]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | */ | |
59 | ||
60 | #include <kern/cpu_number.h> | |
61 | #include <kern/kalloc.h> | |
62 | #include <kern/cpu_data.h> | |
63 | #include <mach/mach_types.h> | |
64 | #include <mach/machine.h> | |
65 | #include <mach/vm_map.h> | |
66 | #include <mach/machine/vm_param.h> | |
67 | #include <vm/vm_kern.h> | |
68 | #include <vm/vm_map.h> | |
69 | ||
70 | #include <i386/bit_routines.h> | |
71 | #include <i386/mp_desc.h> | |
72 | #include <i386/misc_protos.h> | |
73 | #include <i386/mp.h> | |
74 | #include <i386/pmap.h> | |
75 | #include <i386/postcode.h> | |
76 | #include <i386/pmap_internal.h> | |
77 | #if CONFIG_MCA | |
78 | #include <i386/machine_check.h> | |
79 | #endif | |
80 | ||
81 | #include <kern/misc_protos.h> | |
82 | ||
83 | #if MONOTONIC | |
84 | #include <kern/monotonic.h> | |
85 | #endif /* MONOTONIC */ | |
86 | #include <san/kasan.h> | |
87 | ||
88 | #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE) | |
89 | #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE) | |
90 | ||
91 | // Declare macros that will declare the externs | |
92 | #define TRAP(n, name) extern void *name ; | |
93 | #define TRAP_ERR(n, name) extern void *name ; | |
94 | #define TRAP_SPC(n, name) extern void *name ; | |
95 | #define TRAP_IST1(n, name) extern void *name ; | |
96 | #define TRAP_IST2(n, name) extern void *name ; | |
97 | #define INTERRUPT(n) extern void *_intr_ ## n ; | |
98 | #define USER_TRAP(n, name) extern void *name ; | |
99 | #define USER_TRAP_SPC(n, name) extern void *name ; | |
100 | ||
101 | // Include the table to declare the externs | |
102 | #include "../x86_64/idt_table.h" | |
103 | ||
104 | // Undef the macros, then redefine them so we can declare the table | |
105 | #undef TRAP | |
106 | #undef TRAP_ERR | |
107 | #undef TRAP_SPC | |
108 | #undef TRAP_IST1 | |
109 | #undef TRAP_IST2 | |
110 | #undef INTERRUPT | |
111 | #undef USER_TRAP | |
112 | #undef USER_TRAP_SPC | |
113 | ||
114 | #define TRAP(n, name) \ | |
115 | [n] = { \ | |
116 | (uintptr_t)&name, \ | |
117 | KERNEL64_CS, \ | |
118 | 0, \ | |
119 | K_INTR_GATE, \ | |
120 | 0 \ | |
121 | }, | |
122 | ||
123 | #define TRAP_ERR TRAP | |
124 | #define TRAP_SPC TRAP | |
125 | ||
126 | #define TRAP_IST1(n, name) \ | |
127 | [n] = { \ | |
128 | (uintptr_t)&name, \ | |
129 | KERNEL64_CS, \ | |
130 | 1, \ | |
131 | K_INTR_GATE, \ | |
132 | 0 \ | |
133 | }, | |
134 | ||
135 | #define TRAP_IST2(n, name) \ | |
136 | [n] = { \ | |
137 | (uintptr_t)&name, \ | |
138 | KERNEL64_CS, \ | |
139 | 2, \ | |
140 | K_INTR_GATE, \ | |
141 | 0 \ | |
142 | }, | |
143 | ||
144 | #define INTERRUPT(n) \ | |
145 | [n] = { \ | |
146 | (uintptr_t)&_intr_ ## n,\ | |
147 | KERNEL64_CS, \ | |
148 | 0, \ | |
149 | K_INTR_GATE, \ | |
150 | 0 \ | |
151 | }, | |
152 | ||
153 | #define USER_TRAP(n, name) \ | |
154 | [n] = { \ | |
155 | (uintptr_t)&name, \ | |
156 | KERNEL64_CS, \ | |
157 | 0, \ | |
158 | U_INTR_GATE, \ | |
159 | 0 \ | |
160 | }, | |
161 | ||
162 | #define USER_TRAP_SPC USER_TRAP | |
163 | ||
164 | // Declare the table using the macros we just set up | |
165 | struct fake_descriptor64 master_idt64[IDTSZ] | |
166 | __attribute__ ((section("__HIB,__desc"))) | |
167 | __attribute__ ((aligned(PAGE_SIZE))) = { | |
168 | #include "../x86_64/idt_table.h" | |
169 | }; | |
170 | ||
171 | /* | |
172 | * First cpu`s interrupt stack. | |
173 | */ | |
174 | extern uint32_t low_intstack[]; /* bottom */ | |
175 | extern uint32_t low_eintstack[]; /* top */ | |
176 | ||
177 | /* | |
178 | * Per-cpu data area pointers. | |
179 | * The master cpu (cpu 0) has its data area statically allocated; | |
180 | * others are allocated dynamically and this array is updated at runtime. | |
181 | */ | |
182 | static cpu_data_t cpu_data_master = { | |
183 | .cpu_this = &cpu_data_master, | |
184 | .cpu_nanotime = &pal_rtc_nanotime_info, | |
185 | .cpu_int_stack_top = (vm_offset_t) low_eintstack, | |
186 | }; | |
187 | cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master }; | |
188 | ||
189 | decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */ | |
190 | unsigned int real_ncpus = 1; | |
191 | unsigned int max_ncpus = MAX_CPUS; | |
192 | ||
193 | extern void hi64_sysenter(void); | |
194 | extern void hi64_syscall(void); | |
195 | ||
196 | /* | |
197 | * Multiprocessor i386/i486 systems use a separate copy of the | |
198 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
199 | * are separate to avoid lock contention: the i386 uses locked | |
200 | * memory cycles to access the descriptor tables. The TSS is | |
201 | * separate since each processor needs its own kernel stack, | |
202 | * and since using a TSS marks it busy. | |
203 | */ | |
204 | ||
205 | /* | |
206 | * Allocate and initialize the per-processor descriptor tables. | |
207 | */ | |
208 | ||
209 | /* | |
210 | * This is the expanded, 64-bit variant of the kernel LDT descriptor. | |
211 | * When switching to 64-bit mode this replaces KERNEL_LDT entry | |
212 | * and the following empty slot. This enables the LDT to be referenced | |
213 | * in the uber-space remapping window on the kernel. | |
214 | */ | |
215 | struct fake_descriptor64 kernel_ldt_desc64 = { | |
216 | 0, | |
217 | LDTSZ_MIN*sizeof(struct fake_descriptor)-1, | |
218 | 0, | |
219 | ACC_P|ACC_PL_K|ACC_LDT, | |
220 | 0 | |
221 | }; | |
222 | ||
223 | /* | |
224 | * This is the expanded, 64-bit variant of the kernel TSS descriptor. | |
225 | * It is follows pattern of the KERNEL_LDT. | |
226 | */ | |
227 | struct fake_descriptor64 kernel_tss_desc64 = { | |
228 | 0, | |
229 | sizeof(struct x86_64_tss)-1, | |
230 | 0, | |
231 | ACC_P|ACC_PL_K|ACC_TSS, | |
232 | 0 | |
233 | }; | |
234 | ||
235 | /* | |
236 | * Convert a descriptor from fake to real format. | |
237 | * | |
238 | * Fake descriptor format: | |
239 | * bytes 0..3 base 31..0 | |
240 | * bytes 4..5 limit 15..0 | |
241 | * byte 6 access byte 2 | limit 19..16 | |
242 | * byte 7 access byte 1 | |
243 | * | |
244 | * Real descriptor format: | |
245 | * bytes 0..1 limit 15..0 | |
246 | * bytes 2..3 base 15..0 | |
247 | * byte 4 base 23..16 | |
248 | * byte 5 access byte 1 | |
249 | * byte 6 access byte 2 | limit 19..16 | |
250 | * byte 7 base 31..24 | |
251 | * | |
252 | * Fake gate format: | |
253 | * bytes 0..3 offset | |
254 | * bytes 4..5 selector | |
255 | * byte 6 word count << 4 (to match fake descriptor) | |
256 | * byte 7 access byte 1 | |
257 | * | |
258 | * Real gate format: | |
259 | * bytes 0..1 offset 15..0 | |
260 | * bytes 2..3 selector | |
261 | * byte 4 word count | |
262 | * byte 5 access byte 1 | |
263 | * bytes 6..7 offset 31..16 | |
264 | */ | |
265 | void | |
266 | fix_desc(void *d, int num_desc) { | |
267 | //early_kprintf("fix_desc(%x, %x)\n", d, num_desc); | |
268 | uint8_t *desc = (uint8_t*) d; | |
269 | ||
270 | do { | |
271 | if ((desc[7] & 0x14) == 0x04) { /* gate */ | |
272 | uint32_t offset; | |
273 | uint16_t selector; | |
274 | uint8_t wordcount; | |
275 | uint8_t acc; | |
276 | ||
277 | offset = *((uint32_t*)(desc)); | |
278 | selector = *((uint32_t*)(desc+4)); | |
279 | wordcount = desc[6] >> 4; | |
280 | acc = desc[7]; | |
281 | ||
282 | *((uint16_t*)desc) = offset & 0xFFFF; | |
283 | *((uint16_t*)(desc+2)) = selector; | |
284 | desc[4] = wordcount; | |
285 | desc[5] = acc; | |
286 | *((uint16_t*)(desc+6)) = offset >> 16; | |
287 | ||
288 | } else { /* descriptor */ | |
289 | uint32_t base; | |
290 | uint16_t limit; | |
291 | uint8_t acc1, acc2; | |
292 | ||
293 | base = *((uint32_t*)(desc)); | |
294 | limit = *((uint16_t*)(desc+4)); | |
295 | acc2 = desc[6]; | |
296 | acc1 = desc[7]; | |
297 | ||
298 | *((uint16_t*)(desc)) = limit; | |
299 | *((uint16_t*)(desc+2)) = base & 0xFFFF; | |
300 | desc[4] = (base >> 16) & 0xFF; | |
301 | desc[5] = acc1; | |
302 | desc[6] = acc2; | |
303 | desc[7] = base >> 24; | |
304 | } | |
305 | desc += 8; | |
306 | } while (--num_desc); | |
307 | } | |
308 | ||
309 | void | |
310 | fix_desc64(void *descp, int count) | |
311 | { | |
312 | struct fake_descriptor64 *fakep; | |
313 | union { | |
314 | struct real_gate64 gate; | |
315 | struct real_descriptor64 desc; | |
316 | } real; | |
317 | int i; | |
318 | ||
319 | fakep = (struct fake_descriptor64 *) descp; | |
320 | ||
321 | for (i = 0; i < count; i++, fakep++) { | |
322 | /* | |
323 | * Construct the real decriptor locally. | |
324 | */ | |
325 | ||
326 | bzero((void *) &real, sizeof(real)); | |
327 | ||
328 | switch (fakep->access & ACC_TYPE) { | |
329 | case 0: | |
330 | break; | |
331 | case ACC_CALL_GATE: | |
332 | case ACC_INTR_GATE: | |
333 | case ACC_TRAP_GATE: | |
334 | real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); | |
335 | real.gate.selector16 = fakep->lim_or_seg & 0xFFFF; | |
336 | real.gate.IST = fakep->size_or_IST & 0x7; | |
337 | real.gate.access8 = fakep->access; | |
338 | real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF); | |
339 | real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32); | |
340 | break; | |
341 | default: /* Otherwise */ | |
342 | real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF; | |
343 | real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); | |
344 | real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF); | |
345 | real.desc.access8 = fakep->access; | |
346 | real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF; | |
347 | real.desc.granularity4 = fakep->size_or_IST; | |
348 | real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF); | |
349 | real.desc.base_top32 = (uint32_t)(fakep->offset64>>32); | |
350 | } | |
351 | ||
352 | /* | |
353 | * Now copy back over the fake structure. | |
354 | */ | |
355 | bcopy((void *) &real, (void *) fakep, sizeof(real)); | |
356 | } | |
357 | } | |
358 | ||
359 | static void | |
360 | cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias) | |
361 | { | |
362 | pt_entry_t *pte = NULL; | |
363 | ||
364 | /* Require page alignment */ | |
365 | assert(page_aligned(gdt)); | |
366 | assert(page_aligned(alias)); | |
367 | ||
368 | pte = pmap_pte(kernel_pmap, alias); | |
369 | pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF | |
370 | | INTEL_PTE_MOD | |
371 | | INTEL_PTE_WIRED | |
372 | | INTEL_PTE_VALID | |
373 | | INTEL_PTE_WRITE | |
374 | | INTEL_PTE_NX); | |
375 | #if KASAN | |
376 | kasan_notify_address(alias, PAGE_SIZE); | |
377 | #endif | |
378 | } | |
379 | ||
380 | ||
381 | void | |
382 | cpu_desc_init(cpu_data_t *cdp) | |
383 | { | |
384 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
385 | ||
386 | if (cdp == &cpu_data_master) { | |
387 | /* | |
388 | * Master CPU uses the tables built at boot time. | |
389 | * Just set the index pointers to the low memory space. | |
390 | */ | |
391 | cdi->cdi_ktss = (void *)&master_ktss64; | |
392 | cdi->cdi_sstk = (vm_offset_t) &master_sstk.top; | |
393 | cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS; | |
394 | cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; | |
395 | cdi->cdi_ldt = (struct fake_descriptor *) master_ldt; | |
396 | ||
397 | /* Replace the expanded LDTs and TSS slots in the GDT */ | |
398 | kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt; | |
399 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = | |
400 | kernel_ldt_desc64; | |
401 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] = | |
402 | kernel_ldt_desc64; | |
403 | kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64; | |
404 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = | |
405 | kernel_tss_desc64; | |
406 | ||
407 | /* Fix up the expanded descriptors for 64-bit. */ | |
408 | fix_desc64((void *) &master_idt64, IDTSZ); | |
409 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); | |
410 | fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1); | |
411 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); | |
412 | ||
413 | /* | |
414 | * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS | |
415 | * Note: this will be dynamically re-allocated in VM later. | |
416 | */ | |
417 | master_ktss64.ist2 = (uintptr_t) low_eintstack; | |
418 | master_ktss64.ist1 = (uintptr_t) low_eintstack | |
419 | - sizeof(x86_64_intr_stack_frame_t); | |
420 | } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */ | |
421 | cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; | |
422 | ||
423 | /* | |
424 | * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel | |
425 | * heap (cpu_desc_table). | |
426 | * LDT descriptors are mapped into a separate area. | |
427 | * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space. | |
428 | */ | |
429 | cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; | |
430 | cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number); | |
431 | cdi->cdi_ktss = (void *)&cdt->ktss; | |
432 | cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top; | |
433 | cdi->cdi_ldt = cdp->cpu_ldtp; | |
434 | ||
435 | /* Make the virtual alias address for the GDT */ | |
436 | cpu_gdt_alias((vm_map_offset_t) &cdt->gdt, | |
437 | (vm_map_offset_t) cdi->cdi_gdt.ptr); | |
438 | ||
439 | /* | |
440 | * Copy the tables | |
441 | */ | |
442 | bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); | |
443 | bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt)); | |
444 | bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss)); | |
445 | ||
446 | /* | |
447 | * Fix up the entries in the GDT to point to | |
448 | * this LDT and this TSS. | |
449 | */ | |
450 | kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; | |
451 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = | |
452 | kernel_ldt_desc64; | |
453 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); | |
454 | ||
455 | kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; | |
456 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = | |
457 | kernel_ldt_desc64; | |
458 | fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); | |
459 | ||
460 | kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss; | |
461 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = | |
462 | kernel_tss_desc64; | |
463 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
464 | ||
465 | /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */ | |
466 | bzero((void *) cdt->fstk, sizeof(cdt->fstk)); | |
467 | cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk); | |
468 | cdt->ktss.ist1 = cdt->ktss.ist2 | |
469 | - sizeof(x86_64_intr_stack_frame_t); | |
470 | } | |
471 | ||
472 | /* Require that the top of the sysenter stack is 16-byte aligned */ | |
473 | if ((cdi->cdi_sstk % 16) != 0) | |
474 | panic("cpu_desc_init() sysenter stack not 16-byte aligned"); | |
475 | } | |
476 | ||
477 | ||
478 | void | |
479 | cpu_desc_load(cpu_data_t *cdp) | |
480 | { | |
481 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
482 | ||
483 | postcode(CPU_DESC_LOAD_ENTRY); | |
484 | ||
485 | /* Stuff the kernel per-cpu data area address into the MSRs */ | |
486 | postcode(CPU_DESC_LOAD_GS_BASE); | |
487 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
488 | postcode(CPU_DESC_LOAD_KERNEL_GS_BASE); | |
489 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
490 | ||
491 | /* | |
492 | * Ensure the TSS segment's busy bit is clear. This is required | |
493 | * for the case of reloading descriptors at wake to avoid | |
494 | * their complete re-initialization. | |
495 | */ | |
496 | gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; | |
497 | ||
498 | /* Load the GDT, LDT, IDT and TSS */ | |
499 | cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1; | |
500 | cdi->cdi_idt.size = 0x1000 + cdp->cpu_number; | |
501 | ||
502 | postcode(CPU_DESC_LOAD_GDT); | |
503 | lgdt((uintptr_t *) &cdi->cdi_gdt); | |
504 | postcode(CPU_DESC_LOAD_IDT); | |
505 | lidt((uintptr_t *) &cdi->cdi_idt); | |
506 | postcode(CPU_DESC_LOAD_LDT); | |
507 | lldt(KERNEL_LDT); | |
508 | postcode(CPU_DESC_LOAD_TSS); | |
509 | set_tr(KERNEL_TSS); | |
510 | ||
511 | #if GPROF // Hack to enable mcount to work on K64 | |
512 | __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS))); | |
513 | #endif | |
514 | postcode(CPU_DESC_LOAD_EXIT); | |
515 | } | |
516 | ||
517 | ||
518 | /* | |
519 | * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit. | |
520 | */ | |
521 | void | |
522 | cpu_syscall_init(cpu_data_t *cdp) | |
523 | { | |
524 | #if MONOTONIC | |
525 | mt_cpu_up(cdp); | |
526 | #else /* MONOTONIC */ | |
527 | #pragma unused(cdp) | |
528 | #endif /* !MONOTONIC */ | |
529 | wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); | |
530 | wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter); | |
531 | wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk()); | |
532 | /* Enable syscall/sysret */ | |
533 | wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); | |
534 | ||
535 | /* | |
536 | * MSRs for 64-bit syscall/sysret | |
537 | * Note USER_CS because sysret uses this + 16 when returning to | |
538 | * 64-bit code. | |
539 | */ | |
540 | wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall); | |
541 | wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | | |
542 | (((uint64_t)KERNEL64_CS) << 32)); | |
543 | /* | |
544 | * Emulate eflags cleared by sysenter but note that | |
545 | * we also clear the trace trap to avoid the complications | |
546 | * of single-stepping into a syscall. The nested task bit | |
547 | * is also cleared to avoid a spurious "task switch" | |
548 | * should we choose to return via an IRET. | |
549 | */ | |
550 | wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT); | |
551 | ||
552 | } | |
553 | ||
554 | ||
555 | cpu_data_t * | |
556 | cpu_data_alloc(boolean_t is_boot_cpu) | |
557 | { | |
558 | int ret; | |
559 | cpu_data_t *cdp; | |
560 | ||
561 | if (is_boot_cpu) { | |
562 | assert(real_ncpus == 1); | |
563 | cdp = cpu_datap(0); | |
564 | if (cdp->cpu_processor == NULL) { | |
565 | simple_lock_init(&ncpus_lock, 0); | |
566 | cdp->cpu_processor = cpu_processor_alloc(TRUE); | |
567 | #if NCOPY_WINDOWS > 0 | |
568 | cdp->cpu_pmap = pmap_cpu_alloc(TRUE); | |
569 | #endif | |
570 | } | |
571 | return cdp; | |
572 | } | |
573 | ||
574 | /* | |
575 | * Allocate per-cpu data: | |
576 | */ | |
577 | ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); | |
578 | if (ret != KERN_SUCCESS) { | |
579 | printf("cpu_data_alloc() failed, ret=%d\n", ret); | |
580 | goto abort; | |
581 | } | |
582 | bzero((void*) cdp, sizeof(cpu_data_t)); | |
583 | cdp->cpu_this = cdp; | |
584 | ||
585 | /* | |
586 | * Allocate interrupt stack: | |
587 | */ | |
588 | ret = kmem_alloc(kernel_map, | |
589 | (vm_offset_t *) &cdp->cpu_int_stack_top, | |
590 | INTSTACK_SIZE, VM_KERN_MEMORY_CPU); | |
591 | if (ret != KERN_SUCCESS) { | |
592 | printf("cpu_data_alloc() int stack failed, ret=%d\n", ret); | |
593 | goto abort; | |
594 | } | |
595 | bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE); | |
596 | cdp->cpu_int_stack_top += INTSTACK_SIZE; | |
597 | ||
598 | /* | |
599 | * Allocate descriptor table: | |
600 | */ | |
601 | ret = kmem_alloc(kernel_map, | |
602 | (vm_offset_t *) &cdp->cpu_desc_tablep, | |
603 | sizeof(cpu_desc_table64_t), | |
604 | VM_KERN_MEMORY_CPU); | |
605 | if (ret != KERN_SUCCESS) { | |
606 | printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret); | |
607 | goto abort; | |
608 | } | |
609 | ||
610 | /* | |
611 | * Allocate LDT | |
612 | */ | |
613 | ret = kmem_alloc(kernel_map, | |
614 | (vm_offset_t *) &cdp->cpu_ldtp, | |
615 | sizeof(struct real_descriptor) * LDTSZ, | |
616 | VM_KERN_MEMORY_CPU); | |
617 | if (ret != KERN_SUCCESS) { | |
618 | printf("cpu_data_alloc() ldt failed, ret=%d\n", ret); | |
619 | goto abort; | |
620 | } | |
621 | ||
622 | #if CONFIG_MCA | |
623 | /* Machine-check shadow register allocation. */ | |
624 | mca_cpu_alloc(cdp); | |
625 | #endif | |
626 | ||
627 | simple_lock(&ncpus_lock); | |
628 | ||
629 | cpu_data_ptr[real_ncpus] = cdp; | |
630 | cdp->cpu_number = real_ncpus; | |
631 | real_ncpus++; | |
632 | simple_unlock(&ncpus_lock); | |
633 | ||
634 | /* | |
635 | * Before this cpu has been assigned a real thread context, | |
636 | * we give it a fake, unique, non-zero thread id which the locking | |
637 | * primitives use as their lock value. | |
638 | * Note that this does not apply to the boot processor, cpu 0, which | |
639 | * transitions to a thread context well before other processors are | |
640 | * started. | |
641 | */ | |
642 | cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number; | |
643 | ||
644 | cdp->cpu_nanotime = &pal_rtc_nanotime_info; | |
645 | ||
646 | kprintf("cpu_data_alloc(%d) %p desc_table: %p " | |
647 | "ldt: %p " | |
648 | "int_stack: 0x%lx-0x%lx\n", | |
649 | cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, | |
650 | (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top)); | |
651 | ||
652 | return cdp; | |
653 | ||
654 | abort: | |
655 | if (cdp) { | |
656 | if (cdp->cpu_desc_tablep) | |
657 | kfree((void *) cdp->cpu_desc_tablep, | |
658 | sizeof(cpu_desc_table64_t)); | |
659 | if (cdp->cpu_int_stack_top) | |
660 | kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE), | |
661 | INTSTACK_SIZE); | |
662 | kfree((void *) cdp, sizeof(*cdp)); | |
663 | } | |
664 | return NULL; | |
665 | } | |
666 | ||
667 | boolean_t | |
668 | valid_user_data_selector(uint16_t selector) | |
669 | { | |
670 | sel_t sel = selector_to_sel(selector); | |
671 | ||
672 | if (selector == 0) | |
673 | return (TRUE); | |
674 | ||
675 | if (sel.ti == SEL_LDT) | |
676 | return (TRUE); | |
677 | else if (sel.index < GDTSZ) { | |
678 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
679 | return (TRUE); | |
680 | } | |
681 | ||
682 | return (FALSE); | |
683 | } | |
684 | ||
685 | boolean_t | |
686 | valid_user_code_selector(uint16_t selector) | |
687 | { | |
688 | sel_t sel = selector_to_sel(selector); | |
689 | ||
690 | if (selector == 0) | |
691 | return (FALSE); | |
692 | ||
693 | if (sel.ti == SEL_LDT) { | |
694 | if (sel.rpl == USER_PRIV) | |
695 | return (TRUE); | |
696 | } | |
697 | else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
698 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
699 | return (TRUE); | |
700 | /* Explicitly validate the system code selectors | |
701 | * even if not instantaneously privileged, | |
702 | * since they are dynamically re-privileged | |
703 | * at context switch | |
704 | */ | |
705 | if ((selector == USER_CS) || (selector == USER64_CS)) | |
706 | return (TRUE); | |
707 | } | |
708 | ||
709 | return (FALSE); | |
710 | } | |
711 | ||
712 | boolean_t | |
713 | valid_user_stack_selector(uint16_t selector) | |
714 | { | |
715 | sel_t sel = selector_to_sel(selector); | |
716 | ||
717 | if (selector == 0) | |
718 | return (FALSE); | |
719 | ||
720 | if (sel.ti == SEL_LDT) { | |
721 | if (sel.rpl == USER_PRIV) | |
722 | return (TRUE); | |
723 | } | |
724 | else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
725 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
726 | return (TRUE); | |
727 | } | |
728 | ||
729 | return (FALSE); | |
730 | } | |
731 | ||
732 | boolean_t | |
733 | valid_user_segment_selectors(uint16_t cs, | |
734 | uint16_t ss, | |
735 | uint16_t ds, | |
736 | uint16_t es, | |
737 | uint16_t fs, | |
738 | uint16_t gs) | |
739 | { | |
740 | return valid_user_code_selector(cs) && | |
741 | valid_user_stack_selector(ss) && | |
742 | valid_user_data_selector(ds) && | |
743 | valid_user_data_selector(es) && | |
744 | valid_user_data_selector(fs) && | |
745 | valid_user_data_selector(gs); | |
746 | } | |
747 | ||
748 | #if NCOPY_WINDOWS > 0 | |
749 | ||
750 | static vm_offset_t user_window_base = 0; | |
751 | ||
752 | void | |
753 | cpu_userwindow_init(int cpu) | |
754 | { | |
755 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
756 | vm_offset_t user_window; | |
757 | vm_offset_t vaddr; | |
758 | int num_cpus; | |
759 | ||
760 | num_cpus = ml_get_max_cpus(); | |
761 | ||
762 | if (cpu >= num_cpus) | |
763 | panic("cpu_userwindow_init: cpu > num_cpus"); | |
764 | ||
765 | if (user_window_base == 0) { | |
766 | ||
767 | if (vm_allocate(kernel_map, &vaddr, | |
768 | (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, | |
769 | VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) | |
770 | panic("cpu_userwindow_init: " | |
771 | "couldn't allocate user map window"); | |
772 | ||
773 | /* | |
774 | * window must start on a page table boundary | |
775 | * in the virtual address space | |
776 | */ | |
777 | user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1); | |
778 | ||
779 | /* | |
780 | * get rid of any allocation leading up to our | |
781 | * starting boundary | |
782 | */ | |
783 | vm_deallocate(kernel_map, vaddr, user_window_base - vaddr); | |
784 | ||
785 | /* | |
786 | * get rid of tail that we don't need | |
787 | */ | |
788 | user_window = user_window_base + | |
789 | (NBPDE * NCOPY_WINDOWS * num_cpus); | |
790 | ||
791 | vm_deallocate(kernel_map, user_window, | |
792 | (vaddr + | |
793 | ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) - | |
794 | user_window); | |
795 | } | |
796 | ||
797 | user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); | |
798 | ||
799 | cdp->cpu_copywindow_base = user_window; | |
800 | /* | |
801 | * Abuse this pdp entry, the pdp now actually points to | |
802 | * an array of copy windows addresses. | |
803 | */ | |
804 | cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window); | |
805 | ||
806 | } | |
807 | ||
808 | void | |
809 | cpu_physwindow_init(int cpu) | |
810 | { | |
811 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
812 | vm_offset_t phys_window = cdp->cpu_physwindow_base; | |
813 | ||
814 | if (phys_window == 0) { | |
815 | if (vm_allocate(kernel_map, &phys_window, | |
816 | PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) | |
817 | != KERN_SUCCESS) | |
818 | panic("cpu_physwindow_init: " | |
819 | "couldn't allocate phys map window"); | |
820 | ||
821 | /* | |
822 | * make sure the page that encompasses the | |
823 | * pte pointer we're interested in actually | |
824 | * exists in the page table | |
825 | */ | |
826 | pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE); | |
827 | ||
828 | cdp->cpu_physwindow_base = phys_window; | |
829 | cdp->cpu_physwindow_ptep = vtopte(phys_window); | |
830 | } | |
831 | } | |
832 | #endif /* NCOPY_WINDOWS > 0 */ | |
833 | ||
834 | /* | |
835 | * Allocate a new interrupt stack for the boot processor from the | |
836 | * heap rather than continue to use the statically allocated space. | |
837 | * Also switch to a dynamically allocated cpu data area. | |
838 | */ | |
839 | void | |
840 | cpu_data_realloc(void) | |
841 | { | |
842 | int ret; | |
843 | vm_offset_t istk; | |
844 | vm_offset_t fstk; | |
845 | cpu_data_t *cdp; | |
846 | boolean_t istate; | |
847 | ||
848 | ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU); | |
849 | if (ret != KERN_SUCCESS) { | |
850 | panic("cpu_data_realloc() stack alloc, ret=%d\n", ret); | |
851 | } | |
852 | bzero((void*) istk, INTSTACK_SIZE); | |
853 | istk += INTSTACK_SIZE; | |
854 | ||
855 | ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); | |
856 | if (ret != KERN_SUCCESS) { | |
857 | panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret); | |
858 | } | |
859 | ||
860 | /* Copy old contents into new area and make fix-ups */ | |
861 | assert(cpu_number() == 0); | |
862 | bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t)); | |
863 | cdp->cpu_this = cdp; | |
864 | cdp->cpu_int_stack_top = istk; | |
865 | timer_call_queue_init(&cdp->rtclock_timer.queue); | |
866 | ||
867 | /* Allocate the separate fault stack */ | |
868 | ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE, VM_KERN_MEMORY_CPU); | |
869 | if (ret != KERN_SUCCESS) { | |
870 | panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret); | |
871 | } | |
872 | bzero((void*) fstk, PAGE_SIZE); | |
873 | fstk += PAGE_SIZE; | |
874 | ||
875 | /* | |
876 | * With interrupts disabled commmit the new areas. | |
877 | */ | |
878 | istate = ml_set_interrupts_enabled(FALSE); | |
879 | cpu_data_ptr[0] = cdp; | |
880 | master_ktss64.ist2 = (uintptr_t) fstk; | |
881 | master_ktss64.ist1 = (uintptr_t) fstk | |
882 | - sizeof(x86_64_intr_stack_frame_t); | |
883 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
884 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
885 | (void) ml_set_interrupts_enabled(istate); | |
886 | ||
887 | kprintf("Reallocated master cpu data: %p," | |
888 | " interrupt stack: %p, fault stack: %p\n", | |
889 | (void *) cdp, (void *) istk, (void *) fstk); | |
890 | } |