]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/x86_64/pmap.c
xnu-1699.22.73.tar.gz
[apple/xnu.git] / osfmk / x86_64 / pmap.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58
59/*
60 * File: pmap.c
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
63 *
64 * Physical Map management code for Intel i386, i486, and i860.
65 *
66 * Manages physical address maps.
67 *
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
74 *
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
80 * requested.
81 *
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
89 */
90
91#include <string.h>
92#include <mach_kdb.h>
93#include <mach_ldebug.h>
94
95#include <libkern/OSAtomic.h>
96
97#include <mach/machine/vm_types.h>
98
99#include <mach/boolean.h>
100#include <kern/thread.h>
101#include <kern/zalloc.h>
102#include <kern/queue.h>
103#include <kern/mach_param.h>
104
105#include <kern/lock.h>
106#include <kern/kalloc.h>
107#include <kern/spl.h>
108
109#include <vm/pmap.h>
110#include <vm/vm_map.h>
111#include <vm/vm_kern.h>
112#include <mach/vm_param.h>
113#include <mach/vm_prot.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116
117#include <mach/machine/vm_param.h>
118#include <machine/thread.h>
119
120#include <kern/misc_protos.h> /* prototyping */
121#include <i386/misc_protos.h>
122#include <i386/i386_lowmem.h>
123#include <x86_64/lowglobals.h>
124
125#include <i386/cpuid.h>
126#include <i386/cpu_data.h>
127#include <i386/cpu_number.h>
128#include <i386/machine_cpu.h>
129#include <i386/seg.h>
130#include <i386/serial_io.h>
131#include <i386/cpu_capabilities.h>
132#include <i386/machine_routines.h>
133#include <i386/proc_reg.h>
134#include <i386/tsc.h>
135#include <i386/pmap_internal.h>
136#include <i386/pmap_pcid.h>
137
138#if MACH_KDB
139#include <ddb/db_command.h>
140#include <ddb/db_output.h>
141#include <ddb/db_sym.h>
142#include <ddb/db_print.h>
143#endif /* MACH_KDB */
144
145#include <vm/vm_protos.h>
146
147#include <i386/mp.h>
148#include <i386/mp_desc.h>
149
150
151#ifdef IWANTTODEBUG
152#undef DEBUG
153#define DEBUG 1
154#define POSTCODE_DELAY 1
155#include <i386/postcode.h>
156#endif /* IWANTTODEBUG */
157
158#ifdef PMAP_DEBUG
159#define DBG(x...) kprintf("DBG: " x)
160#else
161#define DBG(x...)
162#endif
163/* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
164 * in the trampolines for kernel/user boundary TLB coherency.
165 */
166char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1];
167boolean_t pmap_trace = FALSE;
168
169boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */
170
171int nx_enabled = 1; /* enable no-execute protection */
172int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */
173int allow_stack_exec = 0; /* No apps may execute from the stack by default */
174
175const boolean_t cpu_64bit = TRUE; /* Mais oui! */
176
177uint64_t max_preemption_latency_tsc = 0;
178
179pv_hashed_entry_t *pv_hash_table; /* hash lists */
180
181uint32_t npvhash = 0;
182
183pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
184pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
185decl_simple_lock_data(,pv_hashed_free_list_lock)
186decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
187decl_simple_lock_data(,pv_hash_table_lock)
188
189zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */
190
191/*
192 * First and last physical addresses that we maintain any information
193 * for. Initialized to zero so that pmap operations done before
194 * pmap_init won't touch any non-existent structures.
195 */
196boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */
197
198static struct vm_object kptobj_object_store;
199static struct vm_object kpml4obj_object_store;
200static struct vm_object kpdptobj_object_store;
201
202/*
203 * Array of physical page attribites for managed pages.
204 * One byte per physical page.
205 */
206char *pmap_phys_attributes;
207unsigned int last_managed_page = 0;
208
209/*
210 * Amount of virtual memory mapped by one
211 * page-directory entry.
212 */
213
214uint64_t pde_mapped_size = PDE_MAPPED_SIZE;
215
216unsigned pmap_memory_region_count;
217unsigned pmap_memory_region_current;
218
219pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
220
221/*
222 * Other useful macros.
223 */
224#define current_pmap() (vm_map_pmap(current_thread()->map))
225
226struct pmap kernel_pmap_store;
227pmap_t kernel_pmap;
228
229pd_entry_t high_shared_pde;
230pd_entry_t commpage64_pde;
231
232struct zone *pmap_zone; /* zone of pmap structures */
233
234struct zone *pmap_anchor_zone;
235int pmap_debug = 0; /* flag for debugging prints */
236
237unsigned int inuse_ptepages_count = 0;
238long long alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */
239unsigned int bootstrap_wired_pages = 0;
240int pt_fake_zone_index = -1;
241
242extern long NMIPI_acks;
243
244boolean_t kernel_text_ps_4K = TRUE;
245boolean_t wpkernel = TRUE;
246
247extern char end;
248
249static int nkpt;
250
251pt_entry_t *DMAP1, *DMAP2;
252caddr_t DADDR1;
253caddr_t DADDR2;
254
255/*
256 * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain.
257 * properly deals with the anchor.
258 * must be called with the hash locked, does not unlock it
259 */
260
261
262/*
263 * Map memory at initialization. The physical addresses being
264 * mapped are not managed and are never unmapped.
265 *
266 * For now, VM is already on, we only need to map the
267 * specified memory.
268 */
269vm_offset_t
270pmap_map(
271 vm_offset_t virt,
272 vm_map_offset_t start_addr,
273 vm_map_offset_t end_addr,
274 vm_prot_t prot,
275 unsigned int flags)
276{
277 int ps;
278
279 ps = PAGE_SIZE;
280 while (start_addr < end_addr) {
281 pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
282 (ppnum_t) i386_btop(start_addr), prot, flags, FALSE);
283 virt += ps;
284 start_addr += ps;
285 }
286 return(virt);
287}
288
289/*
290 * Back-door routine for mapping kernel VM at initialization.
291 * Useful for mapping memory outside the range
292 * Sets no-cache, A, D.
293 * Otherwise like pmap_map.
294 */
295vm_offset_t
296pmap_map_bd(
297 vm_offset_t virt,
298 vm_map_offset_t start_addr,
299 vm_map_offset_t end_addr,
300 vm_prot_t prot,
301 unsigned int flags)
302{
303 pt_entry_t template;
304 pt_entry_t *pte;
305 spl_t spl;
306 vm_offset_t base = virt;
307 template = pa_to_pte(start_addr)
308 | INTEL_PTE_REF
309 | INTEL_PTE_MOD
310 | INTEL_PTE_WIRED
311 | INTEL_PTE_VALID;
312
313 if (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) {
314 template |= INTEL_PTE_NCACHE;
315 if (!(flags & (VM_MEM_GUARDED | VM_WIMG_USE_DEFAULT)))
316 template |= INTEL_PTE_PTA;
317 }
318 if (prot & VM_PROT_WRITE)
319 template |= INTEL_PTE_WRITE;
320
321 while (start_addr < end_addr) {
322 spl = splhigh();
323 pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt);
324 if (pte == PT_ENTRY_NULL) {
325 panic("pmap_map_bd: Invalid kernel address\n");
326 }
327 pmap_store_pte(pte, template);
328 splx(spl);
329 pte_increment_pa(template);
330 virt += PAGE_SIZE;
331 start_addr += PAGE_SIZE;
332 }
333 (void)base;
334 PMAP_UPDATE_TLBS(kernel_pmap, base, base + end_addr - start_addr);
335 return(virt);
336}
337
338extern char *first_avail;
339extern vm_offset_t virtual_avail, virtual_end;
340extern pmap_paddr_t avail_start, avail_end;
341extern vm_offset_t sHIB;
342extern vm_offset_t eHIB;
343extern vm_offset_t stext;
344extern vm_offset_t etext;
345extern vm_offset_t sdata;
346
347extern void *KPTphys;
348
349void
350pmap_cpu_init(void)
351{
352 /*
353 * Here early in the life of a processor (from cpu_mode_init()).
354 * Ensure global page feature is disabled at this point.
355 */
356
357 set_cr4(get_cr4() &~ CR4_PGE);
358
359 /*
360 * Initialize the per-cpu, TLB-related fields.
361 */
362 current_cpu_datap()->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
363 current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3;
364 current_cpu_datap()->cpu_tlb_invalid = FALSE;
365 current_cpu_datap()->cpu_task_map = TASK_MAP_64BIT;
366 pmap_pcid_configure();
367}
368
369
370
371/*
372 * Bootstrap the system enough to run with virtual memory.
373 * Map the kernel's code and data, and allocate the system page table.
374 * Called with mapping OFF. Page_size must already be set.
375 */
376
377void
378pmap_bootstrap(
379 __unused vm_offset_t load_start,
380 __unused boolean_t IA32e)
381{
382#if NCOPY_WINDOWS > 0
383 vm_offset_t va;
384 int i;
385#endif
386 assert(IA32e);
387
388 vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address
389 * known to VM */
390 /*
391 * The kernel's pmap is statically allocated so we don't
392 * have to use pmap_create, which is unlikely to work
393 * correctly at this part of the boot sequence.
394 */
395
396 kernel_pmap = &kernel_pmap_store;
397 kernel_pmap->ref_count = 1;
398 kernel_pmap->nx_enabled = FALSE;
399 kernel_pmap->pm_task_map = TASK_MAP_64BIT;
400 kernel_pmap->pm_obj = (vm_object_t) NULL;
401 kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD);
402 kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT);
403 kernel_pmap->pm_pml4 = IdlePML4;
404 kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4);
405 pmap_pcid_initialize_kernel(kernel_pmap);
406
407
408
409 current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3;
410
411 nkpt = NKPT;
412 OSAddAtomic(NKPT, &inuse_ptepages_count);
413 OSAddAtomic64(NKPT, &alloc_ptepages_count);
414 bootstrap_wired_pages = NKPT;
415
416 virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail;
417 virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
418
419#if NCOPY_WINDOWS > 0
420 /*
421 * Reserve some special page table entries/VA space for temporary
422 * mapping of pages.
423 */
424#define SYSMAP(c, p, v, n) \
425 v = (c)va; va += ((n)*INTEL_PGBYTES);
426
427 va = virtual_avail;
428
429 for (i=0; i<PMAP_NWINDOWS; i++) {
430#if 1
431 kprintf("trying to do SYSMAP idx %d %p\n", i,
432 current_cpu_datap());
433 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap);
434 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow);
435 kprintf("two stuff %p %p\n",
436 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
437 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR));
438#endif
439 SYSMAP(caddr_t,
440 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
441 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR),
442 1);
443 current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP =
444 &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store);
445 *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
446 }
447
448 /* DMAP user for debugger */
449 SYSMAP(caddr_t, DMAP1, DADDR1, 1);
450 SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */
451
452 virtual_avail = va;
453#endif
454
455 if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) {
456 if (0 != ((npvhash + 1) & npvhash)) {
457 kprintf("invalid hash %d, must be ((2^N)-1), "
458 "using default %d\n", npvhash, NPVHASH);
459 npvhash = NPVHASH;
460 }
461 } else {
462 npvhash = NPVHASH;
463 }
464
465 simple_lock_init(&kernel_pmap->lock, 0);
466 simple_lock_init(&pv_hashed_free_list_lock, 0);
467 simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
468 simple_lock_init(&pv_hash_table_lock,0);
469
470 pmap_cpu_init();
471
472 if (pmap_pcid_ncpus)
473 printf("PMAP: PCID enabled\n");
474
475 boot_args *args = (boot_args *)PE_state.bootArgs;
476 if (args->efiMode == kBootArgsEfiMode32) {
477 printf("EFI32: kernel virtual space limited to 4GB\n");
478 virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32;
479 }
480 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
481 (long)KERNEL_BASE, (long)virtual_end);
482 kprintf("Available physical space from 0x%llx to 0x%llx\n",
483 avail_start, avail_end);
484
485 /*
486 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
487 * in the DEBUG kernel) to force the kernel to switch to its own map
488 * (and cr3) when control is in kernelspace. The kernel's map does not
489 * include (i.e. share) userspace so wild references will cause
490 * a panic. Only copyin and copyout are exempt from this.
491 */
492 (void) PE_parse_boot_argn("-no_shared_cr3",
493 &no_shared_cr3, sizeof (no_shared_cr3));
494 if (no_shared_cr3)
495 kprintf("Kernel not sharing user map\n");
496
497#ifdef PMAP_TRACES
498 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) {
499 kprintf("Kernel traces for pmap operations enabled\n");
500 }
501#endif /* PMAP_TRACES */
502}
503
504void
505pmap_virtual_space(
506 vm_offset_t *startp,
507 vm_offset_t *endp)
508{
509 *startp = virtual_avail;
510 *endp = virtual_end;
511}
512
513/*
514 * Initialize the pmap module.
515 * Called by vm_init, to initialize any structures that the pmap
516 * system needs to map virtual memory.
517 */
518void
519pmap_init(void)
520{
521 long npages;
522 vm_offset_t addr;
523 vm_size_t s, vsize;
524 vm_map_offset_t vaddr;
525 ppnum_t ppn;
526
527
528 kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store;
529 _vm_object_allocate((vm_object_size_t)NPML4PGS, &kpml4obj_object_store);
530
531 kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store;
532 _vm_object_allocate((vm_object_size_t)NPDPTPGS, &kpdptobj_object_store);
533
534 kernel_pmap->pm_obj = &kptobj_object_store;
535 _vm_object_allocate((vm_object_size_t)NPDEPGS, &kptobj_object_store);
536
537 /*
538 * Allocate memory for the pv_head_table and its lock bits,
539 * the modify bit array, and the pte_page table.
540 */
541
542 /*
543 * zero bias all these arrays now instead of off avail_start
544 * so we cover all memory
545 */
546
547 npages = i386_btop(avail_end);
548 s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
549 + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1))
550 + pv_lock_table_size(npages)
551 + pv_hash_lock_table_size((npvhash+1))
552 + npages);
553
554 s = round_page(s);
555 if (kernel_memory_allocate(kernel_map, &addr, s, 0,
556 KMA_KOBJECT | KMA_PERMANENT)
557 != KERN_SUCCESS)
558 panic("pmap_init");
559
560 memset((char *)addr, 0, s);
561
562 vaddr = addr;
563 vsize = s;
564
565#if PV_DEBUG
566 if (0 == npvhash) panic("npvhash not initialized");
567#endif
568
569 /*
570 * Allocate the structures first to preserve word-alignment.
571 */
572 pv_head_table = (pv_rooted_entry_t) addr;
573 addr = (vm_offset_t) (pv_head_table + npages);
574
575 pv_hash_table = (pv_hashed_entry_t *)addr;
576 addr = (vm_offset_t) (pv_hash_table + (npvhash + 1));
577
578 pv_lock_table = (char *) addr;
579 addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
580
581 pv_hash_lock_table = (char *) addr;
582 addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1)));
583
584 pmap_phys_attributes = (char *) addr;
585
586 ppnum_t last_pn = i386_btop(avail_end);
587 unsigned int i;
588 pmap_memory_region_t *pmptr = pmap_memory_regions;
589 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
590 if (pmptr->type != kEfiConventionalMemory)
591 continue;
592 unsigned int pn;
593 for (pn = pmptr->base; pn <= pmptr->end; pn++) {
594 if (pn < last_pn) {
595 pmap_phys_attributes[pn] |= PHYS_MANAGED;
596
597 if (pn > last_managed_page)
598 last_managed_page = pn;
599
600 if (pn < lowest_lo)
601 pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
602 else if (pn >= lowest_hi && pn <= highest_hi)
603 pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
604 }
605 }
606 }
607 while (vsize) {
608 ppn = pmap_find_phys(kernel_pmap, vaddr);
609
610 pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT;
611
612 vaddr += PAGE_SIZE;
613 vsize -= PAGE_SIZE;
614 }
615 /*
616 * Create the zone of physical maps,
617 * and of the physical-to-virtual entries.
618 */
619 s = (vm_size_t) sizeof(struct pmap);
620 pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */
621 zone_change(pmap_zone, Z_NOENCRYPT, TRUE);
622
623 pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors");
624 zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE);
625
626#if ZONE_DEBUG
627 /* The anchor is required to be page aligned. Zone debugging adds
628 * padding which may violate that requirement. Disable it
629 * to avoid assumptions.
630 */
631 zone_debug_disable(pmap_anchor_zone);
632#endif
633
634 s = (vm_size_t) sizeof(struct pv_hashed_entry);
635 pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
636 4096 * 3 /* LCM x86_64*/, "pv_list");
637 zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE);
638
639 /* create pv entries for kernel pages mapped by low level
640 startup code. these have to exist so we can pmap_remove()
641 e.g. kext pages from the middle of our addr space */
642
643 vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS;
644 for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) {
645 pv_rooted_entry_t pv_e;
646
647 pv_e = pai_to_pvh(ppn);
648 pv_e->va = vaddr;
649 vaddr += PAGE_SIZE;
650 pv_e->pmap = kernel_pmap;
651 queue_init(&pv_e->qlink);
652 }
653 pmap_initialized = TRUE;
654
655 max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t);
656
657 /*
658 * Ensure the kernel's PML4 entry exists for the basement
659 * before this is shared with any user.
660 */
661 pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT);
662}
663
664/*
665 * Called once VM is fully initialized so that we can release unused
666 * sections of low memory to the general pool.
667 * Also complete the set-up of identity-mapped sections of the kernel:
668 * 1) write-protect kernel text
669 * 2) map kernel text using large pages if possible
670 * 3) read and write-protect page zero (for K32)
671 * 4) map the global page at the appropriate virtual address.
672 *
673 * Use of large pages
674 * ------------------
675 * To effectively map and write-protect all kernel text pages, the text
676 * must be 2M-aligned at the base, and the data section above must also be
677 * 2M-aligned. That is, there's padding below and above. This is achieved
678 * through linker directives. Large pages are used only if this alignment
679 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
680 * memory layout is:
681 *
682 * : :
683 * | __DATA |
684 * sdata: ================== 2Meg
685 * | |
686 * | zero-padding |
687 * | |
688 * etext: ------------------
689 * | |
690 * : :
691 * | |
692 * | __TEXT |
693 * | |
694 * : :
695 * | |
696 * stext: ================== 2Meg
697 * | |
698 * | zero-padding |
699 * | |
700 * eHIB: ------------------
701 * | __HIB |
702 * : :
703 *
704 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
705 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
706 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
707 * The now unused level-1 PTE pages are also freed.
708 */
709extern uint32_t pmap_reserved_ranges;
710void
711pmap_lowmem_finalize(void)
712{
713 spl_t spl;
714 int i;
715
716 /* Check the kernel is linked at the expected base address */
717 if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) !=
718 I386_KERNEL_IMAGE_BASE_PAGE)
719 panic("pmap_lowmem_finalize() unexpected kernel base address");
720
721 /*
722 * Update wired memory statistics for early boot pages
723 */
724 PMAP_ZINFO_PALLOC(bootstrap_wired_pages * PAGE_SIZE);
725
726 /*
727 * Free all pages in pmap regions below the base:
728 * rdar://6332712
729 * We can't free all the pages to VM that EFI reports available.
730 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
731 * There's also a size miscalculation here: pend is one page less
732 * than it should be but this is not fixed to be backwards
733 * compatible.
734 * Due to this current EFI limitation, we take only the first
735 * entry in the memory region table. However, the loop is retained
736 * (with the intended termination criteria commented out) in the
737 * hope that some day we can free all low-memory ranges.
738 */
739 for (i = 0;
740// pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
741 i < 1 && (pmap_reserved_ranges == 0);
742 i++) {
743 vm_offset_t pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base);
744 vm_offset_t pend = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end);
745// vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
746
747 DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
748 (void *) ml_static_ptovirt(pbase),
749 (void *) (pend - pbase), i);
750 ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
751 }
752
753 /*
754 * If text and data are both 2MB-aligned,
755 * we can map text with large-pages,
756 * unless the -kernel_text_ps_4K boot-arg overrides.
757 */
758 if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
759 kprintf("Kernel text is 2MB aligned");
760 kernel_text_ps_4K = FALSE;
761 if (PE_parse_boot_argn("-kernel_text_ps_4K",
762 &kernel_text_ps_4K,
763 sizeof (kernel_text_ps_4K)))
764 kprintf(" but will be mapped with 4K pages\n");
765 else
766 kprintf(" and will be mapped with 2M pages\n");
767 }
768
769 (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
770 if (wpkernel)
771 kprintf("Kernel text %p-%p to be write-protected\n",
772 (void *) stext, (void *) etext);
773
774 spl = splhigh();
775
776 /*
777 * Scan over text if mappings are to be changed:
778 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
779 * - Change to large-pages if possible and not overriden.
780 */
781 if (kernel_text_ps_4K && wpkernel) {
782 vm_offset_t myva;
783 for (myva = stext; myva < etext; myva += PAGE_SIZE) {
784 pt_entry_t *ptep;
785
786 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
787 if (ptep)
788 pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
789 }
790 }
791
792 if (!kernel_text_ps_4K) {
793 vm_offset_t myva;
794
795 /*
796 * Release zero-filled page padding used for 2M-alignment.
797 */
798 DBG("ml_static_mfree(%p,%p) for padding below text\n",
799 (void *) eHIB, (void *) (stext - eHIB));
800 ml_static_mfree(eHIB, stext - eHIB);
801 DBG("ml_static_mfree(%p,%p) for padding above text\n",
802 (void *) etext, (void *) (sdata - etext));
803 ml_static_mfree(etext, sdata - etext);
804
805 /*
806 * Coalesce text pages into large pages.
807 */
808 for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
809 pt_entry_t *ptep;
810 vm_offset_t pte_phys;
811 pt_entry_t *pdep;
812 pt_entry_t pde;
813
814 pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
815 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
816 DBG("myva: %p pdep: %p ptep: %p\n",
817 (void *) myva, (void *) pdep, (void *) ptep);
818 if ((*ptep & INTEL_PTE_VALID) == 0)
819 continue;
820 pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
821 pde = *pdep & PTMASK; /* page attributes from pde */
822 pde |= INTEL_PTE_PS; /* make it a 2M entry */
823 pde |= pte_phys; /* take page frame from pte */
824
825 if (wpkernel)
826 pde &= ~INTEL_PTE_RW;
827 DBG("pmap_store_pte(%p,0x%llx)\n",
828 (void *)pdep, pde);
829 pmap_store_pte(pdep, pde);
830
831 /*
832 * Free the now-unused level-1 pte.
833 * Note: ptep is a virtual address to the pte in the
834 * recursive map. We can't use this address to free
835 * the page. Instead we need to compute its address
836 * in the Idle PTEs in "low memory".
837 */
838 vm_offset_t vm_ptep = (vm_offset_t) KPTphys
839 + (pte_phys >> PTPGSHIFT);
840 DBG("ml_static_mfree(%p,0x%x) for pte\n",
841 (void *) vm_ptep, PAGE_SIZE);
842 ml_static_mfree(vm_ptep, PAGE_SIZE);
843 }
844
845 /* Change variable read by sysctl machdep.pmap */
846 pmap_kernel_text_ps = I386_LPGBYTES;
847 }
848
849 /* map lowmem global page into fixed addr */
850 pt_entry_t *pte = NULL;
851 if (0 == (pte = pmap_pte(kernel_pmap,
852 VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000)))
853 panic("lowmem pte");
854 /* make sure it is defined on page boundary */
855 assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
856 pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
857 | INTEL_PTE_REF
858 | INTEL_PTE_MOD
859 | INTEL_PTE_WIRED
860 | INTEL_PTE_VALID
861 | INTEL_PTE_RW);
862 splx(spl);
863 if (pmap_pcid_ncpus)
864 tlb_flush_global();
865 else
866 flush_tlb_raw();
867}
868
869/*
870 * this function is only used for debugging fron the vm layer
871 */
872boolean_t
873pmap_verify_free(
874 ppnum_t pn)
875{
876 pv_rooted_entry_t pv_h;
877 int pai;
878 boolean_t result;
879
880 assert(pn != vm_page_fictitious_addr);
881
882 if (!pmap_initialized)
883 return(TRUE);
884
885 if (pn == vm_page_guard_addr)
886 return TRUE;
887
888 pai = ppn_to_pai(pn);
889 if (!IS_MANAGED_PAGE(pai))
890 return(FALSE);
891 pv_h = pai_to_pvh(pn);
892 result = (pv_h->pmap == PMAP_NULL);
893 return(result);
894}
895
896boolean_t
897pmap_is_empty(
898 pmap_t pmap,
899 vm_map_offset_t va_start,
900 vm_map_offset_t va_end)
901{
902 vm_map_offset_t offset;
903 ppnum_t phys_page;
904
905 if (pmap == PMAP_NULL) {
906 return TRUE;
907 }
908
909 /*
910 * Check the resident page count
911 * - if it's zero, the pmap is completely empty.
912 * This short-circuit test prevents a virtual address scan which is
913 * painfully slow for 64-bit spaces.
914 * This assumes the count is correct
915 * .. the debug kernel ought to be checking perhaps by page table walk.
916 */
917 if (pmap->stats.resident_count == 0)
918 return TRUE;
919
920 for (offset = va_start;
921 offset < va_end;
922 offset += PAGE_SIZE_64) {
923 phys_page = pmap_find_phys(pmap, offset);
924 if (phys_page) {
925 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
926 "page %d at 0x%llx\n",
927 pmap, va_start, va_end, phys_page, offset);
928 return FALSE;
929 }
930 }
931
932 return TRUE;
933}
934
935
936/*
937 * Create and return a physical map.
938 *
939 * If the size specified for the map
940 * is zero, the map is an actual physical
941 * map, and may be referenced by the
942 * hardware.
943 *
944 * If the size specified is non-zero,
945 * the map will be used in software only, and
946 * is bounded by that size.
947 */
948pmap_t
949pmap_create(
950 vm_map_size_t sz,
951 boolean_t is_64bit)
952{
953 pmap_t p;
954 vm_size_t size;
955 pml4_entry_t *pml4;
956 pml4_entry_t *kpml4;
957
958 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
959 (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0);
960
961 size = (vm_size_t) sz;
962
963 /*
964 * A software use-only map doesn't even need a map.
965 */
966
967 if (size != 0) {
968 return(PMAP_NULL);
969 }
970
971 p = (pmap_t) zalloc(pmap_zone);
972 if (PMAP_NULL == p)
973 panic("pmap_create zalloc");
974 /* Zero all fields */
975 bzero(p, sizeof(*p));
976 /* init counts now since we'll be bumping some */
977 simple_lock_init(&p->lock, 0);
978 p->stats.resident_count = 0;
979 p->stats.resident_max = 0;
980 p->stats.wired_count = 0;
981 p->ref_count = 1;
982 p->nx_enabled = 1;
983 p->pm_shared = FALSE;
984
985 p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;;
986 if (pmap_pcid_ncpus)
987 pmap_pcid_initialize(p);
988 p->pm_pml4 = zalloc(pmap_anchor_zone);
989
990 pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0);
991
992 memset((char *)p->pm_pml4, 0, PAGE_SIZE);
993
994 p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
995
996 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
997
998 p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS));
999 if (NULL == p->pm_obj_pml4)
1000 panic("pmap_create pdpt obj");
1001
1002 p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS));
1003 if (NULL == p->pm_obj_pdpt)
1004 panic("pmap_create pdpt obj");
1005
1006 p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS));
1007 if (NULL == p->pm_obj)
1008 panic("pmap_create pte obj");
1009
1010 /* All pmaps share the kernel's pml4 */
1011 pml4 = pmap64_pml4(p, 0ULL);
1012 kpml4 = kernel_pmap->pm_pml4;
1013 pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX];
1014 pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX];
1015 pml4[KERNEL_PHYSMAP_INDEX] = kpml4[KERNEL_PHYSMAP_INDEX];
1016
1017 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1018 p, is_64bit, 0, 0, 0);
1019
1020 return(p);
1021}
1022
1023/*
1024 * Retire the given physical map from service.
1025 * Should only be called if the map contains
1026 * no valid mappings.
1027 */
1028
1029void
1030pmap_destroy(pmap_t p)
1031{
1032 int c;
1033
1034 if (p == PMAP_NULL)
1035 return;
1036
1037 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START,
1038 p, 0, 0, 0, 0);
1039
1040 PMAP_LOCK(p);
1041
1042 c = --p->ref_count;
1043
1044 pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE);
1045
1046 if (c == 0) {
1047 /*
1048 * If some cpu is not using the physical pmap pointer that it
1049 * is supposed to be (see set_dirbase), we might be using the
1050 * pmap that is being destroyed! Make sure we are
1051 * physically on the right pmap:
1052 */
1053 PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL);
1054 }
1055 if (pmap_pcid_ncpus)
1056 pmap_destroy_pcid_sync(p);
1057 PMAP_UNLOCK(p);
1058
1059 if (c != 0) {
1060 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1061 p, 1, 0, 0, 0);
1062 pmap_assert(p == kernel_pmap);
1063 return; /* still in use */
1064 }
1065
1066 /*
1067 * Free the memory maps, then the
1068 * pmap structure.
1069 */
1070 int inuse_ptepages = 0;
1071
1072 zfree(pmap_anchor_zone, p->pm_pml4);
1073
1074 inuse_ptepages += p->pm_obj_pml4->resident_page_count;
1075 vm_object_deallocate(p->pm_obj_pml4);
1076
1077 inuse_ptepages += p->pm_obj_pdpt->resident_page_count;
1078 vm_object_deallocate(p->pm_obj_pdpt);
1079
1080 inuse_ptepages += p->pm_obj->resident_page_count;
1081 vm_object_deallocate(p->pm_obj);
1082
1083 OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count);
1084 PMAP_ZINFO_PFREE(inuse_ptepages * PAGE_SIZE);
1085
1086 zfree(pmap_zone, p);
1087
1088 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1089 0, 0, 0, 0, 0);
1090}
1091
1092/*
1093 * Add a reference to the specified pmap.
1094 */
1095
1096void
1097pmap_reference(pmap_t p)
1098{
1099 if (p != PMAP_NULL) {
1100 PMAP_LOCK(p);
1101 p->ref_count++;
1102 PMAP_UNLOCK(p);;
1103 }
1104}
1105
1106/*
1107 * Remove phys addr if mapped in specified map
1108 *
1109 */
1110void
1111pmap_remove_some_phys(
1112 __unused pmap_t map,
1113 __unused ppnum_t pn)
1114{
1115
1116/* Implement to support working set code */
1117
1118}
1119
1120
1121/*
1122 * Set the physical protection on the
1123 * specified range of this map as requested.
1124 * Will not increase permissions.
1125 */
1126void
1127pmap_protect(
1128 pmap_t map,
1129 vm_map_offset_t sva,
1130 vm_map_offset_t eva,
1131 vm_prot_t prot)
1132{
1133 pt_entry_t *pde;
1134 pt_entry_t *spte, *epte;
1135 vm_map_offset_t lva;
1136 vm_map_offset_t orig_sva;
1137 boolean_t set_NX;
1138 int num_found = 0;
1139
1140 pmap_intr_assert();
1141
1142 if (map == PMAP_NULL)
1143 return;
1144
1145 if (prot == VM_PROT_NONE) {
1146 pmap_remove(map, sva, eva);
1147 return;
1148 }
1149 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
1150 map,
1151 (uint32_t) (sva >> 32), (uint32_t) sva,
1152 (uint32_t) (eva >> 32), (uint32_t) eva);
1153
1154 if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled)
1155 set_NX = FALSE;
1156 else
1157 set_NX = TRUE;
1158
1159 PMAP_LOCK(map);
1160
1161 orig_sva = sva;
1162 while (sva < eva) {
1163 lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1);
1164 if (lva > eva)
1165 lva = eva;
1166 pde = pmap_pde(map, sva);
1167 if (pde && (*pde & INTEL_PTE_VALID)) {
1168 if (*pde & INTEL_PTE_PS) {
1169 /* superpage */
1170 spte = pde;
1171 epte = spte+1; /* excluded */
1172 } else {
1173 spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1)));
1174 spte = &spte[ptenum(sva)];
1175 epte = &spte[intel_btop(lva - sva)];
1176 }
1177
1178 for (; spte < epte; spte++) {
1179 if (!(*spte & INTEL_PTE_VALID))
1180 continue;
1181
1182 if (prot & VM_PROT_WRITE)
1183 pmap_update_pte(spte, *spte,
1184 *spte | INTEL_PTE_WRITE);
1185 else
1186 pmap_update_pte(spte, *spte,
1187 *spte & ~INTEL_PTE_WRITE);
1188
1189 if (set_NX)
1190 pmap_update_pte(spte, *spte,
1191 *spte | INTEL_PTE_NX);
1192 else
1193 pmap_update_pte(spte, *spte,
1194 *spte & ~INTEL_PTE_NX);
1195
1196 num_found++;
1197 }
1198 }
1199 sva = lva;
1200 }
1201 if (num_found)
1202 PMAP_UPDATE_TLBS(map, orig_sva, eva);
1203
1204 PMAP_UNLOCK(map);
1205
1206 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
1207 0, 0, 0, 0, 0);
1208
1209}
1210
1211/* Map a (possibly) autogenned block */
1212void
1213pmap_map_block(
1214 pmap_t pmap,
1215 addr64_t va,
1216 ppnum_t pa,
1217 uint32_t size,
1218 vm_prot_t prot,
1219 int attr,
1220 __unused unsigned int flags)
1221{
1222 uint32_t page;
1223 int cur_page_size;
1224
1225 if (attr & VM_MEM_SUPERPAGE)
1226 cur_page_size = SUPERPAGE_SIZE;
1227 else
1228 cur_page_size = PAGE_SIZE;
1229
1230 for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) {
1231 pmap_enter(pmap, va, pa, prot, attr, TRUE);
1232 va += cur_page_size;
1233 pa+=cur_page_size/PAGE_SIZE;
1234 }
1235}
1236
1237
1238void
1239pmap_expand_pml4(
1240 pmap_t map,
1241 vm_map_offset_t vaddr)
1242{
1243 vm_page_t m;
1244 pmap_paddr_t pa;
1245 uint64_t i;
1246 ppnum_t pn;
1247 pml4_entry_t *pml4p;
1248
1249 DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr);
1250
1251 /*
1252 * Allocate a VM page for the pml4 page
1253 */
1254 while ((m = vm_page_grab()) == VM_PAGE_NULL)
1255 VM_PAGE_WAIT();
1256
1257 /*
1258 * put the page into the pmap's obj list so it
1259 * can be found later.
1260 */
1261 pn = m->phys_page;
1262 pa = i386_ptob(pn);
1263 i = pml4idx(map, vaddr);
1264
1265 /*
1266 * Zero the page.
1267 */
1268 pmap_zero_page(pn);
1269
1270 vm_page_lockspin_queues();
1271 vm_page_wire(m);
1272 vm_page_unlock_queues();
1273
1274 OSAddAtomic(1, &inuse_ptepages_count);
1275 OSAddAtomic64(1, &alloc_ptepages_count);
1276 PMAP_ZINFO_PALLOC(PAGE_SIZE);
1277
1278 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1279 vm_object_lock(map->pm_obj_pml4);
1280
1281 PMAP_LOCK(map);
1282 /*
1283 * See if someone else expanded us first
1284 */
1285 if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) {
1286 PMAP_UNLOCK(map);
1287 vm_object_unlock(map->pm_obj_pml4);
1288
1289 VM_PAGE_FREE(m);
1290
1291 OSAddAtomic(-1, &inuse_ptepages_count);
1292 PMAP_ZINFO_PFREE(PAGE_SIZE);
1293 return;
1294 }
1295
1296#if 0 /* DEBUG */
1297 if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) {
1298 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1299 map, map->pm_obj_pml4, vaddr, i);
1300 }
1301#endif
1302 vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i);
1303 vm_object_unlock(map->pm_obj_pml4);
1304
1305 /*
1306 * Set the page directory entry for this page table.
1307 */
1308 pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
1309
1310 pmap_store_pte(pml4p, pa_to_pte(pa)
1311 | INTEL_PTE_VALID
1312 | INTEL_PTE_USER
1313 | INTEL_PTE_WRITE);
1314
1315 PMAP_UNLOCK(map);
1316
1317 return;
1318}
1319
1320void
1321pmap_expand_pdpt(
1322 pmap_t map,
1323 vm_map_offset_t vaddr)
1324{
1325 vm_page_t m;
1326 pmap_paddr_t pa;
1327 uint64_t i;
1328 ppnum_t pn;
1329 pdpt_entry_t *pdptp;
1330
1331 DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr);
1332
1333 while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
1334 pmap_expand_pml4(map, vaddr);
1335 }
1336
1337 /*
1338 * Allocate a VM page for the pdpt page
1339 */
1340 while ((m = vm_page_grab()) == VM_PAGE_NULL)
1341 VM_PAGE_WAIT();
1342
1343 /*
1344 * put the page into the pmap's obj list so it
1345 * can be found later.
1346 */
1347 pn = m->phys_page;
1348 pa = i386_ptob(pn);
1349 i = pdptidx(map, vaddr);
1350
1351 /*
1352 * Zero the page.
1353 */
1354 pmap_zero_page(pn);
1355
1356 vm_page_lockspin_queues();
1357 vm_page_wire(m);
1358 vm_page_unlock_queues();
1359
1360 OSAddAtomic(1, &inuse_ptepages_count);
1361 OSAddAtomic64(1, &alloc_ptepages_count);
1362 PMAP_ZINFO_PALLOC(PAGE_SIZE);
1363
1364 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1365 vm_object_lock(map->pm_obj_pdpt);
1366
1367 PMAP_LOCK(map);
1368 /*
1369 * See if someone else expanded us first
1370 */
1371 if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) {
1372 PMAP_UNLOCK(map);
1373 vm_object_unlock(map->pm_obj_pdpt);
1374
1375 VM_PAGE_FREE(m);
1376
1377 OSAddAtomic(-1, &inuse_ptepages_count);
1378 PMAP_ZINFO_PFREE(PAGE_SIZE);
1379 return;
1380 }
1381
1382#if 0 /* DEBUG */
1383 if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) {
1384 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1385 map, map->pm_obj_pdpt, vaddr, i);
1386 }
1387#endif
1388 vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i);
1389 vm_object_unlock(map->pm_obj_pdpt);
1390
1391 /*
1392 * Set the page directory entry for this page table.
1393 */
1394 pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
1395
1396 pmap_store_pte(pdptp, pa_to_pte(pa)
1397 | INTEL_PTE_VALID
1398 | INTEL_PTE_USER
1399 | INTEL_PTE_WRITE);
1400
1401 PMAP_UNLOCK(map);
1402
1403 return;
1404
1405}
1406
1407
1408
1409/*
1410 * Routine: pmap_expand
1411 *
1412 * Expands a pmap to be able to map the specified virtual address.
1413 *
1414 * Allocates new virtual memory for the P0 or P1 portion of the
1415 * pmap, then re-maps the physical pages that were in the old
1416 * pmap to be in the new pmap.
1417 *
1418 * Must be called with the pmap system and the pmap unlocked,
1419 * since these must be unlocked to use vm_allocate or vm_deallocate.
1420 * Thus it must be called in a loop that checks whether the map
1421 * has been expanded enough.
1422 * (We won't loop forever, since page tables aren't shrunk.)
1423 */
1424void
1425pmap_expand(
1426 pmap_t map,
1427 vm_map_offset_t vaddr)
1428{
1429 pt_entry_t *pdp;
1430 register vm_page_t m;
1431 register pmap_paddr_t pa;
1432 uint64_t i;
1433 ppnum_t pn;
1434
1435
1436 /*
1437 * For the kernel, the virtual address must be in or above the basement
1438 * which is for kexts and is in the 512GB immediately below the kernel..
1439 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1440 */
1441 if (map == kernel_pmap &&
1442 !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS))
1443 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr);
1444
1445
1446 while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
1447 /* need room for another pde entry */
1448 pmap_expand_pdpt(map, vaddr);
1449 }
1450
1451 /*
1452 * Allocate a VM page for the pde entries.
1453 */
1454 while ((m = vm_page_grab()) == VM_PAGE_NULL)
1455 VM_PAGE_WAIT();
1456
1457 /*
1458 * put the page into the pmap's obj list so it
1459 * can be found later.
1460 */
1461 pn = m->phys_page;
1462 pa = i386_ptob(pn);
1463 i = pdeidx(map, vaddr);
1464
1465 /*
1466 * Zero the page.
1467 */
1468 pmap_zero_page(pn);
1469
1470 vm_page_lockspin_queues();
1471 vm_page_wire(m);
1472 vm_page_unlock_queues();
1473
1474 OSAddAtomic(1, &inuse_ptepages_count);
1475 OSAddAtomic64(1, &alloc_ptepages_count);
1476 PMAP_ZINFO_PALLOC(PAGE_SIZE);
1477
1478 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1479 vm_object_lock(map->pm_obj);
1480
1481 PMAP_LOCK(map);
1482
1483 /*
1484 * See if someone else expanded us first
1485 */
1486 if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) {
1487 PMAP_UNLOCK(map);
1488 vm_object_unlock(map->pm_obj);
1489
1490 VM_PAGE_FREE(m);
1491
1492 OSAddAtomic(-1, &inuse_ptepages_count);
1493 PMAP_ZINFO_PFREE(PAGE_SIZE);
1494 return;
1495 }
1496
1497#if 0 /* DEBUG */
1498 if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) {
1499 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1500 map, map->pm_obj, vaddr, i);
1501 }
1502#endif
1503 vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i);
1504 vm_object_unlock(map->pm_obj);
1505
1506 /*
1507 * Set the page directory entry for this page table.
1508 */
1509 pdp = pmap_pde(map, vaddr);
1510 pmap_store_pte(pdp, pa_to_pte(pa)
1511 | INTEL_PTE_VALID
1512 | INTEL_PTE_USER
1513 | INTEL_PTE_WRITE);
1514
1515 PMAP_UNLOCK(map);
1516
1517 return;
1518}
1519
1520/* On K64 machines with more than 32GB of memory, pmap_steal_memory
1521 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1522 * function allocates all the page tables using memory from the same pool
1523 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1524 * isn't available yet). */
1525void
1526pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr)
1527{
1528 ppnum_t pn;
1529 pt_entry_t *pte;
1530
1531 PMAP_LOCK(pmap);
1532
1533 if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) {
1534 if (!pmap_next_page_hi(&pn))
1535 panic("pmap_pre_expand");
1536
1537 pmap_zero_page(pn);
1538
1539 pte = pmap64_pml4(pmap, vaddr);
1540
1541 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1542 | INTEL_PTE_VALID
1543 | INTEL_PTE_USER
1544 | INTEL_PTE_WRITE);
1545 }
1546
1547 if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) {
1548 if (!pmap_next_page_hi(&pn))
1549 panic("pmap_pre_expand");
1550
1551 pmap_zero_page(pn);
1552
1553 pte = pmap64_pdpt(pmap, vaddr);
1554
1555 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1556 | INTEL_PTE_VALID
1557 | INTEL_PTE_USER
1558 | INTEL_PTE_WRITE);
1559 }
1560
1561 if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) {
1562 if (!pmap_next_page_hi(&pn))
1563 panic("pmap_pre_expand");
1564
1565 pmap_zero_page(pn);
1566
1567 pte = pmap64_pde(pmap, vaddr);
1568
1569 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1570 | INTEL_PTE_VALID
1571 | INTEL_PTE_USER
1572 | INTEL_PTE_WRITE);
1573 }
1574
1575 PMAP_UNLOCK(pmap);
1576}
1577
1578/*
1579 * pmap_sync_page_data_phys(ppnum_t pa)
1580 *
1581 * Invalidates all of the instruction cache on a physical page and
1582 * pushes any dirty data from the data cache for the same physical page
1583 * Not required in i386.
1584 */
1585void
1586pmap_sync_page_data_phys(__unused ppnum_t pa)
1587{
1588 return;
1589}
1590
1591/*
1592 * pmap_sync_page_attributes_phys(ppnum_t pa)
1593 *
1594 * Write back and invalidate all cachelines on a physical page.
1595 */
1596void
1597pmap_sync_page_attributes_phys(ppnum_t pa)
1598{
1599 cache_flush_page_phys(pa);
1600}
1601
1602
1603
1604#ifdef CURRENTLY_UNUSED_AND_UNTESTED
1605
1606int collect_ref;
1607int collect_unref;
1608
1609/*
1610 * Routine: pmap_collect
1611 * Function:
1612 * Garbage collects the physical map system for
1613 * pages which are no longer used.
1614 * Success need not be guaranteed -- that is, there
1615 * may well be pages which are not referenced, but
1616 * others may be collected.
1617 * Usage:
1618 * Called by the pageout daemon when pages are scarce.
1619 */
1620void
1621pmap_collect(
1622 pmap_t p)
1623{
1624 register pt_entry_t *pdp, *ptp;
1625 pt_entry_t *eptp;
1626 int wired;
1627
1628 if (p == PMAP_NULL)
1629 return;
1630
1631 if (p == kernel_pmap)
1632 return;
1633
1634 /*
1635 * Garbage collect map.
1636 */
1637 PMAP_LOCK(p);
1638
1639 for (pdp = (pt_entry_t *)p->dirbase;
1640 pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
1641 pdp++)
1642 {
1643 if (*pdp & INTEL_PTE_VALID) {
1644 if(*pdp & INTEL_PTE_REF) {
1645 pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF);
1646 collect_ref++;
1647 } else {
1648 collect_unref++;
1649 ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
1650 eptp = ptp + NPTEPG;
1651
1652 /*
1653 * If the pte page has any wired mappings, we cannot
1654 * free it.
1655 */
1656 wired = 0;
1657 {
1658 register pt_entry_t *ptep;
1659 for (ptep = ptp; ptep < eptp; ptep++) {
1660 if (iswired(*ptep)) {
1661 wired = 1;
1662 break;
1663 }
1664 }
1665 }
1666 if (!wired) {
1667 /*
1668 * Remove the virtual addresses mapped by this pte page.
1669 */
1670 pmap_remove_range(p,
1671 pdetova(pdp - (pt_entry_t *)p->dirbase),
1672 ptp,
1673 eptp);
1674
1675 /*
1676 * Invalidate the page directory pointer.
1677 */
1678 pmap_store_pte(pdp, 0x0);
1679
1680 PMAP_UNLOCK(p);
1681
1682 /*
1683 * And free the pte page itself.
1684 */
1685 {
1686 register vm_page_t m;
1687
1688 vm_object_lock(p->pm_obj);
1689
1690 m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]));
1691 if (m == VM_PAGE_NULL)
1692 panic("pmap_collect: pte page not in object");
1693
1694 vm_object_unlock(p->pm_obj);
1695
1696 VM_PAGE_FREE(m);
1697
1698 OSAddAtomic(-1, &inuse_ptepages_count);
1699 PMAP_ZINFO_PFREE(PAGE_SIZE);
1700 }
1701
1702 PMAP_LOCK(p);
1703 }
1704 }
1705 }
1706 }
1707
1708 PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
1709 PMAP_UNLOCK(p);
1710 return;
1711
1712}
1713#endif
1714
1715
1716void
1717pmap_copy_page(ppnum_t src, ppnum_t dst)
1718{
1719 bcopy_phys((addr64_t)i386_ptob(src),
1720 (addr64_t)i386_ptob(dst),
1721 PAGE_SIZE);
1722}
1723
1724
1725/*
1726 * Routine: pmap_pageable
1727 * Function:
1728 * Make the specified pages (by pmap, offset)
1729 * pageable (or not) as requested.
1730 *
1731 * A page which is not pageable may not take
1732 * a fault; therefore, its page table entry
1733 * must remain valid for the duration.
1734 *
1735 * This routine is merely advisory; pmap_enter
1736 * will specify that these pages are to be wired
1737 * down (or not) as appropriate.
1738 */
1739void
1740pmap_pageable(
1741 __unused pmap_t pmap,
1742 __unused vm_map_offset_t start_addr,
1743 __unused vm_map_offset_t end_addr,
1744 __unused boolean_t pageable)
1745{
1746#ifdef lint
1747 pmap++; start_addr++; end_addr++; pageable++;
1748#endif /* lint */
1749}
1750
1751
1752void
1753invalidate_icache(__unused vm_offset_t addr,
1754 __unused unsigned cnt,
1755 __unused int phys)
1756{
1757 return;
1758}
1759
1760void
1761flush_dcache(__unused vm_offset_t addr,
1762 __unused unsigned count,
1763 __unused int phys)
1764{
1765 return;
1766}
1767
1768#if CONFIG_DTRACE
1769/*
1770 * Constrain DTrace copyin/copyout actions
1771 */
1772extern kern_return_t dtrace_copyio_preflight(addr64_t);
1773extern kern_return_t dtrace_copyio_postflight(addr64_t);
1774
1775kern_return_t dtrace_copyio_preflight(__unused addr64_t va)
1776{
1777 thread_t thread = current_thread();
1778 uint64_t ccr3;
1779
1780 if (current_map() == kernel_map)
1781 return KERN_FAILURE;
1782 else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE))
1783 return KERN_FAILURE;
1784 else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3))
1785 return KERN_FAILURE;
1786 else if (thread->machine.specFlags & CopyIOActive)
1787 return KERN_FAILURE;
1788 else
1789 return KERN_SUCCESS;
1790}
1791
1792kern_return_t dtrace_copyio_postflight(__unused addr64_t va)
1793{
1794 return KERN_SUCCESS;
1795}
1796#endif /* CONFIG_DTRACE */
1797
1798#include <mach_vm_debug.h>
1799#if MACH_VM_DEBUG
1800#include <vm/vm_debug.h>
1801
1802int
1803pmap_list_resident_pages(
1804 __unused pmap_t pmap,
1805 __unused vm_offset_t *listp,
1806 __unused int space)
1807{
1808 return 0;
1809}
1810#endif /* MACH_VM_DEBUG */
1811
1812
1813
1814/* temporary workaround */
1815boolean_t
1816coredumpok(__unused vm_map_t map, __unused vm_offset_t va)
1817{
1818#if 0
1819 pt_entry_t *ptep;
1820
1821 ptep = pmap_pte(map->pmap, va);
1822 if (0 == ptep)
1823 return FALSE;
1824 return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED));
1825#else
1826 return TRUE;
1827#endif
1828}
1829
1830
1831boolean_t
1832phys_page_exists(ppnum_t pn)
1833{
1834 assert(pn != vm_page_fictitious_addr);
1835
1836 if (!pmap_initialized)
1837 return TRUE;
1838
1839 if (pn == vm_page_guard_addr)
1840 return FALSE;
1841
1842 if (!IS_MANAGED_PAGE(ppn_to_pai(pn)))
1843 return FALSE;
1844
1845 return TRUE;
1846}
1847
1848
1849
1850void
1851pmap_switch(pmap_t tpmap)
1852{
1853 spl_t s;
1854
1855 s = splhigh(); /* Make sure interruptions are disabled */
1856 set_dirbase(tpmap, current_thread());
1857 splx(s);
1858}
1859
1860
1861/*
1862 * disable no-execute capability on
1863 * the specified pmap
1864 */
1865void
1866pmap_disable_NX(pmap_t pmap)
1867{
1868 pmap->nx_enabled = 0;
1869}
1870
1871void
1872pt_fake_zone_init(int zone_index)
1873{
1874 pt_fake_zone_index = zone_index;
1875}
1876
1877void
1878pt_fake_zone_info(
1879 int *count,
1880 vm_size_t *cur_size,
1881 vm_size_t *max_size,
1882 vm_size_t *elem_size,
1883 vm_size_t *alloc_size,
1884 uint64_t *sum_size,
1885 int *collectable,
1886 int *exhaustable,
1887 int *caller_acct)
1888{
1889 *count = inuse_ptepages_count;
1890 *cur_size = PAGE_SIZE * inuse_ptepages_count;
1891 *max_size = PAGE_SIZE * (inuse_ptepages_count +
1892 vm_page_inactive_count +
1893 vm_page_active_count +
1894 vm_page_free_count);
1895 *elem_size = PAGE_SIZE;
1896 *alloc_size = PAGE_SIZE;
1897 *sum_size = alloc_ptepages_count * PAGE_SIZE;
1898
1899 *collectable = 1;
1900 *exhaustable = 0;
1901 *caller_acct = 1;
1902}
1903
1904static inline void
1905pmap_cpuset_NMIPI(cpu_set cpu_mask) {
1906 unsigned int cpu, cpu_bit;
1907 uint64_t deadline;
1908
1909 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
1910 if (cpu_mask & cpu_bit)
1911 cpu_NMI_interrupt(cpu);
1912 }
1913 deadline = mach_absolute_time() + (LockTimeOut);
1914 while (mach_absolute_time() < deadline)
1915 cpu_pause();
1916}
1917
1918/*
1919 * Called with pmap locked, we:
1920 * - scan through per-cpu data to see which other cpus need to flush
1921 * - send an IPI to each non-idle cpu to be flushed
1922 * - wait for all to signal back that they are inactive or we see that
1923 * they are at a safe point (idle).
1924 * - flush the local tlb if active for this pmap
1925 * - return ... the caller will unlock the pmap
1926 */
1927
1928void
1929pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv)
1930{
1931 unsigned int cpu;
1932 unsigned int cpu_bit;
1933 cpu_set cpus_to_signal;
1934 unsigned int my_cpu = cpu_number();
1935 pmap_paddr_t pmap_cr3 = pmap->pm_cr3;
1936 boolean_t flush_self = FALSE;
1937 uint64_t deadline;
1938 boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap));
1939
1940 assert((processor_avail_count < 2) ||
1941 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
1942
1943 /*
1944 * Scan other cpus for matching active or task CR3.
1945 * For idle cpus (with no active map) we mark them invalid but
1946 * don't signal -- they'll check as they go busy.
1947 */
1948 cpus_to_signal = 0;
1949
1950 if (pmap_pcid_ncpus) {
1951 pmap_pcid_invalidate_all_cpus(pmap);
1952 __asm__ volatile("mfence":::"memory");
1953 }
1954
1955 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
1956 if (!cpu_datap(cpu)->cpu_running)
1957 continue;
1958 uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu);
1959 uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu);
1960
1961 if ((pmap_cr3 == cpu_task_cr3) ||
1962 (pmap_cr3 == cpu_active_cr3) ||
1963 (pmap_is_shared)) {
1964 if (cpu == my_cpu) {
1965 flush_self = TRUE;
1966 continue;
1967 }
1968 if (pmap_pcid_ncpus && pmap_is_shared)
1969 cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
1970 else
1971 cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
1972 __asm__ volatile("mfence":::"memory");
1973
1974 /*
1975 * We don't need to signal processors which will flush
1976 * lazily at the idle state or kernel boundary.
1977 * For example, if we're invalidating the kernel pmap,
1978 * processors currently in userspace don't need to flush
1979 * their TLBs until the next time they enter the kernel.
1980 * Alterations to the address space of a task active
1981 * on a remote processor result in a signal, to
1982 * account for copy operations. (There may be room
1983 * for optimization in such cases).
1984 * The order of the loads below with respect
1985 * to the store to the "cpu_tlb_invalid" field above
1986 * is important--hence the barrier.
1987 */
1988 if (CPU_CR3_IS_ACTIVE(cpu) &&
1989 (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) ||
1990 pmap->pm_shared ||
1991 (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
1992 cpus_to_signal |= cpu_bit;
1993 i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
1994 }
1995 }
1996 }
1997
1998 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START,
1999 pmap, cpus_to_signal, flush_self, startv, endv);
2000
2001 /*
2002 * Flush local tlb if required.
2003 * Do this now to overlap with other processors responding.
2004 */
2005 if (flush_self) {
2006 if (pmap_pcid_ncpus) {
2007 pmap_pcid_validate_cpu(pmap, my_cpu);
2008 if (pmap_is_shared)
2009 tlb_flush_global();
2010 else
2011 flush_tlb_raw();
2012 }
2013 else
2014 flush_tlb_raw();
2015 }
2016
2017 if (cpus_to_signal) {
2018 cpu_set cpus_to_respond = cpus_to_signal;
2019
2020 deadline = mach_absolute_time() + LockTimeOut;
2021 /*
2022 * Wait for those other cpus to acknowledge
2023 */
2024 while (cpus_to_respond != 0) {
2025 long orig_acks = 0;
2026
2027 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2028 /* Consider checking local/global invalidity
2029 * as appropriate in the PCID case.
2030 */
2031 if ((cpus_to_respond & cpu_bit) != 0) {
2032 if (!cpu_datap(cpu)->cpu_running ||
2033 cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2034 !CPU_CR3_IS_ACTIVE(cpu)) {
2035 cpus_to_respond &= ~cpu_bit;
2036 }
2037 cpu_pause();
2038 }
2039 if (cpus_to_respond == 0)
2040 break;
2041 }
2042 if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2043 if (machine_timeout_suspended())
2044 continue;
2045 pmap_tlb_flush_timeout = TRUE;
2046 orig_acks = NMIPI_acks;
2047 pmap_cpuset_NMIPI(cpus_to_respond);
2048
2049 panic("TLB invalidation IPI timeout: "
2050 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2051 cpus_to_respond, orig_acks, NMIPI_acks);
2052 }
2053 }
2054 }
2055
2056 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END,
2057 pmap, cpus_to_signal, startv, endv, 0);
2058}
2059
2060void
2061process_pmap_updates(void)
2062{
2063 int ccpu = cpu_number();
2064 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2065 if (pmap_pcid_ncpus) {
2066 pmap_pcid_validate_current();
2067 if (cpu_datap(ccpu)->cpu_tlb_invalid_global) {
2068 cpu_datap(ccpu)->cpu_tlb_invalid = FALSE;
2069 tlb_flush_global();
2070 }
2071 else {
2072 cpu_datap(ccpu)->cpu_tlb_invalid_local = FALSE;
2073 flush_tlb_raw();
2074 }
2075 }
2076 else {
2077 current_cpu_datap()->cpu_tlb_invalid = FALSE;
2078 flush_tlb_raw();
2079 }
2080
2081 __asm__ volatile("mfence");
2082}
2083
2084void
2085pmap_update_interrupt(void)
2086{
2087 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
2088 0, 0, 0, 0, 0);
2089
2090 process_pmap_updates();
2091
2092 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
2093 0, 0, 0, 0, 0);
2094}