]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the | |
10 | * License may not be used to create, or enable the creation or | |
11 | * redistribution of, unlawful or unlicensed copies of an Apple operating | |
12 | * system, or to circumvent, violate, or enable the circumvention or | |
13 | * violation of, any terms of an Apple operating system software license | |
14 | * agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
18 | * file. | |
19 | * | |
20 | * The Original Code and all software distributed under the License are | |
21 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
22 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
23 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
24 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
25 | * Please see the License for the specific language governing rights and | |
26 | * limitations under the License. | |
27 | * | |
28 | * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ | |
29 | */ | |
30 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
31 | /* | |
32 | * Copyright (c) 1993 | |
33 | * The Regents of the University of California. All rights reserved. | |
34 | * | |
35 | * Redistribution and use in source and binary forms, with or without | |
36 | * modification, are permitted provided that the following conditions | |
37 | * are met: | |
38 | * 1. Redistributions of source code must retain the above copyright | |
39 | * notice, this list of conditions and the following disclaimer. | |
40 | * 2. Redistributions in binary form must reproduce the above copyright | |
41 | * notice, this list of conditions and the following disclaimer in the | |
42 | * documentation and/or other materials provided with the distribution. | |
43 | * 3. All advertising materials mentioning features or use of this software | |
44 | * must display the following acknowledgement: | |
45 | * This product includes software developed by the University of | |
46 | * California, Berkeley and its contributors. | |
47 | * 4. Neither the name of the University nor the names of its contributors | |
48 | * may be used to endorse or promote products derived from this software | |
49 | * without specific prior written permission. | |
50 | * | |
51 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
52 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
53 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
54 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
55 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
56 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
57 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
59 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
60 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
61 | * SUCH DAMAGE. | |
62 | * | |
63 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
64 | */ | |
65 | ||
66 | #include <sys/param.h> | |
67 | #include <sys/proc_internal.h> | |
68 | #include <sys/buf_internal.h> | |
69 | #include <sys/mount_internal.h> | |
70 | #include <sys/vnode_internal.h> | |
71 | #include <sys/trace.h> | |
72 | #include <sys/malloc.h> | |
73 | #include <sys/time.h> | |
74 | #include <sys/kernel.h> | |
75 | #include <sys/resourcevar.h> | |
76 | #include <sys/uio_internal.h> | |
77 | #include <libkern/libkern.h> | |
78 | #include <machine/machine_routines.h> | |
79 | ||
80 | #include <sys/ubc_internal.h> | |
81 | ||
82 | #include <mach/mach_types.h> | |
83 | #include <mach/memory_object_types.h> | |
84 | #include <mach/vm_map.h> | |
85 | #include <mach/upl.h> | |
86 | ||
87 | #include <vm/vm_kern.h> | |
88 | #include <vm/vm_map.h> | |
89 | #include <vm/vm_pageout.h> | |
90 | ||
91 | #include <sys/kdebug.h> | |
92 | ||
93 | ||
94 | #define CL_READ 0x01 | |
95 | #define CL_ASYNC 0x02 | |
96 | #define CL_COMMIT 0x04 | |
97 | #define CL_PAGEOUT 0x10 | |
98 | #define CL_AGE 0x20 | |
99 | #define CL_DUMP 0x40 | |
100 | #define CL_NOZERO 0x80 | |
101 | #define CL_PAGEIN 0x100 | |
102 | #define CL_DEV_MEMORY 0x200 | |
103 | #define CL_PRESERVE 0x400 | |
104 | #define CL_THROTTLE 0x800 | |
105 | #define CL_KEEPCACHED 0x1000 | |
106 | ||
107 | ||
108 | struct clios { | |
109 | u_int io_completed; /* amount of io that has currently completed */ | |
110 | u_int io_issued; /* amount of io that was successfully issued */ | |
111 | int io_error; /* error code of first error encountered */ | |
112 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
113 | }; | |
114 | ||
115 | static lck_grp_t *cl_mtx_grp; | |
116 | static lck_attr_t *cl_mtx_attr; | |
117 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
118 | static lck_mtx_t *cl_mtxp; | |
119 | ||
120 | ||
121 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
122 | int flags, buf_t real_bp, struct clios *iostate); | |
123 | static int cluster_iodone(buf_t bp, void *dummy); | |
124 | static int cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize); | |
125 | static int cluster_hard_throttle_on(vnode_t vp); | |
126 | ||
127 | static int cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags); | |
128 | static int cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
129 | off_t headOff, off_t tailOff, int flags); | |
130 | static int cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize); | |
131 | static int cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF); | |
132 | static int cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize); | |
133 | static int cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF); | |
134 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags); | |
135 | ||
136 | static void cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra); | |
137 | ||
138 | static int cluster_push_x(vnode_t vp, struct cl_extent *, off_t EOF, int flags); | |
139 | static void cluster_push_EOF(vnode_t vp, off_t EOF); | |
140 | ||
141 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int can_delay, int push_all); | |
142 | ||
143 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF); | |
144 | static void sparse_cluster_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_all); | |
145 | static void sparse_cluster_add(struct cl_writebehind *, vnode_t vp, struct cl_extent *, off_t EOF); | |
146 | ||
147 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp); | |
148 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); | |
149 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
150 | ||
151 | int is_file_clean(vnode_t, off_t); | |
152 | ||
153 | /* | |
154 | * throttle the number of async writes that | |
155 | * can be outstanding on a single vnode | |
156 | * before we issue a synchronous write | |
157 | */ | |
158 | #define HARD_THROTTLE_MAXCNT 0 | |
159 | #define HARD_THROTTLE_MAXSIZE (64 * 1024) | |
160 | ||
161 | int hard_throttle_on_root = 0; | |
162 | struct timeval priority_IO_timestamp_for_root; | |
163 | ||
164 | ||
165 | void | |
166 | cluster_init(void) { | |
167 | /* | |
168 | * allocate lock group attribute and group | |
169 | */ | |
170 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); | |
171 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); | |
172 | ||
173 | /* | |
174 | * allocate the lock attribute | |
175 | */ | |
176 | cl_mtx_attr = lck_attr_alloc_init(); | |
177 | ||
178 | /* | |
179 | * allocate and initialize mutex's used to protect updates and waits | |
180 | * on the cluster_io context | |
181 | */ | |
182 | cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); | |
183 | ||
184 | if (cl_mtxp == NULL) | |
185 | panic("cluster_init: failed to allocate cl_mtxp"); | |
186 | } | |
187 | ||
188 | ||
189 | ||
190 | #define CLW_ALLOCATE 0x01 | |
191 | #define CLW_RETURNLOCKED 0x02 | |
192 | /* | |
193 | * if the read ahead context doesn't yet exist, | |
194 | * allocate and initialize it... | |
195 | * the vnode lock serializes multiple callers | |
196 | * during the actual assignment... first one | |
197 | * to grab the lock wins... the other callers | |
198 | * will release the now unnecessary storage | |
199 | * | |
200 | * once the context is present, try to grab (but don't block on) | |
201 | * the lock associated with it... if someone | |
202 | * else currently owns it, than the read | |
203 | * will run without read-ahead. this allows | |
204 | * multiple readers to run in parallel and | |
205 | * since there's only 1 read ahead context, | |
206 | * there's no real loss in only allowing 1 | |
207 | * reader to have read-ahead enabled. | |
208 | */ | |
209 | static struct cl_readahead * | |
210 | cluster_get_rap(vnode_t vp) | |
211 | { | |
212 | struct ubc_info *ubc; | |
213 | struct cl_readahead *rap; | |
214 | ||
215 | ubc = vp->v_ubcinfo; | |
216 | ||
217 | if ((rap = ubc->cl_rahead) == NULL) { | |
218 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
219 | ||
220 | bzero(rap, sizeof *rap); | |
221 | rap->cl_lastr = -1; | |
222 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
223 | ||
224 | vnode_lock(vp); | |
225 | ||
226 | if (ubc->cl_rahead == NULL) | |
227 | ubc->cl_rahead = rap; | |
228 | else { | |
229 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
230 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
231 | rap = ubc->cl_rahead; | |
232 | } | |
233 | vnode_unlock(vp); | |
234 | } | |
235 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
236 | return(rap); | |
237 | ||
238 | return ((struct cl_readahead *)NULL); | |
239 | } | |
240 | ||
241 | ||
242 | /* | |
243 | * if the write behind context doesn't yet exist, | |
244 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
245 | * the vnode lock serializes multiple callers | |
246 | * during the actual assignment... first one | |
247 | * to grab the lock wins... the other callers | |
248 | * will release the now unnecessary storage | |
249 | * | |
250 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
251 | * the lock associated with the write behind context before | |
252 | * returning | |
253 | */ | |
254 | ||
255 | static struct cl_writebehind * | |
256 | cluster_get_wbp(vnode_t vp, int flags) | |
257 | { | |
258 | struct ubc_info *ubc; | |
259 | struct cl_writebehind *wbp; | |
260 | ||
261 | ubc = vp->v_ubcinfo; | |
262 | ||
263 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
264 | ||
265 | if ( !(flags & CLW_ALLOCATE)) | |
266 | return ((struct cl_writebehind *)NULL); | |
267 | ||
268 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
269 | ||
270 | bzero(wbp, sizeof *wbp); | |
271 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
272 | ||
273 | vnode_lock(vp); | |
274 | ||
275 | if (ubc->cl_wbehind == NULL) | |
276 | ubc->cl_wbehind = wbp; | |
277 | else { | |
278 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
279 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
280 | wbp = ubc->cl_wbehind; | |
281 | } | |
282 | vnode_unlock(vp); | |
283 | } | |
284 | if (flags & CLW_RETURNLOCKED) | |
285 | lck_mtx_lock(&wbp->cl_lockw); | |
286 | ||
287 | return (wbp); | |
288 | } | |
289 | ||
290 | ||
291 | static int | |
292 | cluster_hard_throttle_on(vnode_t vp) | |
293 | { | |
294 | static struct timeval hard_throttle_maxelapsed = { 0, 200000 }; | |
295 | ||
296 | if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) { | |
297 | struct timeval elapsed; | |
298 | ||
299 | if (hard_throttle_on_root) | |
300 | return(1); | |
301 | ||
302 | microuptime(&elapsed); | |
303 | timevalsub(&elapsed, &priority_IO_timestamp_for_root); | |
304 | ||
305 | if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <)) | |
306 | return(1); | |
307 | } | |
308 | return(0); | |
309 | } | |
310 | ||
311 | ||
312 | static int | |
313 | cluster_iodone(buf_t bp, __unused void *dummy) | |
314 | { | |
315 | int b_flags; | |
316 | int error; | |
317 | int total_size; | |
318 | int total_resid; | |
319 | int upl_offset; | |
320 | int zero_offset; | |
321 | upl_t upl; | |
322 | buf_t cbp; | |
323 | buf_t cbp_head; | |
324 | buf_t cbp_next; | |
325 | buf_t real_bp; | |
326 | struct clios *iostate; | |
327 | int commit_size; | |
328 | int pg_offset; | |
329 | ||
330 | cbp_head = (buf_t)(bp->b_trans_head); | |
331 | ||
332 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
333 | (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
334 | ||
335 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
336 | /* | |
337 | * all I/O requests that are part of this transaction | |
338 | * have to complete before we can process it | |
339 | */ | |
340 | if ( !(cbp->b_flags & B_DONE)) { | |
341 | ||
342 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
343 | (int)cbp_head, (int)cbp, cbp->b_bcount, cbp->b_flags, 0); | |
344 | ||
345 | return 0; | |
346 | } | |
347 | } | |
348 | error = 0; | |
349 | total_size = 0; | |
350 | total_resid = 0; | |
351 | ||
352 | cbp = cbp_head; | |
353 | upl_offset = cbp->b_uploffset; | |
354 | upl = cbp->b_upl; | |
355 | b_flags = cbp->b_flags; | |
356 | real_bp = cbp->b_real_bp; | |
357 | zero_offset= cbp->b_validend; | |
358 | iostate = (struct clios *)cbp->b_iostate; | |
359 | ||
360 | if (real_bp) | |
361 | real_bp->b_dev = cbp->b_dev; | |
362 | ||
363 | while (cbp) { | |
364 | if ((cbp->b_flags & B_ERROR) && error == 0) | |
365 | error = cbp->b_error; | |
366 | ||
367 | total_resid += cbp->b_resid; | |
368 | total_size += cbp->b_bcount; | |
369 | ||
370 | cbp_next = cbp->b_trans_next; | |
371 | ||
372 | free_io_buf(cbp); | |
373 | ||
374 | cbp = cbp_next; | |
375 | } | |
376 | if (zero_offset) | |
377 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
378 | ||
379 | if (iostate) { | |
380 | int need_wakeup = 0; | |
381 | ||
382 | /* | |
383 | * someone has issued multiple I/Os asynchrounsly | |
384 | * and is waiting for them to complete (streaming) | |
385 | */ | |
386 | lck_mtx_lock(cl_mtxp); | |
387 | ||
388 | if (error && iostate->io_error == 0) | |
389 | iostate->io_error = error; | |
390 | ||
391 | iostate->io_completed += total_size; | |
392 | ||
393 | if (iostate->io_wanted) { | |
394 | /* | |
395 | * someone is waiting for the state of | |
396 | * this io stream to change | |
397 | */ | |
398 | iostate->io_wanted = 0; | |
399 | need_wakeup = 1; | |
400 | } | |
401 | lck_mtx_unlock(cl_mtxp); | |
402 | ||
403 | if (need_wakeup) | |
404 | wakeup((caddr_t)&iostate->io_wanted); | |
405 | } | |
406 | if ((b_flags & B_NEED_IODONE) && real_bp) { | |
407 | if (error) { | |
408 | real_bp->b_flags |= B_ERROR; | |
409 | real_bp->b_error = error; | |
410 | } | |
411 | real_bp->b_resid = total_resid; | |
412 | ||
413 | buf_biodone(real_bp); | |
414 | } | |
415 | if (error == 0 && total_resid) | |
416 | error = EIO; | |
417 | ||
418 | if (b_flags & B_COMMIT_UPL) { | |
419 | pg_offset = upl_offset & PAGE_MASK; | |
420 | commit_size = (pg_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
421 | ||
422 | if (error || (b_flags & B_NOCACHE)) { | |
423 | int upl_abort_code; | |
424 | int page_in = 0; | |
425 | int page_out = 0; | |
426 | ||
427 | if (b_flags & B_PAGEIO) { | |
428 | if (b_flags & B_READ) | |
429 | page_in = 1; | |
430 | else | |
431 | page_out = 1; | |
432 | } | |
433 | if (b_flags & B_CACHE) /* leave pages in the cache unchanged on error */ | |
434 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
435 | else if (page_out && (error != ENXIO)) /* transient error */ | |
436 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
437 | else if (page_in) | |
438 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
439 | else | |
440 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
441 | ||
442 | ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size, | |
443 | upl_abort_code); | |
444 | ||
445 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
446 | (int)upl, upl_offset - pg_offset, commit_size, | |
447 | 0x80000000|upl_abort_code, 0); | |
448 | ||
449 | } else { | |
450 | int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY; | |
451 | ||
452 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) | |
453 | upl_commit_flags |= UPL_COMMIT_SET_DIRTY; | |
454 | ||
455 | if (b_flags & B_AGE) | |
456 | upl_commit_flags |= UPL_COMMIT_INACTIVATE; | |
457 | ||
458 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, | |
459 | upl_commit_flags); | |
460 | ||
461 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
462 | (int)upl, upl_offset - pg_offset, commit_size, | |
463 | upl_commit_flags, 0); | |
464 | } | |
465 | } else { | |
466 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
467 | (int)upl, upl_offset, 0, error, 0); | |
468 | } | |
469 | ||
470 | return (error); | |
471 | } | |
472 | ||
473 | ||
474 | void | |
475 | cluster_zero(upl_t upl, vm_offset_t upl_offset, int size, buf_t bp) | |
476 | { | |
477 | upl_page_info_t *pl; | |
478 | ||
479 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, | |
480 | upl_offset, size, (int)bp, 0, 0); | |
481 | ||
482 | if (bp == NULL || bp->b_datap == 0) { | |
483 | ||
484 | pl = ubc_upl_pageinfo(upl); | |
485 | ||
486 | while (size) { | |
487 | int page_offset; | |
488 | int page_index; | |
489 | addr64_t zero_addr; | |
490 | int zero_cnt; | |
491 | ||
492 | page_index = upl_offset / PAGE_SIZE; | |
493 | page_offset = upl_offset & PAGE_MASK; | |
494 | ||
495 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; | |
496 | zero_cnt = min(PAGE_SIZE - page_offset, size); | |
497 | ||
498 | bzero_phys(zero_addr, zero_cnt); | |
499 | ||
500 | size -= zero_cnt; | |
501 | upl_offset += zero_cnt; | |
502 | } | |
503 | } else | |
504 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); | |
505 | ||
506 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, | |
507 | upl_offset, size, 0, 0, 0); | |
508 | } | |
509 | ||
510 | ||
511 | static int | |
512 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
513 | int flags, buf_t real_bp, struct clios *iostate) | |
514 | { | |
515 | buf_t cbp; | |
516 | u_int size; | |
517 | u_int io_size; | |
518 | int io_flags; | |
519 | int bmap_flags; | |
520 | int error = 0; | |
521 | int retval = 0; | |
522 | buf_t cbp_head = NULL; | |
523 | buf_t cbp_tail = NULL; | |
524 | int trans_count = 0; | |
525 | u_int pg_count; | |
526 | int pg_offset; | |
527 | u_int max_iosize; | |
528 | u_int max_vectors; | |
529 | int priv; | |
530 | int zero_offset = 0; | |
531 | int async_throttle = 0; | |
532 | mount_t mp; | |
533 | ||
534 | mp = vp->v_mount; | |
535 | ||
536 | if (mp->mnt_devblocksize > 1) { | |
537 | /* | |
538 | * round the requested size up so that this I/O ends on a | |
539 | * page boundary in case this is a 'write'... if the filesystem | |
540 | * has blocks allocated to back the page beyond the EOF, we want to | |
541 | * make sure to write out the zero's that are sitting beyond the EOF | |
542 | * so that in case the filesystem doesn't explicitly zero this area | |
543 | * if a hole is created via a lseek/write beyond the current EOF, | |
544 | * it will return zeros when it's read back from the disk. If the | |
545 | * physical allocation doesn't extend for the whole page, we'll | |
546 | * only write/read from the disk up to the end of this allocation | |
547 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
548 | */ | |
549 | pg_offset = upl_offset & PAGE_MASK; | |
550 | ||
551 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; | |
552 | } else { | |
553 | /* | |
554 | * anyone advertising a blocksize of 1 byte probably | |
555 | * can't deal with us rounding up the request size | |
556 | * AFP is one such filesystem/device | |
557 | */ | |
558 | size = non_rounded_size; | |
559 | } | |
560 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, | |
561 | (int)f_offset, size, upl_offset, flags, 0); | |
562 | ||
563 | if (flags & CL_READ) { | |
564 | io_flags = (B_READ); | |
565 | bmap_flags = VNODE_READ; | |
566 | ||
567 | max_iosize = mp->mnt_maxreadcnt; | |
568 | max_vectors = mp->mnt_segreadcnt; | |
569 | } else { | |
570 | io_flags = 0; | |
571 | bmap_flags = VNODE_WRITE; | |
572 | ||
573 | max_iosize = mp->mnt_maxwritecnt; | |
574 | max_vectors = mp->mnt_segwritecnt; | |
575 | } | |
576 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); | |
577 | ||
578 | /* | |
579 | * make sure the maximum iosize is a | |
580 | * multiple of the page size | |
581 | */ | |
582 | max_iosize &= ~PAGE_MASK; | |
583 | ||
584 | if (flags & CL_THROTTLE) { | |
585 | if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) { | |
586 | if (max_iosize > HARD_THROTTLE_MAXSIZE) | |
587 | max_iosize = HARD_THROTTLE_MAXSIZE; | |
588 | async_throttle = HARD_THROTTLE_MAXCNT; | |
589 | } else | |
590 | async_throttle = VNODE_ASYNC_THROTTLE; | |
591 | } | |
592 | if (flags & CL_AGE) | |
593 | io_flags |= B_AGE; | |
594 | if (flags & CL_DUMP) | |
595 | io_flags |= B_NOCACHE; | |
596 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) | |
597 | io_flags |= B_PAGEIO; | |
598 | if (flags & CL_COMMIT) | |
599 | io_flags |= B_COMMIT_UPL; | |
600 | if (flags & CL_PRESERVE) | |
601 | io_flags |= B_PHYS; | |
602 | if (flags & CL_KEEPCACHED) | |
603 | io_flags |= B_CACHE; | |
604 | ||
605 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { | |
606 | /* | |
607 | * then we are going to end up | |
608 | * with a page that we can't complete (the file size wasn't a multiple | |
609 | * of PAGE_SIZE and we're trying to read to the end of the file | |
610 | * so we'll go ahead and zero out the portion of the page we can't | |
611 | * read in from the file | |
612 | */ | |
613 | zero_offset = upl_offset + non_rounded_size; | |
614 | } | |
615 | while (size) { | |
616 | int pg_resid; | |
617 | daddr64_t blkno; | |
618 | daddr64_t lblkno; | |
619 | ||
620 | if (size > max_iosize) | |
621 | io_size = max_iosize; | |
622 | else | |
623 | io_size = size; | |
624 | ||
625 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL, bmap_flags, NULL))) { | |
626 | break; | |
627 | } | |
628 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) | |
629 | real_bp->b_blkno = blkno; | |
630 | ||
631 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
632 | (int)f_offset, (int)blkno, io_size, zero_offset, 0); | |
633 | ||
634 | if (io_size == 0) { | |
635 | /* | |
636 | * vnop_blockmap didn't return an error... however, it did | |
637 | * return an extent size of 0 which means we can't | |
638 | * make forward progress on this I/O... a hole in the | |
639 | * file would be returned as a blkno of -1 with a non-zero io_size | |
640 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
641 | */ | |
642 | error = EINVAL; | |
643 | break; | |
644 | } | |
645 | if ( !(flags & CL_READ) && blkno == -1) { | |
646 | off_t e_offset; | |
647 | ||
648 | /* | |
649 | * we're writing into a 'hole' | |
650 | */ | |
651 | if (flags & CL_PAGEOUT) { | |
652 | /* | |
653 | * if we got here via cluster_pageout | |
654 | * then just error the request and return | |
655 | * the 'hole' should already have been covered | |
656 | */ | |
657 | error = EINVAL; | |
658 | break; | |
659 | } | |
660 | if ( !(flags & CL_COMMIT)) { | |
661 | /* | |
662 | * currently writes always request the commit to happen | |
663 | * as part of the io completion... however, if the CL_COMMIT | |
664 | * flag isn't specified, than we can't issue the abort_range | |
665 | * since the call site is going to abort or commit the same upl.. | |
666 | * in this case we can only return an error | |
667 | */ | |
668 | error = EINVAL; | |
669 | break; | |
670 | } | |
671 | /* | |
672 | * we can get here if the cluster code happens to | |
673 | * pick up a page that was dirtied via mmap vs | |
674 | * a 'write' and the page targets a 'hole'... | |
675 | * i.e. the writes to the cluster were sparse | |
676 | * and the file was being written for the first time | |
677 | * | |
678 | * we can also get here if the filesystem supports | |
679 | * 'holes' that are less than PAGE_SIZE.... because | |
680 | * we can't know if the range in the page that covers | |
681 | * the 'hole' has been dirtied via an mmap or not, | |
682 | * we have to assume the worst and try to push the | |
683 | * entire page to storage. | |
684 | * | |
685 | * Try paging out the page individually before | |
686 | * giving up entirely and dumping it (the pageout | |
687 | * path will insure that the zero extent accounting | |
688 | * has been taken care of before we get back into cluster_io) | |
689 | */ | |
690 | ubc_upl_abort_range(upl, trunc_page(upl_offset), PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
691 | ||
692 | e_offset = round_page_64(f_offset + 1); | |
693 | ||
694 | if (ubc_sync_range(vp, f_offset, e_offset, UBC_PUSHDIRTY) == 0) { | |
695 | error = EINVAL; | |
696 | break; | |
697 | } | |
698 | io_size = e_offset - f_offset; | |
699 | ||
700 | f_offset += io_size; | |
701 | upl_offset += io_size; | |
702 | ||
703 | if (size >= io_size) | |
704 | size -= io_size; | |
705 | else | |
706 | size = 0; | |
707 | /* | |
708 | * keep track of how much of the original request | |
709 | * that we've actually completed... non_rounded_size | |
710 | * may go negative due to us rounding the request | |
711 | * to a page size multiple (i.e. size > non_rounded_size) | |
712 | */ | |
713 | non_rounded_size -= io_size; | |
714 | ||
715 | if (non_rounded_size <= 0) { | |
716 | /* | |
717 | * we've transferred all of the data in the original | |
718 | * request, but we were unable to complete the tail | |
719 | * of the last page because the file didn't have | |
720 | * an allocation to back that portion... this is ok. | |
721 | */ | |
722 | size = 0; | |
723 | } | |
724 | continue; | |
725 | } | |
726 | lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64); | |
727 | /* | |
728 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
729 | * pg_offset is the starting point in the first page for the I/O | |
730 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
731 | */ | |
732 | pg_offset = upl_offset & PAGE_MASK; | |
733 | ||
734 | if (flags & CL_DEV_MEMORY) { | |
735 | /* | |
736 | * currently, can't deal with reading 'holes' in file | |
737 | */ | |
738 | if (blkno == -1) { | |
739 | error = EINVAL; | |
740 | break; | |
741 | } | |
742 | /* | |
743 | * treat physical requests as one 'giant' page | |
744 | */ | |
745 | pg_count = 1; | |
746 | } else | |
747 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
748 | ||
749 | if ((flags & CL_READ) && blkno == -1) { | |
750 | int bytes_to_zero; | |
751 | ||
752 | /* | |
753 | * if we're reading and blkno == -1, then we've got a | |
754 | * 'hole' in the file that we need to deal with by zeroing | |
755 | * out the affected area in the upl | |
756 | */ | |
757 | if (zero_offset && io_size == size) { | |
758 | /* | |
759 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
760 | * than 'zero_offset' will be non-zero | |
761 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof | |
762 | * (indicated by the io_size finishing off the I/O request for this UPL) | |
763 | * than we're not going to issue an I/O for the | |
764 | * last page in this upl... we need to zero both the hole and the tail | |
765 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
766 | */ | |
767 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
768 | ||
769 | zero_offset = 0; | |
770 | } else | |
771 | bytes_to_zero = io_size; | |
772 | ||
773 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
774 | ||
775 | if (cbp_head) | |
776 | /* | |
777 | * if there is a current I/O chain pending | |
778 | * then the first page of the group we just zero'd | |
779 | * will be handled by the I/O completion if the zero | |
780 | * fill started in the middle of the page | |
781 | */ | |
782 | pg_count = (io_size - pg_offset) / PAGE_SIZE; | |
783 | else { | |
784 | /* | |
785 | * no pending I/O to pick up that first page | |
786 | * so, we have to make sure it gets committed | |
787 | * here. | |
788 | * set the pg_offset to 0 so that the upl_commit_range | |
789 | * starts with this page | |
790 | */ | |
791 | pg_count = (io_size + pg_offset) / PAGE_SIZE; | |
792 | pg_offset = 0; | |
793 | } | |
794 | if (io_size == size && ((upl_offset + io_size) & PAGE_MASK)) | |
795 | /* | |
796 | * if we're done with the request for this UPL | |
797 | * then we have to make sure to commit the last page | |
798 | * even if we only partially zero-filled it | |
799 | */ | |
800 | pg_count++; | |
801 | ||
802 | if (pg_count) { | |
803 | if (pg_offset) | |
804 | pg_resid = PAGE_SIZE - pg_offset; | |
805 | else | |
806 | pg_resid = 0; | |
807 | ||
808 | if (flags & CL_COMMIT) | |
809 | ubc_upl_commit_range(upl, | |
810 | (upl_offset + pg_resid) & ~PAGE_MASK, | |
811 | pg_count * PAGE_SIZE, | |
812 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
813 | } | |
814 | upl_offset += io_size; | |
815 | f_offset += io_size; | |
816 | size -= io_size; | |
817 | /* | |
818 | * keep track of how much of the original request | |
819 | * that we've actually completed... non_rounded_size | |
820 | * may go negative due to us rounding the request | |
821 | * to a page size multiple (i.e. size > non_rounded_size) | |
822 | */ | |
823 | non_rounded_size -= io_size; | |
824 | ||
825 | if (non_rounded_size <= 0) { | |
826 | /* | |
827 | * we've transferred all of the data in the original | |
828 | * request, but we were unable to complete the tail | |
829 | * of the last page because the file didn't have | |
830 | * an allocation to back that portion... this is ok. | |
831 | */ | |
832 | size = 0; | |
833 | } | |
834 | if (cbp_head && pg_count) | |
835 | goto start_io; | |
836 | continue; | |
837 | ||
838 | } | |
839 | if (pg_count > max_vectors) { | |
840 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { | |
841 | io_size = PAGE_SIZE - pg_offset; | |
842 | pg_count = 1; | |
843 | } else { | |
844 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
845 | pg_count = max_vectors; | |
846 | } | |
847 | } | |
848 | ||
849 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) | |
850 | /* | |
851 | * if we're not targeting a virtual device i.e. a disk image | |
852 | * it's safe to dip into the reserve pool since real devices | |
853 | * can complete this I/O request without requiring additional | |
854 | * bufs from the alloc_io_buf pool | |
855 | */ | |
856 | priv = 1; | |
857 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
858 | /* | |
859 | * Throttle the speculative IO | |
860 | */ | |
861 | priv = 0; | |
862 | else | |
863 | priv = 1; | |
864 | ||
865 | cbp = alloc_io_buf(vp, priv); | |
866 | ||
867 | if (flags & CL_PAGEOUT) { | |
868 | u_int i; | |
869 | ||
870 | for (i = 0; i < pg_count; i++) { | |
871 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) | |
872 | panic("BUSY bp found in cluster_io"); | |
873 | } | |
874 | } | |
875 | if (flags & CL_ASYNC) { | |
876 | if (buf_setcallback(cbp, (void *)cluster_iodone, NULL)) | |
877 | panic("buf_setcallback failed\n"); | |
878 | } | |
879 | cbp->b_flags |= io_flags; | |
880 | ||
881 | cbp->b_lblkno = lblkno; | |
882 | cbp->b_blkno = blkno; | |
883 | cbp->b_bcount = io_size; | |
884 | ||
885 | if (buf_setupl(cbp, upl, upl_offset)) | |
886 | panic("buf_setupl failed\n"); | |
887 | ||
888 | cbp->b_trans_next = (buf_t)NULL; | |
889 | ||
890 | if ((cbp->b_iostate = (void *)iostate)) | |
891 | /* | |
892 | * caller wants to track the state of this | |
893 | * io... bump the amount issued against this stream | |
894 | */ | |
895 | iostate->io_issued += io_size; | |
896 | ||
897 | if (flags & CL_READ) { | |
898 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, | |
899 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
900 | } | |
901 | else { | |
902 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, | |
903 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
904 | } | |
905 | ||
906 | if (cbp_head) { | |
907 | cbp_tail->b_trans_next = cbp; | |
908 | cbp_tail = cbp; | |
909 | } else { | |
910 | cbp_head = cbp; | |
911 | cbp_tail = cbp; | |
912 | } | |
913 | (buf_t)(cbp->b_trans_head) = cbp_head; | |
914 | trans_count++; | |
915 | ||
916 | upl_offset += io_size; | |
917 | f_offset += io_size; | |
918 | size -= io_size; | |
919 | /* | |
920 | * keep track of how much of the original request | |
921 | * that we've actually completed... non_rounded_size | |
922 | * may go negative due to us rounding the request | |
923 | * to a page size multiple (i.e. size > non_rounded_size) | |
924 | */ | |
925 | non_rounded_size -= io_size; | |
926 | ||
927 | if (non_rounded_size <= 0) { | |
928 | /* | |
929 | * we've transferred all of the data in the original | |
930 | * request, but we were unable to complete the tail | |
931 | * of the last page because the file didn't have | |
932 | * an allocation to back that portion... this is ok. | |
933 | */ | |
934 | size = 0; | |
935 | } | |
936 | if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || trans_count > 8)) || size == 0) { | |
937 | /* | |
938 | * if we have no more I/O to issue or | |
939 | * the current I/O we've prepared fully | |
940 | * completes the last page in this request | |
941 | * and it's either an ASYNC request or | |
942 | * we've already accumulated more than 8 I/O's into | |
943 | * this transaction and it's not an I/O directed to | |
944 | * special DEVICE memory | |
945 | * then go ahead and issue the I/O | |
946 | */ | |
947 | start_io: | |
948 | if (real_bp) { | |
949 | cbp_head->b_flags |= B_NEED_IODONE; | |
950 | cbp_head->b_real_bp = real_bp; | |
951 | } else | |
952 | cbp_head->b_real_bp = (buf_t)NULL; | |
953 | ||
954 | if (size == 0) { | |
955 | /* | |
956 | * we're about to issue the last I/O for this upl | |
957 | * if this was a read to the eof and the eof doesn't | |
958 | * finish on a page boundary, than we need to zero-fill | |
959 | * the rest of the page.... | |
960 | */ | |
961 | cbp_head->b_validend = zero_offset; | |
962 | } else | |
963 | cbp_head->b_validend = 0; | |
964 | ||
965 | if (flags & CL_THROTTLE) | |
966 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, (char *)"cluster_io"); | |
967 | ||
968 | for (cbp = cbp_head; cbp;) { | |
969 | buf_t cbp_next; | |
970 | ||
971 | if ( !(io_flags & B_READ)) | |
972 | vnode_startwrite(vp); | |
973 | ||
974 | cbp_next = cbp->b_trans_next; | |
975 | ||
976 | (void) VNOP_STRATEGY(cbp); | |
977 | cbp = cbp_next; | |
978 | } | |
979 | if ( !(flags & CL_ASYNC)) { | |
980 | int dummy; | |
981 | ||
982 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
983 | buf_biowait(cbp); | |
984 | ||
985 | if ((error = cluster_iodone(cbp_head, (void *)&dummy))) { | |
986 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) == CL_PAGEOUT) && (error == ENXIO)) | |
987 | error = 0; /* drop the error */ | |
988 | else { | |
989 | if (retval == 0) | |
990 | retval = error; | |
991 | error = 0; | |
992 | } | |
993 | } | |
994 | } | |
995 | cbp_head = (buf_t)NULL; | |
996 | cbp_tail = (buf_t)NULL; | |
997 | ||
998 | trans_count = 0; | |
999 | } | |
1000 | } | |
1001 | if (error) { | |
1002 | int abort_size; | |
1003 | ||
1004 | io_size = 0; | |
1005 | ||
1006 | for (cbp = cbp_head; cbp;) { | |
1007 | buf_t cbp_next; | |
1008 | ||
1009 | upl_offset -= cbp->b_bcount; | |
1010 | size += cbp->b_bcount; | |
1011 | io_size += cbp->b_bcount; | |
1012 | ||
1013 | cbp_next = cbp->b_trans_next; | |
1014 | free_io_buf(cbp); | |
1015 | cbp = cbp_next; | |
1016 | } | |
1017 | if (iostate) { | |
1018 | int need_wakeup = 0; | |
1019 | ||
1020 | /* | |
1021 | * update the error condition for this stream | |
1022 | * since we never really issued the io | |
1023 | * just go ahead and adjust it back | |
1024 | */ | |
1025 | lck_mtx_lock(cl_mtxp); | |
1026 | ||
1027 | if (iostate->io_error == 0) | |
1028 | iostate->io_error = error; | |
1029 | iostate->io_issued -= io_size; | |
1030 | ||
1031 | if (iostate->io_wanted) { | |
1032 | /* | |
1033 | * someone is waiting for the state of | |
1034 | * this io stream to change | |
1035 | */ | |
1036 | iostate->io_wanted = 0; | |
1037 | need_wakeup = 0; | |
1038 | } | |
1039 | lck_mtx_unlock(cl_mtxp); | |
1040 | ||
1041 | if (need_wakeup) | |
1042 | wakeup((caddr_t)&iostate->io_wanted); | |
1043 | } | |
1044 | pg_offset = upl_offset & PAGE_MASK; | |
1045 | abort_size = (size + pg_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1046 | ||
1047 | if (flags & CL_COMMIT) { | |
1048 | int upl_abort_code; | |
1049 | ||
1050 | if (flags & CL_PRESERVE) { | |
1051 | ubc_upl_commit_range(upl, upl_offset - pg_offset, abort_size, | |
1052 | UPL_COMMIT_FREE_ON_EMPTY); | |
1053 | } else { | |
1054 | if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */ | |
1055 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
1056 | else if (flags & CL_PAGEIN) | |
1057 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
1058 | else | |
1059 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
1060 | ||
1061 | ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size, | |
1062 | upl_abort_code); | |
1063 | } | |
1064 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, | |
1065 | (int)upl, upl_offset - pg_offset, abort_size, error, 0); | |
1066 | } | |
1067 | if (real_bp) { | |
1068 | real_bp->b_flags |= B_ERROR; | |
1069 | real_bp->b_error = error; | |
1070 | ||
1071 | buf_biodone(real_bp); | |
1072 | } | |
1073 | if (retval == 0) | |
1074 | retval = error; | |
1075 | } | |
1076 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, | |
1077 | (int)f_offset, size, upl_offset, retval, 0); | |
1078 | ||
1079 | return (retval); | |
1080 | } | |
1081 | ||
1082 | ||
1083 | static int | |
1084 | cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize) | |
1085 | { | |
1086 | int pages_in_prefetch; | |
1087 | ||
1088 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1089 | (int)f_offset, size, (int)filesize, 0, 0); | |
1090 | ||
1091 | if (f_offset >= filesize) { | |
1092 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1093 | (int)f_offset, 0, 0, 0, 0); | |
1094 | return(0); | |
1095 | } | |
1096 | if (size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
1097 | size = (MAX_UPL_TRANSFER * PAGE_SIZE); | |
1098 | else | |
1099 | size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1100 | ||
1101 | if ((off_t)size > (filesize - f_offset)) | |
1102 | size = filesize - f_offset; | |
1103 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1104 | ||
1105 | advisory_read(vp, filesize, f_offset, size); | |
1106 | ||
1107 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1108 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); | |
1109 | ||
1110 | return (pages_in_prefetch); | |
1111 | } | |
1112 | ||
1113 | ||
1114 | ||
1115 | static void | |
1116 | cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap) | |
1117 | { | |
1118 | daddr64_t r_addr; | |
1119 | off_t f_offset; | |
1120 | int size_of_prefetch; | |
1121 | ||
1122 | ||
1123 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
1124 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); | |
1125 | ||
1126 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { | |
1127 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1128 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); | |
1129 | return; | |
1130 | } | |
1131 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1) && | |
1132 | (extent->b_addr != (rap->cl_maxra + 1) || rap->cl_ralen == 0))) { | |
1133 | rap->cl_ralen = 0; | |
1134 | rap->cl_maxra = 0; | |
1135 | ||
1136 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1137 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); | |
1138 | ||
1139 | return; | |
1140 | } | |
1141 | if (extent->e_addr < rap->cl_maxra) { | |
1142 | if ((rap->cl_maxra - extent->e_addr) > (MAX_UPL_TRANSFER / 4)) { | |
1143 | ||
1144 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1145 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); | |
1146 | return; | |
1147 | } | |
1148 | } | |
1149 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; | |
1150 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1151 | ||
1152 | size_of_prefetch = 0; | |
1153 | ||
1154 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
1155 | ||
1156 | if (size_of_prefetch) { | |
1157 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1158 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); | |
1159 | return; | |
1160 | } | |
1161 | if (f_offset < filesize) { | |
1162 | daddr64_t read_size; | |
1163 | ||
1164 | rap->cl_ralen = rap->cl_ralen ? min(MAX_UPL_TRANSFER, rap->cl_ralen << 1) : 1; | |
1165 | ||
1166 | read_size = (extent->e_addr + 1) - extent->b_addr; | |
1167 | ||
1168 | if (read_size > rap->cl_ralen) { | |
1169 | if (read_size > MAX_UPL_TRANSFER) | |
1170 | rap->cl_ralen = MAX_UPL_TRANSFER; | |
1171 | else | |
1172 | rap->cl_ralen = read_size; | |
1173 | } | |
1174 | size_of_prefetch = cluster_rd_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize); | |
1175 | ||
1176 | if (size_of_prefetch) | |
1177 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; | |
1178 | } | |
1179 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1180 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); | |
1181 | } | |
1182 | ||
1183 | int | |
1184 | cluster_pageout(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, | |
1185 | int size, off_t filesize, int flags) | |
1186 | { | |
1187 | int io_size; | |
1188 | int rounded_size; | |
1189 | off_t max_size; | |
1190 | int local_flags; | |
1191 | struct cl_writebehind *wbp; | |
1192 | ||
1193 | if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) | |
1194 | /* | |
1195 | * if we know we're issuing this I/O to a virtual device (i.e. disk image) | |
1196 | * then we don't want to enforce this throttle... if we do, we can | |
1197 | * potentially deadlock since we're stalling the pageout thread at a time | |
1198 | * when the disk image might need additional memory (which won't be available | |
1199 | * if the pageout thread can't run)... instead we'll just depend on the throttle | |
1200 | * that the pageout thread now has in place to deal with external files | |
1201 | */ | |
1202 | local_flags = CL_PAGEOUT; | |
1203 | else | |
1204 | local_flags = CL_PAGEOUT | CL_THROTTLE; | |
1205 | ||
1206 | if ((flags & UPL_IOSYNC) == 0) | |
1207 | local_flags |= CL_ASYNC; | |
1208 | if ((flags & UPL_NOCOMMIT) == 0) | |
1209 | local_flags |= CL_COMMIT; | |
1210 | if ((flags & UPL_KEEPCACHED)) | |
1211 | local_flags |= CL_KEEPCACHED; | |
1212 | ||
1213 | ||
1214 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
1215 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1216 | ||
1217 | /* | |
1218 | * If they didn't specify any I/O, then we are done... | |
1219 | * we can't issue an abort because we don't know how | |
1220 | * big the upl really is | |
1221 | */ | |
1222 | if (size <= 0) | |
1223 | return (EINVAL); | |
1224 | ||
1225 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
1226 | if (local_flags & CL_COMMIT) | |
1227 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1228 | return (EROFS); | |
1229 | } | |
1230 | /* | |
1231 | * can't page-in from a negative offset | |
1232 | * or if we're starting beyond the EOF | |
1233 | * or if the file offset isn't page aligned | |
1234 | * or the size requested isn't a multiple of PAGE_SIZE | |
1235 | */ | |
1236 | if (f_offset < 0 || f_offset >= filesize || | |
1237 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
1238 | if (local_flags & CL_COMMIT) | |
1239 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1240 | return (EINVAL); | |
1241 | } | |
1242 | max_size = filesize - f_offset; | |
1243 | ||
1244 | if (size < max_size) | |
1245 | io_size = size; | |
1246 | else | |
1247 | io_size = max_size; | |
1248 | ||
1249 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1250 | ||
1251 | if (size > rounded_size) { | |
1252 | if (local_flags & CL_COMMIT) | |
1253 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, | |
1254 | UPL_ABORT_FREE_ON_EMPTY); | |
1255 | } | |
1256 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) | |
1257 | wbp->cl_hasbeenpaged = 1; | |
1258 | ||
1259 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
1260 | local_flags, (buf_t)NULL, (struct clios *)NULL)); | |
1261 | } | |
1262 | ||
1263 | int | |
1264 | cluster_pagein(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, | |
1265 | int size, off_t filesize, int flags) | |
1266 | { | |
1267 | u_int io_size; | |
1268 | int rounded_size; | |
1269 | off_t max_size; | |
1270 | int retval; | |
1271 | int local_flags = 0; | |
1272 | ||
1273 | if (upl == NULL || size < 0) | |
1274 | panic("cluster_pagein: NULL upl passed in"); | |
1275 | ||
1276 | if ((flags & UPL_IOSYNC) == 0) | |
1277 | local_flags |= CL_ASYNC; | |
1278 | if ((flags & UPL_NOCOMMIT) == 0) | |
1279 | local_flags |= CL_COMMIT; | |
1280 | ||
1281 | ||
1282 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
1283 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1284 | ||
1285 | /* | |
1286 | * can't page-in from a negative offset | |
1287 | * or if we're starting beyond the EOF | |
1288 | * or if the file offset isn't page aligned | |
1289 | * or the size requested isn't a multiple of PAGE_SIZE | |
1290 | */ | |
1291 | if (f_offset < 0 || f_offset >= filesize || | |
1292 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { | |
1293 | if (local_flags & CL_COMMIT) | |
1294 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1295 | return (EINVAL); | |
1296 | } | |
1297 | max_size = filesize - f_offset; | |
1298 | ||
1299 | if (size < max_size) | |
1300 | io_size = size; | |
1301 | else | |
1302 | io_size = max_size; | |
1303 | ||
1304 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1305 | ||
1306 | if (size > rounded_size && (local_flags & CL_COMMIT)) | |
1307 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
1308 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1309 | ||
1310 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
1311 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL); | |
1312 | ||
1313 | if (retval == 0 && !(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF)) { | |
1314 | struct cl_readahead *rap; | |
1315 | ||
1316 | rap = cluster_get_rap(vp); | |
1317 | ||
1318 | if (rap != NULL) { | |
1319 | struct cl_extent extent; | |
1320 | ||
1321 | extent.b_addr = (daddr64_t)(f_offset / PAGE_SIZE_64); | |
1322 | extent.e_addr = (daddr64_t)((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64); | |
1323 | ||
1324 | if (rounded_size == PAGE_SIZE) { | |
1325 | /* | |
1326 | * we haven't read the last page in of the file yet | |
1327 | * so let's try to read ahead if we're in | |
1328 | * a sequential access pattern | |
1329 | */ | |
1330 | cluster_rd_ahead(vp, &extent, filesize, rap); | |
1331 | } | |
1332 | rap->cl_lastr = extent.e_addr; | |
1333 | ||
1334 | lck_mtx_unlock(&rap->cl_lockr); | |
1335 | } | |
1336 | } | |
1337 | return (retval); | |
1338 | } | |
1339 | ||
1340 | int | |
1341 | cluster_bp(buf_t bp) | |
1342 | { | |
1343 | off_t f_offset; | |
1344 | int flags; | |
1345 | ||
1346 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, | |
1347 | (int)bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
1348 | ||
1349 | if (bp->b_flags & B_READ) | |
1350 | flags = CL_ASYNC | CL_READ; | |
1351 | else | |
1352 | flags = CL_ASYNC; | |
1353 | ||
1354 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
1355 | ||
1356 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL)); | |
1357 | } | |
1358 | ||
1359 | int | |
1360 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) | |
1361 | { | |
1362 | int prev_resid; | |
1363 | u_int clip_size; | |
1364 | off_t max_io_size; | |
1365 | int upl_size; | |
1366 | int upl_flags; | |
1367 | upl_t upl; | |
1368 | int retval = 0; | |
1369 | int flags; | |
1370 | ||
1371 | flags = xflags; | |
1372 | ||
1373 | if (vp->v_flag & VNOCACHE_DATA) | |
1374 | flags |= IO_NOCACHE; | |
1375 | ||
1376 | if ( (!(flags & IO_NOCACHE)) || (!uio) || (!UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) { | |
1377 | /* | |
1378 | * go do a write through the cache if one of the following is true.... | |
1379 | * NOCACHE is not true | |
1380 | * there is no uio structure or it doesn't target USERSPACE | |
1381 | */ | |
1382 | return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags)); | |
1383 | } | |
1384 | ||
1385 | #if LP64_DEBUG | |
1386 | if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { | |
1387 | panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); | |
1388 | } | |
1389 | #endif /* LP64_DEBUG */ | |
1390 | ||
1391 | while (uio_resid(uio) && uio->uio_offset < newEOF && retval == 0) { | |
1392 | user_size_t iov_len; | |
1393 | user_addr_t iov_base; | |
1394 | ||
1395 | /* | |
1396 | * we know we have a resid, so this is safe | |
1397 | * skip over any emtpy vectors | |
1398 | */ | |
1399 | uio_update(uio, (user_size_t)0); | |
1400 | ||
1401 | iov_len = uio_curriovlen(uio); | |
1402 | iov_base = uio_curriovbase(uio); | |
1403 | ||
1404 | upl_size = PAGE_SIZE; | |
1405 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
1406 | ||
1407 | // LP64todo - fix this! | |
1408 | if ((vm_map_get_upl(current_map(), | |
1409 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
1410 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
1411 | /* | |
1412 | * the user app must have passed in an invalid address | |
1413 | */ | |
1414 | return (EFAULT); | |
1415 | } | |
1416 | ||
1417 | /* | |
1418 | * We check every vector target but if it is physically | |
1419 | * contiguous space, we skip the sanity checks. | |
1420 | */ | |
1421 | if (upl_flags & UPL_PHYS_CONTIG) { | |
1422 | int zflags; | |
1423 | ||
1424 | zflags = flags & ~IO_TAILZEROFILL; | |
1425 | zflags |= IO_HEADZEROFILL; | |
1426 | ||
1427 | if (flags & IO_HEADZEROFILL) { | |
1428 | /* | |
1429 | * in case we have additional vectors, we don't want to do this again | |
1430 | */ | |
1431 | flags &= ~IO_HEADZEROFILL; | |
1432 | ||
1433 | if ((retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, zflags))) | |
1434 | return(retval); | |
1435 | } | |
1436 | retval = cluster_phys_write(vp, uio, newEOF); | |
1437 | ||
1438 | if (uio_resid(uio) == 0 && (flags & IO_TAILZEROFILL)) { | |
1439 | return (cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, zflags)); | |
1440 | } | |
1441 | } | |
1442 | else if ((uio_resid(uio) < PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) { | |
1443 | /* | |
1444 | * we're here because we're don't have a physically contiguous target buffer | |
1445 | * go do a write through the cache if one of the following is true.... | |
1446 | * the total xfer size is less than a page... | |
1447 | * we're being asked to ZEROFILL either the head or the tail of the I/O... | |
1448 | */ | |
1449 | return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags)); | |
1450 | } | |
1451 | // LP64todo - fix this! | |
1452 | else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) { | |
1453 | if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) { | |
1454 | /* | |
1455 | * Bring the file offset write up to a pagesize boundary | |
1456 | * this will also bring the base address to a page boundary | |
1457 | * since they both are currently on the same offset within a page | |
1458 | * note: if we get here, uio->uio_resid is greater than PAGE_SIZE | |
1459 | * so the computed clip_size must always be less than the current uio_resid | |
1460 | */ | |
1461 | clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64)); | |
1462 | ||
1463 | /* | |
1464 | * Fake the resid going into the cluster_write_x call | |
1465 | * and restore it on the way out. | |
1466 | */ | |
1467 | // LP64todo - fix this | |
1468 | prev_resid = uio_resid(uio); | |
1469 | uio_setresid(uio, clip_size); | |
1470 | ||
1471 | retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); | |
1472 | ||
1473 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
1474 | } else { | |
1475 | /* | |
1476 | * can't get both the file offset and the buffer offset aligned to a page boundary | |
1477 | * so fire an I/O through the cache for this entire vector | |
1478 | */ | |
1479 | // LP64todo - fix this | |
1480 | clip_size = iov_len; | |
1481 | // LP64todo - fix this | |
1482 | prev_resid = uio_resid(uio); | |
1483 | uio_setresid(uio, clip_size); | |
1484 | ||
1485 | retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); | |
1486 | ||
1487 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
1488 | } | |
1489 | } else { | |
1490 | /* | |
1491 | * If we come in here, we know the offset into | |
1492 | * the file is on a pagesize boundary and the | |
1493 | * target buffer address is also on a page boundary | |
1494 | */ | |
1495 | max_io_size = newEOF - uio->uio_offset; | |
1496 | // LP64todo - fix this | |
1497 | clip_size = uio_resid(uio); | |
1498 | if (iov_len < clip_size) | |
1499 | // LP64todo - fix this! | |
1500 | clip_size = iov_len; | |
1501 | if (max_io_size < clip_size) | |
1502 | clip_size = max_io_size; | |
1503 | ||
1504 | if (clip_size < PAGE_SIZE) { | |
1505 | /* | |
1506 | * Take care of tail end of write in this vector | |
1507 | */ | |
1508 | // LP64todo - fix this | |
1509 | prev_resid = uio_resid(uio); | |
1510 | uio_setresid(uio, clip_size); | |
1511 | ||
1512 | retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); | |
1513 | ||
1514 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
1515 | } else { | |
1516 | /* round clip_size down to a multiple of pagesize */ | |
1517 | clip_size = clip_size & ~(PAGE_MASK); | |
1518 | // LP64todo - fix this | |
1519 | prev_resid = uio_resid(uio); | |
1520 | uio_setresid(uio, clip_size); | |
1521 | ||
1522 | retval = cluster_nocopy_write(vp, uio, newEOF); | |
1523 | ||
1524 | if ((retval == 0) && uio_resid(uio)) | |
1525 | retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); | |
1526 | ||
1527 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
1528 | } | |
1529 | } /* end else */ | |
1530 | } /* end while */ | |
1531 | ||
1532 | return(retval); | |
1533 | } | |
1534 | ||
1535 | ||
1536 | static int | |
1537 | cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF) | |
1538 | { | |
1539 | upl_t upl; | |
1540 | upl_page_info_t *pl; | |
1541 | vm_offset_t upl_offset; | |
1542 | int io_size; | |
1543 | int io_flag; | |
1544 | int upl_size; | |
1545 | int upl_needed_size; | |
1546 | int pages_in_pl; | |
1547 | int upl_flags; | |
1548 | kern_return_t kret; | |
1549 | int i; | |
1550 | int force_data_sync; | |
1551 | int error = 0; | |
1552 | struct clios iostate; | |
1553 | struct cl_writebehind *wbp; | |
1554 | ||
1555 | ||
1556 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, | |
1557 | (int)uio->uio_offset, (int)uio_resid(uio), | |
1558 | (int)newEOF, 0, 0); | |
1559 | ||
1560 | /* | |
1561 | * When we enter this routine, we know | |
1562 | * -- the offset into the file is on a pagesize boundary | |
1563 | * -- the resid is a page multiple | |
1564 | * -- the resid will not exceed iov_len | |
1565 | */ | |
1566 | ||
1567 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) { | |
1568 | ||
1569 | cluster_try_push(wbp, vp, newEOF, 0, 1); | |
1570 | ||
1571 | lck_mtx_unlock(&wbp->cl_lockw); | |
1572 | } | |
1573 | iostate.io_completed = 0; | |
1574 | iostate.io_issued = 0; | |
1575 | iostate.io_error = 0; | |
1576 | iostate.io_wanted = 0; | |
1577 | ||
1578 | while (uio_resid(uio) && uio->uio_offset < newEOF && error == 0) { | |
1579 | user_addr_t iov_base; | |
1580 | ||
1581 | io_size = uio_resid(uio); | |
1582 | ||
1583 | if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
1584 | io_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
1585 | ||
1586 | iov_base = uio_curriovbase(uio); | |
1587 | ||
1588 | // LP64todo - fix this! | |
1589 | upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; | |
1590 | ||
1591 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; | |
1592 | ||
1593 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
1594 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
1595 | ||
1596 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
1597 | pages_in_pl = 0; | |
1598 | upl_size = upl_needed_size; | |
1599 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
1600 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
1601 | ||
1602 | // LP64todo - fix this! | |
1603 | kret = vm_map_get_upl(current_map(), | |
1604 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
1605 | &upl_size, | |
1606 | &upl, | |
1607 | NULL, | |
1608 | &pages_in_pl, | |
1609 | &upl_flags, | |
1610 | force_data_sync); | |
1611 | ||
1612 | if (kret != KERN_SUCCESS) { | |
1613 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
1614 | 0, 0, 0, kret, 0); | |
1615 | /* | |
1616 | * cluster_nocopy_write: failed to get pagelist | |
1617 | * | |
1618 | * we may have already spun some portion of this request | |
1619 | * off as async requests... we need to wait for the I/O | |
1620 | * to complete before returning | |
1621 | */ | |
1622 | goto wait_for_writes; | |
1623 | } | |
1624 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1625 | pages_in_pl = upl_size / PAGE_SIZE; | |
1626 | ||
1627 | for (i = 0; i < pages_in_pl; i++) { | |
1628 | if (!upl_valid_page(pl, i)) | |
1629 | break; | |
1630 | } | |
1631 | if (i == pages_in_pl) | |
1632 | break; | |
1633 | ||
1634 | /* | |
1635 | * didn't get all the pages back that we | |
1636 | * needed... release this upl and try again | |
1637 | */ | |
1638 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, | |
1639 | UPL_ABORT_FREE_ON_EMPTY); | |
1640 | } | |
1641 | if (force_data_sync >= 3) { | |
1642 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
1643 | i, pages_in_pl, upl_size, kret, 0); | |
1644 | /* | |
1645 | * for some reason, we couldn't acquire a hold on all | |
1646 | * the pages needed in the user's address space | |
1647 | * | |
1648 | * we may have already spun some portion of this request | |
1649 | * off as async requests... we need to wait for the I/O | |
1650 | * to complete before returning | |
1651 | */ | |
1652 | goto wait_for_writes; | |
1653 | } | |
1654 | ||
1655 | /* | |
1656 | * Consider the possibility that upl_size wasn't satisfied. | |
1657 | */ | |
1658 | if (upl_size != upl_needed_size) | |
1659 | io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; | |
1660 | ||
1661 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
1662 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); | |
1663 | ||
1664 | if (io_size == 0) { | |
1665 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, | |
1666 | UPL_ABORT_FREE_ON_EMPTY); | |
1667 | /* | |
1668 | * we may have already spun some portion of this request | |
1669 | * off as async requests... we need to wait for the I/O | |
1670 | * to complete before returning | |
1671 | */ | |
1672 | goto wait_for_writes; | |
1673 | } | |
1674 | /* | |
1675 | * Now look for pages already in the cache | |
1676 | * and throw them away. | |
1677 | * uio->uio_offset is page aligned within the file | |
1678 | * io_size is a multiple of PAGE_SIZE | |
1679 | */ | |
1680 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL); | |
1681 | ||
1682 | /* | |
1683 | * we want push out these writes asynchronously so that we can overlap | |
1684 | * the preparation of the next I/O | |
1685 | * if there are already too many outstanding writes | |
1686 | * wait until some complete before issuing the next | |
1687 | */ | |
1688 | lck_mtx_lock(cl_mtxp); | |
1689 | ||
1690 | while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { | |
1691 | iostate.io_wanted = 1; | |
1692 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0); | |
1693 | } | |
1694 | lck_mtx_unlock(cl_mtxp); | |
1695 | ||
1696 | if (iostate.io_error) { | |
1697 | /* | |
1698 | * one of the earlier writes we issued ran into a hard error | |
1699 | * don't issue any more writes, cleanup the UPL | |
1700 | * that was just created but not used, then | |
1701 | * go wait for all writes that are part of this stream | |
1702 | * to complete before returning the error to the caller | |
1703 | */ | |
1704 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, | |
1705 | UPL_ABORT_FREE_ON_EMPTY); | |
1706 | ||
1707 | goto wait_for_writes; | |
1708 | } | |
1709 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE; | |
1710 | ||
1711 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, | |
1712 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
1713 | ||
1714 | error = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
1715 | io_size, io_flag, (buf_t)NULL, &iostate); | |
1716 | ||
1717 | uio_update(uio, (user_size_t)io_size); | |
1718 | ||
1719 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, | |
1720 | (int)upl_offset, (int)uio->uio_offset, (int)uio_resid(uio), error, 0); | |
1721 | ||
1722 | } /* end while */ | |
1723 | ||
1724 | wait_for_writes: | |
1725 | /* | |
1726 | * make sure all async writes issued as part of this stream | |
1727 | * have completed before we return | |
1728 | */ | |
1729 | lck_mtx_lock(cl_mtxp); | |
1730 | ||
1731 | while (iostate.io_issued != iostate.io_completed) { | |
1732 | iostate.io_wanted = 1; | |
1733 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0); | |
1734 | } | |
1735 | lck_mtx_unlock(cl_mtxp); | |
1736 | ||
1737 | if (iostate.io_error) | |
1738 | error = iostate.io_error; | |
1739 | ||
1740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, | |
1741 | (int)uio->uio_offset, (int)uio->uio_resid, error, 4, 0); | |
1742 | ||
1743 | return (error); | |
1744 | } | |
1745 | ||
1746 | ||
1747 | static int | |
1748 | cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF) | |
1749 | { | |
1750 | upl_page_info_t *pl; | |
1751 | addr64_t src_paddr; | |
1752 | upl_t upl; | |
1753 | vm_offset_t upl_offset; | |
1754 | int tail_size; | |
1755 | int io_size; | |
1756 | int upl_size; | |
1757 | int upl_needed_size; | |
1758 | int pages_in_pl; | |
1759 | int upl_flags; | |
1760 | kern_return_t kret; | |
1761 | int error = 0; | |
1762 | user_addr_t iov_base; | |
1763 | int devblocksize; | |
1764 | struct cl_writebehind *wbp; | |
1765 | ||
1766 | devblocksize = vp->v_mount->mnt_devblocksize; | |
1767 | /* | |
1768 | * When we enter this routine, we know | |
1769 | * -- the resid will not exceed iov_len | |
1770 | * -- the vector target address is physcially contiguous | |
1771 | */ | |
1772 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) { | |
1773 | ||
1774 | cluster_try_push(wbp, vp, newEOF, 0, 1); | |
1775 | ||
1776 | lck_mtx_unlock(&wbp->cl_lockw); | |
1777 | } | |
1778 | #if LP64_DEBUG | |
1779 | if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { | |
1780 | panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); | |
1781 | } | |
1782 | #endif /* LP64_DEBUG */ | |
1783 | ||
1784 | // LP64todo - fix this! | |
1785 | io_size = (int)uio_curriovlen(uio); | |
1786 | iov_base = uio_curriovbase(uio); | |
1787 | ||
1788 | upl_offset = CAST_DOWN(upl_offset_t, iov_base) & PAGE_MASK; | |
1789 | upl_needed_size = upl_offset + io_size; | |
1790 | ||
1791 | pages_in_pl = 0; | |
1792 | upl_size = upl_needed_size; | |
1793 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
1794 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
1795 | ||
1796 | // LP64todo - fix this! | |
1797 | kret = vm_map_get_upl(current_map(), | |
1798 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
1799 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); | |
1800 | ||
1801 | if (kret != KERN_SUCCESS) { | |
1802 | /* | |
1803 | * cluster_phys_write: failed to get pagelist | |
1804 | * note: return kret here | |
1805 | */ | |
1806 | return(EINVAL); | |
1807 | } | |
1808 | /* | |
1809 | * Consider the possibility that upl_size wasn't satisfied. | |
1810 | * This is a failure in the physical memory case. | |
1811 | */ | |
1812 | if (upl_size < upl_needed_size) { | |
1813 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1814 | return(EINVAL); | |
1815 | } | |
1816 | pl = ubc_upl_pageinfo(upl); | |
1817 | ||
1818 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; | |
1819 | ||
1820 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
1821 | int head_size; | |
1822 | ||
1823 | head_size = devblocksize - (int)(uio->uio_offset & (devblocksize - 1)); | |
1824 | ||
1825 | if (head_size > io_size) | |
1826 | head_size = io_size; | |
1827 | ||
1828 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0); | |
1829 | ||
1830 | if (error) { | |
1831 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1832 | ||
1833 | return(EINVAL); | |
1834 | } | |
1835 | upl_offset += head_size; | |
1836 | src_paddr += head_size; | |
1837 | io_size -= head_size; | |
1838 | } | |
1839 | tail_size = io_size & (devblocksize - 1); | |
1840 | io_size -= tail_size; | |
1841 | ||
1842 | if (io_size) { | |
1843 | /* | |
1844 | * issue a synchronous write to cluster_io | |
1845 | */ | |
1846 | error = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
1847 | io_size, CL_DEV_MEMORY, (buf_t)NULL, (struct clios *)NULL); | |
1848 | } | |
1849 | if (error == 0) { | |
1850 | /* | |
1851 | * The cluster_io write completed successfully, | |
1852 | * update the uio structure | |
1853 | */ | |
1854 | uio_update(uio, (user_size_t)io_size); | |
1855 | ||
1856 | src_paddr += io_size; | |
1857 | ||
1858 | if (tail_size) | |
1859 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0); | |
1860 | } | |
1861 | /* | |
1862 | * just release our hold on the physically contiguous | |
1863 | * region without changing any state | |
1864 | */ | |
1865 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1866 | ||
1867 | return (error); | |
1868 | } | |
1869 | ||
1870 | ||
1871 | static int | |
1872 | cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int flags) | |
1873 | { | |
1874 | upl_page_info_t *pl; | |
1875 | upl_t upl; | |
1876 | vm_offset_t upl_offset = 0; | |
1877 | int upl_size; | |
1878 | off_t upl_f_offset; | |
1879 | int pages_in_upl; | |
1880 | int start_offset; | |
1881 | int xfer_resid; | |
1882 | int io_size; | |
1883 | int io_offset; | |
1884 | int bytes_to_zero; | |
1885 | int bytes_to_move; | |
1886 | kern_return_t kret; | |
1887 | int retval = 0; | |
1888 | int io_resid; | |
1889 | long long total_size; | |
1890 | long long zero_cnt; | |
1891 | off_t zero_off; | |
1892 | long long zero_cnt1; | |
1893 | off_t zero_off1; | |
1894 | struct cl_extent cl; | |
1895 | int intersection; | |
1896 | struct cl_writebehind *wbp; | |
1897 | ||
1898 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) | |
1899 | { | |
1900 | if (wbp->cl_hasbeenpaged) { | |
1901 | /* | |
1902 | * this vnode had pages cleaned to it by | |
1903 | * the pager which indicates that either | |
1904 | * it's not very 'hot', or the system is | |
1905 | * being overwhelmed by a lot of dirty | |
1906 | * data being delayed in the VM cache... | |
1907 | * in either event, we'll push our remaining | |
1908 | * delayed data at this point... this will | |
1909 | * be more efficient than paging out 1 page at | |
1910 | * a time, and will also act as a throttle | |
1911 | * by delaying this client from writing any | |
1912 | * more data until all his delayed data has | |
1913 | * at least been queued to the uderlying driver. | |
1914 | */ | |
1915 | if (wbp->cl_number || wbp->cl_scmap) | |
1916 | cluster_push_EOF(vp, newEOF); | |
1917 | ||
1918 | wbp->cl_hasbeenpaged = 0; | |
1919 | } | |
1920 | } | |
1921 | if (uio) { | |
1922 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
1923 | (int)uio->uio_offset, uio_resid(uio), (int)oldEOF, (int)newEOF, 0); | |
1924 | ||
1925 | // LP64todo - fix this | |
1926 | io_resid = uio_resid(uio); | |
1927 | } else { | |
1928 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
1929 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
1930 | ||
1931 | io_resid = 0; | |
1932 | } | |
1933 | zero_cnt = 0; | |
1934 | zero_cnt1 = 0; | |
1935 | zero_off = 0; | |
1936 | zero_off1 = 0; | |
1937 | ||
1938 | if (flags & IO_HEADZEROFILL) { | |
1939 | /* | |
1940 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
1941 | * so we zero fill the intervening space between the old EOF and the offset | |
1942 | * where the next chunk of real data begins.... ftruncate will also use this | |
1943 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
1944 | * uio structure will not be provided | |
1945 | */ | |
1946 | if (uio) { | |
1947 | if (headOff < uio->uio_offset) { | |
1948 | zero_cnt = uio->uio_offset - headOff; | |
1949 | zero_off = headOff; | |
1950 | } | |
1951 | } else if (headOff < newEOF) { | |
1952 | zero_cnt = newEOF - headOff; | |
1953 | zero_off = headOff; | |
1954 | } | |
1955 | } | |
1956 | if (flags & IO_TAILZEROFILL) { | |
1957 | if (uio) { | |
1958 | // LP64todo - fix this | |
1959 | zero_off1 = uio->uio_offset + uio_resid(uio); | |
1960 | ||
1961 | if (zero_off1 < tailOff) | |
1962 | zero_cnt1 = tailOff - zero_off1; | |
1963 | } | |
1964 | } | |
1965 | if (zero_cnt == 0 && uio == (struct uio *) 0) { | |
1966 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, | |
1967 | retval, 0, 0, 0, 0); | |
1968 | return (0); | |
1969 | } | |
1970 | ||
1971 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { | |
1972 | /* | |
1973 | * for this iteration of the loop, figure out where our starting point is | |
1974 | */ | |
1975 | if (zero_cnt) { | |
1976 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
1977 | upl_f_offset = zero_off - start_offset; | |
1978 | } else if (io_resid) { | |
1979 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
1980 | upl_f_offset = uio->uio_offset - start_offset; | |
1981 | } else { | |
1982 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
1983 | upl_f_offset = zero_off1 - start_offset; | |
1984 | } | |
1985 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
1986 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
1987 | ||
1988 | if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
1989 | total_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
1990 | ||
1991 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); | |
1992 | ||
1993 | if (uio && ((flags & (IO_NOCACHE | IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { | |
1994 | /* | |
1995 | * assumption... total_size <= io_resid | |
1996 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set | |
1997 | */ | |
1998 | if ((start_offset + total_size) > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
1999 | total_size -= start_offset; | |
2000 | xfer_resid = total_size; | |
2001 | ||
2002 | retval = cluster_copy_ubc_data(vp, uio, &xfer_resid, 1); | |
2003 | ||
2004 | if (retval) | |
2005 | break; | |
2006 | ||
2007 | io_resid -= (total_size - xfer_resid); | |
2008 | total_size = xfer_resid; | |
2009 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2010 | upl_f_offset = uio->uio_offset - start_offset; | |
2011 | ||
2012 | if (total_size == 0) { | |
2013 | if (start_offset) { | |
2014 | /* | |
2015 | * the write did not finish on a page boundary | |
2016 | * which will leave upl_f_offset pointing to the | |
2017 | * beginning of the last page written instead of | |
2018 | * the page beyond it... bump it in this case | |
2019 | * so that the cluster code records the last page | |
2020 | * written as dirty | |
2021 | */ | |
2022 | upl_f_offset += PAGE_SIZE_64; | |
2023 | } | |
2024 | upl_size = 0; | |
2025 | ||
2026 | goto check_cluster; | |
2027 | } | |
2028 | } | |
2029 | /* | |
2030 | * compute the size of the upl needed to encompass | |
2031 | * the requested write... limit each call to cluster_io | |
2032 | * to the maximum UPL size... cluster_io will clip if | |
2033 | * this exceeds the maximum io_size for the device, | |
2034 | * make sure to account for | |
2035 | * a starting offset that's not page aligned | |
2036 | */ | |
2037 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2038 | ||
2039 | if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
2040 | upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
2041 | ||
2042 | pages_in_upl = upl_size / PAGE_SIZE; | |
2043 | io_size = upl_size - start_offset; | |
2044 | ||
2045 | if ((long long)io_size > total_size) | |
2046 | io_size = total_size; | |
2047 | ||
2048 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); | |
2049 | ||
2050 | ||
2051 | /* | |
2052 | * Gather the pages from the buffer cache. | |
2053 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
2054 | * that we intend to modify these pages. | |
2055 | */ | |
2056 | kret = ubc_create_upl(vp, | |
2057 | upl_f_offset, | |
2058 | upl_size, | |
2059 | &upl, | |
2060 | &pl, | |
2061 | UPL_SET_LITE | UPL_WILL_MODIFY); | |
2062 | if (kret != KERN_SUCCESS) | |
2063 | panic("cluster_write: failed to get pagelist"); | |
2064 | ||
2065 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, | |
2066 | (int)upl, (int)upl_f_offset, start_offset, 0, 0); | |
2067 | ||
2068 | if (start_offset && !upl_valid_page(pl, 0)) { | |
2069 | int read_size; | |
2070 | ||
2071 | /* | |
2072 | * we're starting in the middle of the first page of the upl | |
2073 | * and the page isn't currently valid, so we're going to have | |
2074 | * to read it in first... this is a synchronous operation | |
2075 | */ | |
2076 | read_size = PAGE_SIZE; | |
2077 | ||
2078 | if ((upl_f_offset + read_size) > newEOF) | |
2079 | read_size = newEOF - upl_f_offset; | |
2080 | ||
2081 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, | |
2082 | CL_READ, (buf_t)NULL, (struct clios *)NULL); | |
2083 | if (retval) { | |
2084 | /* | |
2085 | * we had an error during the read which causes us to abort | |
2086 | * the current cluster_write request... before we do, we need | |
2087 | * to release the rest of the pages in the upl without modifying | |
2088 | * there state and mark the failed page in error | |
2089 | */ | |
2090 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); | |
2091 | ||
2092 | if (upl_size > PAGE_SIZE) | |
2093 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
2094 | ||
2095 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
2096 | (int)upl, 0, 0, retval, 0); | |
2097 | break; | |
2098 | } | |
2099 | } | |
2100 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
2101 | /* | |
2102 | * the last offset we're writing to in this upl does not end on a page | |
2103 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
2104 | * pre-read this page in if it isn't already valid | |
2105 | */ | |
2106 | upl_offset = upl_size - PAGE_SIZE; | |
2107 | ||
2108 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
2109 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
2110 | int read_size; | |
2111 | ||
2112 | read_size = PAGE_SIZE; | |
2113 | ||
2114 | if ((upl_f_offset + upl_offset + read_size) > newEOF) | |
2115 | read_size = newEOF - (upl_f_offset + upl_offset); | |
2116 | ||
2117 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, | |
2118 | CL_READ, (buf_t)NULL, (struct clios *)NULL); | |
2119 | if (retval) { | |
2120 | /* | |
2121 | * we had an error during the read which causes us to abort | |
2122 | * the current cluster_write request... before we do, we | |
2123 | * need to release the rest of the pages in the upl without | |
2124 | * modifying there state and mark the failed page in error | |
2125 | */ | |
2126 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); | |
2127 | ||
2128 | if (upl_size > PAGE_SIZE) | |
2129 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
2130 | ||
2131 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
2132 | (int)upl, 0, 0, retval, 0); | |
2133 | break; | |
2134 | } | |
2135 | } | |
2136 | } | |
2137 | xfer_resid = io_size; | |
2138 | io_offset = start_offset; | |
2139 | ||
2140 | while (zero_cnt && xfer_resid) { | |
2141 | ||
2142 | if (zero_cnt < (long long)xfer_resid) | |
2143 | bytes_to_zero = zero_cnt; | |
2144 | else | |
2145 | bytes_to_zero = xfer_resid; | |
2146 | ||
2147 | if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2148 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2149 | } else { | |
2150 | int zero_pg_index; | |
2151 | ||
2152 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2153 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2154 | ||
2155 | if ( !upl_valid_page(pl, zero_pg_index)) { | |
2156 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2157 | ||
2158 | } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && | |
2159 | !upl_dirty_page(pl, zero_pg_index)) { | |
2160 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2161 | } | |
2162 | } | |
2163 | xfer_resid -= bytes_to_zero; | |
2164 | zero_cnt -= bytes_to_zero; | |
2165 | zero_off += bytes_to_zero; | |
2166 | io_offset += bytes_to_zero; | |
2167 | } | |
2168 | if (xfer_resid && io_resid) { | |
2169 | bytes_to_move = min(io_resid, xfer_resid); | |
2170 | ||
2171 | retval = cluster_copy_upl_data(uio, upl, io_offset, bytes_to_move); | |
2172 | ||
2173 | if (retval) { | |
2174 | ||
2175 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
2176 | ||
2177 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
2178 | (int)upl, 0, 0, retval, 0); | |
2179 | } else { | |
2180 | io_resid -= bytes_to_move; | |
2181 | xfer_resid -= bytes_to_move; | |
2182 | io_offset += bytes_to_move; | |
2183 | } | |
2184 | } | |
2185 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
2186 | ||
2187 | if (zero_cnt1 < (long long)xfer_resid) | |
2188 | bytes_to_zero = zero_cnt1; | |
2189 | else | |
2190 | bytes_to_zero = xfer_resid; | |
2191 | ||
2192 | if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2193 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2194 | } else { | |
2195 | int zero_pg_index; | |
2196 | ||
2197 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64)); | |
2198 | zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64); | |
2199 | ||
2200 | if ( !upl_valid_page(pl, zero_pg_index)) { | |
2201 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2202 | } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && | |
2203 | !upl_dirty_page(pl, zero_pg_index)) { | |
2204 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2205 | } | |
2206 | } | |
2207 | xfer_resid -= bytes_to_zero; | |
2208 | zero_cnt1 -= bytes_to_zero; | |
2209 | zero_off1 += bytes_to_zero; | |
2210 | io_offset += bytes_to_zero; | |
2211 | } | |
2212 | ||
2213 | if (retval == 0) { | |
2214 | int cl_index; | |
2215 | int can_delay; | |
2216 | ||
2217 | io_size += start_offset; | |
2218 | ||
2219 | if ((upl_f_offset + io_size) >= newEOF && io_size < upl_size) { | |
2220 | /* | |
2221 | * if we're extending the file with this write | |
2222 | * we'll zero fill the rest of the page so that | |
2223 | * if the file gets extended again in such a way as to leave a | |
2224 | * hole starting at this EOF, we'll have zero's in the correct spot | |
2225 | */ | |
2226 | cluster_zero(upl, io_size, upl_size - io_size, NULL); | |
2227 | } | |
2228 | if (flags & IO_SYNC) | |
2229 | /* | |
2230 | * if the IO_SYNC flag is set than we need to | |
2231 | * bypass any clusters and immediately issue | |
2232 | * the I/O | |
2233 | */ | |
2234 | goto issue_io; | |
2235 | check_cluster: | |
2236 | /* | |
2237 | * take the lock to protect our accesses | |
2238 | * of the writebehind and sparse cluster state | |
2239 | */ | |
2240 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
2241 | ||
2242 | /* | |
2243 | * calculate the last logical block number | |
2244 | * that this delayed I/O encompassed | |
2245 | */ | |
2246 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
2247 | ||
2248 | if (wbp->cl_scmap) { | |
2249 | ||
2250 | if ( !(flags & IO_NOCACHE)) { | |
2251 | /* | |
2252 | * we've fallen into the sparse | |
2253 | * cluster method of delaying dirty pages | |
2254 | * first, we need to release the upl if we hold one | |
2255 | * since pages in it may be present in the sparse cluster map | |
2256 | * and may span 2 separate buckets there... if they do and | |
2257 | * we happen to have to flush a bucket to make room and it intersects | |
2258 | * this upl, a deadlock may result on page BUSY | |
2259 | */ | |
2260 | if (upl_size) | |
2261 | ubc_upl_commit_range(upl, 0, upl_size, | |
2262 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2263 | ||
2264 | sparse_cluster_add(wbp, vp, &cl, newEOF); | |
2265 | ||
2266 | lck_mtx_unlock(&wbp->cl_lockw); | |
2267 | ||
2268 | continue; | |
2269 | } | |
2270 | /* | |
2271 | * must have done cached writes that fell into | |
2272 | * the sparse cluster mechanism... we've switched | |
2273 | * to uncached writes on the file, so go ahead | |
2274 | * and push whatever's in the sparse map | |
2275 | * and switch back to normal clustering | |
2276 | * | |
2277 | * see the comment above concerning a possible deadlock... | |
2278 | */ | |
2279 | if (upl_size) { | |
2280 | ubc_upl_commit_range(upl, 0, upl_size, | |
2281 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2282 | /* | |
2283 | * setting upl_size to 0 keeps us from committing a | |
2284 | * second time in the start_new_cluster path | |
2285 | */ | |
2286 | upl_size = 0; | |
2287 | } | |
2288 | sparse_cluster_push(wbp, vp, newEOF, 1); | |
2289 | ||
2290 | wbp->cl_number = 0; | |
2291 | /* | |
2292 | * no clusters of either type present at this point | |
2293 | * so just go directly to start_new_cluster since | |
2294 | * we know we need to delay this I/O since we've | |
2295 | * already released the pages back into the cache | |
2296 | * to avoid the deadlock with sparse_cluster_push | |
2297 | */ | |
2298 | goto start_new_cluster; | |
2299 | } | |
2300 | upl_offset = 0; | |
2301 | ||
2302 | if (wbp->cl_number == 0) | |
2303 | /* | |
2304 | * no clusters currently present | |
2305 | */ | |
2306 | goto start_new_cluster; | |
2307 | ||
2308 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
2309 | /* | |
2310 | * check each cluster that we currently hold | |
2311 | * try to merge some or all of this write into | |
2312 | * one or more of the existing clusters... if | |
2313 | * any portion of the write remains, start a | |
2314 | * new cluster | |
2315 | */ | |
2316 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { | |
2317 | /* | |
2318 | * the current write starts at or after the current cluster | |
2319 | */ | |
2320 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) { | |
2321 | /* | |
2322 | * we have a write that fits entirely | |
2323 | * within the existing cluster limits | |
2324 | */ | |
2325 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) | |
2326 | /* | |
2327 | * update our idea of where the cluster ends | |
2328 | */ | |
2329 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; | |
2330 | break; | |
2331 | } | |
2332 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) { | |
2333 | /* | |
2334 | * we have a write that starts in the middle of the current cluster | |
2335 | * but extends beyond the cluster's limit... we know this because | |
2336 | * of the previous checks | |
2337 | * we'll extend the current cluster to the max | |
2338 | * and update the b_addr for the current write to reflect that | |
2339 | * the head of it was absorbed into this cluster... | |
2340 | * note that we'll always have a leftover tail in this case since | |
2341 | * full absorbtion would have occurred in the clause above | |
2342 | */ | |
2343 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER; | |
2344 | ||
2345 | if (upl_size) { | |
2346 | daddr64_t start_pg_in_upl; | |
2347 | ||
2348 | start_pg_in_upl = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); | |
2349 | ||
2350 | if (start_pg_in_upl < wbp->cl_clusters[cl_index].e_addr) { | |
2351 | intersection = (int)((wbp->cl_clusters[cl_index].e_addr - start_pg_in_upl) * PAGE_SIZE); | |
2352 | ||
2353 | ubc_upl_commit_range(upl, upl_offset, intersection, | |
2354 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2355 | upl_f_offset += intersection; | |
2356 | upl_offset += intersection; | |
2357 | upl_size -= intersection; | |
2358 | } | |
2359 | } | |
2360 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; | |
2361 | } | |
2362 | /* | |
2363 | * we come here for the case where the current write starts | |
2364 | * beyond the limit of the existing cluster or we have a leftover | |
2365 | * tail after a partial absorbtion | |
2366 | * | |
2367 | * in either case, we'll check the remaining clusters before | |
2368 | * starting a new one | |
2369 | */ | |
2370 | } else { | |
2371 | /* | |
2372 | * the current write starts in front of the cluster we're currently considering | |
2373 | */ | |
2374 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= MAX_UPL_TRANSFER) { | |
2375 | /* | |
2376 | * we can just merge the new request into | |
2377 | * this cluster and leave it in the cache | |
2378 | * since the resulting cluster is still | |
2379 | * less than the maximum allowable size | |
2380 | */ | |
2381 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; | |
2382 | ||
2383 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { | |
2384 | /* | |
2385 | * the current write completely | |
2386 | * envelops the existing cluster and since | |
2387 | * each write is limited to at most MAX_UPL_TRANSFER bytes | |
2388 | * we can just use the start and last blocknos of the write | |
2389 | * to generate the cluster limits | |
2390 | */ | |
2391 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; | |
2392 | } | |
2393 | break; | |
2394 | } | |
2395 | ||
2396 | /* | |
2397 | * if we were to combine this write with the current cluster | |
2398 | * we would exceed the cluster size limit.... so, | |
2399 | * let's see if there's any overlap of the new I/O with | |
2400 | * the cluster we're currently considering... in fact, we'll | |
2401 | * stretch the cluster out to it's full limit and see if we | |
2402 | * get an intersection with the current write | |
2403 | * | |
2404 | */ | |
2405 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER) { | |
2406 | /* | |
2407 | * the current write extends into the proposed cluster | |
2408 | * clip the length of the current write after first combining it's | |
2409 | * tail with the newly shaped cluster | |
2410 | */ | |
2411 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER; | |
2412 | ||
2413 | if (upl_size) { | |
2414 | intersection = (int)((cl.e_addr - wbp->cl_clusters[cl_index].b_addr) * PAGE_SIZE); | |
2415 | ||
2416 | if (intersection > upl_size) | |
2417 | /* | |
2418 | * because the current write may consist of a number of pages found in the cache | |
2419 | * which are not part of the UPL, we may have an intersection that exceeds | |
2420 | * the size of the UPL that is also part of this write | |
2421 | */ | |
2422 | intersection = upl_size; | |
2423 | ||
2424 | ubc_upl_commit_range(upl, upl_offset + (upl_size - intersection), intersection, | |
2425 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2426 | upl_size -= intersection; | |
2427 | } | |
2428 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; | |
2429 | } | |
2430 | /* | |
2431 | * if we get here, there was no way to merge | |
2432 | * any portion of this write with this cluster | |
2433 | * or we could only merge part of it which | |
2434 | * will leave a tail... | |
2435 | * we'll check the remaining clusters before starting a new one | |
2436 | */ | |
2437 | } | |
2438 | } | |
2439 | if (cl_index < wbp->cl_number) | |
2440 | /* | |
2441 | * we found an existing cluster(s) that we | |
2442 | * could entirely merge this I/O into | |
2443 | */ | |
2444 | goto delay_io; | |
2445 | ||
2446 | if (wbp->cl_number < MAX_CLUSTERS && !(flags & IO_NOCACHE)) | |
2447 | /* | |
2448 | * we didn't find an existing cluster to | |
2449 | * merge into, but there's room to start | |
2450 | * a new one | |
2451 | */ | |
2452 | goto start_new_cluster; | |
2453 | ||
2454 | /* | |
2455 | * no exisitng cluster to merge with and no | |
2456 | * room to start a new one... we'll try | |
2457 | * pushing one of the existing ones... if none of | |
2458 | * them are able to be pushed, we'll switch | |
2459 | * to the sparse cluster mechanism | |
2460 | * cluster_try_push updates cl_number to the | |
2461 | * number of remaining clusters... and | |
2462 | * returns the number of currently unused clusters | |
2463 | */ | |
2464 | int ret_cluster_try_push = 0; | |
2465 | /* if writes are not deferred, call cluster push immediately */ | |
2466 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { | |
2467 | if (flags & IO_NOCACHE) | |
2468 | can_delay = 0; | |
2469 | else | |
2470 | can_delay = 1; | |
2471 | ||
2472 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, can_delay, 0); | |
2473 | } | |
2474 | ||
2475 | /* execute following regardless writes are deferred or not */ | |
2476 | if (ret_cluster_try_push == 0) { | |
2477 | /* | |
2478 | * no more room in the normal cluster mechanism | |
2479 | * so let's switch to the more expansive but expensive | |
2480 | * sparse mechanism.... | |
2481 | * first, we need to release the upl if we hold one | |
2482 | * since pages in it may be present in the sparse cluster map (after the cluster_switch) | |
2483 | * and may span 2 separate buckets there... if they do and | |
2484 | * we happen to have to flush a bucket to make room and it intersects | |
2485 | * this upl, a deadlock may result on page BUSY | |
2486 | */ | |
2487 | if (upl_size) | |
2488 | ubc_upl_commit_range(upl, upl_offset, upl_size, | |
2489 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2490 | ||
2491 | sparse_cluster_switch(wbp, vp, newEOF); | |
2492 | sparse_cluster_add(wbp, vp, &cl, newEOF); | |
2493 | ||
2494 | lck_mtx_unlock(&wbp->cl_lockw); | |
2495 | ||
2496 | continue; | |
2497 | } | |
2498 | /* | |
2499 | * we pushed one cluster successfully, so we must be sequentially writing this file | |
2500 | * otherwise, we would have failed and fallen into the sparse cluster support | |
2501 | * so let's take the opportunity to push out additional clusters as long as we | |
2502 | * remain below the throttle... this will give us better I/O locality if we're | |
2503 | * in a copy loop (i.e. we won't jump back and forth between the read and write points | |
2504 | * however, we don't want to push so much out that the write throttle kicks in and | |
2505 | * hangs this thread up until some of the I/O completes... | |
2506 | */ | |
2507 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { | |
2508 | while (wbp->cl_number && (vp->v_numoutput <= (VNODE_ASYNC_THROTTLE / 2))) | |
2509 | cluster_try_push(wbp, vp, newEOF, 0, 0); | |
2510 | } | |
2511 | ||
2512 | start_new_cluster: | |
2513 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; | |
2514 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
2515 | ||
2516 | if (flags & IO_NOCACHE) | |
2517 | wbp->cl_clusters[wbp->cl_number].io_nocache = 1; | |
2518 | else | |
2519 | wbp->cl_clusters[wbp->cl_number].io_nocache = 0; | |
2520 | wbp->cl_number++; | |
2521 | delay_io: | |
2522 | if (upl_size) | |
2523 | ubc_upl_commit_range(upl, upl_offset, upl_size, | |
2524 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2525 | ||
2526 | lck_mtx_unlock(&wbp->cl_lockw); | |
2527 | ||
2528 | continue; | |
2529 | issue_io: | |
2530 | /* | |
2531 | * we don't hold the vnode lock at this point | |
2532 | * | |
2533 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
2534 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
2535 | * upon committing it... this is not the behavior we want since it's possible for | |
2536 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
2537 | * in order to maintain some semblance of coherency with mapped writes | |
2538 | * we need to drop the current upl and pick it back up with COPYOUT_FROM set | |
2539 | * so that we correctly deal with a change in state of the hardware modify bit... | |
2540 | * we do this via cluster_push_x... by passing along the IO_SYNC flag, we force | |
2541 | * cluster_push_x to wait until all the I/Os have completed... cluster_push_x is also | |
2542 | * responsible for generating the correct sized I/O(s) | |
2543 | */ | |
2544 | ubc_upl_commit_range(upl, 0, upl_size, | |
2545 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2546 | ||
2547 | cl.e_addr = (upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64; | |
2548 | ||
2549 | retval = cluster_push_x(vp, &cl, newEOF, flags); | |
2550 | } | |
2551 | } | |
2552 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, | |
2553 | retval, 0, io_resid, 0, 0); | |
2554 | ||
2555 | return (retval); | |
2556 | } | |
2557 | ||
2558 | int | |
2559 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) | |
2560 | { | |
2561 | int prev_resid; | |
2562 | u_int clip_size; | |
2563 | off_t max_io_size; | |
2564 | int upl_size; | |
2565 | int upl_flags; | |
2566 | upl_t upl; | |
2567 | int retval = 0; | |
2568 | int flags; | |
2569 | ||
2570 | flags = xflags; | |
2571 | ||
2572 | if (vp->v_flag & VNOCACHE_DATA) | |
2573 | flags |= IO_NOCACHE; | |
2574 | if (vp->v_flag & VRAOFF) | |
2575 | flags |= IO_RAOFF; | |
2576 | ||
2577 | if (!((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) { | |
2578 | /* | |
2579 | * go do a read through the cache if one of the following is true.... | |
2580 | * NOCACHE is not true | |
2581 | * the uio request doesn't target USERSPACE | |
2582 | */ | |
2583 | return (cluster_read_x(vp, uio, filesize, flags)); | |
2584 | } | |
2585 | ||
2586 | #if LP64_DEBUG | |
2587 | if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { | |
2588 | panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); | |
2589 | } | |
2590 | #endif /* LP64_DEBUG */ | |
2591 | ||
2592 | while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { | |
2593 | user_size_t iov_len; | |
2594 | user_addr_t iov_base; | |
2595 | ||
2596 | /* | |
2597 | * we know we have a resid, so this is safe | |
2598 | * skip over any emtpy vectors | |
2599 | */ | |
2600 | uio_update(uio, (user_size_t)0); | |
2601 | ||
2602 | iov_len = uio_curriovlen(uio); | |
2603 | iov_base = uio_curriovbase(uio); | |
2604 | ||
2605 | upl_size = PAGE_SIZE; | |
2606 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
2607 | ||
2608 | // LP64todo - fix this! | |
2609 | if ((vm_map_get_upl(current_map(), | |
2610 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
2611 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
2612 | /* | |
2613 | * the user app must have passed in an invalid address | |
2614 | */ | |
2615 | return (EFAULT); | |
2616 | } | |
2617 | ||
2618 | /* | |
2619 | * We check every vector target but if it is physically | |
2620 | * contiguous space, we skip the sanity checks. | |
2621 | */ | |
2622 | if (upl_flags & UPL_PHYS_CONTIG) { | |
2623 | retval = cluster_phys_read(vp, uio, filesize); | |
2624 | } | |
2625 | else if (uio_resid(uio) < PAGE_SIZE) { | |
2626 | /* | |
2627 | * we're here because we're don't have a physically contiguous target buffer | |
2628 | * go do a read through the cache if | |
2629 | * the total xfer size is less than a page... | |
2630 | */ | |
2631 | return (cluster_read_x(vp, uio, filesize, flags)); | |
2632 | } | |
2633 | // LP64todo - fix this! | |
2634 | else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) { | |
2635 | if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) { | |
2636 | /* | |
2637 | * Bring the file offset read up to a pagesize boundary | |
2638 | * this will also bring the base address to a page boundary | |
2639 | * since they both are currently on the same offset within a page | |
2640 | * note: if we get here, uio->uio_resid is greater than PAGE_SIZE | |
2641 | * so the computed clip_size must always be less than the current uio_resid | |
2642 | */ | |
2643 | clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64)); | |
2644 | ||
2645 | /* | |
2646 | * Fake the resid going into the cluster_read_x call | |
2647 | * and restore it on the way out. | |
2648 | */ | |
2649 | prev_resid = uio_resid(uio); | |
2650 | // LP64todo - fix this | |
2651 | uio_setresid(uio, clip_size); | |
2652 | ||
2653 | retval = cluster_read_x(vp, uio, filesize, flags); | |
2654 | ||
2655 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
2656 | } else { | |
2657 | /* | |
2658 | * can't get both the file offset and the buffer offset aligned to a page boundary | |
2659 | * so fire an I/O through the cache for this entire vector | |
2660 | */ | |
2661 | // LP64todo - fix this! | |
2662 | clip_size = iov_len; | |
2663 | prev_resid = uio_resid(uio); | |
2664 | uio_setresid(uio, clip_size); | |
2665 | ||
2666 | retval = cluster_read_x(vp, uio, filesize, flags); | |
2667 | ||
2668 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
2669 | } | |
2670 | } else { | |
2671 | /* | |
2672 | * If we come in here, we know the offset into | |
2673 | * the file is on a pagesize boundary | |
2674 | */ | |
2675 | max_io_size = filesize - uio->uio_offset; | |
2676 | // LP64todo - fix this | |
2677 | clip_size = uio_resid(uio); | |
2678 | if (iov_len < clip_size) | |
2679 | clip_size = iov_len; | |
2680 | if (max_io_size < clip_size) | |
2681 | clip_size = (int)max_io_size; | |
2682 | ||
2683 | if (clip_size < PAGE_SIZE) { | |
2684 | /* | |
2685 | * Take care of the tail end of the read in this vector. | |
2686 | */ | |
2687 | // LP64todo - fix this | |
2688 | prev_resid = uio_resid(uio); | |
2689 | uio_setresid(uio, clip_size); | |
2690 | ||
2691 | retval = cluster_read_x(vp, uio, filesize, flags); | |
2692 | ||
2693 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
2694 | } else { | |
2695 | /* round clip_size down to a multiple of pagesize */ | |
2696 | clip_size = clip_size & ~(PAGE_MASK); | |
2697 | // LP64todo - fix this | |
2698 | prev_resid = uio_resid(uio); | |
2699 | uio_setresid(uio, clip_size); | |
2700 | ||
2701 | retval = cluster_nocopy_read(vp, uio, filesize); | |
2702 | ||
2703 | if ((retval==0) && uio_resid(uio)) | |
2704 | retval = cluster_read_x(vp, uio, filesize, flags); | |
2705 | ||
2706 | uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); | |
2707 | } | |
2708 | } /* end else */ | |
2709 | } /* end while */ | |
2710 | ||
2711 | return(retval); | |
2712 | } | |
2713 | ||
2714 | static int | |
2715 | cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags) | |
2716 | { | |
2717 | upl_page_info_t *pl; | |
2718 | upl_t upl; | |
2719 | vm_offset_t upl_offset; | |
2720 | int upl_size; | |
2721 | off_t upl_f_offset; | |
2722 | int start_offset; | |
2723 | int start_pg; | |
2724 | int last_pg; | |
2725 | int uio_last = 0; | |
2726 | int pages_in_upl; | |
2727 | off_t max_size; | |
2728 | off_t last_ioread_offset; | |
2729 | off_t last_request_offset; | |
2730 | u_int size_of_prefetch; | |
2731 | u_int io_size; | |
2732 | kern_return_t kret; | |
2733 | int error = 0; | |
2734 | int retval = 0; | |
2735 | u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
2736 | u_int rd_ahead_enabled = 1; | |
2737 | u_int prefetch_enabled = 1; | |
2738 | struct cl_readahead * rap; | |
2739 | struct clios iostate; | |
2740 | struct cl_extent extent; | |
2741 | ||
2742 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
2743 | (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0); | |
2744 | ||
2745 | // LP64todo - fix this | |
2746 | last_request_offset = uio->uio_offset + uio_resid(uio); | |
2747 | ||
2748 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || | |
2749 | ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { | |
2750 | rd_ahead_enabled = 0; | |
2751 | rap = NULL; | |
2752 | } else { | |
2753 | if (cluster_hard_throttle_on(vp)) { | |
2754 | rd_ahead_enabled = 0; | |
2755 | prefetch_enabled = 0; | |
2756 | ||
2757 | max_rd_size = HARD_THROTTLE_MAXSIZE; | |
2758 | } | |
2759 | if ((rap = cluster_get_rap(vp)) == NULL) | |
2760 | rd_ahead_enabled = 0; | |
2761 | } | |
2762 | if (last_request_offset > filesize) | |
2763 | last_request_offset = filesize; | |
2764 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
2765 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
2766 | ||
2767 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { | |
2768 | /* | |
2769 | * determine if we already have a read-ahead in the pipe courtesy of the | |
2770 | * last read systemcall that was issued... | |
2771 | * if so, pick up it's extent to determine where we should start | |
2772 | * with respect to any read-ahead that might be necessary to | |
2773 | * garner all the data needed to complete this read systemcall | |
2774 | */ | |
2775 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; | |
2776 | ||
2777 | if (last_ioread_offset < uio->uio_offset) | |
2778 | last_ioread_offset = (off_t)0; | |
2779 | else if (last_ioread_offset > last_request_offset) | |
2780 | last_ioread_offset = last_request_offset; | |
2781 | } else | |
2782 | last_ioread_offset = (off_t)0; | |
2783 | ||
2784 | while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { | |
2785 | /* | |
2786 | * compute the size of the upl needed to encompass | |
2787 | * the requested read... limit each call to cluster_io | |
2788 | * to the maximum UPL size... cluster_io will clip if | |
2789 | * this exceeds the maximum io_size for the device, | |
2790 | * make sure to account for | |
2791 | * a starting offset that's not page aligned | |
2792 | */ | |
2793 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2794 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
2795 | max_size = filesize - uio->uio_offset; | |
2796 | ||
2797 | // LP64todo - fix this! | |
2798 | if ((off_t)((unsigned int)uio_resid(uio)) < max_size) | |
2799 | io_size = uio_resid(uio); | |
2800 | else | |
2801 | io_size = max_size; | |
2802 | ||
2803 | if (!(flags & IO_NOCACHE)) { | |
2804 | ||
2805 | while (io_size) { | |
2806 | u_int io_resid; | |
2807 | u_int io_requested; | |
2808 | ||
2809 | /* | |
2810 | * if we keep finding the pages we need already in the cache, then | |
2811 | * don't bother to call cluster_rd_prefetch since it costs CPU cycles | |
2812 | * to determine that we have all the pages we need... once we miss in | |
2813 | * the cache and have issued an I/O, than we'll assume that we're likely | |
2814 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
2815 | */ | |
2816 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
2817 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
2818 | /* | |
2819 | * we've already issued I/O for this request and | |
2820 | * there's still work to do and | |
2821 | * our prefetch stream is running dry, so issue a | |
2822 | * pre-fetch I/O... the I/O latency will overlap | |
2823 | * with the copying of the data | |
2824 | */ | |
2825 | if (size_of_prefetch > max_rd_size) | |
2826 | size_of_prefetch = max_rd_size; | |
2827 | ||
2828 | size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize); | |
2829 | ||
2830 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
2831 | ||
2832 | if (last_ioread_offset > last_request_offset) | |
2833 | last_ioread_offset = last_request_offset; | |
2834 | } | |
2835 | } | |
2836 | /* | |
2837 | * limit the size of the copy we're about to do so that | |
2838 | * we can notice that our I/O pipe is running dry and | |
2839 | * get the next I/O issued before it does go dry | |
2840 | */ | |
2841 | if (last_ioread_offset && io_size > ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4)) | |
2842 | io_resid = ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4); | |
2843 | else | |
2844 | io_resid = io_size; | |
2845 | ||
2846 | io_requested = io_resid; | |
2847 | ||
2848 | retval = cluster_copy_ubc_data(vp, uio, &io_resid, 0); | |
2849 | ||
2850 | io_size -= (io_requested - io_resid); | |
2851 | ||
2852 | if (retval || io_resid) | |
2853 | /* | |
2854 | * if we run into a real error or | |
2855 | * a page that is not in the cache | |
2856 | * we need to leave streaming mode | |
2857 | */ | |
2858 | break; | |
2859 | ||
2860 | if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) { | |
2861 | /* | |
2862 | * we're already finished the I/O for this read request | |
2863 | * let's see if we should do a read-ahead | |
2864 | */ | |
2865 | cluster_rd_ahead(vp, &extent, filesize, rap); | |
2866 | } | |
2867 | } | |
2868 | if (retval) | |
2869 | break; | |
2870 | if (io_size == 0) { | |
2871 | if (rap != NULL) { | |
2872 | if (extent.e_addr < rap->cl_lastr) | |
2873 | rap->cl_maxra = 0; | |
2874 | rap->cl_lastr = extent.e_addr; | |
2875 | } | |
2876 | break; | |
2877 | } | |
2878 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2879 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
2880 | max_size = filesize - uio->uio_offset; | |
2881 | } | |
2882 | if (io_size > max_rd_size) | |
2883 | io_size = max_rd_size; | |
2884 | ||
2885 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2886 | ||
2887 | if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4) | |
2888 | upl_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 4; | |
2889 | pages_in_upl = upl_size / PAGE_SIZE; | |
2890 | ||
2891 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
2892 | (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
2893 | ||
2894 | kret = ubc_create_upl(vp, | |
2895 | upl_f_offset, | |
2896 | upl_size, | |
2897 | &upl, | |
2898 | &pl, | |
2899 | UPL_SET_LITE); | |
2900 | if (kret != KERN_SUCCESS) | |
2901 | panic("cluster_read: failed to get pagelist"); | |
2902 | ||
2903 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, | |
2904 | (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
2905 | ||
2906 | /* | |
2907 | * scan from the beginning of the upl looking for the first | |
2908 | * non-valid page.... this will become the first page in | |
2909 | * the request we're going to make to 'cluster_io'... if all | |
2910 | * of the pages are valid, we won't call through to 'cluster_io' | |
2911 | */ | |
2912 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
2913 | if (!upl_valid_page(pl, start_pg)) | |
2914 | break; | |
2915 | } | |
2916 | ||
2917 | /* | |
2918 | * scan from the starting invalid page looking for a valid | |
2919 | * page before the end of the upl is reached, if we | |
2920 | * find one, then it will be the last page of the request to | |
2921 | * 'cluster_io' | |
2922 | */ | |
2923 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
2924 | if (upl_valid_page(pl, last_pg)) | |
2925 | break; | |
2926 | } | |
2927 | iostate.io_completed = 0; | |
2928 | iostate.io_issued = 0; | |
2929 | iostate.io_error = 0; | |
2930 | iostate.io_wanted = 0; | |
2931 | ||
2932 | if (start_pg < last_pg) { | |
2933 | /* | |
2934 | * we found a range of 'invalid' pages that must be filled | |
2935 | * if the last page in this range is the last page of the file | |
2936 | * we may have to clip the size of it to keep from reading past | |
2937 | * the end of the last physical block associated with the file | |
2938 | */ | |
2939 | upl_offset = start_pg * PAGE_SIZE; | |
2940 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
2941 | ||
2942 | if ((upl_f_offset + upl_offset + io_size) > filesize) | |
2943 | io_size = filesize - (upl_f_offset + upl_offset); | |
2944 | ||
2945 | /* | |
2946 | * issue an asynchronous read to cluster_io | |
2947 | */ | |
2948 | ||
2949 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
2950 | io_size, CL_READ | CL_ASYNC, (buf_t)NULL, &iostate); | |
2951 | } | |
2952 | if (error == 0) { | |
2953 | /* | |
2954 | * if the read completed successfully, or there was no I/O request | |
2955 | * issued, than copy the data into user land via 'cluster_upl_copy_data' | |
2956 | * we'll first add on any 'valid' | |
2957 | * pages that were present in the upl when we acquired it. | |
2958 | */ | |
2959 | u_int val_size; | |
2960 | ||
2961 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
2962 | if (!upl_valid_page(pl, uio_last)) | |
2963 | break; | |
2964 | } | |
2965 | /* | |
2966 | * compute size to transfer this round, if uio->uio_resid is | |
2967 | * still non-zero after this attempt, we'll loop around and | |
2968 | * set up for another I/O. | |
2969 | */ | |
2970 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
2971 | ||
2972 | if (val_size > max_size) | |
2973 | val_size = max_size; | |
2974 | ||
2975 | if (val_size > uio_resid(uio)) | |
2976 | // LP64todo - fix this | |
2977 | val_size = uio_resid(uio); | |
2978 | ||
2979 | if (last_ioread_offset == 0) | |
2980 | last_ioread_offset = uio->uio_offset + val_size; | |
2981 | ||
2982 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { | |
2983 | /* | |
2984 | * if there's still I/O left to do for this request, and... | |
2985 | * we're not in hard throttle mode, then issue a | |
2986 | * pre-fetch I/O... the I/O latency will overlap | |
2987 | * with the copying of the data | |
2988 | */ | |
2989 | size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize); | |
2990 | ||
2991 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
2992 | ||
2993 | if (last_ioread_offset > last_request_offset) | |
2994 | last_ioread_offset = last_request_offset; | |
2995 | ||
2996 | } else if ((uio->uio_offset + val_size) == last_request_offset) { | |
2997 | /* | |
2998 | * this transfer will finish this request, so... | |
2999 | * let's try to read ahead if we're in | |
3000 | * a sequential access pattern and we haven't | |
3001 | * explicitly disabled it | |
3002 | */ | |
3003 | if (rd_ahead_enabled) | |
3004 | cluster_rd_ahead(vp, &extent, filesize, rap); | |
3005 | ||
3006 | if (rap != NULL) { | |
3007 | if (extent.e_addr < rap->cl_lastr) | |
3008 | rap->cl_maxra = 0; | |
3009 | rap->cl_lastr = extent.e_addr; | |
3010 | } | |
3011 | } | |
3012 | lck_mtx_lock(cl_mtxp); | |
3013 | ||
3014 | while (iostate.io_issued != iostate.io_completed) { | |
3015 | iostate.io_wanted = 1; | |
3016 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_x", 0); | |
3017 | } | |
3018 | lck_mtx_unlock(cl_mtxp); | |
3019 | ||
3020 | if (iostate.io_error) | |
3021 | error = iostate.io_error; | |
3022 | else | |
3023 | retval = cluster_copy_upl_data(uio, upl, start_offset, val_size); | |
3024 | } | |
3025 | if (start_pg < last_pg) { | |
3026 | /* | |
3027 | * compute the range of pages that we actually issued an I/O for | |
3028 | * and either commit them as valid if the I/O succeeded | |
3029 | * or abort them if the I/O failed | |
3030 | */ | |
3031 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3032 | ||
3033 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, | |
3034 | (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
3035 | ||
3036 | if (error || (flags & IO_NOCACHE)) | |
3037 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, | |
3038 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3039 | else | |
3040 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, | |
3041 | UPL_COMMIT_CLEAR_DIRTY | | |
3042 | UPL_COMMIT_FREE_ON_EMPTY | | |
3043 | UPL_COMMIT_INACTIVATE); | |
3044 | ||
3045 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, | |
3046 | (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
3047 | } | |
3048 | if ((last_pg - start_pg) < pages_in_upl) { | |
3049 | int cur_pg; | |
3050 | int commit_flags; | |
3051 | ||
3052 | /* | |
3053 | * the set of pages that we issued an I/O for did not encompass | |
3054 | * the entire upl... so just release these without modifying | |
3055 | * their state | |
3056 | */ | |
3057 | if (error) | |
3058 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3059 | else { | |
3060 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, | |
3061 | (int)upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); | |
3062 | ||
3063 | if (start_pg) { | |
3064 | /* | |
3065 | * we found some already valid pages at the beginning of | |
3066 | * the upl commit these back to the inactive list with | |
3067 | * reference cleared | |
3068 | */ | |
3069 | for (cur_pg = 0; cur_pg < start_pg; cur_pg++) { | |
3070 | commit_flags = UPL_COMMIT_FREE_ON_EMPTY | |
3071 | | UPL_COMMIT_INACTIVATE; | |
3072 | ||
3073 | if (upl_dirty_page(pl, cur_pg)) | |
3074 | commit_flags |= UPL_COMMIT_SET_DIRTY; | |
3075 | ||
3076 | if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE)) | |
3077 | ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, | |
3078 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3079 | else | |
3080 | ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, | |
3081 | PAGE_SIZE, commit_flags); | |
3082 | } | |
3083 | } | |
3084 | if (last_pg < uio_last) { | |
3085 | /* | |
3086 | * we found some already valid pages immediately after the | |
3087 | * pages we issued I/O for, commit these back to the | |
3088 | * inactive list with reference cleared | |
3089 | */ | |
3090 | for (cur_pg = last_pg; cur_pg < uio_last; cur_pg++) { | |
3091 | commit_flags = UPL_COMMIT_FREE_ON_EMPTY | |
3092 | | UPL_COMMIT_INACTIVATE; | |
3093 | ||
3094 | if (upl_dirty_page(pl, cur_pg)) | |
3095 | commit_flags |= UPL_COMMIT_SET_DIRTY; | |
3096 | ||
3097 | if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE)) | |
3098 | ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, | |
3099 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3100 | else | |
3101 | ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, | |
3102 | PAGE_SIZE, commit_flags); | |
3103 | } | |
3104 | } | |
3105 | if (uio_last < pages_in_upl) { | |
3106 | /* | |
3107 | * there were some invalid pages beyond the valid pages | |
3108 | * that we didn't issue an I/O for, just release them | |
3109 | * unchanged | |
3110 | */ | |
3111 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
3112 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
3113 | } | |
3114 | ||
3115 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, | |
3116 | (int)upl, -1, -1, 0, 0); | |
3117 | } | |
3118 | } | |
3119 | if (retval == 0) | |
3120 | retval = error; | |
3121 | ||
3122 | if ( uio_resid(uio) ) { | |
3123 | if (cluster_hard_throttle_on(vp)) { | |
3124 | rd_ahead_enabled = 0; | |
3125 | prefetch_enabled = 0; | |
3126 | ||
3127 | max_rd_size = HARD_THROTTLE_MAXSIZE; | |
3128 | } else { | |
3129 | if (rap != NULL) | |
3130 | rd_ahead_enabled = 1; | |
3131 | prefetch_enabled = 1; | |
3132 | ||
3133 | max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
3134 | } | |
3135 | } | |
3136 | } | |
3137 | if (rap != NULL) { | |
3138 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
3139 | (int)uio->uio_offset, uio_resid(uio), rap->cl_lastr, retval, 0); | |
3140 | ||
3141 | lck_mtx_unlock(&rap->cl_lockr); | |
3142 | } else { | |
3143 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
3144 | (int)uio->uio_offset, uio_resid(uio), 0, retval, 0); | |
3145 | } | |
3146 | ||
3147 | return (retval); | |
3148 | } | |
3149 | ||
3150 | ||
3151 | static int | |
3152 | cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize) | |
3153 | { | |
3154 | upl_t upl; | |
3155 | upl_page_info_t *pl; | |
3156 | vm_offset_t upl_offset; | |
3157 | off_t max_io_size; | |
3158 | int io_size; | |
3159 | int upl_size; | |
3160 | int upl_needed_size; | |
3161 | int pages_in_pl; | |
3162 | int upl_flags; | |
3163 | kern_return_t kret; | |
3164 | int i; | |
3165 | int force_data_sync; | |
3166 | int retval = 0; | |
3167 | int no_zero_fill = 0; | |
3168 | int abort_flag = 0; | |
3169 | struct clios iostate; | |
3170 | u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
3171 | u_int max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 2; | |
3172 | ||
3173 | ||
3174 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, | |
3175 | (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0); | |
3176 | ||
3177 | /* | |
3178 | * When we enter this routine, we know | |
3179 | * -- the offset into the file is on a pagesize boundary | |
3180 | * -- the resid is a page multiple | |
3181 | * -- the resid will not exceed iov_len | |
3182 | */ | |
3183 | ||
3184 | iostate.io_completed = 0; | |
3185 | iostate.io_issued = 0; | |
3186 | iostate.io_error = 0; | |
3187 | iostate.io_wanted = 0; | |
3188 | ||
3189 | while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { | |
3190 | user_addr_t iov_base; | |
3191 | ||
3192 | if (cluster_hard_throttle_on(vp)) { | |
3193 | max_rd_size = HARD_THROTTLE_MAXSIZE; | |
3194 | max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1; | |
3195 | } else { | |
3196 | max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
3197 | max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 8; | |
3198 | } | |
3199 | max_io_size = filesize - uio->uio_offset; | |
3200 | ||
3201 | // LP64todo - fix this | |
3202 | if (max_io_size < (off_t)((unsigned int)uio_resid(uio))) | |
3203 | io_size = max_io_size; | |
3204 | else | |
3205 | io_size = uio_resid(uio); | |
3206 | ||
3207 | /* | |
3208 | * First look for pages already in the cache | |
3209 | * and move them to user space. | |
3210 | */ | |
3211 | retval = cluster_copy_ubc_data(vp, uio, &io_size, 0); | |
3212 | ||
3213 | if (retval) { | |
3214 | /* | |
3215 | * we may have already spun some portion of this request | |
3216 | * off as async requests... we need to wait for the I/O | |
3217 | * to complete before returning | |
3218 | */ | |
3219 | goto wait_for_reads; | |
3220 | } | |
3221 | /* | |
3222 | * If we are already finished with this read, then return | |
3223 | */ | |
3224 | if (io_size == 0) { | |
3225 | /* | |
3226 | * we may have already spun some portion of this request | |
3227 | * off as async requests... we need to wait for the I/O | |
3228 | * to complete before returning | |
3229 | */ | |
3230 | goto wait_for_reads; | |
3231 | } | |
3232 | max_io_size = io_size; | |
3233 | ||
3234 | if (max_io_size > max_rd_size) | |
3235 | max_io_size = max_rd_size; | |
3236 | ||
3237 | io_size = 0; | |
3238 | ||
3239 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + max_io_size, UPL_ROP_ABSENT, &io_size); | |
3240 | ||
3241 | if (io_size == 0) | |
3242 | /* | |
3243 | * we may have already spun some portion of this request | |
3244 | * off as async requests... we need to wait for the I/O | |
3245 | * to complete before returning | |
3246 | */ | |
3247 | goto wait_for_reads; | |
3248 | ||
3249 | iov_base = uio_curriovbase(uio); | |
3250 | ||
3251 | // LP64todo - fix this! | |
3252 | upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; | |
3253 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; | |
3254 | ||
3255 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, | |
3256 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
3257 | ||
3258 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { | |
3259 | no_zero_fill = 1; | |
3260 | abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY; | |
3261 | } else { | |
3262 | no_zero_fill = 0; | |
3263 | abort_flag = UPL_ABORT_FREE_ON_EMPTY; | |
3264 | } | |
3265 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
3266 | pages_in_pl = 0; | |
3267 | upl_size = upl_needed_size; | |
3268 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
3269 | ||
3270 | if (no_zero_fill) | |
3271 | upl_flags |= UPL_NOZEROFILL; | |
3272 | if (force_data_sync) | |
3273 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
3274 | ||
3275 | // LP64todo - fix this! | |
3276 | kret = vm_map_create_upl(current_map(), | |
3277 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
3278 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); | |
3279 | ||
3280 | if (kret != KERN_SUCCESS) { | |
3281 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
3282 | (int)upl_offset, upl_size, io_size, kret, 0); | |
3283 | /* | |
3284 | * cluster_nocopy_read: failed to get pagelist | |
3285 | * | |
3286 | * we may have already spun some portion of this request | |
3287 | * off as async requests... we need to wait for the I/O | |
3288 | * to complete before returning | |
3289 | */ | |
3290 | goto wait_for_reads; | |
3291 | } | |
3292 | pages_in_pl = upl_size / PAGE_SIZE; | |
3293 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
3294 | ||
3295 | for (i = 0; i < pages_in_pl; i++) { | |
3296 | if (!upl_valid_page(pl, i)) | |
3297 | break; | |
3298 | } | |
3299 | if (i == pages_in_pl) | |
3300 | break; | |
3301 | ||
3302 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); | |
3303 | } | |
3304 | if (force_data_sync >= 3) { | |
3305 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
3306 | (int)upl_offset, upl_size, io_size, kret, 0); | |
3307 | ||
3308 | goto wait_for_reads; | |
3309 | } | |
3310 | /* | |
3311 | * Consider the possibility that upl_size wasn't satisfied. | |
3312 | */ | |
3313 | if (upl_size != upl_needed_size) | |
3314 | io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; | |
3315 | ||
3316 | if (io_size == 0) { | |
3317 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); | |
3318 | goto wait_for_reads; | |
3319 | } | |
3320 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
3321 | (int)upl_offset, upl_size, io_size, kret, 0); | |
3322 | ||
3323 | /* | |
3324 | * request asynchronously so that we can overlap | |
3325 | * the preparation of the next I/O | |
3326 | * if there are already too many outstanding reads | |
3327 | * wait until some have completed before issuing the next read | |
3328 | */ | |
3329 | lck_mtx_lock(cl_mtxp); | |
3330 | ||
3331 | while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) { | |
3332 | iostate.io_wanted = 1; | |
3333 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0); | |
3334 | } | |
3335 | lck_mtx_unlock(cl_mtxp); | |
3336 | ||
3337 | if (iostate.io_error) { | |
3338 | /* | |
3339 | * one of the earlier reads we issued ran into a hard error | |
3340 | * don't issue any more reads, cleanup the UPL | |
3341 | * that was just created but not used, then | |
3342 | * go wait for any other reads to complete before | |
3343 | * returning the error to the caller | |
3344 | */ | |
3345 | ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); | |
3346 | ||
3347 | goto wait_for_reads; | |
3348 | } | |
3349 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
3350 | (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); | |
3351 | ||
3352 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, | |
3353 | CL_PRESERVE | CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO, | |
3354 | (buf_t)NULL, &iostate); | |
3355 | ||
3356 | /* | |
3357 | * update the uio structure | |
3358 | */ | |
3359 | uio_update(uio, (user_size_t)io_size); | |
3360 | ||
3361 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, | |
3362 | (int)upl, (int)uio->uio_offset, (int)uio_resid(uio), retval, 0); | |
3363 | ||
3364 | } /* end while */ | |
3365 | ||
3366 | wait_for_reads: | |
3367 | /* | |
3368 | * make sure all async reads that are part of this stream | |
3369 | * have completed before we return | |
3370 | */ | |
3371 | lck_mtx_lock(cl_mtxp); | |
3372 | ||
3373 | while (iostate.io_issued != iostate.io_completed) { | |
3374 | iostate.io_wanted = 1; | |
3375 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0); | |
3376 | } | |
3377 | lck_mtx_unlock(cl_mtxp); | |
3378 | ||
3379 | if (iostate.io_error) | |
3380 | retval = iostate.io_error; | |
3381 | ||
3382 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, | |
3383 | (int)uio->uio_offset, (int)uio_resid(uio), 6, retval, 0); | |
3384 | ||
3385 | return (retval); | |
3386 | } | |
3387 | ||
3388 | ||
3389 | static int | |
3390 | cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize) | |
3391 | { | |
3392 | upl_page_info_t *pl; | |
3393 | upl_t upl; | |
3394 | vm_offset_t upl_offset; | |
3395 | addr64_t dst_paddr; | |
3396 | off_t max_size; | |
3397 | int io_size; | |
3398 | user_size_t iov_len; | |
3399 | user_addr_t iov_base; | |
3400 | int tail_size; | |
3401 | int upl_size; | |
3402 | int upl_needed_size; | |
3403 | int pages_in_pl; | |
3404 | int upl_flags; | |
3405 | kern_return_t kret; | |
3406 | struct clios iostate; | |
3407 | int error; | |
3408 | int devblocksize; | |
3409 | ||
3410 | devblocksize = vp->v_mount->mnt_devblocksize; | |
3411 | /* | |
3412 | * When we enter this routine, we know | |
3413 | * -- the resid will not exceed iov_len | |
3414 | * -- the target address is physically contiguous | |
3415 | */ | |
3416 | ||
3417 | #if LP64_DEBUG | |
3418 | if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { | |
3419 | panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); | |
3420 | } | |
3421 | #endif /* LP64_DEBUG */ | |
3422 | ||
3423 | iov_len = uio_curriovlen(uio); | |
3424 | iov_base = uio_curriovbase(uio); | |
3425 | ||
3426 | max_size = filesize - uio->uio_offset; | |
3427 | ||
3428 | // LP64todo - fix this! | |
3429 | if (max_size < 0 || (u_int64_t)max_size > iov_len) | |
3430 | io_size = iov_len; | |
3431 | else | |
3432 | io_size = max_size; | |
3433 | ||
3434 | // LP64todo - fix this! | |
3435 | upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; | |
3436 | upl_needed_size = upl_offset + io_size; | |
3437 | ||
3438 | error = 0; | |
3439 | pages_in_pl = 0; | |
3440 | upl_size = upl_needed_size; | |
3441 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
3442 | ||
3443 | kret = vm_map_get_upl(current_map(), | |
3444 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
3445 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); | |
3446 | ||
3447 | if (kret != KERN_SUCCESS) { | |
3448 | /* | |
3449 | * cluster_phys_read: failed to get pagelist | |
3450 | */ | |
3451 | return(EINVAL); | |
3452 | } | |
3453 | if (upl_size < upl_needed_size) { | |
3454 | /* | |
3455 | * The upl_size wasn't satisfied. | |
3456 | */ | |
3457 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3458 | ||
3459 | return(EINVAL); | |
3460 | } | |
3461 | pl = ubc_upl_pageinfo(upl); | |
3462 | ||
3463 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; | |
3464 | ||
3465 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
3466 | int head_size; | |
3467 | ||
3468 | head_size = devblocksize - (int)(uio->uio_offset & (devblocksize - 1)); | |
3469 | ||
3470 | if (head_size > io_size) | |
3471 | head_size = io_size; | |
3472 | ||
3473 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ); | |
3474 | ||
3475 | if (error) { | |
3476 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3477 | ||
3478 | return(EINVAL); | |
3479 | } | |
3480 | upl_offset += head_size; | |
3481 | dst_paddr += head_size; | |
3482 | io_size -= head_size; | |
3483 | } | |
3484 | tail_size = io_size & (devblocksize - 1); | |
3485 | io_size -= tail_size; | |
3486 | ||
3487 | iostate.io_completed = 0; | |
3488 | iostate.io_issued = 0; | |
3489 | iostate.io_error = 0; | |
3490 | iostate.io_wanted = 0; | |
3491 | ||
3492 | while (io_size && error == 0) { | |
3493 | int xsize; | |
3494 | ||
3495 | if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
3496 | xsize = MAX_UPL_TRANSFER * PAGE_SIZE; | |
3497 | else | |
3498 | xsize = io_size; | |
3499 | /* | |
3500 | * request asynchronously so that we can overlap | |
3501 | * the preparation of the next I/O... we'll do | |
3502 | * the commit after all the I/O has completed | |
3503 | * since its all issued against the same UPL | |
3504 | * if there are already too many outstanding reads | |
3505 | * wait until some have completed before issuing the next | |
3506 | */ | |
3507 | lck_mtx_lock(cl_mtxp); | |
3508 | ||
3509 | while ((iostate.io_issued - iostate.io_completed) > (8 * MAX_UPL_TRANSFER * PAGE_SIZE)) { | |
3510 | iostate.io_wanted = 1; | |
3511 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0); | |
3512 | } | |
3513 | lck_mtx_unlock(cl_mtxp); | |
3514 | ||
3515 | error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize, | |
3516 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC, | |
3517 | (buf_t)NULL, &iostate); | |
3518 | /* | |
3519 | * The cluster_io read was issued successfully, | |
3520 | * update the uio structure | |
3521 | */ | |
3522 | if (error == 0) { | |
3523 | uio_update(uio, (user_size_t)xsize); | |
3524 | ||
3525 | dst_paddr += xsize; | |
3526 | upl_offset += xsize; | |
3527 | io_size -= xsize; | |
3528 | } | |
3529 | } | |
3530 | /* | |
3531 | * make sure all async reads that are part of this stream | |
3532 | * have completed before we proceed | |
3533 | */ | |
3534 | lck_mtx_lock(cl_mtxp); | |
3535 | ||
3536 | while (iostate.io_issued != iostate.io_completed) { | |
3537 | iostate.io_wanted = 1; | |
3538 | msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0); | |
3539 | } | |
3540 | lck_mtx_unlock(cl_mtxp); | |
3541 | ||
3542 | if (iostate.io_error) | |
3543 | error = iostate.io_error; | |
3544 | ||
3545 | if (error == 0 && tail_size) | |
3546 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ); | |
3547 | ||
3548 | /* | |
3549 | * just release our hold on the physically contiguous | |
3550 | * region without changing any state | |
3551 | */ | |
3552 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3553 | ||
3554 | return (error); | |
3555 | } | |
3556 | ||
3557 | ||
3558 | /* | |
3559 | * generate advisory I/O's in the largest chunks possible | |
3560 | * the completed pages will be released into the VM cache | |
3561 | */ | |
3562 | int | |
3563 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) | |
3564 | { | |
3565 | upl_page_info_t *pl; | |
3566 | upl_t upl; | |
3567 | vm_offset_t upl_offset; | |
3568 | int upl_size; | |
3569 | off_t upl_f_offset; | |
3570 | int start_offset; | |
3571 | int start_pg; | |
3572 | int last_pg; | |
3573 | int pages_in_upl; | |
3574 | off_t max_size; | |
3575 | int io_size; | |
3576 | kern_return_t kret; | |
3577 | int retval = 0; | |
3578 | int issued_io; | |
3579 | int skip_range; | |
3580 | ||
3581 | if ( !UBCINFOEXISTS(vp)) | |
3582 | return(EINVAL); | |
3583 | ||
3584 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, | |
3585 | (int)f_offset, resid, (int)filesize, 0, 0); | |
3586 | ||
3587 | while (resid && f_offset < filesize && retval == 0) { | |
3588 | /* | |
3589 | * compute the size of the upl needed to encompass | |
3590 | * the requested read... limit each call to cluster_io | |
3591 | * to the maximum UPL size... cluster_io will clip if | |
3592 | * this exceeds the maximum io_size for the device, | |
3593 | * make sure to account for | |
3594 | * a starting offset that's not page aligned | |
3595 | */ | |
3596 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
3597 | upl_f_offset = f_offset - (off_t)start_offset; | |
3598 | max_size = filesize - f_offset; | |
3599 | ||
3600 | if (resid < max_size) | |
3601 | io_size = resid; | |
3602 | else | |
3603 | io_size = max_size; | |
3604 | ||
3605 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3606 | if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) | |
3607 | upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
3608 | ||
3609 | skip_range = 0; | |
3610 | /* | |
3611 | * return the number of contiguously present pages in the cache | |
3612 | * starting at upl_f_offset within the file | |
3613 | */ | |
3614 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
3615 | ||
3616 | if (skip_range) { | |
3617 | /* | |
3618 | * skip over pages already present in the cache | |
3619 | */ | |
3620 | io_size = skip_range - start_offset; | |
3621 | ||
3622 | f_offset += io_size; | |
3623 | resid -= io_size; | |
3624 | ||
3625 | if (skip_range == upl_size) | |
3626 | continue; | |
3627 | /* | |
3628 | * have to issue some real I/O | |
3629 | * at this point, we know it's starting on a page boundary | |
3630 | * because we've skipped over at least the first page in the request | |
3631 | */ | |
3632 | start_offset = 0; | |
3633 | upl_f_offset += skip_range; | |
3634 | upl_size -= skip_range; | |
3635 | } | |
3636 | pages_in_upl = upl_size / PAGE_SIZE; | |
3637 | ||
3638 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, | |
3639 | (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
3640 | ||
3641 | kret = ubc_create_upl(vp, | |
3642 | upl_f_offset, | |
3643 | upl_size, | |
3644 | &upl, | |
3645 | &pl, | |
3646 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE); | |
3647 | if (kret != KERN_SUCCESS) | |
3648 | return(retval); | |
3649 | issued_io = 0; | |
3650 | ||
3651 | /* | |
3652 | * before we start marching forward, we must make sure we end on | |
3653 | * a present page, otherwise we will be working with a freed | |
3654 | * upl | |
3655 | */ | |
3656 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
3657 | if (upl_page_present(pl, last_pg)) | |
3658 | break; | |
3659 | } | |
3660 | pages_in_upl = last_pg + 1; | |
3661 | ||
3662 | ||
3663 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, | |
3664 | (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
3665 | ||
3666 | ||
3667 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
3668 | /* | |
3669 | * scan from the beginning of the upl looking for the first | |
3670 | * page that is present.... this will become the first page in | |
3671 | * the request we're going to make to 'cluster_io'... if all | |
3672 | * of the pages are absent, we won't call through to 'cluster_io' | |
3673 | */ | |
3674 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
3675 | if (upl_page_present(pl, start_pg)) | |
3676 | break; | |
3677 | } | |
3678 | ||
3679 | /* | |
3680 | * scan from the starting present page looking for an absent | |
3681 | * page before the end of the upl is reached, if we | |
3682 | * find one, then it will terminate the range of pages being | |
3683 | * presented to 'cluster_io' | |
3684 | */ | |
3685 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
3686 | if (!upl_page_present(pl, last_pg)) | |
3687 | break; | |
3688 | } | |
3689 | ||
3690 | if (last_pg > start_pg) { | |
3691 | /* | |
3692 | * we found a range of pages that must be filled | |
3693 | * if the last page in this range is the last page of the file | |
3694 | * we may have to clip the size of it to keep from reading past | |
3695 | * the end of the last physical block associated with the file | |
3696 | */ | |
3697 | upl_offset = start_pg * PAGE_SIZE; | |
3698 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3699 | ||
3700 | if ((upl_f_offset + upl_offset + io_size) > filesize) | |
3701 | io_size = filesize - (upl_f_offset + upl_offset); | |
3702 | ||
3703 | /* | |
3704 | * issue an asynchronous read to cluster_io | |
3705 | */ | |
3706 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
3707 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (buf_t)NULL, (struct clios *)NULL); | |
3708 | ||
3709 | issued_io = 1; | |
3710 | } | |
3711 | } | |
3712 | if (issued_io == 0) | |
3713 | ubc_upl_abort(upl, 0); | |
3714 | ||
3715 | io_size = upl_size - start_offset; | |
3716 | ||
3717 | if (io_size > resid) | |
3718 | io_size = resid; | |
3719 | f_offset += io_size; | |
3720 | resid -= io_size; | |
3721 | } | |
3722 | ||
3723 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, | |
3724 | (int)f_offset, resid, retval, 0, 0); | |
3725 | ||
3726 | return(retval); | |
3727 | } | |
3728 | ||
3729 | ||
3730 | int | |
3731 | cluster_push(vnode_t vp, int flags) | |
3732 | { | |
3733 | int retval; | |
3734 | struct cl_writebehind *wbp; | |
3735 | ||
3736 | if ( !UBCINFOEXISTS(vp)) { | |
3737 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -1, 0); | |
3738 | return (0); | |
3739 | } | |
3740 | /* return if deferred write is set */ | |
3741 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
3742 | return (0); | |
3743 | } | |
3744 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
3745 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -2, 0); | |
3746 | return (0); | |
3747 | } | |
3748 | if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) { | |
3749 | lck_mtx_unlock(&wbp->cl_lockw); | |
3750 | ||
3751 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -3, 0); | |
3752 | return(0); | |
3753 | } | |
3754 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, | |
3755 | (int)wbp->cl_scmap, wbp->cl_number, flags, 0, 0); | |
3756 | ||
3757 | if (wbp->cl_scmap) { | |
3758 | sparse_cluster_push(wbp, vp, ubc_getsize(vp), 1); | |
3759 | ||
3760 | retval = 1; | |
3761 | } else | |
3762 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), 0, 1); | |
3763 | ||
3764 | lck_mtx_unlock(&wbp->cl_lockw); | |
3765 | ||
3766 | if (flags & IO_SYNC) | |
3767 | (void)vnode_waitforwrites(vp, 0, 0, 0, (char *)"cluster_push"); | |
3768 | ||
3769 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, | |
3770 | (int)wbp->cl_scmap, wbp->cl_number, retval, 0, 0); | |
3771 | ||
3772 | return (retval); | |
3773 | } | |
3774 | ||
3775 | ||
3776 | __private_extern__ void | |
3777 | cluster_release(struct ubc_info *ubc) | |
3778 | { | |
3779 | struct cl_writebehind *wbp; | |
3780 | struct cl_readahead *rap; | |
3781 | ||
3782 | if ((wbp = ubc->cl_wbehind)) { | |
3783 | ||
3784 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); | |
3785 | ||
3786 | if (wbp->cl_scmap) | |
3787 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
3788 | } else { | |
3789 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, 0, 0, 0, 0); | |
3790 | } | |
3791 | ||
3792 | rap = ubc->cl_rahead; | |
3793 | ||
3794 | if (wbp != NULL) { | |
3795 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
3796 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
3797 | } | |
3798 | if ((rap = ubc->cl_rahead)) { | |
3799 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
3800 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
3801 | } | |
3802 | ubc->cl_rahead = NULL; | |
3803 | ubc->cl_wbehind = NULL; | |
3804 | ||
3805 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)ubc, (int)rap, (int)wbp, 0, 0); | |
3806 | } | |
3807 | ||
3808 | ||
3809 | static void | |
3810 | cluster_push_EOF(vnode_t vp, off_t EOF) | |
3811 | { | |
3812 | struct cl_writebehind *wbp; | |
3813 | ||
3814 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3815 | ||
3816 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, | |
3817 | (int)wbp->cl_scmap, wbp->cl_number, (int)EOF, 0, 0); | |
3818 | ||
3819 | if (wbp->cl_scmap) | |
3820 | sparse_cluster_push(wbp, vp, EOF, 1); | |
3821 | else | |
3822 | cluster_try_push(wbp, vp, EOF, 0, 1); | |
3823 | ||
3824 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, | |
3825 | (int)wbp->cl_scmap, wbp->cl_number, 0, 0, 0); | |
3826 | ||
3827 | lck_mtx_unlock(&wbp->cl_lockw); | |
3828 | } | |
3829 | ||
3830 | ||
3831 | static int | |
3832 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int can_delay, int push_all) | |
3833 | { | |
3834 | int cl_index; | |
3835 | int cl_index1; | |
3836 | int min_index; | |
3837 | int cl_len; | |
3838 | int cl_pushed = 0; | |
3839 | struct cl_wextent l_clusters[MAX_CLUSTERS]; | |
3840 | ||
3841 | /* | |
3842 | * the write behind context exists and has | |
3843 | * already been locked... | |
3844 | * | |
3845 | * make a local 'sorted' copy of the clusters | |
3846 | * and clear wbp->cl_number so that new clusters can | |
3847 | * be developed | |
3848 | */ | |
3849 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
3850 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
3851 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
3852 | continue; | |
3853 | if (min_index == -1) | |
3854 | min_index = cl_index1; | |
3855 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) | |
3856 | min_index = cl_index1; | |
3857 | } | |
3858 | if (min_index == -1) | |
3859 | break; | |
3860 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; | |
3861 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
3862 | l_clusters[cl_index].io_nocache = wbp->cl_clusters[min_index].io_nocache; | |
3863 | ||
3864 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; | |
3865 | } | |
3866 | wbp->cl_number = 0; | |
3867 | ||
3868 | cl_len = cl_index; | |
3869 | ||
3870 | if (can_delay && cl_len == MAX_CLUSTERS) { | |
3871 | int i; | |
3872 | ||
3873 | /* | |
3874 | * determine if we appear to be writing the file sequentially | |
3875 | * if not, by returning without having pushed any clusters | |
3876 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
3877 | * used for managing more random I/O patterns | |
3878 | * | |
3879 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
3880 | * that's why we're in try_push with can_delay true... | |
3881 | * | |
3882 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
3883 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
3884 | * so we can just make a simple pass through, up to, but not including the last one... | |
3885 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
3886 | * are sequential | |
3887 | * | |
3888 | * we let the last one be partial as long as it was adjacent to the previous one... | |
3889 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
3890 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
3891 | */ | |
3892 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
3893 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != MAX_UPL_TRANSFER) | |
3894 | goto dont_try; | |
3895 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) | |
3896 | goto dont_try; | |
3897 | } | |
3898 | } | |
3899 | /* | |
3900 | * drop the lock while we're firing off the I/Os... | |
3901 | * this is safe since I'm working off of a private sorted copy | |
3902 | * of the clusters, and I'm going to re-evaluate the public | |
3903 | * state after I retake the lock | |
3904 | */ | |
3905 | lck_mtx_unlock(&wbp->cl_lockw); | |
3906 | ||
3907 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
3908 | int flags; | |
3909 | struct cl_extent cl; | |
3910 | ||
3911 | /* | |
3912 | * try to push each cluster in turn... | |
3913 | */ | |
3914 | if (l_clusters[cl_index].io_nocache) | |
3915 | flags = IO_NOCACHE; | |
3916 | else | |
3917 | flags = 0; | |
3918 | cl.b_addr = l_clusters[cl_index].b_addr; | |
3919 | cl.e_addr = l_clusters[cl_index].e_addr; | |
3920 | ||
3921 | cluster_push_x(vp, &cl, EOF, flags); | |
3922 | ||
3923 | l_clusters[cl_index].b_addr = 0; | |
3924 | l_clusters[cl_index].e_addr = 0; | |
3925 | ||
3926 | cl_pushed++; | |
3927 | ||
3928 | if (push_all == 0) | |
3929 | break; | |
3930 | } | |
3931 | lck_mtx_lock(&wbp->cl_lockw); | |
3932 | ||
3933 | dont_try: | |
3934 | if (cl_len > cl_pushed) { | |
3935 | /* | |
3936 | * we didn't push all of the clusters, so | |
3937 | * lets try to merge them back in to the vnode | |
3938 | */ | |
3939 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { | |
3940 | /* | |
3941 | * we picked up some new clusters while we were trying to | |
3942 | * push the old ones... this can happen because I've dropped | |
3943 | * the vnode lock... the sum of the | |
3944 | * leftovers plus the new cluster count exceeds our ability | |
3945 | * to represent them, so switch to the sparse cluster mechanism | |
3946 | * | |
3947 | * collect the active public clusters... | |
3948 | */ | |
3949 | sparse_cluster_switch(wbp, vp, EOF); | |
3950 | ||
3951 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
3952 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
3953 | continue; | |
3954 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
3955 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
3956 | wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache; | |
3957 | ||
3958 | cl_index1++; | |
3959 | } | |
3960 | /* | |
3961 | * update the cluster count | |
3962 | */ | |
3963 | wbp->cl_number = cl_index1; | |
3964 | ||
3965 | /* | |
3966 | * and collect the original clusters that were moved into the | |
3967 | * local storage for sorting purposes | |
3968 | */ | |
3969 | sparse_cluster_switch(wbp, vp, EOF); | |
3970 | ||
3971 | } else { | |
3972 | /* | |
3973 | * we've got room to merge the leftovers back in | |
3974 | * just append them starting at the next 'hole' | |
3975 | * represented by wbp->cl_number | |
3976 | */ | |
3977 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { | |
3978 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
3979 | continue; | |
3980 | ||
3981 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
3982 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
3983 | wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache; | |
3984 | ||
3985 | cl_index1++; | |
3986 | } | |
3987 | /* | |
3988 | * update the cluster count | |
3989 | */ | |
3990 | wbp->cl_number = cl_index1; | |
3991 | } | |
3992 | } | |
3993 | return(MAX_CLUSTERS - wbp->cl_number); | |
3994 | } | |
3995 | ||
3996 | ||
3997 | ||
3998 | static int | |
3999 | cluster_push_x(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags) | |
4000 | { | |
4001 | upl_page_info_t *pl; | |
4002 | upl_t upl; | |
4003 | vm_offset_t upl_offset; | |
4004 | int upl_size; | |
4005 | off_t upl_f_offset; | |
4006 | int pages_in_upl; | |
4007 | int start_pg; | |
4008 | int last_pg; | |
4009 | int io_size; | |
4010 | int io_flags; | |
4011 | int upl_flags; | |
4012 | int size; | |
4013 | int error = 0; | |
4014 | int retval; | |
4015 | kern_return_t kret; | |
4016 | ||
4017 | ||
4018 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, | |
4019 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); | |
4020 | ||
4021 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { | |
4022 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); | |
4023 | ||
4024 | return (0); | |
4025 | } | |
4026 | upl_size = pages_in_upl * PAGE_SIZE; | |
4027 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
4028 | ||
4029 | if (upl_f_offset + upl_size >= EOF) { | |
4030 | ||
4031 | if (upl_f_offset >= EOF) { | |
4032 | /* | |
4033 | * must have truncated the file and missed | |
4034 | * clearing a dangling cluster (i.e. it's completely | |
4035 | * beyond the new EOF | |
4036 | */ | |
4037 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
4038 | ||
4039 | return(0); | |
4040 | } | |
4041 | size = EOF - upl_f_offset; | |
4042 | ||
4043 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
4044 | pages_in_upl = upl_size / PAGE_SIZE; | |
4045 | } else | |
4046 | size = upl_size; | |
4047 | ||
4048 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
4049 | ||
4050 | /* | |
4051 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
4052 | * | |
4053 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
4054 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
4055 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
4056 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
4057 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
4058 | * | |
4059 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
4060 | */ | |
4061 | ||
4062 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
4063 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; | |
4064 | else | |
4065 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
4066 | ||
4067 | kret = ubc_create_upl(vp, | |
4068 | upl_f_offset, | |
4069 | upl_size, | |
4070 | &upl, | |
4071 | &pl, | |
4072 | upl_flags); | |
4073 | if (kret != KERN_SUCCESS) | |
4074 | panic("cluster_push: failed to get pagelist"); | |
4075 | ||
4076 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0); | |
4077 | ||
4078 | /* | |
4079 | * since we only asked for the dirty pages back | |
4080 | * it's possible that we may only get a few or even none, so... | |
4081 | * before we start marching forward, we must make sure we know | |
4082 | * where the last present page is in the UPL, otherwise we could | |
4083 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
4084 | * employed by commit_range and abort_range. | |
4085 | */ | |
4086 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
4087 | if (upl_page_present(pl, last_pg)) | |
4088 | break; | |
4089 | } | |
4090 | pages_in_upl = last_pg + 1; | |
4091 | ||
4092 | if (pages_in_upl == 0) { | |
4093 | ubc_upl_abort(upl, 0); | |
4094 | ||
4095 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); | |
4096 | return(0); | |
4097 | } | |
4098 | ||
4099 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
4100 | /* | |
4101 | * find the next dirty page in the UPL | |
4102 | * this will become the first page in the | |
4103 | * next I/O to generate | |
4104 | */ | |
4105 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
4106 | if (upl_dirty_page(pl, start_pg)) | |
4107 | break; | |
4108 | if (upl_page_present(pl, start_pg)) | |
4109 | /* | |
4110 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
4111 | * just release these unchanged since we're not going | |
4112 | * to steal them or change their state | |
4113 | */ | |
4114 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
4115 | } | |
4116 | if (start_pg >= pages_in_upl) | |
4117 | /* | |
4118 | * done... no more dirty pages to push | |
4119 | */ | |
4120 | break; | |
4121 | if (start_pg > last_pg) | |
4122 | /* | |
4123 | * skipped over some non-dirty pages | |
4124 | */ | |
4125 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
4126 | ||
4127 | /* | |
4128 | * find a range of dirty pages to write | |
4129 | */ | |
4130 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
4131 | if (!upl_dirty_page(pl, last_pg)) | |
4132 | break; | |
4133 | } | |
4134 | upl_offset = start_pg * PAGE_SIZE; | |
4135 | ||
4136 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
4137 | ||
4138 | io_flags = CL_THROTTLE | CL_COMMIT; | |
4139 | ||
4140 | if ( !(flags & IO_SYNC)) | |
4141 | io_flags |= CL_ASYNC; | |
4142 | ||
4143 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
4144 | io_flags, (buf_t)NULL, (struct clios *)NULL); | |
4145 | ||
4146 | if (error == 0 && retval) | |
4147 | error = retval; | |
4148 | ||
4149 | size -= io_size; | |
4150 | } | |
4151 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); | |
4152 | ||
4153 | return(error); | |
4154 | } | |
4155 | ||
4156 | ||
4157 | /* | |
4158 | * sparse_cluster_switch is called with the write behind lock held | |
4159 | */ | |
4160 | static void | |
4161 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF) | |
4162 | { | |
4163 | int cl_index; | |
4164 | ||
4165 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); | |
4166 | ||
4167 | if (wbp->cl_scmap == NULL) | |
4168 | wbp->cl_scdirty = 0; | |
4169 | ||
4170 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
4171 | int flags; | |
4172 | struct cl_extent cl; | |
4173 | ||
4174 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
4175 | ||
4176 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, 0, &flags) == KERN_SUCCESS) { | |
4177 | if (flags & UPL_POP_DIRTY) { | |
4178 | cl.e_addr = cl.b_addr + 1; | |
4179 | ||
4180 | sparse_cluster_add(wbp, vp, &cl, EOF); | |
4181 | } | |
4182 | } | |
4183 | } | |
4184 | } | |
4185 | wbp->cl_number = 0; | |
4186 | ||
4187 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); | |
4188 | } | |
4189 | ||
4190 | ||
4191 | /* | |
4192 | * sparse_cluster_push is called with the write behind lock held | |
4193 | */ | |
4194 | static void | |
4195 | sparse_cluster_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_all) | |
4196 | { | |
4197 | struct cl_extent cl; | |
4198 | off_t offset; | |
4199 | u_int length; | |
4200 | ||
4201 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, push_all, 0); | |
4202 | ||
4203 | if (push_all) | |
4204 | vfs_drt_control(&(wbp->cl_scmap), 1); | |
4205 | ||
4206 | for (;;) { | |
4207 | if (vfs_drt_get_cluster(&(wbp->cl_scmap), &offset, &length) != KERN_SUCCESS) | |
4208 | break; | |
4209 | ||
4210 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); | |
4211 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
4212 | ||
4213 | wbp->cl_scdirty -= (int)(cl.e_addr - cl.b_addr); | |
4214 | ||
4215 | cluster_push_x(vp, &cl, EOF, 0); | |
4216 | ||
4217 | if (push_all == 0) | |
4218 | break; | |
4219 | } | |
4220 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); | |
4221 | } | |
4222 | ||
4223 | ||
4224 | /* | |
4225 | * sparse_cluster_add is called with the write behind lock held | |
4226 | */ | |
4227 | static void | |
4228 | sparse_cluster_add(struct cl_writebehind *wbp, vnode_t vp, struct cl_extent *cl, off_t EOF) | |
4229 | { | |
4230 | u_int new_dirty; | |
4231 | u_int length; | |
4232 | off_t offset; | |
4233 | ||
4234 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)wbp->cl_scmap, wbp->cl_scdirty, (int)cl->b_addr, (int)cl->e_addr, 0); | |
4235 | ||
4236 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
4237 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
4238 | ||
4239 | while (vfs_drt_mark_pages(&(wbp->cl_scmap), offset, length, &new_dirty) != KERN_SUCCESS) { | |
4240 | /* | |
4241 | * no room left in the map | |
4242 | * only a partial update was done | |
4243 | * push out some pages and try again | |
4244 | */ | |
4245 | wbp->cl_scdirty += new_dirty; | |
4246 | ||
4247 | sparse_cluster_push(wbp, vp, EOF, 0); | |
4248 | ||
4249 | offset += (new_dirty * PAGE_SIZE_64); | |
4250 | length -= (new_dirty * PAGE_SIZE); | |
4251 | } | |
4252 | wbp->cl_scdirty += new_dirty; | |
4253 | ||
4254 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); | |
4255 | } | |
4256 | ||
4257 | ||
4258 | static int | |
4259 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags) | |
4260 | { | |
4261 | upl_page_info_t *pl; | |
4262 | upl_t upl; | |
4263 | addr64_t ubc_paddr; | |
4264 | kern_return_t kret; | |
4265 | int error = 0; | |
4266 | int did_read = 0; | |
4267 | int abort_flags; | |
4268 | int upl_flags; | |
4269 | ||
4270 | upl_flags = UPL_SET_LITE; | |
4271 | if (! (flags & CL_READ)) { | |
4272 | /* | |
4273 | * "write" operation: let the UPL subsystem know | |
4274 | * that we intend to modify the buffer cache pages | |
4275 | * we're gathering. | |
4276 | */ | |
4277 | upl_flags |= UPL_WILL_MODIFY; | |
4278 | } | |
4279 | ||
4280 | kret = ubc_create_upl(vp, | |
4281 | uio->uio_offset & ~PAGE_MASK_64, | |
4282 | PAGE_SIZE, | |
4283 | &upl, | |
4284 | &pl, | |
4285 | upl_flags); | |
4286 | ||
4287 | if (kret != KERN_SUCCESS) | |
4288 | return(EINVAL); | |
4289 | ||
4290 | if (!upl_valid_page(pl, 0)) { | |
4291 | /* | |
4292 | * issue a synchronous read to cluster_io | |
4293 | */ | |
4294 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
4295 | CL_READ, (buf_t)NULL, (struct clios *)NULL); | |
4296 | if (error) { | |
4297 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
4298 | ||
4299 | return(error); | |
4300 | } | |
4301 | did_read = 1; | |
4302 | } | |
4303 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); | |
4304 | ||
4305 | /* | |
4306 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
4307 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
4308 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
4309 | * way to do so without exporting them to kexts as well. | |
4310 | */ | |
4311 | if (flags & CL_READ) | |
4312 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ | |
4313 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
4314 | else | |
4315 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ | |
4316 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
4317 | ||
4318 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
4319 | /* | |
4320 | * issue a synchronous write to cluster_io | |
4321 | */ | |
4322 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
4323 | 0, (buf_t)NULL, (struct clios *)NULL); | |
4324 | } | |
4325 | if (error == 0) | |
4326 | uio_update(uio, (user_size_t)xsize); | |
4327 | ||
4328 | if (did_read) | |
4329 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
4330 | else | |
4331 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
4332 | ||
4333 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
4334 | ||
4335 | return (error); | |
4336 | } | |
4337 | ||
4338 | ||
4339 | ||
4340 | int | |
4341 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize) | |
4342 | { | |
4343 | int pg_offset; | |
4344 | int pg_index; | |
4345 | int csize; | |
4346 | int segflg; | |
4347 | int retval = 0; | |
4348 | upl_page_info_t *pl; | |
4349 | ||
4350 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
4351 | (int)uio->uio_offset, uio_resid(uio), upl_offset, xsize, 0); | |
4352 | ||
4353 | segflg = uio->uio_segflg; | |
4354 | ||
4355 | switch(segflg) { | |
4356 | ||
4357 | case UIO_USERSPACE32: | |
4358 | case UIO_USERISPACE32: | |
4359 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
4360 | break; | |
4361 | ||
4362 | case UIO_USERSPACE: | |
4363 | case UIO_USERISPACE: | |
4364 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
4365 | break; | |
4366 | ||
4367 | case UIO_USERSPACE64: | |
4368 | case UIO_USERISPACE64: | |
4369 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
4370 | break; | |
4371 | ||
4372 | case UIO_SYSSPACE32: | |
4373 | uio->uio_segflg = UIO_PHYS_SYSSPACE32; | |
4374 | break; | |
4375 | ||
4376 | case UIO_SYSSPACE: | |
4377 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
4378 | break; | |
4379 | ||
4380 | case UIO_SYSSPACE64: | |
4381 | uio->uio_segflg = UIO_PHYS_SYSSPACE64; | |
4382 | break; | |
4383 | } | |
4384 | pl = ubc_upl_pageinfo(upl); | |
4385 | ||
4386 | pg_index = upl_offset / PAGE_SIZE; | |
4387 | pg_offset = upl_offset & PAGE_MASK; | |
4388 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
4389 | ||
4390 | while (xsize && retval == 0) { | |
4391 | addr64_t paddr; | |
4392 | ||
4393 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset; | |
4394 | ||
4395 | retval = uiomove64(paddr, csize, uio); | |
4396 | ||
4397 | pg_index += 1; | |
4398 | pg_offset = 0; | |
4399 | xsize -= csize; | |
4400 | csize = min(PAGE_SIZE, xsize); | |
4401 | } | |
4402 | uio->uio_segflg = segflg; | |
4403 | ||
4404 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
4405 | (int)uio->uio_offset, uio_resid(uio), retval, segflg, 0); | |
4406 | ||
4407 | return (retval); | |
4408 | } | |
4409 | ||
4410 | ||
4411 | int | |
4412 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) | |
4413 | { | |
4414 | int segflg; | |
4415 | int io_size; | |
4416 | int xsize; | |
4417 | int start_offset; | |
4418 | int retval = 0; | |
4419 | memory_object_control_t control; | |
4420 | ||
4421 | ||
4422 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
4423 | (int)uio->uio_offset, uio_resid(uio), 0, *io_resid, 0); | |
4424 | ||
4425 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
4426 | if (control == MEMORY_OBJECT_CONTROL_NULL) { | |
4427 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
4428 | (int)uio->uio_offset, uio_resid(uio), retval, 3, 0); | |
4429 | ||
4430 | return(0); | |
4431 | } | |
4432 | segflg = uio->uio_segflg; | |
4433 | ||
4434 | switch(segflg) { | |
4435 | ||
4436 | case UIO_USERSPACE32: | |
4437 | case UIO_USERISPACE32: | |
4438 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
4439 | break; | |
4440 | ||
4441 | case UIO_USERSPACE64: | |
4442 | case UIO_USERISPACE64: | |
4443 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
4444 | break; | |
4445 | ||
4446 | case UIO_SYSSPACE32: | |
4447 | uio->uio_segflg = UIO_PHYS_SYSSPACE32; | |
4448 | break; | |
4449 | ||
4450 | case UIO_SYSSPACE64: | |
4451 | uio->uio_segflg = UIO_PHYS_SYSSPACE64; | |
4452 | break; | |
4453 | ||
4454 | case UIO_USERSPACE: | |
4455 | case UIO_USERISPACE: | |
4456 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
4457 | break; | |
4458 | ||
4459 | case UIO_SYSSPACE: | |
4460 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
4461 | break; | |
4462 | } | |
4463 | ||
4464 | if ( (io_size = *io_resid) ) { | |
4465 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
4466 | xsize = uio_resid(uio); | |
4467 | ||
4468 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, | |
4469 | uio, start_offset, io_size, mark_dirty); | |
4470 | xsize -= uio_resid(uio); | |
4471 | io_size -= xsize; | |
4472 | } | |
4473 | uio->uio_segflg = segflg; | |
4474 | *io_resid = io_size; | |
4475 | ||
4476 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
4477 | (int)uio->uio_offset, uio_resid(uio), retval, 0x80000000 | segflg, 0); | |
4478 | ||
4479 | return(retval); | |
4480 | } | |
4481 | ||
4482 | ||
4483 | int | |
4484 | is_file_clean(vnode_t vp, off_t filesize) | |
4485 | { | |
4486 | off_t f_offset; | |
4487 | int flags; | |
4488 | int total_dirty = 0; | |
4489 | ||
4490 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
4491 | if (ubc_page_op(vp, f_offset, 0, 0, &flags) == KERN_SUCCESS) { | |
4492 | if (flags & UPL_POP_DIRTY) { | |
4493 | total_dirty++; | |
4494 | } | |
4495 | } | |
4496 | } | |
4497 | if (total_dirty) | |
4498 | return(EINVAL); | |
4499 | ||
4500 | return (0); | |
4501 | } | |
4502 | ||
4503 | ||
4504 | ||
4505 | /* | |
4506 | * Dirty region tracking/clustering mechanism. | |
4507 | * | |
4508 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
4509 | * dirty regions within a larger space (file). It is primarily intended to | |
4510 | * support clustering in large files with many dirty areas. | |
4511 | * | |
4512 | * The implementation assumes that the dirty regions are pages. | |
4513 | * | |
4514 | * To represent dirty pages within the file, we store bit vectors in a | |
4515 | * variable-size circular hash. | |
4516 | */ | |
4517 | ||
4518 | /* | |
4519 | * Bitvector size. This determines the number of pages we group in a | |
4520 | * single hashtable entry. Each hashtable entry is aligned to this | |
4521 | * size within the file. | |
4522 | */ | |
4523 | #define DRT_BITVECTOR_PAGES 256 | |
4524 | ||
4525 | /* | |
4526 | * File offset handling. | |
4527 | * | |
4528 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; | |
4529 | * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1) | |
4530 | */ | |
4531 | #define DRT_ADDRESS_MASK (~((1 << 20) - 1)) | |
4532 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
4533 | ||
4534 | /* | |
4535 | * Hashtable address field handling. | |
4536 | * | |
4537 | * The low-order bits of the hashtable address are used to conserve | |
4538 | * space. | |
4539 | * | |
4540 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
4541 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
4542 | * to indicate that the bucket is actually unoccupied. | |
4543 | */ | |
4544 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
4545 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
4546 | do { \ | |
4547 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
4548 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
4549 | } while (0) | |
4550 | #define DRT_HASH_COUNT_MASK 0x1ff | |
4551 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
4552 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
4553 | do { \ | |
4554 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
4555 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
4556 | } while (0) | |
4557 | #define DRT_HASH_CLEAR(scm, i) \ | |
4558 | do { \ | |
4559 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
4560 | } while (0) | |
4561 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
4562 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
4563 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
4564 | do { \ | |
4565 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
4566 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
4567 | } while(0); | |
4568 | ||
4569 | ||
4570 | /* | |
4571 | * Hash table moduli. | |
4572 | * | |
4573 | * Since the hashtable entry's size is dependent on the size of | |
4574 | * the bitvector, and since the hashtable size is constrained to | |
4575 | * both being prime and fitting within the desired allocation | |
4576 | * size, these values need to be manually determined. | |
4577 | * | |
4578 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
4579 | * | |
4580 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
4581 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
4582 | */ | |
4583 | #define DRT_HASH_SMALL_MODULUS 23 | |
4584 | #define DRT_HASH_LARGE_MODULUS 401 | |
4585 | ||
4586 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ | |
4587 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
4588 | ||
4589 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
4590 | ||
4591 | /* | |
4592 | * Hashtable bitvector handling. | |
4593 | * | |
4594 | * Bitvector fields are 32 bits long. | |
4595 | */ | |
4596 | ||
4597 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
4598 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
4599 | ||
4600 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
4601 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
4602 | ||
4603 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
4604 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
4605 | ||
4606 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
4607 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
4608 | ||
4609 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
4610 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
4611 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
4612 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
4613 | ||
4614 | ||
4615 | ||
4616 | /* | |
4617 | * Hashtable entry. | |
4618 | */ | |
4619 | struct vfs_drt_hashentry { | |
4620 | u_int64_t dhe_control; | |
4621 | u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
4622 | }; | |
4623 | ||
4624 | /* | |
4625 | * Dirty Region Tracking structure. | |
4626 | * | |
4627 | * The hashtable is allocated entirely inside the DRT structure. | |
4628 | * | |
4629 | * The hash is a simple circular prime modulus arrangement, the structure | |
4630 | * is resized from small to large if it overflows. | |
4631 | */ | |
4632 | ||
4633 | struct vfs_drt_clustermap { | |
4634 | u_int32_t scm_magic; /* sanity/detection */ | |
4635 | #define DRT_SCM_MAGIC 0x12020003 | |
4636 | u_int32_t scm_modulus; /* current ring size */ | |
4637 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
4638 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
4639 | u_int32_t scm_iskips; /* number of slot skips */ | |
4640 | ||
4641 | struct vfs_drt_hashentry scm_hashtable[0]; | |
4642 | }; | |
4643 | ||
4644 | ||
4645 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
4646 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
4647 | ||
4648 | /* | |
4649 | * Debugging codes and arguments. | |
4650 | */ | |
4651 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
4652 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
4653 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
4654 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
4655 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
4656 | * dirty */ | |
4657 | /* 0, setcount */ | |
4658 | /* 1 (clean, no map) */ | |
4659 | /* 2 (map alloc fail) */ | |
4660 | /* 3, resid (partial) */ | |
4661 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
4662 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
4663 | * lastclean, iskips */ | |
4664 | ||
4665 | ||
4666 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); | |
4667 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
4668 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
4669 | u_int64_t offset, int *indexp); | |
4670 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
4671 | u_int64_t offset, | |
4672 | int *indexp, | |
4673 | int recursed); | |
4674 | static kern_return_t vfs_drt_do_mark_pages( | |
4675 | void **cmapp, | |
4676 | u_int64_t offset, | |
4677 | u_int length, | |
4678 | int *setcountp, | |
4679 | int dirty); | |
4680 | static void vfs_drt_trace( | |
4681 | struct vfs_drt_clustermap *cmap, | |
4682 | int code, | |
4683 | int arg1, | |
4684 | int arg2, | |
4685 | int arg3, | |
4686 | int arg4); | |
4687 | ||
4688 | ||
4689 | /* | |
4690 | * Allocate and initialise a sparse cluster map. | |
4691 | * | |
4692 | * Will allocate a new map, resize or compact an existing map. | |
4693 | * | |
4694 | * XXX we should probably have at least one intermediate map size, | |
4695 | * as the 1:16 ratio seems a bit drastic. | |
4696 | */ | |
4697 | static kern_return_t | |
4698 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
4699 | { | |
4700 | struct vfs_drt_clustermap *cmap, *ocmap; | |
4701 | kern_return_t kret; | |
4702 | u_int64_t offset; | |
4703 | int nsize, i, active_buckets, index, copycount; | |
4704 | ||
4705 | ocmap = NULL; | |
4706 | if (cmapp != NULL) | |
4707 | ocmap = *cmapp; | |
4708 | ||
4709 | /* | |
4710 | * Decide on the size of the new map. | |
4711 | */ | |
4712 | if (ocmap == NULL) { | |
4713 | nsize = DRT_HASH_SMALL_MODULUS; | |
4714 | } else { | |
4715 | /* count the number of active buckets in the old map */ | |
4716 | active_buckets = 0; | |
4717 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
4718 | if (!DRT_HASH_VACANT(ocmap, i) && | |
4719 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
4720 | active_buckets++; | |
4721 | } | |
4722 | /* | |
4723 | * If we're currently using the small allocation, check to | |
4724 | * see whether we should grow to the large one. | |
4725 | */ | |
4726 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
4727 | /* if the ring is nearly full */ | |
4728 | if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) { | |
4729 | nsize = DRT_HASH_LARGE_MODULUS; | |
4730 | } else { | |
4731 | nsize = DRT_HASH_SMALL_MODULUS; | |
4732 | } | |
4733 | } else { | |
4734 | /* already using the large modulus */ | |
4735 | nsize = DRT_HASH_LARGE_MODULUS; | |
4736 | /* | |
4737 | * If the ring is completely full, there's | |
4738 | * nothing useful for us to do. Behave as | |
4739 | * though we had compacted into the new | |
4740 | * array and return. | |
4741 | */ | |
4742 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
4743 | return(KERN_SUCCESS); | |
4744 | } | |
4745 | } | |
4746 | ||
4747 | /* | |
4748 | * Allocate and initialise the new map. | |
4749 | */ | |
4750 | ||
4751 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
4752 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
4753 | if (kret != KERN_SUCCESS) | |
4754 | return(kret); | |
4755 | cmap->scm_magic = DRT_SCM_MAGIC; | |
4756 | cmap->scm_modulus = nsize; | |
4757 | cmap->scm_buckets = 0; | |
4758 | cmap->scm_lastclean = 0; | |
4759 | cmap->scm_iskips = 0; | |
4760 | for (i = 0; i < cmap->scm_modulus; i++) { | |
4761 | DRT_HASH_CLEAR(cmap, i); | |
4762 | DRT_HASH_VACATE(cmap, i); | |
4763 | DRT_BITVECTOR_CLEAR(cmap, i); | |
4764 | } | |
4765 | ||
4766 | /* | |
4767 | * If there's an old map, re-hash entries from it into the new map. | |
4768 | */ | |
4769 | copycount = 0; | |
4770 | if (ocmap != NULL) { | |
4771 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
4772 | /* skip empty buckets */ | |
4773 | if (DRT_HASH_VACANT(ocmap, i) || | |
4774 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
4775 | continue; | |
4776 | /* get new index */ | |
4777 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
4778 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
4779 | if (kret != KERN_SUCCESS) { | |
4780 | /* XXX need to bail out gracefully here */ | |
4781 | panic("vfs_drt: new cluster map mysteriously too small"); | |
4782 | } | |
4783 | /* copy */ | |
4784 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
4785 | copycount++; | |
4786 | } | |
4787 | } | |
4788 | ||
4789 | /* log what we've done */ | |
4790 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
4791 | ||
4792 | /* | |
4793 | * It's important to ensure that *cmapp always points to | |
4794 | * a valid map, so we must overwrite it before freeing | |
4795 | * the old map. | |
4796 | */ | |
4797 | *cmapp = cmap; | |
4798 | if (ocmap != NULL) { | |
4799 | /* emit stats into trace buffer */ | |
4800 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
4801 | ocmap->scm_modulus, | |
4802 | ocmap->scm_buckets, | |
4803 | ocmap->scm_lastclean, | |
4804 | ocmap->scm_iskips); | |
4805 | ||
4806 | vfs_drt_free_map(ocmap); | |
4807 | } | |
4808 | return(KERN_SUCCESS); | |
4809 | } | |
4810 | ||
4811 | ||
4812 | /* | |
4813 | * Free a sparse cluster map. | |
4814 | */ | |
4815 | static kern_return_t | |
4816 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
4817 | { | |
4818 | kmem_free(kernel_map, (vm_offset_t)cmap, | |
4819 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
4820 | return(KERN_SUCCESS); | |
4821 | } | |
4822 | ||
4823 | ||
4824 | /* | |
4825 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
4826 | */ | |
4827 | static kern_return_t | |
4828 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
4829 | { | |
4830 | int index, i; | |
4831 | ||
4832 | offset = DRT_ALIGN_ADDRESS(offset); | |
4833 | index = DRT_HASH(cmap, offset); | |
4834 | ||
4835 | /* traverse the hashtable */ | |
4836 | for (i = 0; i < cmap->scm_modulus; i++) { | |
4837 | ||
4838 | /* | |
4839 | * If the slot is vacant, we can stop. | |
4840 | */ | |
4841 | if (DRT_HASH_VACANT(cmap, index)) | |
4842 | break; | |
4843 | ||
4844 | /* | |
4845 | * If the address matches our offset, we have success. | |
4846 | */ | |
4847 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
4848 | *indexp = index; | |
4849 | return(KERN_SUCCESS); | |
4850 | } | |
4851 | ||
4852 | /* | |
4853 | * Move to the next slot, try again. | |
4854 | */ | |
4855 | index = DRT_HASH_NEXT(cmap, index); | |
4856 | } | |
4857 | /* | |
4858 | * It's not there. | |
4859 | */ | |
4860 | return(KERN_FAILURE); | |
4861 | } | |
4862 | ||
4863 | /* | |
4864 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
4865 | * one yet, allocate one and populate the address field. Note that it will | |
4866 | * not have a nonzero page count and thus will still technically be free, so | |
4867 | * in the case where we are called to clean pages, the slot will remain free. | |
4868 | */ | |
4869 | static kern_return_t | |
4870 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
4871 | { | |
4872 | struct vfs_drt_clustermap *cmap; | |
4873 | kern_return_t kret; | |
4874 | int index, i; | |
4875 | ||
4876 | cmap = *cmapp; | |
4877 | ||
4878 | /* look for an existing entry */ | |
4879 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
4880 | if (kret == KERN_SUCCESS) | |
4881 | return(kret); | |
4882 | ||
4883 | /* need to allocate an entry */ | |
4884 | offset = DRT_ALIGN_ADDRESS(offset); | |
4885 | index = DRT_HASH(cmap, offset); | |
4886 | ||
4887 | /* scan from the index forwards looking for a vacant slot */ | |
4888 | for (i = 0; i < cmap->scm_modulus; i++) { | |
4889 | /* slot vacant? */ | |
4890 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
4891 | cmap->scm_buckets++; | |
4892 | if (index < cmap->scm_lastclean) | |
4893 | cmap->scm_lastclean = index; | |
4894 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
4895 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
4896 | DRT_BITVECTOR_CLEAR(cmap, index); | |
4897 | *indexp = index; | |
4898 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
4899 | return(KERN_SUCCESS); | |
4900 | } | |
4901 | cmap->scm_iskips += i; | |
4902 | index = DRT_HASH_NEXT(cmap, index); | |
4903 | } | |
4904 | ||
4905 | /* | |
4906 | * We haven't found a vacant slot, so the map is full. If we're not | |
4907 | * already recursed, try reallocating/compacting it. | |
4908 | */ | |
4909 | if (recursed) | |
4910 | return(KERN_FAILURE); | |
4911 | kret = vfs_drt_alloc_map(cmapp); | |
4912 | if (kret == KERN_SUCCESS) { | |
4913 | /* now try to insert again */ | |
4914 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
4915 | } | |
4916 | return(kret); | |
4917 | } | |
4918 | ||
4919 | /* | |
4920 | * Implementation of set dirty/clean. | |
4921 | * | |
4922 | * In the 'clean' case, not finding a map is OK. | |
4923 | */ | |
4924 | static kern_return_t | |
4925 | vfs_drt_do_mark_pages( | |
4926 | void **private, | |
4927 | u_int64_t offset, | |
4928 | u_int length, | |
4929 | int *setcountp, | |
4930 | int dirty) | |
4931 | { | |
4932 | struct vfs_drt_clustermap *cmap, **cmapp; | |
4933 | kern_return_t kret; | |
4934 | int i, index, pgoff, pgcount, setcount, ecount; | |
4935 | ||
4936 | cmapp = (struct vfs_drt_clustermap **)private; | |
4937 | cmap = *cmapp; | |
4938 | ||
4939 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
4940 | ||
4941 | if (setcountp != NULL) | |
4942 | *setcountp = 0; | |
4943 | ||
4944 | /* allocate a cluster map if we don't already have one */ | |
4945 | if (cmap == NULL) { | |
4946 | /* no cluster map, nothing to clean */ | |
4947 | if (!dirty) { | |
4948 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
4949 | return(KERN_SUCCESS); | |
4950 | } | |
4951 | kret = vfs_drt_alloc_map(cmapp); | |
4952 | if (kret != KERN_SUCCESS) { | |
4953 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
4954 | return(kret); | |
4955 | } | |
4956 | } | |
4957 | setcount = 0; | |
4958 | ||
4959 | /* | |
4960 | * Iterate over the length of the region. | |
4961 | */ | |
4962 | while (length > 0) { | |
4963 | /* | |
4964 | * Get the hashtable index for this offset. | |
4965 | * | |
4966 | * XXX this will add blank entries if we are clearing a range | |
4967 | * that hasn't been dirtied. | |
4968 | */ | |
4969 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
4970 | cmap = *cmapp; /* may have changed! */ | |
4971 | /* this may be a partial-success return */ | |
4972 | if (kret != KERN_SUCCESS) { | |
4973 | if (setcountp != NULL) | |
4974 | *setcountp = setcount; | |
4975 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
4976 | ||
4977 | return(kret); | |
4978 | } | |
4979 | ||
4980 | /* | |
4981 | * Work out how many pages we're modifying in this | |
4982 | * hashtable entry. | |
4983 | */ | |
4984 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
4985 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
4986 | ||
4987 | /* | |
4988 | * Iterate over pages, dirty/clearing as we go. | |
4989 | */ | |
4990 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
4991 | for (i = 0; i < pgcount; i++) { | |
4992 | if (dirty) { | |
4993 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
4994 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
4995 | ecount++; | |
4996 | setcount++; | |
4997 | } | |
4998 | } else { | |
4999 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
5000 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
5001 | ecount--; | |
5002 | setcount++; | |
5003 | } | |
5004 | } | |
5005 | } | |
5006 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
5007 | ||
5008 | offset += pgcount * PAGE_SIZE; | |
5009 | length -= pgcount * PAGE_SIZE; | |
5010 | } | |
5011 | if (setcountp != NULL) | |
5012 | *setcountp = setcount; | |
5013 | ||
5014 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
5015 | ||
5016 | return(KERN_SUCCESS); | |
5017 | } | |
5018 | ||
5019 | /* | |
5020 | * Mark a set of pages as dirty/clean. | |
5021 | * | |
5022 | * This is a public interface. | |
5023 | * | |
5024 | * cmapp | |
5025 | * Pointer to storage suitable for holding a pointer. Note that | |
5026 | * this must either be NULL or a value set by this function. | |
5027 | * | |
5028 | * size | |
5029 | * Current file size in bytes. | |
5030 | * | |
5031 | * offset | |
5032 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
5033 | * page-aligned. | |
5034 | * | |
5035 | * length | |
5036 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
5037 | * | |
5038 | * setcountp | |
5039 | * Number of pages newly marked dirty by this call (optional). | |
5040 | * | |
5041 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
5042 | */ | |
5043 | static kern_return_t | |
5044 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp) | |
5045 | { | |
5046 | /* XXX size unused, drop from interface */ | |
5047 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
5048 | } | |
5049 | ||
5050 | #if 0 | |
5051 | static kern_return_t | |
5052 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
5053 | { | |
5054 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
5055 | } | |
5056 | #endif | |
5057 | ||
5058 | /* | |
5059 | * Get a cluster of dirty pages. | |
5060 | * | |
5061 | * This is a public interface. | |
5062 | * | |
5063 | * cmapp | |
5064 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
5065 | * be NULL or a value set by drt_mark_pages. | |
5066 | * | |
5067 | * offsetp | |
5068 | * Returns the byte offset into the file of the first page in the cluster. | |
5069 | * | |
5070 | * lengthp | |
5071 | * Returns the length in bytes of the cluster of dirty pages. | |
5072 | * | |
5073 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
5074 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
5075 | * be released if there are no more dirty pages left in the map | |
5076 | * | |
5077 | */ | |
5078 | static kern_return_t | |
5079 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
5080 | { | |
5081 | struct vfs_drt_clustermap *cmap; | |
5082 | u_int64_t offset; | |
5083 | u_int length; | |
5084 | int index, i, j, fs, ls; | |
5085 | ||
5086 | /* sanity */ | |
5087 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
5088 | return(KERN_FAILURE); | |
5089 | cmap = *cmapp; | |
5090 | ||
5091 | /* walk the hashtable */ | |
5092 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
5093 | index = DRT_HASH(cmap, offset); | |
5094 | ||
5095 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
5096 | continue; | |
5097 | ||
5098 | /* scan the bitfield for a string of bits */ | |
5099 | fs = -1; | |
5100 | ||
5101 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
5102 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
5103 | fs = i; | |
5104 | break; | |
5105 | } | |
5106 | } | |
5107 | if (fs == -1) { | |
5108 | /* didn't find any bits set */ | |
5109 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
5110 | } | |
5111 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
5112 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
5113 | break; | |
5114 | } | |
5115 | ||
5116 | /* compute offset and length, mark pages clean */ | |
5117 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
5118 | length = ls * PAGE_SIZE; | |
5119 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
5120 | cmap->scm_lastclean = index; | |
5121 | ||
5122 | /* return successful */ | |
5123 | *offsetp = (off_t)offset; | |
5124 | *lengthp = length; | |
5125 | ||
5126 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
5127 | return(KERN_SUCCESS); | |
5128 | } | |
5129 | /* | |
5130 | * We didn't find anything... hashtable is empty | |
5131 | * emit stats into trace buffer and | |
5132 | * then free it | |
5133 | */ | |
5134 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
5135 | cmap->scm_modulus, | |
5136 | cmap->scm_buckets, | |
5137 | cmap->scm_lastclean, | |
5138 | cmap->scm_iskips); | |
5139 | ||
5140 | vfs_drt_free_map(cmap); | |
5141 | *cmapp = NULL; | |
5142 | ||
5143 | return(KERN_FAILURE); | |
5144 | } | |
5145 | ||
5146 | ||
5147 | static kern_return_t | |
5148 | vfs_drt_control(void **cmapp, int op_type) | |
5149 | { | |
5150 | struct vfs_drt_clustermap *cmap; | |
5151 | ||
5152 | /* sanity */ | |
5153 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
5154 | return(KERN_FAILURE); | |
5155 | cmap = *cmapp; | |
5156 | ||
5157 | switch (op_type) { | |
5158 | case 0: | |
5159 | /* emit stats into trace buffer */ | |
5160 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
5161 | cmap->scm_modulus, | |
5162 | cmap->scm_buckets, | |
5163 | cmap->scm_lastclean, | |
5164 | cmap->scm_iskips); | |
5165 | ||
5166 | vfs_drt_free_map(cmap); | |
5167 | *cmapp = NULL; | |
5168 | break; | |
5169 | ||
5170 | case 1: | |
5171 | cmap->scm_lastclean = 0; | |
5172 | break; | |
5173 | } | |
5174 | return(KERN_SUCCESS); | |
5175 | } | |
5176 | ||
5177 | ||
5178 | ||
5179 | /* | |
5180 | * Emit a summary of the state of the clustermap into the trace buffer | |
5181 | * along with some caller-provided data. | |
5182 | */ | |
5183 | #if KDEBUG | |
5184 | static void | |
5185 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) | |
5186 | { | |
5187 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
5188 | } | |
5189 | #else | |
5190 | static void | |
5191 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
5192 | __unused int arg1, __unused int arg2, __unused int arg3, | |
5193 | __unused int arg4) | |
5194 | { | |
5195 | } | |
5196 | #endif | |
5197 | ||
5198 | #if 0 | |
5199 | /* | |
5200 | * Perform basic sanity check on the hash entry summary count | |
5201 | * vs. the actual bits set in the entry. | |
5202 | */ | |
5203 | static void | |
5204 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
5205 | { | |
5206 | int index, i; | |
5207 | int bits_on; | |
5208 | ||
5209 | for (index = 0; index < cmap->scm_modulus; index++) { | |
5210 | if (DRT_HASH_VACANT(cmap, index)) | |
5211 | continue; | |
5212 | ||
5213 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
5214 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
5215 | bits_on++; | |
5216 | } | |
5217 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
5218 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
5219 | } | |
5220 | } | |
5221 | #endif |