]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm_fault.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Page fault handling module. | |
57 | */ | |
58 | #ifdef MACH_BSD | |
59 | /* remove after component interface available */ | |
60 | extern int vnode_pager_workaround; | |
61 | extern int device_pager_workaround; | |
62 | #endif | |
63 | ||
64 | #include <mach_cluster_stats.h> | |
65 | #include <mach_pagemap.h> | |
66 | #include <mach_kdb.h> | |
67 | ||
68 | #include <vm/vm_fault.h> | |
69 | #include <mach/kern_return.h> | |
70 | #include <mach/message.h> /* for error codes */ | |
71 | #include <kern/host_statistics.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/task.h> | |
74 | #include <kern/thread.h> | |
75 | #include <kern/sched_prim.h> | |
76 | #include <kern/host.h> | |
77 | #include <kern/xpr.h> | |
78 | #include <ppc/proc_reg.h> | |
79 | #include <ppc/pmap_internals.h> | |
80 | #include <vm/task_working_set.h> | |
81 | #include <vm/vm_map.h> | |
82 | #include <vm/vm_object.h> | |
83 | #include <vm/vm_page.h> | |
84 | #include <vm/pmap.h> | |
85 | #include <vm/vm_pageout.h> | |
86 | #include <mach/vm_param.h> | |
87 | #include <mach/vm_behavior.h> | |
88 | #include <mach/memory_object.h> | |
89 | /* For memory_object_data_{request,unlock} */ | |
90 | #include <kern/mach_param.h> | |
91 | #include <kern/macro_help.h> | |
92 | #include <kern/zalloc.h> | |
93 | #include <kern/misc_protos.h> | |
94 | ||
95 | #include <sys/kdebug.h> | |
96 | ||
97 | #define VM_FAULT_CLASSIFY 0 | |
98 | #define VM_FAULT_STATIC_CONFIG 1 | |
99 | ||
100 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
101 | ||
102 | int vm_object_absent_max = 50; | |
103 | ||
104 | int vm_fault_debug = 0; | |
105 | boolean_t vm_page_deactivate_behind = TRUE; | |
106 | ||
107 | ||
108 | #if !VM_FAULT_STATIC_CONFIG | |
109 | boolean_t vm_fault_dirty_handling = FALSE; | |
110 | boolean_t vm_fault_interruptible = FALSE; | |
111 | boolean_t software_reference_bits = TRUE; | |
112 | #endif | |
113 | ||
114 | #if MACH_KDB | |
115 | extern struct db_watchpoint *db_watchpoint_list; | |
116 | #endif /* MACH_KDB */ | |
117 | ||
118 | /* Forward declarations of internal routines. */ | |
119 | extern kern_return_t vm_fault_wire_fast( | |
120 | vm_map_t map, | |
121 | vm_offset_t va, | |
122 | vm_map_entry_t entry, | |
123 | pmap_t pmap); | |
124 | ||
125 | extern void vm_fault_continue(void); | |
126 | ||
127 | extern void vm_fault_copy_cleanup( | |
128 | vm_page_t page, | |
129 | vm_page_t top_page); | |
130 | ||
131 | extern void vm_fault_copy_dst_cleanup( | |
132 | vm_page_t page); | |
133 | ||
134 | #if VM_FAULT_CLASSIFY | |
135 | extern void vm_fault_classify(vm_object_t object, | |
136 | vm_object_offset_t offset, | |
137 | vm_prot_t fault_type); | |
138 | ||
139 | extern void vm_fault_classify_init(void); | |
140 | #endif | |
141 | ||
142 | /* | |
143 | * Routine: vm_fault_init | |
144 | * Purpose: | |
145 | * Initialize our private data structures. | |
146 | */ | |
147 | void | |
148 | vm_fault_init(void) | |
149 | { | |
150 | } | |
151 | ||
152 | /* | |
153 | * Routine: vm_fault_cleanup | |
154 | * Purpose: | |
155 | * Clean up the result of vm_fault_page. | |
156 | * Results: | |
157 | * The paging reference for "object" is released. | |
158 | * "object" is unlocked. | |
159 | * If "top_page" is not null, "top_page" is | |
160 | * freed and the paging reference for the object | |
161 | * containing it is released. | |
162 | * | |
163 | * In/out conditions: | |
164 | * "object" must be locked. | |
165 | */ | |
166 | void | |
167 | vm_fault_cleanup( | |
168 | register vm_object_t object, | |
169 | register vm_page_t top_page) | |
170 | { | |
171 | vm_object_paging_end(object); | |
172 | vm_object_unlock(object); | |
173 | ||
174 | if (top_page != VM_PAGE_NULL) { | |
175 | object = top_page->object; | |
176 | vm_object_lock(object); | |
177 | VM_PAGE_FREE(top_page); | |
178 | vm_object_paging_end(object); | |
179 | vm_object_unlock(object); | |
180 | } | |
181 | } | |
182 | ||
183 | #if MACH_CLUSTER_STATS | |
184 | #define MAXCLUSTERPAGES 16 | |
185 | struct { | |
186 | unsigned long pages_in_cluster; | |
187 | unsigned long pages_at_higher_offsets; | |
188 | unsigned long pages_at_lower_offsets; | |
189 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
190 | #define CLUSTER_STAT(clause) clause | |
191 | #define CLUSTER_STAT_HIGHER(x) \ | |
192 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
193 | #define CLUSTER_STAT_LOWER(x) \ | |
194 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
195 | #define CLUSTER_STAT_CLUSTER(x) \ | |
196 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
197 | #else /* MACH_CLUSTER_STATS */ | |
198 | #define CLUSTER_STAT(clause) | |
199 | #endif /* MACH_CLUSTER_STATS */ | |
200 | ||
201 | /* XXX - temporary */ | |
202 | boolean_t vm_allow_clustered_pagein = FALSE; | |
203 | int vm_pagein_cluster_used = 0; | |
204 | ||
205 | /* | |
206 | * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
207 | */ | |
208 | int vm_default_ahead = 1; /* Number of pages to prepage ahead */ | |
209 | int vm_default_behind = 0; /* Number of pages to prepage behind */ | |
210 | ||
211 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) | |
212 | ||
213 | /* | |
214 | * Routine: vm_fault_page | |
215 | * Purpose: | |
216 | * Find the resident page for the virtual memory | |
217 | * specified by the given virtual memory object | |
218 | * and offset. | |
219 | * Additional arguments: | |
220 | * The required permissions for the page is given | |
221 | * in "fault_type". Desired permissions are included | |
222 | * in "protection". The minimum and maximum valid offsets | |
223 | * within the object for the relevant map entry are | |
224 | * passed in "lo_offset" and "hi_offset" respectively and | |
225 | * the expected page reference pattern is passed in "behavior". | |
226 | * These three parameters are used to determine pagein cluster | |
227 | * limits. | |
228 | * | |
229 | * If the desired page is known to be resident (for | |
230 | * example, because it was previously wired down), asserting | |
231 | * the "unwiring" parameter will speed the search. | |
232 | * | |
233 | * If the operation can be interrupted (by thread_abort | |
234 | * or thread_terminate), then the "interruptible" | |
235 | * parameter should be asserted. | |
236 | * | |
237 | * Results: | |
238 | * The page containing the proper data is returned | |
239 | * in "result_page". | |
240 | * | |
241 | * In/out conditions: | |
242 | * The source object must be locked and referenced, | |
243 | * and must donate one paging reference. The reference | |
244 | * is not affected. The paging reference and lock are | |
245 | * consumed. | |
246 | * | |
247 | * If the call succeeds, the object in which "result_page" | |
248 | * resides is left locked and holding a paging reference. | |
249 | * If this is not the original object, a busy page in the | |
250 | * original object is returned in "top_page", to prevent other | |
251 | * callers from pursuing this same data, along with a paging | |
252 | * reference for the original object. The "top_page" should | |
253 | * be destroyed when this guarantee is no longer required. | |
254 | * The "result_page" is also left busy. It is not removed | |
255 | * from the pageout queues. | |
256 | */ | |
257 | ||
258 | vm_fault_return_t | |
259 | vm_fault_page( | |
260 | /* Arguments: */ | |
261 | vm_object_t first_object, /* Object to begin search */ | |
262 | vm_object_offset_t first_offset, /* Offset into object */ | |
263 | vm_prot_t fault_type, /* What access is requested */ | |
264 | boolean_t must_be_resident,/* Must page be resident? */ | |
265 | int interruptible, /* how may fault be interrupted? */ | |
266 | vm_object_offset_t lo_offset, /* Map entry start */ | |
267 | vm_object_offset_t hi_offset, /* Map entry end */ | |
268 | vm_behavior_t behavior, /* Page reference behavior */ | |
269 | /* Modifies in place: */ | |
270 | vm_prot_t *protection, /* Protection for mapping */ | |
271 | /* Returns: */ | |
272 | vm_page_t *result_page, /* Page found, if successful */ | |
273 | vm_page_t *top_page, /* Page in top object, if | |
274 | * not result_page. */ | |
275 | int *type_of_fault, /* if non-null, fill in with type of fault | |
276 | * COW, zero-fill, etc... returned in trace point */ | |
277 | /* More arguments: */ | |
278 | kern_return_t *error_code, /* code if page is in error */ | |
279 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
280 | boolean_t data_supply, /* treat as data_supply if | |
281 | * it is a write fault and a full | |
282 | * page is provided */ | |
283 | vm_map_t map, | |
284 | vm_offset_t vaddr) | |
285 | { | |
286 | register | |
287 | vm_page_t m; | |
288 | register | |
289 | vm_object_t object; | |
290 | register | |
291 | vm_object_offset_t offset; | |
292 | vm_page_t first_m; | |
293 | vm_object_t next_object; | |
294 | vm_object_t copy_object; | |
295 | boolean_t look_for_page; | |
296 | vm_prot_t access_required = fault_type; | |
297 | vm_prot_t wants_copy_flag; | |
298 | vm_size_t cluster_size, length; | |
299 | vm_object_offset_t cluster_offset; | |
300 | vm_object_offset_t cluster_start, cluster_end, paging_offset; | |
301 | vm_object_offset_t align_offset; | |
302 | CLUSTER_STAT(int pages_at_higher_offsets;) | |
303 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
304 | kern_return_t wait_result; | |
305 | thread_t cur_thread; | |
306 | boolean_t interruptible_state; | |
307 | boolean_t bumped_pagein = FALSE; | |
308 | ||
309 | ||
310 | #if MACH_PAGEMAP | |
311 | /* | |
312 | * MACH page map - an optional optimization where a bit map is maintained | |
313 | * by the VM subsystem for internal objects to indicate which pages of | |
314 | * the object currently reside on backing store. This existence map | |
315 | * duplicates information maintained by the vnode pager. It is | |
316 | * created at the time of the first pageout against the object, i.e. | |
317 | * at the same time pager for the object is created. The optimization | |
318 | * is designed to eliminate pager interaction overhead, if it is | |
319 | * 'known' that the page does not exist on backing store. | |
320 | * | |
321 | * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is | |
322 | * either marked as paged out in the existence map for the object or no | |
323 | * existence map exists for the object. LOOK_FOR() is one of the | |
324 | * criteria in the decision to invoke the pager. It is also used as one | |
325 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
326 | * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for | |
327 | * permanent objects. Note also that if the pager for an internal object | |
328 | * has not been created, the pager is not invoked regardless of the value | |
329 | * of LOOK_FOR() and that clustered pagein scans are only done on an object | |
330 | * for which a pager has been created. | |
331 | * | |
332 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
333 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
334 | * PAGED_OUT() is used to determine if a page has already been pushed | |
335 | * into a copy object in order to avoid a redundant page out operation. | |
336 | */ | |
337 | #define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
338 | != VM_EXTERNAL_STATE_ABSENT) | |
339 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
340 | == VM_EXTERNAL_STATE_EXISTS) | |
341 | #else /* MACH_PAGEMAP */ | |
342 | /* | |
343 | * If the MACH page map optimization is not enabled, | |
344 | * LOOK_FOR() always evaluates to TRUE. The pager will always be | |
345 | * invoked to resolve missing pages in an object, assuming the pager | |
346 | * has been created for the object. In a clustered page operation, the | |
347 | * absence of a page on backing backing store cannot be used to terminate | |
348 | * a scan for adjacent pages since that information is available only in | |
349 | * the pager. Hence pages that may not be paged out are potentially | |
350 | * included in a clustered request. The vnode pager is coded to deal | |
351 | * with any combination of absent/present pages in a clustered | |
352 | * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager | |
353 | * will always be invoked to push a dirty page into a copy object assuming | |
354 | * a pager has been created. If the page has already been pushed, the | |
355 | * pager will ingore the new request. | |
356 | */ | |
357 | #define LOOK_FOR(o, f) TRUE | |
358 | #define PAGED_OUT(o, f) FALSE | |
359 | #endif /* MACH_PAGEMAP */ | |
360 | ||
361 | /* | |
362 | * Recovery actions | |
363 | */ | |
364 | #define PREPARE_RELEASE_PAGE(m) \ | |
365 | MACRO_BEGIN \ | |
366 | vm_page_lock_queues(); \ | |
367 | MACRO_END | |
368 | ||
369 | #define DO_RELEASE_PAGE(m) \ | |
370 | MACRO_BEGIN \ | |
371 | PAGE_WAKEUP_DONE(m); \ | |
372 | if (!m->active && !m->inactive) \ | |
373 | vm_page_activate(m); \ | |
374 | vm_page_unlock_queues(); \ | |
375 | MACRO_END | |
376 | ||
377 | #define RELEASE_PAGE(m) \ | |
378 | MACRO_BEGIN \ | |
379 | PREPARE_RELEASE_PAGE(m); \ | |
380 | DO_RELEASE_PAGE(m); \ | |
381 | MACRO_END | |
382 | ||
383 | #if TRACEFAULTPAGE | |
384 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
385 | #endif | |
386 | ||
387 | ||
388 | ||
389 | #if !VM_FAULT_STATIC_CONFIG | |
390 | if (vm_fault_dirty_handling | |
391 | #if MACH_KDB | |
392 | /* | |
393 | * If there are watchpoints set, then | |
394 | * we don't want to give away write permission | |
395 | * on a read fault. Make the task write fault, | |
396 | * so that the watchpoint code notices the access. | |
397 | */ | |
398 | || db_watchpoint_list | |
399 | #endif /* MACH_KDB */ | |
400 | ) { | |
401 | /* | |
402 | * If we aren't asking for write permission, | |
403 | * then don't give it away. We're using write | |
404 | * faults to set the dirty bit. | |
405 | */ | |
406 | if (!(fault_type & VM_PROT_WRITE)) | |
407 | *protection &= ~VM_PROT_WRITE; | |
408 | } | |
409 | ||
410 | if (!vm_fault_interruptible) | |
411 | interruptible = THREAD_UNINT; | |
412 | #else /* STATIC_CONFIG */ | |
413 | #if MACH_KDB | |
414 | /* | |
415 | * If there are watchpoints set, then | |
416 | * we don't want to give away write permission | |
417 | * on a read fault. Make the task write fault, | |
418 | * so that the watchpoint code notices the access. | |
419 | */ | |
420 | if (db_watchpoint_list) { | |
421 | /* | |
422 | * If we aren't asking for write permission, | |
423 | * then don't give it away. We're using write | |
424 | * faults to set the dirty bit. | |
425 | */ | |
426 | if (!(fault_type & VM_PROT_WRITE)) | |
427 | *protection &= ~VM_PROT_WRITE; | |
428 | } | |
429 | ||
430 | #endif /* MACH_KDB */ | |
431 | #endif /* STATIC_CONFIG */ | |
432 | ||
433 | cur_thread = current_thread(); | |
434 | ||
435 | interruptible_state = cur_thread->interruptible; | |
436 | if (interruptible == THREAD_UNINT) | |
437 | cur_thread->interruptible = FALSE; | |
438 | ||
439 | /* | |
440 | * INVARIANTS (through entire routine): | |
441 | * | |
442 | * 1) At all times, we must either have the object | |
443 | * lock or a busy page in some object to prevent | |
444 | * some other thread from trying to bring in | |
445 | * the same page. | |
446 | * | |
447 | * Note that we cannot hold any locks during the | |
448 | * pager access or when waiting for memory, so | |
449 | * we use a busy page then. | |
450 | * | |
451 | * Note also that we aren't as concerned about more than | |
452 | * one thread attempting to memory_object_data_unlock | |
453 | * the same page at once, so we don't hold the page | |
454 | * as busy then, but do record the highest unlock | |
455 | * value so far. [Unlock requests may also be delivered | |
456 | * out of order.] | |
457 | * | |
458 | * 2) To prevent another thread from racing us down the | |
459 | * shadow chain and entering a new page in the top | |
460 | * object before we do, we must keep a busy page in | |
461 | * the top object while following the shadow chain. | |
462 | * | |
463 | * 3) We must increment paging_in_progress on any object | |
464 | * for which we have a busy page | |
465 | * | |
466 | * 4) We leave busy pages on the pageout queues. | |
467 | * If the pageout daemon comes across a busy page, | |
468 | * it will remove the page from the pageout queues. | |
469 | */ | |
470 | ||
471 | /* | |
472 | * Search for the page at object/offset. | |
473 | */ | |
474 | ||
475 | object = first_object; | |
476 | offset = first_offset; | |
477 | first_m = VM_PAGE_NULL; | |
478 | access_required = fault_type; | |
479 | ||
480 | XPR(XPR_VM_FAULT, | |
481 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
482 | (integer_t)object, offset, fault_type, *protection, 0); | |
483 | ||
484 | /* | |
485 | * See whether this page is resident | |
486 | */ | |
487 | ||
488 | while (TRUE) { | |
489 | #if TRACEFAULTPAGE | |
490 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
491 | #endif | |
492 | if (!object->alive) { | |
493 | vm_fault_cleanup(object, first_m); | |
494 | cur_thread->interruptible = interruptible_state; | |
495 | return(VM_FAULT_MEMORY_ERROR); | |
496 | } | |
497 | m = vm_page_lookup(object, offset); | |
498 | #if TRACEFAULTPAGE | |
499 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
500 | #endif | |
501 | if (m != VM_PAGE_NULL) { | |
502 | /* | |
503 | * If the page was pre-paged as part of a | |
504 | * cluster, record the fact. | |
505 | */ | |
506 | if (m->clustered) { | |
507 | vm_pagein_cluster_used++; | |
508 | m->clustered = FALSE; | |
509 | } | |
510 | ||
511 | /* | |
512 | * If the page is being brought in, | |
513 | * wait for it and then retry. | |
514 | * | |
515 | * A possible optimization: if the page | |
516 | * is known to be resident, we can ignore | |
517 | * pages that are absent (regardless of | |
518 | * whether they're busy). | |
519 | */ | |
520 | ||
521 | if (m->busy) { | |
522 | #if TRACEFAULTPAGE | |
523 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
524 | #endif | |
525 | PAGE_ASSERT_WAIT(m, interruptible); | |
526 | vm_object_unlock(object); | |
527 | XPR(XPR_VM_FAULT, | |
528 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
529 | (integer_t)object, offset, | |
530 | (integer_t)m, 0, 0); | |
531 | counter(c_vm_fault_page_block_busy_kernel++); | |
532 | wait_result = thread_block((void (*)(void))0); | |
533 | ||
534 | vm_object_lock(object); | |
535 | if (wait_result != THREAD_AWAKENED) { | |
536 | vm_fault_cleanup(object, first_m); | |
537 | cur_thread->interruptible = interruptible_state; | |
538 | if (wait_result == THREAD_RESTART) | |
539 | { | |
540 | return(VM_FAULT_RETRY); | |
541 | } | |
542 | else | |
543 | { | |
544 | return(VM_FAULT_INTERRUPTED); | |
545 | } | |
546 | } | |
547 | continue; | |
548 | } | |
549 | ||
550 | /* | |
551 | * If the page is in error, give up now. | |
552 | */ | |
553 | ||
554 | if (m->error) { | |
555 | #if TRACEFAULTPAGE | |
556 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
557 | #endif | |
558 | if (error_code) | |
559 | *error_code = m->page_error; | |
560 | VM_PAGE_FREE(m); | |
561 | vm_fault_cleanup(object, first_m); | |
562 | cur_thread->interruptible = interruptible_state; | |
563 | return(VM_FAULT_MEMORY_ERROR); | |
564 | } | |
565 | ||
566 | /* | |
567 | * If the pager wants us to restart | |
568 | * at the top of the chain, | |
569 | * typically because it has moved the | |
570 | * page to another pager, then do so. | |
571 | */ | |
572 | ||
573 | if (m->restart) { | |
574 | #if TRACEFAULTPAGE | |
575 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
576 | #endif | |
577 | VM_PAGE_FREE(m); | |
578 | vm_fault_cleanup(object, first_m); | |
579 | cur_thread->interruptible = interruptible_state; | |
580 | return(VM_FAULT_RETRY); | |
581 | } | |
582 | ||
583 | /* | |
584 | * If the page isn't busy, but is absent, | |
585 | * then it was deemed "unavailable". | |
586 | */ | |
587 | ||
588 | if (m->absent) { | |
589 | /* | |
590 | * Remove the non-existent page (unless it's | |
591 | * in the top object) and move on down to the | |
592 | * next object (if there is one). | |
593 | */ | |
594 | #if TRACEFAULTPAGE | |
595 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
596 | #endif | |
597 | ||
598 | next_object = object->shadow; | |
599 | if (next_object == VM_OBJECT_NULL) { | |
600 | vm_page_t real_m; | |
601 | ||
602 | assert(!must_be_resident); | |
603 | ||
604 | if (object->shadow_severed) { | |
605 | vm_fault_cleanup( | |
606 | object, first_m); | |
607 | cur_thread->interruptible = interruptible_state; | |
608 | return VM_FAULT_MEMORY_ERROR; | |
609 | } | |
610 | ||
611 | /* | |
612 | * Absent page at bottom of shadow | |
613 | * chain; zero fill the page we left | |
614 | * busy in the first object, and flush | |
615 | * the absent page. But first we | |
616 | * need to allocate a real page. | |
617 | */ | |
618 | if (VM_PAGE_THROTTLED() || | |
619 | (real_m = vm_page_grab()) == VM_PAGE_NULL) { | |
620 | vm_fault_cleanup(object, first_m); | |
621 | cur_thread->interruptible = interruptible_state; | |
622 | return(VM_FAULT_MEMORY_SHORTAGE); | |
623 | } | |
624 | ||
625 | XPR(XPR_VM_FAULT, | |
626 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", | |
627 | (integer_t)object, offset, | |
628 | (integer_t)m, | |
629 | (integer_t)first_object, 0); | |
630 | if (object != first_object) { | |
631 | VM_PAGE_FREE(m); | |
632 | vm_object_paging_end(object); | |
633 | vm_object_unlock(object); | |
634 | object = first_object; | |
635 | offset = first_offset; | |
636 | m = first_m; | |
637 | first_m = VM_PAGE_NULL; | |
638 | vm_object_lock(object); | |
639 | } | |
640 | ||
641 | VM_PAGE_FREE(m); | |
642 | assert(real_m->busy); | |
643 | vm_page_insert(real_m, object, offset); | |
644 | m = real_m; | |
645 | ||
646 | /* | |
647 | * Drop the lock while zero filling | |
648 | * page. Then break because this | |
649 | * is the page we wanted. Checking | |
650 | * the page lock is a waste of time; | |
651 | * this page was either absent or | |
652 | * newly allocated -- in both cases | |
653 | * it can't be page locked by a pager. | |
654 | */ | |
655 | m->no_isync = FALSE; | |
656 | ||
657 | if (!no_zero_fill) { | |
658 | vm_object_unlock(object); | |
659 | vm_page_zero_fill(m); | |
660 | if (type_of_fault) | |
661 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
662 | VM_STAT(zero_fill_count++); | |
663 | ||
664 | if (bumped_pagein == TRUE) { | |
665 | VM_STAT(pageins--); | |
666 | current_task()->pageins--; | |
667 | } | |
668 | vm_object_lock(object); | |
669 | } | |
670 | pmap_clear_modify(m->phys_addr); | |
671 | vm_page_lock_queues(); | |
672 | VM_PAGE_QUEUES_REMOVE(m); | |
673 | m->page_ticket = vm_page_ticket; | |
674 | vm_page_ticket_roll++; | |
675 | if(vm_page_ticket_roll == | |
676 | VM_PAGE_TICKETS_IN_ROLL) { | |
677 | vm_page_ticket_roll = 0; | |
678 | if(vm_page_ticket == | |
679 | VM_PAGE_TICKET_ROLL_IDS) | |
680 | vm_page_ticket= 0; | |
681 | else | |
682 | vm_page_ticket++; | |
683 | } | |
684 | queue_enter(&vm_page_queue_inactive, | |
685 | m, vm_page_t, pageq); | |
686 | m->inactive = TRUE; | |
687 | vm_page_inactive_count++; | |
688 | vm_page_unlock_queues(); | |
689 | break; | |
690 | } else { | |
691 | if (must_be_resident) { | |
692 | vm_object_paging_end(object); | |
693 | } else if (object != first_object) { | |
694 | vm_object_paging_end(object); | |
695 | VM_PAGE_FREE(m); | |
696 | } else { | |
697 | first_m = m; | |
698 | m->absent = FALSE; | |
699 | m->unusual = FALSE; | |
700 | vm_object_absent_release(object); | |
701 | m->busy = TRUE; | |
702 | ||
703 | vm_page_lock_queues(); | |
704 | VM_PAGE_QUEUES_REMOVE(m); | |
705 | vm_page_unlock_queues(); | |
706 | } | |
707 | XPR(XPR_VM_FAULT, | |
708 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
709 | (integer_t)object, offset, | |
710 | (integer_t)next_object, | |
711 | offset+object->shadow_offset,0); | |
712 | offset += object->shadow_offset; | |
713 | hi_offset += object->shadow_offset; | |
714 | lo_offset += object->shadow_offset; | |
715 | access_required = VM_PROT_READ; | |
716 | vm_object_lock(next_object); | |
717 | vm_object_unlock(object); | |
718 | object = next_object; | |
719 | vm_object_paging_begin(object); | |
720 | continue; | |
721 | } | |
722 | } | |
723 | ||
724 | if ((m->cleaning) | |
725 | && ((object != first_object) || | |
726 | (object->copy != VM_OBJECT_NULL)) | |
727 | && (fault_type & VM_PROT_WRITE)) { | |
728 | /* | |
729 | * This is a copy-on-write fault that will | |
730 | * cause us to revoke access to this page, but | |
731 | * this page is in the process of being cleaned | |
732 | * in a clustered pageout. We must wait until | |
733 | * the cleaning operation completes before | |
734 | * revoking access to the original page, | |
735 | * otherwise we might attempt to remove a | |
736 | * wired mapping. | |
737 | */ | |
738 | #if TRACEFAULTPAGE | |
739 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
740 | #endif | |
741 | XPR(XPR_VM_FAULT, | |
742 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
743 | (integer_t)object, offset, | |
744 | (integer_t)m, 0, 0); | |
745 | /* take an extra ref so that object won't die */ | |
746 | assert(object->ref_count > 0); | |
747 | object->ref_count++; | |
748 | vm_object_res_reference(object); | |
749 | vm_fault_cleanup(object, first_m); | |
750 | counter(c_vm_fault_page_block_backoff_kernel++); | |
751 | vm_object_lock(object); | |
752 | assert(object->ref_count > 0); | |
753 | m = vm_page_lookup(object, offset); | |
754 | if (m != VM_PAGE_NULL && m->cleaning) { | |
755 | PAGE_ASSERT_WAIT(m, interruptible); | |
756 | vm_object_unlock(object); | |
757 | wait_result = thread_block((void (*)(void)) 0); | |
758 | vm_object_deallocate(object); | |
759 | goto backoff; | |
760 | } else { | |
761 | vm_object_unlock(object); | |
762 | vm_object_deallocate(object); | |
763 | cur_thread->interruptible = interruptible_state; | |
764 | return VM_FAULT_RETRY; | |
765 | } | |
766 | } | |
767 | ||
768 | /* | |
769 | * If the desired access to this page has | |
770 | * been locked out, request that it be unlocked. | |
771 | */ | |
772 | ||
773 | if (access_required & m->page_lock) { | |
774 | if ((access_required & m->unlock_request) != access_required) { | |
775 | vm_prot_t new_unlock_request; | |
776 | kern_return_t rc; | |
777 | ||
778 | #if TRACEFAULTPAGE | |
779 | dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */ | |
780 | #endif | |
781 | if (!object->pager_ready) { | |
782 | XPR(XPR_VM_FAULT, | |
783 | "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
784 | access_required, | |
785 | (integer_t)object, offset, | |
786 | (integer_t)m, 0); | |
787 | /* take an extra ref */ | |
788 | assert(object->ref_count > 0); | |
789 | object->ref_count++; | |
790 | vm_object_res_reference(object); | |
791 | vm_fault_cleanup(object, | |
792 | first_m); | |
793 | counter(c_vm_fault_page_block_backoff_kernel++); | |
794 | vm_object_lock(object); | |
795 | assert(object->ref_count > 0); | |
796 | if (!object->pager_ready) { | |
797 | vm_object_assert_wait( | |
798 | object, | |
799 | VM_OBJECT_EVENT_PAGER_READY, | |
800 | interruptible); | |
801 | vm_object_unlock(object); | |
802 | wait_result = thread_block((void (*)(void))0); | |
803 | vm_object_deallocate(object); | |
804 | goto backoff; | |
805 | } else { | |
806 | vm_object_unlock(object); | |
807 | vm_object_deallocate(object); | |
808 | cur_thread->interruptible = interruptible_state; | |
809 | return VM_FAULT_RETRY; | |
810 | } | |
811 | } | |
812 | ||
813 | new_unlock_request = m->unlock_request = | |
814 | (access_required | m->unlock_request); | |
815 | vm_object_unlock(object); | |
816 | XPR(XPR_VM_FAULT, | |
817 | "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n", | |
818 | (integer_t)object, offset, | |
819 | (integer_t)m, new_unlock_request, 0); | |
820 | if ((rc = memory_object_data_unlock( | |
821 | object->pager, | |
822 | offset + object->paging_offset, | |
823 | PAGE_SIZE, | |
824 | new_unlock_request)) | |
825 | != KERN_SUCCESS) { | |
826 | if (vm_fault_debug) | |
827 | printf("vm_fault: memory_object_data_unlock failed\n"); | |
828 | vm_object_lock(object); | |
829 | vm_fault_cleanup(object, first_m); | |
830 | cur_thread->interruptible = interruptible_state; | |
831 | return((rc == MACH_SEND_INTERRUPTED) ? | |
832 | VM_FAULT_INTERRUPTED : | |
833 | VM_FAULT_MEMORY_ERROR); | |
834 | } | |
835 | vm_object_lock(object); | |
836 | continue; | |
837 | } | |
838 | ||
839 | XPR(XPR_VM_FAULT, | |
840 | "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
841 | access_required, (integer_t)object, | |
842 | offset, (integer_t)m, 0); | |
843 | /* take an extra ref so object won't die */ | |
844 | assert(object->ref_count > 0); | |
845 | object->ref_count++; | |
846 | vm_object_res_reference(object); | |
847 | vm_fault_cleanup(object, first_m); | |
848 | counter(c_vm_fault_page_block_backoff_kernel++); | |
849 | vm_object_lock(object); | |
850 | assert(object->ref_count > 0); | |
851 | m = vm_page_lookup(object, offset); | |
852 | if (m != VM_PAGE_NULL && | |
853 | (access_required & m->page_lock) && | |
854 | !((access_required & m->unlock_request) != access_required)) { | |
855 | PAGE_ASSERT_WAIT(m, interruptible); | |
856 | vm_object_unlock(object); | |
857 | wait_result = thread_block((void (*)(void)) 0); | |
858 | vm_object_deallocate(object); | |
859 | goto backoff; | |
860 | } else { | |
861 | vm_object_unlock(object); | |
862 | vm_object_deallocate(object); | |
863 | cur_thread->interruptible = interruptible_state; | |
864 | return VM_FAULT_RETRY; | |
865 | } | |
866 | } | |
867 | /* | |
868 | * We mark the page busy and leave it on | |
869 | * the pageout queues. If the pageout | |
870 | * deamon comes across it, then it will | |
871 | * remove the page. | |
872 | */ | |
873 | ||
874 | #if TRACEFAULTPAGE | |
875 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
876 | #endif | |
877 | ||
878 | #if !VM_FAULT_STATIC_CONFIG | |
879 | if (!software_reference_bits) { | |
880 | vm_page_lock_queues(); | |
881 | if (m->inactive) | |
882 | vm_stat.reactivations++; | |
883 | ||
884 | VM_PAGE_QUEUES_REMOVE(m); | |
885 | vm_page_unlock_queues(); | |
886 | } | |
887 | #endif | |
888 | XPR(XPR_VM_FAULT, | |
889 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
890 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
891 | assert(!m->busy); | |
892 | m->busy = TRUE; | |
893 | assert(!m->absent); | |
894 | break; | |
895 | } | |
896 | ||
897 | look_for_page = | |
898 | (object->pager_created) && | |
899 | LOOK_FOR(object, offset) && | |
900 | (!data_supply); | |
901 | ||
902 | #if TRACEFAULTPAGE | |
903 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
904 | #endif | |
905 | if ((look_for_page || (object == first_object)) | |
906 | && !must_be_resident | |
907 | && !(object->phys_contiguous)) { | |
908 | /* | |
909 | * Allocate a new page for this object/offset | |
910 | * pair. | |
911 | */ | |
912 | ||
913 | m = vm_page_grab_fictitious(); | |
914 | #if TRACEFAULTPAGE | |
915 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
916 | #endif | |
917 | if (m == VM_PAGE_NULL) { | |
918 | vm_fault_cleanup(object, first_m); | |
919 | cur_thread->interruptible = interruptible_state; | |
920 | return(VM_FAULT_FICTITIOUS_SHORTAGE); | |
921 | } | |
922 | vm_page_insert(m, object, offset); | |
923 | } | |
924 | ||
925 | if ((look_for_page && !must_be_resident)) { | |
926 | kern_return_t rc; | |
927 | ||
928 | /* | |
929 | * If the memory manager is not ready, we | |
930 | * cannot make requests. | |
931 | */ | |
932 | if (!object->pager_ready) { | |
933 | #if TRACEFAULTPAGE | |
934 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
935 | #endif | |
936 | if(m != VM_PAGE_NULL) | |
937 | VM_PAGE_FREE(m); | |
938 | XPR(XPR_VM_FAULT, | |
939 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
940 | (integer_t)object, offset, 0, 0, 0); | |
941 | /* take an extra ref so object won't die */ | |
942 | assert(object->ref_count > 0); | |
943 | object->ref_count++; | |
944 | vm_object_res_reference(object); | |
945 | vm_fault_cleanup(object, first_m); | |
946 | counter(c_vm_fault_page_block_backoff_kernel++); | |
947 | vm_object_lock(object); | |
948 | assert(object->ref_count > 0); | |
949 | if (!object->pager_ready) { | |
950 | vm_object_assert_wait(object, | |
951 | VM_OBJECT_EVENT_PAGER_READY, | |
952 | interruptible); | |
953 | vm_object_unlock(object); | |
954 | wait_result = thread_block((void (*)(void))0); | |
955 | vm_object_deallocate(object); | |
956 | goto backoff; | |
957 | } else { | |
958 | vm_object_unlock(object); | |
959 | vm_object_deallocate(object); | |
960 | cur_thread->interruptible = interruptible_state; | |
961 | return VM_FAULT_RETRY; | |
962 | } | |
963 | } | |
964 | ||
965 | if(object->phys_contiguous) { | |
966 | if(m != VM_PAGE_NULL) { | |
967 | VM_PAGE_FREE(m); | |
968 | m = VM_PAGE_NULL; | |
969 | } | |
970 | goto no_clustering; | |
971 | } | |
972 | if (object->internal) { | |
973 | /* | |
974 | * Requests to the default pager | |
975 | * must reserve a real page in advance, | |
976 | * because the pager's data-provided | |
977 | * won't block for pages. IMPORTANT: | |
978 | * this acts as a throttling mechanism | |
979 | * for data_requests to the default | |
980 | * pager. | |
981 | */ | |
982 | ||
983 | #if TRACEFAULTPAGE | |
984 | dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
985 | #endif | |
986 | if (m->fictitious && !vm_page_convert(m)) { | |
987 | VM_PAGE_FREE(m); | |
988 | vm_fault_cleanup(object, first_m); | |
989 | cur_thread->interruptible = interruptible_state; | |
990 | return(VM_FAULT_MEMORY_SHORTAGE); | |
991 | } | |
992 | } else if (object->absent_count > | |
993 | vm_object_absent_max) { | |
994 | /* | |
995 | * If there are too many outstanding page | |
996 | * requests pending on this object, we | |
997 | * wait for them to be resolved now. | |
998 | */ | |
999 | ||
1000 | #if TRACEFAULTPAGE | |
1001 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1002 | #endif | |
1003 | if(m != VM_PAGE_NULL) | |
1004 | VM_PAGE_FREE(m); | |
1005 | /* take an extra ref so object won't die */ | |
1006 | assert(object->ref_count > 0); | |
1007 | object->ref_count++; | |
1008 | vm_object_res_reference(object); | |
1009 | vm_fault_cleanup(object, first_m); | |
1010 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1011 | vm_object_lock(object); | |
1012 | assert(object->ref_count > 0); | |
1013 | if (object->absent_count > vm_object_absent_max) { | |
1014 | vm_object_absent_assert_wait(object, | |
1015 | interruptible); | |
1016 | vm_object_unlock(object); | |
1017 | wait_result = thread_block((void (*)(void))0); | |
1018 | vm_object_deallocate(object); | |
1019 | goto backoff; | |
1020 | } else { | |
1021 | vm_object_unlock(object); | |
1022 | vm_object_deallocate(object); | |
1023 | cur_thread->interruptible = interruptible_state; | |
1024 | return VM_FAULT_RETRY; | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | /* | |
1029 | * Indicate that the page is waiting for data | |
1030 | * from the memory manager. | |
1031 | */ | |
1032 | ||
1033 | if(m != VM_PAGE_NULL) { | |
1034 | ||
1035 | m->list_req_pending = TRUE; | |
1036 | m->absent = TRUE; | |
1037 | m->unusual = TRUE; | |
1038 | object->absent_count++; | |
1039 | ||
1040 | } | |
1041 | ||
1042 | cluster_start = offset; | |
1043 | length = PAGE_SIZE; | |
1044 | cluster_size = object->cluster_size; | |
1045 | ||
1046 | /* | |
1047 | * Skip clustered pagein if it is globally disabled | |
1048 | * or random page reference behavior is expected | |
1049 | * for the address range containing the faulting | |
1050 | * address or the object paging block size is | |
1051 | * equal to the page size. | |
1052 | */ | |
1053 | if (!vm_allow_clustered_pagein || | |
1054 | behavior == VM_BEHAVIOR_RANDOM || | |
1055 | m == VM_PAGE_NULL || | |
1056 | cluster_size == PAGE_SIZE) { | |
1057 | cluster_start = trunc_page_64(cluster_start); | |
1058 | goto no_clustering; | |
1059 | } | |
1060 | ||
1061 | assert(offset >= lo_offset); | |
1062 | assert(offset < hi_offset); | |
1063 | assert(ALIGNED(object->paging_offset)); | |
1064 | assert(cluster_size >= PAGE_SIZE); | |
1065 | ||
1066 | #if TRACEFAULTPAGE | |
1067 | dbgTrace(0xBEEF0011, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1068 | #endif | |
1069 | /* | |
1070 | * Decide whether to scan ahead or behind for | |
1071 | * additional pages contiguous to the faulted | |
1072 | * page in the same paging block. The decision | |
1073 | * is based on system wide globals and the | |
1074 | * expected page reference behavior of the | |
1075 | * address range contained the faulting address. | |
1076 | * First calculate some constants. | |
1077 | */ | |
1078 | paging_offset = offset + object->paging_offset; | |
1079 | cluster_offset = paging_offset & (cluster_size - 1); | |
1080 | align_offset = paging_offset&(PAGE_SIZE_64-1); | |
1081 | if (align_offset != 0) { | |
1082 | cluster_offset = trunc_page_64(cluster_offset); | |
1083 | } | |
1084 | ||
1085 | #define SPANS_CLUSTER(x) ((((x) - align_offset) & (vm_object_offset_t)(cluster_size - 1)) == 0) | |
1086 | ||
1087 | /* | |
1088 | * Backward scan only if reverse sequential | |
1089 | * behavior has been specified | |
1090 | */ | |
1091 | CLUSTER_STAT(pages_at_lower_offsets = 0;) | |
1092 | if (((vm_default_behind != 0 && | |
1093 | behavior == VM_BEHAVIOR_DEFAULT) || | |
1094 | behavior == VM_BEHAVIOR_RSEQNTL) && offset) { | |
1095 | vm_object_offset_t cluster_bot; | |
1096 | ||
1097 | /* | |
1098 | * Calculate lower search boundary. | |
1099 | * Exclude pages that span a cluster boundary. | |
1100 | * Clip to start of map entry. | |
1101 | * For default page reference behavior, scan | |
1102 | * default pages behind. | |
1103 | */ | |
1104 | cluster_bot = (offset > cluster_offset) ? | |
1105 | offset - cluster_offset : offset; | |
1106 | if (align_offset != 0) { | |
1107 | if ((cluster_bot < offset) && | |
1108 | SPANS_CLUSTER(cluster_bot)) { | |
1109 | cluster_bot += PAGE_SIZE_64; | |
1110 | } | |
1111 | } | |
1112 | if (behavior == VM_BEHAVIOR_DEFAULT) { | |
1113 | vm_object_offset_t | |
1114 | bot = (vm_object_offset_t) | |
1115 | (vm_default_behind * PAGE_SIZE); | |
1116 | ||
1117 | if (cluster_bot < (offset - bot)) | |
1118 | cluster_bot = offset - bot; | |
1119 | } | |
1120 | if (lo_offset > cluster_bot) | |
1121 | cluster_bot = lo_offset; | |
1122 | ||
1123 | for ( cluster_start = offset - PAGE_SIZE_64; | |
1124 | (cluster_start >= cluster_bot) && | |
1125 | (cluster_start != | |
1126 | (align_offset - PAGE_SIZE_64)); | |
1127 | cluster_start -= PAGE_SIZE_64) { | |
1128 | assert(cluster_size > PAGE_SIZE_64); | |
1129 | retry_cluster_backw: | |
1130 | if (!LOOK_FOR(object, cluster_start) || | |
1131 | vm_page_lookup(object, cluster_start) | |
1132 | != VM_PAGE_NULL) { | |
1133 | break; | |
1134 | } | |
1135 | if (object->internal) { | |
1136 | /* | |
1137 | * need to acquire a real page in | |
1138 | * advance because this acts as | |
1139 | * a throttling mechanism for | |
1140 | * data_requests to the default | |
1141 | * pager. If this fails, give up | |
1142 | * trying to find any more pages | |
1143 | * in the cluster and send off the | |
1144 | * request for what we already have. | |
1145 | */ | |
1146 | if ((m = vm_page_grab()) | |
1147 | == VM_PAGE_NULL) { | |
1148 | cluster_start += PAGE_SIZE_64; | |
1149 | cluster_end = offset + PAGE_SIZE_64; | |
1150 | goto give_up; | |
1151 | } | |
1152 | } else if ((m = vm_page_grab_fictitious()) | |
1153 | == VM_PAGE_NULL) { | |
1154 | vm_object_unlock(object); | |
1155 | vm_page_more_fictitious(); | |
1156 | vm_object_lock(object); | |
1157 | goto retry_cluster_backw; | |
1158 | } | |
1159 | m->absent = TRUE; | |
1160 | m->unusual = TRUE; | |
1161 | m->clustered = TRUE; | |
1162 | m->list_req_pending = TRUE; | |
1163 | ||
1164 | vm_page_insert(m, object, cluster_start); | |
1165 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
1166 | object->absent_count++; | |
1167 | } | |
1168 | cluster_start += PAGE_SIZE_64; | |
1169 | assert(cluster_start >= cluster_bot); | |
1170 | } | |
1171 | assert(cluster_start <= offset); | |
1172 | ||
1173 | /* | |
1174 | * Forward scan if default or sequential behavior | |
1175 | * specified | |
1176 | */ | |
1177 | CLUSTER_STAT(pages_at_higher_offsets = 0;) | |
1178 | if ((behavior == VM_BEHAVIOR_DEFAULT && | |
1179 | vm_default_ahead != 0) || | |
1180 | behavior == VM_BEHAVIOR_SEQUENTIAL) { | |
1181 | vm_object_offset_t cluster_top; | |
1182 | ||
1183 | /* | |
1184 | * Calculate upper search boundary. | |
1185 | * Exclude pages that span a cluster boundary. | |
1186 | * Clip to end of map entry. | |
1187 | * For default page reference behavior, scan | |
1188 | * default pages ahead. | |
1189 | */ | |
1190 | cluster_top = (offset + cluster_size) - | |
1191 | cluster_offset; | |
1192 | if (align_offset != 0) { | |
1193 | if ((cluster_top > (offset + PAGE_SIZE_64)) && | |
1194 | SPANS_CLUSTER(cluster_top)) { | |
1195 | cluster_top -= PAGE_SIZE_64; | |
1196 | } | |
1197 | } | |
1198 | if (behavior == VM_BEHAVIOR_DEFAULT) { | |
1199 | vm_object_offset_t top = (vm_object_offset_t) | |
1200 | ((vm_default_ahead*PAGE_SIZE)+PAGE_SIZE); | |
1201 | ||
1202 | if (cluster_top > (offset + top)) | |
1203 | cluster_top = offset + top; | |
1204 | } | |
1205 | if (cluster_top > hi_offset) | |
1206 | cluster_top = hi_offset; | |
1207 | ||
1208 | for (cluster_end = offset + PAGE_SIZE_64; | |
1209 | cluster_end < cluster_top; | |
1210 | cluster_end += PAGE_SIZE_64) { | |
1211 | assert(cluster_size > PAGE_SIZE); | |
1212 | retry_cluster_forw: | |
1213 | if (!LOOK_FOR(object, cluster_end) || | |
1214 | vm_page_lookup(object, cluster_end) | |
1215 | != VM_PAGE_NULL) { | |
1216 | break; | |
1217 | } | |
1218 | if (object->internal) { | |
1219 | /* | |
1220 | * need to acquire a real page in | |
1221 | * advance because this acts as | |
1222 | * a throttling mechanism for | |
1223 | * data_requests to the default | |
1224 | * pager. If this fails, give up | |
1225 | * trying to find any more pages | |
1226 | * in the cluster and send off the | |
1227 | * request for what we already have. | |
1228 | */ | |
1229 | if ((m = vm_page_grab()) | |
1230 | == VM_PAGE_NULL) { | |
1231 | break; | |
1232 | } | |
1233 | } else if ((m = vm_page_grab_fictitious()) | |
1234 | == VM_PAGE_NULL) { | |
1235 | vm_object_unlock(object); | |
1236 | vm_page_more_fictitious(); | |
1237 | vm_object_lock(object); | |
1238 | goto retry_cluster_forw; | |
1239 | } | |
1240 | m->absent = TRUE; | |
1241 | m->unusual = TRUE; | |
1242 | m->clustered = TRUE; | |
1243 | m->list_req_pending = TRUE; | |
1244 | ||
1245 | vm_page_insert(m, object, cluster_end); | |
1246 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
1247 | object->absent_count++; | |
1248 | } | |
1249 | assert(cluster_end <= cluster_top); | |
1250 | } | |
1251 | else { | |
1252 | cluster_end = offset + PAGE_SIZE_64; | |
1253 | } | |
1254 | give_up: | |
1255 | assert(cluster_end >= offset + PAGE_SIZE_64); | |
1256 | length = cluster_end - cluster_start; | |
1257 | ||
1258 | #if MACH_CLUSTER_STATS | |
1259 | CLUSTER_STAT_HIGHER(pages_at_higher_offsets); | |
1260 | CLUSTER_STAT_LOWER(pages_at_lower_offsets); | |
1261 | CLUSTER_STAT_CLUSTER(length/PAGE_SIZE); | |
1262 | #endif /* MACH_CLUSTER_STATS */ | |
1263 | ||
1264 | no_clustering: | |
1265 | /* | |
1266 | * lengthen the cluster by the pages in the working set | |
1267 | */ | |
1268 | if((map != NULL) && | |
1269 | (current_task()->dynamic_working_set != 0)) { | |
1270 | cluster_end = cluster_start + length; | |
1271 | /* tws values for start and end are just a | |
1272 | * suggestions. Therefore, as long as | |
1273 | * build_cluster does not use pointers or | |
1274 | * take action based on values that | |
1275 | * could be affected by re-entrance we | |
1276 | * do not need to take the map lock. | |
1277 | */ | |
1278 | tws_build_cluster((tws_hash_t) | |
1279 | current_task()->dynamic_working_set, | |
1280 | object, &cluster_start, | |
1281 | &cluster_end, 0x16000); | |
1282 | length = cluster_end - cluster_start; | |
1283 | } | |
1284 | #if TRACEFAULTPAGE | |
1285 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1286 | #endif | |
1287 | /* | |
1288 | * We have a busy page, so we can | |
1289 | * release the object lock. | |
1290 | */ | |
1291 | vm_object_unlock(object); | |
1292 | ||
1293 | /* | |
1294 | * Call the memory manager to retrieve the data. | |
1295 | */ | |
1296 | ||
1297 | if (type_of_fault) | |
1298 | *type_of_fault = DBG_PAGEIN_FAULT; | |
1299 | VM_STAT(pageins++); | |
1300 | current_task()->pageins++; | |
1301 | bumped_pagein = TRUE; | |
1302 | ||
1303 | /* | |
1304 | * If this object uses a copy_call strategy, | |
1305 | * and we are interested in a copy of this object | |
1306 | * (having gotten here only by following a | |
1307 | * shadow chain), then tell the memory manager | |
1308 | * via a flag added to the desired_access | |
1309 | * parameter, so that it can detect a race | |
1310 | * between our walking down the shadow chain | |
1311 | * and its pushing pages up into a copy of | |
1312 | * the object that it manages. | |
1313 | */ | |
1314 | ||
1315 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && | |
1316 | object != first_object) { | |
1317 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1318 | } else { | |
1319 | wants_copy_flag = VM_PROT_NONE; | |
1320 | } | |
1321 | ||
1322 | XPR(XPR_VM_FAULT, | |
1323 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1324 | (integer_t)object, offset, (integer_t)m, | |
1325 | access_required | wants_copy_flag, 0); | |
1326 | ||
1327 | rc = memory_object_data_request(object->pager, | |
1328 | cluster_start + object->paging_offset, | |
1329 | length, | |
1330 | access_required | wants_copy_flag); | |
1331 | ||
1332 | ||
1333 | #if TRACEFAULTPAGE | |
1334 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1335 | #endif | |
1336 | if (rc != KERN_SUCCESS) { | |
1337 | if (rc != MACH_SEND_INTERRUPTED | |
1338 | && vm_fault_debug) | |
1339 | printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n", | |
1340 | "memory_object_data_request", | |
1341 | object->pager, | |
1342 | cluster_start + object->paging_offset, | |
1343 | length, access_required, rc); | |
1344 | /* | |
1345 | * Don't want to leave a busy page around, | |
1346 | * but the data request may have blocked, | |
1347 | * so check if it's still there and busy. | |
1348 | */ | |
1349 | if(!object->phys_contiguous) { | |
1350 | vm_object_lock(object); | |
1351 | for (; length; length -= PAGE_SIZE, | |
1352 | cluster_start += PAGE_SIZE_64) { | |
1353 | vm_page_t p; | |
1354 | if ((p = vm_page_lookup(object, | |
1355 | cluster_start)) | |
1356 | && p->absent && p->busy | |
1357 | && p != first_m) { | |
1358 | VM_PAGE_FREE(p); | |
1359 | } | |
1360 | } | |
1361 | } | |
1362 | vm_fault_cleanup(object, first_m); | |
1363 | cur_thread->interruptible = interruptible_state; | |
1364 | return((rc == MACH_SEND_INTERRUPTED) ? | |
1365 | VM_FAULT_INTERRUPTED : | |
1366 | VM_FAULT_MEMORY_ERROR); | |
1367 | } else { | |
1368 | #ifdef notdefcdy | |
1369 | tws_hash_line_t line; | |
1370 | task_t task; | |
1371 | ||
1372 | task = current_task(); | |
1373 | ||
1374 | if((map != NULL) && | |
1375 | (task->dynamic_working_set != 0)) { | |
1376 | if(tws_lookup | |
1377 | ((tws_hash_t) | |
1378 | task->dynamic_working_set, | |
1379 | offset, object, | |
1380 | &line) == KERN_SUCCESS) { | |
1381 | tws_line_signal((tws_hash_t) | |
1382 | task->dynamic_working_set, | |
1383 | map, line, vaddr); | |
1384 | } | |
1385 | } | |
1386 | #endif | |
1387 | } | |
1388 | ||
1389 | /* | |
1390 | * Retry with same object/offset, since new data may | |
1391 | * be in a different page (i.e., m is meaningless at | |
1392 | * this point). | |
1393 | */ | |
1394 | vm_object_lock(object); | |
1395 | if ((interruptible != THREAD_UNINT) && | |
1396 | (current_thread()->state & TH_ABORT)) { | |
1397 | vm_fault_cleanup(object, first_m); | |
1398 | cur_thread->interruptible = interruptible_state; | |
1399 | return(VM_FAULT_INTERRUPTED); | |
1400 | } | |
1401 | if(m == VM_PAGE_NULL) | |
1402 | break; | |
1403 | continue; | |
1404 | } | |
1405 | ||
1406 | /* | |
1407 | * The only case in which we get here is if | |
1408 | * object has no pager (or unwiring). If the pager doesn't | |
1409 | * have the page this is handled in the m->absent case above | |
1410 | * (and if you change things here you should look above). | |
1411 | */ | |
1412 | #if TRACEFAULTPAGE | |
1413 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1414 | #endif | |
1415 | if (object == first_object) | |
1416 | first_m = m; | |
1417 | else | |
1418 | assert(m == VM_PAGE_NULL); | |
1419 | ||
1420 | XPR(XPR_VM_FAULT, | |
1421 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1422 | (integer_t)object, offset, (integer_t)m, | |
1423 | (integer_t)object->shadow, 0); | |
1424 | /* | |
1425 | * Move on to the next object. Lock the next | |
1426 | * object before unlocking the current one. | |
1427 | */ | |
1428 | next_object = object->shadow; | |
1429 | if (next_object == VM_OBJECT_NULL) { | |
1430 | assert(!must_be_resident); | |
1431 | /* | |
1432 | * If there's no object left, fill the page | |
1433 | * in the top object with zeros. But first we | |
1434 | * need to allocate a real page. | |
1435 | */ | |
1436 | ||
1437 | if (object != first_object) { | |
1438 | vm_object_paging_end(object); | |
1439 | vm_object_unlock(object); | |
1440 | ||
1441 | object = first_object; | |
1442 | offset = first_offset; | |
1443 | vm_object_lock(object); | |
1444 | } | |
1445 | ||
1446 | m = first_m; | |
1447 | assert(m->object == object); | |
1448 | first_m = VM_PAGE_NULL; | |
1449 | ||
1450 | if (object->shadow_severed) { | |
1451 | VM_PAGE_FREE(m); | |
1452 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1453 | cur_thread->interruptible = interruptible_state; | |
1454 | return VM_FAULT_MEMORY_ERROR; | |
1455 | } | |
1456 | ||
1457 | if (VM_PAGE_THROTTLED() || | |
1458 | (m->fictitious && !vm_page_convert(m))) { | |
1459 | VM_PAGE_FREE(m); | |
1460 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1461 | cur_thread->interruptible = interruptible_state; | |
1462 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1463 | } | |
1464 | m->no_isync = FALSE; | |
1465 | ||
1466 | if (!no_zero_fill) { | |
1467 | vm_object_unlock(object); | |
1468 | vm_page_zero_fill(m); | |
1469 | if (type_of_fault) | |
1470 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
1471 | VM_STAT(zero_fill_count++); | |
1472 | ||
1473 | if (bumped_pagein == TRUE) { | |
1474 | VM_STAT(pageins--); | |
1475 | current_task()->pageins--; | |
1476 | } | |
1477 | vm_object_lock(object); | |
1478 | } | |
1479 | vm_page_lock_queues(); | |
1480 | VM_PAGE_QUEUES_REMOVE(m); | |
1481 | m->page_ticket = vm_page_ticket; | |
1482 | vm_page_ticket_roll++; | |
1483 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1484 | vm_page_ticket_roll = 0; | |
1485 | if(vm_page_ticket == | |
1486 | VM_PAGE_TICKET_ROLL_IDS) | |
1487 | vm_page_ticket= 0; | |
1488 | else | |
1489 | vm_page_ticket++; | |
1490 | } | |
1491 | queue_enter(&vm_page_queue_inactive, | |
1492 | m, vm_page_t, pageq); | |
1493 | m->inactive = TRUE; | |
1494 | vm_page_inactive_count++; | |
1495 | vm_page_unlock_queues(); | |
1496 | pmap_clear_modify(m->phys_addr); | |
1497 | break; | |
1498 | } | |
1499 | else { | |
1500 | if ((object != first_object) || must_be_resident) | |
1501 | vm_object_paging_end(object); | |
1502 | offset += object->shadow_offset; | |
1503 | hi_offset += object->shadow_offset; | |
1504 | lo_offset += object->shadow_offset; | |
1505 | access_required = VM_PROT_READ; | |
1506 | vm_object_lock(next_object); | |
1507 | vm_object_unlock(object); | |
1508 | object = next_object; | |
1509 | vm_object_paging_begin(object); | |
1510 | } | |
1511 | } | |
1512 | ||
1513 | /* | |
1514 | * PAGE HAS BEEN FOUND. | |
1515 | * | |
1516 | * This page (m) is: | |
1517 | * busy, so that we can play with it; | |
1518 | * not absent, so that nobody else will fill it; | |
1519 | * possibly eligible for pageout; | |
1520 | * | |
1521 | * The top-level page (first_m) is: | |
1522 | * VM_PAGE_NULL if the page was found in the | |
1523 | * top-level object; | |
1524 | * busy, not absent, and ineligible for pageout. | |
1525 | * | |
1526 | * The current object (object) is locked. A paging | |
1527 | * reference is held for the current and top-level | |
1528 | * objects. | |
1529 | */ | |
1530 | ||
1531 | #if TRACEFAULTPAGE | |
1532 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1533 | #endif | |
1534 | #if EXTRA_ASSERTIONS | |
1535 | if(m != VM_PAGE_NULL) { | |
1536 | assert(m->busy && !m->absent); | |
1537 | assert((first_m == VM_PAGE_NULL) || | |
1538 | (first_m->busy && !first_m->absent && | |
1539 | !first_m->active && !first_m->inactive)); | |
1540 | } | |
1541 | #endif /* EXTRA_ASSERTIONS */ | |
1542 | ||
1543 | XPR(XPR_VM_FAULT, | |
1544 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", | |
1545 | (integer_t)object, offset, (integer_t)m, | |
1546 | (integer_t)first_object, (integer_t)first_m); | |
1547 | /* | |
1548 | * If the page is being written, but isn't | |
1549 | * already owned by the top-level object, | |
1550 | * we have to copy it into a new page owned | |
1551 | * by the top-level object. | |
1552 | */ | |
1553 | ||
1554 | if ((object != first_object) && (m != VM_PAGE_NULL)) { | |
1555 | /* | |
1556 | * We only really need to copy if we | |
1557 | * want to write it. | |
1558 | */ | |
1559 | ||
1560 | #if TRACEFAULTPAGE | |
1561 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1562 | #endif | |
1563 | if (fault_type & VM_PROT_WRITE) { | |
1564 | vm_page_t copy_m; | |
1565 | ||
1566 | assert(!must_be_resident); | |
1567 | ||
1568 | /* | |
1569 | * If we try to collapse first_object at this | |
1570 | * point, we may deadlock when we try to get | |
1571 | * the lock on an intermediate object (since we | |
1572 | * have the bottom object locked). We can't | |
1573 | * unlock the bottom object, because the page | |
1574 | * we found may move (by collapse) if we do. | |
1575 | * | |
1576 | * Instead, we first copy the page. Then, when | |
1577 | * we have no more use for the bottom object, | |
1578 | * we unlock it and try to collapse. | |
1579 | * | |
1580 | * Note that we copy the page even if we didn't | |
1581 | * need to... that's the breaks. | |
1582 | */ | |
1583 | ||
1584 | /* | |
1585 | * Allocate a page for the copy | |
1586 | */ | |
1587 | copy_m = vm_page_grab(); | |
1588 | if (copy_m == VM_PAGE_NULL) { | |
1589 | RELEASE_PAGE(m); | |
1590 | vm_fault_cleanup(object, first_m); | |
1591 | cur_thread->interruptible = interruptible_state; | |
1592 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1593 | } | |
1594 | ||
1595 | ||
1596 | XPR(XPR_VM_FAULT, | |
1597 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1598 | (integer_t)object, offset, | |
1599 | (integer_t)m, (integer_t)copy_m, 0); | |
1600 | vm_page_copy(m, copy_m); | |
1601 | ||
1602 | /* | |
1603 | * If another map is truly sharing this | |
1604 | * page with us, we have to flush all | |
1605 | * uses of the original page, since we | |
1606 | * can't distinguish those which want the | |
1607 | * original from those which need the | |
1608 | * new copy. | |
1609 | * | |
1610 | * XXXO If we know that only one map has | |
1611 | * access to this page, then we could | |
1612 | * avoid the pmap_page_protect() call. | |
1613 | */ | |
1614 | ||
1615 | vm_page_lock_queues(); | |
1616 | assert(!m->cleaning); | |
1617 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
1618 | vm_page_deactivate(m); | |
1619 | copy_m->dirty = TRUE; | |
1620 | /* | |
1621 | * Setting reference here prevents this fault from | |
1622 | * being counted as a (per-thread) reactivate as well | |
1623 | * as a copy-on-write. | |
1624 | */ | |
1625 | first_m->reference = TRUE; | |
1626 | vm_page_unlock_queues(); | |
1627 | ||
1628 | /* | |
1629 | * We no longer need the old page or object. | |
1630 | */ | |
1631 | ||
1632 | PAGE_WAKEUP_DONE(m); | |
1633 | vm_object_paging_end(object); | |
1634 | vm_object_unlock(object); | |
1635 | ||
1636 | if (type_of_fault) | |
1637 | *type_of_fault = DBG_COW_FAULT; | |
1638 | VM_STAT(cow_faults++); | |
1639 | current_task()->cow_faults++; | |
1640 | object = first_object; | |
1641 | offset = first_offset; | |
1642 | ||
1643 | vm_object_lock(object); | |
1644 | VM_PAGE_FREE(first_m); | |
1645 | first_m = VM_PAGE_NULL; | |
1646 | assert(copy_m->busy); | |
1647 | vm_page_insert(copy_m, object, offset); | |
1648 | m = copy_m; | |
1649 | ||
1650 | /* | |
1651 | * Now that we've gotten the copy out of the | |
1652 | * way, let's try to collapse the top object. | |
1653 | * But we have to play ugly games with | |
1654 | * paging_in_progress to do that... | |
1655 | */ | |
1656 | ||
1657 | vm_object_paging_end(object); | |
1658 | vm_object_collapse(object); | |
1659 | vm_object_paging_begin(object); | |
1660 | ||
1661 | } | |
1662 | else { | |
1663 | *protection &= (~VM_PROT_WRITE); | |
1664 | } | |
1665 | } | |
1666 | ||
1667 | /* | |
1668 | * Now check whether the page needs to be pushed into the | |
1669 | * copy object. The use of asymmetric copy on write for | |
1670 | * shared temporary objects means that we may do two copies to | |
1671 | * satisfy the fault; one above to get the page from a | |
1672 | * shadowed object, and one here to push it into the copy. | |
1673 | */ | |
1674 | ||
1675 | while (first_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && | |
1676 | (copy_object = first_object->copy) != VM_OBJECT_NULL && | |
1677 | (m!= VM_PAGE_NULL)) { | |
1678 | vm_object_offset_t copy_offset; | |
1679 | vm_page_t copy_m; | |
1680 | ||
1681 | #if TRACEFAULTPAGE | |
1682 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1683 | #endif | |
1684 | /* | |
1685 | * If the page is being written, but hasn't been | |
1686 | * copied to the copy-object, we have to copy it there. | |
1687 | */ | |
1688 | ||
1689 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
1690 | *protection &= ~VM_PROT_WRITE; | |
1691 | break; | |
1692 | } | |
1693 | ||
1694 | /* | |
1695 | * If the page was guaranteed to be resident, | |
1696 | * we must have already performed the copy. | |
1697 | */ | |
1698 | ||
1699 | if (must_be_resident) | |
1700 | break; | |
1701 | ||
1702 | /* | |
1703 | * Try to get the lock on the copy_object. | |
1704 | */ | |
1705 | if (!vm_object_lock_try(copy_object)) { | |
1706 | vm_object_unlock(object); | |
1707 | ||
1708 | mutex_pause(); /* wait a bit */ | |
1709 | ||
1710 | vm_object_lock(object); | |
1711 | continue; | |
1712 | } | |
1713 | ||
1714 | /* | |
1715 | * Make another reference to the copy-object, | |
1716 | * to keep it from disappearing during the | |
1717 | * copy. | |
1718 | */ | |
1719 | assert(copy_object->ref_count > 0); | |
1720 | copy_object->ref_count++; | |
1721 | VM_OBJ_RES_INCR(copy_object); | |
1722 | ||
1723 | /* | |
1724 | * Does the page exist in the copy? | |
1725 | */ | |
1726 | copy_offset = first_offset - copy_object->shadow_offset; | |
1727 | if (copy_object->size <= copy_offset) | |
1728 | /* | |
1729 | * Copy object doesn't cover this page -- do nothing. | |
1730 | */ | |
1731 | ; | |
1732 | else if ((copy_m = | |
1733 | vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
1734 | /* Page currently exists in the copy object */ | |
1735 | if (copy_m->busy) { | |
1736 | /* | |
1737 | * If the page is being brought | |
1738 | * in, wait for it and then retry. | |
1739 | */ | |
1740 | RELEASE_PAGE(m); | |
1741 | /* take an extra ref so object won't die */ | |
1742 | assert(copy_object->ref_count > 0); | |
1743 | copy_object->ref_count++; | |
1744 | vm_object_res_reference(copy_object); | |
1745 | vm_object_unlock(copy_object); | |
1746 | vm_fault_cleanup(object, first_m); | |
1747 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1748 | vm_object_lock(copy_object); | |
1749 | assert(copy_object->ref_count > 0); | |
1750 | VM_OBJ_RES_DECR(copy_object); | |
1751 | copy_object->ref_count--; | |
1752 | assert(copy_object->ref_count > 0); | |
1753 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
1754 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { | |
1755 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
1756 | vm_object_unlock(copy_object); | |
1757 | wait_result = thread_block((void (*)(void))0); | |
1758 | vm_object_deallocate(copy_object); | |
1759 | goto backoff; | |
1760 | } else { | |
1761 | vm_object_unlock(copy_object); | |
1762 | vm_object_deallocate(copy_object); | |
1763 | cur_thread->interruptible = interruptible_state; | |
1764 | return VM_FAULT_RETRY; | |
1765 | } | |
1766 | } | |
1767 | } | |
1768 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1769 | /* | |
1770 | * If PAGED_OUT is TRUE, then the page used to exist | |
1771 | * in the copy-object, and has already been paged out. | |
1772 | * We don't need to repeat this. If PAGED_OUT is | |
1773 | * FALSE, then either we don't know (!pager_created, | |
1774 | * for example) or it hasn't been paged out. | |
1775 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1776 | * We must copy the page to the copy object. | |
1777 | */ | |
1778 | ||
1779 | /* | |
1780 | * Allocate a page for the copy | |
1781 | */ | |
1782 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
1783 | if (copy_m == VM_PAGE_NULL) { | |
1784 | RELEASE_PAGE(m); | |
1785 | VM_OBJ_RES_DECR(copy_object); | |
1786 | copy_object->ref_count--; | |
1787 | assert(copy_object->ref_count > 0); | |
1788 | vm_object_unlock(copy_object); | |
1789 | vm_fault_cleanup(object, first_m); | |
1790 | cur_thread->interruptible = interruptible_state; | |
1791 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1792 | } | |
1793 | ||
1794 | /* | |
1795 | * Must copy page into copy-object. | |
1796 | */ | |
1797 | ||
1798 | vm_page_copy(m, copy_m); | |
1799 | ||
1800 | /* | |
1801 | * If the old page was in use by any users | |
1802 | * of the copy-object, it must be removed | |
1803 | * from all pmaps. (We can't know which | |
1804 | * pmaps use it.) | |
1805 | */ | |
1806 | ||
1807 | vm_page_lock_queues(); | |
1808 | assert(!m->cleaning); | |
1809 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
1810 | copy_m->dirty = TRUE; | |
1811 | vm_page_unlock_queues(); | |
1812 | ||
1813 | /* | |
1814 | * If there's a pager, then immediately | |
1815 | * page out this page, using the "initialize" | |
1816 | * option. Else, we use the copy. | |
1817 | */ | |
1818 | ||
1819 | if | |
1820 | #if MACH_PAGEMAP | |
1821 | ((!copy_object->pager_created) || | |
1822 | vm_external_state_get( | |
1823 | copy_object->existence_map, copy_offset) | |
1824 | == VM_EXTERNAL_STATE_ABSENT) | |
1825 | #else | |
1826 | (!copy_object->pager_created) | |
1827 | #endif | |
1828 | { | |
1829 | vm_page_lock_queues(); | |
1830 | vm_page_activate(copy_m); | |
1831 | vm_page_unlock_queues(); | |
1832 | PAGE_WAKEUP_DONE(copy_m); | |
1833 | } | |
1834 | else { | |
1835 | assert(copy_m->busy == TRUE); | |
1836 | ||
1837 | /* | |
1838 | * The page is already ready for pageout: | |
1839 | * not on pageout queues and busy. | |
1840 | * Unlock everything except the | |
1841 | * copy_object itself. | |
1842 | */ | |
1843 | ||
1844 | vm_object_unlock(object); | |
1845 | ||
1846 | /* | |
1847 | * Write the page to the copy-object, | |
1848 | * flushing it from the kernel. | |
1849 | */ | |
1850 | ||
1851 | vm_pageout_initialize_page(copy_m); | |
1852 | ||
1853 | /* | |
1854 | * Since the pageout may have | |
1855 | * temporarily dropped the | |
1856 | * copy_object's lock, we | |
1857 | * check whether we'll have | |
1858 | * to deallocate the hard way. | |
1859 | */ | |
1860 | ||
1861 | if ((copy_object->shadow != object) || | |
1862 | (copy_object->ref_count == 1)) { | |
1863 | vm_object_unlock(copy_object); | |
1864 | vm_object_deallocate(copy_object); | |
1865 | vm_object_lock(object); | |
1866 | continue; | |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * Pick back up the old object's | |
1871 | * lock. [It is safe to do so, | |
1872 | * since it must be deeper in the | |
1873 | * object tree.] | |
1874 | */ | |
1875 | ||
1876 | vm_object_lock(object); | |
1877 | } | |
1878 | ||
1879 | /* | |
1880 | * Because we're pushing a page upward | |
1881 | * in the object tree, we must restart | |
1882 | * any faults that are waiting here. | |
1883 | * [Note that this is an expansion of | |
1884 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1885 | * wait result]. Can't turn off the page's | |
1886 | * busy bit because we're not done with it. | |
1887 | */ | |
1888 | ||
1889 | if (m->wanted) { | |
1890 | m->wanted = FALSE; | |
1891 | thread_wakeup_with_result((event_t) m, | |
1892 | THREAD_RESTART); | |
1893 | } | |
1894 | } | |
1895 | ||
1896 | /* | |
1897 | * The reference count on copy_object must be | |
1898 | * at least 2: one for our extra reference, | |
1899 | * and at least one from the outside world | |
1900 | * (we checked that when we last locked | |
1901 | * copy_object). | |
1902 | */ | |
1903 | copy_object->ref_count--; | |
1904 | assert(copy_object->ref_count > 0); | |
1905 | VM_OBJ_RES_DECR(copy_object); | |
1906 | vm_object_unlock(copy_object); | |
1907 | ||
1908 | break; | |
1909 | } | |
1910 | ||
1911 | *result_page = m; | |
1912 | *top_page = first_m; | |
1913 | ||
1914 | XPR(XPR_VM_FAULT, | |
1915 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1916 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1917 | /* | |
1918 | * If the page can be written, assume that it will be. | |
1919 | * [Earlier, we restrict the permission to allow write | |
1920 | * access only if the fault so required, so we don't | |
1921 | * mark read-only data as dirty.] | |
1922 | */ | |
1923 | ||
1924 | #if !VM_FAULT_STATIC_CONFIG | |
1925 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE) && | |
1926 | (m != VM_PAGE_NULL)) { | |
1927 | m->dirty = TRUE; | |
1928 | } | |
1929 | #endif | |
1930 | #if TRACEFAULTPAGE | |
1931 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_page_deactivate_behind); /* (TEST/DEBUG) */ | |
1932 | #endif | |
1933 | if (vm_page_deactivate_behind) { | |
1934 | if (offset && /* don't underflow */ | |
1935 | (object->last_alloc == (offset - PAGE_SIZE_64))) { | |
1936 | m = vm_page_lookup(object, object->last_alloc); | |
1937 | if ((m != VM_PAGE_NULL) && !m->busy) { | |
1938 | vm_page_lock_queues(); | |
1939 | vm_page_deactivate(m); | |
1940 | vm_page_unlock_queues(); | |
1941 | } | |
1942 | #if TRACEFAULTPAGE | |
1943 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1944 | #endif | |
1945 | } | |
1946 | object->last_alloc = offset; | |
1947 | } | |
1948 | #if TRACEFAULTPAGE | |
1949 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1950 | #endif | |
1951 | cur_thread->interruptible = interruptible_state; | |
1952 | if(*result_page == VM_PAGE_NULL) { | |
1953 | vm_object_unlock(object); | |
1954 | } | |
1955 | return(VM_FAULT_SUCCESS); | |
1956 | ||
1957 | #if 0 | |
1958 | block_and_backoff: | |
1959 | vm_fault_cleanup(object, first_m); | |
1960 | ||
1961 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1962 | thread_block((void (*)(void))0); | |
1963 | #endif | |
1964 | ||
1965 | backoff: | |
1966 | cur_thread->interruptible = interruptible_state; | |
1967 | if (wait_result == THREAD_INTERRUPTED) | |
1968 | return VM_FAULT_INTERRUPTED; | |
1969 | return VM_FAULT_RETRY; | |
1970 | ||
1971 | #undef RELEASE_PAGE | |
1972 | } | |
1973 | ||
1974 | /* | |
1975 | * Routine: vm_fault | |
1976 | * Purpose: | |
1977 | * Handle page faults, including pseudo-faults | |
1978 | * used to change the wiring status of pages. | |
1979 | * Returns: | |
1980 | * Explicit continuations have been removed. | |
1981 | * Implementation: | |
1982 | * vm_fault and vm_fault_page save mucho state | |
1983 | * in the moral equivalent of a closure. The state | |
1984 | * structure is allocated when first entering vm_fault | |
1985 | * and deallocated when leaving vm_fault. | |
1986 | */ | |
1987 | ||
1988 | kern_return_t | |
1989 | vm_fault( | |
1990 | vm_map_t map, | |
1991 | vm_offset_t vaddr, | |
1992 | vm_prot_t fault_type, | |
1993 | boolean_t change_wiring, | |
1994 | int interruptible) | |
1995 | { | |
1996 | vm_map_version_t version; /* Map version for verificiation */ | |
1997 | boolean_t wired; /* Should mapping be wired down? */ | |
1998 | vm_object_t object; /* Top-level object */ | |
1999 | vm_object_offset_t offset; /* Top-level offset */ | |
2000 | vm_prot_t prot; /* Protection for mapping */ | |
2001 | vm_behavior_t behavior; /* Expected paging behavior */ | |
2002 | vm_object_offset_t lo_offset, hi_offset; | |
2003 | vm_object_t old_copy_object; /* Saved copy object */ | |
2004 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2005 | vm_page_t top_page; /* Placeholder page */ | |
2006 | kern_return_t kr; | |
2007 | ||
2008 | register | |
2009 | vm_page_t m; /* Fast access to result_page */ | |
2010 | kern_return_t error_code; /* page error reasons */ | |
2011 | register | |
2012 | vm_object_t cur_object; | |
2013 | register | |
2014 | vm_object_offset_t cur_offset; | |
2015 | vm_page_t cur_m; | |
2016 | vm_object_t new_object; | |
2017 | int type_of_fault; | |
2018 | vm_map_t pmap_map = map; | |
2019 | vm_map_t original_map = map; | |
2020 | pmap_t pmap = NULL; | |
2021 | boolean_t funnel_set = FALSE; | |
2022 | funnel_t *curflock; | |
2023 | thread_t cur_thread; | |
2024 | boolean_t interruptible_state; | |
2025 | ||
2026 | ||
2027 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START, | |
2028 | vaddr, | |
2029 | 0, | |
2030 | 0, | |
2031 | 0, | |
2032 | 0); | |
2033 | ||
2034 | cur_thread = current_thread(); | |
2035 | ||
2036 | interruptible_state = cur_thread->interruptible; | |
2037 | if (interruptible == THREAD_UNINT) | |
2038 | cur_thread->interruptible = FALSE; | |
2039 | ||
2040 | /* | |
2041 | * assume we will hit a page in the cache | |
2042 | * otherwise, explicitly override with | |
2043 | * the real fault type once we determine it | |
2044 | */ | |
2045 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2046 | ||
2047 | VM_STAT(faults++); | |
2048 | current_task()->faults++; | |
2049 | ||
2050 | /* | |
2051 | * drop funnel if it is already held. Then restore while returning | |
2052 | */ | |
2053 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { | |
2054 | funnel_set = TRUE; | |
2055 | curflock = cur_thread->funnel_lock; | |
2056 | thread_funnel_set( curflock , FALSE); | |
2057 | } | |
2058 | ||
2059 | RetryFault: ; | |
2060 | ||
2061 | /* | |
2062 | * Find the backing store object and offset into | |
2063 | * it to begin the search. | |
2064 | */ | |
2065 | map = original_map; | |
2066 | vm_map_lock_read(map); | |
2067 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version, | |
2068 | &object, &offset, | |
2069 | &prot, &wired, | |
2070 | &behavior, &lo_offset, &hi_offset, &pmap_map); | |
2071 | ||
2072 | pmap = pmap_map->pmap; | |
2073 | ||
2074 | if (kr != KERN_SUCCESS) { | |
2075 | vm_map_unlock_read(map); | |
2076 | goto done; | |
2077 | } | |
2078 | ||
2079 | /* | |
2080 | * If the page is wired, we must fault for the current protection | |
2081 | * value, to avoid further faults. | |
2082 | */ | |
2083 | ||
2084 | if (wired) | |
2085 | fault_type = prot | VM_PROT_WRITE; | |
2086 | ||
2087 | #if VM_FAULT_CLASSIFY | |
2088 | /* | |
2089 | * Temporary data gathering code | |
2090 | */ | |
2091 | vm_fault_classify(object, offset, fault_type); | |
2092 | #endif | |
2093 | /* | |
2094 | * Fast fault code. The basic idea is to do as much as | |
2095 | * possible while holding the map lock and object locks. | |
2096 | * Busy pages are not used until the object lock has to | |
2097 | * be dropped to do something (copy, zero fill, pmap enter). | |
2098 | * Similarly, paging references aren't acquired until that | |
2099 | * point, and object references aren't used. | |
2100 | * | |
2101 | * If we can figure out what to do | |
2102 | * (zero fill, copy on write, pmap enter) while holding | |
2103 | * the locks, then it gets done. Otherwise, we give up, | |
2104 | * and use the original fault path (which doesn't hold | |
2105 | * the map lock, and relies on busy pages). | |
2106 | * The give up cases include: | |
2107 | * - Have to talk to pager. | |
2108 | * - Page is busy, absent or in error. | |
2109 | * - Pager has locked out desired access. | |
2110 | * - Fault needs to be restarted. | |
2111 | * - Have to push page into copy object. | |
2112 | * | |
2113 | * The code is an infinite loop that moves one level down | |
2114 | * the shadow chain each time. cur_object and cur_offset | |
2115 | * refer to the current object being examined. object and offset | |
2116 | * are the original object from the map. The loop is at the | |
2117 | * top level if and only if object and cur_object are the same. | |
2118 | * | |
2119 | * Invariants: Map lock is held throughout. Lock is held on | |
2120 | * original object and cur_object (if different) when | |
2121 | * continuing or exiting loop. | |
2122 | * | |
2123 | */ | |
2124 | ||
2125 | ||
2126 | /* | |
2127 | * If this page is to be inserted in a copy delay object | |
2128 | * for writing, and if the object has a copy, then the | |
2129 | * copy delay strategy is implemented in the slow fault page. | |
2130 | */ | |
2131 | if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY || | |
2132 | object->copy == VM_OBJECT_NULL || | |
2133 | (fault_type & VM_PROT_WRITE) == 0) { | |
2134 | cur_object = object; | |
2135 | cur_offset = offset; | |
2136 | ||
2137 | while (TRUE) { | |
2138 | m = vm_page_lookup(cur_object, cur_offset); | |
2139 | if (m != VM_PAGE_NULL) { | |
2140 | if (m->busy) | |
2141 | break; | |
2142 | ||
2143 | if (m->unusual && (m->error || m->restart || m->private | |
2144 | || m->absent || (fault_type & m->page_lock))) { | |
2145 | ||
2146 | /* | |
2147 | * Unusual case. Give up. | |
2148 | */ | |
2149 | break; | |
2150 | } | |
2151 | ||
2152 | /* | |
2153 | * Two cases of map in faults: | |
2154 | * - At top level w/o copy object. | |
2155 | * - Read fault anywhere. | |
2156 | * --> must disallow write. | |
2157 | */ | |
2158 | ||
2159 | if (object == cur_object && | |
2160 | object->copy == VM_OBJECT_NULL) | |
2161 | goto FastMapInFault; | |
2162 | ||
2163 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2164 | ||
2165 | prot &= ~VM_PROT_WRITE; | |
2166 | ||
2167 | /* | |
2168 | * Set up to map the page ... | |
2169 | * mark the page busy, drop | |
2170 | * locks and take a paging reference | |
2171 | * on the object with the page. | |
2172 | */ | |
2173 | ||
2174 | if (object != cur_object) { | |
2175 | vm_object_unlock(object); | |
2176 | object = cur_object; | |
2177 | } | |
2178 | FastMapInFault: | |
2179 | m->busy = TRUE; | |
2180 | ||
2181 | vm_object_paging_begin(object); | |
2182 | vm_object_unlock(object); | |
2183 | ||
2184 | FastPmapEnter: | |
2185 | /* | |
2186 | * Check a couple of global reasons to | |
2187 | * be conservative about write access. | |
2188 | * Then do the pmap_enter. | |
2189 | */ | |
2190 | #if !VM_FAULT_STATIC_CONFIG | |
2191 | if (vm_fault_dirty_handling | |
2192 | #if MACH_KDB | |
2193 | || db_watchpoint_list | |
2194 | #endif | |
2195 | && (fault_type & VM_PROT_WRITE) == 0) | |
2196 | prot &= ~VM_PROT_WRITE; | |
2197 | #else /* STATIC_CONFIG */ | |
2198 | #if MACH_KDB | |
2199 | if (db_watchpoint_list | |
2200 | && (fault_type & VM_PROT_WRITE) == 0) | |
2201 | prot &= ~VM_PROT_WRITE; | |
2202 | #endif /* MACH_KDB */ | |
2203 | #endif /* STATIC_CONFIG */ | |
2204 | if (m->no_isync == TRUE) | |
2205 | pmap_sync_caches_phys(m->phys_addr); | |
2206 | ||
2207 | PMAP_ENTER(pmap, vaddr, m, prot, wired); | |
2208 | { | |
2209 | tws_hash_line_t line; | |
2210 | task_t task; | |
2211 | ||
2212 | task = current_task(); | |
2213 | if((map != NULL) && | |
2214 | (task->dynamic_working_set != 0)) { | |
2215 | if(tws_lookup | |
2216 | ((tws_hash_t) | |
2217 | task->dynamic_working_set, | |
2218 | cur_offset, object, | |
2219 | &line) != KERN_SUCCESS) { | |
2220 | if(tws_insert((tws_hash_t) | |
2221 | task->dynamic_working_set, | |
2222 | m->offset, m->object, | |
2223 | vaddr, pmap_map) | |
2224 | == KERN_NO_SPACE) { | |
2225 | tws_expand_working_set( | |
2226 | task->dynamic_working_set, | |
2227 | TWS_HASH_LINE_COUNT); | |
2228 | } | |
2229 | } | |
2230 | } | |
2231 | } | |
2232 | /* | |
2233 | * Grab the object lock to manipulate | |
2234 | * the page queues. Change wiring | |
2235 | * case is obvious. In soft ref bits | |
2236 | * case activate page only if it fell | |
2237 | * off paging queues, otherwise just | |
2238 | * activate it if it's inactive. | |
2239 | * | |
2240 | * NOTE: original vm_fault code will | |
2241 | * move active page to back of active | |
2242 | * queue. This code doesn't. | |
2243 | */ | |
2244 | vm_object_lock(object); | |
2245 | vm_page_lock_queues(); | |
2246 | ||
2247 | if (m->clustered) { | |
2248 | vm_pagein_cluster_used++; | |
2249 | m->clustered = FALSE; | |
2250 | } | |
2251 | /* | |
2252 | * we did the isync above (if needed)... we're clearing | |
2253 | * the flag here to avoid holding a lock | |
2254 | * while calling pmap functions, however | |
2255 | * we need hold the object lock before | |
2256 | * we can modify the flag | |
2257 | */ | |
2258 | m->no_isync = FALSE; | |
2259 | m->reference = TRUE; | |
2260 | ||
2261 | if (change_wiring) { | |
2262 | if (wired) | |
2263 | vm_page_wire(m); | |
2264 | else | |
2265 | vm_page_unwire(m); | |
2266 | } | |
2267 | #if VM_FAULT_STATIC_CONFIG | |
2268 | else { | |
2269 | if (!m->active && !m->inactive) | |
2270 | vm_page_activate(m); | |
2271 | } | |
2272 | #else | |
2273 | else if (software_reference_bits) { | |
2274 | if (!m->active && !m->inactive) | |
2275 | vm_page_activate(m); | |
2276 | } | |
2277 | else if (!m->active) { | |
2278 | vm_page_activate(m); | |
2279 | } | |
2280 | #endif | |
2281 | vm_page_unlock_queues(); | |
2282 | ||
2283 | /* | |
2284 | * That's it, clean up and return. | |
2285 | */ | |
2286 | PAGE_WAKEUP_DONE(m); | |
2287 | vm_object_paging_end(object); | |
2288 | vm_object_unlock(object); | |
2289 | vm_map_unlock_read(map); | |
2290 | if(pmap_map != map) | |
2291 | vm_map_unlock(pmap_map); | |
2292 | ||
2293 | if (funnel_set) { | |
2294 | thread_funnel_set( curflock, TRUE); | |
2295 | funnel_set = FALSE; | |
2296 | } | |
2297 | cur_thread->interruptible = interruptible_state; | |
2298 | ||
2299 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
2300 | vaddr, | |
2301 | type_of_fault, | |
2302 | KERN_SUCCESS, | |
2303 | 0, | |
2304 | 0); | |
2305 | return KERN_SUCCESS; | |
2306 | } | |
2307 | ||
2308 | /* | |
2309 | * Copy on write fault. If objects match, then | |
2310 | * object->copy must not be NULL (else control | |
2311 | * would be in previous code block), and we | |
2312 | * have a potential push into the copy object | |
2313 | * with which we won't cope here. | |
2314 | */ | |
2315 | ||
2316 | if (cur_object == object) | |
2317 | break; | |
2318 | ||
2319 | /* | |
2320 | * This is now a shadow based copy on write | |
2321 | * fault -- it requires a copy up the shadow | |
2322 | * chain. | |
2323 | * | |
2324 | * Allocate a page in the original top level | |
2325 | * object. Give up if allocate fails. Also | |
2326 | * need to remember current page, as it's the | |
2327 | * source of the copy. | |
2328 | */ | |
2329 | cur_m = m; | |
2330 | m = vm_page_grab(); | |
2331 | if (m == VM_PAGE_NULL) { | |
2332 | break; | |
2333 | } | |
2334 | ||
2335 | /* | |
2336 | * Now do the copy. Mark the source busy | |
2337 | * and take out paging references on both | |
2338 | * objects. | |
2339 | * | |
2340 | * NOTE: This code holds the map lock across | |
2341 | * the page copy. | |
2342 | */ | |
2343 | ||
2344 | cur_m->busy = TRUE; | |
2345 | vm_page_copy(cur_m, m); | |
2346 | vm_page_insert(m, object, offset); | |
2347 | ||
2348 | vm_object_paging_begin(cur_object); | |
2349 | vm_object_paging_begin(object); | |
2350 | ||
2351 | type_of_fault = DBG_COW_FAULT; | |
2352 | VM_STAT(cow_faults++); | |
2353 | current_task()->cow_faults++; | |
2354 | ||
2355 | /* | |
2356 | * Now cope with the source page and object | |
2357 | * If the top object has a ref count of 1 | |
2358 | * then no other map can access it, and hence | |
2359 | * it's not necessary to do the pmap_page_protect. | |
2360 | */ | |
2361 | ||
2362 | ||
2363 | vm_page_lock_queues(); | |
2364 | vm_page_deactivate(cur_m); | |
2365 | m->dirty = TRUE; | |
2366 | pmap_page_protect(cur_m->phys_addr, | |
2367 | VM_PROT_NONE); | |
2368 | vm_page_unlock_queues(); | |
2369 | ||
2370 | PAGE_WAKEUP_DONE(cur_m); | |
2371 | vm_object_paging_end(cur_object); | |
2372 | vm_object_unlock(cur_object); | |
2373 | ||
2374 | /* | |
2375 | * Slight hack to call vm_object collapse | |
2376 | * and then reuse common map in code. | |
2377 | * note that the object lock was taken above. | |
2378 | */ | |
2379 | ||
2380 | vm_object_paging_end(object); | |
2381 | vm_object_collapse(object); | |
2382 | vm_object_paging_begin(object); | |
2383 | vm_object_unlock(object); | |
2384 | ||
2385 | goto FastPmapEnter; | |
2386 | } | |
2387 | else { | |
2388 | ||
2389 | /* | |
2390 | * No page at cur_object, cur_offset | |
2391 | */ | |
2392 | ||
2393 | if (cur_object->pager_created) { | |
2394 | ||
2395 | /* | |
2396 | * Have to talk to the pager. Give up. | |
2397 | */ | |
2398 | ||
2399 | break; | |
2400 | } | |
2401 | ||
2402 | ||
2403 | if (cur_object->shadow == VM_OBJECT_NULL) { | |
2404 | ||
2405 | if (cur_object->shadow_severed) { | |
2406 | vm_object_paging_end(object); | |
2407 | vm_object_unlock(object); | |
2408 | vm_map_unlock_read(map); | |
2409 | if(pmap_map != map) | |
2410 | vm_map_unlock(pmap_map); | |
2411 | ||
2412 | if (funnel_set) { | |
2413 | thread_funnel_set( curflock, TRUE); | |
2414 | funnel_set = FALSE; | |
2415 | } | |
2416 | cur_thread->interruptible = interruptible_state; | |
2417 | ||
2418 | return VM_FAULT_MEMORY_ERROR; | |
2419 | } | |
2420 | ||
2421 | /* | |
2422 | * Zero fill fault. Page gets | |
2423 | * filled in top object. Insert | |
2424 | * page, then drop any lower lock. | |
2425 | * Give up if no page. | |
2426 | */ | |
2427 | if ((vm_page_free_target - | |
2428 | ((vm_page_free_target-vm_page_free_min)>>2)) | |
2429 | > vm_page_free_count) { | |
2430 | break; | |
2431 | } | |
2432 | m = vm_page_alloc(object, offset); | |
2433 | if (m == VM_PAGE_NULL) { | |
2434 | break; | |
2435 | } | |
2436 | /* | |
2437 | * This is a zero-fill or initial fill | |
2438 | * page fault. As such, we consider it | |
2439 | * undefined with respect to instruction | |
2440 | * execution. i.e. it is the responsibility | |
2441 | * of higher layers to call for an instruction | |
2442 | * sync after changing the contents and before | |
2443 | * sending a program into this area. We | |
2444 | * choose this approach for performance | |
2445 | */ | |
2446 | ||
2447 | m->no_isync = FALSE; | |
2448 | ||
2449 | if (cur_object != object) | |
2450 | vm_object_unlock(cur_object); | |
2451 | ||
2452 | vm_object_paging_begin(object); | |
2453 | vm_object_unlock(object); | |
2454 | ||
2455 | /* | |
2456 | * Now zero fill page and map it. | |
2457 | * the page is probably going to | |
2458 | * be written soon, so don't bother | |
2459 | * to clear the modified bit | |
2460 | * | |
2461 | * NOTE: This code holds the map | |
2462 | * lock across the zero fill. | |
2463 | */ | |
2464 | ||
2465 | if (!map->no_zero_fill) { | |
2466 | vm_page_zero_fill(m); | |
2467 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
2468 | VM_STAT(zero_fill_count++); | |
2469 | } | |
2470 | vm_page_lock_queues(); | |
2471 | VM_PAGE_QUEUES_REMOVE(m); | |
2472 | ||
2473 | m->page_ticket = vm_page_ticket; | |
2474 | vm_page_ticket_roll++; | |
2475 | if(vm_page_ticket_roll == | |
2476 | VM_PAGE_TICKETS_IN_ROLL) { | |
2477 | vm_page_ticket_roll = 0; | |
2478 | if(vm_page_ticket == | |
2479 | VM_PAGE_TICKET_ROLL_IDS) | |
2480 | vm_page_ticket= 0; | |
2481 | else | |
2482 | vm_page_ticket++; | |
2483 | } | |
2484 | ||
2485 | queue_enter(&vm_page_queue_inactive, | |
2486 | m, vm_page_t, pageq); | |
2487 | m->inactive = TRUE; | |
2488 | vm_page_inactive_count++; | |
2489 | vm_page_unlock_queues(); | |
2490 | goto FastPmapEnter; | |
2491 | } | |
2492 | ||
2493 | /* | |
2494 | * On to the next level | |
2495 | */ | |
2496 | ||
2497 | cur_offset += cur_object->shadow_offset; | |
2498 | new_object = cur_object->shadow; | |
2499 | vm_object_lock(new_object); | |
2500 | if (cur_object != object) | |
2501 | vm_object_unlock(cur_object); | |
2502 | cur_object = new_object; | |
2503 | ||
2504 | continue; | |
2505 | } | |
2506 | } | |
2507 | ||
2508 | /* | |
2509 | * Cleanup from fast fault failure. Drop any object | |
2510 | * lock other than original and drop map lock. | |
2511 | */ | |
2512 | ||
2513 | if (object != cur_object) | |
2514 | vm_object_unlock(cur_object); | |
2515 | } | |
2516 | vm_map_unlock_read(map); | |
2517 | if(pmap_map != map) | |
2518 | vm_map_unlock(pmap_map); | |
2519 | ||
2520 | /* | |
2521 | * Make a reference to this object to | |
2522 | * prevent its disposal while we are messing with | |
2523 | * it. Once we have the reference, the map is free | |
2524 | * to be diddled. Since objects reference their | |
2525 | * shadows (and copies), they will stay around as well. | |
2526 | */ | |
2527 | ||
2528 | assert(object->ref_count > 0); | |
2529 | object->ref_count++; | |
2530 | vm_object_res_reference(object); | |
2531 | vm_object_paging_begin(object); | |
2532 | ||
2533 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
2534 | kr = vm_fault_page(object, offset, fault_type, | |
2535 | (change_wiring && !wired), | |
2536 | interruptible, | |
2537 | lo_offset, hi_offset, behavior, | |
2538 | &prot, &result_page, &top_page, | |
2539 | &type_of_fault, | |
2540 | &error_code, map->no_zero_fill, FALSE, map, vaddr); | |
2541 | ||
2542 | /* | |
2543 | * If we didn't succeed, lose the object reference immediately. | |
2544 | */ | |
2545 | ||
2546 | if (kr != VM_FAULT_SUCCESS) | |
2547 | vm_object_deallocate(object); | |
2548 | ||
2549 | /* | |
2550 | * See why we failed, and take corrective action. | |
2551 | */ | |
2552 | ||
2553 | switch (kr) { | |
2554 | case VM_FAULT_SUCCESS: | |
2555 | break; | |
2556 | case VM_FAULT_MEMORY_SHORTAGE: | |
2557 | if (vm_page_wait((change_wiring) ? | |
2558 | THREAD_UNINT : | |
2559 | THREAD_ABORTSAFE)) | |
2560 | goto RetryFault; | |
2561 | /* fall thru */ | |
2562 | case VM_FAULT_INTERRUPTED: | |
2563 | kr = KERN_ABORTED; | |
2564 | goto done; | |
2565 | case VM_FAULT_RETRY: | |
2566 | goto RetryFault; | |
2567 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2568 | vm_page_more_fictitious(); | |
2569 | goto RetryFault; | |
2570 | case VM_FAULT_MEMORY_ERROR: | |
2571 | if (error_code) | |
2572 | kr = error_code; | |
2573 | else | |
2574 | kr = KERN_MEMORY_ERROR; | |
2575 | goto done; | |
2576 | } | |
2577 | ||
2578 | m = result_page; | |
2579 | ||
2580 | if(m != VM_PAGE_NULL) { | |
2581 | assert((change_wiring && !wired) ? | |
2582 | (top_page == VM_PAGE_NULL) : | |
2583 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
2584 | } | |
2585 | ||
2586 | /* | |
2587 | * How to clean up the result of vm_fault_page. This | |
2588 | * happens whether the mapping is entered or not. | |
2589 | */ | |
2590 | ||
2591 | #define UNLOCK_AND_DEALLOCATE \ | |
2592 | MACRO_BEGIN \ | |
2593 | vm_fault_cleanup(m->object, top_page); \ | |
2594 | vm_object_deallocate(object); \ | |
2595 | MACRO_END | |
2596 | ||
2597 | /* | |
2598 | * What to do with the resulting page from vm_fault_page | |
2599 | * if it doesn't get entered into the physical map: | |
2600 | */ | |
2601 | ||
2602 | #define RELEASE_PAGE(m) \ | |
2603 | MACRO_BEGIN \ | |
2604 | PAGE_WAKEUP_DONE(m); \ | |
2605 | vm_page_lock_queues(); \ | |
2606 | if (!m->active && !m->inactive) \ | |
2607 | vm_page_activate(m); \ | |
2608 | vm_page_unlock_queues(); \ | |
2609 | MACRO_END | |
2610 | ||
2611 | /* | |
2612 | * We must verify that the maps have not changed | |
2613 | * since our last lookup. | |
2614 | */ | |
2615 | ||
2616 | if(m != VM_PAGE_NULL) { | |
2617 | old_copy_object = m->object->copy; | |
2618 | ||
2619 | vm_object_unlock(m->object); | |
2620 | } else { | |
2621 | old_copy_object = VM_OBJECT_NULL; | |
2622 | } | |
2623 | if ((map != original_map) || !vm_map_verify(map, &version)) { | |
2624 | vm_object_t retry_object; | |
2625 | vm_object_offset_t retry_offset; | |
2626 | vm_prot_t retry_prot; | |
2627 | ||
2628 | /* | |
2629 | * To avoid trying to write_lock the map while another | |
2630 | * thread has it read_locked (in vm_map_pageable), we | |
2631 | * do not try for write permission. If the page is | |
2632 | * still writable, we will get write permission. If it | |
2633 | * is not, or has been marked needs_copy, we enter the | |
2634 | * mapping without write permission, and will merely | |
2635 | * take another fault. | |
2636 | */ | |
2637 | map = original_map; | |
2638 | vm_map_lock_read(map); | |
2639 | kr = vm_map_lookup_locked(&map, vaddr, | |
2640 | fault_type & ~VM_PROT_WRITE, &version, | |
2641 | &retry_object, &retry_offset, &retry_prot, | |
2642 | &wired, &behavior, &lo_offset, &hi_offset, | |
2643 | &pmap_map); | |
2644 | pmap = pmap_map->pmap; | |
2645 | ||
2646 | if (kr != KERN_SUCCESS) { | |
2647 | vm_map_unlock_read(map); | |
2648 | if(m != VM_PAGE_NULL) { | |
2649 | vm_object_lock(m->object); | |
2650 | RELEASE_PAGE(m); | |
2651 | UNLOCK_AND_DEALLOCATE; | |
2652 | } else { | |
2653 | vm_object_deallocate(object); | |
2654 | } | |
2655 | goto done; | |
2656 | } | |
2657 | ||
2658 | vm_object_unlock(retry_object); | |
2659 | if(m != VM_PAGE_NULL) { | |
2660 | vm_object_lock(m->object); | |
2661 | } else { | |
2662 | vm_object_lock(object); | |
2663 | } | |
2664 | ||
2665 | if ((retry_object != object) || | |
2666 | (retry_offset != offset)) { | |
2667 | vm_map_unlock_read(map); | |
2668 | if(pmap_map != map) | |
2669 | vm_map_unlock(pmap_map); | |
2670 | if(m != VM_PAGE_NULL) { | |
2671 | RELEASE_PAGE(m); | |
2672 | UNLOCK_AND_DEALLOCATE; | |
2673 | } else { | |
2674 | vm_object_deallocate(object); | |
2675 | } | |
2676 | goto RetryFault; | |
2677 | } | |
2678 | ||
2679 | /* | |
2680 | * Check whether the protection has changed or the object | |
2681 | * has been copied while we left the map unlocked. | |
2682 | */ | |
2683 | prot &= retry_prot; | |
2684 | if(m != VM_PAGE_NULL) { | |
2685 | vm_object_unlock(m->object); | |
2686 | } else { | |
2687 | vm_object_unlock(object); | |
2688 | } | |
2689 | } | |
2690 | if(m != VM_PAGE_NULL) { | |
2691 | vm_object_lock(m->object); | |
2692 | } else { | |
2693 | vm_object_lock(object); | |
2694 | } | |
2695 | ||
2696 | /* | |
2697 | * If the copy object changed while the top-level object | |
2698 | * was unlocked, then we must take away write permission. | |
2699 | */ | |
2700 | ||
2701 | if(m != VM_PAGE_NULL) { | |
2702 | if (m->object->copy != old_copy_object) | |
2703 | prot &= ~VM_PROT_WRITE; | |
2704 | } | |
2705 | ||
2706 | /* | |
2707 | * If we want to wire down this page, but no longer have | |
2708 | * adequate permissions, we must start all over. | |
2709 | */ | |
2710 | ||
2711 | if (wired && (fault_type != (prot|VM_PROT_WRITE))) { | |
2712 | vm_map_verify_done(map, &version); | |
2713 | if(pmap_map != map) | |
2714 | vm_map_unlock(pmap_map); | |
2715 | if(m != VM_PAGE_NULL) { | |
2716 | RELEASE_PAGE(m); | |
2717 | UNLOCK_AND_DEALLOCATE; | |
2718 | } else { | |
2719 | vm_object_deallocate(object); | |
2720 | } | |
2721 | goto RetryFault; | |
2722 | } | |
2723 | ||
2724 | /* | |
2725 | * Put this page into the physical map. | |
2726 | * We had to do the unlock above because pmap_enter | |
2727 | * may cause other faults. The page may be on | |
2728 | * the pageout queues. If the pageout daemon comes | |
2729 | * across the page, it will remove it from the queues. | |
2730 | */ | |
2731 | if (m != VM_PAGE_NULL) { | |
2732 | if (m->no_isync == TRUE) { | |
2733 | pmap_sync_caches_phys(m->phys_addr); | |
2734 | ||
2735 | m->no_isync = FALSE; | |
2736 | } | |
2737 | vm_object_unlock(m->object); | |
2738 | ||
2739 | PMAP_ENTER(pmap, vaddr, m, prot, wired); | |
2740 | { | |
2741 | tws_hash_line_t line; | |
2742 | task_t task; | |
2743 | ||
2744 | task = current_task(); | |
2745 | if((map != NULL) && | |
2746 | (task->dynamic_working_set != 0)) { | |
2747 | if(tws_lookup | |
2748 | ((tws_hash_t) | |
2749 | task->dynamic_working_set, | |
2750 | m->offset, m->object, | |
2751 | &line) != KERN_SUCCESS) { | |
2752 | tws_insert((tws_hash_t) | |
2753 | task->dynamic_working_set, | |
2754 | m->offset, m->object, | |
2755 | vaddr, pmap_map); | |
2756 | if(tws_insert((tws_hash_t) | |
2757 | task->dynamic_working_set, | |
2758 | m->offset, m->object, | |
2759 | vaddr, pmap_map) | |
2760 | == KERN_NO_SPACE) { | |
2761 | tws_expand_working_set( | |
2762 | task->dynamic_working_set, | |
2763 | TWS_HASH_LINE_COUNT); | |
2764 | } | |
2765 | } | |
2766 | } | |
2767 | } | |
2768 | } else { | |
2769 | ||
2770 | /* if __ppc__ not working until figure out phys copy on block maps */ | |
2771 | #ifdef notdefcdy | |
2772 | int memattr; | |
2773 | struct phys_entry *pp; | |
2774 | /* | |
2775 | * do a pmap block mapping from the physical address | |
2776 | * in the object | |
2777 | */ | |
2778 | if(pp = pmap_find_physentry( | |
2779 | (vm_offset_t)object->shadow_offset)) { | |
2780 | memattr = ((pp->pte1 & 0x00000078) >> 3); | |
2781 | } else { | |
2782 | memattr = PTE_WIMG_UNCACHED_COHERENT_GUARDED; | |
2783 | } | |
2784 | ||
2785 | pmap_map_block(pmap, vaddr, | |
2786 | (vm_offset_t)object->shadow_offset, | |
2787 | object->size, prot, | |
2788 | memattr, 0); /* Set up a block mapped area */ | |
2789 | //#else | |
2790 | vm_offset_t off; | |
2791 | for (off = 0; off < object->size; off += page_size) { | |
2792 | pmap_enter(pmap, vaddr + off, | |
2793 | object->shadow_offset + off, prot, TRUE); | |
2794 | /* Map it in */ | |
2795 | } | |
2796 | #endif | |
2797 | ||
2798 | } | |
2799 | ||
2800 | /* | |
2801 | * If the page is not wired down and isn't already | |
2802 | * on a pageout queue, then put it where the | |
2803 | * pageout daemon can find it. | |
2804 | */ | |
2805 | if(m != VM_PAGE_NULL) { | |
2806 | vm_object_lock(m->object); | |
2807 | vm_page_lock_queues(); | |
2808 | ||
2809 | if (change_wiring) { | |
2810 | if (wired) | |
2811 | vm_page_wire(m); | |
2812 | else | |
2813 | vm_page_unwire(m); | |
2814 | } | |
2815 | #if VM_FAULT_STATIC_CONFIG | |
2816 | else { | |
2817 | if (!m->active && !m->inactive) | |
2818 | vm_page_activate(m); | |
2819 | m->reference = TRUE; | |
2820 | } | |
2821 | #else | |
2822 | else if (software_reference_bits) { | |
2823 | if (!m->active && !m->inactive) | |
2824 | vm_page_activate(m); | |
2825 | m->reference = TRUE; | |
2826 | } else { | |
2827 | vm_page_activate(m); | |
2828 | } | |
2829 | #endif | |
2830 | vm_page_unlock_queues(); | |
2831 | } | |
2832 | ||
2833 | /* | |
2834 | * Unlock everything, and return | |
2835 | */ | |
2836 | ||
2837 | vm_map_verify_done(map, &version); | |
2838 | if(pmap_map != map) | |
2839 | vm_map_unlock(pmap_map); | |
2840 | if(m != VM_PAGE_NULL) { | |
2841 | PAGE_WAKEUP_DONE(m); | |
2842 | UNLOCK_AND_DEALLOCATE; | |
2843 | } else { | |
2844 | vm_fault_cleanup(object, top_page); | |
2845 | vm_object_deallocate(object); | |
2846 | } | |
2847 | kr = KERN_SUCCESS; | |
2848 | ||
2849 | #undef UNLOCK_AND_DEALLOCATE | |
2850 | #undef RELEASE_PAGE | |
2851 | ||
2852 | done: | |
2853 | if (funnel_set) { | |
2854 | thread_funnel_set( curflock, TRUE); | |
2855 | funnel_set = FALSE; | |
2856 | } | |
2857 | cur_thread->interruptible = interruptible_state; | |
2858 | ||
2859 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
2860 | vaddr, | |
2861 | type_of_fault, | |
2862 | kr, | |
2863 | 0, | |
2864 | 0); | |
2865 | return(kr); | |
2866 | } | |
2867 | ||
2868 | /* | |
2869 | * vm_fault_wire: | |
2870 | * | |
2871 | * Wire down a range of virtual addresses in a map. | |
2872 | */ | |
2873 | kern_return_t | |
2874 | vm_fault_wire( | |
2875 | vm_map_t map, | |
2876 | vm_map_entry_t entry, | |
2877 | pmap_t pmap) | |
2878 | { | |
2879 | ||
2880 | register vm_offset_t va; | |
2881 | register vm_offset_t end_addr = entry->vme_end; | |
2882 | register kern_return_t rc; | |
2883 | ||
2884 | assert(entry->in_transition); | |
2885 | ||
2886 | /* | |
2887 | * Inform the physical mapping system that the | |
2888 | * range of addresses may not fault, so that | |
2889 | * page tables and such can be locked down as well. | |
2890 | */ | |
2891 | ||
2892 | pmap_pageable(pmap, entry->vme_start, end_addr, FALSE); | |
2893 | ||
2894 | /* | |
2895 | * We simulate a fault to get the page and enter it | |
2896 | * in the physical map. | |
2897 | */ | |
2898 | ||
2899 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
2900 | if ((rc = vm_fault_wire_fast( | |
2901 | map, va, entry, pmap)) != KERN_SUCCESS) { | |
2902 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, | |
2903 | (pmap == kernel_pmap) ? THREAD_UNINT : THREAD_ABORTSAFE); | |
2904 | } | |
2905 | ||
2906 | if (rc != KERN_SUCCESS) { | |
2907 | struct vm_map_entry tmp_entry = *entry; | |
2908 | ||
2909 | /* unwire wired pages */ | |
2910 | tmp_entry.vme_end = va; | |
2911 | vm_fault_unwire(map, &tmp_entry, FALSE, pmap); | |
2912 | ||
2913 | return rc; | |
2914 | } | |
2915 | } | |
2916 | return KERN_SUCCESS; | |
2917 | } | |
2918 | ||
2919 | /* | |
2920 | * vm_fault_unwire: | |
2921 | * | |
2922 | * Unwire a range of virtual addresses in a map. | |
2923 | */ | |
2924 | void | |
2925 | vm_fault_unwire( | |
2926 | vm_map_t map, | |
2927 | vm_map_entry_t entry, | |
2928 | boolean_t deallocate, | |
2929 | pmap_t pmap) | |
2930 | { | |
2931 | register vm_offset_t va; | |
2932 | register vm_offset_t end_addr = entry->vme_end; | |
2933 | vm_object_t object; | |
2934 | ||
2935 | object = (entry->is_sub_map) | |
2936 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
2937 | ||
2938 | /* | |
2939 | * Since the pages are wired down, we must be able to | |
2940 | * get their mappings from the physical map system. | |
2941 | */ | |
2942 | ||
2943 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
2944 | pmap_change_wiring(pmap, va, FALSE); | |
2945 | ||
2946 | if (object == VM_OBJECT_NULL) { | |
2947 | (void) vm_fault(map, va, VM_PROT_NONE, TRUE, THREAD_UNINT); | |
2948 | } else { | |
2949 | vm_prot_t prot; | |
2950 | vm_page_t result_page; | |
2951 | vm_page_t top_page; | |
2952 | vm_object_t result_object; | |
2953 | vm_fault_return_t result; | |
2954 | ||
2955 | do { | |
2956 | prot = VM_PROT_NONE; | |
2957 | ||
2958 | vm_object_lock(object); | |
2959 | vm_object_paging_begin(object); | |
2960 | XPR(XPR_VM_FAULT, | |
2961 | "vm_fault_unwire -> vm_fault_page\n", | |
2962 | 0,0,0,0,0); | |
2963 | result = vm_fault_page(object, | |
2964 | entry->offset + | |
2965 | (va - entry->vme_start), | |
2966 | VM_PROT_NONE, TRUE, | |
2967 | THREAD_UNINT, | |
2968 | entry->offset, | |
2969 | entry->offset + | |
2970 | (entry->vme_end | |
2971 | - entry->vme_start), | |
2972 | entry->behavior, | |
2973 | &prot, | |
2974 | &result_page, | |
2975 | &top_page, | |
2976 | (int *)0, | |
2977 | 0, map->no_zero_fill, | |
2978 | FALSE, NULL, 0); | |
2979 | } while (result == VM_FAULT_RETRY); | |
2980 | ||
2981 | if (result != VM_FAULT_SUCCESS) | |
2982 | panic("vm_fault_unwire: failure"); | |
2983 | ||
2984 | result_object = result_page->object; | |
2985 | if (deallocate) { | |
2986 | assert(!result_page->fictitious); | |
2987 | pmap_page_protect(result_page->phys_addr, | |
2988 | VM_PROT_NONE); | |
2989 | VM_PAGE_FREE(result_page); | |
2990 | } else { | |
2991 | vm_page_lock_queues(); | |
2992 | vm_page_unwire(result_page); | |
2993 | vm_page_unlock_queues(); | |
2994 | PAGE_WAKEUP_DONE(result_page); | |
2995 | } | |
2996 | ||
2997 | vm_fault_cleanup(result_object, top_page); | |
2998 | } | |
2999 | } | |
3000 | ||
3001 | /* | |
3002 | * Inform the physical mapping system that the range | |
3003 | * of addresses may fault, so that page tables and | |
3004 | * such may be unwired themselves. | |
3005 | */ | |
3006 | ||
3007 | pmap_pageable(pmap, entry->vme_start, end_addr, TRUE); | |
3008 | ||
3009 | } | |
3010 | ||
3011 | /* | |
3012 | * vm_fault_wire_fast: | |
3013 | * | |
3014 | * Handle common case of a wire down page fault at the given address. | |
3015 | * If successful, the page is inserted into the associated physical map. | |
3016 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3017 | * | |
3018 | * NOTE: the given address should be truncated to the | |
3019 | * proper page address. | |
3020 | * | |
3021 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3022 | * a standard error specifying why the fault is fatal is returned. | |
3023 | * | |
3024 | * The map in question must be referenced, and remains so. | |
3025 | * Caller has a read lock on the map. | |
3026 | * | |
3027 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3028 | * other than the common case will return KERN_FAILURE, and the caller | |
3029 | * is expected to call vm_fault(). | |
3030 | */ | |
3031 | kern_return_t | |
3032 | vm_fault_wire_fast( | |
3033 | vm_map_t map, | |
3034 | vm_offset_t va, | |
3035 | vm_map_entry_t entry, | |
3036 | pmap_t pmap) | |
3037 | { | |
3038 | vm_object_t object; | |
3039 | vm_object_offset_t offset; | |
3040 | register vm_page_t m; | |
3041 | vm_prot_t prot; | |
3042 | thread_act_t thr_act; | |
3043 | ||
3044 | VM_STAT(faults++); | |
3045 | ||
3046 | if((thr_act=current_act()) && (thr_act->task != TASK_NULL)) | |
3047 | thr_act->task->faults++; | |
3048 | ||
3049 | /* | |
3050 | * Recovery actions | |
3051 | */ | |
3052 | ||
3053 | #undef RELEASE_PAGE | |
3054 | #define RELEASE_PAGE(m) { \ | |
3055 | PAGE_WAKEUP_DONE(m); \ | |
3056 | vm_page_lock_queues(); \ | |
3057 | vm_page_unwire(m); \ | |
3058 | vm_page_unlock_queues(); \ | |
3059 | } | |
3060 | ||
3061 | ||
3062 | #undef UNLOCK_THINGS | |
3063 | #define UNLOCK_THINGS { \ | |
3064 | object->paging_in_progress--; \ | |
3065 | vm_object_unlock(object); \ | |
3066 | } | |
3067 | ||
3068 | #undef UNLOCK_AND_DEALLOCATE | |
3069 | #define UNLOCK_AND_DEALLOCATE { \ | |
3070 | UNLOCK_THINGS; \ | |
3071 | vm_object_deallocate(object); \ | |
3072 | } | |
3073 | /* | |
3074 | * Give up and have caller do things the hard way. | |
3075 | */ | |
3076 | ||
3077 | #define GIVE_UP { \ | |
3078 | UNLOCK_AND_DEALLOCATE; \ | |
3079 | return(KERN_FAILURE); \ | |
3080 | } | |
3081 | ||
3082 | ||
3083 | /* | |
3084 | * If this entry is not directly to a vm_object, bail out. | |
3085 | */ | |
3086 | if (entry->is_sub_map) | |
3087 | return(KERN_FAILURE); | |
3088 | ||
3089 | /* | |
3090 | * Find the backing store object and offset into it. | |
3091 | */ | |
3092 | ||
3093 | object = entry->object.vm_object; | |
3094 | offset = (va - entry->vme_start) + entry->offset; | |
3095 | prot = entry->protection; | |
3096 | ||
3097 | /* | |
3098 | * Make a reference to this object to prevent its | |
3099 | * disposal while we are messing with it. | |
3100 | */ | |
3101 | ||
3102 | vm_object_lock(object); | |
3103 | assert(object->ref_count > 0); | |
3104 | object->ref_count++; | |
3105 | vm_object_res_reference(object); | |
3106 | object->paging_in_progress++; | |
3107 | ||
3108 | /* | |
3109 | * INVARIANTS (through entire routine): | |
3110 | * | |
3111 | * 1) At all times, we must either have the object | |
3112 | * lock or a busy page in some object to prevent | |
3113 | * some other thread from trying to bring in | |
3114 | * the same page. | |
3115 | * | |
3116 | * 2) Once we have a busy page, we must remove it from | |
3117 | * the pageout queues, so that the pageout daemon | |
3118 | * will not grab it away. | |
3119 | * | |
3120 | */ | |
3121 | ||
3122 | /* | |
3123 | * Look for page in top-level object. If it's not there or | |
3124 | * there's something going on, give up. | |
3125 | */ | |
3126 | m = vm_page_lookup(object, offset); | |
3127 | if ((m == VM_PAGE_NULL) || (m->busy) || | |
3128 | (m->unusual && ( m->error || m->restart || m->absent || | |
3129 | prot & m->page_lock))) { | |
3130 | ||
3131 | GIVE_UP; | |
3132 | } | |
3133 | ||
3134 | /* | |
3135 | * Wire the page down now. All bail outs beyond this | |
3136 | * point must unwire the page. | |
3137 | */ | |
3138 | ||
3139 | vm_page_lock_queues(); | |
3140 | vm_page_wire(m); | |
3141 | vm_page_unlock_queues(); | |
3142 | ||
3143 | /* | |
3144 | * Mark page busy for other threads. | |
3145 | */ | |
3146 | assert(!m->busy); | |
3147 | m->busy = TRUE; | |
3148 | assert(!m->absent); | |
3149 | ||
3150 | /* | |
3151 | * Give up if the page is being written and there's a copy object | |
3152 | */ | |
3153 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3154 | RELEASE_PAGE(m); | |
3155 | GIVE_UP; | |
3156 | } | |
3157 | ||
3158 | /* | |
3159 | * Put this page into the physical map. | |
3160 | * We have to unlock the object because pmap_enter | |
3161 | * may cause other faults. | |
3162 | */ | |
3163 | if (m->no_isync == TRUE) { | |
3164 | pmap_sync_caches_phys(m->phys_addr); | |
3165 | ||
3166 | m->no_isync = FALSE; | |
3167 | } | |
3168 | vm_object_unlock(object); | |
3169 | ||
3170 | PMAP_ENTER(pmap, va, m, prot, TRUE); | |
3171 | ||
3172 | /* | |
3173 | * Must relock object so that paging_in_progress can be cleared. | |
3174 | */ | |
3175 | vm_object_lock(object); | |
3176 | ||
3177 | /* | |
3178 | * Unlock everything, and return | |
3179 | */ | |
3180 | ||
3181 | PAGE_WAKEUP_DONE(m); | |
3182 | UNLOCK_AND_DEALLOCATE; | |
3183 | ||
3184 | return(KERN_SUCCESS); | |
3185 | ||
3186 | } | |
3187 | ||
3188 | /* | |
3189 | * Routine: vm_fault_copy_cleanup | |
3190 | * Purpose: | |
3191 | * Release a page used by vm_fault_copy. | |
3192 | */ | |
3193 | ||
3194 | void | |
3195 | vm_fault_copy_cleanup( | |
3196 | vm_page_t page, | |
3197 | vm_page_t top_page) | |
3198 | { | |
3199 | vm_object_t object = page->object; | |
3200 | ||
3201 | vm_object_lock(object); | |
3202 | PAGE_WAKEUP_DONE(page); | |
3203 | vm_page_lock_queues(); | |
3204 | if (!page->active && !page->inactive) | |
3205 | vm_page_activate(page); | |
3206 | vm_page_unlock_queues(); | |
3207 | vm_fault_cleanup(object, top_page); | |
3208 | } | |
3209 | ||
3210 | void | |
3211 | vm_fault_copy_dst_cleanup( | |
3212 | vm_page_t page) | |
3213 | { | |
3214 | vm_object_t object; | |
3215 | ||
3216 | if (page != VM_PAGE_NULL) { | |
3217 | object = page->object; | |
3218 | vm_object_lock(object); | |
3219 | vm_page_lock_queues(); | |
3220 | vm_page_unwire(page); | |
3221 | vm_page_unlock_queues(); | |
3222 | vm_object_paging_end(object); | |
3223 | vm_object_unlock(object); | |
3224 | } | |
3225 | } | |
3226 | ||
3227 | /* | |
3228 | * Routine: vm_fault_copy | |
3229 | * | |
3230 | * Purpose: | |
3231 | * Copy pages from one virtual memory object to another -- | |
3232 | * neither the source nor destination pages need be resident. | |
3233 | * | |
3234 | * Before actually copying a page, the version associated with | |
3235 | * the destination address map wil be verified. | |
3236 | * | |
3237 | * In/out conditions: | |
3238 | * The caller must hold a reference, but not a lock, to | |
3239 | * each of the source and destination objects and to the | |
3240 | * destination map. | |
3241 | * | |
3242 | * Results: | |
3243 | * Returns KERN_SUCCESS if no errors were encountered in | |
3244 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3245 | * the operation was interrupted (only possible if the | |
3246 | * "interruptible" argument is asserted). Other return values | |
3247 | * indicate a permanent error in copying the data. | |
3248 | * | |
3249 | * The actual amount of data copied will be returned in the | |
3250 | * "copy_size" argument. In the event that the destination map | |
3251 | * verification failed, this amount may be less than the amount | |
3252 | * requested. | |
3253 | */ | |
3254 | kern_return_t | |
3255 | vm_fault_copy( | |
3256 | vm_object_t src_object, | |
3257 | vm_object_offset_t src_offset, | |
3258 | vm_size_t *src_size, /* INOUT */ | |
3259 | vm_object_t dst_object, | |
3260 | vm_object_offset_t dst_offset, | |
3261 | vm_map_t dst_map, | |
3262 | vm_map_version_t *dst_version, | |
3263 | int interruptible) | |
3264 | { | |
3265 | vm_page_t result_page; | |
3266 | ||
3267 | vm_page_t src_page; | |
3268 | vm_page_t src_top_page; | |
3269 | vm_prot_t src_prot; | |
3270 | ||
3271 | vm_page_t dst_page; | |
3272 | vm_page_t dst_top_page; | |
3273 | vm_prot_t dst_prot; | |
3274 | ||
3275 | vm_size_t amount_left; | |
3276 | vm_object_t old_copy_object; | |
3277 | kern_return_t error = 0; | |
3278 | ||
3279 | vm_size_t part_size; | |
3280 | ||
3281 | /* | |
3282 | * In order not to confuse the clustered pageins, align | |
3283 | * the different offsets on a page boundary. | |
3284 | */ | |
3285 | vm_object_offset_t src_lo_offset = trunc_page_64(src_offset); | |
3286 | vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset); | |
3287 | vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size); | |
3288 | vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size); | |
3289 | ||
3290 | #define RETURN(x) \ | |
3291 | MACRO_BEGIN \ | |
3292 | *src_size -= amount_left; \ | |
3293 | MACRO_RETURN(x); \ | |
3294 | MACRO_END | |
3295 | ||
3296 | amount_left = *src_size; | |
3297 | do { /* while (amount_left > 0) */ | |
3298 | /* | |
3299 | * There may be a deadlock if both source and destination | |
3300 | * pages are the same. To avoid this deadlock, the copy must | |
3301 | * start by getting the destination page in order to apply | |
3302 | * COW semantics if any. | |
3303 | */ | |
3304 | ||
3305 | RetryDestinationFault: ; | |
3306 | ||
3307 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3308 | ||
3309 | vm_object_lock(dst_object); | |
3310 | vm_object_paging_begin(dst_object); | |
3311 | ||
3312 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); | |
3313 | switch (vm_fault_page(dst_object, | |
3314 | trunc_page_64(dst_offset), | |
3315 | VM_PROT_WRITE|VM_PROT_READ, | |
3316 | FALSE, | |
3317 | interruptible, | |
3318 | dst_lo_offset, | |
3319 | dst_hi_offset, | |
3320 | VM_BEHAVIOR_SEQUENTIAL, | |
3321 | &dst_prot, | |
3322 | &dst_page, | |
3323 | &dst_top_page, | |
3324 | (int *)0, | |
3325 | &error, | |
3326 | dst_map->no_zero_fill, | |
3327 | FALSE, NULL, 0)) { | |
3328 | case VM_FAULT_SUCCESS: | |
3329 | break; | |
3330 | case VM_FAULT_RETRY: | |
3331 | goto RetryDestinationFault; | |
3332 | case VM_FAULT_MEMORY_SHORTAGE: | |
3333 | if (vm_page_wait(interruptible)) | |
3334 | goto RetryDestinationFault; | |
3335 | /* fall thru */ | |
3336 | case VM_FAULT_INTERRUPTED: | |
3337 | RETURN(MACH_SEND_INTERRUPTED); | |
3338 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3339 | vm_page_more_fictitious(); | |
3340 | goto RetryDestinationFault; | |
3341 | case VM_FAULT_MEMORY_ERROR: | |
3342 | if (error) | |
3343 | return (error); | |
3344 | else | |
3345 | return(KERN_MEMORY_ERROR); | |
3346 | } | |
3347 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3348 | ||
3349 | old_copy_object = dst_page->object->copy; | |
3350 | ||
3351 | /* | |
3352 | * There exists the possiblity that the source and | |
3353 | * destination page are the same. But we can't | |
3354 | * easily determine that now. If they are the | |
3355 | * same, the call to vm_fault_page() for the | |
3356 | * destination page will deadlock. To prevent this we | |
3357 | * wire the page so we can drop busy without having | |
3358 | * the page daemon steal the page. We clean up the | |
3359 | * top page but keep the paging reference on the object | |
3360 | * holding the dest page so it doesn't go away. | |
3361 | */ | |
3362 | ||
3363 | vm_page_lock_queues(); | |
3364 | vm_page_wire(dst_page); | |
3365 | vm_page_unlock_queues(); | |
3366 | PAGE_WAKEUP_DONE(dst_page); | |
3367 | vm_object_unlock(dst_page->object); | |
3368 | ||
3369 | if (dst_top_page != VM_PAGE_NULL) { | |
3370 | vm_object_lock(dst_object); | |
3371 | VM_PAGE_FREE(dst_top_page); | |
3372 | vm_object_paging_end(dst_object); | |
3373 | vm_object_unlock(dst_object); | |
3374 | } | |
3375 | ||
3376 | RetrySourceFault: ; | |
3377 | ||
3378 | if (src_object == VM_OBJECT_NULL) { | |
3379 | /* | |
3380 | * No source object. We will just | |
3381 | * zero-fill the page in dst_object. | |
3382 | */ | |
3383 | src_page = VM_PAGE_NULL; | |
3384 | result_page = VM_PAGE_NULL; | |
3385 | } else { | |
3386 | vm_object_lock(src_object); | |
3387 | src_page = vm_page_lookup(src_object, | |
3388 | trunc_page_64(src_offset)); | |
3389 | if (src_page == dst_page) { | |
3390 | src_prot = dst_prot; | |
3391 | result_page = VM_PAGE_NULL; | |
3392 | } else { | |
3393 | src_prot = VM_PROT_READ; | |
3394 | vm_object_paging_begin(src_object); | |
3395 | ||
3396 | XPR(XPR_VM_FAULT, | |
3397 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3398 | 0,0,0,0,0); | |
3399 | switch (vm_fault_page(src_object, | |
3400 | trunc_page_64(src_offset), | |
3401 | VM_PROT_READ, | |
3402 | FALSE, | |
3403 | interruptible, | |
3404 | src_lo_offset, | |
3405 | src_hi_offset, | |
3406 | VM_BEHAVIOR_SEQUENTIAL, | |
3407 | &src_prot, | |
3408 | &result_page, | |
3409 | &src_top_page, | |
3410 | (int *)0, | |
3411 | &error, | |
3412 | FALSE, | |
3413 | FALSE, NULL, 0)) { | |
3414 | ||
3415 | case VM_FAULT_SUCCESS: | |
3416 | break; | |
3417 | case VM_FAULT_RETRY: | |
3418 | goto RetrySourceFault; | |
3419 | case VM_FAULT_MEMORY_SHORTAGE: | |
3420 | if (vm_page_wait(interruptible)) | |
3421 | goto RetrySourceFault; | |
3422 | /* fall thru */ | |
3423 | case VM_FAULT_INTERRUPTED: | |
3424 | vm_fault_copy_dst_cleanup(dst_page); | |
3425 | RETURN(MACH_SEND_INTERRUPTED); | |
3426 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3427 | vm_page_more_fictitious(); | |
3428 | goto RetrySourceFault; | |
3429 | case VM_FAULT_MEMORY_ERROR: | |
3430 | vm_fault_copy_dst_cleanup(dst_page); | |
3431 | if (error) | |
3432 | return (error); | |
3433 | else | |
3434 | return(KERN_MEMORY_ERROR); | |
3435 | } | |
3436 | ||
3437 | ||
3438 | assert((src_top_page == VM_PAGE_NULL) == | |
3439 | (result_page->object == src_object)); | |
3440 | } | |
3441 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
3442 | vm_object_unlock(result_page->object); | |
3443 | } | |
3444 | ||
3445 | if (!vm_map_verify(dst_map, dst_version)) { | |
3446 | if (result_page != VM_PAGE_NULL && src_page != dst_page) | |
3447 | vm_fault_copy_cleanup(result_page, src_top_page); | |
3448 | vm_fault_copy_dst_cleanup(dst_page); | |
3449 | break; | |
3450 | } | |
3451 | ||
3452 | vm_object_lock(dst_page->object); | |
3453 | ||
3454 | if (dst_page->object->copy != old_copy_object) { | |
3455 | vm_object_unlock(dst_page->object); | |
3456 | vm_map_verify_done(dst_map, dst_version); | |
3457 | if (result_page != VM_PAGE_NULL && src_page != dst_page) | |
3458 | vm_fault_copy_cleanup(result_page, src_top_page); | |
3459 | vm_fault_copy_dst_cleanup(dst_page); | |
3460 | break; | |
3461 | } | |
3462 | vm_object_unlock(dst_page->object); | |
3463 | ||
3464 | /* | |
3465 | * Copy the page, and note that it is dirty | |
3466 | * immediately. | |
3467 | */ | |
3468 | ||
3469 | if (!page_aligned(src_offset) || | |
3470 | !page_aligned(dst_offset) || | |
3471 | !page_aligned(amount_left)) { | |
3472 | ||
3473 | vm_object_offset_t src_po, | |
3474 | dst_po; | |
3475 | ||
3476 | src_po = src_offset - trunc_page_64(src_offset); | |
3477 | dst_po = dst_offset - trunc_page_64(dst_offset); | |
3478 | ||
3479 | if (dst_po > src_po) { | |
3480 | part_size = PAGE_SIZE - dst_po; | |
3481 | } else { | |
3482 | part_size = PAGE_SIZE - src_po; | |
3483 | } | |
3484 | if (part_size > (amount_left)){ | |
3485 | part_size = amount_left; | |
3486 | } | |
3487 | ||
3488 | if (result_page == VM_PAGE_NULL) { | |
3489 | vm_page_part_zero_fill(dst_page, | |
3490 | dst_po, part_size); | |
3491 | } else { | |
3492 | vm_page_part_copy(result_page, src_po, | |
3493 | dst_page, dst_po, part_size); | |
3494 | if(!dst_page->dirty){ | |
3495 | vm_object_lock(dst_object); | |
3496 | dst_page->dirty = TRUE; | |
3497 | vm_object_unlock(dst_page->object); | |
3498 | } | |
3499 | ||
3500 | } | |
3501 | } else { | |
3502 | part_size = PAGE_SIZE; | |
3503 | ||
3504 | if (result_page == VM_PAGE_NULL) | |
3505 | vm_page_zero_fill(dst_page); | |
3506 | else{ | |
3507 | vm_page_copy(result_page, dst_page); | |
3508 | if(!dst_page->dirty){ | |
3509 | vm_object_lock(dst_object); | |
3510 | dst_page->dirty = TRUE; | |
3511 | vm_object_unlock(dst_page->object); | |
3512 | } | |
3513 | } | |
3514 | ||
3515 | } | |
3516 | ||
3517 | /* | |
3518 | * Unlock everything, and return | |
3519 | */ | |
3520 | ||
3521 | vm_map_verify_done(dst_map, dst_version); | |
3522 | ||
3523 | if (result_page != VM_PAGE_NULL && src_page != dst_page) | |
3524 | vm_fault_copy_cleanup(result_page, src_top_page); | |
3525 | vm_fault_copy_dst_cleanup(dst_page); | |
3526 | ||
3527 | amount_left -= part_size; | |
3528 | src_offset += part_size; | |
3529 | dst_offset += part_size; | |
3530 | } while (amount_left > 0); | |
3531 | ||
3532 | RETURN(KERN_SUCCESS); | |
3533 | #undef RETURN | |
3534 | ||
3535 | /*NOTREACHED*/ | |
3536 | } | |
3537 | ||
3538 | #ifdef notdef | |
3539 | ||
3540 | /* | |
3541 | * Routine: vm_fault_page_overwrite | |
3542 | * | |
3543 | * Description: | |
3544 | * A form of vm_fault_page that assumes that the | |
3545 | * resulting page will be overwritten in its entirety, | |
3546 | * making it unnecessary to obtain the correct *contents* | |
3547 | * of the page. | |
3548 | * | |
3549 | * Implementation: | |
3550 | * XXX Untested. Also unused. Eventually, this technology | |
3551 | * could be used in vm_fault_copy() to advantage. | |
3552 | */ | |
3553 | vm_fault_return_t | |
3554 | vm_fault_page_overwrite( | |
3555 | register | |
3556 | vm_object_t dst_object, | |
3557 | vm_object_offset_t dst_offset, | |
3558 | vm_page_t *result_page) /* OUT */ | |
3559 | { | |
3560 | register | |
3561 | vm_page_t dst_page; | |
3562 | kern_return_t wait_result; | |
3563 | ||
3564 | #define interruptible THREAD_UNINT /* XXX */ | |
3565 | ||
3566 | while (TRUE) { | |
3567 | /* | |
3568 | * Look for a page at this offset | |
3569 | */ | |
3570 | ||
3571 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) | |
3572 | == VM_PAGE_NULL) { | |
3573 | /* | |
3574 | * No page, no problem... just allocate one. | |
3575 | */ | |
3576 | ||
3577 | dst_page = vm_page_alloc(dst_object, dst_offset); | |
3578 | if (dst_page == VM_PAGE_NULL) { | |
3579 | vm_object_unlock(dst_object); | |
3580 | VM_PAGE_WAIT(); | |
3581 | vm_object_lock(dst_object); | |
3582 | continue; | |
3583 | } | |
3584 | ||
3585 | /* | |
3586 | * Pretend that the memory manager | |
3587 | * write-protected the page. | |
3588 | * | |
3589 | * Note that we will be asking for write | |
3590 | * permission without asking for the data | |
3591 | * first. | |
3592 | */ | |
3593 | ||
3594 | dst_page->overwriting = TRUE; | |
3595 | dst_page->page_lock = VM_PROT_WRITE; | |
3596 | dst_page->absent = TRUE; | |
3597 | dst_page->unusual = TRUE; | |
3598 | dst_object->absent_count++; | |
3599 | ||
3600 | break; | |
3601 | ||
3602 | /* | |
3603 | * When we bail out, we might have to throw | |
3604 | * away the page created here. | |
3605 | */ | |
3606 | ||
3607 | #define DISCARD_PAGE \ | |
3608 | MACRO_BEGIN \ | |
3609 | vm_object_lock(dst_object); \ | |
3610 | dst_page = vm_page_lookup(dst_object, dst_offset); \ | |
3611 | if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \ | |
3612 | VM_PAGE_FREE(dst_page); \ | |
3613 | vm_object_unlock(dst_object); \ | |
3614 | MACRO_END | |
3615 | } | |
3616 | ||
3617 | /* | |
3618 | * If the page is write-protected... | |
3619 | */ | |
3620 | ||
3621 | if (dst_page->page_lock & VM_PROT_WRITE) { | |
3622 | /* | |
3623 | * ... and an unlock request hasn't been sent | |
3624 | */ | |
3625 | ||
3626 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) { | |
3627 | vm_prot_t u; | |
3628 | kern_return_t rc; | |
3629 | ||
3630 | /* | |
3631 | * ... then send one now. | |
3632 | */ | |
3633 | ||
3634 | if (!dst_object->pager_ready) { | |
3635 | vm_object_assert_wait(dst_object, | |
3636 | VM_OBJECT_EVENT_PAGER_READY, | |
3637 | interruptible); | |
3638 | vm_object_unlock(dst_object); | |
3639 | wait_result = thread_block((void (*)(void))0); | |
3640 | if (wait_result != THREAD_AWAKENED) { | |
3641 | DISCARD_PAGE; | |
3642 | return(VM_FAULT_INTERRUPTED); | |
3643 | } | |
3644 | continue; | |
3645 | } | |
3646 | ||
3647 | u = dst_page->unlock_request |= VM_PROT_WRITE; | |
3648 | vm_object_unlock(dst_object); | |
3649 | ||
3650 | if ((rc = memory_object_data_unlock( | |
3651 | dst_object->pager, | |
3652 | dst_offset + dst_object->paging_offset, | |
3653 | PAGE_SIZE, | |
3654 | u)) != KERN_SUCCESS) { | |
3655 | if (vm_fault_debug) | |
3656 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); | |
3657 | DISCARD_PAGE; | |
3658 | return((rc == MACH_SEND_INTERRUPTED) ? | |
3659 | VM_FAULT_INTERRUPTED : | |
3660 | VM_FAULT_MEMORY_ERROR); | |
3661 | } | |
3662 | vm_object_lock(dst_object); | |
3663 | continue; | |
3664 | } | |
3665 | ||
3666 | /* ... fall through to wait below */ | |
3667 | } else { | |
3668 | /* | |
3669 | * If the page isn't being used for other | |
3670 | * purposes, then we're done. | |
3671 | */ | |
3672 | if ( ! (dst_page->busy || dst_page->absent || | |
3673 | dst_page->error || dst_page->restart) ) | |
3674 | break; | |
3675 | } | |
3676 | ||
3677 | PAGE_ASSERT_WAIT(dst_page, interruptible); | |
3678 | vm_object_unlock(dst_object); | |
3679 | wait_result = thread_block((void (*)(void))0); | |
3680 | if (wait_result != THREAD_AWAKENED) { | |
3681 | DISCARD_PAGE; | |
3682 | return(VM_FAULT_INTERRUPTED); | |
3683 | } | |
3684 | } | |
3685 | ||
3686 | *result_page = dst_page; | |
3687 | return(VM_FAULT_SUCCESS); | |
3688 | ||
3689 | #undef interruptible | |
3690 | #undef DISCARD_PAGE | |
3691 | } | |
3692 | ||
3693 | #endif /* notdef */ | |
3694 | ||
3695 | #if VM_FAULT_CLASSIFY | |
3696 | /* | |
3697 | * Temporary statistics gathering support. | |
3698 | */ | |
3699 | ||
3700 | /* | |
3701 | * Statistics arrays: | |
3702 | */ | |
3703 | #define VM_FAULT_TYPES_MAX 5 | |
3704 | #define VM_FAULT_LEVEL_MAX 8 | |
3705 | ||
3706 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
3707 | ||
3708 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
3709 | #define VM_FAULT_TYPE_MAP_IN 1 | |
3710 | #define VM_FAULT_TYPE_PAGER 2 | |
3711 | #define VM_FAULT_TYPE_COPY 3 | |
3712 | #define VM_FAULT_TYPE_OTHER 4 | |
3713 | ||
3714 | ||
3715 | void | |
3716 | vm_fault_classify(vm_object_t object, | |
3717 | vm_object_offset_t offset, | |
3718 | vm_prot_t fault_type) | |
3719 | { | |
3720 | int type, level = 0; | |
3721 | vm_page_t m; | |
3722 | ||
3723 | while (TRUE) { | |
3724 | m = vm_page_lookup(object, offset); | |
3725 | if (m != VM_PAGE_NULL) { | |
3726 | if (m->busy || m->error || m->restart || m->absent || | |
3727 | fault_type & m->page_lock) { | |
3728 | type = VM_FAULT_TYPE_OTHER; | |
3729 | break; | |
3730 | } | |
3731 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
3732 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
3733 | type = VM_FAULT_TYPE_MAP_IN; | |
3734 | break; | |
3735 | } | |
3736 | type = VM_FAULT_TYPE_COPY; | |
3737 | break; | |
3738 | } | |
3739 | else { | |
3740 | if (object->pager_created) { | |
3741 | type = VM_FAULT_TYPE_PAGER; | |
3742 | break; | |
3743 | } | |
3744 | if (object->shadow == VM_OBJECT_NULL) { | |
3745 | type = VM_FAULT_TYPE_ZERO_FILL; | |
3746 | break; | |
3747 | } | |
3748 | ||
3749 | offset += object->shadow_offset; | |
3750 | object = object->shadow; | |
3751 | level++; | |
3752 | continue; | |
3753 | } | |
3754 | } | |
3755 | ||
3756 | if (level > VM_FAULT_LEVEL_MAX) | |
3757 | level = VM_FAULT_LEVEL_MAX; | |
3758 | ||
3759 | vm_fault_stats[type][level] += 1; | |
3760 | ||
3761 | return; | |
3762 | } | |
3763 | ||
3764 | /* cleanup routine to call from debugger */ | |
3765 | ||
3766 | void | |
3767 | vm_fault_classify_init(void) | |
3768 | { | |
3769 | int type, level; | |
3770 | ||
3771 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
3772 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
3773 | vm_fault_stats[type][level] = 0; | |
3774 | } | |
3775 | } | |
3776 | ||
3777 | return; | |
3778 | } | |
3779 | #endif /* VM_FAULT_CLASSIFY */ |