]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2005-2008 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from | |
30 | * mach/ppc/thread_status.h */ | |
31 | #include <arm/proc_reg.h> | |
32 | ||
33 | #include <kern/thread.h> | |
34 | #include <mach/thread_status.h> | |
35 | ||
36 | #include <stdarg.h> | |
37 | #include <string.h> | |
38 | #include <sys/malloc.h> | |
39 | #include <sys/time.h> | |
40 | #include <sys/systm.h> | |
41 | #include <sys/proc.h> | |
42 | #include <sys/proc_internal.h> | |
43 | #include <sys/kauth.h> | |
44 | #include <sys/dtrace.h> | |
45 | #include <sys/dtrace_impl.h> | |
46 | #include <libkern/OSAtomic.h> | |
47 | #include <kern/simple_lock.h> | |
48 | #include <kern/sched_prim.h> /* for thread_wakeup() */ | |
49 | #include <kern/thread_call.h> | |
50 | #include <kern/task.h> | |
51 | #include <miscfs/devfs/devfs.h> | |
52 | #include <mach/vm_param.h> | |
53 | ||
54 | extern struct arm_saved_state *find_kern_regs(thread_t); | |
55 | ||
56 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ | |
57 | typedef arm_saved_state_t savearea_t; | |
58 | ||
59 | extern lck_attr_t *dtrace_lck_attr; | |
60 | extern lck_grp_t *dtrace_lck_grp; | |
61 | ||
62 | int dtrace_arm_condition_true(int condition, int cpsr); | |
63 | ||
64 | /* | |
65 | * Atomicity and synchronization | |
66 | */ | |
67 | inline void | |
68 | dtrace_membar_producer(void) | |
69 | { | |
70 | #if __ARM_SMP__ | |
71 | __asm__ volatile("dmb ish" : : : "memory"); | |
72 | #else | |
73 | __asm__ volatile("nop" : : : "memory"); | |
74 | #endif | |
75 | } | |
76 | ||
77 | inline void | |
78 | dtrace_membar_consumer(void) | |
79 | { | |
80 | #if __ARM_SMP__ | |
81 | __asm__ volatile("dmb ish" : : : "memory"); | |
82 | #else | |
83 | __asm__ volatile("nop" : : : "memory"); | |
84 | #endif | |
85 | } | |
86 | ||
87 | /* | |
88 | * Interrupt manipulation | |
89 | * XXX dtrace_getipl() can be called from probe context. | |
90 | */ | |
91 | int | |
92 | dtrace_getipl(void) | |
93 | { | |
94 | /* | |
95 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE | |
96 | * in osfmk/kern/cpu_data.h | |
97 | */ | |
98 | /* return get_interrupt_level(); */ | |
99 | return (ml_at_interrupt_context() ? 1 : 0); | |
100 | } | |
101 | ||
102 | #if __ARM_SMP__ | |
103 | /* | |
104 | * MP coordination | |
105 | */ | |
106 | ||
107 | decl_lck_mtx_data(static, dt_xc_lock); | |
108 | static uint32_t dt_xc_sync; | |
109 | ||
110 | typedef struct xcArg { | |
111 | processorid_t cpu; | |
112 | dtrace_xcall_t f; | |
113 | void *arg; | |
114 | } xcArg_t; | |
115 | ||
116 | static void | |
117 | xcRemote(void *foo) | |
118 | { | |
119 | xcArg_t *pArg = (xcArg_t *) foo; | |
120 | ||
121 | if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) | |
122 | (pArg->f) (pArg->arg); | |
123 | ||
124 | if (hw_atomic_sub(&dt_xc_sync, 1) == 0) | |
125 | thread_wakeup((event_t) &dt_xc_sync); | |
126 | } | |
127 | #endif | |
128 | ||
129 | /* | |
130 | * dtrace_xcall() is not called from probe context. | |
131 | */ | |
132 | void | |
133 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) | |
134 | { | |
135 | #if __ARM_SMP__ | |
136 | /* Only one dtrace_xcall in flight allowed */ | |
137 | lck_mtx_lock(&dt_xc_lock); | |
138 | ||
139 | xcArg_t xcArg; | |
140 | ||
141 | xcArg.cpu = cpu; | |
142 | xcArg.f = f; | |
143 | xcArg.arg = arg; | |
144 | ||
145 | cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg); | |
146 | ||
147 | lck_mtx_unlock(&dt_xc_lock); | |
148 | return; | |
149 | #else | |
150 | #pragma unused(cpu) | |
151 | /* On uniprocessor systems, the cpu should always be either ourselves or all */ | |
152 | ASSERT(cpu == CPU->cpu_id || cpu == DTRACE_CPUALL); | |
153 | ||
154 | (*f)(arg); | |
155 | return; | |
156 | #endif | |
157 | } | |
158 | ||
159 | /* | |
160 | * Initialization | |
161 | */ | |
162 | void | |
163 | dtrace_isa_init(void) | |
164 | { | |
165 | #if __ARM_SMP__ | |
166 | lck_mtx_init(&dt_xc_lock, dtrace_lck_grp, dtrace_lck_attr); | |
167 | #endif | |
168 | return; | |
169 | } | |
170 | ||
171 | /* | |
172 | * Runtime and ABI | |
173 | */ | |
174 | uint64_t | |
175 | dtrace_getreg(struct regs * savearea, uint_t reg) | |
176 | { | |
177 | struct arm_saved_state *regs = (struct arm_saved_state *) savearea; | |
178 | ||
179 | /* beyond register limit? */ | |
180 | if (reg > ARM_SAVED_STATE32_COUNT - 1) { | |
181 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
182 | return (0); | |
183 | } | |
184 | return (uint64_t) ((unsigned int *) (&(regs->r)))[reg]; | |
185 | } | |
186 | ||
187 | #define RETURN_OFFSET 4 | |
188 | ||
189 | static int | |
190 | dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc, | |
191 | user_addr_t sp) | |
192 | { | |
193 | int ret = 0; | |
194 | ||
195 | ASSERT(pcstack == NULL || pcstack_limit > 0); | |
196 | ||
197 | while (pc != 0) { | |
198 | ret++; | |
199 | if (pcstack != NULL) { | |
200 | *pcstack++ = (uint64_t) pc; | |
201 | pcstack_limit--; | |
202 | if (pcstack_limit <= 0) | |
203 | break; | |
204 | } | |
205 | ||
206 | if (sp == 0) | |
207 | break; | |
208 | ||
209 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
210 | sp = dtrace_fuword32(sp); | |
211 | } | |
212 | ||
213 | return (ret); | |
214 | } | |
215 | ||
216 | void | |
217 | dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit) | |
218 | { | |
219 | thread_t thread = current_thread(); | |
220 | savearea_t *regs; | |
221 | user_addr_t pc, sp; | |
222 | volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
223 | int n; | |
224 | ||
225 | if (*flags & CPU_DTRACE_FAULT) | |
226 | return; | |
227 | ||
228 | if (pcstack_limit <= 0) | |
229 | return; | |
230 | ||
231 | /* | |
232 | * If there's no user context we still need to zero the stack. | |
233 | */ | |
234 | if (thread == NULL) | |
235 | goto zero; | |
236 | ||
237 | regs = (savearea_t *) find_user_regs(thread); | |
238 | if (regs == NULL) | |
239 | goto zero; | |
240 | ||
241 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); | |
242 | pcstack_limit--; | |
243 | ||
244 | if (pcstack_limit <= 0) | |
245 | return; | |
246 | ||
247 | pc = regs->pc; | |
248 | sp = regs->sp; | |
249 | ||
250 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
251 | *pcstack++ = (uint64_t) pc; | |
252 | pcstack_limit--; | |
253 | if (pcstack_limit <= 0) | |
254 | return; | |
255 | ||
256 | pc = regs->lr; | |
257 | } | |
258 | ||
259 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, regs->r[7]); | |
260 | ||
261 | ASSERT(n >= 0); | |
262 | ASSERT(n <= pcstack_limit); | |
263 | ||
264 | pcstack += n; | |
265 | pcstack_limit -= n; | |
266 | ||
267 | zero: | |
268 | while (pcstack_limit-- > 0) | |
269 | *pcstack++ = 0ULL; | |
270 | } | |
271 | ||
272 | int | |
273 | dtrace_getustackdepth(void) | |
274 | { | |
275 | thread_t thread = current_thread(); | |
276 | savearea_t *regs; | |
277 | user_addr_t pc, sp; | |
278 | int n = 0; | |
279 | ||
280 | if (thread == NULL) | |
281 | return 0; | |
282 | ||
283 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) | |
284 | return (-1); | |
285 | ||
286 | regs = (savearea_t *) find_user_regs(thread); | |
287 | if (regs == NULL) | |
288 | return 0; | |
289 | ||
290 | pc = regs->pc; | |
291 | sp = regs->sp; | |
292 | ||
293 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
294 | n++; | |
295 | pc = regs->lr; | |
296 | } | |
297 | ||
298 | /* | |
299 | * Note that unlike ppc, the arm code does not use | |
300 | * CPU_DTRACE_USTACK_FP. This is because arm always | |
301 | * traces from the sp, even in syscall/profile/fbt | |
302 | * providers. | |
303 | */ | |
304 | ||
305 | n += dtrace_getustack_common(NULL, 0, pc, regs->r[7]); | |
306 | ||
307 | return (n); | |
308 | } | |
309 | ||
310 | void | |
311 | dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit) | |
312 | { | |
313 | /* XXX ARMTODO 64vs32 */ | |
314 | thread_t thread = current_thread(); | |
315 | savearea_t *regs; | |
316 | user_addr_t pc, sp; | |
317 | ||
318 | volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
319 | ||
320 | #if 0 | |
321 | uintptr_t oldcontext; | |
322 | size_t s1, s2; | |
323 | #endif | |
324 | ||
325 | if (*flags & CPU_DTRACE_FAULT) | |
326 | return; | |
327 | ||
328 | if (pcstack_limit <= 0) | |
329 | return; | |
330 | ||
331 | /* | |
332 | * If there's no user context we still need to zero the stack. | |
333 | */ | |
334 | if (thread == NULL) | |
335 | goto zero; | |
336 | ||
337 | regs = (savearea_t *) find_user_regs(thread); | |
338 | if (regs == NULL) | |
339 | goto zero; | |
340 | ||
341 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); | |
342 | pcstack_limit--; | |
343 | ||
344 | if (pcstack_limit <= 0) | |
345 | return; | |
346 | ||
347 | pc = regs->pc; | |
348 | sp = regs->sp; | |
349 | ||
350 | #if 0 /* XXX signal stack crawl */ | |
351 | oldcontext = lwp->lwp_oldcontext; | |
352 | ||
353 | if (p->p_model == DATAMODEL_NATIVE) { | |
354 | s1 = sizeof(struct frame) + 2 * sizeof(long); | |
355 | s2 = s1 + sizeof(siginfo_t); | |
356 | } else { | |
357 | s1 = sizeof(struct frame32) + 3 * sizeof(int); | |
358 | s2 = s1 + sizeof(siginfo32_t); | |
359 | } | |
360 | #endif | |
361 | ||
362 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
363 | *pcstack++ = (uint64_t) pc; | |
364 | *fpstack++ = 0; | |
365 | pcstack_limit--; | |
366 | if (pcstack_limit <= 0) | |
367 | return; | |
368 | ||
369 | pc = dtrace_fuword32(sp); | |
370 | } | |
371 | while (pc != 0 && sp != 0) { | |
372 | *pcstack++ = (uint64_t) pc; | |
373 | *fpstack++ = sp; | |
374 | pcstack_limit--; | |
375 | if (pcstack_limit <= 0) | |
376 | break; | |
377 | ||
378 | #if 0 /* XXX signal stack crawl */ | |
379 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
380 | if (p->p_model == DATAMODEL_NATIVE) { | |
381 | ucontext_t *ucp = (ucontext_t *) oldcontext; | |
382 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
383 | ||
384 | sp = dtrace_fulword(&gregs[REG_FP]); | |
385 | pc = dtrace_fulword(&gregs[REG_PC]); | |
386 | ||
387 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
388 | } else { | |
389 | ucontext_t *ucp = (ucontext_t *) oldcontext; | |
390 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
391 | ||
392 | sp = dtrace_fuword32(&gregs[EBP]); | |
393 | pc = dtrace_fuword32(&gregs[EIP]); | |
394 | ||
395 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
396 | } | |
397 | } else | |
398 | #endif | |
399 | { | |
400 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
401 | sp = dtrace_fuword32(sp); | |
402 | } | |
403 | ||
404 | #if 0 | |
405 | /* XXX ARMTODO*/ | |
406 | /* | |
407 | * This is totally bogus: if we faulted, we're going to clear | |
408 | * the fault and break. This is to deal with the apparently | |
409 | * broken Java stacks on x86. | |
410 | */ | |
411 | if (*flags & CPU_DTRACE_FAULT) { | |
412 | *flags &= ~CPU_DTRACE_FAULT; | |
413 | break; | |
414 | } | |
415 | #endif | |
416 | } | |
417 | ||
418 | zero: | |
419 | while (pcstack_limit-- > 0) | |
420 | *pcstack++ = 0ULL; | |
421 | } | |
422 | ||
423 | void | |
424 | dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes, | |
425 | uint32_t * intrpc) | |
426 | { | |
427 | struct frame *fp = (struct frame *) __builtin_frame_address(0); | |
428 | struct frame *nextfp, *minfp, *stacktop; | |
429 | int depth = 0; | |
430 | int on_intr; | |
431 | int last = 0; | |
432 | uintptr_t pc; | |
433 | uintptr_t caller = CPU->cpu_dtrace_caller; | |
434 | ||
435 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
436 | stacktop = (struct frame *) dtrace_get_cpu_int_stack_top(); | |
437 | else | |
438 | stacktop = (struct frame *) (dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); | |
439 | ||
440 | minfp = fp; | |
441 | ||
442 | aframes++; | |
443 | ||
444 | if (intrpc != NULL && depth < pcstack_limit) | |
445 | pcstack[depth++] = (pc_t) intrpc; | |
446 | ||
447 | while (depth < pcstack_limit) { | |
448 | nextfp = *(struct frame **) fp; | |
449 | pc = *(uintptr_t *) (((uint32_t) fp) + RETURN_OFFSET); | |
450 | ||
451 | if (nextfp <= minfp || nextfp >= stacktop) { | |
452 | if (on_intr) { | |
453 | /* | |
454 | * Hop from interrupt stack to thread stack. | |
455 | */ | |
456 | arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread()); | |
457 | if (arm_kern_regs) { | |
458 | nextfp = (struct frame *)arm_kern_regs->r[7]; | |
459 | ||
460 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
461 | ||
462 | minfp = (struct frame *)kstack_base; | |
463 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); | |
464 | ||
465 | on_intr = 0; | |
466 | ||
467 | if (nextfp <= minfp || nextfp >= stacktop) { | |
468 | last = 1; | |
469 | } | |
470 | } else { | |
471 | /* | |
472 | * If this thread was on the interrupt stack, but did not | |
473 | * take an interrupt (i.e, the idle thread), there is no | |
474 | * explicit saved state for us to use. | |
475 | */ | |
476 | last = 1; | |
477 | } | |
478 | } else { | |
479 | /* | |
480 | * This is the last frame we can process; indicate | |
481 | * that we should return after processing this frame. | |
482 | */ | |
483 | last = 1; | |
484 | } | |
485 | } | |
486 | if (aframes > 0) { | |
487 | if (--aframes == 0 && caller != (uintptr_t)NULL) { | |
488 | /* | |
489 | * We've just run out of artificial frames, | |
490 | * and we have a valid caller -- fill it in | |
491 | * now. | |
492 | */ | |
493 | ASSERT(depth < pcstack_limit); | |
494 | pcstack[depth++] = (pc_t) caller; | |
495 | caller = (uintptr_t)NULL; | |
496 | } | |
497 | } else { | |
498 | if (depth < pcstack_limit) | |
499 | pcstack[depth++] = (pc_t) pc; | |
500 | } | |
501 | ||
502 | if (last) { | |
503 | while (depth < pcstack_limit) | |
504 | pcstack[depth++] = (pc_t) NULL; | |
505 | return; | |
506 | } | |
507 | fp = nextfp; | |
508 | minfp = fp; | |
509 | } | |
510 | } | |
511 | ||
512 | int | |
513 | dtrace_instr_size(uint32_t instr, int thumb_mode) | |
514 | { | |
515 | if (thumb_mode) { | |
516 | uint16_t instr16 = *(uint16_t*) &instr; | |
517 | if (((instr16 >> 11) & 0x1F) > 0x1C) | |
518 | return 4; | |
519 | else | |
520 | return 2; | |
521 | } else { | |
522 | return 4; | |
523 | } | |
524 | } | |
525 | ||
526 | uint64_t | |
527 | dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) | |
528 | { | |
529 | #pragma unused(arg, aframes, mstate, vstate) | |
530 | #if 0 | |
531 | /* XXX ARMTODO */ | |
532 | uint64_t val; | |
533 | uintptr_t *fp = (uintptr_t *)__builtin_frame_address(0); | |
534 | uintptr_t *stack; | |
535 | uintptr_t pc; | |
536 | int i; | |
537 | ||
538 | for (i = 1; i <= aframes; i++) { | |
539 | fp = fp[0]; | |
540 | pc = fp[1]; | |
541 | ||
542 | if (dtrace_invop_callsite_pre != NULL | |
543 | && pc > (uintptr_t)dtrace_invop_callsite_pre | |
544 | && pc <= (uintptr_t)dtrace_invop_callsite_post) { | |
545 | /* | |
546 | * If we pass through the invalid op handler, we will | |
547 | * use the pointer that it passed to the stack as the | |
548 | * second argument to dtrace_invop() as the pointer to | |
549 | * the frame we're hunting for. | |
550 | */ | |
551 | ||
552 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
553 | fp = (struct frame *)stack[1]; /* Grab *second* argument */ | |
554 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
555 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
556 | val = (uint64_t)(stack[arg]); | |
557 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
558 | return val; | |
559 | } | |
560 | } | |
561 | ||
562 | /* | |
563 | * Arrive here when provider has called dtrace_probe directly. | |
564 | */ | |
565 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
566 | stack++; /* Advance past probeID */ | |
567 | ||
568 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
569 | val = *(((uint64_t *)stack) + arg); /* dtrace_probe arguments arg0 .. arg4 are 64bits wide */ | |
570 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
571 | return (val); | |
572 | #endif | |
573 | return 0xfeedfacedeafbeadLL; | |
574 | } | |
575 | ||
576 | void | |
577 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, | |
578 | int fltoffs, int fault, uint64_t illval) | |
579 | { | |
580 | /* XXX ARMTODO */ | |
581 | /* | |
582 | * For the case of the error probe firing lets | |
583 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. | |
584 | */ | |
585 | state->dts_arg_error_illval = illval; | |
586 | dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault ); | |
587 | } | |
588 | ||
589 | void | |
590 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) | |
591 | { | |
592 | /* XXX ARMTODO check copied from ppc/x86*/ | |
593 | /* | |
594 | * "base" is the smallest toxic address in the range, "limit" is the first | |
595 | * VALID address greater than "base". | |
596 | */ | |
597 | func(0x0, VM_MIN_KERNEL_ADDRESS); | |
598 | if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) | |
599 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); | |
600 | } | |
601 | ||
602 | int | |
603 | dtrace_arm_condition_true(int cond, int cpsr) | |
604 | { | |
605 | int taken = 0; | |
606 | int zf = (cpsr & PSR_ZF) ? 1 : 0, | |
607 | nf = (cpsr & PSR_NF) ? 1 : 0, | |
608 | cf = (cpsr & PSR_CF) ? 1 : 0, | |
609 | vf = (cpsr & PSR_VF) ? 1 : 0; | |
610 | ||
611 | switch(cond) { | |
612 | case 0: taken = zf; break; | |
613 | case 1: taken = !zf; break; | |
614 | case 2: taken = cf; break; | |
615 | case 3: taken = !cf; break; | |
616 | case 4: taken = nf; break; | |
617 | case 5: taken = !nf; break; | |
618 | case 6: taken = vf; break; | |
619 | case 7: taken = !vf; break; | |
620 | case 8: taken = (cf && !zf); break; | |
621 | case 9: taken = (!cf || zf); break; | |
622 | case 10: taken = (nf == vf); break; | |
623 | case 11: taken = (nf != vf); break; | |
624 | case 12: taken = (!zf && (nf == vf)); break; | |
625 | case 13: taken = (zf || (nf != vf)); break; | |
626 | case 14: taken = 1; break; | |
627 | case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */ | |
628 | } | |
629 | ||
630 | return taken; | |
631 | } |