]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2010 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | ||
59 | /* | |
60 | * File: pmap.c | |
61 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
62 | * (These guys wrote the Vax version) | |
63 | * | |
64 | * Physical Map management code for Intel i386, i486, and i860. | |
65 | * | |
66 | * Manages physical address maps. | |
67 | * | |
68 | * In addition to hardware address maps, this | |
69 | * module is called upon to provide software-use-only | |
70 | * maps which may or may not be stored in the same | |
71 | * form as hardware maps. These pseudo-maps are | |
72 | * used to store intermediate results from copy | |
73 | * operations to and from address spaces. | |
74 | * | |
75 | * Since the information managed by this module is | |
76 | * also stored by the logical address mapping module, | |
77 | * this module may throw away valid virtual-to-physical | |
78 | * mappings at almost any time. However, invalidations | |
79 | * of virtual-to-physical mappings must be done as | |
80 | * requested. | |
81 | * | |
82 | * In order to cope with hardware architectures which | |
83 | * make virtual-to-physical map invalidates expensive, | |
84 | * this module may delay invalidate or reduced protection | |
85 | * operations until such time as they are actually | |
86 | * necessary. This module is given full information as | |
87 | * to which processors are currently using which maps, | |
88 | * and to when physical maps must be made correct. | |
89 | */ | |
90 | ||
91 | #include <string.h> | |
92 | #include <mach_kdb.h> | |
93 | #include <mach_ldebug.h> | |
94 | ||
95 | #include <libkern/OSAtomic.h> | |
96 | ||
97 | #include <mach/machine/vm_types.h> | |
98 | ||
99 | #include <mach/boolean.h> | |
100 | #include <kern/thread.h> | |
101 | #include <kern/zalloc.h> | |
102 | #include <kern/queue.h> | |
103 | #include <kern/mach_param.h> | |
104 | ||
105 | #include <kern/lock.h> | |
106 | #include <kern/kalloc.h> | |
107 | #include <kern/spl.h> | |
108 | ||
109 | #include <vm/pmap.h> | |
110 | #include <vm/vm_map.h> | |
111 | #include <vm/vm_kern.h> | |
112 | #include <mach/vm_param.h> | |
113 | #include <mach/vm_prot.h> | |
114 | #include <vm/vm_object.h> | |
115 | #include <vm/vm_page.h> | |
116 | ||
117 | #include <mach/machine/vm_param.h> | |
118 | #include <machine/thread.h> | |
119 | ||
120 | #include <kern/misc_protos.h> /* prototyping */ | |
121 | #include <i386/misc_protos.h> | |
122 | #include <i386/i386_lowmem.h> | |
123 | #include <x86_64/lowglobals.h> | |
124 | ||
125 | #include <i386/cpuid.h> | |
126 | #include <i386/cpu_data.h> | |
127 | #include <i386/cpu_number.h> | |
128 | #include <i386/machine_cpu.h> | |
129 | #include <i386/seg.h> | |
130 | #include <i386/serial_io.h> | |
131 | #include <i386/cpu_capabilities.h> | |
132 | #include <i386/machine_routines.h> | |
133 | #include <i386/proc_reg.h> | |
134 | #include <i386/tsc.h> | |
135 | #include <i386/pmap_internal.h> | |
136 | #include <i386/pmap_pcid.h> | |
137 | ||
138 | #if MACH_KDB | |
139 | #include <ddb/db_command.h> | |
140 | #include <ddb/db_output.h> | |
141 | #include <ddb/db_sym.h> | |
142 | #include <ddb/db_print.h> | |
143 | #endif /* MACH_KDB */ | |
144 | ||
145 | #include <vm/vm_protos.h> | |
146 | ||
147 | #include <i386/mp.h> | |
148 | #include <i386/mp_desc.h> | |
149 | ||
150 | ||
151 | #ifdef IWANTTODEBUG | |
152 | #undef DEBUG | |
153 | #define DEBUG 1 | |
154 | #define POSTCODE_DELAY 1 | |
155 | #include <i386/postcode.h> | |
156 | #endif /* IWANTTODEBUG */ | |
157 | ||
158 | #ifdef PMAP_DEBUG | |
159 | #define DBG(x...) kprintf("DBG: " x) | |
160 | #else | |
161 | #define DBG(x...) | |
162 | #endif | |
163 | /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used | |
164 | * in the trampolines for kernel/user boundary TLB coherency. | |
165 | */ | |
166 | char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1]; | |
167 | boolean_t pmap_trace = FALSE; | |
168 | ||
169 | boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */ | |
170 | ||
171 | int nx_enabled = 1; /* enable no-execute protection */ | |
172 | int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */ | |
173 | int allow_stack_exec = 0; /* No apps may execute from the stack by default */ | |
174 | ||
175 | const boolean_t cpu_64bit = TRUE; /* Mais oui! */ | |
176 | ||
177 | uint64_t max_preemption_latency_tsc = 0; | |
178 | ||
179 | pv_hashed_entry_t *pv_hash_table; /* hash lists */ | |
180 | ||
181 | uint32_t npvhash = 0; | |
182 | ||
183 | pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL; | |
184 | pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL; | |
185 | decl_simple_lock_data(,pv_hashed_free_list_lock) | |
186 | decl_simple_lock_data(,pv_hashed_kern_free_list_lock) | |
187 | decl_simple_lock_data(,pv_hash_table_lock) | |
188 | ||
189 | zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */ | |
190 | ||
191 | /* | |
192 | * First and last physical addresses that we maintain any information | |
193 | * for. Initialized to zero so that pmap operations done before | |
194 | * pmap_init won't touch any non-existent structures. | |
195 | */ | |
196 | boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */ | |
197 | ||
198 | static struct vm_object kptobj_object_store; | |
199 | static struct vm_object kpml4obj_object_store; | |
200 | static struct vm_object kpdptobj_object_store; | |
201 | ||
202 | /* | |
203 | * Array of physical page attribites for managed pages. | |
204 | * One byte per physical page. | |
205 | */ | |
206 | char *pmap_phys_attributes; | |
207 | unsigned int last_managed_page = 0; | |
208 | ||
209 | /* | |
210 | * Amount of virtual memory mapped by one | |
211 | * page-directory entry. | |
212 | */ | |
213 | ||
214 | uint64_t pde_mapped_size = PDE_MAPPED_SIZE; | |
215 | ||
216 | unsigned pmap_memory_region_count; | |
217 | unsigned pmap_memory_region_current; | |
218 | ||
219 | pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE]; | |
220 | ||
221 | /* | |
222 | * Other useful macros. | |
223 | */ | |
224 | #define current_pmap() (vm_map_pmap(current_thread()->map)) | |
225 | ||
226 | struct pmap kernel_pmap_store; | |
227 | pmap_t kernel_pmap; | |
228 | ||
229 | pd_entry_t high_shared_pde; | |
230 | pd_entry_t commpage64_pde; | |
231 | ||
232 | struct zone *pmap_zone; /* zone of pmap structures */ | |
233 | ||
234 | struct zone *pmap_anchor_zone; | |
235 | int pmap_debug = 0; /* flag for debugging prints */ | |
236 | ||
237 | unsigned int inuse_ptepages_count = 0; | |
238 | long long alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */ | |
239 | unsigned int bootstrap_wired_pages = 0; | |
240 | int pt_fake_zone_index = -1; | |
241 | ||
242 | extern long NMIPI_acks; | |
243 | ||
244 | boolean_t kernel_text_ps_4K = TRUE; | |
245 | boolean_t wpkernel = TRUE; | |
246 | ||
247 | extern char end; | |
248 | ||
249 | static int nkpt; | |
250 | ||
251 | pt_entry_t *DMAP1, *DMAP2; | |
252 | caddr_t DADDR1; | |
253 | caddr_t DADDR2; | |
254 | ||
255 | /* | |
256 | * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain. | |
257 | * properly deals with the anchor. | |
258 | * must be called with the hash locked, does not unlock it | |
259 | */ | |
260 | ||
261 | ||
262 | /* | |
263 | * Map memory at initialization. The physical addresses being | |
264 | * mapped are not managed and are never unmapped. | |
265 | * | |
266 | * For now, VM is already on, we only need to map the | |
267 | * specified memory. | |
268 | */ | |
269 | vm_offset_t | |
270 | pmap_map( | |
271 | vm_offset_t virt, | |
272 | vm_map_offset_t start_addr, | |
273 | vm_map_offset_t end_addr, | |
274 | vm_prot_t prot, | |
275 | unsigned int flags) | |
276 | { | |
277 | int ps; | |
278 | ||
279 | ps = PAGE_SIZE; | |
280 | while (start_addr < end_addr) { | |
281 | pmap_enter(kernel_pmap, (vm_map_offset_t)virt, | |
282 | (ppnum_t) i386_btop(start_addr), prot, flags, FALSE); | |
283 | virt += ps; | |
284 | start_addr += ps; | |
285 | } | |
286 | return(virt); | |
287 | } | |
288 | ||
289 | /* | |
290 | * Back-door routine for mapping kernel VM at initialization. | |
291 | * Useful for mapping memory outside the range | |
292 | * Sets no-cache, A, D. | |
293 | * Otherwise like pmap_map. | |
294 | */ | |
295 | vm_offset_t | |
296 | pmap_map_bd( | |
297 | vm_offset_t virt, | |
298 | vm_map_offset_t start_addr, | |
299 | vm_map_offset_t end_addr, | |
300 | vm_prot_t prot, | |
301 | unsigned int flags) | |
302 | { | |
303 | pt_entry_t template; | |
304 | pt_entry_t *pte; | |
305 | spl_t spl; | |
306 | vm_offset_t base = virt; | |
307 | template = pa_to_pte(start_addr) | |
308 | | INTEL_PTE_REF | |
309 | | INTEL_PTE_MOD | |
310 | | INTEL_PTE_WIRED | |
311 | | INTEL_PTE_VALID; | |
312 | ||
313 | if (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) { | |
314 | template |= INTEL_PTE_NCACHE; | |
315 | if (!(flags & (VM_MEM_GUARDED | VM_WIMG_USE_DEFAULT))) | |
316 | template |= INTEL_PTE_PTA; | |
317 | } | |
318 | if (prot & VM_PROT_WRITE) | |
319 | template |= INTEL_PTE_WRITE; | |
320 | ||
321 | while (start_addr < end_addr) { | |
322 | spl = splhigh(); | |
323 | pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt); | |
324 | if (pte == PT_ENTRY_NULL) { | |
325 | panic("pmap_map_bd: Invalid kernel address\n"); | |
326 | } | |
327 | pmap_store_pte(pte, template); | |
328 | splx(spl); | |
329 | pte_increment_pa(template); | |
330 | virt += PAGE_SIZE; | |
331 | start_addr += PAGE_SIZE; | |
332 | } | |
333 | (void)base; | |
334 | PMAP_UPDATE_TLBS(kernel_pmap, base, base + end_addr - start_addr); | |
335 | return(virt); | |
336 | } | |
337 | ||
338 | extern char *first_avail; | |
339 | extern vm_offset_t virtual_avail, virtual_end; | |
340 | extern pmap_paddr_t avail_start, avail_end; | |
341 | extern vm_offset_t sHIB; | |
342 | extern vm_offset_t eHIB; | |
343 | extern vm_offset_t stext; | |
344 | extern vm_offset_t etext; | |
345 | extern vm_offset_t sdata; | |
346 | ||
347 | extern void *KPTphys; | |
348 | ||
349 | void | |
350 | pmap_cpu_init(void) | |
351 | { | |
352 | /* | |
353 | * Here early in the life of a processor (from cpu_mode_init()). | |
354 | * Ensure global page feature is disabled at this point. | |
355 | */ | |
356 | ||
357 | set_cr4(get_cr4() &~ CR4_PGE); | |
358 | ||
359 | /* | |
360 | * Initialize the per-cpu, TLB-related fields. | |
361 | */ | |
362 | current_cpu_datap()->cpu_kernel_cr3 = kernel_pmap->pm_cr3; | |
363 | current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3; | |
364 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
365 | current_cpu_datap()->cpu_task_map = TASK_MAP_64BIT; | |
366 | pmap_pcid_configure(); | |
367 | } | |
368 | ||
369 | ||
370 | ||
371 | /* | |
372 | * Bootstrap the system enough to run with virtual memory. | |
373 | * Map the kernel's code and data, and allocate the system page table. | |
374 | * Called with mapping OFF. Page_size must already be set. | |
375 | */ | |
376 | ||
377 | void | |
378 | pmap_bootstrap( | |
379 | __unused vm_offset_t load_start, | |
380 | __unused boolean_t IA32e) | |
381 | { | |
382 | #if NCOPY_WINDOWS > 0 | |
383 | vm_offset_t va; | |
384 | int i; | |
385 | #endif | |
386 | assert(IA32e); | |
387 | ||
388 | vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address | |
389 | * known to VM */ | |
390 | /* | |
391 | * The kernel's pmap is statically allocated so we don't | |
392 | * have to use pmap_create, which is unlikely to work | |
393 | * correctly at this part of the boot sequence. | |
394 | */ | |
395 | ||
396 | kernel_pmap = &kernel_pmap_store; | |
397 | kernel_pmap->ref_count = 1; | |
398 | kernel_pmap->nx_enabled = FALSE; | |
399 | kernel_pmap->pm_task_map = TASK_MAP_64BIT; | |
400 | kernel_pmap->pm_obj = (vm_object_t) NULL; | |
401 | kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD); | |
402 | kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT); | |
403 | kernel_pmap->pm_pml4 = IdlePML4; | |
404 | kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4); | |
405 | pmap_pcid_initialize_kernel(kernel_pmap); | |
406 | ||
407 | ||
408 | ||
409 | current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3; | |
410 | ||
411 | nkpt = NKPT; | |
412 | OSAddAtomic(NKPT, &inuse_ptepages_count); | |
413 | OSAddAtomic64(NKPT, &alloc_ptepages_count); | |
414 | bootstrap_wired_pages = NKPT; | |
415 | ||
416 | virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail; | |
417 | virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS); | |
418 | ||
419 | #if NCOPY_WINDOWS > 0 | |
420 | /* | |
421 | * Reserve some special page table entries/VA space for temporary | |
422 | * mapping of pages. | |
423 | */ | |
424 | #define SYSMAP(c, p, v, n) \ | |
425 | v = (c)va; va += ((n)*INTEL_PGBYTES); | |
426 | ||
427 | va = virtual_avail; | |
428 | ||
429 | for (i=0; i<PMAP_NWINDOWS; i++) { | |
430 | #if 1 | |
431 | kprintf("trying to do SYSMAP idx %d %p\n", i, | |
432 | current_cpu_datap()); | |
433 | kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap); | |
434 | kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow); | |
435 | kprintf("two stuff %p %p\n", | |
436 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
437 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR)); | |
438 | #endif | |
439 | SYSMAP(caddr_t, | |
440 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
441 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR), | |
442 | 1); | |
443 | current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = | |
444 | &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store); | |
445 | *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0; | |
446 | } | |
447 | ||
448 | /* DMAP user for debugger */ | |
449 | SYSMAP(caddr_t, DMAP1, DADDR1, 1); | |
450 | SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */ | |
451 | ||
452 | virtual_avail = va; | |
453 | #endif | |
454 | ||
455 | if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) { | |
456 | if (0 != ((npvhash + 1) & npvhash)) { | |
457 | kprintf("invalid hash %d, must be ((2^N)-1), " | |
458 | "using default %d\n", npvhash, NPVHASH); | |
459 | npvhash = NPVHASH; | |
460 | } | |
461 | } else { | |
462 | npvhash = NPVHASH; | |
463 | } | |
464 | ||
465 | simple_lock_init(&kernel_pmap->lock, 0); | |
466 | simple_lock_init(&pv_hashed_free_list_lock, 0); | |
467 | simple_lock_init(&pv_hashed_kern_free_list_lock, 0); | |
468 | simple_lock_init(&pv_hash_table_lock,0); | |
469 | ||
470 | pmap_cpu_init(); | |
471 | ||
472 | if (pmap_pcid_ncpus) | |
473 | printf("PMAP: PCID enabled\n"); | |
474 | ||
475 | boot_args *args = (boot_args *)PE_state.bootArgs; | |
476 | if (args->efiMode == kBootArgsEfiMode32) { | |
477 | printf("EFI32: kernel virtual space limited to 4GB\n"); | |
478 | virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32; | |
479 | } | |
480 | kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n", | |
481 | (long)KERNEL_BASE, (long)virtual_end); | |
482 | kprintf("Available physical space from 0x%llx to 0x%llx\n", | |
483 | avail_start, avail_end); | |
484 | ||
485 | /* | |
486 | * The -no_shared_cr3 boot-arg is a debugging feature (set by default | |
487 | * in the DEBUG kernel) to force the kernel to switch to its own map | |
488 | * (and cr3) when control is in kernelspace. The kernel's map does not | |
489 | * include (i.e. share) userspace so wild references will cause | |
490 | * a panic. Only copyin and copyout are exempt from this. | |
491 | */ | |
492 | (void) PE_parse_boot_argn("-no_shared_cr3", | |
493 | &no_shared_cr3, sizeof (no_shared_cr3)); | |
494 | if (no_shared_cr3) | |
495 | kprintf("Kernel not sharing user map\n"); | |
496 | ||
497 | #ifdef PMAP_TRACES | |
498 | if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) { | |
499 | kprintf("Kernel traces for pmap operations enabled\n"); | |
500 | } | |
501 | #endif /* PMAP_TRACES */ | |
502 | } | |
503 | ||
504 | void | |
505 | pmap_virtual_space( | |
506 | vm_offset_t *startp, | |
507 | vm_offset_t *endp) | |
508 | { | |
509 | *startp = virtual_avail; | |
510 | *endp = virtual_end; | |
511 | } | |
512 | ||
513 | /* | |
514 | * Initialize the pmap module. | |
515 | * Called by vm_init, to initialize any structures that the pmap | |
516 | * system needs to map virtual memory. | |
517 | */ | |
518 | void | |
519 | pmap_init(void) | |
520 | { | |
521 | long npages; | |
522 | vm_offset_t addr; | |
523 | vm_size_t s, vsize; | |
524 | vm_map_offset_t vaddr; | |
525 | ppnum_t ppn; | |
526 | ||
527 | ||
528 | kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store; | |
529 | _vm_object_allocate((vm_object_size_t)NPML4PGS, &kpml4obj_object_store); | |
530 | ||
531 | kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store; | |
532 | _vm_object_allocate((vm_object_size_t)NPDPTPGS, &kpdptobj_object_store); | |
533 | ||
534 | kernel_pmap->pm_obj = &kptobj_object_store; | |
535 | _vm_object_allocate((vm_object_size_t)NPDEPGS, &kptobj_object_store); | |
536 | ||
537 | /* | |
538 | * Allocate memory for the pv_head_table and its lock bits, | |
539 | * the modify bit array, and the pte_page table. | |
540 | */ | |
541 | ||
542 | /* | |
543 | * zero bias all these arrays now instead of off avail_start | |
544 | * so we cover all memory | |
545 | */ | |
546 | ||
547 | npages = i386_btop(avail_end); | |
548 | s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages | |
549 | + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1)) | |
550 | + pv_lock_table_size(npages) | |
551 | + pv_hash_lock_table_size((npvhash+1)) | |
552 | + npages); | |
553 | ||
554 | s = round_page(s); | |
555 | if (kernel_memory_allocate(kernel_map, &addr, s, 0, | |
556 | KMA_KOBJECT | KMA_PERMANENT) | |
557 | != KERN_SUCCESS) | |
558 | panic("pmap_init"); | |
559 | ||
560 | memset((char *)addr, 0, s); | |
561 | ||
562 | vaddr = addr; | |
563 | vsize = s; | |
564 | ||
565 | #if PV_DEBUG | |
566 | if (0 == npvhash) panic("npvhash not initialized"); | |
567 | #endif | |
568 | ||
569 | /* | |
570 | * Allocate the structures first to preserve word-alignment. | |
571 | */ | |
572 | pv_head_table = (pv_rooted_entry_t) addr; | |
573 | addr = (vm_offset_t) (pv_head_table + npages); | |
574 | ||
575 | pv_hash_table = (pv_hashed_entry_t *)addr; | |
576 | addr = (vm_offset_t) (pv_hash_table + (npvhash + 1)); | |
577 | ||
578 | pv_lock_table = (char *) addr; | |
579 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)); | |
580 | ||
581 | pv_hash_lock_table = (char *) addr; | |
582 | addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1))); | |
583 | ||
584 | pmap_phys_attributes = (char *) addr; | |
585 | ||
586 | ppnum_t last_pn = i386_btop(avail_end); | |
587 | unsigned int i; | |
588 | pmap_memory_region_t *pmptr = pmap_memory_regions; | |
589 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { | |
590 | if (pmptr->type != kEfiConventionalMemory) | |
591 | continue; | |
592 | unsigned int pn; | |
593 | for (pn = pmptr->base; pn <= pmptr->end; pn++) { | |
594 | if (pn < last_pn) { | |
595 | pmap_phys_attributes[pn] |= PHYS_MANAGED; | |
596 | ||
597 | if (pn > last_managed_page) | |
598 | last_managed_page = pn; | |
599 | ||
600 | if (pn < lowest_lo) | |
601 | pmap_phys_attributes[pn] |= PHYS_NOENCRYPT; | |
602 | else if (pn >= lowest_hi && pn <= highest_hi) | |
603 | pmap_phys_attributes[pn] |= PHYS_NOENCRYPT; | |
604 | } | |
605 | } | |
606 | } | |
607 | while (vsize) { | |
608 | ppn = pmap_find_phys(kernel_pmap, vaddr); | |
609 | ||
610 | pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT; | |
611 | ||
612 | vaddr += PAGE_SIZE; | |
613 | vsize -= PAGE_SIZE; | |
614 | } | |
615 | /* | |
616 | * Create the zone of physical maps, | |
617 | * and of the physical-to-virtual entries. | |
618 | */ | |
619 | s = (vm_size_t) sizeof(struct pmap); | |
620 | pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */ | |
621 | zone_change(pmap_zone, Z_NOENCRYPT, TRUE); | |
622 | ||
623 | pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors"); | |
624 | zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE); | |
625 | ||
626 | #if ZONE_DEBUG | |
627 | /* The anchor is required to be page aligned. Zone debugging adds | |
628 | * padding which may violate that requirement. Disable it | |
629 | * to avoid assumptions. | |
630 | */ | |
631 | zone_debug_disable(pmap_anchor_zone); | |
632 | #endif | |
633 | ||
634 | s = (vm_size_t) sizeof(struct pv_hashed_entry); | |
635 | pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */, | |
636 | 4096 * 3 /* LCM x86_64*/, "pv_list"); | |
637 | zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE); | |
638 | ||
639 | /* create pv entries for kernel pages mapped by low level | |
640 | startup code. these have to exist so we can pmap_remove() | |
641 | e.g. kext pages from the middle of our addr space */ | |
642 | ||
643 | vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS; | |
644 | for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) { | |
645 | pv_rooted_entry_t pv_e; | |
646 | ||
647 | pv_e = pai_to_pvh(ppn); | |
648 | pv_e->va = vaddr; | |
649 | vaddr += PAGE_SIZE; | |
650 | pv_e->pmap = kernel_pmap; | |
651 | queue_init(&pv_e->qlink); | |
652 | } | |
653 | pmap_initialized = TRUE; | |
654 | ||
655 | max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t); | |
656 | ||
657 | /* | |
658 | * Ensure the kernel's PML4 entry exists for the basement | |
659 | * before this is shared with any user. | |
660 | */ | |
661 | pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT); | |
662 | } | |
663 | ||
664 | /* | |
665 | * Called once VM is fully initialized so that we can release unused | |
666 | * sections of low memory to the general pool. | |
667 | * Also complete the set-up of identity-mapped sections of the kernel: | |
668 | * 1) write-protect kernel text | |
669 | * 2) map kernel text using large pages if possible | |
670 | * 3) read and write-protect page zero (for K32) | |
671 | * 4) map the global page at the appropriate virtual address. | |
672 | * | |
673 | * Use of large pages | |
674 | * ------------------ | |
675 | * To effectively map and write-protect all kernel text pages, the text | |
676 | * must be 2M-aligned at the base, and the data section above must also be | |
677 | * 2M-aligned. That is, there's padding below and above. This is achieved | |
678 | * through linker directives. Large pages are used only if this alignment | |
679 | * exists (and not overriden by the -kernel_text_page_4K boot-arg). The | |
680 | * memory layout is: | |
681 | * | |
682 | * : : | |
683 | * | __DATA | | |
684 | * sdata: ================== 2Meg | |
685 | * | | | |
686 | * | zero-padding | | |
687 | * | | | |
688 | * etext: ------------------ | |
689 | * | | | |
690 | * : : | |
691 | * | | | |
692 | * | __TEXT | | |
693 | * | | | |
694 | * : : | |
695 | * | | | |
696 | * stext: ================== 2Meg | |
697 | * | | | |
698 | * | zero-padding | | |
699 | * | | | |
700 | * eHIB: ------------------ | |
701 | * | __HIB | | |
702 | * : : | |
703 | * | |
704 | * Prior to changing the mapping from 4K to 2M, the zero-padding pages | |
705 | * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the | |
706 | * 4K pages covering [stext,etext] are coalesced as 2M large pages. | |
707 | * The now unused level-1 PTE pages are also freed. | |
708 | */ | |
709 | extern uint32_t pmap_reserved_ranges; | |
710 | void | |
711 | pmap_lowmem_finalize(void) | |
712 | { | |
713 | spl_t spl; | |
714 | int i; | |
715 | ||
716 | /* Check the kernel is linked at the expected base address */ | |
717 | if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) != | |
718 | I386_KERNEL_IMAGE_BASE_PAGE) | |
719 | panic("pmap_lowmem_finalize() unexpected kernel base address"); | |
720 | ||
721 | /* | |
722 | * Update wired memory statistics for early boot pages | |
723 | */ | |
724 | PMAP_ZINFO_PALLOC(bootstrap_wired_pages * PAGE_SIZE); | |
725 | ||
726 | /* | |
727 | * Free all pages in pmap regions below the base: | |
728 | * rdar://6332712 | |
729 | * We can't free all the pages to VM that EFI reports available. | |
730 | * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake. | |
731 | * There's also a size miscalculation here: pend is one page less | |
732 | * than it should be but this is not fixed to be backwards | |
733 | * compatible. | |
734 | * Due to this current EFI limitation, we take only the first | |
735 | * entry in the memory region table. However, the loop is retained | |
736 | * (with the intended termination criteria commented out) in the | |
737 | * hope that some day we can free all low-memory ranges. | |
738 | */ | |
739 | for (i = 0; | |
740 | // pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE; | |
741 | i < 1 && (pmap_reserved_ranges == 0); | |
742 | i++) { | |
743 | vm_offset_t pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base); | |
744 | vm_offset_t pend = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end); | |
745 | // vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1); | |
746 | ||
747 | DBG("ml_static_mfree(%p,%p) for pmap region %d\n", | |
748 | (void *) ml_static_ptovirt(pbase), | |
749 | (void *) (pend - pbase), i); | |
750 | ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase); | |
751 | } | |
752 | ||
753 | /* | |
754 | * If text and data are both 2MB-aligned, | |
755 | * we can map text with large-pages, | |
756 | * unless the -kernel_text_ps_4K boot-arg overrides. | |
757 | */ | |
758 | if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) { | |
759 | kprintf("Kernel text is 2MB aligned"); | |
760 | kernel_text_ps_4K = FALSE; | |
761 | if (PE_parse_boot_argn("-kernel_text_ps_4K", | |
762 | &kernel_text_ps_4K, | |
763 | sizeof (kernel_text_ps_4K))) | |
764 | kprintf(" but will be mapped with 4K pages\n"); | |
765 | else | |
766 | kprintf(" and will be mapped with 2M pages\n"); | |
767 | } | |
768 | ||
769 | (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel)); | |
770 | if (wpkernel) | |
771 | kprintf("Kernel text %p-%p to be write-protected\n", | |
772 | (void *) stext, (void *) etext); | |
773 | ||
774 | spl = splhigh(); | |
775 | ||
776 | /* | |
777 | * Scan over text if mappings are to be changed: | |
778 | * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0 | |
779 | * - Change to large-pages if possible and not overriden. | |
780 | */ | |
781 | if (kernel_text_ps_4K && wpkernel) { | |
782 | vm_offset_t myva; | |
783 | for (myva = stext; myva < etext; myva += PAGE_SIZE) { | |
784 | pt_entry_t *ptep; | |
785 | ||
786 | ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva); | |
787 | if (ptep) | |
788 | pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW); | |
789 | } | |
790 | } | |
791 | ||
792 | if (!kernel_text_ps_4K) { | |
793 | vm_offset_t myva; | |
794 | ||
795 | /* | |
796 | * Release zero-filled page padding used for 2M-alignment. | |
797 | */ | |
798 | DBG("ml_static_mfree(%p,%p) for padding below text\n", | |
799 | (void *) eHIB, (void *) (stext - eHIB)); | |
800 | ml_static_mfree(eHIB, stext - eHIB); | |
801 | DBG("ml_static_mfree(%p,%p) for padding above text\n", | |
802 | (void *) etext, (void *) (sdata - etext)); | |
803 | ml_static_mfree(etext, sdata - etext); | |
804 | ||
805 | /* | |
806 | * Coalesce text pages into large pages. | |
807 | */ | |
808 | for (myva = stext; myva < sdata; myva += I386_LPGBYTES) { | |
809 | pt_entry_t *ptep; | |
810 | vm_offset_t pte_phys; | |
811 | pt_entry_t *pdep; | |
812 | pt_entry_t pde; | |
813 | ||
814 | pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva); | |
815 | ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva); | |
816 | DBG("myva: %p pdep: %p ptep: %p\n", | |
817 | (void *) myva, (void *) pdep, (void *) ptep); | |
818 | if ((*ptep & INTEL_PTE_VALID) == 0) | |
819 | continue; | |
820 | pte_phys = (vm_offset_t)(*ptep & PG_FRAME); | |
821 | pde = *pdep & PTMASK; /* page attributes from pde */ | |
822 | pde |= INTEL_PTE_PS; /* make it a 2M entry */ | |
823 | pde |= pte_phys; /* take page frame from pte */ | |
824 | ||
825 | if (wpkernel) | |
826 | pde &= ~INTEL_PTE_RW; | |
827 | DBG("pmap_store_pte(%p,0x%llx)\n", | |
828 | (void *)pdep, pde); | |
829 | pmap_store_pte(pdep, pde); | |
830 | ||
831 | /* | |
832 | * Free the now-unused level-1 pte. | |
833 | * Note: ptep is a virtual address to the pte in the | |
834 | * recursive map. We can't use this address to free | |
835 | * the page. Instead we need to compute its address | |
836 | * in the Idle PTEs in "low memory". | |
837 | */ | |
838 | vm_offset_t vm_ptep = (vm_offset_t) KPTphys | |
839 | + (pte_phys >> PTPGSHIFT); | |
840 | DBG("ml_static_mfree(%p,0x%x) for pte\n", | |
841 | (void *) vm_ptep, PAGE_SIZE); | |
842 | ml_static_mfree(vm_ptep, PAGE_SIZE); | |
843 | } | |
844 | ||
845 | /* Change variable read by sysctl machdep.pmap */ | |
846 | pmap_kernel_text_ps = I386_LPGBYTES; | |
847 | } | |
848 | ||
849 | /* map lowmem global page into fixed addr */ | |
850 | pt_entry_t *pte = NULL; | |
851 | if (0 == (pte = pmap_pte(kernel_pmap, | |
852 | VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000))) | |
853 | panic("lowmem pte"); | |
854 | /* make sure it is defined on page boundary */ | |
855 | assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK)); | |
856 | pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo) | |
857 | | INTEL_PTE_REF | |
858 | | INTEL_PTE_MOD | |
859 | | INTEL_PTE_WIRED | |
860 | | INTEL_PTE_VALID | |
861 | | INTEL_PTE_RW); | |
862 | splx(spl); | |
863 | if (pmap_pcid_ncpus) | |
864 | tlb_flush_global(); | |
865 | else | |
866 | flush_tlb_raw(); | |
867 | } | |
868 | ||
869 | /* | |
870 | * this function is only used for debugging fron the vm layer | |
871 | */ | |
872 | boolean_t | |
873 | pmap_verify_free( | |
874 | ppnum_t pn) | |
875 | { | |
876 | pv_rooted_entry_t pv_h; | |
877 | int pai; | |
878 | boolean_t result; | |
879 | ||
880 | assert(pn != vm_page_fictitious_addr); | |
881 | ||
882 | if (!pmap_initialized) | |
883 | return(TRUE); | |
884 | ||
885 | if (pn == vm_page_guard_addr) | |
886 | return TRUE; | |
887 | ||
888 | pai = ppn_to_pai(pn); | |
889 | if (!IS_MANAGED_PAGE(pai)) | |
890 | return(FALSE); | |
891 | pv_h = pai_to_pvh(pn); | |
892 | result = (pv_h->pmap == PMAP_NULL); | |
893 | return(result); | |
894 | } | |
895 | ||
896 | boolean_t | |
897 | pmap_is_empty( | |
898 | pmap_t pmap, | |
899 | vm_map_offset_t va_start, | |
900 | vm_map_offset_t va_end) | |
901 | { | |
902 | vm_map_offset_t offset; | |
903 | ppnum_t phys_page; | |
904 | ||
905 | if (pmap == PMAP_NULL) { | |
906 | return TRUE; | |
907 | } | |
908 | ||
909 | /* | |
910 | * Check the resident page count | |
911 | * - if it's zero, the pmap is completely empty. | |
912 | * This short-circuit test prevents a virtual address scan which is | |
913 | * painfully slow for 64-bit spaces. | |
914 | * This assumes the count is correct | |
915 | * .. the debug kernel ought to be checking perhaps by page table walk. | |
916 | */ | |
917 | if (pmap->stats.resident_count == 0) | |
918 | return TRUE; | |
919 | ||
920 | for (offset = va_start; | |
921 | offset < va_end; | |
922 | offset += PAGE_SIZE_64) { | |
923 | phys_page = pmap_find_phys(pmap, offset); | |
924 | if (phys_page) { | |
925 | kprintf("pmap_is_empty(%p,0x%llx,0x%llx): " | |
926 | "page %d at 0x%llx\n", | |
927 | pmap, va_start, va_end, phys_page, offset); | |
928 | return FALSE; | |
929 | } | |
930 | } | |
931 | ||
932 | return TRUE; | |
933 | } | |
934 | ||
935 | ||
936 | /* | |
937 | * Create and return a physical map. | |
938 | * | |
939 | * If the size specified for the map | |
940 | * is zero, the map is an actual physical | |
941 | * map, and may be referenced by the | |
942 | * hardware. | |
943 | * | |
944 | * If the size specified is non-zero, | |
945 | * the map will be used in software only, and | |
946 | * is bounded by that size. | |
947 | */ | |
948 | pmap_t | |
949 | pmap_create( | |
950 | vm_map_size_t sz, | |
951 | boolean_t is_64bit) | |
952 | { | |
953 | pmap_t p; | |
954 | vm_size_t size; | |
955 | pml4_entry_t *pml4; | |
956 | pml4_entry_t *kpml4; | |
957 | ||
958 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
959 | (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0); | |
960 | ||
961 | size = (vm_size_t) sz; | |
962 | ||
963 | /* | |
964 | * A software use-only map doesn't even need a map. | |
965 | */ | |
966 | ||
967 | if (size != 0) { | |
968 | return(PMAP_NULL); | |
969 | } | |
970 | ||
971 | p = (pmap_t) zalloc(pmap_zone); | |
972 | if (PMAP_NULL == p) | |
973 | panic("pmap_create zalloc"); | |
974 | /* Zero all fields */ | |
975 | bzero(p, sizeof(*p)); | |
976 | /* init counts now since we'll be bumping some */ | |
977 | simple_lock_init(&p->lock, 0); | |
978 | p->stats.resident_count = 0; | |
979 | p->stats.resident_max = 0; | |
980 | p->stats.wired_count = 0; | |
981 | p->ref_count = 1; | |
982 | p->nx_enabled = 1; | |
983 | p->pm_shared = FALSE; | |
984 | ||
985 | p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;; | |
986 | if (pmap_pcid_ncpus) | |
987 | pmap_pcid_initialize(p); | |
988 | p->pm_pml4 = zalloc(pmap_anchor_zone); | |
989 | ||
990 | pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0); | |
991 | ||
992 | memset((char *)p->pm_pml4, 0, PAGE_SIZE); | |
993 | ||
994 | p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4); | |
995 | ||
996 | /* allocate the vm_objs to hold the pdpt, pde and pte pages */ | |
997 | ||
998 | p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS)); | |
999 | if (NULL == p->pm_obj_pml4) | |
1000 | panic("pmap_create pdpt obj"); | |
1001 | ||
1002 | p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS)); | |
1003 | if (NULL == p->pm_obj_pdpt) | |
1004 | panic("pmap_create pdpt obj"); | |
1005 | ||
1006 | p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS)); | |
1007 | if (NULL == p->pm_obj) | |
1008 | panic("pmap_create pte obj"); | |
1009 | ||
1010 | /* All pmaps share the kernel's pml4 */ | |
1011 | pml4 = pmap64_pml4(p, 0ULL); | |
1012 | kpml4 = kernel_pmap->pm_pml4; | |
1013 | pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX]; | |
1014 | pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX]; | |
1015 | pml4[KERNEL_PHYSMAP_INDEX] = kpml4[KERNEL_PHYSMAP_INDEX]; | |
1016 | ||
1017 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
1018 | p, is_64bit, 0, 0, 0); | |
1019 | ||
1020 | return(p); | |
1021 | } | |
1022 | ||
1023 | /* | |
1024 | * Retire the given physical map from service. | |
1025 | * Should only be called if the map contains | |
1026 | * no valid mappings. | |
1027 | */ | |
1028 | ||
1029 | void | |
1030 | pmap_destroy(pmap_t p) | |
1031 | { | |
1032 | int c; | |
1033 | ||
1034 | if (p == PMAP_NULL) | |
1035 | return; | |
1036 | ||
1037 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START, | |
1038 | p, 0, 0, 0, 0); | |
1039 | ||
1040 | PMAP_LOCK(p); | |
1041 | ||
1042 | c = --p->ref_count; | |
1043 | ||
1044 | pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE); | |
1045 | ||
1046 | if (c == 0) { | |
1047 | /* | |
1048 | * If some cpu is not using the physical pmap pointer that it | |
1049 | * is supposed to be (see set_dirbase), we might be using the | |
1050 | * pmap that is being destroyed! Make sure we are | |
1051 | * physically on the right pmap: | |
1052 | */ | |
1053 | PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL); | |
1054 | } | |
1055 | if (pmap_pcid_ncpus) | |
1056 | pmap_destroy_pcid_sync(p); | |
1057 | PMAP_UNLOCK(p); | |
1058 | ||
1059 | if (c != 0) { | |
1060 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
1061 | p, 1, 0, 0, 0); | |
1062 | pmap_assert(p == kernel_pmap); | |
1063 | return; /* still in use */ | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * Free the memory maps, then the | |
1068 | * pmap structure. | |
1069 | */ | |
1070 | int inuse_ptepages = 0; | |
1071 | ||
1072 | zfree(pmap_anchor_zone, p->pm_pml4); | |
1073 | ||
1074 | inuse_ptepages += p->pm_obj_pml4->resident_page_count; | |
1075 | vm_object_deallocate(p->pm_obj_pml4); | |
1076 | ||
1077 | inuse_ptepages += p->pm_obj_pdpt->resident_page_count; | |
1078 | vm_object_deallocate(p->pm_obj_pdpt); | |
1079 | ||
1080 | inuse_ptepages += p->pm_obj->resident_page_count; | |
1081 | vm_object_deallocate(p->pm_obj); | |
1082 | ||
1083 | OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count); | |
1084 | PMAP_ZINFO_PFREE(inuse_ptepages * PAGE_SIZE); | |
1085 | ||
1086 | zfree(pmap_zone, p); | |
1087 | ||
1088 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
1089 | 0, 0, 0, 0, 0); | |
1090 | } | |
1091 | ||
1092 | /* | |
1093 | * Add a reference to the specified pmap. | |
1094 | */ | |
1095 | ||
1096 | void | |
1097 | pmap_reference(pmap_t p) | |
1098 | { | |
1099 | if (p != PMAP_NULL) { | |
1100 | PMAP_LOCK(p); | |
1101 | p->ref_count++; | |
1102 | PMAP_UNLOCK(p);; | |
1103 | } | |
1104 | } | |
1105 | ||
1106 | /* | |
1107 | * Remove phys addr if mapped in specified map | |
1108 | * | |
1109 | */ | |
1110 | void | |
1111 | pmap_remove_some_phys( | |
1112 | __unused pmap_t map, | |
1113 | __unused ppnum_t pn) | |
1114 | { | |
1115 | ||
1116 | /* Implement to support working set code */ | |
1117 | ||
1118 | } | |
1119 | ||
1120 | ||
1121 | /* | |
1122 | * Set the physical protection on the | |
1123 | * specified range of this map as requested. | |
1124 | * Will not increase permissions. | |
1125 | */ | |
1126 | void | |
1127 | pmap_protect( | |
1128 | pmap_t map, | |
1129 | vm_map_offset_t sva, | |
1130 | vm_map_offset_t eva, | |
1131 | vm_prot_t prot) | |
1132 | { | |
1133 | pt_entry_t *pde; | |
1134 | pt_entry_t *spte, *epte; | |
1135 | vm_map_offset_t lva; | |
1136 | vm_map_offset_t orig_sva; | |
1137 | boolean_t set_NX; | |
1138 | int num_found = 0; | |
1139 | ||
1140 | pmap_intr_assert(); | |
1141 | ||
1142 | if (map == PMAP_NULL) | |
1143 | return; | |
1144 | ||
1145 | if (prot == VM_PROT_NONE) { | |
1146 | pmap_remove(map, sva, eva); | |
1147 | return; | |
1148 | } | |
1149 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START, | |
1150 | map, | |
1151 | (uint32_t) (sva >> 32), (uint32_t) sva, | |
1152 | (uint32_t) (eva >> 32), (uint32_t) eva); | |
1153 | ||
1154 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled) | |
1155 | set_NX = FALSE; | |
1156 | else | |
1157 | set_NX = TRUE; | |
1158 | ||
1159 | PMAP_LOCK(map); | |
1160 | ||
1161 | orig_sva = sva; | |
1162 | while (sva < eva) { | |
1163 | lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1); | |
1164 | if (lva > eva) | |
1165 | lva = eva; | |
1166 | pde = pmap_pde(map, sva); | |
1167 | if (pde && (*pde & INTEL_PTE_VALID)) { | |
1168 | if (*pde & INTEL_PTE_PS) { | |
1169 | /* superpage */ | |
1170 | spte = pde; | |
1171 | epte = spte+1; /* excluded */ | |
1172 | } else { | |
1173 | spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1))); | |
1174 | spte = &spte[ptenum(sva)]; | |
1175 | epte = &spte[intel_btop(lva - sva)]; | |
1176 | } | |
1177 | ||
1178 | for (; spte < epte; spte++) { | |
1179 | if (!(*spte & INTEL_PTE_VALID)) | |
1180 | continue; | |
1181 | ||
1182 | if (prot & VM_PROT_WRITE) | |
1183 | pmap_update_pte(spte, *spte, | |
1184 | *spte | INTEL_PTE_WRITE); | |
1185 | else | |
1186 | pmap_update_pte(spte, *spte, | |
1187 | *spte & ~INTEL_PTE_WRITE); | |
1188 | ||
1189 | if (set_NX) | |
1190 | pmap_update_pte(spte, *spte, | |
1191 | *spte | INTEL_PTE_NX); | |
1192 | else | |
1193 | pmap_update_pte(spte, *spte, | |
1194 | *spte & ~INTEL_PTE_NX); | |
1195 | ||
1196 | num_found++; | |
1197 | } | |
1198 | } | |
1199 | sva = lva; | |
1200 | } | |
1201 | if (num_found) | |
1202 | PMAP_UPDATE_TLBS(map, orig_sva, eva); | |
1203 | ||
1204 | PMAP_UNLOCK(map); | |
1205 | ||
1206 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END, | |
1207 | 0, 0, 0, 0, 0); | |
1208 | ||
1209 | } | |
1210 | ||
1211 | /* Map a (possibly) autogenned block */ | |
1212 | void | |
1213 | pmap_map_block( | |
1214 | pmap_t pmap, | |
1215 | addr64_t va, | |
1216 | ppnum_t pa, | |
1217 | uint32_t size, | |
1218 | vm_prot_t prot, | |
1219 | int attr, | |
1220 | __unused unsigned int flags) | |
1221 | { | |
1222 | uint32_t page; | |
1223 | int cur_page_size; | |
1224 | ||
1225 | if (attr & VM_MEM_SUPERPAGE) | |
1226 | cur_page_size = SUPERPAGE_SIZE; | |
1227 | else | |
1228 | cur_page_size = PAGE_SIZE; | |
1229 | ||
1230 | for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) { | |
1231 | pmap_enter(pmap, va, pa, prot, attr, TRUE); | |
1232 | va += cur_page_size; | |
1233 | pa+=cur_page_size/PAGE_SIZE; | |
1234 | } | |
1235 | } | |
1236 | ||
1237 | ||
1238 | void | |
1239 | pmap_expand_pml4( | |
1240 | pmap_t map, | |
1241 | vm_map_offset_t vaddr) | |
1242 | { | |
1243 | vm_page_t m; | |
1244 | pmap_paddr_t pa; | |
1245 | uint64_t i; | |
1246 | ppnum_t pn; | |
1247 | pml4_entry_t *pml4p; | |
1248 | ||
1249 | DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr); | |
1250 | ||
1251 | /* | |
1252 | * Allocate a VM page for the pml4 page | |
1253 | */ | |
1254 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1255 | VM_PAGE_WAIT(); | |
1256 | ||
1257 | /* | |
1258 | * put the page into the pmap's obj list so it | |
1259 | * can be found later. | |
1260 | */ | |
1261 | pn = m->phys_page; | |
1262 | pa = i386_ptob(pn); | |
1263 | i = pml4idx(map, vaddr); | |
1264 | ||
1265 | /* | |
1266 | * Zero the page. | |
1267 | */ | |
1268 | pmap_zero_page(pn); | |
1269 | ||
1270 | vm_page_lockspin_queues(); | |
1271 | vm_page_wire(m); | |
1272 | vm_page_unlock_queues(); | |
1273 | ||
1274 | OSAddAtomic(1, &inuse_ptepages_count); | |
1275 | OSAddAtomic64(1, &alloc_ptepages_count); | |
1276 | PMAP_ZINFO_PALLOC(PAGE_SIZE); | |
1277 | ||
1278 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1279 | vm_object_lock(map->pm_obj_pml4); | |
1280 | ||
1281 | PMAP_LOCK(map); | |
1282 | /* | |
1283 | * See if someone else expanded us first | |
1284 | */ | |
1285 | if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) { | |
1286 | PMAP_UNLOCK(map); | |
1287 | vm_object_unlock(map->pm_obj_pml4); | |
1288 | ||
1289 | VM_PAGE_FREE(m); | |
1290 | ||
1291 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1292 | PMAP_ZINFO_PFREE(PAGE_SIZE); | |
1293 | return; | |
1294 | } | |
1295 | ||
1296 | #if 0 /* DEBUG */ | |
1297 | if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) { | |
1298 | panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1299 | map, map->pm_obj_pml4, vaddr, i); | |
1300 | } | |
1301 | #endif | |
1302 | vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i); | |
1303 | vm_object_unlock(map->pm_obj_pml4); | |
1304 | ||
1305 | /* | |
1306 | * Set the page directory entry for this page table. | |
1307 | */ | |
1308 | pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */ | |
1309 | ||
1310 | pmap_store_pte(pml4p, pa_to_pte(pa) | |
1311 | | INTEL_PTE_VALID | |
1312 | | INTEL_PTE_USER | |
1313 | | INTEL_PTE_WRITE); | |
1314 | ||
1315 | PMAP_UNLOCK(map); | |
1316 | ||
1317 | return; | |
1318 | } | |
1319 | ||
1320 | void | |
1321 | pmap_expand_pdpt( | |
1322 | pmap_t map, | |
1323 | vm_map_offset_t vaddr) | |
1324 | { | |
1325 | vm_page_t m; | |
1326 | pmap_paddr_t pa; | |
1327 | uint64_t i; | |
1328 | ppnum_t pn; | |
1329 | pdpt_entry_t *pdptp; | |
1330 | ||
1331 | DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr); | |
1332 | ||
1333 | while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) { | |
1334 | pmap_expand_pml4(map, vaddr); | |
1335 | } | |
1336 | ||
1337 | /* | |
1338 | * Allocate a VM page for the pdpt page | |
1339 | */ | |
1340 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1341 | VM_PAGE_WAIT(); | |
1342 | ||
1343 | /* | |
1344 | * put the page into the pmap's obj list so it | |
1345 | * can be found later. | |
1346 | */ | |
1347 | pn = m->phys_page; | |
1348 | pa = i386_ptob(pn); | |
1349 | i = pdptidx(map, vaddr); | |
1350 | ||
1351 | /* | |
1352 | * Zero the page. | |
1353 | */ | |
1354 | pmap_zero_page(pn); | |
1355 | ||
1356 | vm_page_lockspin_queues(); | |
1357 | vm_page_wire(m); | |
1358 | vm_page_unlock_queues(); | |
1359 | ||
1360 | OSAddAtomic(1, &inuse_ptepages_count); | |
1361 | OSAddAtomic64(1, &alloc_ptepages_count); | |
1362 | PMAP_ZINFO_PALLOC(PAGE_SIZE); | |
1363 | ||
1364 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1365 | vm_object_lock(map->pm_obj_pdpt); | |
1366 | ||
1367 | PMAP_LOCK(map); | |
1368 | /* | |
1369 | * See if someone else expanded us first | |
1370 | */ | |
1371 | if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) { | |
1372 | PMAP_UNLOCK(map); | |
1373 | vm_object_unlock(map->pm_obj_pdpt); | |
1374 | ||
1375 | VM_PAGE_FREE(m); | |
1376 | ||
1377 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1378 | PMAP_ZINFO_PFREE(PAGE_SIZE); | |
1379 | return; | |
1380 | } | |
1381 | ||
1382 | #if 0 /* DEBUG */ | |
1383 | if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) { | |
1384 | panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1385 | map, map->pm_obj_pdpt, vaddr, i); | |
1386 | } | |
1387 | #endif | |
1388 | vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i); | |
1389 | vm_object_unlock(map->pm_obj_pdpt); | |
1390 | ||
1391 | /* | |
1392 | * Set the page directory entry for this page table. | |
1393 | */ | |
1394 | pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */ | |
1395 | ||
1396 | pmap_store_pte(pdptp, pa_to_pte(pa) | |
1397 | | INTEL_PTE_VALID | |
1398 | | INTEL_PTE_USER | |
1399 | | INTEL_PTE_WRITE); | |
1400 | ||
1401 | PMAP_UNLOCK(map); | |
1402 | ||
1403 | return; | |
1404 | ||
1405 | } | |
1406 | ||
1407 | ||
1408 | ||
1409 | /* | |
1410 | * Routine: pmap_expand | |
1411 | * | |
1412 | * Expands a pmap to be able to map the specified virtual address. | |
1413 | * | |
1414 | * Allocates new virtual memory for the P0 or P1 portion of the | |
1415 | * pmap, then re-maps the physical pages that were in the old | |
1416 | * pmap to be in the new pmap. | |
1417 | * | |
1418 | * Must be called with the pmap system and the pmap unlocked, | |
1419 | * since these must be unlocked to use vm_allocate or vm_deallocate. | |
1420 | * Thus it must be called in a loop that checks whether the map | |
1421 | * has been expanded enough. | |
1422 | * (We won't loop forever, since page tables aren't shrunk.) | |
1423 | */ | |
1424 | void | |
1425 | pmap_expand( | |
1426 | pmap_t map, | |
1427 | vm_map_offset_t vaddr) | |
1428 | { | |
1429 | pt_entry_t *pdp; | |
1430 | register vm_page_t m; | |
1431 | register pmap_paddr_t pa; | |
1432 | uint64_t i; | |
1433 | ppnum_t pn; | |
1434 | ||
1435 | ||
1436 | /* | |
1437 | * For the kernel, the virtual address must be in or above the basement | |
1438 | * which is for kexts and is in the 512GB immediately below the kernel.. | |
1439 | * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT | |
1440 | */ | |
1441 | if (map == kernel_pmap && | |
1442 | !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS)) | |
1443 | panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr); | |
1444 | ||
1445 | ||
1446 | while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) { | |
1447 | /* need room for another pde entry */ | |
1448 | pmap_expand_pdpt(map, vaddr); | |
1449 | } | |
1450 | ||
1451 | /* | |
1452 | * Allocate a VM page for the pde entries. | |
1453 | */ | |
1454 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1455 | VM_PAGE_WAIT(); | |
1456 | ||
1457 | /* | |
1458 | * put the page into the pmap's obj list so it | |
1459 | * can be found later. | |
1460 | */ | |
1461 | pn = m->phys_page; | |
1462 | pa = i386_ptob(pn); | |
1463 | i = pdeidx(map, vaddr); | |
1464 | ||
1465 | /* | |
1466 | * Zero the page. | |
1467 | */ | |
1468 | pmap_zero_page(pn); | |
1469 | ||
1470 | vm_page_lockspin_queues(); | |
1471 | vm_page_wire(m); | |
1472 | vm_page_unlock_queues(); | |
1473 | ||
1474 | OSAddAtomic(1, &inuse_ptepages_count); | |
1475 | OSAddAtomic64(1, &alloc_ptepages_count); | |
1476 | PMAP_ZINFO_PALLOC(PAGE_SIZE); | |
1477 | ||
1478 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1479 | vm_object_lock(map->pm_obj); | |
1480 | ||
1481 | PMAP_LOCK(map); | |
1482 | ||
1483 | /* | |
1484 | * See if someone else expanded us first | |
1485 | */ | |
1486 | if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) { | |
1487 | PMAP_UNLOCK(map); | |
1488 | vm_object_unlock(map->pm_obj); | |
1489 | ||
1490 | VM_PAGE_FREE(m); | |
1491 | ||
1492 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1493 | PMAP_ZINFO_PFREE(PAGE_SIZE); | |
1494 | return; | |
1495 | } | |
1496 | ||
1497 | #if 0 /* DEBUG */ | |
1498 | if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) { | |
1499 | panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n", | |
1500 | map, map->pm_obj, vaddr, i); | |
1501 | } | |
1502 | #endif | |
1503 | vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i); | |
1504 | vm_object_unlock(map->pm_obj); | |
1505 | ||
1506 | /* | |
1507 | * Set the page directory entry for this page table. | |
1508 | */ | |
1509 | pdp = pmap_pde(map, vaddr); | |
1510 | pmap_store_pte(pdp, pa_to_pte(pa) | |
1511 | | INTEL_PTE_VALID | |
1512 | | INTEL_PTE_USER | |
1513 | | INTEL_PTE_WRITE); | |
1514 | ||
1515 | PMAP_UNLOCK(map); | |
1516 | ||
1517 | return; | |
1518 | } | |
1519 | ||
1520 | /* On K64 machines with more than 32GB of memory, pmap_steal_memory | |
1521 | * will allocate past the 1GB of pre-expanded virtual kernel area. This | |
1522 | * function allocates all the page tables using memory from the same pool | |
1523 | * that pmap_steal_memory uses, rather than calling vm_page_grab (which | |
1524 | * isn't available yet). */ | |
1525 | void | |
1526 | pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr) | |
1527 | { | |
1528 | ppnum_t pn; | |
1529 | pt_entry_t *pte; | |
1530 | ||
1531 | PMAP_LOCK(pmap); | |
1532 | ||
1533 | if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) { | |
1534 | if (!pmap_next_page_hi(&pn)) | |
1535 | panic("pmap_pre_expand"); | |
1536 | ||
1537 | pmap_zero_page(pn); | |
1538 | ||
1539 | pte = pmap64_pml4(pmap, vaddr); | |
1540 | ||
1541 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1542 | | INTEL_PTE_VALID | |
1543 | | INTEL_PTE_USER | |
1544 | | INTEL_PTE_WRITE); | |
1545 | } | |
1546 | ||
1547 | if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) { | |
1548 | if (!pmap_next_page_hi(&pn)) | |
1549 | panic("pmap_pre_expand"); | |
1550 | ||
1551 | pmap_zero_page(pn); | |
1552 | ||
1553 | pte = pmap64_pdpt(pmap, vaddr); | |
1554 | ||
1555 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1556 | | INTEL_PTE_VALID | |
1557 | | INTEL_PTE_USER | |
1558 | | INTEL_PTE_WRITE); | |
1559 | } | |
1560 | ||
1561 | if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) { | |
1562 | if (!pmap_next_page_hi(&pn)) | |
1563 | panic("pmap_pre_expand"); | |
1564 | ||
1565 | pmap_zero_page(pn); | |
1566 | ||
1567 | pte = pmap64_pde(pmap, vaddr); | |
1568 | ||
1569 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1570 | | INTEL_PTE_VALID | |
1571 | | INTEL_PTE_USER | |
1572 | | INTEL_PTE_WRITE); | |
1573 | } | |
1574 | ||
1575 | PMAP_UNLOCK(pmap); | |
1576 | } | |
1577 | ||
1578 | /* | |
1579 | * pmap_sync_page_data_phys(ppnum_t pa) | |
1580 | * | |
1581 | * Invalidates all of the instruction cache on a physical page and | |
1582 | * pushes any dirty data from the data cache for the same physical page | |
1583 | * Not required in i386. | |
1584 | */ | |
1585 | void | |
1586 | pmap_sync_page_data_phys(__unused ppnum_t pa) | |
1587 | { | |
1588 | return; | |
1589 | } | |
1590 | ||
1591 | /* | |
1592 | * pmap_sync_page_attributes_phys(ppnum_t pa) | |
1593 | * | |
1594 | * Write back and invalidate all cachelines on a physical page. | |
1595 | */ | |
1596 | void | |
1597 | pmap_sync_page_attributes_phys(ppnum_t pa) | |
1598 | { | |
1599 | cache_flush_page_phys(pa); | |
1600 | } | |
1601 | ||
1602 | ||
1603 | ||
1604 | #ifdef CURRENTLY_UNUSED_AND_UNTESTED | |
1605 | ||
1606 | int collect_ref; | |
1607 | int collect_unref; | |
1608 | ||
1609 | /* | |
1610 | * Routine: pmap_collect | |
1611 | * Function: | |
1612 | * Garbage collects the physical map system for | |
1613 | * pages which are no longer used. | |
1614 | * Success need not be guaranteed -- that is, there | |
1615 | * may well be pages which are not referenced, but | |
1616 | * others may be collected. | |
1617 | * Usage: | |
1618 | * Called by the pageout daemon when pages are scarce. | |
1619 | */ | |
1620 | void | |
1621 | pmap_collect( | |
1622 | pmap_t p) | |
1623 | { | |
1624 | register pt_entry_t *pdp, *ptp; | |
1625 | pt_entry_t *eptp; | |
1626 | int wired; | |
1627 | ||
1628 | if (p == PMAP_NULL) | |
1629 | return; | |
1630 | ||
1631 | if (p == kernel_pmap) | |
1632 | return; | |
1633 | ||
1634 | /* | |
1635 | * Garbage collect map. | |
1636 | */ | |
1637 | PMAP_LOCK(p); | |
1638 | ||
1639 | for (pdp = (pt_entry_t *)p->dirbase; | |
1640 | pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)]; | |
1641 | pdp++) | |
1642 | { | |
1643 | if (*pdp & INTEL_PTE_VALID) { | |
1644 | if(*pdp & INTEL_PTE_REF) { | |
1645 | pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF); | |
1646 | collect_ref++; | |
1647 | } else { | |
1648 | collect_unref++; | |
1649 | ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase)); | |
1650 | eptp = ptp + NPTEPG; | |
1651 | ||
1652 | /* | |
1653 | * If the pte page has any wired mappings, we cannot | |
1654 | * free it. | |
1655 | */ | |
1656 | wired = 0; | |
1657 | { | |
1658 | register pt_entry_t *ptep; | |
1659 | for (ptep = ptp; ptep < eptp; ptep++) { | |
1660 | if (iswired(*ptep)) { | |
1661 | wired = 1; | |
1662 | break; | |
1663 | } | |
1664 | } | |
1665 | } | |
1666 | if (!wired) { | |
1667 | /* | |
1668 | * Remove the virtual addresses mapped by this pte page. | |
1669 | */ | |
1670 | pmap_remove_range(p, | |
1671 | pdetova(pdp - (pt_entry_t *)p->dirbase), | |
1672 | ptp, | |
1673 | eptp); | |
1674 | ||
1675 | /* | |
1676 | * Invalidate the page directory pointer. | |
1677 | */ | |
1678 | pmap_store_pte(pdp, 0x0); | |
1679 | ||
1680 | PMAP_UNLOCK(p); | |
1681 | ||
1682 | /* | |
1683 | * And free the pte page itself. | |
1684 | */ | |
1685 | { | |
1686 | register vm_page_t m; | |
1687 | ||
1688 | vm_object_lock(p->pm_obj); | |
1689 | ||
1690 | m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0])); | |
1691 | if (m == VM_PAGE_NULL) | |
1692 | panic("pmap_collect: pte page not in object"); | |
1693 | ||
1694 | vm_object_unlock(p->pm_obj); | |
1695 | ||
1696 | VM_PAGE_FREE(m); | |
1697 | ||
1698 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1699 | PMAP_ZINFO_PFREE(PAGE_SIZE); | |
1700 | } | |
1701 | ||
1702 | PMAP_LOCK(p); | |
1703 | } | |
1704 | } | |
1705 | } | |
1706 | } | |
1707 | ||
1708 | PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL); | |
1709 | PMAP_UNLOCK(p); | |
1710 | return; | |
1711 | ||
1712 | } | |
1713 | #endif | |
1714 | ||
1715 | ||
1716 | void | |
1717 | pmap_copy_page(ppnum_t src, ppnum_t dst) | |
1718 | { | |
1719 | bcopy_phys((addr64_t)i386_ptob(src), | |
1720 | (addr64_t)i386_ptob(dst), | |
1721 | PAGE_SIZE); | |
1722 | } | |
1723 | ||
1724 | ||
1725 | /* | |
1726 | * Routine: pmap_pageable | |
1727 | * Function: | |
1728 | * Make the specified pages (by pmap, offset) | |
1729 | * pageable (or not) as requested. | |
1730 | * | |
1731 | * A page which is not pageable may not take | |
1732 | * a fault; therefore, its page table entry | |
1733 | * must remain valid for the duration. | |
1734 | * | |
1735 | * This routine is merely advisory; pmap_enter | |
1736 | * will specify that these pages are to be wired | |
1737 | * down (or not) as appropriate. | |
1738 | */ | |
1739 | void | |
1740 | pmap_pageable( | |
1741 | __unused pmap_t pmap, | |
1742 | __unused vm_map_offset_t start_addr, | |
1743 | __unused vm_map_offset_t end_addr, | |
1744 | __unused boolean_t pageable) | |
1745 | { | |
1746 | #ifdef lint | |
1747 | pmap++; start_addr++; end_addr++; pageable++; | |
1748 | #endif /* lint */ | |
1749 | } | |
1750 | ||
1751 | ||
1752 | void | |
1753 | invalidate_icache(__unused vm_offset_t addr, | |
1754 | __unused unsigned cnt, | |
1755 | __unused int phys) | |
1756 | { | |
1757 | return; | |
1758 | } | |
1759 | ||
1760 | void | |
1761 | flush_dcache(__unused vm_offset_t addr, | |
1762 | __unused unsigned count, | |
1763 | __unused int phys) | |
1764 | { | |
1765 | return; | |
1766 | } | |
1767 | ||
1768 | #if CONFIG_DTRACE | |
1769 | /* | |
1770 | * Constrain DTrace copyin/copyout actions | |
1771 | */ | |
1772 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
1773 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
1774 | ||
1775 | kern_return_t dtrace_copyio_preflight(__unused addr64_t va) | |
1776 | { | |
1777 | thread_t thread = current_thread(); | |
1778 | uint64_t ccr3; | |
1779 | ||
1780 | if (current_map() == kernel_map) | |
1781 | return KERN_FAILURE; | |
1782 | else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE)) | |
1783 | return KERN_FAILURE; | |
1784 | else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3)) | |
1785 | return KERN_FAILURE; | |
1786 | else if (thread->machine.specFlags & CopyIOActive) | |
1787 | return KERN_FAILURE; | |
1788 | else | |
1789 | return KERN_SUCCESS; | |
1790 | } | |
1791 | ||
1792 | kern_return_t dtrace_copyio_postflight(__unused addr64_t va) | |
1793 | { | |
1794 | return KERN_SUCCESS; | |
1795 | } | |
1796 | #endif /* CONFIG_DTRACE */ | |
1797 | ||
1798 | #include <mach_vm_debug.h> | |
1799 | #if MACH_VM_DEBUG | |
1800 | #include <vm/vm_debug.h> | |
1801 | ||
1802 | int | |
1803 | pmap_list_resident_pages( | |
1804 | __unused pmap_t pmap, | |
1805 | __unused vm_offset_t *listp, | |
1806 | __unused int space) | |
1807 | { | |
1808 | return 0; | |
1809 | } | |
1810 | #endif /* MACH_VM_DEBUG */ | |
1811 | ||
1812 | ||
1813 | ||
1814 | /* temporary workaround */ | |
1815 | boolean_t | |
1816 | coredumpok(__unused vm_map_t map, __unused vm_offset_t va) | |
1817 | { | |
1818 | #if 0 | |
1819 | pt_entry_t *ptep; | |
1820 | ||
1821 | ptep = pmap_pte(map->pmap, va); | |
1822 | if (0 == ptep) | |
1823 | return FALSE; | |
1824 | return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)); | |
1825 | #else | |
1826 | return TRUE; | |
1827 | #endif | |
1828 | } | |
1829 | ||
1830 | ||
1831 | boolean_t | |
1832 | phys_page_exists(ppnum_t pn) | |
1833 | { | |
1834 | assert(pn != vm_page_fictitious_addr); | |
1835 | ||
1836 | if (!pmap_initialized) | |
1837 | return TRUE; | |
1838 | ||
1839 | if (pn == vm_page_guard_addr) | |
1840 | return FALSE; | |
1841 | ||
1842 | if (!IS_MANAGED_PAGE(ppn_to_pai(pn))) | |
1843 | return FALSE; | |
1844 | ||
1845 | return TRUE; | |
1846 | } | |
1847 | ||
1848 | ||
1849 | ||
1850 | void | |
1851 | pmap_switch(pmap_t tpmap) | |
1852 | { | |
1853 | spl_t s; | |
1854 | ||
1855 | s = splhigh(); /* Make sure interruptions are disabled */ | |
1856 | set_dirbase(tpmap, current_thread()); | |
1857 | splx(s); | |
1858 | } | |
1859 | ||
1860 | ||
1861 | /* | |
1862 | * disable no-execute capability on | |
1863 | * the specified pmap | |
1864 | */ | |
1865 | void | |
1866 | pmap_disable_NX(pmap_t pmap) | |
1867 | { | |
1868 | pmap->nx_enabled = 0; | |
1869 | } | |
1870 | ||
1871 | void | |
1872 | pt_fake_zone_init(int zone_index) | |
1873 | { | |
1874 | pt_fake_zone_index = zone_index; | |
1875 | } | |
1876 | ||
1877 | void | |
1878 | pt_fake_zone_info( | |
1879 | int *count, | |
1880 | vm_size_t *cur_size, | |
1881 | vm_size_t *max_size, | |
1882 | vm_size_t *elem_size, | |
1883 | vm_size_t *alloc_size, | |
1884 | uint64_t *sum_size, | |
1885 | int *collectable, | |
1886 | int *exhaustable, | |
1887 | int *caller_acct) | |
1888 | { | |
1889 | *count = inuse_ptepages_count; | |
1890 | *cur_size = PAGE_SIZE * inuse_ptepages_count; | |
1891 | *max_size = PAGE_SIZE * (inuse_ptepages_count + | |
1892 | vm_page_inactive_count + | |
1893 | vm_page_active_count + | |
1894 | vm_page_free_count); | |
1895 | *elem_size = PAGE_SIZE; | |
1896 | *alloc_size = PAGE_SIZE; | |
1897 | *sum_size = alloc_ptepages_count * PAGE_SIZE; | |
1898 | ||
1899 | *collectable = 1; | |
1900 | *exhaustable = 0; | |
1901 | *caller_acct = 1; | |
1902 | } | |
1903 | ||
1904 | static inline void | |
1905 | pmap_cpuset_NMIPI(cpu_set cpu_mask) { | |
1906 | unsigned int cpu, cpu_bit; | |
1907 | uint64_t deadline; | |
1908 | ||
1909 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
1910 | if (cpu_mask & cpu_bit) | |
1911 | cpu_NMI_interrupt(cpu); | |
1912 | } | |
1913 | deadline = mach_absolute_time() + (LockTimeOut); | |
1914 | while (mach_absolute_time() < deadline) | |
1915 | cpu_pause(); | |
1916 | } | |
1917 | ||
1918 | /* | |
1919 | * Called with pmap locked, we: | |
1920 | * - scan through per-cpu data to see which other cpus need to flush | |
1921 | * - send an IPI to each non-idle cpu to be flushed | |
1922 | * - wait for all to signal back that they are inactive or we see that | |
1923 | * they are at a safe point (idle). | |
1924 | * - flush the local tlb if active for this pmap | |
1925 | * - return ... the caller will unlock the pmap | |
1926 | */ | |
1927 | ||
1928 | void | |
1929 | pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv) | |
1930 | { | |
1931 | unsigned int cpu; | |
1932 | unsigned int cpu_bit; | |
1933 | cpu_set cpus_to_signal; | |
1934 | unsigned int my_cpu = cpu_number(); | |
1935 | pmap_paddr_t pmap_cr3 = pmap->pm_cr3; | |
1936 | boolean_t flush_self = FALSE; | |
1937 | uint64_t deadline; | |
1938 | boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap)); | |
1939 | ||
1940 | assert((processor_avail_count < 2) || | |
1941 | (ml_get_interrupts_enabled() && get_preemption_level() != 0)); | |
1942 | ||
1943 | /* | |
1944 | * Scan other cpus for matching active or task CR3. | |
1945 | * For idle cpus (with no active map) we mark them invalid but | |
1946 | * don't signal -- they'll check as they go busy. | |
1947 | */ | |
1948 | cpus_to_signal = 0; | |
1949 | ||
1950 | if (pmap_pcid_ncpus) { | |
1951 | pmap_pcid_invalidate_all_cpus(pmap); | |
1952 | __asm__ volatile("mfence":::"memory"); | |
1953 | } | |
1954 | ||
1955 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
1956 | if (!cpu_datap(cpu)->cpu_running) | |
1957 | continue; | |
1958 | uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu); | |
1959 | uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu); | |
1960 | ||
1961 | if ((pmap_cr3 == cpu_task_cr3) || | |
1962 | (pmap_cr3 == cpu_active_cr3) || | |
1963 | (pmap_is_shared)) { | |
1964 | if (cpu == my_cpu) { | |
1965 | flush_self = TRUE; | |
1966 | continue; | |
1967 | } | |
1968 | if (pmap_pcid_ncpus && pmap_is_shared) | |
1969 | cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE; | |
1970 | else | |
1971 | cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE; | |
1972 | __asm__ volatile("mfence":::"memory"); | |
1973 | ||
1974 | /* | |
1975 | * We don't need to signal processors which will flush | |
1976 | * lazily at the idle state or kernel boundary. | |
1977 | * For example, if we're invalidating the kernel pmap, | |
1978 | * processors currently in userspace don't need to flush | |
1979 | * their TLBs until the next time they enter the kernel. | |
1980 | * Alterations to the address space of a task active | |
1981 | * on a remote processor result in a signal, to | |
1982 | * account for copy operations. (There may be room | |
1983 | * for optimization in such cases). | |
1984 | * The order of the loads below with respect | |
1985 | * to the store to the "cpu_tlb_invalid" field above | |
1986 | * is important--hence the barrier. | |
1987 | */ | |
1988 | if (CPU_CR3_IS_ACTIVE(cpu) && | |
1989 | (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) || | |
1990 | pmap->pm_shared || | |
1991 | (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) { | |
1992 | cpus_to_signal |= cpu_bit; | |
1993 | i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC); | |
1994 | } | |
1995 | } | |
1996 | } | |
1997 | ||
1998 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START, | |
1999 | pmap, cpus_to_signal, flush_self, startv, endv); | |
2000 | ||
2001 | /* | |
2002 | * Flush local tlb if required. | |
2003 | * Do this now to overlap with other processors responding. | |
2004 | */ | |
2005 | if (flush_self) { | |
2006 | if (pmap_pcid_ncpus) { | |
2007 | pmap_pcid_validate_cpu(pmap, my_cpu); | |
2008 | if (pmap_is_shared) | |
2009 | tlb_flush_global(); | |
2010 | else | |
2011 | flush_tlb_raw(); | |
2012 | } | |
2013 | else | |
2014 | flush_tlb_raw(); | |
2015 | } | |
2016 | ||
2017 | if (cpus_to_signal) { | |
2018 | cpu_set cpus_to_respond = cpus_to_signal; | |
2019 | ||
2020 | deadline = mach_absolute_time() + LockTimeOut; | |
2021 | /* | |
2022 | * Wait for those other cpus to acknowledge | |
2023 | */ | |
2024 | while (cpus_to_respond != 0) { | |
2025 | long orig_acks = 0; | |
2026 | ||
2027 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2028 | /* Consider checking local/global invalidity | |
2029 | * as appropriate in the PCID case. | |
2030 | */ | |
2031 | if ((cpus_to_respond & cpu_bit) != 0) { | |
2032 | if (!cpu_datap(cpu)->cpu_running || | |
2033 | cpu_datap(cpu)->cpu_tlb_invalid == FALSE || | |
2034 | !CPU_CR3_IS_ACTIVE(cpu)) { | |
2035 | cpus_to_respond &= ~cpu_bit; | |
2036 | } | |
2037 | cpu_pause(); | |
2038 | } | |
2039 | if (cpus_to_respond == 0) | |
2040 | break; | |
2041 | } | |
2042 | if (cpus_to_respond && (mach_absolute_time() > deadline)) { | |
2043 | if (machine_timeout_suspended()) | |
2044 | continue; | |
2045 | pmap_tlb_flush_timeout = TRUE; | |
2046 | orig_acks = NMIPI_acks; | |
2047 | pmap_cpuset_NMIPI(cpus_to_respond); | |
2048 | ||
2049 | panic("TLB invalidation IPI timeout: " | |
2050 | "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx", | |
2051 | cpus_to_respond, orig_acks, NMIPI_acks); | |
2052 | } | |
2053 | } | |
2054 | } | |
2055 | ||
2056 | PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END, | |
2057 | pmap, cpus_to_signal, startv, endv, 0); | |
2058 | } | |
2059 | ||
2060 | void | |
2061 | process_pmap_updates(void) | |
2062 | { | |
2063 | int ccpu = cpu_number(); | |
2064 | pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); | |
2065 | if (pmap_pcid_ncpus) { | |
2066 | pmap_pcid_validate_current(); | |
2067 | if (cpu_datap(ccpu)->cpu_tlb_invalid_global) { | |
2068 | cpu_datap(ccpu)->cpu_tlb_invalid = FALSE; | |
2069 | tlb_flush_global(); | |
2070 | } | |
2071 | else { | |
2072 | cpu_datap(ccpu)->cpu_tlb_invalid_local = FALSE; | |
2073 | flush_tlb_raw(); | |
2074 | } | |
2075 | } | |
2076 | else { | |
2077 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
2078 | flush_tlb_raw(); | |
2079 | } | |
2080 | ||
2081 | __asm__ volatile("mfence"); | |
2082 | } | |
2083 | ||
2084 | void | |
2085 | pmap_update_interrupt(void) | |
2086 | { | |
2087 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START, | |
2088 | 0, 0, 0, 0, 0); | |
2089 | ||
2090 | process_pmap_updates(); | |
2091 | ||
2092 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END, | |
2093 | 0, 0, 0, 0, 0); | |
2094 | } |