is, then discovery has been
2639 * disabled)
2640 */
2641
2642
2643 tp = intotcpcb(inp);
2644
2645 /*
2646 * Update MTU discovery determination. Don't do it if:
2647 * 1) it is disabled via the sysctl
2648 * 2) the route isn't up
2649 * 3) the MTU is locked (if it is, then discovery has been
2650 * disabled)
2651 */
2652
2653 if (!path_mtu_discovery || ((rt != NULL) &&
2654 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2655 tp->t_flags &= ~TF_PMTUD;
2656 else
2657 tp->t_flags |= TF_PMTUD;
2658
2659#if CONFIG_IFEF_NOWINDOWSCALE
2660 if (tcp_obey_ifef_nowindowscale &&
2661 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2662 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2663 /* Window scaling is not enabled on this interface */
2664 tp->t_flags &= ~TF_REQ_SCALE;
2665 }
2666#endif
2667
2668 if (rt != NULL && rt->rt_ifp != NULL) {
2669 somultipages(inp->inp_socket,
2670 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2671 tcp_set_tso(tp, rt->rt_ifp);
2672 soif2kcl(inp->inp_socket,
2673 (rt->rt_ifp->if_eflags & IFEF_2KCL));
2674 tcp_set_ecn(tp, rt->rt_ifp);
2675 }
2676
2677 /* Note if the peer is local */
2678 if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2679 (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
2680 IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
2681 rt->rt_gateway->sa_family == AF_LINK ||
2682 in6_localaddr(&inp->in6p_faddr))) {
2683 tp->t_flags |= TF_LOCAL;
2684 }
2685
2686 /*
2687 * Caller needs to call RT_UNLOCK(rt).
2688 */
2689 return rt;
2690}
2691#endif /* INET6 */
2692
2693#if IPSEC
2694/* compute ESP/AH header size for TCP, including outer IP header. */
2695size_t
2696ipsec_hdrsiz_tcp(tp)
2697 struct tcpcb *tp;
2698{
2699 struct inpcb *inp;
2700 struct mbuf *m;
2701 size_t hdrsiz;
2702 struct ip *ip;
2703#if INET6
2704 struct ip6_hdr *ip6 = NULL;
2705#endif /* INET6 */
2706 struct tcphdr *th;
2707
2708 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2709 return 0;
2710 MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */
2711 if (!m)
2712 return 0;
2713
2714#if INET6
2715 if ((inp->inp_vflag & INP_IPV6) != 0) {
2716 ip6 = mtod(m, struct ip6_hdr *);
2717 th = (struct tcphdr *)(void *)(ip6 + 1);
2718 m->m_pkthdr.len = m->m_len =
2719 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2720 tcp_fillheaders(tp, ip6, th);
2721 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2722 } else
2723#endif /* INET6 */
2724 {
2725 ip = mtod(m, struct ip *);
2726 th = (struct tcphdr *)(ip + 1);
2727 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2728 tcp_fillheaders(tp, ip, th);
2729 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2730 }
2731 m_free(m);
2732 return hdrsiz;
2733}
2734#endif /*IPSEC*/
2735
2736/*
2737 * Return a pointer to the cached information about the remote host.
2738 * The cached information is stored in the protocol specific part of
2739 * the route metrics.
2740 */
2741struct rmxp_tao *
2742tcp_gettaocache(inp)
2743 struct inpcb *inp;
2744{
2745 struct rtentry *rt;
2746 struct rmxp_tao *taop;
2747
2748#if INET6
2749 if ((inp->inp_vflag & INP_IPV6) != 0)
2750 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2751 else
2752#endif /* INET6 */
2753 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2754
2755 /* Make sure this is a host route and is up. */
2756 if (rt == NULL ||
2757 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2758 /* Route locked during lookup above */
2759 if (rt != NULL)
2760 RT_UNLOCK(rt);
2761 return NULL;
2762 }
2763
2764 taop = rmx_taop(rt->rt_rmx);
2765 /* Route locked during lookup above */
2766 RT_UNLOCK(rt);
2767 return (taop);
2768}
2769
2770/*
2771 * Clear all the TAO cache entries, called from tcp_init.
2772 *
2773 * XXX
2774 * This routine is just an empty one, because we assume that the routing
2775 * routing tables are initialized at the same time when TCP, so there is
2776 * nothing in the cache left over.
2777 */
2778static void
2779tcp_cleartaocache()
2780{
2781}
2782
2783int
2784tcp_lock(struct socket *so, int refcount, void *lr)
2785{
2786 void *lr_saved;
2787
2788 if (lr == NULL)
2789 lr_saved = __builtin_return_address(0);
2790 else
2791 lr_saved = lr;
2792
2793 if (so->so_pcb != NULL) {
2794 lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2795 } else {
2796 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2797 so, lr_saved, solockhistory_nr(so));
2798 /* NOTREACHED */
2799 }
2800
2801 if (so->so_usecount < 0) {
2802 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2803 so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2804 /* NOTREACHED */
2805 }
2806 if (refcount)
2807 so->so_usecount++;
2808 so->lock_lr[so->next_lock_lr] = lr_saved;
2809 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2810 return (0);
2811}
2812
2813int
2814tcp_unlock(struct socket *so, int refcount, void *lr)
2815{
2816 void *lr_saved;
2817
2818 if (lr == NULL)
2819 lr_saved = __builtin_return_address(0);
2820 else
2821 lr_saved = lr;
2822
2823#ifdef MORE_TCPLOCK_DEBUG
2824 printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
2825 "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
2826 (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
2827 (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
2828 so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
2829#endif
2830 if (refcount)
2831 so->so_usecount--;
2832
2833 if (so->so_usecount < 0) {
2834 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2835 so, so->so_usecount, solockhistory_nr(so));
2836 /* NOTREACHED */
2837 }
2838 if (so->so_pcb == NULL) {
2839 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2840 so, so->so_usecount, lr_saved, solockhistory_nr(so));
2841 /* NOTREACHED */
2842 } else {
2843 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2844 LCK_MTX_ASSERT_OWNED);
2845 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2846 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2847 lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2848 }
2849 return (0);
2850}
2851
2852lck_mtx_t *
2853tcp_getlock(
2854 struct socket *so,
2855 __unused int locktype)
2856{
2857 struct inpcb *inp = sotoinpcb(so);
2858
2859 if (so->so_pcb) {
2860 if (so->so_usecount < 0)
2861 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2862 so, so->so_usecount, solockhistory_nr(so));
2863 return(&inp->inpcb_mtx);
2864 }
2865 else {
2866 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2867 so, solockhistory_nr(so));
2868 return (so->so_proto->pr_domain->dom_mtx);
2869 }
2870}
2871
2872/*
2873 * Determine if we can grow the recieve socket buffer to avoid sending
2874 * a zero window update to the peer. We allow even socket buffers that
2875 * have fixed size (set by the application) to grow if the resource
2876 * constraints are met. They will also be trimmed after the application
2877 * reads data.
2878 */
2879static void
2880tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb)
2881{
2882 u_int32_t rcvbufinc = tp->t_maxseg << 4;
2883 u_int32_t rcvbuf = sb->sb_hiwat;
2884 struct socket *so = tp->t_inpcb->inp_socket;
2885
2886 /*
2887 * If message delivery is enabled, do not count
2888 * unordered bytes in receive buffer towards hiwat
2889 */
2890 if (so->so_flags & SOF_ENABLE_MSGS)
2891 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2892
2893 if (tcp_do_autorcvbuf == 1 &&
2894 tcp_cansbgrow(sb) &&
2895 (tp->t_flags & TF_SLOWLINK) == 0 &&
2896 (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) == 0 &&
2897 (rcvbuf - sb->sb_cc) < rcvbufinc &&
2898 rcvbuf < tcp_autorcvbuf_max &&
2899 (sb->sb_idealsize > 0 &&
2900 sb->sb_hiwat <= (sb->sb_idealsize + rcvbufinc))) {
2901 sbreserve(sb,
2902 min((sb->sb_hiwat + rcvbufinc), tcp_autorcvbuf_max));
2903 }
2904}
2905
2906int32_t
2907tcp_sbspace(struct tcpcb *tp)
2908{
2909 struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2910 u_int32_t rcvbuf = sb->sb_hiwat;
2911 int32_t space;
2912 struct socket *so = tp->t_inpcb->inp_socket;
2913 int32_t pending = 0;
2914
2915 /*
2916 * If message delivery is enabled, do not count
2917 * unordered bytes in receive buffer towards hiwat mark.
2918 * This value is used to return correct rwnd that does
2919 * not reflect the extra unordered bytes added to the
2920 * receive socket buffer.
2921 */
2922 if (so->so_flags & SOF_ENABLE_MSGS)
2923 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2924
2925 tcp_sbrcv_grow_rwin(tp, sb);
2926
2927 space = ((int32_t) imin((rcvbuf - sb->sb_cc),
2928 (sb->sb_mbmax - sb->sb_mbcnt)));
2929 if (space < 0)
2930 space = 0;
2931
2932#if CONTENT_FILTER
2933 /* Compensate for data being processed by content filters */
2934 pending = cfil_sock_data_space(sb);
2935#endif /* CONTENT_FILTER */
2936 if (pending > space)
2937 space = 0;
2938 else
2939 space -= pending;
2940
2941 /* Avoid increasing window size if the current window
2942 * is already very low, we could be in "persist" mode and
2943 * we could break some apps (see rdar://5409343)
2944 */
2945
2946 if (space < tp->t_maxseg)
2947 return space;
2948
2949 /* Clip window size for slower link */
2950
2951 if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2952 return imin(space, slowlink_wsize);
2953
2954 return space;
2955}
2956/*
2957 * Checks TCP Segment Offloading capability for a given connection
2958 * and interface pair.
2959 */
2960void
2961tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
2962{
2963#if INET6
2964 struct inpcb *inp;
2965 int isipv6;
2966#endif /* INET6 */
2967#if MPTCP
2968 /*
2969 * We can't use TSO if this tcpcb belongs to an MPTCP session.
2970 */
2971 if (tp->t_mpflags & TMPF_MPTCP_TRUE) {
2972 tp->t_flags &= ~TF_TSO;
2973 return;
2974 }
2975#endif
2976#if INET6
2977 inp = tp->t_inpcb;
2978 isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2979
2980 if (isipv6) {
2981 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) {
2982 tp->t_flags |= TF_TSO;
2983 if (ifp->if_tso_v6_mtu != 0)
2984 tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2985 else
2986 tp->tso_max_segment_size = TCP_MAXWIN;
2987 } else
2988 tp->t_flags &= ~TF_TSO;
2989
2990 } else
2991#endif /* INET6 */
2992
2993 {
2994 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) {
2995 tp->t_flags |= TF_TSO;
2996 if (ifp->if_tso_v4_mtu != 0)
2997 tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2998 else
2999 tp->tso_max_segment_size = TCP_MAXWIN;
3000 } else
3001 tp->t_flags &= ~TF_TSO;
3002 }
3003}
3004
3005#define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
3006
3007/* Function to calculate the tcp clock. The tcp clock will get updated
3008 * at the boundaries of the tcp layer. This is done at 3 places:
3009 * 1. Right before processing an input tcp packet
3010 * 2. Whenever a connection wants to access the network using tcp_usrreqs
3011 * 3. When a tcp timer fires or before tcp slow timeout
3012 *
3013 */
3014
3015void
3016calculate_tcp_clock()
3017{
3018 struct timeval tv = tcp_uptime;
3019 struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
3020 struct timeval now, hold_now;
3021 uint32_t incr = 0;
3022
3023 microuptime(&now);
3024
3025 /*
3026 * Update coarse-grained networking timestamp (in sec.); the idea
3027 * is to update the counter returnable via net_uptime() when
3028 * we read time.
3029 */
3030 net_update_uptime_secs(now.tv_sec);
3031
3032 timevaladd(&tv, &interval);
3033 if (timevalcmp(&now, &tv, >)) {
3034 /* time to update the clock */
3035 lck_spin_lock(tcp_uptime_lock);
3036 if (timevalcmp(&tcp_uptime, &now, >=)) {
3037 /* clock got updated while waiting for the lock */
3038 lck_spin_unlock(tcp_uptime_lock);
3039 return;
3040 }
3041
3042 microuptime(&now);
3043 hold_now = now;
3044 tv = tcp_uptime;
3045 timevalsub(&now, &tv);
3046
3047 incr = TIMEVAL_TO_TCPHZ(now);
3048 if (incr > 0) {
3049 tcp_uptime = hold_now;
3050 tcp_now += incr;
3051 }
3052
3053 lck_spin_unlock(tcp_uptime_lock);
3054 }
3055 return;
3056}
3057
3058/* Compute receive window scaling that we are going to request
3059 * for this connection based on sb_hiwat. Try to leave some
3060 * room to potentially increase the window size upto a maximum
3061 * defined by the constant tcp_autorcvbuf_max.
3062 */
3063void
3064tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so) {
3065 u_int32_t maxsockbufsize;
3066 if (!tcp_do_rfc1323) {
3067 tp->request_r_scale = 0;
3068 return;
3069 }
3070
3071 tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
3072 maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
3073 so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
3074
3075 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
3076 (TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize)
3077 tp->request_r_scale++;
3078 tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT);
3079
3080}
3081
3082int
3083tcp_notsent_lowat_check(struct socket *so) {
3084 struct inpcb *inp = sotoinpcb(so);
3085 struct tcpcb *tp = NULL;
3086 int notsent = 0;
3087 if (inp != NULL) {
3088 tp = intotcpcb(inp);
3089 }
3090
3091 notsent = so->so_snd.sb_cc -
3092 (tp->snd_nxt - tp->snd_una);
3093
3094 /* When we send a FIN or SYN, not_sent can be negative.
3095 * In that case also we need to send a write event to the
3096 * process if it is waiting. In the FIN case, it will
3097 * get an error from send because cantsendmore will be set.
3098 */
3099 if (notsent <= tp->t_notsent_lowat) {
3100 return(1);
3101 }
3102
3103 /* When Nagle's algorithm is not disabled, it is better
3104 * to wakeup the client until there is atleast one
3105 * maxseg of data to write.
3106 */
3107 if ((tp->t_flags & TF_NODELAY) == 0 &&
3108 notsent > 0 && notsent < tp->t_maxseg) {
3109 return(1);
3110 }
3111 return(0);
3112}
3113
3114void
3115tcp_rxtseg_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end) {
3116 struct tcp_rxt_seg *rxseg = NULL, *prev = NULL, *next = NULL;
3117 u_int32_t rxcount = 0;
3118
3119 if (SLIST_EMPTY(&tp->t_rxt_segments))
3120 tp->t_dsack_lastuna = tp->snd_una;
3121 /*
3122 * First check if there is a segment already existing for this
3123 * sequence space.
3124 */
3125
3126 SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
3127 if (SEQ_GT(rxseg->rx_start, start))
3128 break;
3129 prev = rxseg;
3130 }
3131 next = rxseg;
3132
3133 /* check if prev seg is for this sequence */
3134 if (prev != NULL && SEQ_LEQ(prev->rx_start, start) &&
3135 SEQ_GEQ(prev->rx_end, end)) {
3136 prev->rx_count++;
3137 return;
3138 }
3139
3140 /*
3141 * There are a couple of possibilities at this point.
3142 * 1. prev overlaps with the beginning of this sequence
3143 * 2. next overlaps with the end of this sequence
3144 * 3. there is no overlap.
3145 */
3146
3147 if (prev != NULL && SEQ_GT(prev->rx_end, start)) {
3148 if (prev->rx_start == start && SEQ_GT(end, prev->rx_end)) {
3149 start = prev->rx_end + 1;
3150 prev->rx_count++;
3151 } else {
3152 prev->rx_end = (start - 1);
3153 rxcount = prev->rx_count;
3154 }
3155 }
3156
3157 if (next != NULL && SEQ_LT(next->rx_start, end)) {
3158 if (SEQ_LEQ(next->rx_end, end)) {
3159 end = next->rx_start - 1;
3160 next->rx_count++;
3161 } else {
3162 next->rx_start = end + 1;
3163 rxcount = next->rx_count;
3164 }
3165 }
3166 if (!SEQ_LT(start, end))
3167 return;
3168
3169 rxseg = (struct tcp_rxt_seg *) zalloc(tcp_rxt_seg_zone);
3170 if (rxseg == NULL) {
3171 return;
3172 }
3173 bzero(rxseg, sizeof(*rxseg));
3174 rxseg->rx_start = start;
3175 rxseg->rx_end = end;
3176 rxseg->rx_count = rxcount + 1;
3177
3178 if (prev != NULL) {
3179 SLIST_INSERT_AFTER(prev, rxseg, rx_link);
3180 } else {
3181 SLIST_INSERT_HEAD(&tp->t_rxt_segments, rxseg, rx_link);
3182 }
3183 return;
3184}
3185
3186struct tcp_rxt_seg *
3187tcp_rxtseg_find(struct tcpcb *tp, tcp_seq start, tcp_seq end)
3188{
3189 struct tcp_rxt_seg *rxseg;
3190 if (SLIST_EMPTY(&tp->t_rxt_segments))
3191 return (NULL);
3192
3193 SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
3194 if (SEQ_LEQ(rxseg->rx_start, start) &&
3195 SEQ_GEQ(rxseg->rx_end, end))
3196 return (rxseg);
3197 if (SEQ_GT(rxseg->rx_start, start))
3198 break;
3199 }
3200 return (NULL);
3201}
3202
3203void
3204tcp_rxtseg_clean(struct tcpcb *tp)
3205{
3206 struct tcp_rxt_seg *rxseg, *next;
3207
3208 SLIST_FOREACH_SAFE(rxseg, &tp->t_rxt_segments, rx_link, next) {
3209 SLIST_REMOVE(&tp->t_rxt_segments, rxseg,
3210 tcp_rxt_seg, rx_link);
3211 zfree(tcp_rxt_seg_zone, rxseg);
3212 }
3213 tp->t_dsack_lastuna = tp->snd_max;
3214}
3215
3216boolean_t
3217tcp_rxtseg_detect_bad_rexmt(struct tcpcb *tp, tcp_seq th_ack)
3218{
3219 boolean_t bad_rexmt;
3220 struct tcp_rxt_seg *rxseg;
3221
3222 if (SLIST_EMPTY(&tp->t_rxt_segments))
3223 return (FALSE);
3224
3225 /*
3226 * If all of the segments in this window are not cumulatively
3227 * acknowledged, then there can still be undetected packet loss.
3228 * Do not restore congestion window in that case.
3229 */
3230 if (SEQ_LT(th_ack, tp->snd_recover))
3231 return (FALSE);
3232
3233 bad_rexmt = TRUE;
3234 SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
3235 if (rxseg->rx_count > 1 ||
3236 !(rxseg->rx_flags & TCP_RXT_SPURIOUS)) {
3237 bad_rexmt = FALSE;
3238 break;
3239 }
3240 }
3241 return (bad_rexmt);
3242}
3243
3244boolean_t
3245tcp_rxtseg_dsack_for_tlp(struct tcpcb *tp)
3246{
3247 boolean_t dsack_for_tlp = FALSE;
3248 struct tcp_rxt_seg *rxseg;
3249 if (SLIST_EMPTY(&tp->t_rxt_segments))
3250 return (FALSE);
3251
3252 SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
3253 if (rxseg->rx_count == 1 &&
3254 SLIST_NEXT(rxseg,rx_link) == NULL &&
3255 (rxseg->rx_flags & TCP_RXT_DSACK_FOR_TLP)) {
3256 dsack_for_tlp = TRUE;
3257 break;
3258 }
3259 }
3260 return (dsack_for_tlp);
3261}
3262
3263u_int32_t
3264tcp_rxtseg_total_size(struct tcpcb *tp) {
3265 struct tcp_rxt_seg *rxseg;
3266 u_int32_t total_size = 0;
3267
3268 SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
3269 total_size += (rxseg->rx_end - rxseg->rx_start) + 1;
3270 }
3271 return (total_size);
3272}
3273
3274void
3275tcp_get_connectivity_status(struct tcpcb *tp,
3276 struct tcp_conn_status *connstatus)
3277{
3278 if (tp == NULL || connstatus == NULL)
3279 return;
3280 bzero(connstatus, sizeof(*connstatus));
3281 if (tp->t_rxtshift >= TCP_CONNECTIVITY_PROBES_MAX) {
3282 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3283 connstatus->write_probe_failed = 1;
3284 } else {
3285 connstatus->conn_probe_failed = 1;
3286 }
3287 }
3288 if (tp->t_rtimo_probes >= TCP_CONNECTIVITY_PROBES_MAX)
3289 connstatus->read_probe_failed = 1;
3290 if (tp->t_inpcb != NULL && tp->t_inpcb->inp_last_outifp != NULL
3291 && (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_PROBE_CONNECTIVITY))
3292 connstatus->probe_activated = 1;
3293 return;
3294}
3295
3296boolean_t
3297tfo_enabled(const struct tcpcb *tp)
3298{
3299 return !!(tp->t_flagsext & TF_FASTOPEN);
3300}
3301
3302void
3303tcp_disable_tfo(struct tcpcb *tp)
3304{
3305 tp->t_flagsext &= ~TF_FASTOPEN;
3306}
3307