]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/memory_object.c | |
54 | * Author: Michael Wayne Young | |
55 | * | |
56 | * External memory management interface control functions. | |
57 | */ | |
58 | ||
59 | #include <advisory_pageout.h> | |
60 | ||
61 | /* | |
62 | * Interface dependencies: | |
63 | */ | |
64 | ||
65 | #include <mach/std_types.h> /* For pointer_t */ | |
66 | #include <mach/mach_types.h> | |
67 | ||
68 | #include <mach/mig.h> | |
69 | #include <mach/kern_return.h> | |
70 | #include <mach/memory_object.h> | |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/host_priv_server.h> | |
74 | #include <mach/boolean.h> | |
75 | #include <mach/vm_prot.h> | |
76 | #include <mach/message.h> | |
77 | ||
78 | /* | |
79 | * Implementation dependencies: | |
80 | */ | |
81 | #include <string.h> /* For memcpy() */ | |
82 | ||
83 | #include <kern/xpr.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/thread.h> /* For current_thread() */ | |
86 | #include <kern/ipc_mig.h> | |
87 | #include <kern/misc_protos.h> | |
88 | ||
89 | #include <vm/vm_object.h> | |
90 | #include <vm/vm_fault.h> | |
91 | #include <vm/memory_object.h> | |
92 | #include <vm/vm_page.h> | |
93 | #include <vm/vm_pageout.h> | |
94 | #include <vm/pmap.h> /* For pmap_clear_modify */ | |
95 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ | |
96 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |
97 | ||
98 | #if MACH_PAGEMAP | |
99 | #include <vm/vm_external.h> | |
100 | #endif /* MACH_PAGEMAP */ | |
101 | ||
102 | ||
103 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; | |
104 | vm_size_t memory_manager_default_cluster = 0; | |
105 | decl_mutex_data(, memory_manager_default_lock) | |
106 | ||
107 | /* | |
108 | * Forward ref to file-local function: | |
109 | */ | |
110 | boolean_t | |
111 | vm_object_update(vm_object_t, vm_object_offset_t, | |
112 | vm_size_t, memory_object_return_t, int, vm_prot_t); | |
113 | ||
114 | ||
115 | /* | |
116 | * Routine: memory_object_should_return_page | |
117 | * | |
118 | * Description: | |
119 | * Determine whether the given page should be returned, | |
120 | * based on the page's state and on the given return policy. | |
121 | * | |
122 | * We should return the page if one of the following is true: | |
123 | * | |
124 | * 1. Page is dirty and should_return is not RETURN_NONE. | |
125 | * 2. Page is precious and should_return is RETURN_ALL. | |
126 | * 3. Should_return is RETURN_ANYTHING. | |
127 | * | |
128 | * As a side effect, m->dirty will be made consistent | |
129 | * with pmap_is_modified(m), if should_return is not | |
130 | * MEMORY_OBJECT_RETURN_NONE. | |
131 | */ | |
132 | ||
133 | #define memory_object_should_return_page(m, should_return) \ | |
134 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ | |
135 | (((m)->dirty || ((m)->dirty = pmap_is_modified((m)->phys_addr))) || \ | |
136 | ((m)->precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ | |
137 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) | |
138 | ||
139 | typedef int memory_object_lock_result_t; | |
140 | ||
141 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 | |
142 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 | |
143 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN 2 | |
144 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 3 | |
145 | ||
146 | memory_object_lock_result_t memory_object_lock_page( | |
147 | vm_page_t m, | |
148 | memory_object_return_t should_return, | |
149 | boolean_t should_flush, | |
150 | vm_prot_t prot); | |
151 | ||
152 | /* | |
153 | * Routine: memory_object_lock_page | |
154 | * | |
155 | * Description: | |
156 | * Perform the appropriate lock operations on the | |
157 | * given page. See the description of | |
158 | * "memory_object_lock_request" for the meanings | |
159 | * of the arguments. | |
160 | * | |
161 | * Returns an indication that the operation | |
162 | * completed, blocked, or that the page must | |
163 | * be cleaned. | |
164 | */ | |
165 | memory_object_lock_result_t | |
166 | memory_object_lock_page( | |
167 | vm_page_t m, | |
168 | memory_object_return_t should_return, | |
169 | boolean_t should_flush, | |
170 | vm_prot_t prot) | |
171 | { | |
172 | XPR(XPR_MEMORY_OBJECT, | |
173 | "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n", | |
174 | (integer_t)m, should_return, should_flush, prot, 0); | |
175 | ||
176 | /* | |
177 | * If we cannot change access to the page, | |
178 | * either because a mapping is in progress | |
179 | * (busy page) or because a mapping has been | |
180 | * wired, then give up. | |
181 | */ | |
182 | ||
183 | if (m->busy || m->cleaning) | |
184 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK); | |
185 | ||
186 | /* | |
187 | * Don't worry about pages for which the kernel | |
188 | * does not have any data. | |
189 | */ | |
190 | ||
191 | if (m->absent || m->error || m->restart) { | |
192 | if(m->error && should_flush) { | |
193 | /* dump the page, pager wants us to */ | |
194 | /* clean it up and there is no */ | |
195 | /* relevant data to return */ | |
196 | if(m->wire_count == 0) { | |
197 | VM_PAGE_FREE(m); | |
198 | return(MEMORY_OBJECT_LOCK_RESULT_DONE); | |
199 | } | |
200 | } else { | |
201 | return(MEMORY_OBJECT_LOCK_RESULT_DONE); | |
202 | } | |
203 | } | |
204 | ||
205 | assert(!m->fictitious); | |
206 | ||
207 | if (m->wire_count != 0) { | |
208 | /* | |
209 | * If no change would take place | |
210 | * anyway, return successfully. | |
211 | * | |
212 | * No change means: | |
213 | * Not flushing AND | |
214 | * No change to page lock [2 checks] AND | |
215 | * Should not return page | |
216 | * | |
217 | * XXX This doesn't handle sending a copy of a wired | |
218 | * XXX page to the pager, but that will require some | |
219 | * XXX significant surgery. | |
220 | */ | |
221 | if (!should_flush && | |
222 | (m->page_lock == prot || prot == VM_PROT_NO_CHANGE) && | |
223 | ! memory_object_should_return_page(m, should_return)) { | |
224 | ||
225 | /* | |
226 | * Restart page unlock requests, | |
227 | * even though no change took place. | |
228 | * [Memory managers may be expecting | |
229 | * to see new requests.] | |
230 | */ | |
231 | m->unlock_request = VM_PROT_NONE; | |
232 | PAGE_WAKEUP(m); | |
233 | ||
234 | return(MEMORY_OBJECT_LOCK_RESULT_DONE); | |
235 | } | |
236 | ||
237 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK); | |
238 | } | |
239 | ||
240 | /* | |
241 | * If the page is to be flushed, allow | |
242 | * that to be done as part of the protection. | |
243 | */ | |
244 | ||
245 | if (should_flush) | |
246 | prot = VM_PROT_ALL; | |
247 | ||
248 | /* | |
249 | * Set the page lock. | |
250 | * | |
251 | * If we are decreasing permission, do it now; | |
252 | * let the fault handler take care of increases | |
253 | * (pmap_page_protect may not increase protection). | |
254 | */ | |
255 | ||
256 | if (prot != VM_PROT_NO_CHANGE) { | |
257 | if ((m->page_lock ^ prot) & prot) { | |
258 | pmap_page_protect(m->phys_addr, VM_PROT_ALL & ~prot); | |
259 | } | |
260 | #if 0 | |
261 | /* code associated with the vestigial | |
262 | * memory_object_data_unlock | |
263 | */ | |
264 | m->page_lock = prot; | |
265 | m->lock_supplied = TRUE; | |
266 | if (prot != VM_PROT_NONE) | |
267 | m->unusual = TRUE; | |
268 | else | |
269 | m->unusual = FALSE; | |
270 | ||
271 | /* | |
272 | * Restart any past unlock requests, even if no | |
273 | * change resulted. If the manager explicitly | |
274 | * requested no protection change, then it is assumed | |
275 | * to be remembering past requests. | |
276 | */ | |
277 | ||
278 | m->unlock_request = VM_PROT_NONE; | |
279 | #endif /* 0 */ | |
280 | PAGE_WAKEUP(m); | |
281 | } | |
282 | ||
283 | /* | |
284 | * Handle page returning. | |
285 | */ | |
286 | ||
287 | if (memory_object_should_return_page(m, should_return)) { | |
288 | ||
289 | /* | |
290 | * If we weren't planning | |
291 | * to flush the page anyway, | |
292 | * we may need to remove the | |
293 | * page from the pageout | |
294 | * system and from physical | |
295 | * maps now. | |
296 | */ | |
297 | ||
298 | vm_page_lock_queues(); | |
299 | VM_PAGE_QUEUES_REMOVE(m); | |
300 | vm_page_unlock_queues(); | |
301 | ||
302 | if (!should_flush) | |
303 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
304 | ||
305 | if (m->dirty) | |
306 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN); | |
307 | else | |
308 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); | |
309 | } | |
310 | ||
311 | /* | |
312 | * Handle flushing | |
313 | */ | |
314 | ||
315 | if (should_flush) { | |
316 | VM_PAGE_FREE(m); | |
317 | } else { | |
318 | extern boolean_t vm_page_deactivate_hint; | |
319 | ||
320 | /* | |
321 | * XXX Make clean but not flush a paging hint, | |
322 | * and deactivate the pages. This is a hack | |
323 | * because it overloads flush/clean with | |
324 | * implementation-dependent meaning. This only | |
325 | * happens to pages that are already clean. | |
326 | */ | |
327 | ||
328 | if (vm_page_deactivate_hint && | |
329 | (should_return != MEMORY_OBJECT_RETURN_NONE)) { | |
330 | vm_page_lock_queues(); | |
331 | vm_page_deactivate(m); | |
332 | vm_page_unlock_queues(); | |
333 | } | |
334 | } | |
335 | ||
336 | return(MEMORY_OBJECT_LOCK_RESULT_DONE); | |
337 | } | |
338 | ||
339 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, action, po) \ | |
340 | MACRO_BEGIN \ | |
341 | \ | |
342 | register int i; \ | |
343 | register vm_page_t hp; \ | |
344 | \ | |
345 | vm_object_unlock(object); \ | |
346 | \ | |
347 | (void) memory_object_data_return(object->pager, \ | |
348 | po, \ | |
349 | data_cnt, \ | |
350 | (action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN), \ | |
351 | !should_flush); \ | |
352 | \ | |
353 | vm_object_lock(object); \ | |
354 | MACRO_END | |
355 | ||
356 | /* | |
357 | * Routine: memory_object_lock_request [user interface] | |
358 | * | |
359 | * Description: | |
360 | * Control use of the data associated with the given | |
361 | * memory object. For each page in the given range, | |
362 | * perform the following operations, in order: | |
363 | * 1) restrict access to the page (disallow | |
364 | * forms specified by "prot"); | |
365 | * 2) return data to the manager (if "should_return" | |
366 | * is RETURN_DIRTY and the page is dirty, or | |
367 | * "should_return" is RETURN_ALL and the page | |
368 | * is either dirty or precious); and, | |
369 | * 3) flush the cached copy (if "should_flush" | |
370 | * is asserted). | |
371 | * The set of pages is defined by a starting offset | |
372 | * ("offset") and size ("size"). Only pages with the | |
373 | * same page alignment as the starting offset are | |
374 | * considered. | |
375 | * | |
376 | * A single acknowledgement is sent (to the "reply_to" | |
377 | * port) when these actions are complete. If successful, | |
378 | * the naked send right for reply_to is consumed. | |
379 | */ | |
380 | ||
381 | kern_return_t | |
382 | memory_object_lock_request( | |
383 | memory_object_control_t control, | |
384 | memory_object_offset_t offset, | |
385 | memory_object_size_t size, | |
386 | memory_object_return_t should_return, | |
387 | int flags, | |
388 | vm_prot_t prot) | |
389 | { | |
390 | vm_object_t object; | |
391 | vm_object_offset_t original_offset = offset; | |
392 | boolean_t should_flush=flags & MEMORY_OBJECT_DATA_FLUSH; | |
393 | ||
394 | XPR(XPR_MEMORY_OBJECT, | |
395 | "m_o_lock_request, control 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
396 | (integer_t)control, offset, size, | |
397 | (((should_return&1)<<1)|should_flush), prot); | |
398 | ||
399 | /* | |
400 | * Check for bogus arguments. | |
401 | */ | |
402 | object = memory_object_control_to_vm_object(control); | |
403 | if (object == VM_OBJECT_NULL) | |
404 | return (KERN_INVALID_ARGUMENT); | |
405 | ||
406 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) | |
407 | return (KERN_INVALID_ARGUMENT); | |
408 | ||
409 | size = round_page(size); | |
410 | ||
411 | /* | |
412 | * Lock the object, and acquire a paging reference to | |
413 | * prevent the memory_object reference from being released. | |
414 | */ | |
415 | vm_object_lock(object); | |
416 | vm_object_paging_begin(object); | |
417 | offset -= object->paging_offset; | |
418 | ||
419 | (void)vm_object_update(object, | |
420 | offset, size, should_return, flags, prot); | |
421 | ||
422 | vm_object_paging_end(object); | |
423 | vm_object_unlock(object); | |
424 | ||
425 | return (KERN_SUCCESS); | |
426 | } | |
427 | ||
428 | /* | |
429 | * memory_object_release_name: [interface] | |
430 | * | |
431 | * Enforces name semantic on memory_object reference count decrement | |
432 | * This routine should not be called unless the caller holds a name | |
433 | * reference gained through the memory_object_named_create or the | |
434 | * memory_object_rename call. | |
435 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
436 | * reference count is not 1. i.e. idle with the only remaining reference | |
437 | * being the name. | |
438 | * If the decision is made to proceed the name field flag is set to | |
439 | * false and the reference count is decremented. If the RESPECT_CACHE | |
440 | * flag is set and the reference count has gone to zero, the | |
441 | * memory_object is checked to see if it is cacheable otherwise when | |
442 | * the reference count is zero, it is simply terminated. | |
443 | */ | |
444 | ||
445 | kern_return_t | |
446 | memory_object_release_name( | |
447 | memory_object_control_t control, | |
448 | int flags) | |
449 | { | |
450 | vm_object_t object; | |
451 | ||
452 | object = memory_object_control_to_vm_object(control); | |
453 | if (object == VM_OBJECT_NULL) | |
454 | return (KERN_INVALID_ARGUMENT); | |
455 | ||
456 | return vm_object_release_name(object, flags); | |
457 | } | |
458 | ||
459 | ||
460 | ||
461 | /* | |
462 | * Routine: memory_object_destroy [user interface] | |
463 | * Purpose: | |
464 | * Shut down a memory object, despite the | |
465 | * presence of address map (or other) references | |
466 | * to the vm_object. | |
467 | */ | |
468 | kern_return_t | |
469 | memory_object_destroy( | |
470 | memory_object_control_t control, | |
471 | kern_return_t reason) | |
472 | { | |
473 | vm_object_t object; | |
474 | ||
475 | object = memory_object_control_to_vm_object(control); | |
476 | if (object == VM_OBJECT_NULL) | |
477 | return (KERN_INVALID_ARGUMENT); | |
478 | ||
479 | return (vm_object_destroy(object, reason)); | |
480 | } | |
481 | ||
482 | /* | |
483 | * Routine: vm_object_sync | |
484 | * | |
485 | * Kernel internal function to synch out pages in a given | |
486 | * range within an object to its memory manager. Much the | |
487 | * same as memory_object_lock_request but page protection | |
488 | * is not changed. | |
489 | * | |
490 | * If the should_flush and should_return flags are true pages | |
491 | * are flushed, that is dirty & precious pages are written to | |
492 | * the memory manager and then discarded. If should_return | |
493 | * is false, only precious pages are returned to the memory | |
494 | * manager. | |
495 | * | |
496 | * If should flush is false and should_return true, the memory | |
497 | * manager's copy of the pages is updated. If should_return | |
498 | * is also false, only the precious pages are updated. This | |
499 | * last option is of limited utility. | |
500 | * | |
501 | * Returns: | |
502 | * FALSE if no pages were returned to the pager | |
503 | * TRUE otherwise. | |
504 | */ | |
505 | ||
506 | boolean_t | |
507 | vm_object_sync( | |
508 | vm_object_t object, | |
509 | vm_object_offset_t offset, | |
510 | vm_size_t size, | |
511 | boolean_t should_flush, | |
512 | boolean_t should_return) | |
513 | { | |
514 | boolean_t rv; | |
515 | ||
516 | XPR(XPR_VM_OBJECT, | |
517 | "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n", | |
518 | (integer_t)object, offset, size, should_flush, should_return); | |
519 | ||
520 | /* | |
521 | * Lock the object, and acquire a paging reference to | |
522 | * prevent the memory_object and control ports from | |
523 | * being destroyed. | |
524 | */ | |
525 | vm_object_lock(object); | |
526 | vm_object_paging_begin(object); | |
527 | ||
528 | rv = vm_object_update(object, offset, size, | |
529 | (should_return) ? | |
530 | MEMORY_OBJECT_RETURN_ALL : | |
531 | MEMORY_OBJECT_RETURN_NONE, | |
532 | (should_flush) ? | |
533 | MEMORY_OBJECT_DATA_FLUSH : 0, | |
534 | VM_PROT_NO_CHANGE); | |
535 | ||
536 | ||
537 | vm_object_paging_end(object); | |
538 | vm_object_unlock(object); | |
539 | return rv; | |
540 | } | |
541 | ||
542 | /* | |
543 | * Routine: vm_object_update | |
544 | * Description: | |
545 | * Work function for m_o_lock_request(), vm_o_sync(). | |
546 | * | |
547 | * Called with object locked and paging ref taken. | |
548 | */ | |
549 | kern_return_t | |
550 | vm_object_update( | |
551 | register vm_object_t object, | |
552 | register vm_object_offset_t offset, | |
553 | register vm_size_t size, | |
554 | memory_object_return_t should_return, | |
555 | int flags, | |
556 | vm_prot_t prot) | |
557 | { | |
558 | register vm_page_t m; | |
559 | vm_page_t holding_page; | |
560 | vm_size_t original_size = size; | |
561 | vm_object_offset_t paging_offset = 0; | |
562 | vm_object_t copy_object; | |
563 | vm_size_t data_cnt = 0; | |
564 | vm_object_offset_t last_offset = offset; | |
565 | memory_object_lock_result_t page_lock_result; | |
566 | memory_object_lock_result_t pageout_action; | |
567 | boolean_t data_returned = FALSE; | |
568 | boolean_t update_cow; | |
569 | boolean_t should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
570 | boolean_t pending_pageout = FALSE; | |
571 | ||
572 | /* | |
573 | * To avoid blocking while scanning for pages, save | |
574 | * dirty pages to be cleaned all at once. | |
575 | * | |
576 | * XXXO A similar strategy could be used to limit the | |
577 | * number of times that a scan must be restarted for | |
578 | * other reasons. Those pages that would require blocking | |
579 | * could be temporarily collected in another list, or | |
580 | * their offsets could be recorded in a small array. | |
581 | */ | |
582 | ||
583 | /* | |
584 | * XXX NOTE: May want to consider converting this to a page list | |
585 | * XXX vm_map_copy interface. Need to understand object | |
586 | * XXX coalescing implications before doing so. | |
587 | */ | |
588 | ||
589 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) | |
590 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && | |
591 | !(flags & MEMORY_OBJECT_DATA_PURGE))) | |
592 | || (flags & MEMORY_OBJECT_COPY_SYNC); | |
593 | ||
594 | ||
595 | if((((copy_object = object->copy) != NULL) && update_cow) || | |
596 | (flags & MEMORY_OBJECT_DATA_SYNC)) { | |
597 | vm_size_t i; | |
598 | vm_size_t copy_size; | |
599 | vm_object_offset_t copy_offset; | |
600 | vm_prot_t prot; | |
601 | vm_page_t page; | |
602 | vm_page_t top_page; | |
603 | kern_return_t error = 0; | |
604 | ||
605 | if(copy_object != NULL) { | |
606 | /* translate offset with respect to shadow's offset */ | |
607 | copy_offset = (offset >= copy_object->shadow_offset)? | |
608 | offset - copy_object->shadow_offset : | |
609 | (vm_object_offset_t) 0; | |
610 | if(copy_offset > copy_object->size) | |
611 | copy_offset = copy_object->size; | |
612 | ||
613 | /* clip size with respect to shadow offset */ | |
614 | copy_size = (offset >= copy_object->shadow_offset) ? | |
615 | size : size - (copy_object->shadow_offset - offset); | |
616 | ||
617 | if(copy_size <= 0) { | |
618 | copy_size = 0; | |
619 | } else { | |
620 | copy_size = ((copy_offset + copy_size) | |
621 | <= copy_object->size) ? | |
622 | copy_size : copy_object->size - copy_offset; | |
623 | } | |
624 | /* check for a copy_offset which is beyond the end of */ | |
625 | /* the copy_object */ | |
626 | if(copy_size < 0) | |
627 | copy_size = 0; | |
628 | ||
629 | copy_size+=offset; | |
630 | ||
631 | vm_object_unlock(object); | |
632 | vm_object_lock(copy_object); | |
633 | } else { | |
634 | copy_object = object; | |
635 | ||
636 | copy_size = offset + size; | |
637 | copy_offset = offset; | |
638 | } | |
639 | ||
640 | vm_object_paging_begin(copy_object); | |
641 | for (i=copy_offset; i<copy_size; i+=PAGE_SIZE) { | |
642 | RETRY_COW_OF_LOCK_REQUEST: | |
643 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
644 | switch (vm_fault_page(copy_object, i, | |
645 | VM_PROT_WRITE|VM_PROT_READ, | |
646 | FALSE, | |
647 | THREAD_UNINT, | |
648 | copy_offset, | |
649 | copy_offset+copy_size, | |
650 | VM_BEHAVIOR_SEQUENTIAL, | |
651 | &prot, | |
652 | &page, | |
653 | &top_page, | |
654 | (int *)0, | |
655 | &error, | |
656 | FALSE, | |
657 | FALSE, NULL, 0)) { | |
658 | ||
659 | case VM_FAULT_SUCCESS: | |
660 | if(top_page) { | |
661 | vm_fault_cleanup( | |
662 | page->object, top_page); | |
663 | PAGE_WAKEUP_DONE(page); | |
664 | vm_page_lock_queues(); | |
665 | if (!page->active && !page->inactive) | |
666 | vm_page_activate(page); | |
667 | vm_page_unlock_queues(); | |
668 | vm_object_lock(copy_object); | |
669 | vm_object_paging_begin(copy_object); | |
670 | } else { | |
671 | PAGE_WAKEUP_DONE(page); | |
672 | vm_page_lock_queues(); | |
673 | if (!page->active && !page->inactive) | |
674 | vm_page_activate(page); | |
675 | vm_page_unlock_queues(); | |
676 | } | |
677 | break; | |
678 | case VM_FAULT_RETRY: | |
679 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
680 | vm_object_lock(copy_object); | |
681 | vm_object_paging_begin(copy_object); | |
682 | goto RETRY_COW_OF_LOCK_REQUEST; | |
683 | case VM_FAULT_INTERRUPTED: | |
684 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
685 | vm_object_lock(copy_object); | |
686 | vm_object_paging_begin(copy_object); | |
687 | goto RETRY_COW_OF_LOCK_REQUEST; | |
688 | case VM_FAULT_MEMORY_SHORTAGE: | |
689 | VM_PAGE_WAIT(); | |
690 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
691 | vm_object_lock(copy_object); | |
692 | vm_object_paging_begin(copy_object); | |
693 | goto RETRY_COW_OF_LOCK_REQUEST; | |
694 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
695 | vm_page_more_fictitious(); | |
696 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
697 | vm_object_lock(copy_object); | |
698 | vm_object_paging_begin(copy_object); | |
699 | goto RETRY_COW_OF_LOCK_REQUEST; | |
700 | case VM_FAULT_MEMORY_ERROR: | |
701 | vm_object_lock(object); | |
702 | goto BYPASS_COW_COPYIN; | |
703 | } | |
704 | ||
705 | } | |
706 | vm_object_paging_end(copy_object); | |
707 | if(copy_object != object) { | |
708 | vm_object_unlock(copy_object); | |
709 | vm_object_lock(object); | |
710 | } | |
711 | } | |
712 | if((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { | |
713 | return KERN_SUCCESS; | |
714 | } | |
715 | if(((copy_object = object->copy) != NULL) && | |
716 | (flags & MEMORY_OBJECT_DATA_PURGE)) { | |
717 | copy_object->shadow_severed = TRUE; | |
718 | copy_object->shadowed = FALSE; | |
719 | copy_object->shadow = NULL; | |
720 | /* delete the ref the COW was holding on the target object */ | |
721 | vm_object_deallocate(object); | |
722 | } | |
723 | BYPASS_COW_COPYIN: | |
724 | ||
725 | for (; | |
726 | size != 0; | |
727 | size -= PAGE_SIZE, offset += PAGE_SIZE_64) | |
728 | { | |
729 | /* | |
730 | * Limit the number of pages to be cleaned at once. | |
731 | */ | |
732 | if (pending_pageout && | |
733 | data_cnt >= PAGE_SIZE * DATA_WRITE_MAX) | |
734 | { | |
735 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
736 | pageout_action, paging_offset); | |
737 | data_cnt = 0; | |
738 | pending_pageout = FALSE; | |
739 | } | |
740 | ||
741 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
742 | page_lock_result = memory_object_lock_page(m, should_return, | |
743 | should_flush, prot); | |
744 | ||
745 | XPR(XPR_MEMORY_OBJECT, | |
746 | "m_o_update: lock_page, obj 0x%X offset 0x%X result %d\n", | |
747 | (integer_t)object, offset, page_lock_result, 0, 0); | |
748 | ||
749 | switch (page_lock_result) | |
750 | { | |
751 | case MEMORY_OBJECT_LOCK_RESULT_DONE: | |
752 | /* | |
753 | * End of a cluster of dirty pages. | |
754 | */ | |
755 | if(pending_pageout) { | |
756 | LIST_REQ_PAGEOUT_PAGES(object, | |
757 | data_cnt, pageout_action, | |
758 | paging_offset); | |
759 | data_cnt = 0; | |
760 | pending_pageout = FALSE; | |
761 | continue; | |
762 | } | |
763 | break; | |
764 | ||
765 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: | |
766 | /* | |
767 | * Since it is necessary to block, | |
768 | * clean any dirty pages now. | |
769 | */ | |
770 | if(pending_pageout) { | |
771 | LIST_REQ_PAGEOUT_PAGES(object, | |
772 | data_cnt, pageout_action, | |
773 | paging_offset); | |
774 | pending_pageout = FALSE; | |
775 | data_cnt = 0; | |
776 | continue; | |
777 | } | |
778 | ||
779 | PAGE_ASSERT_WAIT(m, THREAD_UNINT); | |
780 | vm_object_unlock(object); | |
781 | thread_block((void (*)(void))0); | |
782 | vm_object_lock(object); | |
783 | continue; | |
784 | ||
785 | case MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN: | |
786 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: | |
787 | /* | |
788 | * The clean and return cases are similar. | |
789 | * | |
790 | */ | |
791 | ||
792 | /* | |
793 | * if this would form a discontiguous block, | |
794 | * clean the old pages and start anew. | |
795 | * | |
796 | */ | |
797 | ||
798 | /* | |
799 | * Mark the page busy since we unlock the | |
800 | * object below. | |
801 | */ | |
802 | m->busy = TRUE; | |
803 | if (pending_pageout && | |
804 | (last_offset != offset || | |
805 | pageout_action != page_lock_result)) { | |
806 | LIST_REQ_PAGEOUT_PAGES(object, | |
807 | data_cnt, pageout_action, | |
808 | paging_offset); | |
809 | pending_pageout = FALSE; | |
810 | data_cnt = 0; | |
811 | } | |
812 | m->busy = FALSE; | |
813 | holding_page = VM_PAGE_NULL; | |
814 | if(m->cleaning) { | |
815 | PAGE_ASSERT_WAIT(m, THREAD_UNINT); | |
816 | vm_object_unlock(object); | |
817 | thread_block((void (*)(void))0); | |
818 | continue; | |
819 | } | |
820 | if(!pending_pageout) { | |
821 | pending_pageout = TRUE; | |
822 | pageout_action = page_lock_result; | |
823 | paging_offset = offset; | |
824 | } | |
825 | if (should_flush) { | |
826 | vm_page_lock_queues(); | |
827 | m->list_req_pending = TRUE; | |
828 | m->cleaning = TRUE; | |
829 | m->busy = TRUE; | |
830 | m->pageout = TRUE; | |
831 | vm_page_wire(m); | |
832 | vm_page_unlock_queues(); | |
833 | } else { | |
834 | /* | |
835 | * Clean but do not flush | |
836 | */ | |
837 | vm_page_lock_queues(); | |
838 | m->list_req_pending = TRUE; | |
839 | m->cleaning = TRUE; | |
840 | vm_page_unlock_queues(); | |
841 | ||
842 | } | |
843 | vm_object_unlock(object); | |
844 | ||
845 | ||
846 | data_cnt += PAGE_SIZE; | |
847 | last_offset = offset + PAGE_SIZE_64; | |
848 | data_returned = TRUE; | |
849 | ||
850 | vm_object_lock(object); | |
851 | break; | |
852 | } | |
853 | break; | |
854 | } | |
855 | } | |
856 | ||
857 | /* | |
858 | * We have completed the scan for applicable pages. | |
859 | * Clean any pages that have been saved. | |
860 | */ | |
861 | if (pending_pageout) { | |
862 | LIST_REQ_PAGEOUT_PAGES(object, | |
863 | data_cnt, pageout_action, paging_offset); | |
864 | } | |
865 | return (data_returned); | |
866 | } | |
867 | ||
868 | /* | |
869 | * Routine: memory_object_synchronize_completed [user interface] | |
870 | * | |
871 | * Tell kernel that previously synchronized data | |
872 | * (memory_object_synchronize) has been queue or placed on the | |
873 | * backing storage. | |
874 | * | |
875 | * Note: there may be multiple synchronize requests for a given | |
876 | * memory object outstanding but they will not overlap. | |
877 | */ | |
878 | ||
879 | kern_return_t | |
880 | memory_object_synchronize_completed( | |
881 | memory_object_control_t control, | |
882 | memory_object_offset_t offset, | |
883 | vm_offset_t length) | |
884 | { | |
885 | vm_object_t object; | |
886 | msync_req_t msr; | |
887 | ||
888 | XPR(XPR_MEMORY_OBJECT, | |
889 | "m_o_sync_completed, object 0x%X, offset 0x%X length 0x%X\n", | |
890 | (integer_t)object, offset, length, 0, 0); | |
891 | ||
892 | /* | |
893 | * Look for bogus arguments | |
894 | */ | |
895 | ||
896 | object = memory_object_control_to_vm_object(control); | |
897 | if (object == VM_OBJECT_NULL) | |
898 | return (KERN_INVALID_ARGUMENT); | |
899 | ||
900 | vm_object_lock(object); | |
901 | ||
902 | /* | |
903 | * search for sync request structure | |
904 | */ | |
905 | queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) { | |
906 | if (msr->offset == offset && msr->length == length) { | |
907 | queue_remove(&object->msr_q, msr, msync_req_t, msr_q); | |
908 | break; | |
909 | } | |
910 | }/* queue_iterate */ | |
911 | ||
912 | if (queue_end(&object->msr_q, (queue_entry_t)msr)) { | |
913 | vm_object_unlock(object); | |
914 | return KERN_INVALID_ARGUMENT; | |
915 | } | |
916 | ||
917 | msr_lock(msr); | |
918 | vm_object_unlock(object); | |
919 | msr->flag = VM_MSYNC_DONE; | |
920 | msr_unlock(msr); | |
921 | thread_wakeup((event_t) msr); | |
922 | ||
923 | return KERN_SUCCESS; | |
924 | }/* memory_object_synchronize_completed */ | |
925 | ||
926 | static kern_return_t | |
927 | vm_object_set_attributes_common( | |
928 | vm_object_t object, | |
929 | boolean_t may_cache, | |
930 | memory_object_copy_strategy_t copy_strategy, | |
931 | boolean_t temporary, | |
932 | vm_size_t cluster_size, | |
933 | boolean_t silent_overwrite, | |
934 | boolean_t advisory_pageout) | |
935 | { | |
936 | boolean_t object_became_ready; | |
937 | ||
938 | XPR(XPR_MEMORY_OBJECT, | |
939 | "m_o_set_attr_com, object 0x%X flg %x strat %d\n", | |
940 | (integer_t)object, (may_cache&1)|((temporary&1)<1), copy_strategy, 0, 0); | |
941 | ||
942 | if (object == VM_OBJECT_NULL) | |
943 | return(KERN_INVALID_ARGUMENT); | |
944 | ||
945 | /* | |
946 | * Verify the attributes of importance | |
947 | */ | |
948 | ||
949 | switch(copy_strategy) { | |
950 | case MEMORY_OBJECT_COPY_NONE: | |
951 | case MEMORY_OBJECT_COPY_DELAY: | |
952 | break; | |
953 | default: | |
954 | return(KERN_INVALID_ARGUMENT); | |
955 | } | |
956 | ||
957 | #if !ADVISORY_PAGEOUT | |
958 | if (silent_overwrite || advisory_pageout) | |
959 | return(KERN_INVALID_ARGUMENT); | |
960 | ||
961 | #endif /* !ADVISORY_PAGEOUT */ | |
962 | if (may_cache) | |
963 | may_cache = TRUE; | |
964 | if (temporary) | |
965 | temporary = TRUE; | |
966 | if (cluster_size != 0) { | |
967 | int pages_per_cluster; | |
968 | pages_per_cluster = atop(cluster_size); | |
969 | /* | |
970 | * Cluster size must be integral multiple of page size, | |
971 | * and be a power of 2 number of pages. | |
972 | */ | |
973 | if ((cluster_size & (PAGE_SIZE-1)) || | |
974 | ((pages_per_cluster-1) & pages_per_cluster)) | |
975 | return KERN_INVALID_ARGUMENT; | |
976 | } | |
977 | ||
978 | vm_object_lock(object); | |
979 | ||
980 | /* | |
981 | * Copy the attributes | |
982 | */ | |
983 | assert(!object->internal); | |
984 | object_became_ready = !object->pager_ready; | |
985 | object->copy_strategy = copy_strategy; | |
986 | object->can_persist = may_cache; | |
987 | object->temporary = temporary; | |
988 | object->silent_overwrite = silent_overwrite; | |
989 | object->advisory_pageout = advisory_pageout; | |
990 | if (cluster_size == 0) | |
991 | cluster_size = PAGE_SIZE; | |
992 | object->cluster_size = cluster_size; | |
993 | ||
994 | assert(cluster_size >= PAGE_SIZE && | |
995 | cluster_size % PAGE_SIZE == 0); | |
996 | ||
997 | /* | |
998 | * Wake up anyone waiting for the ready attribute | |
999 | * to become asserted. | |
1000 | */ | |
1001 | ||
1002 | if (object_became_ready) { | |
1003 | object->pager_ready = TRUE; | |
1004 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1005 | } | |
1006 | ||
1007 | vm_object_unlock(object); | |
1008 | ||
1009 | return(KERN_SUCCESS); | |
1010 | } | |
1011 | ||
1012 | /* | |
1013 | * Set the memory object attribute as provided. | |
1014 | * | |
1015 | * XXX This routine cannot be completed until the vm_msync, clean | |
1016 | * in place, and cluster work is completed. See ifdef notyet | |
1017 | * below and note that vm_object_set_attributes_common() | |
1018 | * may have to be expanded. | |
1019 | */ | |
1020 | kern_return_t | |
1021 | memory_object_change_attributes( | |
1022 | memory_object_control_t control, | |
1023 | memory_object_flavor_t flavor, | |
1024 | memory_object_info_t attributes, | |
1025 | mach_msg_type_number_t count) | |
1026 | { | |
1027 | vm_object_t object; | |
1028 | kern_return_t result = KERN_SUCCESS; | |
1029 | boolean_t temporary; | |
1030 | boolean_t may_cache; | |
1031 | boolean_t invalidate; | |
1032 | vm_size_t cluster_size; | |
1033 | memory_object_copy_strategy_t copy_strategy; | |
1034 | boolean_t silent_overwrite; | |
1035 | boolean_t advisory_pageout; | |
1036 | ||
1037 | object = memory_object_control_to_vm_object(control); | |
1038 | if (object == VM_OBJECT_NULL) | |
1039 | return (KERN_INVALID_ARGUMENT); | |
1040 | ||
1041 | vm_object_lock(object); | |
1042 | ||
1043 | temporary = object->temporary; | |
1044 | may_cache = object->can_persist; | |
1045 | copy_strategy = object->copy_strategy; | |
1046 | silent_overwrite = object->silent_overwrite; | |
1047 | advisory_pageout = object->advisory_pageout; | |
1048 | #if notyet | |
1049 | invalidate = object->invalidate; | |
1050 | #endif | |
1051 | cluster_size = object->cluster_size; | |
1052 | vm_object_unlock(object); | |
1053 | ||
1054 | switch (flavor) { | |
1055 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1056 | { | |
1057 | old_memory_object_behave_info_t behave; | |
1058 | ||
1059 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1060 | result = KERN_INVALID_ARGUMENT; | |
1061 | break; | |
1062 | } | |
1063 | ||
1064 | behave = (old_memory_object_behave_info_t) attributes; | |
1065 | ||
1066 | temporary = behave->temporary; | |
1067 | invalidate = behave->invalidate; | |
1068 | copy_strategy = behave->copy_strategy; | |
1069 | ||
1070 | break; | |
1071 | } | |
1072 | ||
1073 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1074 | { | |
1075 | memory_object_behave_info_t behave; | |
1076 | ||
1077 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1078 | result = KERN_INVALID_ARGUMENT; | |
1079 | break; | |
1080 | } | |
1081 | ||
1082 | behave = (memory_object_behave_info_t) attributes; | |
1083 | ||
1084 | temporary = behave->temporary; | |
1085 | invalidate = behave->invalidate; | |
1086 | copy_strategy = behave->copy_strategy; | |
1087 | silent_overwrite = behave->silent_overwrite; | |
1088 | advisory_pageout = behave->advisory_pageout; | |
1089 | break; | |
1090 | } | |
1091 | ||
1092 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1093 | { | |
1094 | memory_object_perf_info_t perf; | |
1095 | ||
1096 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1097 | result = KERN_INVALID_ARGUMENT; | |
1098 | break; | |
1099 | } | |
1100 | ||
1101 | perf = (memory_object_perf_info_t) attributes; | |
1102 | ||
1103 | may_cache = perf->may_cache; | |
1104 | cluster_size = round_page(perf->cluster_size); | |
1105 | ||
1106 | break; | |
1107 | } | |
1108 | ||
1109 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1110 | { | |
1111 | old_memory_object_attr_info_t attr; | |
1112 | ||
1113 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1114 | result = KERN_INVALID_ARGUMENT; | |
1115 | break; | |
1116 | } | |
1117 | ||
1118 | attr = (old_memory_object_attr_info_t) attributes; | |
1119 | ||
1120 | may_cache = attr->may_cache; | |
1121 | copy_strategy = attr->copy_strategy; | |
1122 | cluster_size = page_size; | |
1123 | ||
1124 | break; | |
1125 | } | |
1126 | ||
1127 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1128 | { | |
1129 | memory_object_attr_info_t attr; | |
1130 | ||
1131 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1132 | result = KERN_INVALID_ARGUMENT; | |
1133 | break; | |
1134 | } | |
1135 | ||
1136 | attr = (memory_object_attr_info_t) attributes; | |
1137 | ||
1138 | copy_strategy = attr->copy_strategy; | |
1139 | may_cache = attr->may_cache_object; | |
1140 | cluster_size = attr->cluster_size; | |
1141 | temporary = attr->temporary; | |
1142 | ||
1143 | break; | |
1144 | } | |
1145 | ||
1146 | default: | |
1147 | result = KERN_INVALID_ARGUMENT; | |
1148 | break; | |
1149 | } | |
1150 | ||
1151 | if (result != KERN_SUCCESS) | |
1152 | return(result); | |
1153 | ||
1154 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { | |
1155 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
1156 | temporary = TRUE; | |
1157 | } else { | |
1158 | temporary = FALSE; | |
1159 | } | |
1160 | ||
1161 | /* | |
1162 | * XXX may_cache may become a tri-valued variable to handle | |
1163 | * XXX uncache if not in use. | |
1164 | */ | |
1165 | return (vm_object_set_attributes_common(object, | |
1166 | may_cache, | |
1167 | copy_strategy, | |
1168 | temporary, | |
1169 | cluster_size, | |
1170 | silent_overwrite, | |
1171 | advisory_pageout)); | |
1172 | } | |
1173 | ||
1174 | kern_return_t | |
1175 | memory_object_get_attributes( | |
1176 | memory_object_control_t control, | |
1177 | memory_object_flavor_t flavor, | |
1178 | memory_object_info_t attributes, /* pointer to OUT array */ | |
1179 | mach_msg_type_number_t *count) /* IN/OUT */ | |
1180 | { | |
1181 | kern_return_t ret = KERN_SUCCESS; | |
1182 | vm_object_t object; | |
1183 | ||
1184 | object = memory_object_control_to_vm_object(control); | |
1185 | if (object == VM_OBJECT_NULL) | |
1186 | return (KERN_INVALID_ARGUMENT); | |
1187 | ||
1188 | vm_object_lock(object); | |
1189 | ||
1190 | switch (flavor) { | |
1191 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1192 | { | |
1193 | old_memory_object_behave_info_t behave; | |
1194 | ||
1195 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1196 | ret = KERN_INVALID_ARGUMENT; | |
1197 | break; | |
1198 | } | |
1199 | ||
1200 | behave = (old_memory_object_behave_info_t) attributes; | |
1201 | behave->copy_strategy = object->copy_strategy; | |
1202 | behave->temporary = object->temporary; | |
1203 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1204 | behave->invalidate = object->invalidate; | |
1205 | #else | |
1206 | behave->invalidate = FALSE; | |
1207 | #endif | |
1208 | ||
1209 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1210 | break; | |
1211 | } | |
1212 | ||
1213 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1214 | { | |
1215 | memory_object_behave_info_t behave; | |
1216 | ||
1217 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1218 | ret = KERN_INVALID_ARGUMENT; | |
1219 | break; | |
1220 | } | |
1221 | ||
1222 | behave = (memory_object_behave_info_t) attributes; | |
1223 | behave->copy_strategy = object->copy_strategy; | |
1224 | behave->temporary = object->temporary; | |
1225 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1226 | behave->invalidate = object->invalidate; | |
1227 | #else | |
1228 | behave->invalidate = FALSE; | |
1229 | #endif | |
1230 | behave->advisory_pageout = object->advisory_pageout; | |
1231 | behave->silent_overwrite = object->silent_overwrite; | |
1232 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1233 | break; | |
1234 | } | |
1235 | ||
1236 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1237 | { | |
1238 | memory_object_perf_info_t perf; | |
1239 | ||
1240 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1241 | ret = KERN_INVALID_ARGUMENT; | |
1242 | break; | |
1243 | } | |
1244 | ||
1245 | perf = (memory_object_perf_info_t) attributes; | |
1246 | perf->cluster_size = object->cluster_size; | |
1247 | perf->may_cache = object->can_persist; | |
1248 | ||
1249 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; | |
1250 | break; | |
1251 | } | |
1252 | ||
1253 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1254 | { | |
1255 | old_memory_object_attr_info_t attr; | |
1256 | ||
1257 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1258 | ret = KERN_INVALID_ARGUMENT; | |
1259 | break; | |
1260 | } | |
1261 | ||
1262 | attr = (old_memory_object_attr_info_t) attributes; | |
1263 | attr->may_cache = object->can_persist; | |
1264 | attr->copy_strategy = object->copy_strategy; | |
1265 | ||
1266 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1267 | break; | |
1268 | } | |
1269 | ||
1270 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1271 | { | |
1272 | memory_object_attr_info_t attr; | |
1273 | ||
1274 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1275 | ret = KERN_INVALID_ARGUMENT; | |
1276 | break; | |
1277 | } | |
1278 | ||
1279 | attr = (memory_object_attr_info_t) attributes; | |
1280 | attr->copy_strategy = object->copy_strategy; | |
1281 | attr->cluster_size = object->cluster_size; | |
1282 | attr->may_cache_object = object->can_persist; | |
1283 | attr->temporary = object->temporary; | |
1284 | ||
1285 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1286 | break; | |
1287 | } | |
1288 | ||
1289 | default: | |
1290 | ret = KERN_INVALID_ARGUMENT; | |
1291 | break; | |
1292 | } | |
1293 | ||
1294 | vm_object_unlock(object); | |
1295 | ||
1296 | return(ret); | |
1297 | } | |
1298 | ||
1299 | ||
1300 | /* | |
1301 | * Routine: memory_object_upl_request [interface] | |
1302 | * Purpose: | |
1303 | * Cause the population of a portion of a vm_object. | |
1304 | * Depending on the nature of the request, the pages | |
1305 | * returned may be contain valid data or be uninitialized. | |
1306 | * | |
1307 | */ | |
1308 | ||
1309 | kern_return_t | |
1310 | memory_object_upl_request( | |
1311 | memory_object_control_t control, | |
1312 | memory_object_offset_t offset, | |
1313 | vm_size_t size, | |
1314 | upl_t *upl_ptr, | |
1315 | upl_page_info_array_t user_page_list, | |
1316 | unsigned int *page_list_count, | |
1317 | int cntrl_flags) | |
1318 | { | |
1319 | vm_object_t object; | |
1320 | ||
1321 | object = memory_object_control_to_vm_object(control); | |
1322 | if (object == VM_OBJECT_NULL) | |
1323 | return (KERN_INVALID_ARGUMENT); | |
1324 | ||
1325 | return vm_object_upl_request(object, | |
1326 | offset, | |
1327 | size, | |
1328 | upl_ptr, | |
1329 | user_page_list, | |
1330 | page_list_count, | |
1331 | cntrl_flags); | |
1332 | } | |
1333 | ||
1334 | /* | |
1335 | * Routine: memory_object_super_upl_request [interface] | |
1336 | * Purpose: | |
1337 | * Cause the population of a portion of a vm_object | |
1338 | * in much the same way as memory_object_upl_request. | |
1339 | * Depending on the nature of the request, the pages | |
1340 | * returned may be contain valid data or be uninitialized. | |
1341 | * However, the region may be expanded up to the super | |
1342 | * cluster size provided. | |
1343 | */ | |
1344 | ||
1345 | kern_return_t | |
1346 | memory_object_super_upl_request( | |
1347 | memory_object_control_t control, | |
1348 | memory_object_offset_t offset, | |
1349 | vm_size_t size, | |
1350 | vm_size_t super_cluster, | |
1351 | upl_t *upl, | |
1352 | upl_page_info_t *user_page_list, | |
1353 | unsigned int *page_list_count, | |
1354 | int cntrl_flags) | |
1355 | { | |
1356 | vm_object_t object; | |
1357 | ||
1358 | object = memory_object_control_to_vm_object(control); | |
1359 | if (object == VM_OBJECT_NULL) | |
1360 | return (KERN_INVALID_ARGUMENT); | |
1361 | ||
1362 | return vm_object_super_upl_request(object, | |
1363 | offset, | |
1364 | size, | |
1365 | super_cluster, | |
1366 | upl, | |
1367 | user_page_list, | |
1368 | page_list_count, | |
1369 | cntrl_flags); | |
1370 | } | |
1371 | ||
1372 | int vm_stat_discard_cleared_reply = 0; | |
1373 | int vm_stat_discard_cleared_unset = 0; | |
1374 | int vm_stat_discard_cleared_too_late = 0; | |
1375 | ||
1376 | ||
1377 | ||
1378 | /* | |
1379 | * Routine: host_default_memory_manager [interface] | |
1380 | * Purpose: | |
1381 | * set/get the default memory manager port and default cluster | |
1382 | * size. | |
1383 | * | |
1384 | * If successful, consumes the supplied naked send right. | |
1385 | */ | |
1386 | kern_return_t | |
1387 | host_default_memory_manager( | |
1388 | host_priv_t host_priv, | |
1389 | memory_object_default_t *default_manager, | |
1390 | vm_size_t cluster_size) | |
1391 | { | |
1392 | memory_object_default_t current_manager; | |
1393 | memory_object_default_t new_manager; | |
1394 | memory_object_default_t returned_manager; | |
1395 | ||
1396 | if (host_priv == HOST_PRIV_NULL) | |
1397 | return(KERN_INVALID_HOST); | |
1398 | ||
1399 | assert(host_priv == &realhost); | |
1400 | ||
1401 | new_manager = *default_manager; | |
1402 | mutex_lock(&memory_manager_default_lock); | |
1403 | current_manager = memory_manager_default; | |
1404 | ||
1405 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1406 | /* | |
1407 | * Retrieve the current value. | |
1408 | */ | |
1409 | memory_object_default_reference(current_manager); | |
1410 | returned_manager = current_manager; | |
1411 | } else { | |
1412 | /* | |
1413 | * Retrieve the current value, | |
1414 | * and replace it with the supplied value. | |
1415 | * We return the old reference to the caller | |
1416 | * but we have to take a reference on the new | |
1417 | * one. | |
1418 | */ | |
1419 | ||
1420 | returned_manager = current_manager; | |
1421 | memory_manager_default = new_manager; | |
1422 | memory_object_default_reference(new_manager); | |
1423 | ||
1424 | if (cluster_size % PAGE_SIZE != 0) { | |
1425 | #if 0 | |
1426 | mutex_unlock(&memory_manager_default_lock); | |
1427 | return KERN_INVALID_ARGUMENT; | |
1428 | #else | |
1429 | cluster_size = round_page(cluster_size); | |
1430 | #endif | |
1431 | } | |
1432 | memory_manager_default_cluster = cluster_size; | |
1433 | ||
1434 | /* | |
1435 | * In case anyone's been waiting for a memory | |
1436 | * manager to be established, wake them up. | |
1437 | */ | |
1438 | ||
1439 | thread_wakeup((event_t) &memory_manager_default); | |
1440 | } | |
1441 | ||
1442 | mutex_unlock(&memory_manager_default_lock); | |
1443 | ||
1444 | *default_manager = returned_manager; | |
1445 | return(KERN_SUCCESS); | |
1446 | } | |
1447 | ||
1448 | /* | |
1449 | * Routine: memory_manager_default_reference | |
1450 | * Purpose: | |
1451 | * Returns a naked send right for the default | |
1452 | * memory manager. The returned right is always | |
1453 | * valid (not IP_NULL or IP_DEAD). | |
1454 | */ | |
1455 | ||
1456 | __private_extern__ memory_object_default_t | |
1457 | memory_manager_default_reference( | |
1458 | vm_size_t *cluster_size) | |
1459 | { | |
1460 | memory_object_default_t current_manager; | |
1461 | ||
1462 | mutex_lock(&memory_manager_default_lock); | |
1463 | current_manager = memory_manager_default; | |
1464 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1465 | thread_sleep_mutex((event_t) &memory_manager_default, | |
1466 | &memory_manager_default_lock, THREAD_UNINT); | |
1467 | mutex_lock(&memory_manager_default_lock); | |
1468 | current_manager = memory_manager_default; | |
1469 | } | |
1470 | memory_object_default_reference(current_manager); | |
1471 | *cluster_size = memory_manager_default_cluster; | |
1472 | mutex_unlock(&memory_manager_default_lock); | |
1473 | ||
1474 | return current_manager; | |
1475 | } | |
1476 | ||
1477 | /* | |
1478 | * Routine: memory_manager_default_check | |
1479 | * | |
1480 | * Purpose: | |
1481 | * Check whether a default memory manager has been set | |
1482 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, | |
1483 | * and KERN_FAILURE if dmm does not exist. | |
1484 | * | |
1485 | * If there is no default memory manager, log an error, | |
1486 | * but only the first time. | |
1487 | * | |
1488 | */ | |
1489 | __private_extern__ kern_return_t | |
1490 | memory_manager_default_check(void) | |
1491 | { | |
1492 | memory_object_default_t current; | |
1493 | ||
1494 | mutex_lock(&memory_manager_default_lock); | |
1495 | current = memory_manager_default; | |
1496 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { | |
1497 | static boolean_t logged; /* initialized to 0 */ | |
1498 | boolean_t complain = !logged; | |
1499 | logged = TRUE; | |
1500 | mutex_unlock(&memory_manager_default_lock); | |
1501 | if (complain) | |
1502 | printf("Warning: No default memory manager\n"); | |
1503 | return(KERN_FAILURE); | |
1504 | } else { | |
1505 | mutex_unlock(&memory_manager_default_lock); | |
1506 | return(KERN_SUCCESS); | |
1507 | } | |
1508 | } | |
1509 | ||
1510 | __private_extern__ void | |
1511 | memory_manager_default_init(void) | |
1512 | { | |
1513 | memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; | |
1514 | mutex_init(&memory_manager_default_lock, ETAP_VM_MEMMAN); | |
1515 | } | |
1516 | ||
1517 | ||
1518 | void | |
1519 | memory_object_deactivate_pages( | |
1520 | vm_object_t object, | |
1521 | vm_object_offset_t offset, | |
1522 | vm_object_size_t size, | |
1523 | boolean_t kill_page) | |
1524 | { | |
1525 | vm_object_t orig_object; | |
1526 | int pages_moved = 0; | |
1527 | int pages_found = 0; | |
1528 | ||
1529 | /* | |
1530 | * entered with object lock held, acquire a paging reference to | |
1531 | * prevent the memory_object and control ports from | |
1532 | * being destroyed. | |
1533 | */ | |
1534 | orig_object = object; | |
1535 | ||
1536 | for (;;) { | |
1537 | register vm_page_t m; | |
1538 | vm_object_offset_t toffset; | |
1539 | vm_object_size_t tsize; | |
1540 | ||
1541 | vm_object_paging_begin(object); | |
1542 | vm_page_lock_queues(); | |
1543 | ||
1544 | for (tsize = size, toffset = offset; tsize; tsize -= PAGE_SIZE, toffset += PAGE_SIZE) { | |
1545 | ||
1546 | if ((m = vm_page_lookup(object, toffset)) != VM_PAGE_NULL) { | |
1547 | ||
1548 | pages_found++; | |
1549 | ||
1550 | if ((m->wire_count == 0) && (!m->private) && (!m->gobbled) && (!m->busy)) { | |
1551 | ||
1552 | m->reference = FALSE; | |
1553 | pmap_clear_reference(m->phys_addr); | |
1554 | ||
1555 | if ((kill_page) && (object->internal)) { | |
1556 | m->precious = FALSE; | |
1557 | m->dirty = FALSE; | |
1558 | pmap_clear_modify(m->phys_addr); | |
1559 | vm_external_state_clr(object->existence_map, offset); | |
1560 | } | |
1561 | VM_PAGE_QUEUES_REMOVE(m); | |
1562 | ||
1563 | queue_enter_first(&vm_page_queue_inactive, m, vm_page_t, pageq); | |
1564 | ||
1565 | m->inactive = TRUE; | |
1566 | if (!m->fictitious) | |
1567 | vm_page_inactive_count++; | |
1568 | ||
1569 | pages_moved++; | |
1570 | } | |
1571 | } | |
1572 | } | |
1573 | vm_page_unlock_queues(); | |
1574 | vm_object_paging_end(object); | |
1575 | ||
1576 | if (object->shadow) { | |
1577 | vm_object_t tmp_object; | |
1578 | ||
1579 | kill_page = 0; | |
1580 | ||
1581 | offset += object->shadow_offset; | |
1582 | ||
1583 | tmp_object = object->shadow; | |
1584 | vm_object_lock(tmp_object); | |
1585 | ||
1586 | if (object != orig_object) | |
1587 | vm_object_unlock(object); | |
1588 | object = tmp_object; | |
1589 | } else | |
1590 | break; | |
1591 | } | |
1592 | if (object != orig_object) | |
1593 | vm_object_unlock(object); | |
1594 | } | |
1595 | ||
1596 | /* Allow manipulation of individual page state. This is actually part of */ | |
1597 | /* the UPL regimen but takes place on the object rather than on a UPL */ | |
1598 | ||
1599 | kern_return_t | |
1600 | memory_object_page_op( | |
1601 | memory_object_control_t control, | |
1602 | memory_object_offset_t offset, | |
1603 | int ops, | |
1604 | vm_offset_t *phys_entry, | |
1605 | int *flags) | |
1606 | { | |
1607 | vm_object_t object; | |
1608 | vm_page_t dst_page; | |
1609 | ||
1610 | ||
1611 | object = memory_object_control_to_vm_object(control); | |
1612 | if (object == VM_OBJECT_NULL) | |
1613 | return (KERN_INVALID_ARGUMENT); | |
1614 | ||
1615 | vm_object_lock(object); | |
1616 | ||
1617 | if(ops & UPL_POP_PHYSICAL) { | |
1618 | if(object->phys_contiguous) { | |
1619 | if (phys_entry) { | |
1620 | *phys_entry = (vm_offset_t) | |
1621 | object->shadow_offset; | |
1622 | } | |
1623 | vm_object_unlock(object); | |
1624 | return KERN_SUCCESS; | |
1625 | } else { | |
1626 | vm_object_unlock(object); | |
1627 | return KERN_INVALID_OBJECT; | |
1628 | } | |
1629 | } | |
1630 | ||
1631 | while(TRUE) { | |
1632 | if(object->phys_contiguous) { | |
1633 | vm_object_unlock(object); | |
1634 | return KERN_INVALID_OBJECT; | |
1635 | } | |
1636 | ||
1637 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
1638 | vm_object_unlock(object); | |
1639 | return KERN_FAILURE; | |
1640 | } | |
1641 | ||
1642 | /* Sync up on getting the busy bit */ | |
1643 | if((dst_page->busy || dst_page->cleaning) && | |
1644 | (((ops & UPL_POP_SET) && | |
1645 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
1646 | /* someone else is playing with the page, we will */ | |
1647 | /* have to wait */ | |
1648 | PAGE_ASSERT_WAIT(dst_page, THREAD_UNINT); | |
1649 | vm_object_unlock(object); | |
1650 | thread_block((void(*)(void))0); | |
1651 | vm_object_lock(object); | |
1652 | continue; | |
1653 | } | |
1654 | ||
1655 | if (ops & UPL_POP_DUMP) { | |
1656 | vm_page_lock_queues(); | |
1657 | vm_page_free(dst_page); | |
1658 | vm_page_unlock_queues(); | |
1659 | break; | |
1660 | } | |
1661 | ||
1662 | if (flags) { | |
1663 | *flags = 0; | |
1664 | ||
1665 | /* Get the condition of flags before requested ops */ | |
1666 | /* are undertaken */ | |
1667 | ||
1668 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
1669 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
1670 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
1671 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
1672 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
1673 | } | |
1674 | if (phys_entry) | |
1675 | *phys_entry = dst_page->phys_addr; | |
1676 | ||
1677 | /* The caller should have made a call either contingent with */ | |
1678 | /* or prior to this call to set UPL_POP_BUSY */ | |
1679 | if(ops & UPL_POP_SET) { | |
1680 | /* The protection granted with this assert will */ | |
1681 | /* not be complete. If the caller violates the */ | |
1682 | /* convention and attempts to change page state */ | |
1683 | /* without first setting busy we may not see it */ | |
1684 | /* because the page may already be busy. However */ | |
1685 | /* if such violations occur we will assert sooner */ | |
1686 | /* or later. */ | |
1687 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
1688 | if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE; | |
1689 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; | |
1690 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
1691 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
1692 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
1693 | } | |
1694 | ||
1695 | if(ops & UPL_POP_CLR) { | |
1696 | assert(dst_page->busy); | |
1697 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
1698 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
1699 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
1700 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
1701 | if (ops & UPL_POP_BUSY) { | |
1702 | dst_page->busy = FALSE; | |
1703 | PAGE_WAKEUP(dst_page); | |
1704 | } | |
1705 | } | |
1706 | break; | |
1707 | } | |
1708 | ||
1709 | vm_object_unlock(object); | |
1710 | return KERN_SUCCESS; | |
1711 | ||
1712 | } | |
1713 | ||
1714 | static zone_t mem_obj_control_zone; | |
1715 | ||
1716 | __private_extern__ void | |
1717 | memory_object_control_bootstrap(void) | |
1718 | { | |
1719 | int i; | |
1720 | ||
1721 | i = (vm_size_t) sizeof (struct memory_object_control); | |
1722 | mem_obj_control_zone = zinit (i, 8192*i, 4096, "mem_obj_control"); | |
1723 | return; | |
1724 | } | |
1725 | ||
1726 | __private_extern__ memory_object_control_t | |
1727 | memory_object_control_allocate( | |
1728 | vm_object_t object) | |
1729 | { | |
1730 | memory_object_control_t control; | |
1731 | ||
1732 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); | |
1733 | if (control != MEMORY_OBJECT_CONTROL_NULL) | |
1734 | control->object = object; | |
1735 | return (control); | |
1736 | } | |
1737 | ||
1738 | __private_extern__ void | |
1739 | memory_object_control_collapse( | |
1740 | memory_object_control_t control, | |
1741 | vm_object_t object) | |
1742 | { | |
1743 | assert((control->object != VM_OBJECT_NULL) && | |
1744 | (control->object != object)); | |
1745 | control->object = object; | |
1746 | } | |
1747 | ||
1748 | __private_extern__ vm_object_t | |
1749 | memory_object_control_to_vm_object( | |
1750 | memory_object_control_t control) | |
1751 | { | |
1752 | if (control == MEMORY_OBJECT_CONTROL_NULL) | |
1753 | return VM_OBJECT_NULL; | |
1754 | ||
1755 | return (control->object); | |
1756 | } | |
1757 | ||
1758 | memory_object_control_t | |
1759 | convert_port_to_mo_control( | |
1760 | mach_port_t port) | |
1761 | { | |
1762 | return MEMORY_OBJECT_CONTROL_NULL; | |
1763 | } | |
1764 | ||
1765 | ||
1766 | mach_port_t | |
1767 | convert_mo_control_to_port( | |
1768 | memory_object_control_t control) | |
1769 | { | |
1770 | return MACH_PORT_NULL; | |
1771 | } | |
1772 | ||
1773 | void | |
1774 | memory_object_control_reference( | |
1775 | memory_object_control_t control) | |
1776 | { | |
1777 | return; | |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | * We only every issue one of these references, so kill it | |
1782 | * when that gets released (should switch the real reference | |
1783 | * counting in true port-less EMMI). | |
1784 | */ | |
1785 | void | |
1786 | memory_object_control_deallocate( | |
1787 | memory_object_control_t control) | |
1788 | { | |
1789 | zfree(mem_obj_control_zone, (vm_offset_t)control); | |
1790 | } | |
1791 | ||
1792 | void | |
1793 | memory_object_control_disable( | |
1794 | memory_object_control_t control) | |
1795 | { | |
1796 | assert(control->object != VM_OBJECT_NULL); | |
1797 | control->object = VM_OBJECT_NULL; | |
1798 | } | |
1799 | ||
1800 | void | |
1801 | memory_object_default_reference( | |
1802 | memory_object_default_t dmm) | |
1803 | { | |
1804 | ipc_port_make_send(dmm); | |
1805 | } | |
1806 | ||
1807 | void | |
1808 | memory_object_default_deallocate( | |
1809 | memory_object_default_t dmm) | |
1810 | { | |
1811 | ipc_port_release_send(dmm); | |
1812 | } | |
1813 | ||
1814 | memory_object_t | |
1815 | convert_port_to_memory_object( | |
1816 | mach_port_t port) | |
1817 | { | |
1818 | return (MEMORY_OBJECT_NULL); | |
1819 | } | |
1820 | ||
1821 | ||
1822 | mach_port_t | |
1823 | convert_memory_object_to_port( | |
1824 | memory_object_t object) | |
1825 | { | |
1826 | return (MACH_PORT_NULL); | |
1827 | } | |
1828 | ||
1829 | #ifdef MACH_BSD | |
1830 | /* remove after component interface available */ | |
1831 | extern int vnode_pager_workaround; | |
1832 | extern int device_pager_workaround; | |
1833 | #endif | |
1834 | ||
1835 | ||
1836 | /* Routine memory_object_reference */ | |
1837 | void memory_object_reference( | |
1838 | memory_object_t memory_object) | |
1839 | { | |
1840 | extern void dp_memory_object_reference(memory_object_t); | |
1841 | ||
1842 | #ifdef MACH_BSD | |
1843 | extern void vnode_pager_reference(memory_object_t); | |
1844 | extern void device_pager_reference(memory_object_t); | |
1845 | ||
1846 | if(memory_object->pager == &vnode_pager_workaround) { | |
1847 | vnode_pager_reference(memory_object); | |
1848 | } else if(memory_object->pager == &device_pager_workaround) { | |
1849 | device_pager_reference(memory_object); | |
1850 | } else | |
1851 | #endif | |
1852 | dp_memory_object_reference(memory_object); | |
1853 | } | |
1854 | ||
1855 | /* Routine memory_object_deallocate */ | |
1856 | void memory_object_deallocate( | |
1857 | memory_object_t memory_object) | |
1858 | { | |
1859 | extern void dp_memory_object_deallocate(memory_object_t); | |
1860 | ||
1861 | #ifdef MACH_BSD | |
1862 | extern void vnode_pager_deallocate(memory_object_t); | |
1863 | extern void device_pager_deallocate(memory_object_t); | |
1864 | ||
1865 | if(memory_object->pager == &vnode_pager_workaround) { | |
1866 | vnode_pager_deallocate(memory_object); | |
1867 | } else if(memory_object->pager == &device_pager_workaround) { | |
1868 | device_pager_deallocate(memory_object); | |
1869 | } else | |
1870 | #endif | |
1871 | dp_memory_object_deallocate(memory_object); | |
1872 | } | |
1873 | ||
1874 | ||
1875 | /* Routine memory_object_init */ | |
1876 | kern_return_t memory_object_init | |
1877 | ( | |
1878 | memory_object_t memory_object, | |
1879 | memory_object_control_t memory_control, | |
1880 | vm_size_t memory_object_page_size | |
1881 | ) | |
1882 | { | |
1883 | extern kern_return_t dp_memory_object_init(memory_object_t, | |
1884 | memory_object_control_t, | |
1885 | vm_size_t); | |
1886 | #ifdef MACH_BSD | |
1887 | extern kern_return_t vnode_pager_init(memory_object_t, | |
1888 | memory_object_control_t, | |
1889 | vm_size_t); | |
1890 | extern kern_return_t device_pager_init(memory_object_t, | |
1891 | memory_object_control_t, | |
1892 | vm_size_t); | |
1893 | ||
1894 | if(memory_object->pager == &vnode_pager_workaround) { | |
1895 | return vnode_pager_init(memory_object, | |
1896 | memory_control, | |
1897 | memory_object_page_size); | |
1898 | } else if(memory_object->pager == &device_pager_workaround) { | |
1899 | return device_pager_init(memory_object, | |
1900 | memory_control, | |
1901 | memory_object_page_size); | |
1902 | } else | |
1903 | #endif | |
1904 | return dp_memory_object_init(memory_object, | |
1905 | memory_control, | |
1906 | memory_object_page_size); | |
1907 | } | |
1908 | ||
1909 | /* Routine memory_object_terminate */ | |
1910 | kern_return_t memory_object_terminate | |
1911 | ( | |
1912 | memory_object_t memory_object | |
1913 | ) | |
1914 | { | |
1915 | extern kern_return_t dp_memory_object_terminate(memory_object_t); | |
1916 | ||
1917 | #ifdef MACH_BSD | |
1918 | extern kern_return_t vnode_pager_terminate(memory_object_t); | |
1919 | extern kern_return_t device_pager_terminate(memory_object_t); | |
1920 | ||
1921 | if(memory_object->pager == &vnode_pager_workaround) { | |
1922 | return vnode_pager_terminate(memory_object); | |
1923 | } else if(memory_object->pager == &device_pager_workaround) { | |
1924 | return device_pager_terminate(memory_object); | |
1925 | } else | |
1926 | #endif | |
1927 | return dp_memory_object_terminate(memory_object); | |
1928 | } | |
1929 | ||
1930 | /* Routine memory_object_data_request */ | |
1931 | kern_return_t memory_object_data_request | |
1932 | ( | |
1933 | memory_object_t memory_object, | |
1934 | memory_object_offset_t offset, | |
1935 | vm_size_t length, | |
1936 | vm_prot_t desired_access | |
1937 | ) | |
1938 | { | |
1939 | extern kern_return_t dp_memory_object_data_request(memory_object_t, | |
1940 | memory_object_offset_t, vm_size_t, vm_prot_t); | |
1941 | ||
1942 | #ifdef MACH_BSD | |
1943 | extern kern_return_t vnode_pager_data_request(memory_object_t, | |
1944 | memory_object_offset_t, vm_size_t, vm_prot_t); | |
1945 | extern kern_return_t device_pager_data_request(memory_object_t, | |
1946 | memory_object_offset_t, vm_size_t, vm_prot_t); | |
1947 | ||
1948 | if (memory_object->pager == &vnode_pager_workaround) { | |
1949 | return vnode_pager_data_request(memory_object, | |
1950 | offset, | |
1951 | length, | |
1952 | desired_access); | |
1953 | } else if (memory_object->pager == &device_pager_workaround) { | |
1954 | return device_pager_data_request(memory_object, | |
1955 | offset, | |
1956 | length, | |
1957 | desired_access); | |
1958 | } else | |
1959 | #endif | |
1960 | return dp_memory_object_data_request(memory_object, | |
1961 | offset, | |
1962 | length, | |
1963 | desired_access); | |
1964 | } | |
1965 | ||
1966 | /* Routine memory_object_data_return */ | |
1967 | kern_return_t memory_object_data_return | |
1968 | ( | |
1969 | memory_object_t memory_object, | |
1970 | memory_object_offset_t offset, | |
1971 | vm_size_t size, | |
1972 | boolean_t dirty, | |
1973 | boolean_t kernel_copy | |
1974 | ) | |
1975 | { | |
1976 | extern kern_return_t dp_memory_object_data_return(memory_object_t, | |
1977 | memory_object_offset_t, | |
1978 | vm_size_t, | |
1979 | boolean_t, | |
1980 | boolean_t); | |
1981 | #ifdef MACH_BSD | |
1982 | extern kern_return_t vnode_pager_data_return(memory_object_t, | |
1983 | memory_object_offset_t, | |
1984 | vm_size_t, | |
1985 | boolean_t, | |
1986 | boolean_t); | |
1987 | extern kern_return_t device_pager_data_return(memory_object_t, | |
1988 | memory_object_offset_t, | |
1989 | vm_size_t, | |
1990 | boolean_t, | |
1991 | boolean_t); | |
1992 | ||
1993 | if (memory_object->pager == &vnode_pager_workaround) { | |
1994 | return vnode_pager_data_return(memory_object, | |
1995 | offset, | |
1996 | size, | |
1997 | dirty, | |
1998 | kernel_copy); | |
1999 | } else if (memory_object->pager == &device_pager_workaround) { | |
2000 | return device_pager_data_return(memory_object, | |
2001 | offset, | |
2002 | size, | |
2003 | dirty, | |
2004 | kernel_copy); | |
2005 | } else | |
2006 | #endif | |
2007 | return dp_memory_object_data_return(memory_object, | |
2008 | offset, | |
2009 | size, | |
2010 | dirty, | |
2011 | kernel_copy); | |
2012 | } | |
2013 | ||
2014 | /* Routine memory_object_data_initialize */ | |
2015 | kern_return_t memory_object_data_initialize | |
2016 | ( | |
2017 | memory_object_t memory_object, | |
2018 | memory_object_offset_t offset, | |
2019 | vm_size_t size | |
2020 | ) | |
2021 | { | |
2022 | ||
2023 | extern kern_return_t dp_memory_object_data_initialize(memory_object_t, | |
2024 | memory_object_offset_t, | |
2025 | vm_size_t); | |
2026 | #ifdef MACH_BSD | |
2027 | extern kern_return_t vnode_pager_data_initialize(memory_object_t, | |
2028 | memory_object_offset_t, | |
2029 | vm_size_t); | |
2030 | extern kern_return_t device_pager_data_initialize(memory_object_t, | |
2031 | memory_object_offset_t, | |
2032 | vm_size_t); | |
2033 | ||
2034 | if (memory_object->pager == &vnode_pager_workaround) { | |
2035 | return vnode_pager_data_initialize(memory_object, | |
2036 | offset, | |
2037 | size); | |
2038 | } else if (memory_object->pager == &device_pager_workaround) { | |
2039 | return device_pager_data_initialize(memory_object, | |
2040 | offset, | |
2041 | size); | |
2042 | } else | |
2043 | #endif | |
2044 | return dp_memory_object_data_initialize(memory_object, | |
2045 | offset, | |
2046 | size); | |
2047 | } | |
2048 | ||
2049 | /* Routine memory_object_data_unlock */ | |
2050 | kern_return_t memory_object_data_unlock | |
2051 | ( | |
2052 | memory_object_t memory_object, | |
2053 | memory_object_offset_t offset, | |
2054 | vm_size_t size, | |
2055 | vm_prot_t desired_access | |
2056 | ) | |
2057 | { | |
2058 | extern kern_return_t dp_memory_object_data_unlock(memory_object_t, | |
2059 | memory_object_offset_t, | |
2060 | vm_size_t, | |
2061 | vm_prot_t); | |
2062 | #ifdef MACH_BSD | |
2063 | extern kern_return_t vnode_pager_data_unlock(memory_object_t, | |
2064 | memory_object_offset_t, | |
2065 | vm_size_t, | |
2066 | vm_prot_t); | |
2067 | extern kern_return_t device_pager_data_unlock(memory_object_t, | |
2068 | memory_object_offset_t, | |
2069 | vm_size_t, | |
2070 | vm_prot_t); | |
2071 | ||
2072 | if (memory_object->pager == &vnode_pager_workaround) { | |
2073 | return vnode_pager_data_unlock(memory_object, | |
2074 | offset, | |
2075 | size, | |
2076 | desired_access); | |
2077 | } else if (memory_object->pager == &device_pager_workaround) { | |
2078 | return device_pager_data_unlock(memory_object, | |
2079 | offset, | |
2080 | size, | |
2081 | desired_access); | |
2082 | } else | |
2083 | #endif | |
2084 | return dp_memory_object_data_unlock(memory_object, | |
2085 | offset, | |
2086 | size, | |
2087 | desired_access); | |
2088 | ||
2089 | } | |
2090 | ||
2091 | /* Routine memory_object_synchronize */ | |
2092 | kern_return_t memory_object_synchronize | |
2093 | ( | |
2094 | memory_object_t memory_object, | |
2095 | memory_object_offset_t offset, | |
2096 | vm_size_t size, | |
2097 | vm_sync_t sync_flags | |
2098 | ) | |
2099 | { | |
2100 | extern kern_return_t dp_memory_object_data_synchronize(memory_object_t, | |
2101 | memory_object_offset_t, | |
2102 | vm_size_t, | |
2103 | vm_sync_t); | |
2104 | #ifdef MACH_BSD | |
2105 | extern kern_return_t vnode_pager_data_synchronize(memory_object_t, | |
2106 | memory_object_offset_t, | |
2107 | vm_size_t, | |
2108 | vm_sync_t); | |
2109 | extern kern_return_t device_pager_data_synchronize(memory_object_t, | |
2110 | memory_object_offset_t, | |
2111 | vm_size_t, | |
2112 | vm_sync_t); | |
2113 | ||
2114 | if (memory_object->pager == &vnode_pager_workaround) { | |
2115 | return vnode_pager_synchronize( | |
2116 | memory_object, | |
2117 | offset, | |
2118 | size, | |
2119 | sync_flags); | |
2120 | } else if (memory_object->pager == &device_pager_workaround) { | |
2121 | return device_pager_synchronize( | |
2122 | memory_object, | |
2123 | offset, | |
2124 | size, | |
2125 | sync_flags); | |
2126 | } else | |
2127 | #endif | |
2128 | return dp_memory_object_synchronize( | |
2129 | memory_object, | |
2130 | offset, | |
2131 | size, | |
2132 | sync_flags); | |
2133 | } | |
2134 | ||
2135 | /* Routine memory_object_unmap */ | |
2136 | kern_return_t memory_object_unmap | |
2137 | ( | |
2138 | memory_object_t memory_object | |
2139 | ) | |
2140 | { | |
2141 | extern kern_return_t dp_memory_object_unmap(memory_object_t); | |
2142 | #ifdef MACH_BSD | |
2143 | extern kern_return_t vnode_pager_unmap(memory_object_t); | |
2144 | extern kern_return_t device_pager_unmap(memory_object_t); | |
2145 | ||
2146 | if (memory_object->pager == &vnode_pager_workaround) { | |
2147 | return vnode_pager_unmap(memory_object); | |
2148 | } else if (memory_object->pager == &device_pager_workaround) { | |
2149 | return device_pager_unmap(memory_object); | |
2150 | } else | |
2151 | #endif | |
2152 | return dp_memory_object_unmap(memory_object); | |
2153 | } | |
2154 | ||
2155 | /* Routine memory_object_create */ | |
2156 | kern_return_t memory_object_create | |
2157 | ( | |
2158 | memory_object_default_t default_memory_manager, | |
2159 | vm_size_t new_memory_object_size, | |
2160 | memory_object_t *new_memory_object | |
2161 | ) | |
2162 | { | |
2163 | extern kern_return_t default_pager_memory_object_create(memory_object_default_t, | |
2164 | vm_size_t, | |
2165 | memory_object_t *); | |
2166 | ||
2167 | return default_pager_memory_object_create(default_memory_manager, | |
2168 | new_memory_object_size, | |
2169 | new_memory_object); | |
2170 | } | |
2171 |