]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. | |
7 | * | |
8 | * This file contains Original Code and/or Modifications of Original Code | |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
22 | * | |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * File: kern/clock.c | |
30 | * Purpose: Routines for the creation and use of kernel | |
31 | * alarm clock services. This file and the ipc | |
32 | * routines in kern/ipc_clock.c constitute the | |
33 | * machine-independent clock service layer. | |
34 | */ | |
35 | ||
36 | #include <cpus.h> | |
37 | #include <mach_host.h> | |
38 | ||
39 | #include <mach/boolean.h> | |
40 | #include <mach/processor_info.h> | |
41 | #include <mach/vm_param.h> | |
42 | #include <machine/mach_param.h> | |
43 | #include <kern/cpu_number.h> | |
44 | #include <kern/misc_protos.h> | |
45 | #include <kern/lock.h> | |
46 | #include <kern/host.h> | |
47 | #include <kern/spl.h> | |
48 | #include <kern/sched_prim.h> | |
49 | #include <kern/thread.h> | |
50 | #include <kern/thread_swap.h> | |
51 | #include <kern/ipc_host.h> | |
52 | #include <kern/clock.h> | |
53 | #include <kern/zalloc.h> | |
54 | #include <ipc/ipc_port.h> | |
55 | ||
56 | #include <mach/mach_syscalls.h> | |
57 | #include <mach/clock_reply.h> | |
58 | #include <mach/mach_time.h> | |
59 | ||
60 | /* | |
61 | * Exported interface | |
62 | */ | |
63 | ||
64 | #include <mach/clock_server.h> | |
65 | #include <mach/mach_host_server.h> | |
66 | ||
67 | /* local data declarations */ | |
68 | decl_simple_lock_data(static,ClockLock) /* clock system synchronization */ | |
69 | static struct zone *alarm_zone; /* zone for user alarms */ | |
70 | static struct alarm *alrmfree; /* alarm free list pointer */ | |
71 | static struct alarm *alrmdone; /* alarm done list pointer */ | |
72 | static long alrm_seqno; /* uniquely identifies alarms */ | |
73 | static thread_call_data_t alarm_deliver; | |
74 | ||
75 | decl_simple_lock_data(static,calend_adjlock) | |
76 | ||
77 | static timer_call_data_t calend_adjcall; | |
78 | static uint64_t calend_adjinterval, calend_adjdeadline; | |
79 | ||
80 | static thread_call_data_t calend_wakecall; | |
81 | ||
82 | /* backwards compatibility */ | |
83 | int hz = HZ; /* GET RID OF THIS !!! */ | |
84 | int tick = (1000000 / HZ); /* GET RID OF THIS !!! */ | |
85 | ||
86 | /* external declarations */ | |
87 | extern struct clock clock_list[]; | |
88 | extern int clock_count; | |
89 | ||
90 | /* local clock subroutines */ | |
91 | static | |
92 | void flush_alarms( | |
93 | clock_t clock); | |
94 | ||
95 | static | |
96 | void post_alarm( | |
97 | clock_t clock, | |
98 | alarm_t alarm); | |
99 | ||
100 | static | |
101 | int check_time( | |
102 | alarm_type_t alarm_type, | |
103 | mach_timespec_t *alarm_time, | |
104 | mach_timespec_t *clock_time); | |
105 | ||
106 | static | |
107 | void clock_alarm_deliver( | |
108 | thread_call_param_t p0, | |
109 | thread_call_param_t p1); | |
110 | ||
111 | static | |
112 | void calend_adjust_call( | |
113 | timer_call_param_t p0, | |
114 | timer_call_param_t p1); | |
115 | ||
116 | static | |
117 | void calend_dowakeup( | |
118 | thread_call_param_t p0, | |
119 | thread_call_param_t p1); | |
120 | ||
121 | /* | |
122 | * Macros to lock/unlock clock system. | |
123 | */ | |
124 | #define LOCK_CLOCK(s) \ | |
125 | s = splclock(); \ | |
126 | simple_lock(&ClockLock); | |
127 | ||
128 | #define UNLOCK_CLOCK(s) \ | |
129 | simple_unlock(&ClockLock); \ | |
130 | splx(s); | |
131 | ||
132 | /* | |
133 | * Configure the clock system. (Not sure if we need this, | |
134 | * as separate from clock_init()). | |
135 | */ | |
136 | void | |
137 | clock_config(void) | |
138 | { | |
139 | clock_t clock; | |
140 | register int i; | |
141 | ||
142 | if (cpu_number() != master_cpu) | |
143 | panic("clock_config"); | |
144 | ||
145 | simple_lock_init(&ClockLock, ETAP_MISC_CLOCK); | |
146 | thread_call_setup(&alarm_deliver, clock_alarm_deliver, NULL); | |
147 | ||
148 | simple_lock_init(&calend_adjlock, ETAP_MISC_CLOCK); | |
149 | timer_call_setup(&calend_adjcall, calend_adjust_call, NULL); | |
150 | ||
151 | thread_call_setup(&calend_wakecall, calend_dowakeup, NULL); | |
152 | ||
153 | /* | |
154 | * Configure clock devices. | |
155 | */ | |
156 | for (i = 0; i < clock_count; i++) { | |
157 | clock = &clock_list[i]; | |
158 | if (clock->cl_ops) { | |
159 | if ((*clock->cl_ops->c_config)() == 0) | |
160 | clock->cl_ops = 0; | |
161 | } | |
162 | } | |
163 | ||
164 | /* start alarm sequence numbers at 0 */ | |
165 | alrm_seqno = 0; | |
166 | } | |
167 | ||
168 | /* | |
169 | * Initialize the clock system. | |
170 | */ | |
171 | void | |
172 | clock_init(void) | |
173 | { | |
174 | clock_t clock; | |
175 | register int i; | |
176 | ||
177 | /* | |
178 | * Initialize basic clock structures. | |
179 | */ | |
180 | for (i = 0; i < clock_count; i++) { | |
181 | clock = &clock_list[i]; | |
182 | if (clock->cl_ops) | |
183 | (*clock->cl_ops->c_init)(); | |
184 | } | |
185 | } | |
186 | ||
187 | /* | |
188 | * Called by machine dependent code | |
189 | * to initialize areas dependent on the | |
190 | * timebase value. May be called multiple | |
191 | * times during start up. | |
192 | */ | |
193 | void | |
194 | clock_timebase_init(void) | |
195 | { | |
196 | sched_timebase_init(); | |
197 | } | |
198 | ||
199 | /* | |
200 | * Initialize the clock ipc service facility. | |
201 | */ | |
202 | void | |
203 | clock_service_create(void) | |
204 | { | |
205 | clock_t clock; | |
206 | register int i; | |
207 | ||
208 | /* | |
209 | * Initialize ipc clock services. | |
210 | */ | |
211 | for (i = 0; i < clock_count; i++) { | |
212 | clock = &clock_list[i]; | |
213 | if (clock->cl_ops) { | |
214 | ipc_clock_init(clock); | |
215 | ipc_clock_enable(clock); | |
216 | } | |
217 | } | |
218 | ||
219 | /* | |
220 | * Perform miscellaneous late | |
221 | * initialization. | |
222 | */ | |
223 | i = sizeof(struct alarm); | |
224 | alarm_zone = zinit(i, (4096/i)*i, 10*i, "alarms"); | |
225 | } | |
226 | ||
227 | /* | |
228 | * Get the service port on a clock. | |
229 | */ | |
230 | kern_return_t | |
231 | host_get_clock_service( | |
232 | host_t host, | |
233 | clock_id_t clock_id, | |
234 | clock_t *clock) /* OUT */ | |
235 | { | |
236 | if (host == HOST_NULL || clock_id < 0 || clock_id >= clock_count) { | |
237 | *clock = CLOCK_NULL; | |
238 | return (KERN_INVALID_ARGUMENT); | |
239 | } | |
240 | ||
241 | *clock = &clock_list[clock_id]; | |
242 | if ((*clock)->cl_ops == 0) | |
243 | return (KERN_FAILURE); | |
244 | return (KERN_SUCCESS); | |
245 | } | |
246 | ||
247 | /* | |
248 | * Get the control port on a clock. | |
249 | */ | |
250 | kern_return_t | |
251 | host_get_clock_control( | |
252 | host_priv_t host_priv, | |
253 | clock_id_t clock_id, | |
254 | clock_t *clock) /* OUT */ | |
255 | { | |
256 | if (host_priv == HOST_PRIV_NULL || clock_id < 0 || clock_id >= clock_count) { | |
257 | *clock = CLOCK_NULL; | |
258 | return (KERN_INVALID_ARGUMENT); | |
259 | } | |
260 | ||
261 | *clock = &clock_list[clock_id]; | |
262 | if ((*clock)->cl_ops == 0) | |
263 | return (KERN_FAILURE); | |
264 | return (KERN_SUCCESS); | |
265 | } | |
266 | ||
267 | /* | |
268 | * Get the current clock time. | |
269 | */ | |
270 | kern_return_t | |
271 | clock_get_time( | |
272 | clock_t clock, | |
273 | mach_timespec_t *cur_time) /* OUT */ | |
274 | { | |
275 | if (clock == CLOCK_NULL) | |
276 | return (KERN_INVALID_ARGUMENT); | |
277 | return ((*clock->cl_ops->c_gettime)(cur_time)); | |
278 | } | |
279 | ||
280 | /* | |
281 | * Get clock attributes. | |
282 | */ | |
283 | kern_return_t | |
284 | clock_get_attributes( | |
285 | clock_t clock, | |
286 | clock_flavor_t flavor, | |
287 | clock_attr_t attr, /* OUT */ | |
288 | mach_msg_type_number_t *count) /* IN/OUT */ | |
289 | { | |
290 | kern_return_t (*getattr)( | |
291 | clock_flavor_t flavor, | |
292 | clock_attr_t attr, | |
293 | mach_msg_type_number_t *count); | |
294 | ||
295 | if (clock == CLOCK_NULL) | |
296 | return (KERN_INVALID_ARGUMENT); | |
297 | if (getattr = clock->cl_ops->c_getattr) | |
298 | return((*getattr)(flavor, attr, count)); | |
299 | else | |
300 | return (KERN_FAILURE); | |
301 | } | |
302 | ||
303 | /* | |
304 | * Set the current clock time. | |
305 | */ | |
306 | kern_return_t | |
307 | clock_set_time( | |
308 | clock_t clock, | |
309 | mach_timespec_t new_time) | |
310 | { | |
311 | mach_timespec_t *clock_time; | |
312 | kern_return_t (*settime)( | |
313 | mach_timespec_t *clock_time); | |
314 | ||
315 | if (clock == CLOCK_NULL) | |
316 | return (KERN_INVALID_ARGUMENT); | |
317 | if ((settime = clock->cl_ops->c_settime) == 0) | |
318 | return (KERN_FAILURE); | |
319 | clock_time = &new_time; | |
320 | if (BAD_MACH_TIMESPEC(clock_time)) | |
321 | return (KERN_INVALID_VALUE); | |
322 | ||
323 | /* | |
324 | * Flush all outstanding alarms. | |
325 | */ | |
326 | flush_alarms(clock); | |
327 | ||
328 | /* | |
329 | * Set the new time. | |
330 | */ | |
331 | return ((*settime)(clock_time)); | |
332 | } | |
333 | ||
334 | /* | |
335 | * Set the clock alarm resolution. | |
336 | */ | |
337 | kern_return_t | |
338 | clock_set_attributes( | |
339 | clock_t clock, | |
340 | clock_flavor_t flavor, | |
341 | clock_attr_t attr, | |
342 | mach_msg_type_number_t count) | |
343 | { | |
344 | kern_return_t (*setattr)( | |
345 | clock_flavor_t flavor, | |
346 | clock_attr_t attr, | |
347 | mach_msg_type_number_t count); | |
348 | ||
349 | if (clock == CLOCK_NULL) | |
350 | return (KERN_INVALID_ARGUMENT); | |
351 | if (setattr = clock->cl_ops->c_setattr) | |
352 | return ((*setattr)(flavor, attr, count)); | |
353 | else | |
354 | return (KERN_FAILURE); | |
355 | } | |
356 | ||
357 | /* | |
358 | * Setup a clock alarm. | |
359 | */ | |
360 | kern_return_t | |
361 | clock_alarm( | |
362 | clock_t clock, | |
363 | alarm_type_t alarm_type, | |
364 | mach_timespec_t alarm_time, | |
365 | ipc_port_t alarm_port, | |
366 | mach_msg_type_name_t alarm_port_type) | |
367 | { | |
368 | alarm_t alarm; | |
369 | mach_timespec_t clock_time; | |
370 | int chkstat; | |
371 | kern_return_t reply_code; | |
372 | spl_t s; | |
373 | ||
374 | if (clock == CLOCK_NULL) | |
375 | return (KERN_INVALID_ARGUMENT); | |
376 | if (clock->cl_ops->c_setalrm == 0) | |
377 | return (KERN_FAILURE); | |
378 | if (IP_VALID(alarm_port) == 0) | |
379 | return (KERN_INVALID_CAPABILITY); | |
380 | ||
381 | /* | |
382 | * Check alarm parameters. If parameters are invalid, | |
383 | * send alarm message immediately. | |
384 | */ | |
385 | (*clock->cl_ops->c_gettime)(&clock_time); | |
386 | chkstat = check_time(alarm_type, &alarm_time, &clock_time); | |
387 | if (chkstat <= 0) { | |
388 | reply_code = (chkstat < 0 ? KERN_INVALID_VALUE : KERN_SUCCESS); | |
389 | clock_alarm_reply(alarm_port, alarm_port_type, | |
390 | reply_code, alarm_type, clock_time); | |
391 | return (KERN_SUCCESS); | |
392 | } | |
393 | ||
394 | /* | |
395 | * Get alarm and add to clock alarm list. | |
396 | */ | |
397 | ||
398 | LOCK_CLOCK(s); | |
399 | if ((alarm = alrmfree) == 0) { | |
400 | UNLOCK_CLOCK(s); | |
401 | alarm = (alarm_t) zalloc(alarm_zone); | |
402 | if (alarm == 0) | |
403 | return (KERN_RESOURCE_SHORTAGE); | |
404 | LOCK_CLOCK(s); | |
405 | } | |
406 | else | |
407 | alrmfree = alarm->al_next; | |
408 | ||
409 | alarm->al_status = ALARM_CLOCK; | |
410 | alarm->al_time = alarm_time; | |
411 | alarm->al_type = alarm_type; | |
412 | alarm->al_port = alarm_port; | |
413 | alarm->al_port_type = alarm_port_type; | |
414 | alarm->al_clock = clock; | |
415 | alarm->al_seqno = alrm_seqno++; | |
416 | post_alarm(clock, alarm); | |
417 | UNLOCK_CLOCK(s); | |
418 | ||
419 | return (KERN_SUCCESS); | |
420 | } | |
421 | ||
422 | /* | |
423 | * Sleep on a clock. System trap. User-level libmach clock_sleep | |
424 | * interface call takes a mach_timespec_t sleep_time argument which it | |
425 | * converts to sleep_sec and sleep_nsec arguments which are then | |
426 | * passed to clock_sleep_trap. | |
427 | */ | |
428 | kern_return_t | |
429 | clock_sleep_trap( | |
430 | mach_port_name_t clock_name, | |
431 | sleep_type_t sleep_type, | |
432 | int sleep_sec, | |
433 | int sleep_nsec, | |
434 | mach_timespec_t *wakeup_time) | |
435 | { | |
436 | clock_t clock; | |
437 | mach_timespec_t swtime; | |
438 | kern_return_t rvalue; | |
439 | ||
440 | /* | |
441 | * Convert the trap parameters. | |
442 | */ | |
443 | if (clock_name != MACH_PORT_NULL) | |
444 | clock = port_name_to_clock(clock_name); | |
445 | else | |
446 | clock = &clock_list[SYSTEM_CLOCK]; | |
447 | ||
448 | swtime.tv_sec = sleep_sec; | |
449 | swtime.tv_nsec = sleep_nsec; | |
450 | ||
451 | /* | |
452 | * Call the actual clock_sleep routine. | |
453 | */ | |
454 | rvalue = clock_sleep_internal(clock, sleep_type, &swtime); | |
455 | ||
456 | /* | |
457 | * Return current time as wakeup time. | |
458 | */ | |
459 | if (rvalue != KERN_INVALID_ARGUMENT && rvalue != KERN_FAILURE) { | |
460 | copyout((char *)&swtime, (char *)wakeup_time, | |
461 | sizeof(mach_timespec_t)); | |
462 | } | |
463 | return (rvalue); | |
464 | } | |
465 | ||
466 | /* | |
467 | * Kernel internally callable clock sleep routine. The calling | |
468 | * thread is suspended until the requested sleep time is reached. | |
469 | */ | |
470 | kern_return_t | |
471 | clock_sleep_internal( | |
472 | clock_t clock, | |
473 | sleep_type_t sleep_type, | |
474 | mach_timespec_t *sleep_time) | |
475 | { | |
476 | alarm_t alarm; | |
477 | mach_timespec_t clock_time; | |
478 | kern_return_t rvalue; | |
479 | int chkstat; | |
480 | spl_t s; | |
481 | ||
482 | if (clock == CLOCK_NULL) | |
483 | return (KERN_INVALID_ARGUMENT); | |
484 | if (clock->cl_ops->c_setalrm == 0) | |
485 | return (KERN_FAILURE); | |
486 | ||
487 | /* | |
488 | * Check sleep parameters. If parameters are invalid | |
489 | * return an error, otherwise post alarm request. | |
490 | */ | |
491 | (*clock->cl_ops->c_gettime)(&clock_time); | |
492 | ||
493 | chkstat = check_time(sleep_type, sleep_time, &clock_time); | |
494 | if (chkstat < 0) | |
495 | return (KERN_INVALID_VALUE); | |
496 | rvalue = KERN_SUCCESS; | |
497 | if (chkstat > 0) { | |
498 | wait_result_t wait_result; | |
499 | ||
500 | /* | |
501 | * Get alarm and add to clock alarm list. | |
502 | */ | |
503 | ||
504 | LOCK_CLOCK(s); | |
505 | if ((alarm = alrmfree) == 0) { | |
506 | UNLOCK_CLOCK(s); | |
507 | alarm = (alarm_t) zalloc(alarm_zone); | |
508 | if (alarm == 0) | |
509 | return (KERN_RESOURCE_SHORTAGE); | |
510 | LOCK_CLOCK(s); | |
511 | } | |
512 | else | |
513 | alrmfree = alarm->al_next; | |
514 | ||
515 | /* | |
516 | * Wait for alarm to occur. | |
517 | */ | |
518 | wait_result = assert_wait((event_t)alarm, THREAD_ABORTSAFE); | |
519 | if (wait_result == THREAD_WAITING) { | |
520 | alarm->al_time = *sleep_time; | |
521 | alarm->al_status = ALARM_SLEEP; | |
522 | post_alarm(clock, alarm); | |
523 | UNLOCK_CLOCK(s); | |
524 | ||
525 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
526 | ||
527 | /* | |
528 | * Note if alarm expired normally or whether it | |
529 | * was aborted. If aborted, delete alarm from | |
530 | * clock alarm list. Return alarm to free list. | |
531 | */ | |
532 | LOCK_CLOCK(s); | |
533 | if (alarm->al_status != ALARM_DONE) { | |
534 | assert(wait_result != THREAD_AWAKENED); | |
535 | if ((alarm->al_prev)->al_next = alarm->al_next) | |
536 | (alarm->al_next)->al_prev = alarm->al_prev; | |
537 | rvalue = KERN_ABORTED; | |
538 | } | |
539 | *sleep_time = alarm->al_time; | |
540 | alarm->al_status = ALARM_FREE; | |
541 | } else { | |
542 | assert(wait_result == THREAD_INTERRUPTED); | |
543 | assert(alarm->al_status == ALARM_FREE); | |
544 | rvalue = KERN_ABORTED; | |
545 | } | |
546 | alarm->al_next = alrmfree; | |
547 | alrmfree = alarm; | |
548 | UNLOCK_CLOCK(s); | |
549 | } | |
550 | else | |
551 | *sleep_time = clock_time; | |
552 | ||
553 | return (rvalue); | |
554 | } | |
555 | ||
556 | /* | |
557 | * CLOCK INTERRUPT SERVICE ROUTINES. | |
558 | */ | |
559 | ||
560 | /* | |
561 | * Service clock alarm interrupts. Called from machine dependent | |
562 | * layer at splclock(). The clock_id argument specifies the clock, | |
563 | * and the clock_time argument gives that clock's current time. | |
564 | */ | |
565 | void | |
566 | clock_alarm_intr( | |
567 | clock_id_t clock_id, | |
568 | mach_timespec_t *clock_time) | |
569 | { | |
570 | clock_t clock; | |
571 | register alarm_t alrm1; | |
572 | register alarm_t alrm2; | |
573 | mach_timespec_t *alarm_time; | |
574 | spl_t s; | |
575 | ||
576 | clock = &clock_list[clock_id]; | |
577 | ||
578 | /* | |
579 | * Update clock alarm list. All alarms that are due are moved | |
580 | * to the alarmdone list to be serviced by the alarm_thread. | |
581 | */ | |
582 | ||
583 | LOCK_CLOCK(s); | |
584 | alrm1 = (alarm_t) &clock->cl_alarm; | |
585 | while (alrm2 = alrm1->al_next) { | |
586 | alarm_time = &alrm2->al_time; | |
587 | if (CMP_MACH_TIMESPEC(alarm_time, clock_time) > 0) | |
588 | break; | |
589 | ||
590 | /* | |
591 | * Alarm has expired, so remove it from the | |
592 | * clock alarm list. | |
593 | */ | |
594 | if (alrm1->al_next = alrm2->al_next) | |
595 | (alrm1->al_next)->al_prev = alrm1; | |
596 | ||
597 | /* | |
598 | * If a clock_sleep() alarm, wakeup the thread | |
599 | * which issued the clock_sleep() call. | |
600 | */ | |
601 | if (alrm2->al_status == ALARM_SLEEP) { | |
602 | alrm2->al_next = 0; | |
603 | alrm2->al_status = ALARM_DONE; | |
604 | alrm2->al_time = *clock_time; | |
605 | thread_wakeup((event_t)alrm2); | |
606 | } | |
607 | ||
608 | /* | |
609 | * If a clock_alarm() alarm, place the alarm on | |
610 | * the alarm done list and schedule the alarm | |
611 | * delivery mechanism. | |
612 | */ | |
613 | else { | |
614 | assert(alrm2->al_status == ALARM_CLOCK); | |
615 | if (alrm2->al_next = alrmdone) | |
616 | alrmdone->al_prev = alrm2; | |
617 | else | |
618 | thread_call_enter(&alarm_deliver); | |
619 | alrm2->al_prev = (alarm_t) &alrmdone; | |
620 | alrmdone = alrm2; | |
621 | alrm2->al_status = ALARM_DONE; | |
622 | alrm2->al_time = *clock_time; | |
623 | } | |
624 | } | |
625 | ||
626 | /* | |
627 | * Setup the clock dependent layer to deliver another | |
628 | * interrupt for the next pending alarm. | |
629 | */ | |
630 | if (alrm2) | |
631 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
632 | UNLOCK_CLOCK(s); | |
633 | } | |
634 | ||
635 | /* | |
636 | * ALARM DELIVERY ROUTINES. | |
637 | */ | |
638 | ||
639 | static void | |
640 | clock_alarm_deliver( | |
641 | thread_call_param_t p0, | |
642 | thread_call_param_t p1) | |
643 | { | |
644 | register alarm_t alrm; | |
645 | kern_return_t code; | |
646 | spl_t s; | |
647 | ||
648 | LOCK_CLOCK(s); | |
649 | while (alrm = alrmdone) { | |
650 | if (alrmdone = alrm->al_next) | |
651 | alrmdone->al_prev = (alarm_t) &alrmdone; | |
652 | UNLOCK_CLOCK(s); | |
653 | ||
654 | code = (alrm->al_status == ALARM_DONE? KERN_SUCCESS: KERN_ABORTED); | |
655 | if (alrm->al_port != IP_NULL) { | |
656 | /* Deliver message to designated port */ | |
657 | if (IP_VALID(alrm->al_port)) { | |
658 | clock_alarm_reply(alrm->al_port, alrm->al_port_type, code, | |
659 | alrm->al_type, alrm->al_time); | |
660 | } | |
661 | ||
662 | LOCK_CLOCK(s); | |
663 | alrm->al_status = ALARM_FREE; | |
664 | alrm->al_next = alrmfree; | |
665 | alrmfree = alrm; | |
666 | } | |
667 | else | |
668 | panic("clock_alarm_deliver"); | |
669 | } | |
670 | ||
671 | UNLOCK_CLOCK(s); | |
672 | } | |
673 | ||
674 | /* | |
675 | * CLOCK PRIVATE SERVICING SUBROUTINES. | |
676 | */ | |
677 | ||
678 | /* | |
679 | * Flush all pending alarms on a clock. All alarms | |
680 | * are activated and timestamped correctly, so any | |
681 | * programs waiting on alarms/threads will proceed | |
682 | * with accurate information. | |
683 | */ | |
684 | static | |
685 | void | |
686 | flush_alarms( | |
687 | clock_t clock) | |
688 | { | |
689 | register alarm_t alrm1, alrm2; | |
690 | spl_t s; | |
691 | ||
692 | /* | |
693 | * Flush all outstanding alarms. | |
694 | */ | |
695 | LOCK_CLOCK(s); | |
696 | alrm1 = (alarm_t) &clock->cl_alarm; | |
697 | while (alrm2 = alrm1->al_next) { | |
698 | /* | |
699 | * Remove alarm from the clock alarm list. | |
700 | */ | |
701 | if (alrm1->al_next = alrm2->al_next) | |
702 | (alrm1->al_next)->al_prev = alrm1; | |
703 | ||
704 | /* | |
705 | * If a clock_sleep() alarm, wakeup the thread | |
706 | * which issued the clock_sleep() call. | |
707 | */ | |
708 | if (alrm2->al_status == ALARM_SLEEP) { | |
709 | alrm2->al_next = 0; | |
710 | thread_wakeup((event_t)alrm2); | |
711 | } | |
712 | else { | |
713 | /* | |
714 | * If a clock_alarm() alarm, place the alarm on | |
715 | * the alarm done list and wakeup the dedicated | |
716 | * kernel alarm_thread to service the alarm. | |
717 | */ | |
718 | assert(alrm2->al_status == ALARM_CLOCK); | |
719 | if (alrm2->al_next = alrmdone) | |
720 | alrmdone->al_prev = alrm2; | |
721 | else | |
722 | thread_wakeup((event_t)&alrmdone); | |
723 | alrm2->al_prev = (alarm_t) &alrmdone; | |
724 | alrmdone = alrm2; | |
725 | } | |
726 | } | |
727 | UNLOCK_CLOCK(s); | |
728 | } | |
729 | ||
730 | /* | |
731 | * Post an alarm on a clock's active alarm list. The alarm is | |
732 | * inserted in time-order into the clock's active alarm list. | |
733 | * Always called from within a LOCK_CLOCK() code section. | |
734 | */ | |
735 | static | |
736 | void | |
737 | post_alarm( | |
738 | clock_t clock, | |
739 | alarm_t alarm) | |
740 | { | |
741 | register alarm_t alrm1, alrm2; | |
742 | mach_timespec_t *alarm_time; | |
743 | mach_timespec_t *queue_time; | |
744 | ||
745 | /* | |
746 | * Traverse alarm list until queue time is greater | |
747 | * than alarm time, then insert alarm. | |
748 | */ | |
749 | alarm_time = &alarm->al_time; | |
750 | alrm1 = (alarm_t) &clock->cl_alarm; | |
751 | while (alrm2 = alrm1->al_next) { | |
752 | queue_time = &alrm2->al_time; | |
753 | if (CMP_MACH_TIMESPEC(queue_time, alarm_time) > 0) | |
754 | break; | |
755 | alrm1 = alrm2; | |
756 | } | |
757 | alrm1->al_next = alarm; | |
758 | alarm->al_next = alrm2; | |
759 | alarm->al_prev = alrm1; | |
760 | if (alrm2) | |
761 | alrm2->al_prev = alarm; | |
762 | ||
763 | /* | |
764 | * If the inserted alarm is the 'earliest' alarm, | |
765 | * reset the device layer alarm time accordingly. | |
766 | */ | |
767 | if (clock->cl_alarm.al_next == alarm) | |
768 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
769 | } | |
770 | ||
771 | /* | |
772 | * Check the validity of 'alarm_time' and 'alarm_type'. If either | |
773 | * argument is invalid, return a negative value. If the 'alarm_time' | |
774 | * is now, return a 0 value. If the 'alarm_time' is in the future, | |
775 | * return a positive value. | |
776 | */ | |
777 | static | |
778 | int | |
779 | check_time( | |
780 | alarm_type_t alarm_type, | |
781 | mach_timespec_t *alarm_time, | |
782 | mach_timespec_t *clock_time) | |
783 | { | |
784 | int result; | |
785 | ||
786 | if (BAD_ALRMTYPE(alarm_type)) | |
787 | return (-1); | |
788 | if (BAD_MACH_TIMESPEC(alarm_time)) | |
789 | return (-1); | |
790 | if ((alarm_type & ALRMTYPE) == TIME_RELATIVE) | |
791 | ADD_MACH_TIMESPEC(alarm_time, clock_time); | |
792 | ||
793 | result = CMP_MACH_TIMESPEC(alarm_time, clock_time); | |
794 | ||
795 | return ((result >= 0)? result: 0); | |
796 | } | |
797 | ||
798 | mach_timespec_t | |
799 | clock_get_system_value(void) | |
800 | { | |
801 | clock_t clock = &clock_list[SYSTEM_CLOCK]; | |
802 | mach_timespec_t value; | |
803 | ||
804 | (void) (*clock->cl_ops->c_gettime)(&value); | |
805 | ||
806 | return value; | |
807 | } | |
808 | ||
809 | mach_timespec_t | |
810 | clock_get_calendar_value(void) | |
811 | { | |
812 | clock_t clock = &clock_list[CALENDAR_CLOCK]; | |
813 | mach_timespec_t value = MACH_TIMESPEC_ZERO; | |
814 | ||
815 | (void) (*clock->cl_ops->c_gettime)(&value); | |
816 | ||
817 | return value; | |
818 | } | |
819 | ||
820 | void | |
821 | clock_deadline_for_periodic_event( | |
822 | uint64_t interval, | |
823 | uint64_t abstime, | |
824 | uint64_t *deadline) | |
825 | { | |
826 | assert(interval != 0); | |
827 | ||
828 | *deadline += interval; | |
829 | ||
830 | if (*deadline <= abstime) { | |
831 | *deadline = abstime + interval; | |
832 | abstime = mach_absolute_time(); | |
833 | ||
834 | if (*deadline <= abstime) | |
835 | *deadline = abstime + interval; | |
836 | } | |
837 | } | |
838 | ||
839 | void | |
840 | mk_timebase_info( | |
841 | uint32_t *delta, | |
842 | uint32_t *abs_to_ns_numer, | |
843 | uint32_t *abs_to_ns_denom, | |
844 | uint32_t *proc_to_abs_numer, | |
845 | uint32_t *proc_to_abs_denom) | |
846 | { | |
847 | mach_timebase_info_data_t info; | |
848 | uint32_t one = 1; | |
849 | ||
850 | clock_timebase_info(&info); | |
851 | ||
852 | copyout((void *)&one, (void *)delta, sizeof (uint32_t)); | |
853 | ||
854 | copyout((void *)&info.numer, (void *)abs_to_ns_numer, sizeof (uint32_t)); | |
855 | copyout((void *)&info.denom, (void *)abs_to_ns_denom, sizeof (uint32_t)); | |
856 | ||
857 | copyout((void *)&one, (void *)proc_to_abs_numer, sizeof (uint32_t)); | |
858 | copyout((void *)&one, (void *)proc_to_abs_denom, sizeof (uint32_t)); | |
859 | } | |
860 | ||
861 | kern_return_t | |
862 | mach_timebase_info( | |
863 | mach_timebase_info_t out_info) | |
864 | { | |
865 | mach_timebase_info_data_t info; | |
866 | ||
867 | clock_timebase_info(&info); | |
868 | ||
869 | copyout((void *)&info, (void *)out_info, sizeof (info)); | |
870 | ||
871 | return (KERN_SUCCESS); | |
872 | } | |
873 | ||
874 | kern_return_t | |
875 | mach_wait_until( | |
876 | uint64_t deadline) | |
877 | { | |
878 | int wait_result; | |
879 | ||
880 | wait_result = assert_wait((event_t)&mach_wait_until, THREAD_ABORTSAFE); | |
881 | if (wait_result == THREAD_WAITING) { | |
882 | thread_set_timer_deadline(deadline); | |
883 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
884 | if (wait_result != THREAD_TIMED_OUT) | |
885 | thread_cancel_timer(); | |
886 | } | |
887 | ||
888 | return ((wait_result == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
889 | } | |
890 | ||
891 | void | |
892 | clock_adjtime( | |
893 | int32_t *secs, | |
894 | int32_t *microsecs) | |
895 | { | |
896 | uint32_t interval; | |
897 | spl_t s; | |
898 | ||
899 | s = splclock(); | |
900 | simple_lock(&calend_adjlock); | |
901 | ||
902 | interval = clock_set_calendar_adjtime(secs, microsecs); | |
903 | if (interval != 0) { | |
904 | if (calend_adjdeadline >= interval) | |
905 | calend_adjdeadline -= interval; | |
906 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), | |
907 | &calend_adjdeadline); | |
908 | ||
909 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
910 | } | |
911 | else | |
912 | timer_call_cancel(&calend_adjcall); | |
913 | ||
914 | simple_unlock(&calend_adjlock); | |
915 | splx(s); | |
916 | } | |
917 | ||
918 | static void | |
919 | calend_adjust_call( | |
920 | timer_call_param_t p0, | |
921 | timer_call_param_t p1) | |
922 | { | |
923 | uint32_t interval; | |
924 | spl_t s; | |
925 | ||
926 | s = splclock(); | |
927 | simple_lock(&calend_adjlock); | |
928 | ||
929 | interval = clock_adjust_calendar(); | |
930 | if (interval != 0) { | |
931 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), | |
932 | &calend_adjdeadline); | |
933 | ||
934 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
935 | } | |
936 | ||
937 | simple_unlock(&calend_adjlock); | |
938 | splx(s); | |
939 | } | |
940 | ||
941 | void | |
942 | clock_wakeup_calendar(void) | |
943 | { | |
944 | thread_call_enter(&calend_wakecall); | |
945 | } | |
946 | ||
947 | static void | |
948 | calend_dowakeup( | |
949 | thread_call_param_t p0, | |
950 | thread_call_param_t p1) | |
951 | { | |
952 | void IOKitResetTime(void); | |
953 | ||
954 | IOKitResetTime(); | |
955 | } |